US20130312682A1 - Three shaft adjustment mechanism with integrated overload coupling - Google Patents

Three shaft adjustment mechanism with integrated overload coupling Download PDF

Info

Publication number
US20130312682A1
US20130312682A1 US13/981,159 US201113981159A US2013312682A1 US 20130312682 A1 US20130312682 A1 US 20130312682A1 US 201113981159 A US201113981159 A US 201113981159A US 2013312682 A1 US2013312682 A1 US 2013312682A1
Authority
US
United States
Prior art keywords
shaft
adjustment mechanism
triple
actuator
mechanism according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/981,159
Inventor
Jens Schaefer
Mike Kohrs
Jeffrey S. Balko
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schaeffler Technologies AG and Co KG
Original Assignee
Schaeffler Technologies AG and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schaeffler Technologies AG and Co KG filed Critical Schaeffler Technologies AG and Co KG
Assigned to Schaeffler Technologies AG & Co. KG reassignment Schaeffler Technologies AG & Co. KG ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BALKO, JEFFREY S., SCHAFER, JENS, KOHRS, MIKE
Assigned to Schaeffler Technologies AG & Co. KG reassignment Schaeffler Technologies AG & Co. KG CORRECTIVE ASSIGNMENT TO CORRECT THE ASSIGNNOR NAME PREVIOUSLY RECORDED ON REEL 030856 FRAME 0837. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT OF ENTIRE INTEREST. Assignors: BALKO, JEFFREY S., SCHAEFER, JENS, KOHRS, MIKE
Publication of US20130312682A1 publication Critical patent/US20130312682A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/352Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using bevel or epicyclic gear

Definitions

  • the invention relates to a triple-shaft adjustment mechanism comprising a drive part that can be connected to a drive shaft in a rotationally fixed manner, a driven part that can be connected to a driven shaft in a rotationally fixed manner, and an actuator that can be connected to an adjustment shaft in a rotationally fixed manner.
  • Triple-shaft adjustment mechanisms are used, for example, in internal combustion engines for adjusting the phase angles, primarily for adjusting the opening and closing times of the gas-exchange valves (camshaft adjuster, phase adjuster for actuator shafts for variable valve drives).
  • the phase adjuster is here arranged as an actuator in a triple-shaft system.
  • the drive power that is discharged again via the driven shaft e.g., camshaft
  • the drive shaft timing chain sprocket
  • the actuator is here arranged in the flow of power as a connecting element between the drive shaft and the shaft to be driven. It allows additional mechanical power to be coupled into the shaft system or to be discharged from this system via a third shaft (adjustment shaft) superimposed on the drive power. Therefore, the movement function (phase angle) specified by the drive shaft and relative to the driven shaft can be changed.
  • triple-shaft adjustment mechanisms examples include wobble-plate mechanisms and internal eccentric mechanisms that are described, for example, in WO 2006/018080. Included here are also the shaft mechanism known from WO 2005/080757 and the mechanisms contained in US 2007/0051332 A1 and US 2003/0226534 A1.
  • phase adjusters are known from the prior art. For example, electromechanical camshaft adjusters are described in DE 10 2004 009 128 A1, DE 10 2005 059884 A1, and DE 10 2004 038 681 A1.
  • an electromechanical camshaft adjuster is known in which the adjustment motor is connected by means of a detachable coupling to the adjuster mechanism. Through a corresponding design of the coupling, the torque that can be transmitted to the adjustment shaft can be limited. This then acts as a safety coupling.
  • a triple-shaft adjustment mechanism is a double-shaft arrangement in adjustment drives in which the drive shaft is mounted on the housing, i.e., power is transmitted only between the adjustment shaft and driven shaft.
  • Such a device is used to convert a drive power of an actuator fed with high speed and low load into a driven power with low speed and high load and is used, for example, in speed-reduction devices for actuator drives in the automotive field and also in industrial applications, e.g., in robots.
  • the adjustment range or the drive range is limited by defining the rotational angle of one of the three shafts relative to a second shaft or relative to the housing.
  • a mechanical stop is used as an integral part of the device.
  • the stop is provided between the driven shaft and the drive shaft, because the adjustment shaft usually covers an angle of more than 360°.
  • the adjustment shaft not directly limited in the adjustment angle or drive angle is then braked in the case where there is contact with the stop by means of the mechanism kinematics and the stiffness of the mechanism elements, as soon as the driven side reaches the limits of the rotational angle.
  • mechanism parts due to the extremely high loads, mechanism parts can be so strongly deformed that they collide with each other and cause the actuator to jam. Furthermore, mechanism parts can wear out prematurely or must be overdimensioned for normal operation, in order to also survive the high loads in the case of unbraked contact with the stop.
  • the objective of the invention is to construct a triple-shaft adjustment mechanism such that the effects of pulse loads that occur when there is contact with the stop in the actuator are damped such that jamming or damage of the mechanism is prevented.
  • a triple-shaft adjustment mechanism initially comprises, in a known way, a drive part that can be connected to a drive shaft in a rotationally fixed manner, a driven part that can be connected to a driven shaft in a rotationally fixed manner, and an actuator that can be connected to an adjustment shaft of an actuator in a rotationally fixed manner.
  • a first mechanical stop for defining an adjustment angle between the drive shaft and the driven shaft.
  • an overload coupling integrated in the actuator is provided between the actuator and the drive part or between the actuator and the driven part.
  • the overload coupling is formed such that the actuator has spur gear teeth with elasticity in the radial direction.
  • the elasticity can be formed, for example, by an elastic layer or also by elastic roller bodies, wherein, e.g., hollow balls or sleeves or roller bodies made from a material with lower elastic modulus can be used as the elastic roller bodies.
  • the solution according to the invention is based on soft-torsion teeth of the actuator. Due to the inertia of the adjustment shaft and the electric motor, if there is contact with the stop, a so-called collision moment is produced that also causes, in addition to the tangential tooth force, a radial tooth force in the teeth parts analogous to the normal angle of attack.
  • the radial stiffness of the actuator acts against this force.
  • the radial elasticity must be dimensioned so that, starting from a certain magnitude of the radial force component of the transmitted torque (e.g., the collision moment), the teeth of two corresponding gearwheels yield to each other in the radial direction. The teeth then push tangentially under a high radial tension onto the tooth heads until they are pushed back into the tooth gaps again and the adjustment shaft snaps over.
  • FIG. 1 a schematic diagram of the oversnapping as the principle for an overload coupling
  • FIG. 2 an overload coupling according to the invention on a shaft generator as an actuator of a triple-shaft adjustment mechanism in a first embodiment
  • FIG. 3 an overload coupling according to the invention on a shaft generator as an actuator of a triple-shaft adjustment mechanism in a second embodiment.
  • FIG. 1 shows the contact relationships in a mechanism at the time of the oversnapping.
  • a ring gear 01 with internal teeth 02 and a spur gear 03 with external teeth 04 are shown.
  • the spur gear 03 here forms an actuator of a not-shown triple-shaft adjustment mechanism, while the ring gear 01 can be part of a drive part or driven part.
  • the rotational direction of the spur gear 03 is shown by an arrow 05 . It can be seen that the teeth heads of the spur gear 03 yield in the radial direction and slide along the teeth heads of the internal teeth 02 before they intermesh again due to the elasticity of the teeth.
  • oversnapping is permissible in the teeth 02 , 04 in the case of an overload and the resulting stresses of the mechanism elements are reduced.
  • the stiffness and thus the radial tensioning in the overload case is selected so that the affected mechanism parts can survive the oversnapping, at least for a defined period of time within the required service life of the actuator.
  • the teeth and/or the bearings must also not undergo any damage that could negatively affect the function.
  • the design for a defined period of time is permissible, because the shown operating state occurs only under limiting conditions.
  • the stiffness must be sufficiently high to be able to transfer the operating moments.
  • the oversnapping within the teeth 02 , 04 can be viewed as complete, cyclic decoupling.
  • the decoupling is cyclic, because the teeth heads jump back into teeth gaps as soon as they have slipped past each other and the mechanism is then no longer decoupled.
  • FIG. 2 shows an overload coupling according to the invention on a shaft generator as an actuator of a triple-shaft adjustment mechanism in a first embodiment.
  • a detail of the shaft generator is shown with an elliptical inner ring 06 , an elliptical outer ring 07 , and rolling bodies 08 arranged in-between.
  • the outer ring 07 carries, in a known way, spur-gear teeth 09 that roll in not-shown ring-gear teeth (see FIG. 1 ).
  • the elastic layer 11 can be a ring produced separately or a coating made from an elastomer. Someone skilled in the art can determine the required thickness and elasticity of the elastic layer 11 with reference to the specified material and mechanism data.
  • FIG. 3 shows an overload coupling according to the invention on a shaft generator as an actuator of a triple-shaft adjustment mechanism in a second embodiment.
  • the elastic layer is formed by a corrugated sheet sleeve 12 . Corrugations are stamped into this sleeve.
  • sheet sleeves are also known as tolerance rings for compensating for play in bearing assemblies.
  • the elastic layer is dimensioned so that, when the mechanism elements are operating normally, the teeth are in tension relative to each other slightly in the radial direction.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Retarders (AREA)
  • Gears, Cams (AREA)

Abstract

A three-shaft adjustment mechanism is provided including a drive part which can be connected to a drive shaft in a rotationally fixed manner, a driven part which can be connected to a driven shaft in a rotationally fixed manner and an actuator which can connected to the adjustment shaft in a rotationally fixed manner. A first mechanical stop is arranged between two of the three shafts for defining an adjustment angle between the drive shaft and the driven shaft. According to the invention, an overload coupling integrated into the actuator is provided between the actuator and the drive part or the driven part.

Description

    BACKGROUND
  • The invention relates to a triple-shaft adjustment mechanism comprising a drive part that can be connected to a drive shaft in a rotationally fixed manner, a driven part that can be connected to a driven shaft in a rotationally fixed manner, and an actuator that can be connected to an adjustment shaft in a rotationally fixed manner.
  • Triple-shaft adjustment mechanisms are used, for example, in internal combustion engines for adjusting the phase angles, primarily for adjusting the opening and closing times of the gas-exchange valves (camshaft adjuster, phase adjuster for actuator shafts for variable valve drives). The phase adjuster is here arranged as an actuator in a triple-shaft system. Primarily, the drive power that is discharged again via the driven shaft (e.g., camshaft) is fed to the triple-shaft system via the drive shaft (timing chain sprocket). The actuator is here arranged in the flow of power as a connecting element between the drive shaft and the shaft to be driven. It allows additional mechanical power to be coupled into the shaft system or to be discharged from this system via a third shaft (adjustment shaft) superimposed on the drive power. Therefore, the movement function (phase angle) specified by the drive shaft and relative to the driven shaft can be changed.
  • Examples for such triple-shaft adjustment mechanisms are wobble-plate mechanisms and internal eccentric mechanisms that are described, for example, in WO 2006/018080. Included here are also the shaft mechanism known from WO 2005/080757 and the mechanisms contained in US 2007/0051332 A1 and US 2003/0226534 A1.
  • Different phase adjusters are known from the prior art. For example, electromechanical camshaft adjusters are described in DE 10 2004 009 128 A1, DE 10 2005 059884 A1, and DE 10 2004 038 681 A1.
  • From DE 102 48 351 A1, an electromechanical camshaft adjuster is known in which the adjustment motor is connected by means of a detachable coupling to the adjuster mechanism. Through a corresponding design of the coupling, the torque that can be transmitted to the adjustment shaft can be limited. This then acts as a safety coupling.
  • One special case of a triple-shaft adjustment mechanism is a double-shaft arrangement in adjustment drives in which the drive shaft is mounted on the housing, i.e., power is transmitted only between the adjustment shaft and driven shaft. Such a device is used to convert a drive power of an actuator fed with high speed and low load into a driven power with low speed and high load and is used, for example, in speed-reduction devices for actuator drives in the automotive field and also in industrial applications, e.g., in robots.
  • To protect parts in the surroundings from undesired collisions of parts in the event of control errors by the actuating system, the adjustment range or the drive range is limited by defining the rotational angle of one of the three shafts relative to a second shaft or relative to the housing. For this purpose, a mechanical stop is used as an integral part of the device. In the known prior art of the camshaft adjuster, the stop is provided between the driven shaft and the drive shaft, because the adjustment shaft usually covers an angle of more than 360°.
  • In such a design, the adjustment shaft not directly limited in the adjustment angle or drive angle is then braked in the case where there is contact with the stop by means of the mechanism kinematics and the stiffness of the mechanism elements, as soon as the driven side reaches the limits of the rotational angle. Here, due to the extremely high loads, mechanism parts can be so strongly deformed that they collide with each other and cause the actuator to jam. Furthermore, mechanism parts can wear out prematurely or must be overdimensioned for normal operation, in order to also survive the high loads in the case of unbraked contact with the stop.
  • SUMMARY
  • The objective of the invention is to construct a triple-shaft adjustment mechanism such that the effects of pulse loads that occur when there is contact with the stop in the actuator are damped such that jamming or damage of the mechanism is prevented.
  • The solution to meeting this objective is possible with a triple-shaft adjustment mechanism according to the invention through which the mechanism parts are decoupled in the case there is contact with the stop.
  • A triple-shaft adjustment mechanism initially comprises, in a known way, a drive part that can be connected to a drive shaft in a rotationally fixed manner, a driven part that can be connected to a driven shaft in a rotationally fixed manner, and an actuator that can be connected to an adjustment shaft of an actuator in a rotationally fixed manner. Between two of the three shafts, usually between the drive part and the driven part, there is a first mechanical stop for defining an adjustment angle between the drive shaft and the driven shaft.
  • According to the invention, an overload coupling integrated in the actuator is provided between the actuator and the drive part or between the actuator and the driven part.
  • The following description starts from an electromechanical camshaft adjuster with a shaft mechanism as an especially preferred embodiment with a flat construction. Obviously, the solutions here could be transferred to shaft mechanisms with a pot-shaped construction and also to other mechanism designs. The invention can also be transferred to other mechanism shapes in which the actuator has spur gear teeth.
  • The advantages of the invention can be seen especially in that a complete decoupling is possible without an additional mechanism part. Due to the high speeds of the adjustment shaft, only small loads occur on this shaft, so that “oversnapping,” that is, snapping of the adjustment shaft, appears to be an economical and space-saving solution for a slip coupling.
  • In one especially preferred embodiment, the overload coupling is formed such that the actuator has spur gear teeth with elasticity in the radial direction.
  • The elasticity can be formed, for example, by an elastic layer or also by elastic roller bodies, wherein, e.g., hollow balls or sleeves or roller bodies made from a material with lower elastic modulus can be used as the elastic roller bodies.
  • The solution according to the invention is based on soft-torsion teeth of the actuator. Due to the inertia of the adjustment shaft and the electric motor, if there is contact with the stop, a so-called collision moment is produced that also causes, in addition to the tangential tooth force, a radial tooth force in the teeth parts analogous to the normal angle of attack.
  • In the normal case, the radial stiffness of the actuator acts against this force. According to the invention, the radial elasticity must be dimensioned so that, starting from a certain magnitude of the radial force component of the transmitted torque (e.g., the collision moment), the teeth of two corresponding gearwheels yield to each other in the radial direction. The teeth then push tangentially under a high radial tension onto the tooth heads until they are pushed back into the tooth gaps again and the adjustment shaft snaps over.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Preferred embodiments of the invention are explained below with reference to the figures.
  • Shown are:
  • FIG. 1: a schematic diagram of the oversnapping as the principle for an overload coupling;
  • FIG. 2: an overload coupling according to the invention on a shaft generator as an actuator of a triple-shaft adjustment mechanism in a first embodiment;
  • FIG. 3: an overload coupling according to the invention on a shaft generator as an actuator of a triple-shaft adjustment mechanism in a second embodiment.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • FIG. 1 shows the contact relationships in a mechanism at the time of the oversnapping. A ring gear 01 with internal teeth 02 and a spur gear 03 with external teeth 04 are shown. The spur gear 03 here forms an actuator of a not-shown triple-shaft adjustment mechanism, while the ring gear 01 can be part of a drive part or driven part.
  • The rotational direction of the spur gear 03 is shown by an arrow 05. It can be seen that the teeth heads of the spur gear 03 yield in the radial direction and slide along the teeth heads of the internal teeth 02 before they intermesh again due to the elasticity of the teeth.
  • Through intentional reduction of the radial stiffness of the spur gear 03, oversnapping is permissible in the teeth 02, 04 in the case of an overload and the resulting stresses of the mechanism elements are reduced. The stiffness and thus the radial tensioning in the overload case is selected so that the affected mechanism parts can survive the oversnapping, at least for a defined period of time within the required service life of the actuator. Here, the teeth and/or the bearings must also not undergo any damage that could negatively affect the function. The design for a defined period of time is permissible, because the shown operating state occurs only under limiting conditions. On the other hand, the stiffness must be sufficiently high to be able to transfer the operating moments.
  • The oversnapping within the teeth 02, 04 can be viewed as complete, cyclic decoupling. The decoupling is cyclic, because the teeth heads jump back into teeth gaps as soon as they have slipped past each other and the mechanism is then no longer decoupled.
  • FIG. 2 shows an overload coupling according to the invention on a shaft generator as an actuator of a triple-shaft adjustment mechanism in a first embodiment. A detail of the shaft generator is shown with an elliptical inner ring 06, an elliptical outer ring 07, and rolling bodies 08 arranged in-between. The outer ring 07 carries, in a known way, spur-gear teeth 09 that roll in not-shown ring-gear teeth (see FIG. 1).
  • Between the outer ring 07 and the teeth 09 there is an elastic layer 11 that guarantees the radial elasticity of the spur-gear teeth 09. The elastic layer 11 can be a ring produced separately or a coating made from an elastomer. Someone skilled in the art can determine the required thickness and elasticity of the elastic layer 11 with reference to the specified material and mechanism data.
  • FIG. 3 shows an overload coupling according to the invention on a shaft generator as an actuator of a triple-shaft adjustment mechanism in a second embodiment. In contrast to the embodiment shown in FIG. 2, the elastic layer is formed by a corrugated sheet sleeve 12. Corrugations are stamped into this sleeve. Such sheet sleeves are also known as tolerance rings for compensating for play in bearing assemblies.
  • It has proven advantageous with regard to noise generation that the elastic layer is dimensioned so that, when the mechanism elements are operating normally, the teeth are in tension relative to each other slightly in the radial direction.
  • LIST OF REFERENCE NUMBERS
    • 01 Ring gear
    • 02 Internal teeth
    • 03 Spur gear
    • 04 External teeth
    • 05
    • 06 Inner ring
    • 07 Outer ring
    • 08 Rolling body
    • 09 External teeth
    • 10
    • 11 Elastic layer
    • 12 Corrugated sheet sleeve

Claims (10)

1. Triple-shaft adjustment mechanism, comprising a drive part that is connected to a drive shaft in a rotationally fixed manner, a driven part that is connected to a driven shaft in a rotationally fixed manner, and an actuator that is connected to an adjustment shaft in a rotationally fixed manner, a first mechanical stop is arranged between two of the three shafts for defining an adjustment angle between the drive shaft and the driven shaft, and an overload coupling integrated into the actuator is provided between the actuator and the drive part or the driven part.
2. Triple-shaft adjustment mechanism according to claim 1, wherein the actuator has spur-gear teeth provided with elasticity in a radial direction as an overload coupling.
3. Triple-shaft adjustment mechanism according to claim 2, wherein it is an the adjustment mechanism includes a shaft generator as the actuator.
4. Triple-shaft adjustment mechanism according to claim 3, wherein the elasticity is provided by an elastic layer between an outer ring and external teeth of the shaft generator.
5. Triple-shaft adjustment mechanism according to claim 4, wherein the elastic layer includes an elastomer.
6. Triple-shaft adjustment mechanism according to claim 5, wherein the elastic layer is a coating or a ring.
7. Triple-shaft adjustment mechanism according to claim 4, wherein the elastic layer is formed by a sheet sleeve with corrugations stamped into said sleeve.
8. Triple-shaft adjustment mechanism according to claim 7, wherein the sheet sleeve is made from spring steel.
9. Triple-shaft adjustment mechanism according to claim 3, wherein the elasticity is formed by elastic rolling bodies of the shaft generator.
10. Triple-shaft adjustment mechanism according to claim 3, wherein the elasticity is formed by an elastic inner ring of the shaft generator.
US13/981,159 2011-02-14 2011-12-07 Three shaft adjustment mechanism with integrated overload coupling Abandoned US20130312682A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102011004071A DE102011004071A1 (en) 2011-02-14 2011-02-14 3-shaft variable speed gearbox with integrated overload clutch
PCT/EP2011/072075 WO2012110131A1 (en) 2011-02-14 2011-12-07 Three shaft adjustment mechanism with integrated overload coupling

Publications (1)

Publication Number Publication Date
US20130312682A1 true US20130312682A1 (en) 2013-11-28

Family

ID=45217566

Family Applications (1)

Application Number Title Priority Date Filing Date
US13/981,159 Abandoned US20130312682A1 (en) 2011-02-14 2011-12-07 Three shaft adjustment mechanism with integrated overload coupling

Country Status (4)

Country Link
US (1) US20130312682A1 (en)
EP (1) EP2676012B1 (en)
DE (1) DE102011004071A1 (en)
WO (1) WO2012110131A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11454140B1 (en) 2021-11-09 2022-09-27 Borgwarner Inc. Torque-limiting rotor coupling for an electrically-actuated camshaft phaser
US11454141B1 (en) 2021-11-09 2022-09-27 Borgwarner Inc. Torque limited variable camshaft timing assembly
US11560815B1 (en) 2022-06-02 2023-01-24 Borgwarner Inc. Compliant coupling for electrically-controlled variable camshaft timing assembly
US11940030B1 (en) 2022-10-24 2024-03-26 Borgwarner Inc. Torque-limiting torsion gimbal

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014202060A1 (en) * 2014-02-05 2015-08-06 Schaeffler Technologies AG & Co. KG Camshaft adjuster and method for operating a camshaft adjuster
DE102017111223B3 (en) 2017-05-23 2018-09-13 Schaeffler Technologies AG & Co. KG Phaser
DE102017113365A1 (en) 2017-06-19 2018-05-09 Schaeffler Technologies AG & Co. KG The wave gear
DE102019128653B3 (en) * 2019-10-23 2021-01-14 Minebea Mitsumi Inc. Actuator

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3487722A (en) * 1968-03-06 1970-01-06 Web Press Eng Inc Harmonic drive and method for controlling speed
US7673598B2 (en) * 2004-02-25 2010-03-09 Schaeffler Kg Electric camshaft adjuster

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3187360A (en) * 1963-10-04 1965-06-08 Sunbeam Corp Readily releasable drive connection for appliance
US4806809A (en) * 1986-06-12 1989-02-21 Kabushiki Kaisha Tokai Rika Denki Seisakusho Rotary shaft coupling device
JPH07208491A (en) * 1994-01-28 1995-08-11 Mitsubishi Electric Corp Oldham's coupling
JP3986371B2 (en) 2002-06-07 2007-10-03 株式会社日立製作所 Valve timing control device for internal combustion engine
DE10248351A1 (en) 2002-10-17 2004-04-29 Ina-Schaeffler Kg Electrically driven camshaft adjuster
DE102004038681B4 (en) 2004-08-10 2017-06-01 Schaeffler Technologies AG & Co. KG Electromotive camshaft adjuster
DE102005018956A1 (en) * 2005-04-23 2006-11-23 Schaeffler Kg Device for adjusting the camshaft of an internal combustion engine
JP4390078B2 (en) 2005-09-05 2009-12-24 株式会社デンソー Valve timing adjustment device
DE102005059884A1 (en) 2005-12-15 2007-07-05 Schaeffler Kg Phaser
JP4735504B2 (en) * 2006-02-24 2011-07-27 株式会社デンソー Valve timing adjustment device
DE102008039007A1 (en) * 2008-08-21 2010-02-25 Schaeffler Kg Method for adjusting a crankshaft of an internal combustion engine, camshaft adjusting system and engine with adjustable crankshaft

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3487722A (en) * 1968-03-06 1970-01-06 Web Press Eng Inc Harmonic drive and method for controlling speed
US7673598B2 (en) * 2004-02-25 2010-03-09 Schaeffler Kg Electric camshaft adjuster

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11454140B1 (en) 2021-11-09 2022-09-27 Borgwarner Inc. Torque-limiting rotor coupling for an electrically-actuated camshaft phaser
US11454141B1 (en) 2021-11-09 2022-09-27 Borgwarner Inc. Torque limited variable camshaft timing assembly
US11560815B1 (en) 2022-06-02 2023-01-24 Borgwarner Inc. Compliant coupling for electrically-controlled variable camshaft timing assembly
US11940030B1 (en) 2022-10-24 2024-03-26 Borgwarner Inc. Torque-limiting torsion gimbal

Also Published As

Publication number Publication date
EP2676012B1 (en) 2014-10-22
EP2676012A1 (en) 2013-12-25
DE102011004071A1 (en) 2012-08-16
WO2012110131A1 (en) 2012-08-23

Similar Documents

Publication Publication Date Title
US20130312682A1 (en) Three shaft adjustment mechanism with integrated overload coupling
EP2473717B1 (en) Valve train with variable cam phaser
US8950371B2 (en) Three-shaft transmission having an elastic coupling element
EP2386732B1 (en) Harmonic drive camshaft phaser with a compact drive sprocket
US8141527B2 (en) Camshaft adjuster having a variable ratio gear unit
US20120321236A1 (en) Bearing mounting arrangement for a drive train of a motor vehicle
US9334762B2 (en) Camshaft adjuster
EP2602446B1 (en) Valve timing control apparatus
US8127729B2 (en) Valve timing control apparatus
JP5440474B2 (en) Variable valve timing device
JP4978627B2 (en) Valve timing adjustment device
JP6228065B2 (en) Valve timing adjustment device
JP7198099B2 (en) valve timing adjuster
JP5434883B2 (en) Variable valve timing device
JP2016061234A (en) Valve opening/closing timing control device
JP2019074061A (en) Valve timing adjustment device
US11181088B2 (en) Internal-combustion engine starting device
JP7056931B2 (en) Valve timing adjuster
WO2019088250A1 (en) Valve timing adjustment device
JP2009074398A (en) Valve timing adjusting device
WO2019187057A1 (en) Valve timing regulation device
US7500455B2 (en) Valve timing control apparatus
JP2021046844A (en) Valve timing adjustment device
US11459916B2 (en) Valve timing adjustment device
JP7151601B2 (en) valve timing adjuster

Legal Events

Date Code Title Description
AS Assignment

Owner name: SCHAEFFLER TECHNOLOGIES AG & CO. KG, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SCHAFER, JENS;KOHRS, MIKE;BALKO, JEFFREY S.;SIGNING DATES FROM 20130703 TO 20130715;REEL/FRAME:030856/0837

AS Assignment

Owner name: SCHAEFFLER TECHNOLOGIES AG & CO. KG, GERMANY

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE ASSIGNNOR NAME PREVIOUSLY RECORDED ON REEL 030856 FRAME 0837. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT OF ENTIRE INTEREST;ASSIGNORS:SCHAEFER, JENS;KOHRS, MIKE;BALKO, JEFFREY S.;SIGNING DATES FROM 20130703 TO 20130715;REEL/FRAME:030889/0989

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION