US20130323963A1 - Cage with a heat sink mounted on its mounting side and an emi gasket with its fingers electrically connected to the mounting side - Google Patents
Cage with a heat sink mounted on its mounting side and an emi gasket with its fingers electrically connected to the mounting side Download PDFInfo
- Publication number
- US20130323963A1 US20130323963A1 US13/483,338 US201213483338A US2013323963A1 US 20130323963 A1 US20130323963 A1 US 20130323963A1 US 201213483338 A US201213483338 A US 201213483338A US 2013323963 A1 US2013323963 A1 US 2013323963A1
- Authority
- US
- United States
- Prior art keywords
- cage
- heat sink
- corner
- module
- assembly
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K7/00—Constructional details common to different types of electric apparatus
- H05K7/20—Modifications to facilitate cooling, ventilating, or heating
- H05K7/2039—Modifications to facilitate cooling, ventilating, or heating characterised by the heat transfer by conduction from the heat generating element to a dissipating body
- H05K7/20409—Outer radiating structures on heat dissipating housings, e.g. fins integrated with the housing
- H05K7/20418—Outer radiating structures on heat dissipating housings, e.g. fins integrated with the housing the radiating structures being additional and fastened onto the housing
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K9/00—Screening of apparatus or components against electric or magnetic fields
- H05K9/0007—Casings
- H05K9/0058—Casings specially adapted for optoelectronic applications
Definitions
- the subject matter described and/or illustrated herein relates generally to pluggable modules, and more particularly to cage assemblies for receiving pluggable modules.
- transceiver assemblies that permit communication between host equipment and external devices are known.
- These transceiver assemblies typically include a pluggable module that is received within a receptacle assembly, which includes a receptacle connector that pluggably connects to the pluggable module.
- the receptacle assembly typically includes a metal cage having an internal compartment that receives the pluggable module therein. The receptacle connector is held in the internal compartment of the cage for connection with the pluggable module as the pluggable module is inserted therein.
- EMI electromagnetic interference
- a cage assembly for receiving a pluggable module.
- the cage assembly includes a cage having a front end, a mounting side, and an internal compartment. The front end is open to the internal compartment of the cage. The internal compartment is configured to receive the pluggable module therein through the front end.
- a heat sink is mounted to the mounting side of the cage. The heat sink has a module side that is configured to thermally communicate with the pluggable module.
- An electromagnetic interference (EMI) gasket extends along at least a portion of an interface between the mounting side of the cage and the module side of the heat sink.
- the EMI gasket includes electrically conductive spring fingers that are engaged with and electrically connected to the mounting side of the cage.
- a receptacle assembly for mating with a pluggable module.
- the receptacle assembly includes a receptacle connector and a cage having a front end, a mounting side, and an internal compartment.
- the receptacle connector is held within the internal compartment.
- the front end is open to the internal compartment of the cage.
- the internal compartment is configured to receive the pluggable module therein through the front end.
- a heat sink is mounted to the mounting side of the cage.
- the heat sink has a module side that is configured to thermally communicate with the pluggable module.
- An electromagnetic interference (EMI) gasket extends along at least a portion of an interface between the mounting side of the cage and the module side of the heat sink.
- the EMI gasket includes electrically conductive spring fingers that are engaged with and electrically connected to the mounting side of the cage.
- a cage assembly for receiving a pluggable module.
- the cage assembly includes a cage having a front end, a mounting side, and an internal compartment. The front end is open to the internal compartment of the cage. The internal compartment is configured to receive the pluggable module therein through the front end.
- a heat sink is mounted to the mounting side of the cage. The heat sink has a module side that is configured to thermally communicate with the pluggable module.
- An electromagnetic interference (EMI) gasket extends along at least a portion of an interface between the mounting side of the cage and the module side of the heat sink.
- the EMI gasket includes a base having a perimeter that includes a corner.
- the EMI gasket also includes electrically conductive spring fingers that extend from the base and are engaged with and electrically connected to the mounting side of the cage.
- the spring fingers include a corner spring finger that extends from the base at the corner of the perimeter.
- FIG. 1 is a partially exploded perspective view of an exemplary embodiment of a transceiver assembly.
- FIG. 2 is a perspective view illustrating exemplary embodiments of a heat sink and an electromagnetic interference (EMI) gasket of the transceiver assembly shown in FIG. 1 .
- EMI electromagnetic interference
- FIG. 3 is a plan view of the EMI gasket shown in FIG. 2 .
- FIG. 4 is a perspective view of a portion the transceiver assembly shown in FIG. 1 .
- FIG. 5 is a schematic view illustrating the EMI gasket shown in FIGS. 2 and 3 held between the heat sink shown in FIG. 2 and an exemplary embodiment of a cage of the transceiver assembly shown in FIG. 1 .
- FIG. 6 is a cross-sectional view taken along line 6 - 6 of FIG. 4 and also illustrating the EMI gasket shown in FIGS. 2 and 3 held between the heat sink and the cage.
- FIG. 7 is a cross-sectional view of the transceiver assembly shown in FIG. 1 .
- FIG. 8 is a cross-sectional view taken along line 8 - 8 of FIG. 7 .
- FIG. 1 is a partially exploded perspective view of a portion of an exemplary embodiment of a transceiver assembly 10 .
- the transceiver assembly 10 is adapted to address, among other things, conveying data signals at high rates, such as data transmission rates of at least 10 gigabits per second (Gbps), which is required by the SFP+standard.
- Gbps gigabits per second
- the transceiver assembly 10 is adapted to convey data signals at a data transmission rate of at least 28 Gbps.
- the transceiver assembly 10 is adapted to convey data signals at a data transmission rate of between approximately 20 Gbps and approximately 30 Gbps.
- the transceiver assembly 10 includes one or more pluggable modules 12 configured for pluggable insertion into a receptacle assembly 14 that is mounted to a host circuit board 16 .
- the host circuit board 16 may be mounted in a host system (not shown) such as, but not limited to, a router, a server, a computer, and/or the like.
- the host system typically includes a conductive chassis (not shown) having a panel (not shown) including one or more openings (not shown) extending therethrough in substantial alignment with the receptacle assembly 14 .
- the receptacle assembly 14 is optionally electrically connected to the panel.
- the pluggable module 12 is configured to be inserted into the receptacle assembly 14 . Specifically, the pluggable module 12 is inserted into the receptacle assembly 14 through the panel opening such that a front end 18 of the pluggable module 12 extends outwardly from the receptacle assembly 14 .
- the pluggable module 12 includes a housing 20 that forms a protective shell for one or more circuit boards 22 disposed within the housing 20 .
- the circuit board 22 carries circuitry, traces, paths, devices, and/or the like that perform transceiver functions in a known manner. An edge 24 of the circuit board 22 is exposed at a rear end 26 of the housing 20 .
- a straddle mount connector may be mounted to the circuit board 22 and exposed at the rear end 26 of the housing 20 for plugging into a receptacle connector 28 ( FIG. 7 ) of the receptacle assembly 14 .
- the circuit board 22 of the pluggable module 12 may directly mate with the receptacle connector 28 .
- the edge 24 of the circuit board 22 of the pluggable module 12 is received within a corresponding receptacle 30 ( FIG. 7 ) of the receptacle connector 28 to electrically connect the pluggable module 12 to the receptacle connector 28 .
- the pluggable module 12 and the receptacle assembly 14 may be used in any application requiring an interface between a host system and electrical and/or optical signals.
- the pluggable module 12 interfaces to the host system via the receptacle connector 28 of the receptacle assembly 14 , which includes the receptacle connector 28 and a cage assembly 32 .
- the cage assembly 32 includes an electrically conductive cage 34 (which is sometimes referred to as a “receptacle guide frame” or a “guide frame”), a heat sink 36 , and an electromagnetic interference (EMI) gasket 38 .
- the cage 34 includes a front end 40 having one or more front openings, or ports, 42 that are open to one or more internal compartments 44 of the cage 34 .
- the front end 40 of the cage 34 is configured to be mounted, or received, within the opening in the panel of the hose system.
- the receptacle connector 28 is positioned within the internal compartment 44 at a rear end 46 of the cage 34 .
- the internal compartment 44 of the cage 34 is configured to receive the pluggable module 12 therein in electrical connection with the receptacle connector 28 .
- the cage 34 may include any number of internal compartments 44 and ports 42 , arranged in any pattern, configuration, arrangement, and/or the like (such as, but not limited to, any number of rows and/or columns), for electrically connecting any number of pluggable modules 12 to the host circuit board.
- the pluggable module 12 interfaces to one or more optical cables (not shown) and/or one or more electrical cables (not shown) through a connector interface 48 at the front end 18 of the module 12 .
- the connector interface 48 comprises a mechanism that cooperates with a fiber or cable assembly (not shown) to secure the fiber or cable assembly to the pluggable module 12 .
- Suitable connector interfaces 48 are known and include adapters for the LC style fiber connectors and the MTP/MPO style fiber connectors offered by Tyco Electronics Corporation (Harrisburg, Pa.).
- the heat sink 36 is mounted to the cage 34 . More specifically, the heat sink 36 is mounted to a mounting side 50 of the cage 34 .
- a module side 52 of the heat sink 36 thermally communicates with the pluggable module 12 .
- Heat generated by the pluggable module 12 is dissipated by the heat sink 36 via the thermal communication between the heat sink 36 and the pluggable module 12 .
- the cage 34 includes an opening 66 that extends through an upper wall 68 of the cage 34 that includes the mounting side 50 . The opening 66 thereby extends through the mounting side 50 .
- the heat sink 36 is mounted to the mounting side 50 of the cage 34 at the opening 66 such that the opening 66 enables the heat sink 36 to thermally communicate with the pluggable module 12 .
- the heat sink 36 thermally communicates with the pluggable module 12 via engagement of the heat sink 36 with the pluggable module 12 . More specifically, the module side 52 of the heat sink 36 engages a side 54 of the housing 20 of the pluggable module 12 to thermally communicate the heat sink 36 with the pluggable module 12 . In some alternative embodiments, the module side 52 of the heat sink 36 thermally communicates with the pluggable module 12 via a thermal interface material (not shown) that is positioned between, and engaged with each of, the module side 52 of the heat sink 36 and the side 54 of the pluggable module 12 . The thermal interface material may increase the thermal transfer efficiency between the pluggable module 12 and the heat sink 36 .
- the heat sink 36 is mounted to the cage 34 using one or more mounting clips 56 that extend over a side 58 of the heat sink 36 and engage the cage 34 .
- the mounting clips 56 include one or more mounting features 60 that cooperate with one or more complementary mounting features 62 of the cage 34 using a snap-fit connection to hold the heat sink 36 to the cage 34 .
- the heat sink 36 may be mounted to cage 34 using any other structure, means, fasteners, and/or the like, such as, but not limited to, using a threaded fastener, another type of non-threaded fastener, an interference fit, a latch, and/or the like.
- the EMI gasket 38 extends along at least a portion of an interface 64 ( FIGS. 5 , 6 , and 8 ) between the mounting side 50 of the cage 34 and the module side 52 of the heat sink 36 .
- the EMI gasket 38 is positioned to facilitate blocking EMI leakage at the interface 64 .
- the EMI gasket 38 includes electrically conductive spring fingers 78 that are engaged with and electrically connected to the mounting side 50 of the cage 34 .
- FIG. 2 is a perspective view illustrating the heat sink 36 and the EMI gasket 38 .
- FIG. 2 illustrates the module side 52 of the heat sink 36 with the EMI gasket 38 being mounted thereto.
- the module side 52 of the heat sink 36 includes a platform 70 .
- the platform 70 extends outwardly on the module side 52 from a sink surface 72 of the module side 52 to a module surface 74 of the platform 70 .
- Side walls 76 of the platform 70 extend from the sink surface 72 to the module surface 74 .
- the side walls 76 define a perimeter 88 of the platform 70 .
- the platform 70 of the heat sink 36 extends into the opening 66 ( FIGS. 1 and 5 ) of the cage 34 (FIGS.
- the module surface 74 of the platform 70 is configured to thermally communicate with the pluggable module 12 ( FIGS. 1 and 7 ).
- the module surface 74 of the platform 70 may be configured to engage the side 54 ( FIG. 1 ) of the housing 20 ( FIG. 1 ) of the pluggable module 12 to thermally communicate the heat sink 36 with the pluggable module 12 .
- the module surface 74 alternatively may be configured to engage a thermal interface material (not shown) that also engages the side 54 of the pluggable module 12 .
- the sink surface 72 of the module side 52 of the heat sink 36 includes segments 82 a , 82 b , 82 c , and 82 d that intersect a perimeter edge 84 of the sink surface 72 .
- the segments 82 a - d define portions of the interface 64 between the mounting side 50 (FIGS. 1 and 4 - 8 ) of the cage 34 and the module side 52 of the heat sink 36 .
- the platform 70 includes four side walls 76 a , 76 b , 76 c , and 76 d , such that the platform 70 generally has the overall shape of a parallelepiped. But, the platform 70 may include any number of side walls 76 that provides the platform 70 with any other overall shape, which may or may not be complementary with the shape of the opening 66 within the cage 34 .
- the sink surface 72 of the module side 52 of the heat sink 36 includes four segments 82 a , 82 b , 82 c , and 82 d that extend along a generally rectangular path along the module side 52
- the surface 72 may include any number of segments 82 arranged in any other shape than is shown herein, wherein such other shape may or may not be complementary with the shape of the EMI gasket 38 and/or the cage 34 .
- FIG. 3 is a plan view of the EMI gasket 38 .
- the EMI gasket 38 includes a base 90 and the electrically conductive spring fingers 78 .
- the base 90 extends along a central axis 92 from a side 94 and an opposite side 96 .
- the side 94 of the base 90 is configured to engage the sink surface 72 ( FIGS. 2 , 5 , 6 , and 8 ) of the module side 52 ( FIGS. 1 , 2 , and 4 - 8 ) of the heat sink 36 ( FIGS. 1 , 2 , and 4 - 8 ).
- the base 90 includes a central opening 98 that is configured to receive the platform 70 ( FIGS. 2 and 7 ) of the heat sink 36 therein.
- the base 90 includes a perimeter 100 and an interior edge 102 .
- the base 90 is defined by one or more segments 104 .
- the base 90 includes four segments 104 , namely the segments 104 a , 104 b , 104 c , and 104 d .
- the perimeter 100 includes one or more corners 106 .
- the perimeter 100 includes four corners 106 . Ends 108 of adjacent segments 104 are interconnected at corresponding ones of the corners 106 .
- Each of the segments 104 a - d may be referred to herein as a “first” and/or a “second” segment.
- the base 90 may include one or more interference ribs 110 that extend from the interior edge 102 of the base 90 into the central opening 98 .
- the interference ribs 110 extend from the interior edge 102 radially inward relative to the central axis 92 .
- the interference ribs 110 are configured to engage the side walls 76 ( FIG. 2 ) of the platform 70 of the heat sink 36 to mechanically connect the EMI gasket 38 to the module side 52 of heat sink 36 , as will be described below.
- the segments 104 a - d of the base 90 define a single continuous structure.
- one or more segments 104 a , 104 b , 104 c , and/or 104 d is separate and distinct from one or more other segments 104 a , 104 b , 104 c , and/or 104 d .
- a segment 104 is “separate and distinct” from another segment 104 if the segments 104 do not form a continuous structure.
- Segments 104 that are separate and distinct from each other may engage each other and/or be mechanically connected together with a suitable fastener (e.g., an adhesive, a clip, and/or the like) when the EMI gasket 38 is positioned along the interface 64 ( FIGS. 5 , 6 , and 8 ).
- a suitable fastener e.g., an adhesive, a clip, and/or the like
- the electrically conductive spring fingers 78 extend outward from the base 90 .
- the spring fingers 78 extend radially outward (relative to the central axis 92 ) from the perimeter 100 of the base 90 .
- the spring fingers 78 extend from the base 90 along an approximate entirety of the length of the perimeter 100 of the base 90 . But, in some alternative embodiments, only one or more portions of the length of the perimeter 100 includes spring fingers 78 extending therefrom.
- the spring fingers 78 extend from the base 90 to free ends 112 .
- Each spring finger 78 includes an interface 114 at which the spring finger 78 is configured to engage the mounting side 50 ( FIGS. 1 , 4 , and 6 - 8 ) of the cage 34 (FIGS. 1 and 4 - 8 ).
- the free end 112 and the interface 114 of each spring finger 78 is resiliently deflectable in the direction of the arrow A in FIG. 3 from a natural resting position to a deflected position.
- the spring fingers 78 are shown in the natural resting positions in FIG. 3 .
- the spring fingers 78 are resiliently compressible between the mounting side 50 of the cage 34 and the module side 52 of the heat sink 36 .
- the spring fingers 78 include spring fingers 78 a that extend from the segments 104 a - 104 d of the base 90 and spring fingers 78 b that extend from the base 90 at the corners 106 of the perimeter 100 .
- each segment 104 a - 104 d of the base 90 includes a plurality of spring fingers 78 that extend therefrom.
- a spring finger 78 a extends from the base 90 at each end 108 of each segment 104 a - 104 d .
- a gap G is defined at each corner 106 between the spring fingers 78 a that extends at the ends 108 of the adjacent segments 104 .
- the spring fingers 78 b extend within the gap G of the corresponding corner 106 .
- the spring fingers 78 b may facilitate reducing an amount of EMI leakage that leaks through the corners 106 of the EMI gasket 38 .
- Each of the spring fingers 78 b may be referred to herein as a “corner spring finger”, while each of the spring fingers 78 a that extends at an end 108 of a segment 104 may be referred to herein as an “end spring finger”.
- each corner 106 may include any number of spring fingers 78 b .
- a plurality of spring fingers 78 b extend within each gap G such that each corner 106 includes a plurality of spring fingers 78 b .
- the spring fingers 78 b of each corner 106 may have any pattern, arrangement, geometry, and/or the like within the corresponding gap G.
- at least one spring finger 78 b of each corner 106 extends from the base 90 at an oblique angle relative to at least one of the spring fingers 78 a , as is illustrated in FIG. 3 .
- One example of a pattern, arrangement, and/or the like of spring fingers 78 b within a gap G includes the fan-shaped pattern shown herein. Specifically, the spring fingers 78 b extend along the corresponding corner 106 in a fan-shaped pattern wherein the spring fingers 78 b extend along radii that are incrementally spaced-apart along the corner 106 . Other patterns, arrangements, and/or the like of the spring fingers 78 b within a gap G may be provided.
- the spring fingers 78 b optionally extend from corner sheets 116 that extend from the perimeter 100 of the base 90 at the corners 106 . Specifically, at each corner 106 , a corner sheet 116 extends from the base 90 to an end 118 . The spring fingers 78 b extend radially outward from the end 118 of the corner sheet 116 of the corresponding corner 106 . In some alternative embodiments, one or more of the corners 106 does not include a corner sheet 116 , such that the spring fingers 78 b of the corner 106 extend directly from the perimeter 100 of the base 90 .
- the EMI gasket 38 generally has a rectangular shape, which is defined by the four segments 104 a - d . But, the EMI gasket 38 may include any other shape, whether or not the shape of the EMI gasket 38 is complementary with the shape of the platform 70 . Moreover, the EMI gasket 38 may include any other number of segments 104 besides four.
- the EMI gasket 38 may be fabricated from any materials that enable the EMI gasket 38 to be electrically conductive.
- the EMI gasket 38 may be fabricated using any method, process, structure, means, and/or the like, such as, but not limited to, using a cutting process, using a casting process, using a die-casting process, using a molding process, using a forming process, and/or the like.
- Cutting processes include, but are not limited to, water cutting, stamping, laser cutting, blanking, punching, cutting using a saw, drill bit, plane, mill, and/or other solid cutting tool, and/or the like.
- Forming processes include, but are not limited to, drawing, bending, stamping, and/or the like.
- the EMI gasket 38 is a cut and formed gasket that is cut from a material and then formed to include the shape of the EMI gasket 38 .
- the spring fingers 78 are integrally formed with the base 90 , for example using a stamping and forming process.
- the EMI gasket 38 is shown mounted to the heat sink 36 .
- the side 94 of the base 90 of the EMI gasket 38 is engaged with the sink surface 72 of the module side 52 of the heat sink 36 . More specifically, at the side 94 , the segments 104 a , 104 b , 104 c , and 104 d of the EMI gasket 38 are engaged with the segments 82 a , 82 b , 82 c , and 82 d , respectively, of the sink surface 72 .
- the engagement between the side 94 and the sink surface 72 optionally electrically connects the EMI gasket 38 to the heat sink 36 .
- the EMI gasket 38 extends around the perimeter 88 of the platform 70 .
- the EMI gasket 38 extends around an entirety of the perimeter 88 of the platform 70 . But, the EMI gasket 38 alternatively may extend around only a portion of the perimeter 88 of the platform 70 . Optionally, the EMI gasket 38 is engaged with the side walls 76 of the platform 70 .
- the EMI gasket 38 is optionally mechanically connected to the heat sink 36 .
- the EMI gasket 38 is mechanically connected to the heat sink 36 via an interference fit.
- the interference ribs 110 ( FIG. 3 ) of the EMI gasket engage the side walls 76 of the platform 70 with an interference fit.
- the EMI gasket 38 is optionally mechanically connected to the heat sink 36 using a fastener (such as, but not limited to, an adhesive and/or the like) and/or using a snap-fit with the side walls 76 of the platform 70 .
- the mechanical connection between the EMI gasket 38 and the heat sink 36 optionally electrically connects the EMI gasket 38 to the heat sink 36 .
- the upper wall 68 of the cage 34 includes a cage surface 120 that defines the mounting side 50 of the cage 34 .
- the cage surface 120 of the mounting side 50 includes segments 122 .
- the cage surface 120 includes the segments 122 a , 122 b , 122 c , and 122 d .
- the segments 122 define portions of the interface 64 ( FIGS. 5 , 6 , and 8 ) between the mounting side 50 of the cage 34 and the module side 52 of the heat sink 36 .
- the cage surface 120 includes four segments 122 a , 122 b , 122 c , and 122 d in the exemplary embodiment, the cage surface 120 may include any number of segments 122 arranged in any other shape than is shown herein, wherein such other shape may or may not be complementary with the shape of the EMI gasket 38 and/or the heat sink 36 .
- FIG. 4 is a perspective view illustrating the receptacle assembly 14 mounted on the host circuit board 16 .
- the pluggable module 12 has been omitted from FIG. 4 .
- FIG. 4 is an assembled view of the receptacle assembly 14 and the host circuit board 16 that illustrates the receptacle assembly 14 in a state wherein the pluggable module 12 is not mated therewith (i.e., not received or held within the internal compartment 44 ).
- the heat sink 36 is mounted to the mounting side 50 of the cage 34 using the mounting clips 56 .
- the platform 70 FIGS. 2 and 7
- the module side 52 of the heat sink 36 faces the mounting side 50 of the cage 34 , such that the sink surface 72 ( FIGS. 2 , 5 , 6 , and 8 ) of the heat sink 36 faces the cage surface 120 of the cage 34 .
- the segments 82 ( FIGS. 2 , 5 , 6 , and 8 ) of the sink surface 72 face, and are at least partially aligned with, the corresponding segments 122 ( FIGS. 1 , 5 , 6 , and 8 ) of the cage surface 120 .
- the EMI gasket 38 ( FIGS. 1-3 and 5 - 8 ) is held between the mounting side 50 of the cage 34 and the module side 52 of the heat sink 36 .
- the heat sink 36 is seated on and engaged with the EMI gasket 38 .
- the spring fingers 78 ( FIGS. 1-3 and 5 - 8 ) of the EMI gasket 38 are resiliently compressed between the mounting side 50 of the cage 34 and the module side 52 of the heat sink 36 .
- the spring fingers 78 are engaged with, and thereby electrically connected to, the cage surface 120 of the cage 34 .
- the EMI gasket 38 is mounted to the heat sink 36 before the heat sink 36 is mounted to the cage 34 .
- the EMI gasket 38 may be mechanically connected to the heat sink 36 (e.g., as described above) or may be held on the heat sink 36 by a person and/or machine before the heat sink 36 is mounted to the cage 34 .
- the EMI gasket 38 is first positioned on the cage 34 and the heat sink 36 is thereafter mounted to the cage 34 .
- the EMI gasket 38 is optionally mechanically connected to the mounting side 50 of the cage 34 , for example as described above with respect to the optional mechanical connections of the EMI gasket 38 to the heat sink 36 .
- FIG. 5 is a schematic view illustrating the EMI gasket 38 as held between the mounting side 50 (not labeled in FIG. 5 ) of the cage 34 and the module side 52 (not labeled in FIG. 5 ) of the heat sink 36 when the receptacle assembly 14 is not mated with the pluggable module 12 ( FIGS. 1 and 7 ).
- the interface 64 between the mounting side 50 of the cage 34 and the module side 52 of the heat sink 36 is defined from the segments 82 a , 82 b , 82 c , and 82 d of the sink surface 72 to the corresponding segments 122 a , 122 b , 122 c , and 122 d of the cage surface 94 .
- the interface 64 is defined between the segments 82 and the corresponding segments 122 .
- the segments 82 a , 82 b , 82 c , and 82 d face and are aligned with the respective segments 122 a , 122 b , 122 c , and 122 d .
- the interface 64 follows a path that has a radially (e.g., relative to a central axis 128 ) outer boundary defined by the perimeter edge 84 of the heat sink 36 .
- Side edges 124 also labeled in FIG. 1
- the mounting side 50 of the cage 34 also define the radially outer boundary of the path of the interface 64 .
- the interface 64 follows a path that has a radially inner boundary defined by an interior edge 130 (also labeled in FIG. 1 ) that defines the opening 66 of the cage 34 .
- the interface 64 thus extends around the opening 66 .
- the interface 64 generally follows a rectangular path, but the interface 64 may follow any other shaped path, which may or may not be complementary with the shape of the EMI gasket 38 , the cage 34 , and/or the heat sink 36 .
- FIG. 6 is a cross-sectional view taken along line 6 - 6 of FIG. 4 and also illustrating the EMI gasket 38 held between the heat sink 36 and the cage 34 when the receptacle assembly 14 is not mated with the pluggable module 12 ( FIGS. 1 and 7 ).
- the EMI gasket 38 is held between the mounting side 50 of the cage 34 and the module side 52 of the heat sink 36 .
- the side 94 of the base 90 of the EMI gasket 38 is engaged with the sink surface 72 of the module side 52 of the heat sink 36 when the receptacle assembly 14 is not mated with the pluggable module 12 .
- the spring fingers 78 have been resiliently deflected in the direction of the arrow A such that the spring fingers 78 are resiliently compressed between the heat sink 36 and the cage 34 .
- the interfaces 114 of the spring fingers 78 are engaged with the cage surface 120 such that the spring fingers 78 are, and thus the EMI gasket 38 is, electrically connected to the cage 34 along the interface 64 .
- the interface 64 includes a gap G 1 between the mounting side 50 of the cage 34 and the module side 52 of the heat sink 36 . More specifically, the gap G 1 extends from the segments 82 of the sink surface 72 to the corresponding segments 122 of the cage surface 120 .
- the spring fingers 78 may be compressed by any amount when the receptacle assembly 14 is not mated with the pluggable module 12 .
- the EMI gasket 38 extends along the interface 64 . More specifically, the spring fingers 78 extend along the respective segments 82 a , 82 b , 82 c , and 82 d of the heat sink 36 and along the respective segments 122 a , 122 b , 122 c , and 122 d of the cage 34 .
- the EMI gasket 38 extends along the radially inner and outer boundaries of the interface 64 . In the exemplary embodiment, the EMI gasket 38 extends along an entirety of the path of the interface 64 , but the EMI gasket 38 alternatively may extend along only one or more portions of the path of the interface 64 .
- the EMI gasket 38 extends along the interface 64 within the interface 64 .
- the EMI gasket 38 is disposed between the radially inner and radially outer boundaries of the interface 64 .
- a portion of the EMI gasket 38 is disposed outside the interface 64 (i.e., radially outside the radially outer boundary of the interface 64 ).
- a portion of the EMI gasket 38 is disposed inside the interface 64 (i.e., radially inside the radially inner boundary of the interface 64 ).
- FIG. 7 is a cross-sectional view of the transceiver assembly 10 illustrating the receptacle assembly 14 in a state wherein the pluggable module 12 is mated therewith (i.e., is received and held within the internal compartment 44 ).
- the pluggable module 12 is inserted into the internal compartment 44 of the cage 34
- engagement between the module 12 and the platform 70 of the heat sink 36 moves the heat sink 36 such that the module side 52 of the heat sink 36 moves in a direction away from the mounting side 50 of the cage 34 , which is indicated by the arrow B in FIG. 7 .
- the heat sink 36 and the pluggable module 12 thermally communicate via a thermal interface material
- engagement of the thermal interface material with the module 12 or the heat sink 36 may cause the movement of the heat sink 36 relative to the cage 34 .
- FIG. 8 is a cross-sectional view along line 8 - 8 of FIG. 7 .
- the EMI gasket 38 is held between the mounting side 50 of the cage 34 and the module side 52 of the heat sink 36 .
- the movement of the heat sink 36 relative to the cage 34 causes the spring fingers 78 of the EMI gasket 38 to at least partially uncompress by any amount. Accordingly, and as can be seen from a comparison of FIGS.
- the spring fingers 78 are compressed a greater amount when the pluggable module 12 is not mated with the receptacle assembly 14 and are compressed a lesser amount when the pluggable module 12 is mated with the receptacle assembly 14 .
- the side 94 of the base 90 of the EMI gasket 38 is engaged with the sink surface 72 of the module side 52 of the heat sink 36 .
- the spring fingers 78 are resiliently compressed between the heat sink 36 and the cage 34 .
- the interfaces 114 of the spring fingers 78 are engaged with the cage surface 120 such that the spring fingers 78 are, and thus the EMI gasket 38 is, electrically connected to the cage 34 along the interface 64 .
- the interface 64 includes a gap G 2 between the mounting side 50 of the cage 34 and the module side 52 of the heat sink 36 . More specifically, the gap G 2 extends from the segments 82 of the sink surface 72 to the corresponding segments 122 of the cage surface 120 . As should be apparent from a comparison of FIGS. 6 and 8 , the gap G 2 is greater than the gap G 1 .
- the spring fingers 78 may be compressed by any amount when the receptacle assembly 14 is mated with the pluggable module 12 .
- the EMI gasket 38 extends along the interface 64 in a substantially similar manner to that described above when the pluggable module 12 is not mated with the receptacle assembly 14 .
- the EMI gasket 38 facilitates blocking EMI emissions from leaking out from the interior compartment 44 of the cage 34 through the interface 64 . More specifically, EMI gasket 38 facilitates blocking EMI emissions from leaking out from the interior compartment 44 ( FIGS. 1 and 7 ) between the sink surface 72 of the heat sink 36 and the cage surface 120 of the cage 34 .
- the spring fingers 78 may be capable of retaining the resilience thereof through a wide variety of temperature ranges, temperature extremes, and/or the like.
- the spring fingers 78 may retain the resilience thereof through a temperature range of between approximately ⁇ 25° C. and approximately 150° C., above an approximate temperature of ⁇ 25° C., and/or below an approximate temperature of 150° C.
- the ability of the spring fingers 78 to retain the resilience thereof through a wide variety of temperature ranges, temperature extremes, and/or the like may facilitate preventing mechanical failure of the EMI gasket 38 .
- the ability of the spring fingers 78 to retain the resilience thereof through a wide variety of temperature ranges, temperature extremes, and/or the like may facilitate preventing the spring fingers 78 from losing of the ability to remain engaged with the cage 34 when the pluggable module 12 forces the heat sink 36 to move in the direction of the arrow B in FIG. 7 .
- the EMI gasket 38 may be capable of retaining the electrically conductivity thereof through a wide variety of temperature ranges, temperature extremes, and/or the like.
- the EMI gasket 38 may retain the electrical conductivity thereof through a temperature range of between approximately ⁇ 25° C. and approximately 150° C., above an approximate temperature of ⁇ 25° C., and/or below an approximate temperature of 150° C.
- the embodiments described and/or illustrated herein may provide a transceiver assembly that experiences a reduced amount of leakage of EMI emissions from between an interface between a cage and a heat sink of the transceiver assembly.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
Abstract
Description
- The subject matter described and/or illustrated herein relates generally to pluggable modules, and more particularly to cage assemblies for receiving pluggable modules.
- Various types of fiber optic and copper based transceiver assemblies that permit communication between host equipment and external devices are known. These transceiver assemblies typically include a pluggable module that is received within a receptacle assembly, which includes a receptacle connector that pluggably connects to the pluggable module. The receptacle assembly typically includes a metal cage having an internal compartment that receives the pluggable module therein. The receptacle connector is held in the internal compartment of the cage for connection with the pluggable module as the pluggable module is inserted therein.
- Due to increases in the density, power output levels, and/or switching speeds of some pluggable modules, there may be a corresponding increase in heat generated by the pluggable module. The heat generated by the operation of the pluggable modules can lead to significant problems. For example, some pluggable modules may lose performance, or outright fail, if the core temperature of the module rises too high. Known techniques used to control the temperature of pluggable modules include mounting a heat sink to the cage. When the pluggable module is received within the receptacle assembly, the heat sink thermally communicates (e.g., engages) with the pluggable module to dissipate heat from the module. But, electromagnetic interference (EMI) emissions may leak out of the receptacle assembly at an interface between the cage and the heat sink.
- There is a need for a receptacle assembly that reduces leakage of EMI emissions through an interface between a cage and a heat sink of the receptacle assembly.
- In one embodiment, a cage assembly is provided for receiving a pluggable module. The cage assembly includes a cage having a front end, a mounting side, and an internal compartment. The front end is open to the internal compartment of the cage. The internal compartment is configured to receive the pluggable module therein through the front end. A heat sink is mounted to the mounting side of the cage. The heat sink has a module side that is configured to thermally communicate with the pluggable module. An electromagnetic interference (EMI) gasket extends along at least a portion of an interface between the mounting side of the cage and the module side of the heat sink. The EMI gasket includes electrically conductive spring fingers that are engaged with and electrically connected to the mounting side of the cage.
- In another embodiment, a receptacle assembly is provided for mating with a pluggable module. The receptacle assembly includes a receptacle connector and a cage having a front end, a mounting side, and an internal compartment. The receptacle connector is held within the internal compartment. The front end is open to the internal compartment of the cage. The internal compartment is configured to receive the pluggable module therein through the front end. A heat sink is mounted to the mounting side of the cage. The heat sink has a module side that is configured to thermally communicate with the pluggable module. An electromagnetic interference (EMI) gasket extends along at least a portion of an interface between the mounting side of the cage and the module side of the heat sink. The EMI gasket includes electrically conductive spring fingers that are engaged with and electrically connected to the mounting side of the cage.
- In another embodiment, a cage assembly is provided for receiving a pluggable module. The cage assembly includes a cage having a front end, a mounting side, and an internal compartment. The front end is open to the internal compartment of the cage. The internal compartment is configured to receive the pluggable module therein through the front end. A heat sink is mounted to the mounting side of the cage. The heat sink has a module side that is configured to thermally communicate with the pluggable module. An electromagnetic interference (EMI) gasket extends along at least a portion of an interface between the mounting side of the cage and the module side of the heat sink. The EMI gasket includes a base having a perimeter that includes a corner. The EMI gasket also includes electrically conductive spring fingers that extend from the base and are engaged with and electrically connected to the mounting side of the cage. The spring fingers include a corner spring finger that extends from the base at the corner of the perimeter.
-
FIG. 1 is a partially exploded perspective view of an exemplary embodiment of a transceiver assembly. -
FIG. 2 is a perspective view illustrating exemplary embodiments of a heat sink and an electromagnetic interference (EMI) gasket of the transceiver assembly shown inFIG. 1 . -
FIG. 3 is a plan view of the EMI gasket shown inFIG. 2 . -
FIG. 4 is a perspective view of a portion the transceiver assembly shown inFIG. 1 . -
FIG. 5 is a schematic view illustrating the EMI gasket shown inFIGS. 2 and 3 held between the heat sink shown inFIG. 2 and an exemplary embodiment of a cage of the transceiver assembly shown inFIG. 1 . -
FIG. 6 is a cross-sectional view taken along line 6-6 ofFIG. 4 and also illustrating the EMI gasket shown inFIGS. 2 and 3 held between the heat sink and the cage. -
FIG. 7 is a cross-sectional view of the transceiver assembly shown inFIG. 1 . -
FIG. 8 is a cross-sectional view taken along line 8-8 ofFIG. 7 . -
FIG. 1 is a partially exploded perspective view of a portion of an exemplary embodiment of atransceiver assembly 10. In the exemplary embodiment, thetransceiver assembly 10 is adapted to address, among other things, conveying data signals at high rates, such as data transmission rates of at least 10 gigabits per second (Gbps), which is required by the SFP+standard. For example, in some embodiments thetransceiver assembly 10 is adapted to convey data signals at a data transmission rate of at least 28 Gbps. Moreover, and for example, in some embodiments thetransceiver assembly 10 is adapted to convey data signals at a data transmission rate of between approximately 20 Gbps and approximately 30 Gbps. It is appreciated, however, that the benefits and advantages of the subject matter described and/or illustrated herein may accrue equally to other data transmission rates and across a variety of systems and standards. In other words, the subject matter described and/or illustrated herein is not limited to data transmission rates of 10 Gbps or greater, any standard, or the exemplary type of transceiver assembly shown and described herein. - The
transceiver assembly 10 includes one ormore pluggable modules 12 configured for pluggable insertion into areceptacle assembly 14 that is mounted to ahost circuit board 16. Thehost circuit board 16 may be mounted in a host system (not shown) such as, but not limited to, a router, a server, a computer, and/or the like. The host system typically includes a conductive chassis (not shown) having a panel (not shown) including one or more openings (not shown) extending therethrough in substantial alignment with thereceptacle assembly 14. Thereceptacle assembly 14 is optionally electrically connected to the panel. - The
pluggable module 12 is configured to be inserted into thereceptacle assembly 14. Specifically, thepluggable module 12 is inserted into thereceptacle assembly 14 through the panel opening such that afront end 18 of thepluggable module 12 extends outwardly from thereceptacle assembly 14. Thepluggable module 12 includes ahousing 20 that forms a protective shell for one ormore circuit boards 22 disposed within thehousing 20. Thecircuit board 22 carries circuitry, traces, paths, devices, and/or the like that perform transceiver functions in a known manner. Anedge 24 of thecircuit board 22 is exposed at arear end 26 of thehousing 20. A straddle mount connector (not shown) may be mounted to thecircuit board 22 and exposed at therear end 26 of thehousing 20 for plugging into a receptacle connector 28 (FIG. 7 ) of thereceptacle assembly 14. Alternatively, thecircuit board 22 of thepluggable module 12 may directly mate with thereceptacle connector 28. In other words, in some embodiments, theedge 24 of thecircuit board 22 of thepluggable module 12 is received within a corresponding receptacle 30 (FIG. 7 ) of thereceptacle connector 28 to electrically connect thepluggable module 12 to thereceptacle connector 28. - In general, the
pluggable module 12 and thereceptacle assembly 14 may be used in any application requiring an interface between a host system and electrical and/or optical signals. Thepluggable module 12 interfaces to the host system via thereceptacle connector 28 of thereceptacle assembly 14, which includes thereceptacle connector 28 and acage assembly 32. Thecage assembly 32 includes an electrically conductive cage 34 (which is sometimes referred to as a “receptacle guide frame” or a “guide frame”), aheat sink 36, and an electromagnetic interference (EMI)gasket 38. Thecage 34 includes afront end 40 having one or more front openings, or ports, 42 that are open to one or moreinternal compartments 44 of thecage 34. Thefront end 40 of thecage 34 is configured to be mounted, or received, within the opening in the panel of the hose system. Thereceptacle connector 28 is positioned within theinternal compartment 44 at arear end 46 of thecage 34. Theinternal compartment 44 of thecage 34 is configured to receive thepluggable module 12 therein in electrical connection with thereceptacle connector 28. Thecage 34 may include any number ofinternal compartments 44 andports 42, arranged in any pattern, configuration, arrangement, and/or the like (such as, but not limited to, any number of rows and/or columns), for electrically connecting any number ofpluggable modules 12 to the host circuit board. - The
pluggable module 12 interfaces to one or more optical cables (not shown) and/or one or more electrical cables (not shown) through aconnector interface 48 at thefront end 18 of themodule 12. Optionally, theconnector interface 48 comprises a mechanism that cooperates with a fiber or cable assembly (not shown) to secure the fiber or cable assembly to thepluggable module 12. Suitable connector interfaces 48 are known and include adapters for the LC style fiber connectors and the MTP/MPO style fiber connectors offered by Tyco Electronics Corporation (Harrisburg, Pa.). - The
heat sink 36 is mounted to thecage 34. More specifically, theheat sink 36 is mounted to a mountingside 50 of thecage 34. When thepluggable module 12 is received within theinternal compartment 44 of thecage 34, amodule side 52 of theheat sink 36 thermally communicates with thepluggable module 12. Heat generated by thepluggable module 12 is dissipated by theheat sink 36 via the thermal communication between theheat sink 36 and thepluggable module 12. Thecage 34 includes anopening 66 that extends through anupper wall 68 of thecage 34 that includes the mountingside 50. Theopening 66 thereby extends through the mountingside 50. Theheat sink 36 is mounted to the mountingside 50 of thecage 34 at theopening 66 such that theopening 66 enables theheat sink 36 to thermally communicate with thepluggable module 12. - In the exemplary embodiment, the
heat sink 36 thermally communicates with thepluggable module 12 via engagement of theheat sink 36 with thepluggable module 12. More specifically, themodule side 52 of theheat sink 36 engages aside 54 of thehousing 20 of thepluggable module 12 to thermally communicate theheat sink 36 with thepluggable module 12. In some alternative embodiments, themodule side 52 of theheat sink 36 thermally communicates with thepluggable module 12 via a thermal interface material (not shown) that is positioned between, and engaged with each of, themodule side 52 of theheat sink 36 and theside 54 of thepluggable module 12. The thermal interface material may increase the thermal transfer efficiency between thepluggable module 12 and theheat sink 36. - As can be seen in
FIG. 1 , theheat sink 36 is mounted to thecage 34 using one or more mounting clips 56 that extend over aside 58 of theheat sink 36 and engage thecage 34. The mounting clips 56 include one or more mounting features 60 that cooperate with one or more complementary mounting features 62 of thecage 34 using a snap-fit connection to hold theheat sink 36 to thecage 34. In addition or alternative to the mounting clips 56, the mounting features 60, the mounting features 62, and/or the snap-fit connection, theheat sink 36 may be mounted tocage 34 using any other structure, means, fasteners, and/or the like, such as, but not limited to, using a threaded fastener, another type of non-threaded fastener, an interference fit, a latch, and/or the like. - As will be described in more detail below, the
EMI gasket 38 extends along at least a portion of an interface 64 (FIGS. 5 , 6, and 8) between the mountingside 50 of thecage 34 and themodule side 52 of theheat sink 36. TheEMI gasket 38 is positioned to facilitate blocking EMI leakage at theinterface 64. TheEMI gasket 38 includes electricallyconductive spring fingers 78 that are engaged with and electrically connected to the mountingside 50 of thecage 34. -
FIG. 2 is a perspective view illustrating theheat sink 36 and theEMI gasket 38.FIG. 2 illustrates themodule side 52 of theheat sink 36 with theEMI gasket 38 being mounted thereto. Themodule side 52 of theheat sink 36 includes aplatform 70. Theplatform 70 extends outwardly on themodule side 52 from asink surface 72 of themodule side 52 to a module surface 74 of theplatform 70. Side walls 76 of theplatform 70 extend from thesink surface 72 to the module surface 74. The side walls 76 define aperimeter 88 of theplatform 70. As will be described below, in the exemplary embodiment, theplatform 70 of theheat sink 36 extends into the opening 66 (FIGS. 1 and 5 ) of the cage 34 (FIGS. 1 and 4-8) for thermally communicating with thepluggable module 12. In the exemplary embodiment, the module surface 74 of theplatform 70 is configured to thermally communicate with the pluggable module 12 (FIGS. 1 and 7 ). For example, the module surface 74 of theplatform 70 may be configured to engage the side 54 (FIG. 1 ) of the housing 20 (FIG. 1 ) of thepluggable module 12 to thermally communicate theheat sink 36 with thepluggable module 12. Moreover, and for example, the module surface 74 alternatively may be configured to engage a thermal interface material (not shown) that also engages theside 54 of thepluggable module 12. - The
sink surface 72 of themodule side 52 of theheat sink 36 includessegments perimeter edge 84 of thesink surface 72. As will be described in more detail below, thesegments 82 a-d define portions of theinterface 64 between the mounting side 50 (FIGS. 1 and 4-8) of thecage 34 and themodule side 52 of theheat sink 36. - In the exemplary embodiment, the
platform 70 includes fourside walls platform 70 generally has the overall shape of a parallelepiped. But, theplatform 70 may include any number of side walls 76 that provides theplatform 70 with any other overall shape, which may or may not be complementary with the shape of theopening 66 within thecage 34. While in the exemplary embodiment thesink surface 72 of themodule side 52 of theheat sink 36 includes foursegments module side 52, thesurface 72 may include any number ofsegments 82 arranged in any other shape than is shown herein, wherein such other shape may or may not be complementary with the shape of theEMI gasket 38 and/or thecage 34. -
FIG. 3 is a plan view of theEMI gasket 38. TheEMI gasket 38 includes abase 90 and the electricallyconductive spring fingers 78. Thebase 90 extends along acentral axis 92 from aside 94 and anopposite side 96. Theside 94 of thebase 90 is configured to engage the sink surface 72 (FIGS. 2 , 5, 6, and 8) of the module side 52 (FIGS. 1 , 2, and 4-8) of the heat sink 36 (FIGS. 1 , 2, and 4-8). Thebase 90 includes acentral opening 98 that is configured to receive the platform 70 (FIGS. 2 and 7 ) of theheat sink 36 therein. Thebase 90 includes aperimeter 100 and aninterior edge 102. Thebase 90 is defined by one ormore segments 104. In the exemplary embodiment, thebase 90 includes foursegments 104, namely thesegments perimeter 100 includes one ormore corners 106. In the exemplary embodiment, theperimeter 100 includes fourcorners 106.Ends 108 ofadjacent segments 104 are interconnected at corresponding ones of thecorners 106. Each of thesegments 104 a-d may be referred to herein as a “first” and/or a “second” segment. - The base 90 may include one or
more interference ribs 110 that extend from theinterior edge 102 of the base 90 into thecentral opening 98. In other words, theinterference ribs 110 extend from theinterior edge 102 radially inward relative to thecentral axis 92. Theinterference ribs 110 are configured to engage the side walls 76 (FIG. 2 ) of theplatform 70 of theheat sink 36 to mechanically connect theEMI gasket 38 to themodule side 52 ofheat sink 36, as will be described below. - In the exemplary embodiment, the
segments 104 a-d of the base 90 define a single continuous structure. Alternatively, one ormore segments other segments segment 104 is “separate and distinct” from anothersegment 104 if thesegments 104 do not form a continuous structure.Segments 104 that are separate and distinct from each other may engage each other and/or be mechanically connected together with a suitable fastener (e.g., an adhesive, a clip, and/or the like) when theEMI gasket 38 is positioned along the interface 64 (FIGS. 5 , 6, and 8). - The electrically
conductive spring fingers 78 extend outward from thebase 90. Specifically, thespring fingers 78 extend radially outward (relative to the central axis 92) from theperimeter 100 of thebase 90. In the exemplary embodiment, thespring fingers 78 extend from thebase 90 along an approximate entirety of the length of theperimeter 100 of thebase 90. But, in some alternative embodiments, only one or more portions of the length of theperimeter 100 includesspring fingers 78 extending therefrom. - The
spring fingers 78 extend from the base 90 to free ends 112. Eachspring finger 78 includes aninterface 114 at which thespring finger 78 is configured to engage the mounting side 50 (FIGS. 1 , 4, and 6-8) of the cage 34 (FIGS. 1 and 4-8). Thefree end 112 and theinterface 114 of eachspring finger 78 is resiliently deflectable in the direction of the arrow A inFIG. 3 from a natural resting position to a deflected position. Thespring fingers 78 are shown in the natural resting positions inFIG. 3 . As will be described below, thespring fingers 78 are resiliently compressible between the mountingside 50 of thecage 34 and themodule side 52 of theheat sink 36. - The
spring fingers 78 includespring fingers 78 a that extend from thesegments 104 a-104 d of thebase 90 andspring fingers 78 b that extend from the base 90 at thecorners 106 of theperimeter 100. In the exemplary embodiment, eachsegment 104 a-104 d of thebase 90 includes a plurality ofspring fingers 78 that extend therefrom. Aspring finger 78 a extends from the base 90 at eachend 108 of eachsegment 104 a-104 d. A gap G is defined at eachcorner 106 between thespring fingers 78 a that extends at theends 108 of theadjacent segments 104. As can be seen inFIG. 3 , thespring fingers 78 b extend within the gap G of thecorresponding corner 106. Thespring fingers 78 b may facilitate reducing an amount of EMI leakage that leaks through thecorners 106 of theEMI gasket 38. Each of thespring fingers 78 b may be referred to herein as a “corner spring finger”, while each of thespring fingers 78 a that extends at anend 108 of asegment 104 may be referred to herein as an “end spring finger”. - Any number of
spring fingers 78 b may extend within each gap G. In other words, eachcorner 106 may include any number ofspring fingers 78 b. In the exemplary embodiment, a plurality ofspring fingers 78 b extend within each gap G such that eachcorner 106 includes a plurality ofspring fingers 78 b. Thespring fingers 78 b of eachcorner 106 may have any pattern, arrangement, geometry, and/or the like within the corresponding gap G. In the exemplary embodiment, at least onespring finger 78 b of eachcorner 106 extends from the base 90 at an oblique angle relative to at least one of thespring fingers 78 a, as is illustrated inFIG. 3 . One example of a pattern, arrangement, and/or the like ofspring fingers 78 b within a gap G includes the fan-shaped pattern shown herein. Specifically, thespring fingers 78 b extend along thecorresponding corner 106 in a fan-shaped pattern wherein thespring fingers 78 b extend along radii that are incrementally spaced-apart along thecorner 106. Other patterns, arrangements, and/or the like of thespring fingers 78 b within a gap G may be provided. - The
spring fingers 78 b optionally extend fromcorner sheets 116 that extend from theperimeter 100 of the base 90 at thecorners 106. Specifically, at eachcorner 106, acorner sheet 116 extends from the base 90 to anend 118. Thespring fingers 78 b extend radially outward from theend 118 of thecorner sheet 116 of thecorresponding corner 106. In some alternative embodiments, one or more of thecorners 106 does not include acorner sheet 116, such that thespring fingers 78 b of thecorner 106 extend directly from theperimeter 100 of thebase 90. - As shown herein, the
EMI gasket 38 generally has a rectangular shape, which is defined by the foursegments 104 a-d. But, theEMI gasket 38 may include any other shape, whether or not the shape of theEMI gasket 38 is complementary with the shape of theplatform 70. Moreover, theEMI gasket 38 may include any other number ofsegments 104 besides four. - The
EMI gasket 38 may be fabricated from any materials that enable theEMI gasket 38 to be electrically conductive. TheEMI gasket 38 may be fabricated using any method, process, structure, means, and/or the like, such as, but not limited to, using a cutting process, using a casting process, using a die-casting process, using a molding process, using a forming process, and/or the like. Cutting processes include, but are not limited to, water cutting, stamping, laser cutting, blanking, punching, cutting using a saw, drill bit, plane, mill, and/or other solid cutting tool, and/or the like. Forming processes include, but are not limited to, drawing, bending, stamping, and/or the like. In some embodiments, theEMI gasket 38 is a cut and formed gasket that is cut from a material and then formed to include the shape of theEMI gasket 38. In some embodiments, thespring fingers 78 are integrally formed with thebase 90, for example using a stamping and forming process. - Referring again to
FIG. 2 , theEMI gasket 38 is shown mounted to theheat sink 36. Theside 94 of thebase 90 of theEMI gasket 38 is engaged with thesink surface 72 of themodule side 52 of theheat sink 36. More specifically, at theside 94, thesegments EMI gasket 38 are engaged with thesegments sink surface 72. The engagement between theside 94 and thesink surface 72 optionally electrically connects theEMI gasket 38 to theheat sink 36. TheEMI gasket 38 extends around theperimeter 88 of theplatform 70. As can be seen inFIG. 2 , in the exemplary embodiment, theEMI gasket 38 extends around an entirety of theperimeter 88 of theplatform 70. But, theEMI gasket 38 alternatively may extend around only a portion of theperimeter 88 of theplatform 70. Optionally, theEMI gasket 38 is engaged with the side walls 76 of theplatform 70. - The
EMI gasket 38 is optionally mechanically connected to theheat sink 36. In the exemplary embodiment, theEMI gasket 38 is mechanically connected to theheat sink 36 via an interference fit. Specifically, the interference ribs 110 (FIG. 3 ) of the EMI gasket engage the side walls 76 of theplatform 70 with an interference fit. In addition or alternative to the interference fit, theEMI gasket 38 is optionally mechanically connected to theheat sink 36 using a fastener (such as, but not limited to, an adhesive and/or the like) and/or using a snap-fit with the side walls 76 of theplatform 70. The mechanical connection between theEMI gasket 38 and theheat sink 36 optionally electrically connects theEMI gasket 38 to theheat sink 36. - Referring again to
FIG. 1 , theupper wall 68 of thecage 34 includes acage surface 120 that defines the mountingside 50 of thecage 34. Thecage surface 120 of the mountingside 50 includessegments 122. Namely, thecage surface 120 includes thesegments segments 122 define portions of the interface 64 (FIGS. 5 , 6, and 8) between the mountingside 50 of thecage 34 and themodule side 52 of theheat sink 36. While thecage surface 120 includes foursegments cage surface 120 may include any number ofsegments 122 arranged in any other shape than is shown herein, wherein such other shape may or may not be complementary with the shape of theEMI gasket 38 and/or theheat sink 36. -
FIG. 4 is a perspective view illustrating thereceptacle assembly 14 mounted on thehost circuit board 16. Thepluggable module 12 has been omitted fromFIG. 4 .FIG. 4 is an assembled view of thereceptacle assembly 14 and thehost circuit board 16 that illustrates thereceptacle assembly 14 in a state wherein thepluggable module 12 is not mated therewith (i.e., not received or held within the internal compartment 44). Theheat sink 36 is mounted to the mountingside 50 of thecage 34 using the mounting clips 56. Although not visible inFIG. 4 , the platform 70 (FIGS. 2 and 7 ) extends through the opening 66 (FIGS. 1 and 5 ) within the mountingside 50 of thecage 34 and into theinternal compartment 44. Themodule side 52 of theheat sink 36 faces the mountingside 50 of thecage 34, such that the sink surface 72 (FIGS. 2 , 5, 6, and 8) of theheat sink 36 faces thecage surface 120 of thecage 34. The segments 82 (FIGS. 2 , 5, 6, and 8) of thesink surface 72 face, and are at least partially aligned with, the corresponding segments 122 (FIGS. 1 , 5, 6, and 8) of thecage surface 120. - Although not visible in
FIG. 4 , the EMI gasket 38 (FIGS. 1-3 and 5-8) is held between the mountingside 50 of thecage 34 and themodule side 52 of theheat sink 36. Theheat sink 36 is seated on and engaged with theEMI gasket 38. The spring fingers 78 (FIGS. 1-3 and 5-8) of theEMI gasket 38 are resiliently compressed between the mountingside 50 of thecage 34 and themodule side 52 of theheat sink 36. Thespring fingers 78 are engaged with, and thereby electrically connected to, thecage surface 120 of thecage 34. The position of theEMI gasket 38 between the mountingside 50 and themodule side 52, the seating and engagement between theEMI gasket 38 and theheat sink 36, the compression of thespring fingers 78 between the mountingside 50 and themodule side 52, and the engagement between thespring fingers 78 and thecage surface 120 will be described in more detail below with reference toFIGS. 5-8 . - In some embodiments, the
EMI gasket 38 is mounted to theheat sink 36 before theheat sink 36 is mounted to thecage 34. For example, theEMI gasket 38 may be mechanically connected to the heat sink 36 (e.g., as described above) or may be held on theheat sink 36 by a person and/or machine before theheat sink 36 is mounted to thecage 34. In other embodiments, theEMI gasket 38 is first positioned on thecage 34 and theheat sink 36 is thereafter mounted to thecage 34. TheEMI gasket 38 is optionally mechanically connected to the mountingside 50 of thecage 34, for example as described above with respect to the optional mechanical connections of theEMI gasket 38 to theheat sink 36. -
FIG. 5 is a schematic view illustrating theEMI gasket 38 as held between the mounting side 50 (not labeled inFIG. 5 ) of thecage 34 and the module side 52 (not labeled inFIG. 5 ) of theheat sink 36 when thereceptacle assembly 14 is not mated with the pluggable module 12 (FIGS. 1 and 7 ). Theinterface 64 between the mountingside 50 of thecage 34 and themodule side 52 of theheat sink 36 is defined from thesegments sink surface 72 to the correspondingsegments cage surface 94. In other words, theinterface 64 is defined between thesegments 82 and the correspondingsegments 122. - As can be seen in
FIG. 5 , thesegments respective segments interface 64 follows a path that has a radially (e.g., relative to a central axis 128) outer boundary defined by theperimeter edge 84 of theheat sink 36. Side edges 124 (also labeled inFIG. 1 ) of the mountingside 50 of thecage 34 also define the radially outer boundary of the path of theinterface 64. Although shown as being aligned with the corresponding segments of theperimeter edge 84 of thesink surface 72 of theheat sink 36, alternatively one or both of the side edges 124 may not be aligned with the corresponding segment of theperimeter edge 84. Theinterface 64 follows a path that has a radially inner boundary defined by an interior edge 130 (also labeled inFIG. 1 ) that defines theopening 66 of thecage 34. Theinterface 64 thus extends around theopening 66. In the exemplary embodiment, theinterface 64 generally follows a rectangular path, but theinterface 64 may follow any other shaped path, which may or may not be complementary with the shape of theEMI gasket 38, thecage 34, and/or theheat sink 36. -
FIG. 6 is a cross-sectional view taken along line 6-6 ofFIG. 4 and also illustrating theEMI gasket 38 held between theheat sink 36 and thecage 34 when thereceptacle assembly 14 is not mated with the pluggable module 12 (FIGS. 1 and 7 ). As can be seen inFIG. 6 , theEMI gasket 38 is held between the mountingside 50 of thecage 34 and themodule side 52 of theheat sink 36. Theside 94 of thebase 90 of theEMI gasket 38 is engaged with thesink surface 72 of themodule side 52 of theheat sink 36 when thereceptacle assembly 14 is not mated with thepluggable module 12. Thespring fingers 78 have been resiliently deflected in the direction of the arrow A such that thespring fingers 78 are resiliently compressed between theheat sink 36 and thecage 34. Theinterfaces 114 of thespring fingers 78 are engaged with thecage surface 120 such that thespring fingers 78 are, and thus theEMI gasket 38 is, electrically connected to thecage 34 along theinterface 64. Theinterface 64 includes a gap G1 between the mountingside 50 of thecage 34 and themodule side 52 of theheat sink 36. More specifically, the gap G1 extends from thesegments 82 of thesink surface 72 to the correspondingsegments 122 of thecage surface 120. Thespring fingers 78 may be compressed by any amount when thereceptacle assembly 14 is not mated with thepluggable module 12. - Referring again to
FIG. 5 , theEMI gasket 38 extends along theinterface 64. More specifically, thespring fingers 78 extend along therespective segments heat sink 36 and along therespective segments cage 34. TheEMI gasket 38 extends along the radially inner and outer boundaries of theinterface 64. In the exemplary embodiment, theEMI gasket 38 extends along an entirety of the path of theinterface 64, but theEMI gasket 38 alternatively may extend along only one or more portions of the path of theinterface 64. - In the exemplary embodiment, the
EMI gasket 38 extends along theinterface 64 within theinterface 64. In other words, theEMI gasket 38 is disposed between the radially inner and radially outer boundaries of theinterface 64. In some embodiments, a portion of theEMI gasket 38 is disposed outside the interface 64 (i.e., radially outside the radially outer boundary of the interface 64). Moreover, in some embodiments, a portion of theEMI gasket 38 is disposed inside the interface 64 (i.e., radially inside the radially inner boundary of the interface 64). -
FIG. 7 is a cross-sectional view of thetransceiver assembly 10 illustrating thereceptacle assembly 14 in a state wherein thepluggable module 12 is mated therewith (i.e., is received and held within the internal compartment 44). As thepluggable module 12 is inserted into theinternal compartment 44 of thecage 34, engagement between themodule 12 and theplatform 70 of theheat sink 36 moves theheat sink 36 such that themodule side 52 of theheat sink 36 moves in a direction away from the mountingside 50 of thecage 34, which is indicated by the arrow B inFIG. 7 . In embodiments wherein theheat sink 36 and thepluggable module 12 thermally communicate via a thermal interface material, engagement of the thermal interface material with themodule 12 or theheat sink 36 may cause the movement of theheat sink 36 relative to thecage 34. -
FIG. 8 is a cross-sectional view along line 8-8 ofFIG. 7 . When the pluggable module 12 (FIGS. 1 and 7 ) is mated with thereceptacle assembly 14, theEMI gasket 38 is held between the mountingside 50 of thecage 34 and themodule side 52 of theheat sink 36. The movement of theheat sink 36 relative to thecage 34 causes thespring fingers 78 of theEMI gasket 38 to at least partially uncompress by any amount. Accordingly, and as can be seen from a comparison ofFIGS. 6 and 8 , thespring fingers 78 are compressed a greater amount when thepluggable module 12 is not mated with thereceptacle assembly 14 and are compressed a lesser amount when thepluggable module 12 is mated with thereceptacle assembly 14. - When the
pluggable module 12 is mated with thereceptacle assembly 14, theside 94 of thebase 90 of theEMI gasket 38 is engaged with thesink surface 72 of themodule side 52 of theheat sink 36. Thespring fingers 78 are resiliently compressed between theheat sink 36 and thecage 34. Theinterfaces 114 of thespring fingers 78 are engaged with thecage surface 120 such that thespring fingers 78 are, and thus theEMI gasket 38 is, electrically connected to thecage 34 along theinterface 64. Theinterface 64 includes a gap G2 between the mountingside 50 of thecage 34 and themodule side 52 of theheat sink 36. More specifically, the gap G2 extends from thesegments 82 of thesink surface 72 to the correspondingsegments 122 of thecage surface 120. As should be apparent from a comparison ofFIGS. 6 and 8 , the gap G2 is greater than the gap G1. Thespring fingers 78 may be compressed by any amount when thereceptacle assembly 14 is mated with thepluggable module 12. - As should be apparent from the above description as well as the Figures, when the
pluggable module 12 is mated with thereceptacle assembly 14, theEMI gasket 38 extends along theinterface 64 in a substantially similar manner to that described above when thepluggable module 12 is not mated with thereceptacle assembly 14. - The
EMI gasket 38 facilitates blocking EMI emissions from leaking out from theinterior compartment 44 of thecage 34 through theinterface 64. More specifically,EMI gasket 38 facilitates blocking EMI emissions from leaking out from the interior compartment 44 (FIGS. 1 and 7 ) between thesink surface 72 of theheat sink 36 and thecage surface 120 of thecage 34. - The
spring fingers 78 may be capable of retaining the resilience thereof through a wide variety of temperature ranges, temperature extremes, and/or the like. For example, thespring fingers 78 may retain the resilience thereof through a temperature range of between approximately −25° C. and approximately 150° C., above an approximate temperature of −25° C., and/or below an approximate temperature of 150° C. The ability of thespring fingers 78 to retain the resilience thereof through a wide variety of temperature ranges, temperature extremes, and/or the like may facilitate preventing mechanical failure of theEMI gasket 38. For example, the ability of thespring fingers 78 to retain the resilience thereof through a wide variety of temperature ranges, temperature extremes, and/or the like may facilitate preventing thespring fingers 78 from losing of the ability to remain engaged with thecage 34 when thepluggable module 12 forces theheat sink 36 to move in the direction of the arrow B inFIG. 7 . TheEMI gasket 38 may be capable of retaining the electrically conductivity thereof through a wide variety of temperature ranges, temperature extremes, and/or the like. For example, theEMI gasket 38 may retain the electrical conductivity thereof through a temperature range of between approximately −25° C. and approximately 150° C., above an approximate temperature of −25° C., and/or below an approximate temperature of 150° C. - The embodiments described and/or illustrated herein may provide a transceiver assembly that experiences a reduced amount of leakage of EMI emissions from between an interface between a cage and a heat sink of the transceiver assembly.
- It is to be understood that the above description is intended to be illustrative, and not restrictive. For example, the above-described embodiments (and/or aspects thereof) may be used in combination with each other. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from its scope. Dimensions, types of materials, orientations of the various components, and the number and positions of the various components described herein are intended to define parameters of certain embodiments, and are by no means limiting and are merely exemplary embodiments. Many other embodiments and modifications within the spirit and scope of the claims will be apparent to those of skill in the art upon reviewing the above description. The scope of the invention should, therefore, be determined with reference to the appended claims, along with the full scope of equivalents to which such claims are entitled. In the appended claims, the terms “including” and “in which” are used as the plain-English equivalents of the respective terms “comprising” and “wherein.” Moreover, in the following claims, the terms “first,” “second,” and “third,” etc. are used merely as labels, and are not intended to impose numerical requirements on their objects. Further, the limitations of the following claims are not written in means—plus-function format and are not intended to be interpreted based on 35 U.S.C. §112, sixth paragraph, unless and until such claim limitations expressly use the phrase “means for” followed by a statement of function void of further structure.
Claims (20)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/483,338 US8599559B1 (en) | 2012-05-30 | 2012-05-30 | Cage with a heat sink mounted on its mounting side and an EMI gasket with its fingers electrically connected to the mounting side |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/483,338 US8599559B1 (en) | 2012-05-30 | 2012-05-30 | Cage with a heat sink mounted on its mounting side and an EMI gasket with its fingers electrically connected to the mounting side |
Publications (2)
Publication Number | Publication Date |
---|---|
US8599559B1 US8599559B1 (en) | 2013-12-03 |
US20130323963A1 true US20130323963A1 (en) | 2013-12-05 |
Family
ID=49640778
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/483,338 Active 2032-06-06 US8599559B1 (en) | 2012-05-30 | 2012-05-30 | Cage with a heat sink mounted on its mounting side and an EMI gasket with its fingers electrically connected to the mounting side |
Country Status (1)
Country | Link |
---|---|
US (1) | US8599559B1 (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107548224A (en) * | 2017-07-07 | 2018-01-05 | 新华三技术有限公司 | A kind of component housing and pcb board |
WO2018132437A1 (en) * | 2017-01-12 | 2018-07-19 | Samtec, Inc. | Cage with an attached heatsink |
WO2018183180A1 (en) * | 2017-03-31 | 2018-10-04 | Raytheon Company | Electrically and thermally conductive planar interface gasket with deformable fingers |
US20190273339A1 (en) * | 2016-12-02 | 2019-09-05 | Telefonaktiebolaget Lm Ericsson (Publ) | A connector system |
US10575442B2 (en) * | 2018-07-06 | 2020-02-25 | Te Connectivity Corporation | Heat sink assembly for an electrical connector |
US20200370843A1 (en) * | 2019-05-24 | 2020-11-26 | Tyco Electronics (Shanghai) Co., Ltd. | Connector and heat sink |
TWI733519B (en) * | 2020-07-14 | 2021-07-11 | 台灣莫仕股份有限公司 | Connector assembly |
US11677190B2 (en) | 2020-07-14 | 2023-06-13 | Molex, Llc | Shielded connector assembly with improved thermal management |
US20230213714A1 (en) * | 2020-06-10 | 2023-07-06 | Telefonaktiebolaget Lm Ericsson (Publ) | A Connector System |
US20230228956A1 (en) * | 2022-01-18 | 2023-07-20 | Prime World International Holdings Ltd. | Optical transceiver with internal gas flow passage for heat dissipation |
EP3422061B1 (en) * | 2017-06-28 | 2024-02-28 | Mellanox Technologies, Ltd. | Cable adapter |
Families Citing this family (38)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8830679B2 (en) * | 2011-05-27 | 2014-09-09 | Fci Americas Technology Llc | Receptacle heat sink connection |
CN103676027B (en) * | 2012-09-14 | 2016-01-27 | 泰科电子(上海)有限公司 | Connector |
CN203277695U (en) * | 2013-04-03 | 2013-11-06 | 正凌精密工业股份有限公司 | Connector module |
CN104253096A (en) * | 2013-06-27 | 2014-12-31 | 鸿富锦精密工业(深圳)有限公司 | Electronic device |
US9681583B2 (en) | 2013-09-23 | 2017-06-13 | Coriant Operations Inc. | Fixation of heat sink on SFP/XFP cage |
JP6464645B2 (en) * | 2013-11-05 | 2019-02-06 | 富士通株式会社 | Optical transmission apparatus and manufacturing method |
US9912107B2 (en) | 2014-04-01 | 2018-03-06 | Te Connectivity Corporation | Plug and receptacle assembly having a thermally conductive interface |
TWI710183B (en) * | 2015-01-11 | 2020-11-11 | 美商莫仕有限公司 | Circuit board bypass assembly and its components |
US9389368B1 (en) * | 2015-04-07 | 2016-07-12 | Tyco Electronics Corporation | Receptacle assembly and set of receptacle assemblies for a communication system |
WO2017023254A1 (en) | 2015-07-31 | 2017-02-09 | Hewlett Packard Enterprise Development Lp | Heat exchangers |
CN106025669B (en) * | 2015-12-17 | 2023-09-05 | 温州意华接插件股份有限公司 | Hot plug type interface connector |
US10136556B2 (en) * | 2016-02-24 | 2018-11-20 | Thermal Corp. | Electronics rack with selective engagement of heat sink |
US10349557B2 (en) | 2016-02-24 | 2019-07-09 | Thermal Corp. | Electronics rack with compliant heat pipe |
US10965333B2 (en) * | 2016-07-26 | 2021-03-30 | Laird Technologies, Inc. | Thermal management assemblies suitable for use with transceivers and other devices |
US10389397B2 (en) * | 2016-07-26 | 2019-08-20 | Laird Technologies, Inc. | Small form-factor pluggable (SFP) transceivers |
US10644472B2 (en) | 2017-06-28 | 2020-05-05 | Mellanox Technologies, Ltd. | Cable adapter |
US10566262B2 (en) | 2017-09-12 | 2020-02-18 | Laird Technologies, Inc. | Thermal interface materials with wear-resisting layers and/or suitable for use between sliding components |
US10555439B2 (en) * | 2017-11-02 | 2020-02-04 | Laird Technologies, Inc. | Thermal interface materials with reinforcement for abrasion resistance and/or suitable for use between sliding components |
TWI677276B (en) * | 2018-01-10 | 2019-11-11 | 正淩精密工業股份有限公司 | High-frequency connecting device with enhanced cooling efficiency of optical module |
CN108281831B (en) * | 2018-01-23 | 2020-05-12 | 泰科电子(上海)有限公司 | Socket assembly and heat transfer assembly |
CN207588071U (en) * | 2018-03-14 | 2018-07-06 | 泰科电子(上海)有限公司 | Connector and radiator |
CN110275253B (en) * | 2018-03-14 | 2024-07-26 | 泰科电子(上海)有限公司 | Connector with a plurality of connectors |
US10212864B1 (en) | 2018-05-22 | 2019-02-19 | Ohio Associated Enterprises, Llc | Electrically-conductive gasket |
US10705309B2 (en) | 2018-06-06 | 2020-07-07 | Mellanox Technologies, Ltd. | RF EMI reducing fiber cable assembly |
CN110602905B (en) * | 2018-06-13 | 2022-03-25 | 泰科电子(上海)有限公司 | Connector and connector housing |
US10444453B1 (en) | 2018-07-25 | 2019-10-15 | Mellanox Technologies, Ltd. | QSFP-DD to SFP-DD adapter |
CN109407224A (en) * | 2018-11-07 | 2019-03-01 | 东莞讯滔电子有限公司 | A kind of radiating subassembly, connector and connector assembly |
US11079820B2 (en) | 2019-01-15 | 2021-08-03 | Microsoft Technology Licensing, Llc | Method and apparatus for improving removable storage performance |
US10782492B2 (en) * | 2019-02-08 | 2020-09-22 | Ciena Corporation | Heatsink for pluggable optical devices for the prevention of heatsink clip deformation |
US10741954B1 (en) | 2019-03-17 | 2020-08-11 | Mellanox Technologies, Ltd. | Multi-form-factor connector |
US10939594B2 (en) * | 2019-05-16 | 2021-03-02 | Te Connectivity Corporation | Gasket for receptacle cage |
US11520311B2 (en) | 2019-07-25 | 2022-12-06 | Microsoft Technology Licensing, Llc | High performance removable storage devices |
CN112531371B (en) * | 2019-09-17 | 2022-06-03 | 美国莫列斯有限公司 | Connector assembly |
CN210430205U (en) * | 2019-09-30 | 2020-04-28 | 东莞讯滔电子有限公司 | Electrical connector |
US11169330B2 (en) | 2019-10-24 | 2021-11-09 | Mellanox Technologies Tlv Ltd. | Wavelength-splitting optical cable |
CN214204113U (en) * | 2021-03-02 | 2021-09-14 | 东莞立讯技术有限公司 | Interface connector |
US11626694B2 (en) * | 2021-03-16 | 2023-04-11 | Te Connectivity Solutions Gmbh | Electrical shielding for a receptacle connector assembly |
US20230107130A1 (en) * | 2021-09-30 | 2023-04-06 | Nanning Fulian Fugui Precision Industrial Co., Ltd. | Computer expansion module providing cooling for components placed therein |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE29620596U1 (en) * | 1996-11-26 | 1998-01-22 | Siemens AG, 80333 München | Socket for an integrated circuit |
US6205026B1 (en) | 2000-01-31 | 2001-03-20 | Intel Corporation | Heat sink retention components and system |
US7314318B2 (en) * | 2001-03-15 | 2008-01-01 | International Business Machines Corporation | Compact optical transceivers including thermal distributing and electromagnetic shielding systems and methods thereof |
CN1314307C (en) | 2002-03-06 | 2007-05-02 | 蒂科电子公司 | Pluggable electronic module and receptacle with heat sink |
US7355857B2 (en) | 2006-02-07 | 2008-04-08 | Methode Electronics, Inc. | Heat sink gasket |
US8382509B2 (en) * | 2010-08-06 | 2013-02-26 | Fci Americas Technology Llc | Electrical connector assembly including compliant heat sink |
US8830679B2 (en) * | 2011-05-27 | 2014-09-09 | Fci Americas Technology Llc | Receptacle heat sink connection |
US8670236B2 (en) * | 2011-08-03 | 2014-03-11 | Tyco Electronics Corporation | Cage assembly for receiving a pluggable module |
-
2012
- 2012-05-30 US US13/483,338 patent/US8599559B1/en active Active
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20190273339A1 (en) * | 2016-12-02 | 2019-09-05 | Telefonaktiebolaget Lm Ericsson (Publ) | A connector system |
US10777939B2 (en) * | 2016-12-02 | 2020-09-15 | Telefonaktiebolaget Lm Ericsson (Publ) | Connector system |
WO2018132437A1 (en) * | 2017-01-12 | 2018-07-19 | Samtec, Inc. | Cage with an attached heatsink |
US10306806B2 (en) | 2017-01-12 | 2019-05-28 | Samtec, Inc. | Cage with an attached heatsink |
WO2018183180A1 (en) * | 2017-03-31 | 2018-10-04 | Raytheon Company | Electrically and thermally conductive planar interface gasket with deformable fingers |
US10123466B2 (en) | 2017-03-31 | 2018-11-06 | Raytheon Company | Electrically and thermally conductive planar interface gasket with deformable fingers |
EP3422061B1 (en) * | 2017-06-28 | 2024-02-28 | Mellanox Technologies, Ltd. | Cable adapter |
CN107548224A (en) * | 2017-07-07 | 2018-01-05 | 新华三技术有限公司 | A kind of component housing and pcb board |
US10575442B2 (en) * | 2018-07-06 | 2020-02-25 | Te Connectivity Corporation | Heat sink assembly for an electrical connector |
US20200370843A1 (en) * | 2019-05-24 | 2020-11-26 | Tyco Electronics (Shanghai) Co., Ltd. | Connector and heat sink |
US12055353B2 (en) * | 2019-05-24 | 2024-08-06 | Tyco Electronics (Shanghai) Co., Ltd. | Connector and heat sink |
US20230213714A1 (en) * | 2020-06-10 | 2023-07-06 | Telefonaktiebolaget Lm Ericsson (Publ) | A Connector System |
US11677190B2 (en) | 2020-07-14 | 2023-06-13 | Molex, Llc | Shielded connector assembly with improved thermal management |
TWI733519B (en) * | 2020-07-14 | 2021-07-11 | 台灣莫仕股份有限公司 | Connector assembly |
US20230228956A1 (en) * | 2022-01-18 | 2023-07-20 | Prime World International Holdings Ltd. | Optical transceiver with internal gas flow passage for heat dissipation |
US11852879B2 (en) * | 2022-01-18 | 2023-12-26 | Prime World International Holdings Ltd. | Optical transceiver with internal gas flow passage for heat dissipation |
Also Published As
Publication number | Publication date |
---|---|
US8599559B1 (en) | 2013-12-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8599559B1 (en) | Cage with a heat sink mounted on its mounting side and an EMI gasket with its fingers electrically connected to the mounting side | |
US8670236B2 (en) | Cage assembly for receiving a pluggable module | |
US9518785B2 (en) | Receptacle assembly for receiving a pluggable module | |
US10804627B2 (en) | Connector system with thermal management | |
US8444437B2 (en) | Electrical connector assembly with EMI gasket | |
US10575442B2 (en) | Heat sink assembly for an electrical connector | |
US8449331B2 (en) | Cage and connector cover for a receptacle assembly | |
CN108738278B (en) | Heat sink for electrical connector assembly | |
US9343851B2 (en) | Pluggable connector configured to transfer thermal energy away from internal electronics of the pluggable connector | |
US7833068B2 (en) | Receptacle connector for a transceiver assembly | |
US8277252B2 (en) | Electrical connector assembly | |
US8613632B1 (en) | Electrical connector assembly having thermal vents | |
US9666997B1 (en) | Gasket plate for a receptacle assembly of a communication system | |
US9673570B2 (en) | Stacked cage having different size ports | |
US10104793B2 (en) | EMI shielding for pluggable modules and connector assemblies | |
US9620906B1 (en) | EMI shielding for pluggable modules | |
CN107196089B (en) | Connector module assembly with gasket plate | |
US20140202755A1 (en) | Receptacle cage, receptacle assembly, and transceiver module assembly | |
CN107634399B (en) | Receptacle assembly for pluggable module and communication system having the same | |
US20150072561A1 (en) | Cage with emi absorber | |
US8545234B2 (en) | Electrical connector for a pluggable transceiver module | |
US9583886B2 (en) | Receptacle assembly with guide frame | |
US20090116185A1 (en) | Small form-factor pluggable transceiver module housing | |
US20180205184A1 (en) | Receptacle cage member having locating features | |
CN108323138B (en) | Transceiver module |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: TYCO ELECTRONICS CORPORATION, PENNSYLVANIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MORRISON, MATTHEW DAVID;PHILLIPS, MICHAEL JOHN;SHIRK, MICHAEL EUGENE;REEL/FRAME:028287/0193 Effective date: 20120529 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FEPP | Fee payment procedure |
Free format text: PAT HOLDER NO LONGER CLAIMS SMALL ENTITY STATUS, ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: STOL); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
AS | Assignment |
Owner name: TE CONNECTIVITY CORPORATION, PENNSYLVANIA Free format text: CHANGE OF NAME;ASSIGNOR:TYCO ELECTRONICS CORPORATION;REEL/FRAME:041350/0085 Effective date: 20170101 |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 8 |
|
AS | Assignment |
Owner name: TE CONNECTIVITY SERVICES GMBH, SWITZERLAND Free format text: CHANGE OF ADDRESS;ASSIGNOR:TE CONNECTIVITY SERVICES GMBH;REEL/FRAME:056514/0015 Effective date: 20191101 Owner name: TE CONNECTIVITY SERVICES GMBH, SWITZERLAND Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:TE CONNECTIVITY CORPORATION;REEL/FRAME:056514/0048 Effective date: 20180928 |
|
AS | Assignment |
Owner name: TE CONNECTIVITY SOLUTIONS GMBH, SWITZERLAND Free format text: MERGER;ASSIGNOR:TE CONNECTIVITY SERVICES GMBH;REEL/FRAME:060885/0482 Effective date: 20220301 |