US20130319575A1 - Bag for distributing a product for biopharmaceutical use in the general state of a liquid or paste via a plurality of outlet ports - Google Patents

Bag for distributing a product for biopharmaceutical use in the general state of a liquid or paste via a plurality of outlet ports Download PDF

Info

Publication number
US20130319575A1
US20130319575A1 US13/990,881 US201113990881A US2013319575A1 US 20130319575 A1 US20130319575 A1 US 20130319575A1 US 201113990881 A US201113990881 A US 201113990881A US 2013319575 A1 US2013319575 A1 US 2013319575A1
Authority
US
United States
Prior art keywords
bag
tapping
biopharmaceutical product
supply
outlet ports
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/990,881
Other languages
English (en)
Inventor
Nicolas Mendyk
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sartorius Stedim FMT SAS
Original Assignee
Sartorius Stedim Biotech SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sartorius Stedim Biotech SA filed Critical Sartorius Stedim Biotech SA
Assigned to SARTORIUS STEDIM BIOTECH S.A. reassignment SARTORIUS STEDIM BIOTECH S.A. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MENDYK, NICOLAS
Publication of US20130319575A1 publication Critical patent/US20130319575A1/en
Assigned to SARTORIUS STEDIM FMT SAS reassignment SARTORIUS STEDIM FMT SAS MERGER (SEE DOCUMENT FOR DETAILS). Assignors: SARTORIUS STEDIM BIOTECH
Assigned to SARTORIUS STEDIM FMT SAS reassignment SARTORIUS STEDIM FMT SAS CORRECTIVE ASSIGNMENT TO CORRECT THE THE ASSIGNEE'S ADDRESS PREVIOUSLY RECORDED ON REEL 031974 FRAME 0578. ASSIGNOR(S) HEREBY CONFIRMS THE MERGER. Assignors: SARTORIUS STEDIM BIOTECH
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61JCONTAINERS SPECIALLY ADAPTED FOR MEDICAL OR PHARMACEUTICAL PURPOSES; DEVICES OR METHODS SPECIALLY ADAPTED FOR BRINGING PHARMACEUTICAL PRODUCTS INTO PARTICULAR PHYSICAL OR ADMINISTERING FORMS; DEVICES FOR ADMINISTERING FOOD OR MEDICINES ORALLY; BABY COMFORTERS; DEVICES FOR RECEIVING SPITTLE
    • A61J1/00Containers specially adapted for medical or pharmaceutical purposes
    • A61J1/14Details; Accessories therefor
    • A61J1/1475Inlet or outlet ports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D27/00Envelopes or like essentially-rectangular containers for postal or other purposes having no structural provision for thickness of contents
    • B65D27/32Opening devices incorporated during envelope manufacture

Definitions

  • the invention relates to a bag for distributing a product for biopharmaceutical use in the general state of a liquid or paste via a plurality of outlet ports. Its objects, in its various aspects, are the bag in question whether in an unfolded configuration or a folded configuration, a distribution assembly comprising such a bag, a method for making use of such a bag, and a method for creating such a bag.
  • biopharmaceutical product is understood to mean a flowable product in the general state of a liquid or paste, obtained from biotechnology (culture media, cell cultures, buffer solutions, artificial nutrition liquids) or having a pharmaceutical purpose.
  • a flexible single-use bag for distributing a biopharmaceutical product via a plurality of outlet ports into containers, such as primary containers is known from the prior art.
  • Such a known bag firstly comprises a shell able to receive the biopharmaceutical product within its inner space and comprising, joined by fixed and sealed connection areas, flexible walls of which two opposite walls are peripherally connected to each other. It then comprises at least one inlet port by which the inner space can be filled with the biopharmaceutical product.
  • it comprises a plurality of outlet ports for simultaneously distributing the biopharmaceutical product located in the inner space, into containers such as primary containers.
  • Such an inlet or outlet port is associated with a passage in the shell and is mounted onto it by fixed and sealed connection means.
  • flexible single-use bags are generally known in which the two walls are directly joined to each other by fixed and sealed connection areas, for example folded, bonded adhesively, or welded, and which, once expanded, have a limited volume, for example 20 liters, and remain relatively thin, which is why they are often referred to as “pillow bags” or “2D bags” (where D stands for dimensional).
  • flexible 3D single-use bags which comprise two walls joined and securely connected together by means of two welded side gussets, which can be folded flat or unfolded when deployed, the volume then reaching at least 50 liters and up to 3000 liters or more.
  • Such 3D bags are described for example in document WO00/04131 or sold under the trademark FLEXEL® 3D. These 2D or 3D bags comprise fixed and sealed connection areas, at least some of them bonded adhesively or welded, and ports arranged at the connection areas.
  • Document US 2009/0105683 describes a disposable container for biological products, comprising a single sheet of biologically compatible flexible material, an access area wholly molded within said sheet, at least one port in said access area to allow fluid biological materials to be introduced into said container, said sheet being folded along said access area in such a way that an upper portion of said sheet is adjacent to a lower portion of said sheet, and, adjacent to a lower portion of said sheet, a portion connecting said upper portion to said lower portion.
  • Document FR 2528801 describes a bag for the slow distribution of a liquid medium such as an infusion, having at one end at least one tube at the end opposite a hole for its suspension, and welds closing its side edges, the tubing being attached to a base which adheres to the bag along a fold line from which the opposite walls of the bag extend, this line passing substantially through the geometric axis of each of the tubes.
  • a liquid medium such as an infusion
  • the present invention relates to a utilization in which a set of p containers, such as similar primary containers of relatively small unit volume, for example from a few milliliters to a few centiliters, are filled with biopharmaceutical product under sterile conditions, from a same single-use flexible bag accepting a larger amount of biopharmaceutical product and having a plurality of n similar outlet ports, the number p of containers being larger as a general rule, possibly much larger, than the number n of outlet ports.
  • the filling of all p containers is achieved in several passes, the filling being simultaneous in each pass for a number n of containers.
  • the flexible container for intravenous use has a flexible tubular container member which has each of its ends aseptically sealed.
  • An outlet connector is provided for connecting an intravenous tube, midway between the ends to be connected.
  • the ends of the container member are adapted to be attached to a support stand so that the container member can be folded over at its midpoint and its ends can be readily attached to the support stand, whereby the outlet connector is at the bottom of the container member.
  • At least one additional connector is provided near one of its ends, for adding medications or other ingredients. Initially, one of the ends of the tubular container member is sealed and the other end is left open for filling the container member with intravenous liquid. Then, after filling, this open end is closed.
  • the container according to document U.S. Pat. No. 3,554,256 does not target an application and does not concern a context in which a plurality of p similar primary containers of a relatively small unit volume are filled with a biopharmaceutical product from a single flexible bag for one-time use accepting a larger amount of biopharmaceutical product and having a plurality of n similar outlet ports, the number p of containers being larger, possibly much larger, than the number n of outlet ports.
  • the container according to document U.S. Pat. No. 3,554,256 does not comprise an inlet port for adding content other than one or two ports for adding medications or other ingredients, and has only one outlet port, not multiple ones.
  • the container according to document U.S. Pat. No. 3,554,256 concerns filling the container with added medications or other ingredients, it is not at all concerned with the problem of distributing the contents of the bag through several outlet ports so that this occurs simultaneously and in an identical manner for the various ports, particularly with regard to the quality and quantity of biopharmaceutical product distributed. It also does not concern the problem of the bag being completely empty at the end of the process.
  • the purpose of the invention is to provide an answer to this need.
  • an object of the invention is a bag for distributing a dose of a flowable biopharmaceutical product in the general state of a liquid or paste, into a set of containers, comprising a shell able to receive the biopharmaceutical product in its inner space and comprising flexible walls joined by fixed and sealed connection areas, of which two opposite walls are connected to each other by their peripheries, at least one inlet port by which the inner space can be filled with the biopharmaceutical product, and a plurality of n outlet ports with which are associated in a communicating manner n external discharge/fill tubes, and by which the biopharmaceutical product can be discharged from the inner space into a plurality of containers associated in a communicating manner with the n outlet ports in order to fill them with a dose of biopharmaceutical product, a port being associated with a passage in the shell and being mounted onto it by fixed and sealed connection means.
  • This bag is such that:
  • the bag can be either in an unfolded configuration with the two walls stretched out, or in a folded configuration with the two walls folded onto themselves in the folding region and with the face of the tapping wall being external to the fold, and in which the bag can be filled with biopharmaceutical product, with the end edge arranged and maintained as the lower edge, so that: when the bag is used in the folded configuration, the biopharmaceutical product is discharged simultaneously and in an identical manner through the n outlet ports and the biopharmaceutical product is distributed into the plurality of communicating associated containers in order to fill them with a dose of biopharmaceutical product; this process can be repeated with multiple pluralities of containers; and once the set of containers has been filled with a dose of biopharmaceutical product, the bag can be entirely or substantially entirely emptied of biopharmaceutical product.
  • two neighboring outlet ports are spaced apart from each other by a distance chosen so that the flow of biopharmaceutical product through one of the outlet ports does not substantially interfere with the flow of the biopharmaceutical product through the other of the outlet ports.
  • the tapping area extends over a surface area that is less than 1 ⁇ 5 th particularly less than 1/10 th , even more particularly less than 1/20 th , of the area of the tapping face.
  • the tapping area either extends linearly, or linearly but more widely over the surface, along a tapping segment, and in one embodiment, the tapping segment comprises at least one substantially rectilinear section, and, in particular, it is substantially rectilinear.
  • the n similar outlet ports are distributed in a manner that is at least substantially uniform over the entire tapping area, and more particularly are spaced apart from each other in a manner that is at least substantially regular.
  • the n similar outlet ports are distributed in a more or less substantially uniform manner, in particular are spaced apart from each other in an at least substantially regular manner, throughout the entirety of multiple tapping sub-areas, each tapping sub-area being continuous, delimited by outlet ports or their vicinity, and extending linearly or more widely over the surface, the multiple tapping sub-areas which constitute the tapping area being separated by areas without tapping.
  • a tapping sub-area either extends linearly or linearly but more widely over the surface, along a tapping sub-segment, particularly a tapping sub-segment comprising at least one substantially rectilinear section, more particularly being substantially rectilinear and/or extending at least substantially parallel to the tapping segment.
  • tapping sub-segments are positioned at least substantially parallel to each other or at least substantially as an extension of one another.
  • either an opening for outlet port passage and assembly is associated with a port among the plurality of n outlet ports, or an opening for outlet port passage and assembly is shared by multiple ports among the plurality of n similar outlet ports, or the bag contains a single opening for outlet port passage and assembly shared by the n similar outlet ports.
  • an outlet port comprises, associated in a communicating manner, a discharge/fill tube at its proximal end and an attachment plate which is part of the fixed and sealed port/shell connection means and is attached, in particular by adhesive bonding or welding, in a fixed and sealed manner to the tapping wall around an opening for outlet port passage and assembly.
  • the discharge/fill tubes are able to be associated in a communicating manner at their distal ends with containers in order to fill them with the biopharmaceutical product, and to be associated functionally with extraction/regulation or discharge shutoff means, in particular programmed or controlled.
  • an attachment plate is associated with an outlet port, or an attachment plate is common to multiple outlet ports, or the bag comprises a single attachment plate common to the n outlet ports.
  • the bag comprises as many attachment plates as there are tapping sub-areas, each attachment plate being associated with a tapping sub-area.
  • an attachment plate comprises an inside face shaped to facilitate emptying, in particular completely emptying, the biopharmaceutical product.
  • the tapping area and/or the folding region is located at or near the middle area of the face of the tapping wall and/or at or near a central axis of the face of the tapping wall between the opposite peripheral sections of the face of the tapping wall.
  • no port is located on the face opposite the face of the tapping wall and/or in the connection areas.
  • the at least one inlet port is located on the tapping wall at or near the tapping area or at a location separate from the tapping area.
  • an inlet port comprises, associated in a communicating manner, a filling/supply tube at its proximal end, able to be associated in a communicating manner at its distal end with a biopharmaceutical product supply, in particular with a filter placed between, and able to be associated functionally with supply/regulation or supply shutoff means, in particular programmed or controlled.
  • the bag comprises a plurality of inlet ports, each associated in a communicating manner with a first section of filling/supply tube at its proximal end, said plurality of first sections of filling/supply tubes being associated in a communicating manner at their distal ends with the proximal end of a second common section of filling/supply tube able to be associated in a communicating manner at its distal end with the biopharmaceutical product supply, in particular with a common filter placed between, the supply/regulation or supply shutoff means being associated with the second common section of filling/supply tube.
  • the bag additionally comprises at least one gas inlet and/or outlet port.
  • the bag comprises holding means able to keep the two opposite walls folded onto themselves when the bag is in the folded configuration, including holding elements which complement each other.
  • the bag is in an unfolded configuration in which the two opposite walls are stretched out.
  • the bag is in a folded configuration in which the two opposite walls are folded onto themselves within the folding region, with the face of the tapping wall being external to the fold, the bag in the folded configuration having, in the folding region, an end edge at or near where the tapping area and the n outlet ports are located.
  • the bag comprises means able to maintain constant communication between the two inner sub-spaces located on each side of the folding region.
  • the bag is a 2D bag essentially comprising the two flexible walls of the same shape, joined by peripheral connection areas.
  • the inner space of the bag has a volume of between 2 liters and 20 liters.
  • the bag is sterilized.
  • an object of the invention is an assembly for distributing a dose of a flowable biopharmaceutical product in the general state of a liquid or paste, into a set of containers, comprising:
  • the distribution assembly also comprises means for associating in a communicating manner the distal end of the filling/supply tube with the biopharmaceutical product supply, and supply/regulation or supply shutoff means, in particular programmed or controlled, associated functionally with the filling/supply tube in order to fill the inner space of the bag with the biopharmaceutical product supplied from the biopharmaceutical product supply.
  • the extraction/regulation or discharge shutoff means functionally associated with the discharge/fill tubes comprise a pump, such as a peristaltic pump or a pump known as a RDT (Rolling Diaphragm Pump) or similar pump, structurally associated with each discharge/fill tube and regulated to distribute successive doses of biopharmaceutical product, and/or the supply/regulation or supply shutoff means functionally associated with the filling/supply tube comprise a pump structurally associated with the filling/supply tube.
  • the distribution assembly also comprises:
  • the distribution assembly also comprises:
  • the containers are located inside an aseptic enclosure and the biopharmaceutical product supply is located outside the aseptic enclosure, the bag being located either inside or outside the aseptic enclosure, the wall of the aseptic enclosure being traversed respectively by either the discharge/fill tubes or by a filling/supply tube.
  • the object of the invention is a distribution method making use of a bag for distributing a dose of a biopharmaceutical product as described, for the purposes of distributing a same dose of biopharmaceutical product through the plurality of n outlet ports into p containers, the number p of containers being larger, possibly much larger, than the number n of outlet ports, wherein:
  • either the bag is first folded and then the inner space of the bag is filled with the biopharmaceutical product, or the inner space of the bag is first filled with the biopharmaceutical product and then the bag is folded.
  • bag holding means are additionally provided and in this embodiment they are put to use so that the end edge of the bag located at or near the folding region is the lower edge of the bag, the inner space being positioned above it.
  • the object of the invention is a method for creating a distribution bag, wherein:
  • a discharge/fill tube is associated in a communicating manner at its proximal end with an attachment plate and the attachment plate is attached, in particular by adhesive bonding or welding, in a fixed and sealed manner to the tapping wall around an opening for outlet port passage and assembly.
  • a filling/supply tube is associated in a communicating manner at its proximal end with an inlet port, in particular, the bag comprising a plurality of inlet ports, each is associated with a first section of filling/supply tube at its proximal end, and said plurality of first sections of filling/supply tube are associated in a communicating manner at their distal ends with the proximal end of a second common section of filling/supply tube.
  • FIG. 1 is an elevated view of a single-use flexible 2D distribution bag in the unfolded configuration and in the state where it is empty of biopharmaceutical product, the bag here comprising—purely as an example—six similar outlet ports for biopharmaceutical product with their plates, discharge/fill tubes associated in a communicating manner at their proximal ends with the outlet ports and only partially represented, and extraction/regulation or discharge shutoff means represented here in a purely symbolic manner, two inlet ports, here without a filling/supply tube, located near the tapping area for outlet ports extending linearly over the surface, being closer to the near edge of the tapping wall than the outlet ports, four gas inlet/outlet ports, and two suspension holes, the bag being illustrated from the tapping face side,
  • FIG. 2 is an elevated view similar to FIG. 1 , showing the face of the bag opposite the tapping face,
  • FIG. 3 is a top view of the bag of FIG. 1 ,
  • FIG. 4 is a side view of the bag of FIGS. 1 and 2 .
  • FIG. 5 is an elevated view illustrating a portion of a distribution assembly of the invention, comprising the bag of FIGS. 1 to 4 in the folded configuration with the tapping face being external to the fold, and suspended so that the bag comprises the similar outlet ports and an end edge in the tapping area, the bag being viewed from a first side, the bag being positioned to distribute the biopharmaceutical product to a set of p containers, here a set of p primary containers, the discharge/fill tubes being associated in a communicating manner at their distal ends with these primary containers and being associated functionally with the extraction/regulation or discharge shutoff means which are symbolically represented, as above, the figure also showing means for holding the bag so that the end edge located at or near the folding region is the lower edge of the bag and the inner space of the bag is positioned uppermost,
  • FIG. 6 is a view similar to FIG. 5 , but showing the bag from the second side, opposite the first side,
  • FIG. 7 is a side view of the distribution assembly and of the bag of FIGS. 5 and 6 , when the bag is in the state filled with biopharmaceutical product,
  • FIGS. 8A and 8B are two simplified schematic views of a 2D bag in the unfolded configuration and in the state empty of biopharmaceutical product, illustrating different possibilities of implementing the similar outlet ports for biopharmaceutical product and the inlet ports:
  • FIG. 8A shows twelve similar outlet ports extending linearly across two sub-areas, arranged parallel and in proximity to one another, and an inlet port distanced from the tapping area but located on the tapping face;
  • FIG. 8B shows six similar outlet ports in two sub-areas extending across a wider surface and an inlet port located in the tapping area between the two tapping sub-areas,
  • FIG. 9 is a cross-sectional view on a larger scale, illustrating an outlet port with a section of tube and at its proximal end an attachment plate which is part of the fixed and sealed port/shell connection means, secured in a fixed and sealed manner to the tapping wall around an opening for outlet port passage and assembly,
  • FIG. 10 is a diagram illustrating a portion of a distribution assembly of the invention, including a distribution bag in the folded configuration and in the filled state, as in FIG. 7 , the holding means and the containers (or primary containers) not being represented here, the extraction/regulation or discharge shutoff means functionally associated with the discharge/fill tubes being symbolically represented, the bag having two inlet ports with, associated in a communicating manner, a filling/supply tube at its proximal end, and means for associating in a communicating manner the distal end of the filling/supply tube with a biopharmaceutical product supply, and symbolically represented supply/regulation or supply shutoff means functionally associated with the filing/supply tube.
  • FIGS. 1 to 7 and 10 represent a single-use 2D distribution bag which in general is flexible, specially intended for biopharmaceutical use for distributing a biopharmaceutical product into a set of p containers, such as the p primary containers 2 shown here.
  • a bag 1 is intended to be part of, by incorporating it into, a distribution assembly.
  • Biopharmaceutical product is understood to mean a product in the general state of a liquid or paste, meaning it is able to flow, obtained from biotechnology or having a pharmaceutical purpose.
  • the bag 1 comprises a shell 3 delimiting an inner space 3 a suitable for receiving the biopharmaceutical product.
  • This shell 3 comprises, joined by fixed and sealed connection areas 4 , two flexible opposite walls 5 and 6 , one of which—wall 5 —is called the tapping wall, the two walls 5 and 6 facing one another and connected to each other by their peripheral edges 7 .
  • the two walls 5 and 6 are of the same general shape and of similar size, such as having an outline that is at least substantially square or rectangular.
  • a wall 5 or 6 thus has two pairs of opposite peripheral sections, meaning the pair of sections 7 a extending substantially in a same first direction, here forming the small sides (arranged horizontally in the figures), and the pair of sections 7 b extending substantially in a same second direction that is orthogonal to the first direction, here forming the large sides (arranged vertically in the figures).
  • the first direction of the sections 7 a defines a parallel axis AA which is central on the bag 1 and which, during the use of the bag 1 , is positioned horizontally or substantially horizontally, and which is also the axis of a folding region 8 for the walls 5 and 6 and for the bag 1 .
  • the sections 7 b here define a main axis BB of symmetry of the bag 1 , which, during use of the bag 1 , is positioned vertically or substantially vertically, and which is also an axis for holding the bag 1 during its use.
  • the two walls 5 and 6 have a dimension on the order of 10 cm to 50 cm for the small side and 15 cm to 60 cm for the large side.
  • the inner space 3 a of the bag 1 can have a volume of between 2 liters and 20 liters. Such a volume is generally well-suited for uses which involve filling with biopharmaceutical product the plurality of similar primary containers 2 , each of a relatively small unit volume, for example on the order of several millimeters to several centiliters.
  • Such primary containers 2 can be chosen from among a group comprising vials, syringes, flasks, and bottles, with the bags or bag systems possibly but not necessarily being for one-time use.
  • Their unit volume is a fraction of the volume of the inner space 3 a of the bag 1 .
  • the flexible walls 5 and 6 of the bag 1 are typically made from single layer or multilayer plastic film, in particular comprising PE, PP, EVOH, etc. They are securely attached in the connection areas 4 by adhesive bonding, or possibly by adhesive bonding or by any other manner. These embodiments are only provided as examples and are not to be considered as limiting. It is therefore possible that in a section 7 a , 7 b of the peripheral edge 7 , the walls 5 and 6 are connected to each other by a fold.
  • the bag 1 also comprises at least one inlet port 9 and a plurality of n similar outlet ports 10 , suitable for emptying the biopharmaceutical product received in the inner space 3 a so that the biopharmaceutical product is distributed from the plurality of outlet ports 10 , particularly, in this specific application, in order to fill the primary containers 2 of which the number p may be equal to the number n of outlet ports 10 , it then being possible to associate each primary container 2 with an outlet port 10 because the outlet ports 10 and the primary containers 2 are placed in communication.
  • an appropriate number of primary containers 2 are filled with the contents of one bag 1 .
  • the desired number of primary containers 2 are filled with several successive contents from the same bag 1 .
  • the distribution assembly is adapted as will be described below with reference to FIG. 10 .
  • the bag 1 can comprise a plurality of at least four outlet ports 10 , more particularly at least eight outlet ports 10 , and even more particularly at least twelve outlet ports 10 .
  • FIG. 10 there are ten outlet ports 10 . These numbers are only examples and are not to be considered as limiting. They indicate that the bag comprises not one outlet port but a plurality of greater or lesser magnitude depending on the application, particularly on the number of primary containers 2 to be filled, at least to be filled during each pass through the filling process.
  • the bag 1 comprises other ports able to carry out a function other than emptying and distributing biopharmaceutical product.
  • the bag 1 additionally comprises one or more gas inlet and/or outlet ports 11 .
  • the outlet ports 10 for the bag 1 consist of the plurality of n similar outlet ports 10 , excluding the gas inlet and/or outlet ports.
  • a port 9 , 10 , 11 is associated with an appropriate passage in the shell 3 and is mounted onto the shell by fixed and sealed attachment means.
  • the ports 10 of the plurality of n similar outlet ports 10 are grouped in a tapping area 12 .
  • “Grouped” is understood to mean the fact that the outlet ports 10 , located near each other, are all within the tapping area 12 .
  • the tapping area 12 establishes the boundary within which the outlet ports 10 are located, this boundary being adjacent to the outlet ports 10 or located at a short, and in particular a very short, distance from the outlet ports 10 .
  • “Adjacent” here is understood to mean in the immediate vicinity or adjoining.
  • Located at a short distance” is understood to mean a distance of about a centimeter for walls 5 and 6 having dimensions on the order of 10 cm to 60 cm, as indicated above. It is understood that these numbers are examples only and are not to be considered as limiting. They express that the tapping area 12 does not extend for more than a short distance beyond the outlet ports 10 .
  • two outlet ports 10 that are near to each other are spaced apart from each other by a distance suitable to prevent the flow of biopharmaceutical product through one of the outlet ports 10 from substantially interfering with, or even not interfering at all with, the flow of the biopharmaceutical product through the other of the outlet ports 10 .
  • the discharge of biopharmaceutical product through the different outlet ports 10 and the filling of the primary containers 2 can occur simultaneously and in an identical manner.
  • the tapping area 12 is continuous and is delimited by the outlet ports 10 or their vicinity. It should be understood from this that the tapping area 21 establishes the boundary within which the outlet ports 10 are located, this boundary being adjacent to the outlet ports 10 or located at a short, and in particular a very short, distance from the outlet ports 10 . “Adjacent” here is understood to mean in the immediate vicinity or adjoining. “Located at a short distance” is understood to mean a distance of about a centimeter for walls 5 and 6 having dimensions on the order of 10 cm to 60 cm as indicated above. It is understood that these numbers are examples only and are not to be considered as limiting. They express that the tapping area 12 does not extend for more than a short distance beyond the outlet ports 10 .
  • the tapping area 12 defined in this manner is not necessarily identified as such on the bag 1 .
  • the tapping area 12 is located on the tapping wall 5 while being separate from the connection areas 4 . Therefore the outlet ports 10 are also located on the tapping wall 5 , and no outlet port 10 is located in the connection areas 4 . In addition, no outlet port 10 is located on the face 4 opposite the tapping face 5 . As a result, the tapping wall 5 is equipped with at least one opening for outlet port 10 passage and assembly 14 , for the n similar outlet ports 10 .
  • outlet ports 10 also apply to the other inlet ports 9 and gas inlet/outlet ports 11 .
  • the tapping area 12 extends linearly or extends more widely over a surface area that is distinctly smaller than that of the tapping face 5 . “Extends linearly” is understood to mean that the tapping area is essentially a line or a line segment, possibly having a certain thickness, which extends along a tapping segment. “Extends more widely over a surface” is understood to mean that the tapping area is essentially a surface, in contrast to a line or a segment, itself having a certain thickness. In one embodiment, the tapping area 12 extends linearly but more widely over a surface.
  • tapping area is a surface but it extends substantially along a line or line segment, which itself extends along a tapping segment 13 .
  • a tapping segment 13 is substantially rectilinear.
  • the tapping segment 13 comprises at least one substantially rectilinear section.
  • the area of the tapping area 12 extending over a “distinctly smaller” surface area than the area of the tapping face 5 is understood to mean that the area of the tapping area 12 is less than 1 ⁇ 5 th of the area of the tapping face 5 , more particularly is less than 1/10 th , even more particularly is less than 1/20 th .
  • a port 10 is associated with and mounted on the shell 3 by fixed and sealed connecting means 15 , secured in a fixed and sealed manner to the tapping area 5 around the at least one opening for outlet port 10 passage and assembly 14 .
  • FIG. 9 shows that an outlet port 10 comprises, associated in a communicating manner, a discharge/fill tube 16 at its proximal end 16 a towards the shell 3 , and an attachment plate 17 which is a part of the fixed and sealed connecting means 15 .
  • the discharge/fill tube 16 has a distal end 16 b .
  • the tube 16 is said to be a “discharge/fill” tube because it both drains the inner space 3 a and fills the primary containers 2 .
  • this is a flexible tube which can follow a more or less convoluted path depending on the geometric constraints of the space where it is located (see FIG.
  • shutoff device such as a pinch valve (for example a Halkey-Roberts valve, well known to a person skilled in the art), or a displacement/regulation device or extraction/regulation device, such as a pump, for example a peristaltic pump or a pump known by the acronym RDP for Rolling Diaphragm Pump or a functionally similar pump.
  • a shutoff device such as a pinch valve (for example a Halkey-Roberts valve, well known to a person skilled in the art), or a displacement/regulation device or extraction/regulation device, such as a pump, for example a peristaltic pump or a pump known by the acronym RDP for Rolling Diaphragm Pump or a functionally similar pump.
  • a pump for example a peristaltic pump or a pump known by the acronym RDP for Rolling Diaphragm Pump or a functionally similar pump.
  • RDP Rolling Diaphragm Pump
  • the attachment plate 17 extends over the tapping wall 5 around an opening for outlet port 10 passage and assembly 14 and is secured to the tapping wall 5 in a fixed and sealed manner by adhesive bonding or welding or by any other means assuring both mechanical resistance and fluid-tightness, without creating any obstacle to the flow of biopharmaceutical product.
  • the attachment plate 17 is attached by its outside face to the inside face of the tapping wall 5 ( FIG. 9 ), with the inside face 17 a of the attachment plate 17 being free, or conversely the attachment plate 17 is secured by its inside face 17 a to the outside face of the tapping wall 5 .
  • the words “inside” and “outside” respectively refer to what is inside or turned towards the inner space 3 a , and what is outside or facing away from the inner space 3 a .
  • the embodiment specifically described and represented concerning the discharge/fill tube 16 is only an example and is not to be considered as limiting.
  • the various tubes may or may not have the same length, the goal being that they deliver the same dose of biopharmaceutical product.
  • the discharge/fill tubes 16 have a length that is more or less large or more or less small, depending on requirements.
  • the embodiment with flexible tubes is advantageous, particularly for satisfying the objectives of physical structure and pinching to flatten, it does not exclude others, the means associated with the tubes 16 then being adapted accordingly, which lies within the reach of a person skilled in the art.
  • the attachment plate 17 comprises an opening 17 b which is a through-hole communicating on the internal side with the inner space 3 a , and on the opposite, external, side with the passage formed by the section of tube 16 .
  • the attachment plate 17 thus has a generally annular shape, or pseudo-annular or multi-annular if it contains several openings 17 b.
  • an inlet port 9 does not have an associated tube ( FIGS. 1 to 6 , 8 A, 8 B) or, similarly to the outlet port 10 and as illustrated in FIG. 10 , is associated in a communicating manner with a filling/supply tube 25 , at its proximal end 25 a .
  • the tube 25 is said to be a “filling/supply” tube because it both fills the inner space 3 a and supplies the biopharmaceutical product.
  • This filling/supply tube 25 can be associated in a communicating manner at its distal end 25 b with a supply 26 of biopharmaceutical product, such as a tank of high storage capacity.
  • a filter 27 may be inserted on the filling/supply tube 25 .
  • the filling/supply tube 25 may also be arranged so that it can be functionally associated, and is functionally associated, with supply/regulation or supply shutoff means 28 .
  • These means 28 are represented in a purely symbolic manner in FIG. 10 . Depending on the embodiments, these may involve a pinch valve able to close off the filling/supply tube 25 by flattening/pinching it, or a pump, such as a peristaltic pump or a RDP pump or a functionally similar pump. In particular, such means 28 may be programmed or controlled.
  • each of them is associated in a communicating manner with a first section 29 a of filling/supply tube 25 at its proximal end 25 a .
  • the two first sections 29 a of filling/supply tube 25 are associated in a communicating manner at their distal ends 29 a with the proximal end 30 a of a second common section 30 of filling/supply tube 25 able to be associated in a communicating manner at its distal end 25 b with the supply 26 .
  • the filter 27 and the supply/regulation or supply shutoff means 28 are, in the example represented in the figure, associated with the second common section 30 .
  • This embodiment of the inlet port 9 is particularly suitable.
  • the desired number of primary containers 2 are filled with several successive contents from the same bag 1 , which is reloaded with biopharmaceutical product each time it becomes necessary when it has been emptied during distribution into the primary containers 2 .
  • the bag 1 also comprises the folding region 8 for the two opposite walls 5 and 6 .
  • “Folding region” is understood to mean an area where the walls of the bag 1 can be reshaped so that they are folded onto themselves, in order to have two thicknesses of pairs of walls 5 and 6 , each thickness comprising the two walls 5 and 6 . It is understood that the edge 18 of the fold of the folding region 8 can be more or less pronounced, ranging from a fairly crisp straight line to a simple rounded curve, in this specific case with a bulge as illustrated in FIGS. 7 and 10 . This folding region 8 is, however, specifically located and has a smaller area than the area of the tapping face 5 . “Smaller” is understood to mean on the order of 1 ⁇ 4 th .
  • This embodiment of the folding region 12 is only an example and is not to be considered as limiting.
  • the tapping area 12 is located at or near the folding region 8 . This is understood to mean that the two areas 8 and 12 are superimposed, at least substantially, or that the two areas 8 and 12 are adjacent or are located at a short, in particular a very short, distance from each other. “Adjacent” is understood here to mean in immediate proximity or touching. “Located at a short distance” is understood here to mean a distance on the order of a centimeter for walls 5 and 6 having dimensions on the order of 10 cm to 60 cm, as indicated above. It is understood that these numbers are only examples and are not to be considered as limiting. They express that the tapping area 12 is combined with the folding region 12 although the two areas do not have the same surface area, or that the two areas are very close to each other.
  • the two opposite walls 5 and 6 may be folded onto themselves, as described above, with the tapping face 5 located on the outside of the fold formed by the folding region 12 .
  • the edge 18 of the fold of the folding region 12 forms an end edge 18 of the bag 1 in its folded configuration ( FIGS. 5 to 7 ).
  • the tapping area 12 and the n similar outlet ports 10 are located at or near the end edge 18 . This is understood to mean that the tapping area 12 and the outlet ports 10 and the end edge 18 are superimposed, at least substantially, or that they are adjacent or located at a short, and in particular a very short, distance from each other. “Adjacent” is understood to mean in immediate proximity or touching. “Located at a short distance” is understood here to mean a distance on the order of a centimeter for walls 5 and 6 having dimensions on the order of 10 cm to 60 cm, as indicated above. It is understood that these numbers are only examples and are not to be considered as limiting. They express that the tapping area 12 and the n similar outlet ports 10 are part of the end edge 18 of the bag 1 in its folded configuration, or that they are very close to each other.
  • FIGS. 1 to 7 illustrate a first embodiment, in which the n similar outlet ports 10 are distributed in a manner that is at least substantially uniform and are spaced apart from each other in a manner that is at least substantially regular throughout the tapping area 12 .
  • FIGS. 8A and 8B illustrate a second embodiment, in which the n similar outlet ports 10 are distributed in a manner that is at least substantially uniform, not throughout the entire tapping area 12 as in the first embodiment, but throughout multiple tapping sub-areas, in this case two sub-areas 12 a and 12 b .
  • This embodiment is only an example and is in no way limiting, as the number of sub-areas 12 a , 12 b . . . may be different.
  • Each tapping sub-area 12 a , 12 b . . . has the characteristics of the tapping area 12 , meaning it is continuous, delimited by outlet ports 10 or their vicinity, and extends linearly ( FIG. 8A ) or more widely over the surface ( FIG. 8B ) and in particular extends linearly or extends linearly but more widely over the surface of a tapping sub-segment 13 a , 13 b . . . ( FIG. 8A ).
  • such tapping sub-segments 13 a , 13 b are substantially rectilinear.
  • one or more tapping sub-segments 13 a , 13 b comprises at least one substantially rectilinear section.
  • the tapping sub-segments 13 a and 13 b are positioned to be at least substantially parallel to each other. In another embodiment, the tapping sub-segments 13 a , 13 b . . . are at least substantially an extension of one another.
  • the tapping sub-segments 13 a and 13 b extend at least substantially parallel to the tapping segment 13 .
  • a tapping sub-segment 13 a , 13 b extends at least substantially parallel to the tapping segment 13 .
  • the two sub-areas 12 a and 12 b placed at a distance from each other along the segment 13 of the tapping area 12 .
  • the outlet ports 10 can be spaced apart from each other in at least a substantially regular manner in each tapping sub-area 12 a , 12 b. . . .
  • the different sub-areas 12 a , 12 b . . . constituting the entire tapping area 12 are separated from each other by areas with no tapping 19 .
  • “Area with no tapping” 19 is understood to mean that in this area there is no tapping for outlet ports 10 , which does not exclude the presence of some other port, such as for example an inlet port 9 as represented in FIG. 8A .
  • tapping sub-areas 12 a , 12 b . . . are located near one another.
  • FIG. 8A there are two sub-areas 12 a and 12 b extending linearly, arranged opposite one another, parallel to one another, and neighboring one another.
  • This embodiment allows the lower end edge 18 of the bag 1 to be placed in its folded configuration between the two sub-areas 12 a and 12 b , parallel to the sub-sections 13 a and 13 b.
  • FIGS. 1 to 7 there is only one opening for passage and assembly 14 , shared by the plurality of n similar outlet ports 10 .
  • Such an arrangement is well-suited for cases where the n similar outlet ports 10 are distributed throughout the tapping area 12 , which is a single area without sub-areas, in the sense described above.
  • an opening for passage and assembly 14 is shared not by the plurality of n similar outlet ports 10 , as above, but only by a portion of the outlet ports 10 among the plurality of n similar outlet ports 10 .
  • Such an arrangement is well-suited for cases where the tapping area 12 comprises several tapping sub-areas 12 a , 12 b . . . .
  • the tapping area 12 comprises several tapping sub-areas 12 a , 12 b . . . .
  • each opening for outlet port 10 passage and assembly 14 is associated with a tapping sub-area 12 a , 12 b . . . .
  • two openings for passage and assembly 14 a and 14 b corresponding to the two sub-areas 12 a and 12 b are arranged.
  • a single outlet port 10 among the plurality of n similar outlet ports 10 is associated with an opening for outlet port 10 passage and assembly.
  • a single attachment plate 17 common to the plurality of n similar outlet ports 10 is provided.
  • Such an arrangement is well-suited for cases where the n similar outlet ports 10 are distributed throughout the entire tapping area 12 , which is a single area without sub-areas, in the sense described above.
  • an attachment plate 17 is common not to the plurality of n similar outlet ports 10 , as above, but only to a portion of the outlet ports 10 among the plurality of n similar outlet ports 10 .
  • Such an arrangement is well-suited for cases where the tapping area 12 comprises several tapping sub-areas 12 a , 12 b . . . .
  • each attachment plate 17 is associated with a tapping sub-area 12 a , 12 b . . . .
  • two attachment plates 17 corresponding to the two sub-areas 12 a and 12 b are provided.
  • an attachment plate 17 is associated with a single outlet port 10 among the plurality of n similar outlet ports 10 .
  • an attachment plate 17 comprises a single opening 17 b for the n similar outlet ports 10 or an opening 17 b shared not by the plurality of n similar outlet ports 10 , as above, but by only a portion of the outlet ports 10 among the plurality of n similar outlet ports 10 , or an opening 17 b is associated with a single outlet port 10 among the plurality of n similar outlet ports 10 .
  • the attachment plate can comprise a middle portion in grid form and a solid peripheral portion for the attachment and for the fixed and sealed connection.
  • the attachment plate 17 has a certain rigidity, which gives a certain resistance to the section of tube 16 .
  • the inside face 17 a or the free central portion of the inside face 17 a around the passage provided in the attachment plate 17 is shaped to facilitate the emptying, and in particular the complete emptying, of the biopharmaceutical product.
  • the inside face 17 a may be funnel-shaped or may contain drainage channels.
  • the discharge/fill tube 16 is designed to be able to be associated in a communicating manner at its distal end 16 b with a primary container 2 to be filled with the biopharmaceutical product that is in the bag 1 .
  • the discharge/fill tube 16 comprises, at its distal end 16 b , a nozzle 20 or a similar distribution device such as filling needles. This association is designed to be detachable, so that the distal end 16 b is separated from the primary container 2 when it is filled, then associated with another primary container 2 to be filled, and so on.
  • the distribution assembly can also comprise means for associating/dissociating nozzles 20 or similar distribution devices fitted onto the discharge/fill tubes 16 .
  • These means may be wholly or partially manual or mechanized, programmed where applicable to work in concert with the operation or programmed sequence of filling and providing and removing primary containers 2 .
  • the distribution assembly also comprises means for providing, on the one hand, a plurality, particularly n, of containers not yet containing the desired dose of biopharmaceutical product, and on the other hand, means for removing a plurality, in particular n, of containers containing said dose of biopharmaceutical product.
  • These means may be wholly or partially manual or mechanized, programmed where applicable to work in concert with the operation or programmed sequence of filling.
  • the distribution assembly also comprises a shutoff means (such as a pinch valve) or a displacement/regulation or extraction/regulation device (such as a pump, for example a peristaltic pump or a RDP pump or a functionally similar pump) 21 with which each discharge/fill tube 16 cooperates.
  • a shutoff means such as a pinch valve
  • a displacement/regulation or extraction/regulation device such as a pump, for example a peristaltic pump or a RDP pump or a functionally similar pump
  • Such means 21 can be programmed or controlled according to the filling desired and the conditions and procedures for doing so.
  • the means 21 are not specific to each of the discharge/fill tubes 16 but are common to multiple tubes 16 .
  • the distribution bag 1 is, when required, in an unfolded configuration ( FIGS. 1 to 4 ) in which the two opposite walls 5 and 6 are stretched out.
  • the bag 1 is, when required, either in an empty state where the inner space 3 a is empty of biopharmaceutical product (FIGS. 1 to 4 )—for example once the flexible bag 1 has been created—or in a filled state where the inner space 3 a is filled with biopharmaceutical product—for example in a first variant of the use of the flexible bag 1 .
  • the distribution bag 1 is, when required and in order to be used for emptying the biopharmaceutical product located in the inner space 3 a , in a folded configuration ( FIGS. 5 to 7 ) in which the two opposite walls 5 and 6 are folded onto themselves in the folding region 8 with the tapping face 5 being external to the fold.
  • the distribution bag 1 comprises, in the folding region 8 , an end edge 18 at or near where the tapping area 12 and the n similar outlet ports 10 are located.
  • the distribution bag 1 is, when required, either in a filled state where the inner space 3 a is filled with biopharmaceutical product (FIGS.
  • the tapping area 12 which is not necessarily identified as such on the bag 1 —and the folding region 8 are positioned judiciously on the tapping face 5 .
  • the tapping area 12 and the folding region 8 are located at or near the middle region 5 b of the tapping face 5 .
  • the tapping area 12 and the folding region 8 are located at or near the central axis AA of the tapping face 5 positioned at equal distances from the two opposite peripheral sections 7 a of the tapping face 5 .
  • the bag 1 in its folded configuration has a general symmetrical arrangement relative to a vertical plane of symmetry P (parallel to the plane of the FIGS. 5 and 6 and identified in FIG. 7 ).
  • the inner space 3 a is thus subdivided into two inside sub-spaces 3 aa and 3 ab , of equal or substantially equal volumes.
  • the two peripheral sections 7 a are coincident or substantially coincident and constitute the edge of the upper end 22 of the bag 1 in its folded configuration ( FIGS. 5 to 7 ).
  • the flexible bag 1 comprises means able to maintain constant communication between the two inside sub-spaces 3 a , 3 b .
  • These means may be spacers or may consist of allowing gas to escape as the bag 1 is emptied of biopharmaceutical product.
  • the flexible bag 1 comprises two inlet ports 9 located on the tapping wall near the tapping area 12 , located here on each side of the tapping area 12 but closer to the nearest large peripheral section 7 b of the tapping wall 5 than the outlet ports 10 .
  • the flexible bag 1 comprises a single inlet port 9 located at the same location as the tapping area 12 , here between the two tapping sub-areas 12 a and 12 b.
  • This type of arrangement allows filling the inner space 3 a with the biopharmaceutical product while the flexible bag 1 is in its folded configuration; the biopharmaceutical product is injected into the two inside sub-spaces 3 aa and 3 ab , by the lower end 18 of the bag 1 , which prevents the foaming that would occur with a biopharmaceutical product that would foam when injected into the flexible bag by the top.
  • the flexible bag 1 comprises a single inlet port 9 located at a location separate from the tapping area 12 , and more particularly at a distance from the tapping area 12 , for example located at or near an attachment section near the peripheral section 7 b , while being located on the tapping wall 5 .
  • two inlet ports 2 are arranged halfway up the bag in its folded configuration.
  • One or more ports 11 are provided to allow either introducing a gas for preserving this product, from outside the flexible bag 1 into the inner space 3 a above the biopharmaceutical product, or for releasing gas from the inner space 3 a to outside the flexible bag 1 as it empties which prevents the bag 1 from closing in on itself which could interfere with the emptying of biopharmaceutical product.
  • One or more such ports 11 are located at a distance from the tapping area 12 , and in particular at a definite distance, for example at or near an attachment section near the peripheral section 7 a.
  • such a port 11 is located on the tapping wall 5 or on the wall 6 opposite the tapping wall 5 .
  • the areas 5 a and 6 a of the tapping face 5 and of the opposite face 6 which are adjoining the section 7 a of the bag 1 and which, in the flexible bag 1 in its folded configuration, are adjoining the upper end edge 22 and are opposite the lower end edge 18 form regions for suspending the bag 1 in its folded configuration.
  • Such suspension regions 5 a and 6 a may include suspension arrangements 23 , such as holes or projections able to cooperate in a detachable manner with complementary suspension means, such as hooks or brackets which are part of the machine or system in which the bag is used when emptying it and filling primary containers 2 .
  • suspension arrangements 23 are only placed on one of the faces 5 or 6 , as long as there are holding means which keep the two opposite walls 5 and 6 folded onto themselves when the bag 1 is in the folded configuration.
  • suspension means 23 and 23 a as described, the flexible bag 1 in its folded configuration is positively held so that the end edge 18 of the bag 1 located at or near the folding region 8 and the tapping area 12 is the lower edge of the bag 1 and so that the inner space 3 a is positioned above this, to allow the biopharmaceutical product to empty from the inner space 3 a through the outlet ports 10 .
  • a container may incorporate side plates which press against the faces 5 and 6 .
  • the invention includes an assembly comprising a flexible bag 1 as described, means for keeping the flexible bag 1 in its folded configuration such that the end edge 18 is positioned horizontally and downwards and the end edge 22 is positioned horizontally and upwards, the bag 1 being positioned vertically with its plane of symmetry P being vertical. It is thus possible for the biopharmaceutical product to empty through the outlet ports 10 due to gravity, or where necessary in a forced manner and assisted by exerting compression on the two faces 5 and 6 of the bag 1 .
  • the holding means are suspension means 23 b able to cooperate with suspension elements 23 a of the bag or side restraining means, such as a rigid container comprising at least one passage for the n similar outlet ports in its lower portion.
  • the flexible bag 1 comprises holding means 24 able to keep the two opposite walls 5 and 6 folded onto themselves when the bag 1 is in the folded configuration, preventing the bag from unfolding.
  • These holding means 24 can consist of the suspension elements 23 of the bag 1 , the suspension of the bag 1 on the complementary suspension elements 23 a being such that the two peripheral sections 7 a of the bag 1 are kept adjacent or in contact with each other. This effect is obtained due to the weight of the bag 1 on the complementary suspension elements 23 a via the suspension elements 23 of the bag 1 .
  • the complementary suspension elements 23 a are equipped with notches or projections that prevent the two peripheral sections 7 a of the bag 1 from moving apart unexpectedly.
  • These holding means 24 may be holding elements which complement each other, arranged on the shell 3 and in particular on the face 6 which is inside the fold of the bag 1 in its folded configuration.
  • Such complementary holding elements provide reversible or irreversible retention depending on the intended applications and they may be, for example, in the form of self-adhering strips such as snap fasteners or those known under the VELCRO® trademark.
  • a flexible bag as described above is most often intended to be used in a sterile environment, and for this reason it is sterile, having been made sterile by appropriate treatment such as, for example, y radiation.
  • appropriate treatment such as, for example, y radiation.
  • plastic film is provided that can be cut up and firmly attached to itself and can form the flexible bag walls that constitute the shell 3 , in particular the walls 5 and 6 .
  • film cutting means and attachment means are also provided.
  • film cutting means and attachment means in particular sealing means.
  • the film is cut into the shape desired for the walls of the bag, particularly the two opposite walls 5 and 6 .
  • the opening(s) for the passage and assembly 14 , 14 a , 14 b . . . of the n similar outlet ports 10 are also cut in the tapping wall 5 .
  • the walls 5 and 6 are attached to each other in a fixed and sealed manner to form the shell 3 and the outlet ports 10 are attached to the tapping wall 5 in a fixed and sealed manner around the opening or openings 14 , 14 a , 14 b. . . .
  • a discharge/fill tube 16 is associated in a communicating manner at its proximal end 16 a with an outlet port 10 and an attachment plate 17 and the attachment plate 17 is attached in a fixed and sealed manner, in particular by adhesive bonding or welding, to the tapping wall 5 around an opening for outlet port 10 passage and assembly 14 .
  • a filling/supply tube 25 is associated in a communicating manner at its proximal end 25 a with an inlet port 9 .
  • the bag 1 comprises a plurality of inlet ports 9 , each of them is associated with a first section of filling/supply tube 29 at its proximal end 25 a , and the plurality of first sections of filling/supply tube 29 is associated in a communicating manner at their distal ends 29 a with the proximal end 30 a of a second common section of filling/supply tube 30 .
  • Another object of the invention is a distribution assembly, for distributing a dose of a biopharmaceutical product into a set of containers 2 , such as primary containers 2 .
  • This distribution assembly comprises a distribution bag 1 as has been described, which is for one-time use and in particular is in a state filled with biopharmaceutical product.
  • the distribution assembly also comprises the means for holding the bag 1 , such as the suspension elements 23 a , or any other device or arrangement obtaining the same result, meaning that the end edge 18 positioned at or near the folding region 8 is the lower edge of the bag 1 , the inner space 3 a being positioned uppermost.
  • the distribution assembly also comprises means for associating the distal end 16 b of the discharge/fill tubes 16 with the primary containers 2 in a communicating manner.
  • the distribution assembly also comprises the extraction/regulation or discharge shutoff means 21 already mentioned.
  • the distribution assembly may also comprise means which associate, in a communicating manner, the distal end 25 b of the or of each filling/supply tube 25 with a supply 26 of biopharmaceutical product.
  • the distribution assembly may comprise supply/regulation or supply shutoff means 28 , in particular programmed or controlled, functionally associated with the filing/supply tube(s) 25 , in order to fill the inner space 3 a of the bag 1 with the biopharmaceutical product coming from the supply 26 of biopharmaceutical product.
  • the extraction/regulation or discharge shutoff means 21 may comprise a shutoff pinch valve or a pump regulated to distribute successive doses of biopharmaceutical product.
  • the supply/regulation or supply shutoff means 28 may comprise a pump, such as a peristaltic pump or a RDP pump or another functionally similar pump.
  • the distribution assembly is adapted accordingly and first of all is arranged so that it comprises detection means for detecting that a minimum amount and a maximum amount of biopharmaceutical product in the inner space 3 a of the bag 1 has been exceeded.
  • this distribution assembly contains means for controlling the extraction/regulation or discharge shutoff means 28 in response to said detection means.
  • the control means order the supply/regulation or supply shutoff means associated with the filling/supply tube 25 to fill the inner space 3 a of the bag 1 with the biopharmaceutical product supplied by the supply 26 of biopharmaceutical product.
  • the control means order the supply/regulation or supply shutoff means 28 to stop filling the inner space 3 a of the bag 1 with the biopharmaceutical product supplied by the supply 26 of biopharmaceutical product.
  • the primary containers 2 are respectively positioned inside and outside an aseptic enclosure.
  • the bag 1 itself is positioned either inside or outside this aseptic enclosure.
  • the wall of the aseptic enclosure is thus traversed respectively either by the discharge/fill tubes 16 or by a filling/supply tube 25 .
  • a flexible bag 1 in its unfolded configuration and in the empty state is provided. Also provided is some of the biopharmaceutical product.
  • p primary containers 2 which do not yet contain the desired dose of biopharmaceutical product.
  • the bag is folded in its folding region 8 so that the two opposite walls 5 and 6 are folded onto themselves with the face of the tapping wall 5 being external to the fold, forming an end edge 19 of the folded bag, at or near where the tapping area 12 and the n outlet ports 10 are located.
  • the bag is thus placed in its folded configuration.
  • the inner space 3 a of the bag is filled with the biopharmaceutical product via the at least one inlet port 9 .
  • n outlet ports 10 are associated in a communicating manner with a first plurality, in particular n, of primary containers 2 not yet containing the desired dose of biopharmaceutical product, particularly by means of nozzles 20 .
  • the end edge 22 is and is maintained so that it is and remains the upper edge of the distribution bag 1 and this is done by means of the suspension elements 23 a , more generally the holding means for the bag 1 , utilized so that the end edge 18 of the bag 1 positioned at or near the folding region 8 is its lower edge, the inner space 3 a being positioned above it.
  • the discharge of the biopharmaceutical product through the n outlet ports 10 and the n associated discharge/fill tubes 16 can be performed in a simultaneous manner at the desired moment, and a same dose of biopharmaceutical product can be distributed into the first plurality of primary containers 2 by the nozzles 20 , through the combined effect of gravity and the means 21 (performing a regulation and advancement function).
  • a first plurality of primary containers 2 containing said desired dose of biopharmaceutical product is obtained.
  • the first plurality of primary containers 2 which at that time contain the dose of biopharmaceutical product is removed, and a second plurality, in particular n, of primary containers 2 not yet containing the dose of biopharmaceutical product are brought in using the providing and removal means of the distribution assembly.
  • the process is repeated with this second plurality of primary containers 2 , and repeated again, until the p primary containers 2 are filled.
  • the bag 1 is first folded and then the inner space 3 a of the bag 1 is filled with the biopharmaceutical product, or the inner space 3 a of the bag 1 is first filled with the biopharmaceutical product and then the bag 1 is folded.
  • the method can have two variants.
  • the inner space 3 a of the bag is filled with the amount necessary to fill all of the p primary containers 2 . These can then be filled with the contents of a single bag 1 . In this case, once the inner space 3 a of the bag 1 has been filled with biopharmaceutical product, there is no need to reload it with biopharmaceutical product. This is why the inlet port 9 can remain closed.
  • the inner space 3 a of the bag is filled with an amount which is only a fraction of what is required to fill all of the p primary containers.
  • the p primary containers 2 are filled with several successive bag 1 contents. In a preferred mode, this involves several successive contents from the same bag 1 .
  • the detection means comprised in the distribution assembly detects when a minimum amount and a maximum amount of biopharmaceutical product inside the inner space 3 a of the bag 1 have been exceeded.
  • the extraction/regulation or discharge shutoff means 21 associated with the discharge/fill tubes 16 and the supply/regulation or supply shutoff means 28 associated with the filling/supply tube(s) 25 are controlled so that, when the amount of biopharmaceutical product in the inner space 3 a of the bag 1 reaches the minimum amount, the supply/regulation or supply shutoff means 28 associated with the filling/supply tube(s) 25 are controlled so that the inner space 3 a of the bag 1 is filled with the biopharmaceutical product supplied from the biopharmaceutical product supply, and when the amount of biopharmaceutical product in the inner space 3 a reaches the maximum amount, the supply/regulation or supply shutoff means 28 are controlled so that the filling of the inner space 3 a with the biopharmaceutical product supplied from the supply 26 is stopped.

Landscapes

  • Health & Medical Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Bag Frames (AREA)
  • Packages (AREA)
  • Medical Preparation Storing Or Oral Administration Devices (AREA)
US13/990,881 2010-12-01 2011-11-25 Bag for distributing a product for biopharmaceutical use in the general state of a liquid or paste via a plurality of outlet ports Abandoned US20130319575A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR1059994A FR2968197B1 (fr) 2010-12-01 2010-12-01 Poche flexible a usage biopharmaceutique ayant une pluralite de ports de sortie.
FR1059994 2010-12-01
PCT/FR2011/052770 WO2012072924A1 (fr) 2010-12-01 2011-11-25 Poche de distribution via une pluralité de ports de sortie d'un produit a usage biopharmaceutique a l'état général liquide ou pâteux.

Publications (1)

Publication Number Publication Date
US20130319575A1 true US20130319575A1 (en) 2013-12-05

Family

ID=44276332

Family Applications (1)

Application Number Title Priority Date Filing Date
US13/990,881 Abandoned US20130319575A1 (en) 2010-12-01 2011-11-25 Bag for distributing a product for biopharmaceutical use in the general state of a liquid or paste via a plurality of outlet ports

Country Status (5)

Country Link
US (1) US20130319575A1 (fr)
EP (1) EP2645981B1 (fr)
CN (1) CN103476381B (fr)
FR (1) FR2968197B1 (fr)
WO (1) WO2012072924A1 (fr)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160243738A1 (en) * 2015-02-19 2016-08-25 Charles Wasyl Katrycz Method and system for integrating branched structures in materials
US20170240304A1 (en) * 2016-02-20 2017-08-24 Hui Lin Filling container
US10504496B1 (en) 2019-04-23 2019-12-10 Sensoplex, Inc. Music tempo adjustment apparatus and method based on gait analysis
US10597210B2 (en) 2015-06-29 2020-03-24 Dow Global Technologies Llc Flexible pouch with microcapillary dispensing system
US20200306421A1 (en) * 2019-04-01 2020-10-01 Sterigear, Llc Dual drainage bag, assemblies, and related methods
US11608486B2 (en) 2015-07-02 2023-03-21 Terumo Bct, Inc. Cell growth with mechanical stimuli
US11613727B2 (en) 2010-10-08 2023-03-28 Terumo Bct, Inc. Configurable methods and systems of growing and harvesting cells in a hollow fiber bioreactor system
US11624046B2 (en) 2017-03-31 2023-04-11 Terumo Bct, Inc. Cell expansion
US11629332B2 (en) 2017-03-31 2023-04-18 Terumo Bct, Inc. Cell expansion
US11634677B2 (en) 2016-06-07 2023-04-25 Terumo Bct, Inc. Coating a bioreactor in a cell expansion system
WO2023085234A1 (fr) * 2021-11-09 2023-05-19 テルモ株式会社 Kit de collecte et procédé de collecte
US11667876B2 (en) 2013-11-16 2023-06-06 Terumo Bct, Inc. Expanding cells in a bioreactor
US11667881B2 (en) 2014-09-26 2023-06-06 Terumo Bct, Inc. Scheduled feed
US11685883B2 (en) 2016-06-07 2023-06-27 Terumo Bct, Inc. Methods and systems for coating a cell growth surface
US11795432B2 (en) 2014-03-25 2023-10-24 Terumo Bct, Inc. Passive replacement of media
US11965175B2 (en) 2016-05-25 2024-04-23 Terumo Bct, Inc. Cell expansion
US11999929B2 (en) 2020-04-10 2024-06-04 Terumo Bct, Inc. Methods and systems for coating a cell growth surface

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3011511C (fr) 2016-01-22 2019-06-25 Baxter International Inc. Sac de produit pour solutions steriles
NZ743477A (en) 2016-01-22 2019-03-29 Baxter Healthcare Sa Method and machine for producing sterile solution product bags

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3554256A (en) * 1968-11-08 1971-01-12 Dave Champman Goldsmith & Yama Flexible intravenous container
US20090105683A1 (en) * 2007-10-18 2009-04-23 Caridianbct, Inc. Disposable Injection-Molded Container for Biologic Fluids and Method of Manufacture

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT8034810V0 (it) * 1980-01-22 1980-01-22 Lena Paolo Contenitore sintetico a sacca per sangue umano e sue frazioni, soluzioni perfusionali, soluzioni dialitiche e per liquidi alimentari e chimici in genere
FR2528801B1 (fr) * 1982-06-22 1986-10-17 Etude Applic Indle Brevets Sachet souple pour l'ecoulement lent d'un milieu liquide, procede et machine pour le fabriquer
US7678097B1 (en) * 1999-11-12 2010-03-16 Baxter International Inc. Containers and methods for manufacturing same
US7210994B1 (en) * 2006-05-30 2007-05-01 Donohue Shannon E Vacuum bag with a valve adapted to hold fluids

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3554256A (en) * 1968-11-08 1971-01-12 Dave Champman Goldsmith & Yama Flexible intravenous container
US20090105683A1 (en) * 2007-10-18 2009-04-23 Caridianbct, Inc. Disposable Injection-Molded Container for Biologic Fluids and Method of Manufacture

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11773363B2 (en) 2010-10-08 2023-10-03 Terumo Bct, Inc. Configurable methods and systems of growing and harvesting cells in a hollow fiber bioreactor system
US11746319B2 (en) 2010-10-08 2023-09-05 Terumo Bct, Inc. Customizable methods and systems of growing and harvesting cells in a hollow fiber bioreactor system
US11613727B2 (en) 2010-10-08 2023-03-28 Terumo Bct, Inc. Configurable methods and systems of growing and harvesting cells in a hollow fiber bioreactor system
US11708554B2 (en) 2013-11-16 2023-07-25 Terumo Bct, Inc. Expanding cells in a bioreactor
US11667876B2 (en) 2013-11-16 2023-06-06 Terumo Bct, Inc. Expanding cells in a bioreactor
US11795432B2 (en) 2014-03-25 2023-10-24 Terumo Bct, Inc. Passive replacement of media
US11667881B2 (en) 2014-09-26 2023-06-06 Terumo Bct, Inc. Scheduled feed
US20160243738A1 (en) * 2015-02-19 2016-08-25 Charles Wasyl Katrycz Method and system for integrating branched structures in materials
US10245762B2 (en) * 2015-02-19 2019-04-02 Charles Wasyl Katrycz Method and system for integrating branched structures in materials
US10597210B2 (en) 2015-06-29 2020-03-24 Dow Global Technologies Llc Flexible pouch with microcapillary dispensing system
US11608486B2 (en) 2015-07-02 2023-03-21 Terumo Bct, Inc. Cell growth with mechanical stimuli
US9944415B2 (en) * 2016-02-20 2018-04-17 Hui Lin Filling container
US20170240304A1 (en) * 2016-02-20 2017-08-24 Hui Lin Filling container
US11965175B2 (en) 2016-05-25 2024-04-23 Terumo Bct, Inc. Cell expansion
US11634677B2 (en) 2016-06-07 2023-04-25 Terumo Bct, Inc. Coating a bioreactor in a cell expansion system
US11685883B2 (en) 2016-06-07 2023-06-27 Terumo Bct, Inc. Methods and systems for coating a cell growth surface
US11629332B2 (en) 2017-03-31 2023-04-18 Terumo Bct, Inc. Cell expansion
US11702634B2 (en) 2017-03-31 2023-07-18 Terumo Bct, Inc. Expanding cells in a bioreactor
US11624046B2 (en) 2017-03-31 2023-04-11 Terumo Bct, Inc. Cell expansion
US11730875B2 (en) * 2019-04-01 2023-08-22 Sterigear, Llc Dual drainage bag, assemblies, and related methods
US20200306421A1 (en) * 2019-04-01 2020-10-01 Sterigear, Llc Dual drainage bag, assemblies, and related methods
US10504496B1 (en) 2019-04-23 2019-12-10 Sensoplex, Inc. Music tempo adjustment apparatus and method based on gait analysis
US11999929B2 (en) 2020-04-10 2024-06-04 Terumo Bct, Inc. Methods and systems for coating a cell growth surface
WO2023085234A1 (fr) * 2021-11-09 2023-05-19 テルモ株式会社 Kit de collecte et procédé de collecte

Also Published As

Publication number Publication date
CN103476381B (zh) 2016-02-03
FR2968197A1 (fr) 2012-06-08
EP2645981A1 (fr) 2013-10-09
CN103476381A (zh) 2013-12-25
FR2968197B1 (fr) 2013-12-20
WO2012072924A1 (fr) 2012-06-07
EP2645981B1 (fr) 2017-05-03

Similar Documents

Publication Publication Date Title
US20130319575A1 (en) Bag for distributing a product for biopharmaceutical use in the general state of a liquid or paste via a plurality of outlet ports
US10398853B2 (en) Bubble trap systems for infusion pump devices
EP2193815B1 (fr) Récipient souple doté d'un canal pour fluides préformé et dispositif de pompe à perfusion utilisant ledit récipient
US10221391B2 (en) Device for the aseptic expansion of cells
CN102355912B (zh) 用于排布和排气充注静脉输液组件的系统和方法
US6773425B1 (en) Container for biological products requiring cellular stasis
US5941866A (en) Means to maintain configuration of flexible medical container
RU2637615C2 (ru) Контейнер для хранения медицинских или фармацевтических жидкостей
JP2008501391A (ja) すすぎ洗いシステムを一体化した輸液バッグ
US10391030B2 (en) Reception, draining and transfer of a high quantity of biopharmaceutical fluid under pressure with a view to subsequent treatment
EP3455339B1 (fr) Poche de culture cellulaire structurée
TWI551287B (zh) 多個腔室袋子與製備及注入此種袋子的方法
EP1031341B1 (fr) Sachet médical pliable pour contenir et distribuer des substances de contraste diagnostiques et de formulations de médicaments parentérales
US9011765B2 (en) Method and arrangement for sterilization, in particular for the sterilization of an adsorber
AU670474B2 (en) Fluid distribution system
KR20160122190A (ko) 의료용 가요성 파우치
CN203861583U (zh) 三腔室输液袋
JP4476598B2 (ja) 複室輸液容器及び薬剤入り複室輸液容器

Legal Events

Date Code Title Description
AS Assignment

Owner name: SARTORIUS STEDIM BIOTECH S.A., FRANCE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MENDYK, NICOLAS;REEL/FRAME:030813/0592

Effective date: 20130705

AS Assignment

Owner name: SARTORIUS STEDIM FMT SAS, FRANCE

Free format text: MERGER;ASSIGNOR:SARTORIUS STEDIM BIOTECH;REEL/FRAME:031974/0578

Effective date: 20131025

AS Assignment

Owner name: SARTORIUS STEDIM FMT SAS, FRANCE

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE THE ASSIGNEE'S ADDRESS PREVIOUSLY RECORDED ON REEL 031974 FRAME 0578. ASSIGNOR(S) HEREBY CONFIRMS THE MERGER;ASSIGNOR:SARTORIUS STEDIM BIOTECH;REEL/FRAME:032086/0293

Effective date: 20131025

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION