US20130334536A1 - SINGLE-CRYSTAL REO BUFFER ON AMORPHOUS SiOx - Google Patents

SINGLE-CRYSTAL REO BUFFER ON AMORPHOUS SiOx Download PDF

Info

Publication number
US20130334536A1
US20130334536A1 US13/771,514 US201313771514A US2013334536A1 US 20130334536 A1 US20130334536 A1 US 20130334536A1 US 201313771514 A US201313771514 A US 201313771514A US 2013334536 A1 US2013334536 A1 US 2013334536A1
Authority
US
United States
Prior art keywords
layer
rare earth
substrate
iii
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/771,514
Inventor
Rytis Dargis
Andrew Clark
Robin Smith
Michael Lebby
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US13/771,514 priority Critical patent/US20130334536A1/en
Publication of US20130334536A1 publication Critical patent/US20130334536A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B1/00Single-crystal growth directly from the solid state
    • C30B1/02Single-crystal growth directly from the solid state by thermal treatment, e.g. strain annealing
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • C30B25/183Epitaxial-layer growth characterised by the substrate being provided with a buffer layer, e.g. a lattice matching layer
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • C30B29/22Complex oxides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/02433Crystal orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02488Insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • H01L21/02505Layer structure consisting of more than two layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02516Crystal orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides

Definitions

  • This invention relates in general to the formation of amorphous silicon oxide on silicon wafers between the substrate and a single-crystal rare earth oxide buffer for the growth of III-N semiconductor material.
  • III-N materials are a desirable semiconductor material in many electronic and photonic applications.
  • the III-N semiconductor material must be provided as a crystalline or single-crystal formation for the most efficient and useful bases for the fabrication of various electronic and photonic devices therein.
  • the single-crystal III-N semiconductor material is most conveniently formed on single-crystal silicon wafers because of the extensive background and technology developed in the silicon semiconductor industry.
  • the crystal lattice constant mismatch between silicon and a III-N material, such as GaN is 17% if grown c-axis on (111) oriented silicon.
  • the thermal expansion difference between the III-N material, such as GaN is 56%. Both of these factors lead to residual stress and consequently to structural defects and mechanical damage (e.g. cracks) in the structure.
  • a buffer layer between the silicon substrate and the III-N layer that could absorb stress would help solve the problem.
  • Several copending patent applications have been filed in the U.S. in which rare earth oxides were grown on a silicon substrate to serve as a stress engineered buffer layer for the subsequent growth of III-N semiconductor material.
  • Two of these copending U.S. patent applications are: Strain Compensated REO Buffer for III-N on Silicon, filed 21 Oct. 2011, bearing Ser. No. 13/278,952; and Nucleation of III-N on REO Templates, filed 20 Mar. 2012, bearing Ser. No. 61/613,289, both of which are included herein by reference.
  • the rare earth oxide (REO) stress engineered buffer layers can reduce stress to a manageable level the stress can be conveniently reduced or substantially eliminated by including a layer of amorphous silicon oxide between the silicon substrate and the rare earth oxide buffer.
  • Silicon oxide is amorphous material and has low viscosity at temperatures above 500° C. that results in stress relaxation, critical from the point of view of thermal stress during cooling down of GaN (III-N material) on silicon heterostructure.
  • a major problem is that the formation of the amorphous silicon oxide layer must take place during the growth of the single-crystal REO buffer because growth of the REO on an amorphous silicon layer would lead to a polycrystalline REO buffer which is not suitable for single-crystal III-N growth.
  • the method includes providing a crystalline silicon substrate and depositing a layer of rare earth metal on the silicon substrate in an oxygen deficient ambient at a temperature above approximately 500° C.
  • the rare earth metal forms a layer of rare earth silicide on the substrate.
  • a first layer of rare earth oxide is deposited on the layer of rare earth silicide with a structure and lattice constant substantially similar to the substrate.
  • the structure is annealed in an oxygen ambience to transform the layer of rare earth silicide to a layer of amorphous silicon and an intermediate layer of rare earth oxide between the substrate and the first layer of rare earth oxide.
  • a crystalline silicon substrate including a layer of rare earth metal deposited on the silicon substrate in an oxygen deficient ambient at a temperature above approximately 500° C.
  • the rare earth metal forms a layer of rare earth silicide on the substrate.
  • the layer of rare earth silicide is transformed by annealing into a layer of amorphous silicon and an intermediate layer of rare earth oxide positioned between the substrate and the first layer of rare earth oxide.
  • a first layer of rare earth oxide is deposited on the layer of rare earth silicide with a structure and lattice constant substantially similar to the substrate.
  • the preferred embodiment can further include a second layer of rare earth oxide with a structure and lattice constant substantially similar to the substrate.
  • the second layer of rare earth oxide is positioned on the first layer of rare earth oxide to form a template for the subsequent deposition of a III-N semiconductor material.
  • the preferred embodiment can further include a layer of III-N semiconductor material positioned on the second layer of rare earth oxide.
  • the III-N semiconductor material has a structure and lattice constant substantially similar to the substrate.
  • FIGS. 1-5 are simplified layer diagrams illustrating several sequential steps in a process of the formation of amorphous silicon oxide on silicon wafers between a substrate and a single-crystal rare earth oxide buffer for the growth of III-N semiconductor material in accordance with the present invention
  • FIG. 6 illustrates a final step in which a III-N layer of semiconductor material is grown on a single-crystal rare earth oxide buffer
  • FIG. 7 is a pictorial view of a REO layer grown on an amorphous silicon oxide on a silicon wafer, in accordance with the present invention.
  • a silicon substrate 10 is illustrated which is, as understood in the art, a single-crystal material including silicon and may in some applications include other materials all of which are included in the general term “silicon” substrate. Also, the substrate may be for example a silicon wafer or some part thereof and is referred to herein by the general term “substrate”. While silicon substrate 10 is illustrated as having a ⁇ 111> crystal orientation, it will be understood, is not limited to any specific crystal orientation but could include ⁇ 111> silicon, ⁇ 110> silicon, ⁇ 100> silicon or any other orientation or variation known and used in the art.
  • rare earth metal layer 12 a at the typical growth temperatures in an oxygen deficient ambience transforms to silicide (layer 12 b ) during reaction with silicon atoms in substrate 10 .
  • layer 12 is designated with different letter designations (i.e. a, b, c) to show the changes that occur. It is important to keep layer 12 b very thin so that the following single-crystal growth steps can be performed.
  • Thin silicide layer 12 b is epitaxially stabilized to silicon substrate 10 so that the crystalline structure is similar to silicon and has a similar lattice constant. As an example, some gadolinium silicides have a very close structure with silicon.
  • REO layer 14 oxygen is introduced into the process and growth of a single-crystal rare earth oxide (REO) layer 14 is accomplished.
  • silicide layer 12 b is very thin REO layer 14 has the atom stacking sequence from the silicon substrate, that is REO layer 14 and substrate 10 have a similar crystalline structure and a similar lattice constant.
  • REO layer 14 is grown with a thickness from several nanometers (3 nm or less) to 10 nm or more, depending on the subsequent annealing time. Primarily, REO layer 14 is grown thin enough to promote oxygen diffusion through layer 14 .
  • the structure is annealed preferably at approximately 900° C. in an oxygen ambience for oxide diffusion to the interface between silicide layer 12 b and REO layer 14 .
  • Silicide layer 12 b is transformed to a rare earth silicate and ultimately to rare earth oxide because rare earth metals are strong reducers.
  • excessive oxygen in cooperation with the silicon in silicide layer 12 b forms a layer 12 c of amorphous silicon oxide at the interface with substrate 10 .
  • silicide layer 12 b is essentially reduced to a thin layer 12 c of amorphous silicon oxide and a thin layer of rare earth oxide (illustrated in FIG. 4 as part of layer 14 .
  • the REO silicide layer 12 b includes gadolinium silicide as an example.
  • the gadolinium silicide is reduced to a thin amorphous layer of SiO x and a thin Gd z Si y O x layer.
  • the silicide layer 12 b is not stable because both Si and Gd have a very high affinity to oxygen.
  • it is substantially easier to transform the silicide of layer 12 b to amorphous silicate and silicon dioxide than to transform the silicon of substrate 10 to silicon dioxide.
  • the silicide transforms easier than the substrate silicon because oxidation of silicon is a diffusion limited process (i.e. the oxidation rate slows with the oxide thickness) and requires higher temperatures and oxygen pressures when compared to the present silicide reduction process.
  • a thicker layer 16 of rare earth oxide (REO) is grown on REO layer 14 .
  • REO layer 16 is preferably grown to a thickness in a range from less than approximately 50 nm to greater than approximately 500 nm so as to serve as a template for the subsequent growth of a III-N semiconductor layer.
  • REO templates are disclosed in more detail in the copending patent applications described above and included herein by reference.
  • FIG. 6 a final step in the process of the growth of III-N semiconductor material on a silicon substrate is illustrated. It will of course be understood that this is simply described as a final step because a layer 20 of III-N semiconductor material (in this example GaN) is grown on the REO template 14 / 16 . Once layer 20 is grown additional steps in a process of fabricating a semiconductor product (e.g. photonic device, sensor, etc.) can be performed. As explained above, layer 12 c of amorphous silicon oxide has low viscosity at temperatures above 500° C. that results in stress relaxation, which is critical in point of view of thermal stress during cooling down of III-N on Si heterostructure.
  • a semiconductor product e.g. photonic device, sensor, etc.
  • the silicide of layer 12 b is transformed to amorphous silicate and silicon dioxide rather than attempting to transform the silicon of substrate 10 to silicon dioxide as in prior art methods.
  • the present novel method is relatively easy to perform and results in a substantially uniform layer of amorphous silicon oxide that is sufficiently thick to provide the desired stress relief during the cool down of a III-N semiconductor layer of material deposited on the REO template.

Abstract

A method of forming a layer of amorphous silicon oxide positioned between a layer of rare earth oxide and a silicon substrate. The method includes providing a crystalline silicon substrate and depositing a layer of rare earth metal on the silicon substrate in an oxygen deficient ambient at a temperature above approximately 500° C. The rare earth metal forms a layer of rare earth silicide on the substrate. A first layer of rare earth oxide is deposited on the layer of rare earth silicide with a structure and lattice constant substantially similar to the substrate. The structure is annealed in an oxygen ambience to transform the layer of rare earth silicide to a layer of amorphous silicon and an intermediate layer of rare earth oxide between the substrate and the first layer of rare earth oxide.

Description

    FIELD OF THE INVENTION
  • This invention relates in general to the formation of amorphous silicon oxide on silicon wafers between the substrate and a single-crystal rare earth oxide buffer for the growth of III-N semiconductor material.
  • BACKGROUND OF THE INVENTION
  • It has been found that III-N materials are a desirable semiconductor material in many electronic and photonic applications. As understood in the art, the III-N semiconductor material must be provided as a crystalline or single-crystal formation for the most efficient and useful bases for the fabrication of various electronic and photonic devices therein. Further, the single-crystal III-N semiconductor material is most conveniently formed on single-crystal silicon wafers because of the extensive background and technology developed in the silicon semiconductor industry. However, the crystal lattice constant mismatch between silicon and a III-N material, such as GaN, is 17% if grown c-axis on (111) oriented silicon. Also, the thermal expansion difference between the III-N material, such as GaN, is 56%. Both of these factors lead to residual stress and consequently to structural defects and mechanical damage (e.g. cracks) in the structure.
  • A buffer layer between the silicon substrate and the III-N layer that could absorb stress would help solve the problem. Several copending patent applications have been filed in the U.S. in which rare earth oxides were grown on a silicon substrate to serve as a stress engineered buffer layer for the subsequent growth of III-N semiconductor material. Two of these copending U.S. patent applications are: Strain Compensated REO Buffer for III-N on Silicon, filed 21 Oct. 2011, bearing Ser. No. 13/278,952; and Nucleation of III-N on REO Templates, filed 20 Mar. 2012, bearing Ser. No. 61/613,289, both of which are included herein by reference.
  • While the rare earth oxide (REO) stress engineered buffer layers can reduce stress to a manageable level the stress can be conveniently reduced or substantially eliminated by including a layer of amorphous silicon oxide between the silicon substrate and the rare earth oxide buffer. Silicon oxide is amorphous material and has low viscosity at temperatures above 500° C. that results in stress relaxation, critical from the point of view of thermal stress during cooling down of GaN (III-N material) on silicon heterostructure. A major problem is that the formation of the amorphous silicon oxide layer must take place during the growth of the single-crystal REO buffer because growth of the REO on an amorphous silicon layer would lead to a polycrystalline REO buffer which is not suitable for single-crystal III-N growth.
  • There are potentially several ways to form the silicon oxide interface layer all of which have severe drawbacks. In a first method, an atmosphere of excess oxygen can be provided during the REO growth. Some problems with this method are that high oxygen pressure is needed during the process which causes the lifetime of the MBE components in the chamber to deteriorate and the SiOx layer is not thick enough to adequately perform the stress relief. In a second method, the REO is grown and the structure is subsequently annealed in oxygen atmosphere. A method of this type is described in U.S. Pat. No. 7,785,706, entitled “Semiconductor Wafer and Process for its Production”, issued Aug. 31, 2010 and U.S. Pub. 2010/0221869 of the same title. One problem with this type of method is that the formation of the interface can be hard to control, the oxidation needs long time, temperature and/or high oxygen pressure because oxidation of silicon is diffusion limited process, which means that oxidation becomes slower with increasing of thickness of the silicon dioxide layer.
  • It would be highly advantageous, therefore, to remedy the foregoing and other deficiencies inherent in the prior art.
  • Accordingly, it is an object of the present invention to provide new and improved methods of forming a layer of amorphous silicon between a REO buffer and a silicon substrate.
  • It is another object of the present invention to provide new and improved methods of forming a layer of amorphous silicon dioxide between a REO buffer and a silicon substrate that is sufficiently thick to adequately perform stress relief that is easy and reliable to control.
  • It is another object of the present invention to provide a new and improved III-N semiconductor layer on a silicon substrate including a layer of amorphous silicon between a REO buffer and the substrate.
  • SUMMARY OF THE INVENTION
  • Briefly, the desired objects and aspects of the instant invention are achieved in accordance with a preferred method of forming a layer of amorphous silicon oxide positioned between a layer of rare earth oxide and a silicon substrate. The method includes providing a crystalline silicon substrate and depositing a layer of rare earth metal on the silicon substrate in an oxygen deficient ambient at a temperature above approximately 500° C. The rare earth metal forms a layer of rare earth silicide on the substrate. A first layer of rare earth oxide is deposited on the layer of rare earth silicide with a structure and lattice constant substantially similar to the substrate. The structure is annealed in an oxygen ambience to transform the layer of rare earth silicide to a layer of amorphous silicon and an intermediate layer of rare earth oxide between the substrate and the first layer of rare earth oxide.
  • The desired objects and aspects of the instant invention are further realized in accordance with a preferred embodiment of a crystalline silicon substrate including a layer of rare earth metal deposited on the silicon substrate in an oxygen deficient ambient at a temperature above approximately 500° C. The rare earth metal forms a layer of rare earth silicide on the substrate. The layer of rare earth silicide is transformed by annealing into a layer of amorphous silicon and an intermediate layer of rare earth oxide positioned between the substrate and the first layer of rare earth oxide. A first layer of rare earth oxide is deposited on the layer of rare earth silicide with a structure and lattice constant substantially similar to the substrate.
  • The preferred embodiment can further include a second layer of rare earth oxide with a structure and lattice constant substantially similar to the substrate. The second layer of rare earth oxide is positioned on the first layer of rare earth oxide to form a template for the subsequent deposition of a III-N semiconductor material. The preferred embodiment can further include a layer of III-N semiconductor material positioned on the second layer of rare earth oxide. The III-N semiconductor material has a structure and lattice constant substantially similar to the substrate.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The foregoing and further and more specific objects and advantages of the instant invention will become readily apparent to those skilled in the art from the following detailed description of a preferred embodiment thereof taken in conjunction with the drawings, in which:
  • FIGS. 1-5 are simplified layer diagrams illustrating several sequential steps in a process of the formation of amorphous silicon oxide on silicon wafers between a substrate and a single-crystal rare earth oxide buffer for the growth of III-N semiconductor material in accordance with the present invention;
  • FIG. 6 illustrates a final step in which a III-N layer of semiconductor material is grown on a single-crystal rare earth oxide buffer; and
  • FIG. 7 is a pictorial view of a REO layer grown on an amorphous silicon oxide on a silicon wafer, in accordance with the present invention.
  • DETAILED DESCRIPTION OF THE DRAWINGS
  • In view of the need for stress relaxation in a process of forming III-N semiconductor layers on silicon substrates some effort and study has gone into the formation of an amorphous layer of silicon oxide (SiOx) between the silicon substrate and the III-N layer or layers. However, to date various proposed methods for the formation of the amorphous layer all have several drawbacks or problems that substantially reduce the efficiency or effectiveness of the process and results. Accordingly, a new method for the formation of an amorphous layer of silicon oxide (SiOx) between the silicon substrate and the III-N layer or layers is herein disclosed. The new method is greatly improved and results in the formation of an amorphous layer that can be accurately controlled and which substantially absorbs or reduces stress between the silicon substrate and the III-N semiconductor layer.
  • Turning now to FIG. 1, a silicon substrate 10 is illustrated which is, as understood in the art, a single-crystal material including silicon and may in some applications include other materials all of which are included in the general term “silicon” substrate. Also, the substrate may be for example a silicon wafer or some part thereof and is referred to herein by the general term “substrate”. While silicon substrate 10 is illustrated as having a <111> crystal orientation, it will be understood, is not limited to any specific crystal orientation but could include <111> silicon, <110> silicon, <100> silicon or any other orientation or variation known and used in the art.
  • A very thin layer 12 a of rare earth metal is deposited on the surface of silicon substrate 10. Rare earth metal layer 12 a is grown directly on the surface of substrate 10 using any of the well-known growth methods, such as MBE, MOCVD, PLD (pulsed laser deposition), sputtering, ALD (atomic layer deposition), or any other known growth method for thin films. Throughout this disclosure whenever rare earth materials are mentioned it will be understood that “rare earth” materials are generally defined as any of the lanthanides as well as scandium and yttrium. Metal layer 12 a is grown 1-2 monolayers thick which is about 0.5 nm to about 1.0 nm thick. The typical growth temperature for the rare earth metal is above approximately 550° C.
  • As illustrated in FIG. 2, rare earth metal layer 12 a at the typical growth temperatures in an oxygen deficient ambience transforms to silicide (layer 12 b) during reaction with silicon atoms in substrate 10. For convenience of understanding layer 12 is designated with different letter designations (i.e. a, b, c) to show the changes that occur. It is important to keep layer 12 b very thin so that the following single-crystal growth steps can be performed. Thin silicide layer 12 b is epitaxially stabilized to silicon substrate 10 so that the crystalline structure is similar to silicon and has a similar lattice constant. As an example, some gadolinium silicides have a very close structure with silicon. By starting growth of metal layer 12 a with a lower oxygen pressure (oxide deficient condition) initial oxidation of the silicide is prevented which leads to the formation of a thicker silicide layer 12 b.
  • Referring to FIG. 3, it will be understood that for convenience and efficiency of procedure the growth process from FIG. 2 is continued (i.e. in situ). In the step illustrated in FIG. 3, oxygen is introduced into the process and growth of a single-crystal rare earth oxide (REO) layer 14 is accomplished. Because silicide layer 12 b is very thin REO layer 14 has the atom stacking sequence from the silicon substrate, that is REO layer 14 and substrate 10 have a similar crystalline structure and a similar lattice constant. REO layer 14 is grown with a thickness from several nanometers (3 nm or less) to 10 nm or more, depending on the subsequent annealing time. Primarily, REO layer 14 is grown thin enough to promote oxygen diffusion through layer 14.
  • Referring to FIG. 4, after the growth of REO layer 14 the structure is annealed preferably at approximately 900° C. in an oxygen ambience for oxide diffusion to the interface between silicide layer 12 b and REO layer 14. Silicide layer 12 b is transformed to a rare earth silicate and ultimately to rare earth oxide because rare earth metals are strong reducers. During this process excessive oxygen in cooperation with the silicon in silicide layer 12 b forms a layer 12 c of amorphous silicon oxide at the interface with substrate 10. Thus, silicide layer 12 b is essentially reduced to a thin layer 12 c of amorphous silicon oxide and a thin layer of rare earth oxide (illustrated in FIG. 4 as part of layer 14.
  • Referring additionally to FIG. 7, in the pictorial view the REO silicide layer 12 b includes gadolinium silicide as an example. As can be seen from the pictorial, after the annealing layer described above, the gadolinium silicide is reduced to a thin amorphous layer of SiOx and a thin GdzSiyOx layer. The silicide layer 12 b is not stable because both Si and Gd have a very high affinity to oxygen. Thus, it is substantially easier to transform the silicide of layer 12 b to amorphous silicate and silicon dioxide than to transform the silicon of substrate 10 to silicon dioxide. The silicide transforms easier than the substrate silicon because oxidation of silicon is a diffusion limited process (i.e. the oxidation rate slows with the oxide thickness) and requires higher temperatures and oxygen pressures when compared to the present silicide reduction process.
  • In a subsequent step illustrated in FIG. 5, a thicker layer 16 of rare earth oxide (REO) is grown on REO layer 14. REO layer 16 is preferably grown to a thickness in a range from less than approximately 50 nm to greater than approximately 500 nm so as to serve as a template for the subsequent growth of a III-N semiconductor layer. REO templates are disclosed in more detail in the copending patent applications described above and included herein by reference.
  • Turning to FIG. 6 a final step in the process of the growth of III-N semiconductor material on a silicon substrate is illustrated. It will of course be understood that this is simply described as a final step because a layer 20 of III-N semiconductor material (in this example GaN) is grown on the REO template 14/16. Once layer 20 is grown additional steps in a process of fabricating a semiconductor product (e.g. photonic device, sensor, etc.) can be performed. As explained above, layer 12 c of amorphous silicon oxide has low viscosity at temperatures above 500° C. that results in stress relaxation, which is critical in point of view of thermal stress during cooling down of III-N on Si heterostructure.
  • Thus, the silicide of layer 12 b is transformed to amorphous silicate and silicon dioxide rather than attempting to transform the silicon of substrate 10 to silicon dioxide as in prior art methods. The present novel method is relatively easy to perform and results in a substantially uniform layer of amorphous silicon oxide that is sufficiently thick to provide the desired stress relief during the cool down of a III-N semiconductor layer of material deposited on the REO template.
  • Various changes and modifications to the embodiments herein chosen for purposes of illustration will readily occur to those skilled in the art. To the extent that such modifications and variations do not depart from the spirit of the invention, they are intended to be included within the scope thereof which is assessed only by a fair interpretation of the following claims.

Claims (6)

Having fully described the invention in such clear and concise terms as to enable those skilled in the art to understand and practice the same, the invention claimed is:
1-9. (canceled)
10. A III-N on silicon wafer comprising:
a crystalline silicon substrate;
a layer of rare earth metal deposited on the silicon substrate in an oxygen deficient ambient at a temperature above approximately 500° C., the rare earth metal forming a layer of rare earth silicide on the substrate, the layer of rare earth silicide being transformed by annealing into a layer of amorphous silicon and an intermediate layer of rare earth oxide positioned between the substrate and the first layer of rare earth oxide; and
a first layer of rare earth oxide deposited on the layer of rare earth silicide with a structure and lattice constant substantially similar to the substrate.
11. A III-N on silicon wafer as claimed in claim 10 further including a second layer of rare earth oxide with a structure and lattice constant substantially similar to the substrate, the second layer of rare earth oxide positioned on the first layer of rare earth oxide to form a template for the subsequent deposition of a III-N semiconductor material.
12. A III-N on silicon wafer as claimed in claim 11 further including a layer of III-N semiconductor material positioned on the second layer of rare earth oxide, the III-N semiconductor material having a structure and lattice constant substantially similar to the substrate.
13. A III-N on silicon wafer as claimed in claim 12 wherein the second layer of rare earth oxide includes gadolinium.
14. A III-N on silicon wafer as claimed in claim 13 wherein the layer of III-N semiconductor material includes gallium.
US13/771,514 2012-06-13 2013-02-20 SINGLE-CRYSTAL REO BUFFER ON AMORPHOUS SiOx Abandoned US20130334536A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/771,514 US20130334536A1 (en) 2012-06-13 2013-02-20 SINGLE-CRYSTAL REO BUFFER ON AMORPHOUS SiOx

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US13/495,215 US8394194B1 (en) 2012-06-13 2012-06-13 Single crystal reo buffer on amorphous SiOx
US13/771,514 US20130334536A1 (en) 2012-06-13 2013-02-20 SINGLE-CRYSTAL REO BUFFER ON AMORPHOUS SiOx

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US13/495,215 Division US8394194B1 (en) 2012-06-13 2012-06-13 Single crystal reo buffer on amorphous SiOx

Publications (1)

Publication Number Publication Date
US20130334536A1 true US20130334536A1 (en) 2013-12-19

Family

ID=47780415

Family Applications (2)

Application Number Title Priority Date Filing Date
US13/495,215 Active US8394194B1 (en) 2012-06-13 2012-06-13 Single crystal reo buffer on amorphous SiOx
US13/771,514 Abandoned US20130334536A1 (en) 2012-06-13 2013-02-20 SINGLE-CRYSTAL REO BUFFER ON AMORPHOUS SiOx

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US13/495,215 Active US8394194B1 (en) 2012-06-13 2012-06-13 Single crystal reo buffer on amorphous SiOx

Country Status (1)

Country Link
US (2) US8394194B1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8796121B1 (en) * 2013-11-19 2014-08-05 Translucent, Inc. Stress mitigating amorphous SiO2 interlayer
CN109690737A (en) * 2016-04-13 2019-04-26 Iqe公开有限公司 The III group semiconductor epitaxial formed on silicon via monocrystalline REN and REO buffer layer
US10573686B2 (en) * 2016-06-19 2020-02-25 Iqe Plc Epitaxial AIN/cREO structure for RF filter applications
US20200135852A1 (en) * 2018-10-30 2020-04-30 International Business Machines Corporation Nanosheet fet bottom isolation
US20220259761A1 (en) * 2019-08-05 2022-08-18 Nippon Telegraph And Telephone Corporation Method for Growing Rare Earth Oxide Crystal
GB2606356A (en) * 2021-05-04 2022-11-09 Iqe Plc A layered structure

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120104567A1 (en) * 2010-11-01 2012-05-03 Andrew Clark IIIOxNy ON REO/Si
US9496132B2 (en) * 2012-03-20 2016-11-15 Translucent, Inc. Nucleation of III-N on REO templates
US8501635B1 (en) * 2012-09-29 2013-08-06 Translucent, Inc. Modification of REO by subsequent III-N EPI process
WO2017165197A1 (en) * 2016-03-23 2017-09-28 IQE, plc Epitaxial metal oxide as buffer for epitaxial iii-v layers

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6610548B1 (en) * 1999-03-26 2003-08-26 Sony Corporation Crystal growth method of oxide, cerium oxide, promethium oxide, multi-layered structure of oxides, manufacturing method of field effect transistor, manufacturing method of ferroelectric non-volatile memory and ferroelectric non-volatile memory
US20050166834A1 (en) * 2000-08-08 2005-08-04 Atanackovic Petar B. Rare earth-oxides, rare earth-nitrides, rare earth-phosphides and ternary alloys with silicon
US20060145186A1 (en) * 2003-02-19 2006-07-06 Wallis David J Buffer structure for modifying a silicon substrate

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4394673A (en) * 1980-09-29 1983-07-19 International Business Machines Corporation Rare earth silicide Schottky barriers
US7323396B2 (en) * 2005-04-29 2008-01-29 Translucent Inc. Signal and/or ground planes with double buried insulator layers and fabrication process
US7355269B1 (en) * 2006-04-06 2008-04-08 Michael Lebby IC on non-semiconductor substrate

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6610548B1 (en) * 1999-03-26 2003-08-26 Sony Corporation Crystal growth method of oxide, cerium oxide, promethium oxide, multi-layered structure of oxides, manufacturing method of field effect transistor, manufacturing method of ferroelectric non-volatile memory and ferroelectric non-volatile memory
US20050166834A1 (en) * 2000-08-08 2005-08-04 Atanackovic Petar B. Rare earth-oxides, rare earth-nitrides, rare earth-phosphides and ternary alloys with silicon
US20060145186A1 (en) * 2003-02-19 2006-07-06 Wallis David J Buffer structure for modifying a silicon substrate

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8796121B1 (en) * 2013-11-19 2014-08-05 Translucent, Inc. Stress mitigating amorphous SiO2 interlayer
CN109690737A (en) * 2016-04-13 2019-04-26 Iqe公开有限公司 The III group semiconductor epitaxial formed on silicon via monocrystalline REN and REO buffer layer
US10573686B2 (en) * 2016-06-19 2020-02-25 Iqe Plc Epitaxial AIN/cREO structure for RF filter applications
US20200135852A1 (en) * 2018-10-30 2020-04-30 International Business Machines Corporation Nanosheet fet bottom isolation
US10930734B2 (en) * 2018-10-30 2021-02-23 International Business Machines Corporation Nanosheet FET bottom isolation
US11024711B2 (en) 2018-10-30 2021-06-01 International Business Machines Corporation Nanosheet FET bottom isolation
US20220259761A1 (en) * 2019-08-05 2022-08-18 Nippon Telegraph And Telephone Corporation Method for Growing Rare Earth Oxide Crystal
US11920256B2 (en) * 2019-08-05 2024-03-05 Nippon Telegraph And Telephone Corporation Method for growing rare earth oxide crystal on a semiconductor substrate
GB2606356A (en) * 2021-05-04 2022-11-09 Iqe Plc A layered structure
EP4086939A1 (en) * 2021-05-04 2022-11-09 IQE plc A layered structure including an intermediate bixbyite oxide layer

Also Published As

Publication number Publication date
US8394194B1 (en) 2013-03-12

Similar Documents

Publication Publication Date Title
US8394194B1 (en) Single crystal reo buffer on amorphous SiOx
US9824886B2 (en) Stress mitigating amorphous SiO2 interlayer
CN108352306B (en) Epitaxial substrate for semiconductor element, and method for manufacturing epitaxial substrate for semiconductor element
JP6304899B2 (en) III-N semiconductor device grown on a silicon substrate with a rare earth oxide gate dielectric
EP2779213B1 (en) Semiconductor wafer with a layer of AlzGa1-zN and process for producing it
JP6375376B2 (en) GaN on silicon substrate using epi twist
US9917193B2 (en) III-N semiconductor layer on Si substrate
US9139934B2 (en) REN semiconductor layer epitaxially grown on REAIN/REO buffer on Si substrate
US9437688B2 (en) High-quality GaN high-voltage HFETs on silicon
EP1595280A2 (en) Buffer structure for modifying a silicon substrate
JP2008235769A (en) METHOD OF FORMING AlGaN CRYSTAL LAYER
US9236249B2 (en) III-N material grown on REN epitaxial buffer on Si substrate
JP7013070B2 (en) III-N material grown on an ErAIN buffer on a silicon substrate
Dargis et al. Epitaxial rare earth oxide and nitride buffers for GaN growth on Si
CN111739790B (en) Epitaxial structure of gallium nitride film and preparation method
Dargis et al. Single crystal reo buffer on amorphous SiO x
SILICIDE SILItON (12m SUBSTRATE
KR101517808B1 (en) GROWTH METHOD OF GaN ON Si FOR REDUCING CRACKS
Dargis et al. Engineering of the Interface between Silicon and Rare-Earth-Oxide Buffer for GaN Growth
Dargis et al. Stress mitigating amorphous SiO 2 interlayer
Thapa et al. Semiconductor wafer with a layer of Al z Ga 1-z N and process for producing it
Li et al. Properties of N-polar GaN films grown by MOCVD on C-face 6H-SiC substrate
Clark et al. Novel Oxide Buffer for Scalable GaN-on-Silicon

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION