US20130256235A1 - Water treatment compositions and methods of use - Google Patents
Water treatment compositions and methods of use Download PDFInfo
- Publication number
- US20130256235A1 US20130256235A1 US13/851,826 US201313851826A US2013256235A1 US 20130256235 A1 US20130256235 A1 US 20130256235A1 US 201313851826 A US201313851826 A US 201313851826A US 2013256235 A1 US2013256235 A1 US 2013256235A1
- Authority
- US
- United States
- Prior art keywords
- aluminum
- water
- polyaluminum
- polysaccharide
- sulfate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/52—Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
- C02F1/5236—Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents
- C02F1/5245—Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents using basic salts, e.g. of aluminium and iron
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/52—Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
- C02F1/5263—Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using natural chemical compounds
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/10—Inorganic compounds
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/10—Inorganic compounds
- C02F2101/105—Phosphorus compounds
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/30—Organic compounds
- C02F2101/32—Hydrocarbons, e.g. oil
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2103/00—Nature of the water, waste water, sewage or sludge to be treated
- C02F2103/10—Nature of the water, waste water, sewage or sludge to be treated from quarries or from mining activities
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2103/00—Nature of the water, waste water, sewage or sludge to be treated
- C02F2103/20—Nature of the water, waste water, sewage or sludge to be treated from animal husbandry
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2103/00—Nature of the water, waste water, sewage or sludge to be treated
- C02F2103/32—Nature of the water, waste water, sewage or sludge to be treated from the food or foodstuff industry, e.g. brewery waste waters
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2103/00—Nature of the water, waste water, sewage or sludge to be treated
- C02F2103/34—Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32
- C02F2103/343—Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32 from the pharmaceutical industry, e.g. containing antibiotics
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2103/00—Nature of the water, waste water, sewage or sludge to be treated
- C02F2103/34—Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32
- C02F2103/36—Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32 from the manufacture of organic compounds
- C02F2103/365—Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32 from the manufacture of organic compounds from petrochemical industry (e.g. refineries)
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2303/00—Specific treatment goals
- C02F2303/04—Disinfection
Definitions
- Coagulation and flocculation are well known processes for the removal of suspended matter. Coagulation may be viewed as the initial process of destabilizing or neutralizing charges on suspended particles so that they begin to aggregate. Coagulation is usually combined with flocculation, sedimentation, or filtration. Flocculation is the aggregation of the particles into larger masses.
- metal salts such as polyaluminum chlorides, aluminum sulfate, ferric sulfate, and ferric chloride.
- Chitosan is a polymer derived from naturally occurring chitin.
- Chitin is a linear polysaccharide composed of ⁇ -(1-4)-linked 2-acetoamido-2-deoxy-D-glucose units that occur naturally in the exoskeleton of invertebrates, in particular, the carapace of marine crustaceans. Chemical deacetylation of chitin yields chitosan, which is a copolymer of 2-amino-2-deoxy-D-glucose and 2-acetoamido-2-deoxy-D-glucose units.
- Some embodiments are related to a composition that is used for clarifying and reducing the turbidity of water by treating the water with a water treatment composition comprised of guar and polyaluminum chloride or aluminum chlorohydrate or polyaluminum chlorohydrate or aluminum sulfate or sodium aluminate or polyaluminum sulfate or polyaluminum silicate chloride or polyaluminum silicate sulfate, or a combination thereof so as to cause the agglomeration and subsequent removal of shear-stable insoluble suspended and/or partially water-soluble flocs and aggregates by collection on or within a filter media that allows easier more efficient backwashing and improved prolonged use of said filter media.
- the method comprises adding an effective amount of the water treatment composition to the water containing insoluble suspended and/or partially water soluble dissolved material and allowing the water treatment composition to interact with the suspended insoluble or soluble matter in order to allow the matter to agglomerate and settle under gravity and/or float to the surface.
- the agglomerated matter can be separated from the water by any of a number of means known in the art such as filtration, gravity settling, centrifugation, cyclone separator, vacuum filtration, or by flotation and skimming.
- the water treatment composition can be comprised of a liquid solution containing an aluminum-containing compound such as polyaluminum chloride, aluminum chlorohydrate, polyaluminum chlorohydrate, aluminum sulfate, sodium aluminate, polyaluminum sulfate, polyaluminum silicate chloride, polyaluminum silicate sulfate, or a combination thereof and a water-soluble natural non-chemically derivatized polysaccharide(s) derived from a plant, microbe, or animal.
- an aluminum-containing compound such as polyaluminum chloride, aluminum chlorohydrate, polyaluminum chlorohydrate, aluminum sulfate, sodium aluminate, polyaluminum sulfate, polyaluminum silicate chloride, polyaluminum silicate sulfate, or a combination thereof and a water-soluble natural non-chemically derivatized polysaccharide(s) derived from a plant, microbe, or animal.
- An exemplary embodiment of the water treatment composition comprises the polysaccharide guar and polyaluminum chloride.
- Another exemplary embodiment of the water treatment composition comprises guar and aluminum sulfate.
- Another exemplary embodiment of the water treatment composition comprises guar and aluminum chlorohydrate.
- Another exemplary embodiment of the water treatment composition comprises guar and polyaluminum chlorohydrate.
- Another exemplary embodiment of the water treatment composition comprises guar and sodium aluminate.
- Another exemplary embodiment of the water treatment composition comprises guar and polyaluminum sulfate.
- Another exemplary embodiment of the water treatment composition comprises guar and polyaluminum silicate chloride.
- Another exemplary embodiment of the water treatment composition comprises guar and polyaluminum silicate sulfate.
- water treatment composition comprises free-flowing solid granules or powders of a water-soluble natural non-chemically derivatized polysaccharide(s) derived from a plant, microbe or animal that is admixed together with a free-flowing solid of aluminum sulfate (alum), polyaluminum chloride, aluminum chlorohydrate, polyaluminum silicate sulfate, polyaluminum silicate chloride, polyaluminum sulfate, sodium aluminate, or polyaluminum chlorohydrate granules and/or powders.
- alum aluminum sulfate
- the water treatment composition can also contain a preservative to prevent the growth of microorganisms including bacteria, fungi and/or yeast.
- Preservatives can include, but are not limited to, sodium benzoate, potassium sorbate, parabins, sorbic acid, and benzoic acid.
- the polysaccharide(s) that comprise the water treatment composition can include combinations of the following natural non-derivatized polysaccharides: galactomannans; glucomannans; ⁇ -D glucans; xyloglucans; arabinoxylans; inulins; linear polysaccharides of alternating ⁇ -(1-3)- and ⁇ -(1-4) galactopyranose units; linear polysaccharides of glycosidically linked units of ⁇ -D-glucopyranose; linear polysaccharides of glycosidically linked units of ⁇ -D-glucopyranose; heteropolymers of glycosidically linked units of both ⁇ -(1-4)-2-acetamido-2-deoxy-D-glucopyranose and ⁇ -(1-4)-2-amino-2-deoxy-D-glucopyranose.
- guar and locust bean gums include guar and locust bean gums, gum arabic, gum tragacanth, starches (branched and linear), agars, carrageenans, pectins, xanthan, konjac, cellulose, chitin, and chitosan.
- the water treatment composition can be comprised of a commercially effective water-clarifying combination of natural non-derivatized polysaccharides and contain either polyaluminum chloride, aluminum chlorohydrate, polyaluminum chlorohydrate, aluminum sulfate, sodium aluminate, polyaluminum sulfate, polyaluminum silicate chloride, polyaluminum silicate sulfate, or combinations thereof.
- a water treatment composition is comprised of a commercially effective water-clarifying combination of polyaluminum chloride and a polysaccharide(s) or a combination of polysaccharides selected from the following natural non-derivatized polysaccharides: galactomannans; glucomannans; ⁇ -D glucans; xyloglucans; arabinoxylans; inulins; linear polysaccharides of alternating ⁇ -(1-3)- and ⁇ -(1-4) galactopyranose units; linear polysaccharides of glycosidically linked units of ⁇ -D-glucopyranose; linear polysaccharides of glycosidically linked units of ⁇ -D-glucopyranose; heteropolymers of glycosidically linked units of both ⁇ -(1-4)-2-acetamido-2-deoxy-D-glucopyranose and ⁇ -(1-4)-2-amino-2-deoxy-D-glucopyranose.
- guar and locust bean gums include guar and locust bean gums, gum arabic, gum tragacanth, starches (branched and linear), agars, carrageenans, pectins, xanthan, konjac, cellulose, chitin, and chitosan.
- the milk-derived protein sodium caseinate and/or hydrolyzed casein and/or and aminoacid homopolymers, such as polyglutamic acid may be used.
- a water treatment composition is comprised of a commercially effective water-clarifying combination of aluminum chlorohydrate and a polysaccharide(s) or a combination of polysaccharides selected from the following natural non-derivatized polysaccharides: galactomannans; glucomannans; ⁇ -D glucans; xyloglucans; arabinoxylans; inulins; linear polysaccharides of alternating ⁇ -(1-3)- and ⁇ -(1-4) galactopyranose units; linear polysaccharides of glycosidically linked units of ⁇ -D-glucopyranose; linear polysaccharides of glycosidically linked units of ⁇ -D-glucopyranose; heteropolymers of glycosidically linked units of both ⁇ -(1-4)-2-acetamido-2-deoxy-D-glucopyranose and ⁇ -(1-4)-2-amino-2-deoxy-D-glucopyranose.
- guar and locust bean gums include guar and locust bean gums, gum arabic, gum tragacanth, starches (branched and linear), agars, carrageenans, pectins, xanthan, konjac, cellulose, chitin, and chitosan.
- the milk-derived protein sodium caseinate and/or hydrolyzed casein and/or aminoacid homopolymers, such as polyglutamic acid may be used.
- a water treatment composition is comprised of a commercially effective water-clarifying combination of polyaluminum chlorohydrate and a polysaccharide(s) or a combination of polysaccharides selected from the following natural non-derivatized polysaccharides: galactomannans; glucomannans; ⁇ -D glucans; xyloglucans; arabinoxylans; inulins; linear polysaccharides of alternating ⁇ -(1-3)- and ⁇ -(1-4) galactopyranose units; linear polysaccharides of glycosidically linked units of ⁇ -D-glucopyranose; linear polysaccharides of glycosidically linked units of ⁇ -D-glucopyranose; heteropolymers of glycosidically linked units of both ⁇ -(1-4)-2-acetamido-2-deoxy-D-glucopyranose and ⁇ -(1-4)-2-amino-2-deoxy-D-glucopyranose
- guar and locust bean gums include guar and locust bean gums, gum arabic, gum tragacanth, starches (branched and linear), agars, carrageenans, pectins, xanthan, konjac, cellulose, chitin, and chitosan.
- the milk-derived protein sodium caseinate and/or hydrolyzed casein and/or aminoacid homopolymers, such as polyglutamic acid may be used.
- a water treatment composition is comprised of a commercially effective water-clarifying combination of aluminum sulfate and a polysaccharide(s) or a combination of polysaccharides selected from the following natural non-derivatized polysaccharides: galactomannans; glucomannans; ⁇ -D glucans; xyloglucans; arabinoxylans; inulins; linear polysaccharides of alternating ⁇ -(1-3)- and ⁇ -(1-4) galactopyranose units; linear polysaccharides of glycosidically linked units of ⁇ -D-glucopyranose; linear polysaccharides of glycosidically linked units of ⁇ -D-glucopyranose; heteropolymers of glycosidically linked units of both ⁇ -(1-4)-2-acetamido-2-deoxy-D-glucopyranose and ⁇ -(1-4)-2-amino-2-deoxy-D-glucopyranose.
- guar and locust bean gums include guar and locust bean gums, gum arabic, gum tragacanth, starches (branched and linear), agars, carrageenans, pectins, xanthan, konjac, cellulose, chitin, and chitosan.
- the milk-derived protein sodium caseinate and/or hydrolyzed casein and/or aminoacid homopolymers, such as polyglutamic acid may be used.
- a water treatment composition is comprised of a commercially effective water-clarifying combination of sodium aluminate and a polysaccharide(s) or a combination of polysaccharides selected from the following natural non-derivatized polysaccharides: galactomannans; glucomannans; ⁇ -D glucans; xyloglucans; arabinoxylans; inulins; linear polysaccharides of alternating ⁇ -(1-3)- and ⁇ -(1-4) galactopyranose units; linear polysaccharides of glycosidically linked units of ⁇ -D-glucopyranose; linear polysaccharides of glycosidically linked units of ⁇ -D-glucopyranose; heteropolymers of glycosidically linked units of both ⁇ -(1-4)-2-acetamido-2-deoxy-D-glucopyranose and ⁇ -(1-4)-2-amino-2-deoxy-D-glucopyranose.
- guar and locust bean gums include guar and locust bean gums, gum arabic, gum tragacanth, starches (branched and linear), agars, carrageenans, pectins, xanthan, konjac, cellulose, chitin, and chitosan.
- the milk-derived protein sodium caseinate and/or hydrolyzed casein and/or aminoacid homopolymers, such as polyglutamic acid may be used.
- a water treatment composition is comprised of a commercially effective water-clarifying combination of polyaluminum sulfate and a polysaccharide(s) or a combination of polysaccharides selected from the following natural non-derivatized polysaccharides: galactomannans; glucomannans; ⁇ -D glucans; xyloglucans; arabinoxylans; inulins; linear polysaccharides of alternating ⁇ -(1-3)- and ⁇ -(1-4) galactopyranose units; linear polysaccharides of glycosidically linked units of ⁇ -D-glucopyranose; linear polysaccharides of glycosidically linked units of ⁇ -D-glucopyranose; heteropolymers of glycosidically linked units of both ⁇ -(1-4)-2-acetamido-2-deoxy-D-glucopyranose and ⁇ -(1-4)-2-amino-2-deoxy-D-glucopyr
- guar and locust bean gums include guar and locust bean gums, gum arabic, gum tragacanth, starches (branched and linear), agars, carrageenans, pectins, xanthan, konjac, cellulose, chitin, and chitosan.
- the milk-derived protein sodium caseinate and/or hydrolyzed casein and/or aminoacid homopolymers, such as polyglutamic acid may be used.
- a water treatment composition is comprised of a commercially effective water-clarifying combination of polyaluminum silicate chloride and a polysaccharide(s) or a combination of polysaccharides selected from the following natural non-derivatized polysaccharides: galactomannans; glucomannans; ⁇ -D glucans; xyloglucans; arabinoxylans; inulins; linear polysaccharides of alternating ⁇ -(1-3)- and ⁇ -(1-4) galactopyranose units; linear polysaccharides of glycosidically linked units of ⁇ -D-glucopyranose; linear polysaccharides of glycosidically linked units of ⁇ -D-glucopyranose; heteropolymers of glycosidically linked units of both ⁇ -(1-4)-2-acetamido-2-deoxy-D-glucopyranose and ⁇ -(1-4)-2-amino-2-deoxy-D-glucopyra
- guar and locust bean gums include guar and locust bean gums, gum arabic, gum tragacanth, starches (branched and linear), agars, carrageenans, pectins, xanthan, konjac, cellulose, chitin, and chitosan.
- the milk-derived protein sodium caseinate and/or hydrolyzed casein and/or aminoacid homopolymers, such as polyglutamic acid may be used.
- a water treatment composition is comprised of a commercially effective water-clarifying combination of polyaluminum silicate sulfate and a polysaccharide(s) or a combination of polysaccharides selected from the following natural non-derivatized polysaccharides: galactomannans; glucomannans; ⁇ -D glucans; xyloglucans; arabinoxylans; inulins; linear polysaccharides of alternating ⁇ -(1-3)- and ⁇ -(1-4) galactopyranose units; linear polysaccharides of glycosidically linked units of ⁇ -D-glucopyranose; linear polysaccharides of glycosidically linked units of ⁇ -D-glucopyranose; heteropolymers of glycosidically linked units of both ⁇ -(1-4)-2-acetamido-2-deoxy-D-glucopyranose and ⁇ -(1-4)-2-amino-2-deoxy-D-gluglu
- guar and locust bean gums include guar and locust bean gums, gum arabic, gum tragacanth, starches (branched and linear), agars, carrageenans, pectins, xanthan, konjac, cellulose, chitin, and chitosan.
- the milk-derived protein sodium caseinate and/or hydrolyzed casein and/or aminoacid homopolymers, such as polyglutamic acid may be used.
- a water treatment composition/formulation is comprised of a commercially effective water-clarifying combination of any two or more of polyaluminum chloride, aluminum chlorohydrate, polyaluminum chlorohydrate, sodium aluminate, polyaluminum sulfate, polyaluminum silicate chloride, polyaluminum silicate sulfate, and aluminum sulfate, or a combination of all aluminum compounds and a polysaccharide or a combination of polysaccharides selected from the following natural non-derivatized polysaccharides: galactomannans; glucomannans; ⁇ -D glucans; xyloglucans; arabinoxylans; inulins; linear polysaccharides of alternating ⁇ -(1-3)- and ⁇ -(1-4) galactopyranose units; linear polysaccharides of glycosidically linked units of ⁇ -D-glucopyranose; linear polysaccharides of glycosidically linked
- guar and locust bean gums include guar and locust bean gums, gum arabic, gum tragacanth, starches (branched and linear), agars, carrageenans, pectins, xanthan, konjac, cellulose, chitin, and chitosan.
- the milk-derived protein sodium caseinate and/or hydrolyzed casein and/or aminoacid homopolymers, such as polyglutamic acid may be used.
- a water treatment composition is comprised of a commercially effective water-clarifying combination of polyaluminum chloride, aluminum chlorohydrate, polyaluminum chlorohydrate, aluminum sulfate, sodium aluminate, polyaluminum sulfate, polyaluminum silicate chloride, polyaluminum silicate sulfate and a polysaccharide or a combination of polysaccharides selected from the following natural non-derivatized polysaccharides: galactomannans; glucomannans; ⁇ -D glucans; xyloglucans; arabinoxylans; inulins; linear polysaccharides of alternating ⁇ -(1-3)- and ⁇ -(1-4) galactopyranose units; linear polysaccharides of glycosidically linked units of ⁇ -D-glucopyranose; linear polysaccharides of glycosidically linked units of ⁇ -D-glucopyranose; heteropolymers of
- guar and locust bean gums include guar and locust bean gums, gum arabic, gum tragacanth, starches (branched and linear), agars, carrageenans, pectins, xanthan, konjac, cellulose, chitin, and chitosan.
- a water treatment composition comprises a guar-aluminum complex created by mixing a solution of polyaluminum chloride with an aqueous solution of dissolved guar.
- the composition solution is approximately 50% (wt/wt.) of polyaluminum chloride solution (for example, Kemira PAX-XL8 or PAX-XL6) and 50% (wt./wt.) of a 1% (wt./wt.) guar (for example, Guar Gum 50, FCC grade from Univar).
- a water treatment composition comprises a guar-aluminum complex created by slowly adding 100 g of polyaluminum chloride (for example, Kemira PAX-XL6, 10.3% Al 2 O 3 ), to 250 g aqueous 1% guar (for example, Univar 50) while mixing followed by adding 150 g of aqueous alum (for example, Univar 48% aluminum sulfate).
- the composition solution is approximately 20% (wt/wt.) of polyaluminum chloride solution and 50% (wt./wt.) of a 1% guar solution and 30% (wt./wt.) of a 48% aluminum sulfate solution.
- a water treatment composition comprises a guar aluminum complex created by mixing a solution of aluminum sulfate with solid water-soluble guar.
- the composition is approximately 24% (wt./wt.) aluminum sulfate and 0.5% (wt./wt.) guar (for example, Univar guar gum 50 lot 10202008).
- a method for clarifying and reducing the turbidity of water by treating the water with a water treatment composition comprised of guar and polyaluminum chloride, aluminum chlorohydrate, polyaluminum chlorohydrate, aluminum sulfate, sodium aluminate, polyaluminum sulfate, polyaluminum silicate chloride, polyaluminum silicate sulfate or a combination thereof so as to cause the agglomeration and subsequent removal of shear-stable insoluble suspended and/or partially water-soluble flocs and aggregates by collection on or within a filter media that allows easier more efficient backwashing and improved prolonged use of said filter media.
- the method comprises adding an effective amount of the water treatment composition to the water containing insoluble suspended and/or partially water soluble dissolved material and allowing the water treatment composition to interact with the suspended insoluble or soluble matter in order to allow the matter to agglomerate and settle under gravity and/or float to the surface.
- the agglomerated matter can be separated from the water by any of a number of means known in the art such as filtration, gravity settling, centrifugation, cyclone separator, vacuum filtration, or by flotation and skimming.
- the filter media can include sand, diatomaceous earth, zeolite, carbon, non-woven or woven geotextile bags, filter cartridge bags, rope filters, woven or non-woven polypropylene or polyethylene mesh, cellulosic fabrics, metal or stainless steel screens.
- the suspended insoluble matter can include the following: microorganisms such as bacteria, viruses, protozoans (Cryptosporidium or Giardia oocysts); proteins, oils, fats, algae, organic matter including hydrocarbons and insoluble starches; pharmaceutical ingredients such as materials used to prepare vaccines; nutraceuticals; commercially useful industrial fibers; suspended sludge materials from municipal and industrial wastewater; dredging solids; suspended materials from mine tailings; suspended metal oxides, or metal oxide hydroxides, graphite particles; carbon particles; suspended materials from oil and gas drilling and/or hydraulic fracturing operations; suspended matter in recreational or water derived from aquaculture operations or aquariums; suspended matter present in construction runoff; and suspended matter present in water from oil refinery operations.
- microorganisms such as bacteria, viruses, protozoans (Cryptosporidium or Giardia oocysts); proteins, oils, fats, algae, organic matter including hydrocarbons and insoluble starches
- pharmaceutical ingredients
- Another embodiment is a method for removing a phosphate-containing compound, such as orthophosphate, from water comprising adding a water treatment composition containing guar and polyaluminum chloride, aluminum chlorohydrate, polyaluminum chlorohydrate, aluminum sulfate, sodium aluminate, polyaluminum sulfate, polyaluminum silicate chloride, polyaluminum silicate sulfate or a combination thereof to phosphate-containing water to remove or reduce the phosphate concentration more than can be removed by either guar or polyaluminum chloride or alum alone when used at the same dose.
- the phosphate can be removed by filtration or gravity settling.
- FIG. 1 is a graph illustrating results of turbidity reduction using guar and various samples of polyaluminum chloride
- FIG. 2 is a graph illustrating results of turbidity reduction using guar with polyaluminum chloride and guar with alum.
- Removal of suspended particulate or soluble matter in aqueous fluids can be accomplished by coagulation and flocculation followed by settling, skimming, filtration, centrifugation or any combination thereof.
- Coagulation often involves the use of multivalent inorganic metal salts such as aluminum sulfate (alum), aluminum chloride, polyaluminum chloride, aluminum chlorohydrate, polyaluminum chlorohydrate, iron sulfate, or iron chloride.
- Flocculants such as chitosan or polyacrylamides have also been used separately or in combination with alum or polyaluminum chloride to treat water for reducing turbidity and/or removing suspended solid matter. Although the combination may offer improved coagulation, flocculation and floc size, the resulting floccules may still exhibit low shear strength and come apart when subjected to low to moderate pressure or agitation. Improved backwashing of filters containing flocculated insoluble materials that do not cling to the filter media but release easily from the filter media during backwashing cycles would be of significant value.
- a natural non-charged polysaccharide such as guar
- an aluminum-containing coagulant such as polyaluminum chloride or aluminum chlorohydrate or polyaluminum chlorohydrate or aluminum sulfate or sodium aluminate or polyaluminum sulfate or polyaluminum silicate chloride or polyaluminum silicate sulfate, or some combination thereof
- aluminum-containing coagulant such as polyaluminum chloride or aluminum chlorohydrate or polyaluminum chlorohydrate or aluminum sulfate or sodium aluminate or polyaluminum sulfate or polyaluminum silicate chloride or polyaluminum silicate sulfate, or some combination thereof
- Other natural non-charged polysaccharides may include locust bean gum, starch, konjac, and cellulose.
- the water treatment composition used in the methods for clarifying water, reducing the turbidity of water, and removing phosphate from water includes an aluminum-containing coagulant or a combination of aluminum-containing coagulants, and a natural non-charged polysaccharide or combination of natural non-charged polysaccharides.
- the water treatment composition may include water.
- the water treatment composition may be applied as a solution or in a dry solid form.
- the aluminum-containing coagulant, and the natural non-charged polysaccharide may be applied together in solution, or in dry solid form, or in a complexed form.
- the aluminum-containing coagulant, and the natural non-charged polysaccharide may be applied separately, each being in a solution or in a dry solid form.
- the aluminum-containing coagulants and the natural non-charged polysaccharides are described further below.
- the aluminum-containing coagulants are readily commercially available.
- the aluminum-containing compounds may be applied as aqueous solutions or in a dry (solid) powder or granular form.
- the following may be used singly or in combination: polyaluminum chloride, aluminum chlorohydrate, polyaluminum chlorohydrate, aluminum sulfate, sodium aluminate, polyaluminum sulfate, polyaluminum silicate chloride, polyaluminum silicate sulfate.
- Aluminum sulfate has the formula, Al 2 (SO 4 ) 3 .xH 2 O, wherein X is reported to be 13, 14, 15, 16, 17, or 18, or a combination. Solutions can be defined by the aluminum content or expressed in terms of equivalent alumina Al 2 O 3 .
- Polyaluminum chloride may have the formula Al n (OH) m Cl (3n-m) , wherein 0 ⁇ m ⁇ 3n, and n ⁇ 1. See U.S. Pat. No. 7,846,318, incorporated herein expressly by reference.
- the species can form polymers in water. The ph correlates to the formula m/(3n).
- Basicity can range from about 15% to about 83% w/w in commercially available polyaluminum chlorides.
- Basicity can be low, medium, or high basicity.
- Basicity can range from about 10% to about 83%, and any range derivable therebetween, such as between any range beginning from 10%, 20%, 30%, 40%, 50%, 60%, or 70%, and ending at 20%, 30%, 40%, 50%, 60%, 70, or 80%.
- polyaluminum chlorides may have sulfate. In the literature, these compounds are also sometimes referred to as polyaluminum chlorides, and sometimes as polyaluminum chorosulfates.
- the formula of some polyaluminum chlorides may be Al n OH m (SO 4 ) k Cl (3n-m-k) . Sulfate can range about 2% to 3% by weight.
- Aluminum chlorohydrate may have the formula Al 2 Cl(OH) 5 , which has a basicity of about 83%.
- Suitable aluminum-containing coagulants are available from Kemira Chemicals, Inc. under the designation PAX.
- the polysaccharide(s) that comprise the water treatment composition can include combinations of the following natural non-derivatized polysaccharides: galactomannans; glucomannans; ⁇ -D glucans; xyloglucans; arabinoxylans; inulins; linear polysaccharides of alternating ⁇ -(1-3)- and ⁇ -(1-4) galactopyranose units; linear polysaccharides of glycosidically linked units of ⁇ -D-glucopyranose; linear polysaccharides of glycosidically linked units of ⁇ -D-glucopyranose; heteropolymers of glycosidically linked units of both ⁇ -(1-4)-2-acetamido-2-deoxy-D-glucopyranose and ⁇ -(1-4)-2-amino-2-deoxy-D-glucopyranose.
- guar and locust bean gums include guar and locust bean gums, gum arabic, gum tragacanth, starches (branched and linear), agars, carrageenans, pectins, xanthan, konjac, cellulose, chitin, and chitosan.
- a natural non-charged polysaccharide includes guar.
- Guar guar gum
- Beta 1-4 glycosidic linkages couple the mannose units and the galactose side chains are linked by alpha 1-6.
- a suitable guar gum for use is available from Univar, Inc.
- Other natural non-charged polysaccharides may include locust bean gum, starch, konjac, and cellulose.
- Some embodiments of a method for clarifying water or removing phosphate from water include the steps: adding an aluminum-containing coagulant selected from polyaluminum chloride, aluminum chlorohydrate, polyaluminum chlorohydrate, aluminum sulfate, sodium aluminate, polyaluminum sulfate, polyaluminum silicate chloride, polyaluminum silicate sulfate or a combination thereof, and a synergistic amount of a natural, non-charged polysaccharide to water containing matter; forming agglomerations in the water comprising the matter, the aluminum-containing compound, and the polysaccharide; and removing the agglomerations from the water to remove the matter from the water.
- an aluminum-containing coagulant selected from polyaluminum chloride, aluminum chlorohydrate, polyaluminum chlorohydrate, aluminum sulfate, sodium aluminate, polyaluminum sulfate, polyaluminum silicate chloride, poly
- the natural, non-charged polysaccharide is guar.
- adding the aluminum-containing coagulant and polysaccharide comprises adding a solution of aluminum-containing coagulant and guar.
- adding the aluminum-containing coagulant and polysaccharide comprises adding solid forms of aluminum-containing coagulant and guar.
- the aluminum-containing coagulant is substantially 100% by weight polyaluminum chloride.
- the aluminum-containing coagulant is substantially 100% by weight aluminum chlorohydrate.
- the aluminum-containing coagulant is substantially 100% by weight polyaluminum chlorohydrate.
- the aluminum-containing coagulant is substantially 100% by weight aluminum sulfate.
- the aluminum-containing coagulant is substantially 100% by weight sodium aluminate.
- the aluminum-containing coagulant is substantially 100% by weight polyaluminum sulfate.
- the aluminum-containing coagulant is substantially 100% by weight polyaluminum silicate chloride.
- the aluminum-containing coagulant is substantially 100% by weight polyaluminum silicate sulfate.
- the aluminum-containing coagulant comprises a solution of polyaluminum chloride and water.
- the aluminum-containing coagulant comprises a solution of aluminum chlorohydrate and water.
- the aluminum-containing coagulant comprises a solution of polyaluminum chlorohydrate and water.
- the aluminum-containing coagulant comprises a solution of aluminum sulfate and water.
- the aluminum-containing coagulant comprises a solution of sodium aluminate and water.
- the aluminum-containing coagulant comprises a solution of polyaluminum sulfate and water.
- the aluminum-containing coagulant comprises a solution of polyaluminum silicate chloride and water.
- the aluminum-containing coagulant comprises a solution of polyaluminum silicate sulfate and water.
- the aluminum-containing coagulant is a solution made with the compound having the formula Al n (OH) m Cl (3n-m) , wherein 0 ⁇ m ⁇ 3n, and n ⁇ 1.
- the aluminum-containing coagulant is a solution made with the compound having the formula Al 2 (SO 4 ) 3 .xH 2 O.
- the aluminum-containing coagulant is a solution made with the compound having the formula Al 2 Cl(OH) 5 .
- the ratio of polysaccharide to aluminum-containing coagulant is about 1:34.
- the ratio of polysaccharide to aluminum-containing coagulant is about 1:48.
- the ratio of polysaccharide to aluminum-containing coagulant ranges from about 1:10 to about 1:100.
- the aluminum-containing coagulant and the polysaccharide are added as a guar aluminum complex.
- the guar aluminum complex is made by the process comprising adding solid guar to a solid aluminum-containing coagulant and adding water to the solid guar and aluminum-containing coagulant.
- the aluminum-containing compound and polysaccharide are added together.
- the aluminum-containing compound and polysaccharide are added separately.
- the phosphate that is removed is orthophosphate.
- the matter in the water includes microorganisms, bacteria, viruses, protozoans, Cryptosporidium oocysts, Giardia oocysts; proteins, oils, fats, algae, hydrocarbons, metal oxides, metal oxide hydroxides, insoluble starches; pharmaceuticals, nutraceuticals; fibers, polyaramids, dredging solids; suspended materials from mine tailings, graphite particles, carbon particles, suspended materials from oil or gas drilling or hydraulic fracturing; suspended matter in recreational or water derived from aquaculture operations or aquariums; suspended matter present in construction runoff; and suspended matter present in water from oil refinery operations.
- the polysaccharide is a natural non-charged polysaccharide selected from locust bean gum, starch, konjac, or cellulose.
- Some embodiments of a method for clarifying water include the steps: adding an aluminum-containing coagulant selected from polyaluminum chloride, aluminum chlorohydrate, polyaluminum chlorohydrate, aluminum sulfate, sodium aluminate, polyaluminum sulfate, polyaluminum silicate chloride, polyaluminum silicate sulfate or a combination thereof, and a synergistic amount of a natural, non-charged polysaccharide to water containing a phosphate compound; forming agglomerations in the water comprising the phosphate compound, the aluminum-containing coagulant, and the polysaccharide; and removing the agglomerations from the water to remove the phosphate compound from the water.
- an aluminum-containing coagulant selected from polyaluminum chloride, aluminum chlorohydrate, polyaluminum chlorohydrate, aluminum sulfate, sodium aluminate, polyaluminum sulfate, polyaluminum si
- the phosphate compound is orthophosphate.
- the polysaccharide is guar.
- the aluminum-containing compound is polyaluminum chloride.
- the aluminum-containing compound is aluminum chlorohydrate.
- the aluminum-containing compound is polyaluminum chlorohydrate.
- the aluminum-containing compound is aluminum sulfate.
- the aluminum-containing compound is sodium aluminate.
- the aluminum-containing compound is polyaluminum sulfate.
- the aluminum-containing compound is polyaluminum silicate chloride.
- the aluminum-containing compound is polyaluminum silicate sulfate.
- the ratio of polysaccharide to aluminum-containing coagulant is about 1:34.
- the ratio of polysaccharide to aluminum-containing coagulant is about 1:48.
- the ratio of polysaccharide to aluminum-containing coagulant ranges from about 1:10 to about 1:100.
- Orthophosphate-spiked water was prepared by adding 1.719 ml of phosphate standard solution (from PAS-STM-8039 02 of phosphate procedure) to 1 liter of deionized water. 100 ml of orthophosphate-spiked water was dispensed into plastic sample cups.
- Aluminum sulfate (48% by weight aluminum sulfate hydrate, 52% by weight water was used neat (undiluted).
- Hybrid E Guar aluminum complex created by mixing a solution of aluminum sulfate with solid water-soluble guar. The composition is approximately 24% (wt./wt.) alum and 0.5% (wt./wt.) guar (Univar guar gum 50).
- Control phosphate water contained 10 ppm Top (100-90 ml) Middle (50-40 ml) Bottom (20-10 ml) Phosphate conc. Phosphate conc. Phosphate conc. Treatment (ppm) (ppm) (ppm) Alum 8.8 8.9 8.9 Hybrid E 8.1 8.3 8.0
- Hybrid E appeared to reduce orthophosphate concentrations similar to alum using about half the amount of alum.
- the respective guar/PAC formulation each containing a different PAC was added to 500 ml of Arizona test dust solution to a final concentration of 50 ppm and mixed for approximately two minutes and then allowed to settle for ten minutes (the concentration of guar and aluminum was the same for each formulation. Following ten minutes of settling, turbidity was measured for each Arizona test dust solution that was treated with the respective guar/PAC formulation. Control non-treated Arizona test dust solution exhibited a turbidity of approximately 8000 NTU.
- Grade 28 PAC has a basicity of 75% and an Al 2 O 3 content of 30.2%.
- Grade 29 PAC has a basicity of 70% and an Al 2 O 3 content of 30.6%.
- Grade 30 PAC has a basicity of 51% and an Al 2 O 3 content of 30.6%.
- FIG. 1 is an illustration of graph showing the results. Turbidity is reported in NTU.
- the sample 29@RT was the most effective in reducing turbidity.
- 29 @RT reduced turbidity to approximately 100 NTU, compared to approximately 300 NTU by 28@RT, and approximately 700 NTU by 30@RT.
- Formula 213-133-B is 50% by weight Kemira PAX-XL6 poly aluminum chloride (basicity 55%, Al 2 O 3 10.3%, Al 5.31%, Sulfate 2.5%), 50% by weight 1% guar solution in water (Univar 45 Guar). To make the product, the PAC is slowly added to guar solution while mixing, to get a uniform solution.
- the guar/PAC formulation and the guar/alum formulation was each added to separate 500 ml aliquots of Arizona test dust solution to a final concentration of 50 ppm and then mixed for approximately two minutes and then allowed to settle for ten minutes.
- the P-50 formulation is 50% by weight Kemira PAX-XL8 polyaluminum chloride (basicity ⁇ 70%, Al 2 O 3 10%, Al 5.5%) and 50% by weight 1% guar solution in water.
- the A48 formulation is the same as Hybrid E described earlier). Following ten minutes of settling, turbidity was measured for each Arizona test dust solution that was treated with the respective guar/PAC formulation. Control non-treated Arizona test dust solution exhibited a turbidity of approximately 8000 NTU.
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Separation Of Suspended Particles By Flocculating Agents (AREA)
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/851,826 US20130256235A1 (en) | 2012-03-28 | 2013-03-27 | Water treatment compositions and methods of use |
US14/505,309 US12180099B2 (en) | 2012-03-28 | 2014-10-02 | Water treatment compositions and methods of use |
US15/094,394 US12172911B2 (en) | 2012-03-28 | 2016-04-08 | Water treatment compositions and methods of use |
US19/005,315 US20250136483A1 (en) | 2012-03-28 | 2024-12-30 | Water treatment compositions and methods of use |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201261616943P | 2012-03-28 | 2012-03-28 | |
US201361798333P | 2013-03-15 | 2013-03-15 | |
US13/851,826 US20130256235A1 (en) | 2012-03-28 | 2013-03-27 | Water treatment compositions and methods of use |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/505,309 Continuation US12180099B2 (en) | 2012-03-28 | 2014-10-02 | Water treatment compositions and methods of use |
US15/094,394 Continuation US12172911B2 (en) | 2012-03-28 | 2016-04-08 | Water treatment compositions and methods of use |
Publications (1)
Publication Number | Publication Date |
---|---|
US20130256235A1 true US20130256235A1 (en) | 2013-10-03 |
Family
ID=49233451
Family Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/851,826 Abandoned US20130256235A1 (en) | 2012-03-28 | 2013-03-27 | Water treatment compositions and methods of use |
US14/505,309 Active US12180099B2 (en) | 2012-03-28 | 2014-10-02 | Water treatment compositions and methods of use |
US15/094,394 Active 2033-10-17 US12172911B2 (en) | 2012-03-28 | 2016-04-08 | Water treatment compositions and methods of use |
US19/005,315 Pending US20250136483A1 (en) | 2012-03-28 | 2024-12-30 | Water treatment compositions and methods of use |
Family Applications After (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/505,309 Active US12180099B2 (en) | 2012-03-28 | 2014-10-02 | Water treatment compositions and methods of use |
US15/094,394 Active 2033-10-17 US12172911B2 (en) | 2012-03-28 | 2016-04-08 | Water treatment compositions and methods of use |
US19/005,315 Pending US20250136483A1 (en) | 2012-03-28 | 2024-12-30 | Water treatment compositions and methods of use |
Country Status (12)
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015138092A1 (en) * | 2014-03-12 | 2015-09-17 | Ecolab Usa Inc. | Waste water decontamination |
CN107055911A (zh) * | 2017-05-16 | 2017-08-18 | 衢州学院 | 一种利用桔瓣脱囊衣废水资源化制备的果胶除磷剂及制备方法 |
NO20170373A1 (no) * | 2017-03-14 | 2018-09-17 | M Vest Water As | Produkt, fremgangsmåte og anvendelse for fjerning av forurensing i vann |
NO20171426A1 (no) * | 2017-09-04 | 2019-03-05 | M Vest Water As | Produkt, fremgangsmåte og anvendelse for vannrensing |
CN111977767A (zh) * | 2020-09-01 | 2020-11-24 | 荆门市咏泉水质检测有限公司 | 黄原胶和阿拉伯胶混合作为水处理助凝剂的应用方法 |
CN114044564A (zh) * | 2021-01-29 | 2022-02-15 | 合肥工业大学智能制造技术研究院 | 一种右旋糖酐基絮凝剂的制备方法及其澄清养鱼循环水的方法 |
US12172911B2 (en) | 2012-03-28 | 2024-12-24 | Dober Chemical Corp. | Water treatment compositions and methods of use |
Families Citing this family (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9222065B2 (en) * | 2013-10-01 | 2015-12-29 | Pukyong National University Industry-University Cooperation Foundation | Method for photoculturing and harvesting microalgae |
CN104926031B (zh) * | 2015-05-28 | 2018-02-09 | 重庆大学 | 一种降低污水中总磷含量的方法 |
KR101762289B1 (ko) * | 2016-02-26 | 2017-07-31 | 피케이텍시스템 주식회사 | 운동 기구 |
CN105836945A (zh) * | 2016-06-02 | 2016-08-10 | 陈昌 | 一种污水高效处理方法 |
CN106006906A (zh) * | 2016-07-02 | 2016-10-12 | 杨奇 | 一种生物可降解絮凝剂 |
CN105967350A (zh) * | 2016-07-07 | 2016-09-28 | 安徽国能亿盛环保科技有限公司 | 一种含酶污水处理剂及制备方法 |
CN106145296A (zh) * | 2016-08-31 | 2016-11-23 | 中国石油集团川庆钻探工程有限公司 | 一种用于压裂返排液回用前处理的复合絮凝剂制备方法 |
AU2017350146A1 (en) * | 2016-10-27 | 2019-05-02 | Unilever Plc | Purification composition for clarifying soiled water for obtaining water suitable for use in laundry |
CN106745359A (zh) * | 2016-11-25 | 2017-05-31 | 南宁市黑晶信息技术有限公司 | 一种染色废液净化剂及其制备方法 |
US11174374B2 (en) | 2016-12-01 | 2021-11-16 | Dober Chemical Corporation | Water-enriching and water depleting compositions and methods |
CN106723287B (zh) * | 2017-03-08 | 2018-12-04 | 湖北中烟工业有限责任公司 | 一种造纸法再造烟叶助留助滤剂的制备方法 |
CN107188286A (zh) * | 2017-05-27 | 2017-09-22 | 郑州沃煌环保技术有限公司 | 多功能污水处理混凝剂 |
CN107032439A (zh) * | 2017-06-20 | 2017-08-11 | 安徽师范大学 | 一种改性铜尾矿吸附废水中磷酸盐污染物的方法 |
CN110997577B (zh) | 2017-07-18 | 2023-06-16 | 埃科莱布美国股份有限公司 | 循环用汽车磷酸盐漂洗水流 |
CN107487796A (zh) * | 2017-09-01 | 2017-12-19 | 展亚男 | 一种复合生态修复剂及其制备方法和应用 |
JP6970917B2 (ja) | 2017-12-27 | 2021-11-24 | 三菱マテリアル株式会社 | 廃水の処理方法 |
JP6986226B2 (ja) | 2017-12-27 | 2021-12-22 | 三菱マテリアル株式会社 | 廃水の処理方法 |
CN108773891A (zh) * | 2018-06-05 | 2018-11-09 | 任丘市佳孚化工有限公司 | 一种除磷剂及其制备方法 |
CN108726653A (zh) * | 2018-06-22 | 2018-11-02 | 杜晓华 | 一种复合污水脱色絮凝剂及其使用方法 |
CN109503843B (zh) * | 2018-10-31 | 2021-06-18 | 浙江维康药业股份有限公司 | 一种银黄滴丸冷凝成型用二甲基硅油的纯化方法 |
CN110092524B (zh) * | 2019-05-10 | 2021-12-21 | 重庆大学 | 一种高浓度磷化废水的处理方法及系统 |
CN111072071B (zh) * | 2019-12-13 | 2020-11-03 | 潘爱芳 | 一种利用铁尾矿生产聚合硫酸铝铁净水剂和硅胶的方法 |
CN111039370A (zh) * | 2019-12-23 | 2020-04-21 | 中冶京诚工程技术有限公司 | 一种复合型絮凝剂及其制备方法和应用 |
CN113006195B (zh) * | 2021-03-05 | 2023-03-31 | 广州隆盛景观建设有限公司 | 环保型园林景观雨水处理再利用方法 |
CN113371804A (zh) * | 2021-07-27 | 2021-09-10 | 新疆水佳源科技有限公司 | 一种适用污水处理系统的高效助凝剂及其制备方法 |
CN114604835B (zh) * | 2022-05-12 | 2022-08-02 | 矿冶科技集团有限公司 | 天然植物沉降剂及应用和使用方法 |
WO2024137608A1 (en) * | 2022-12-19 | 2024-06-27 | Paragon Solution Inc. | Composition comprising charged polysaccharide and coagulant, and method of using the same |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3082173A (en) * | 1958-08-04 | 1963-03-19 | Howard J Horvitz | Coagulating aid and method of treating water therewith |
US5433863A (en) * | 1993-11-17 | 1995-07-18 | Nalco Chemical Company | Method for clarifying wastewater containing surfactants |
US20030089661A1 (en) * | 2001-11-01 | 2003-05-15 | Akzo Nobel N.V. | Treatment of polyaluminium compounds |
US20030213752A1 (en) * | 2002-05-16 | 2003-11-20 | Halliburton Energy Services, Inc. | Alum pellets |
US20070256982A1 (en) * | 2006-03-03 | 2007-11-08 | Kelley Douglas G | Compositions and Methods for Wastewater Treatment |
US7329356B2 (en) * | 2004-12-21 | 2008-02-12 | Aquagems Laboratories, Llc | Flocculating agent for clarifying the water of man-made static water bodies |
Family Cites Families (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2445299A1 (fr) * | 1978-12-28 | 1980-07-25 | Rhone Poulenc Ind | Adjuvant de floculation pour la purification des eaux et composition renfermant ledit adjuvant |
FR2516397B1 (fr) * | 1981-11-16 | 1988-01-15 | Rhone Poulenc Spec Chim | Adjuvant de floculation et procede pour la purification des eaux |
US5169562A (en) | 1990-03-27 | 1992-12-08 | W. R. Grace & Co.-Conn. | Emulsion breaking using cationic quaternary ammonium starch/gums |
JPH0655310B2 (ja) * | 1990-07-17 | 1994-07-27 | 多木化学株式会社 | 水処理方法 |
AU646733B2 (en) * | 1992-01-30 | 1994-03-03 | Betzdearborn Inc. | Cationic polyelectrolyte demulsifier and coagulator |
CN1196711A (zh) | 1995-09-18 | 1998-10-21 | 德尔塔化学有限公司 | 聚氯化铝和聚氯硫酸铝的制备方法及组合物 |
FR2744119B1 (fr) * | 1996-01-29 | 1998-04-10 | Rhone Poulenc Chimie | Procede de traitement des effluents liquides aqueux contenant des matieres organiques et minerales en vue de leur valorisation |
US6428705B1 (en) * | 1996-11-26 | 2002-08-06 | Microbar Incorporated | Process and apparatus for high flow and low pressure impurity removal |
US5965027A (en) * | 1996-11-26 | 1999-10-12 | Microbar Incorporated | Process for removing silica from wastewater |
EP0958246A2 (de) * | 1997-02-10 | 1999-11-24 | Tetra Werke Dr.rer.nat. Ulrich Baensch GmbH | Zwei-komponentenmittel zur wasserklärung von tropischen zierfischaquarien |
US6458268B1 (en) * | 1999-06-22 | 2002-10-01 | Ecolab Inc. | Industrial waste water treatment cleaning apparatus |
JP2001219005A (ja) * | 2000-02-09 | 2001-08-14 | Ebara Corp | 凝集剤及び水処理における凝集処理方法 |
US6602410B1 (en) * | 2000-11-14 | 2003-08-05 | The Procter & Gamble Comapny | Water purifying kits |
WO2003008336A2 (en) * | 2001-07-20 | 2003-01-30 | Microbar, Inc. | Reverse osmosis pretreatment using low pressure filtration |
US7157009B2 (en) * | 2004-04-30 | 2007-01-02 | Vanson Halosource, Inc. | Method for removing Cryptosporidium oocysts from water |
FR2873113B1 (fr) * | 2004-07-19 | 2007-06-15 | Eurotab Sa | Produit solide compacte bicouche de purification d'eau |
EP1791791B1 (en) * | 2004-09-27 | 2019-05-29 | Special Water Patents B.V. | Methods and compositions for treatment of water |
US20110006013A1 (en) | 2005-02-15 | 2011-01-13 | Halosource, Inc. | Method for the removal of submicron particulates from chlorinated water by sequentially adding a cationic polymer followed by adding an anionic polymer |
BRPI0608211A2 (pt) | 2005-02-15 | 2009-12-01 | Halosource Inc | método para a remoção de materiais em partìculas de submicron a partir de água clorada pela adição seqüêncial de um polìmero catiÈnico seguido pela adição de um polìmero aniÈnico |
JP2006297189A (ja) * | 2005-04-15 | 2006-11-02 | Car Muscat:Kk | 凝集沈殿組成物及びこれを用いた汚水浄化方法 |
CN100457646C (zh) * | 2006-05-19 | 2009-02-04 | 北京工业大学 | 饮用水专用复合除磷混凝剂 |
US8919573B2 (en) * | 2007-10-25 | 2014-12-30 | David Capehart | Water purification system and method |
WO2010011867A1 (en) * | 2008-07-23 | 2010-01-28 | Aquero Company, Llc | Flotation and separation of flocculated oils and solids from waste waters |
BRPI1008654A2 (pt) * | 2009-02-05 | 2016-03-08 | Alcon Res Ltd | processo para purificação de guar |
US8591744B2 (en) * | 2009-06-24 | 2013-11-26 | Nalco Company | Composition and process for removing impurities from a circulating water system |
AU2010265857B2 (en) | 2009-06-26 | 2014-03-27 | Halosource, Inc. | Methods for growing and harvesting algae and methods of use |
EP2451550A4 (en) | 2009-07-06 | 2013-11-13 | Halosource Inc | DUAL POLYMER SYSTEM FOR WATER RESTORATION AND SEPARATION OF SUSPENDED SOLIDS FROM THE AQUEOUS MEDIA |
US20120234703A1 (en) | 2009-10-27 | 2012-09-20 | Halosource, Inc. | Packaging formulation for preventing the insolubility of chitosan-containing compositions |
CN102469782A (zh) | 2010-06-18 | 2012-05-23 | 哈洛资源公司 | 包含壳聚糖的固态共混物的制剂及方法 |
US20120145645A1 (en) | 2010-12-13 | 2012-06-14 | Halosource, Inc. | Clarification of hydrocarbons and suspended matter from an aqueous medium |
CN102344192B (zh) * | 2010-12-13 | 2012-11-28 | 新疆德蓝股份有限公司 | 一种用于处理印染废水的专用混凝剂的制备 |
CA2868053C (en) * | 2012-03-28 | 2020-09-22 | Halosource, Inc. | Water treatment compositions and methods of use |
-
2013
- 2013-03-27 CA CA2868053A patent/CA2868053C/en active Active
- 2013-03-27 AU AU2013239687A patent/AU2013239687B2/en active Active
- 2013-03-27 EP EP13767732.4A patent/EP2831001A4/en not_active Withdrawn
- 2013-03-27 CN CN201380022940.4A patent/CN104284866B/zh not_active Expired - Fee Related
- 2013-03-27 US US13/851,826 patent/US20130256235A1/en not_active Abandoned
- 2013-03-27 NZ NZ700313A patent/NZ700313A/en not_active IP Right Cessation
- 2013-03-27 BR BR112014023880A patent/BR112014023880A8/pt not_active IP Right Cessation
- 2013-03-27 WO PCT/US2013/034169 patent/WO2013148882A2/en active Application Filing
- 2013-03-27 PE PE2014001481A patent/PE20142350A1/es not_active Application Discontinuation
- 2013-03-27 MX MX2014011542A patent/MX384047B/es unknown
-
2014
- 2014-09-26 CL CL2014002564A patent/CL2014002564A1/es unknown
- 2014-10-02 US US14/505,309 patent/US12180099B2/en active Active
- 2014-10-27 CO CO14237631A patent/CO7111298A2/es unknown
-
2016
- 2016-04-08 US US15/094,394 patent/US12172911B2/en active Active
-
2024
- 2024-12-30 US US19/005,315 patent/US20250136483A1/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3082173A (en) * | 1958-08-04 | 1963-03-19 | Howard J Horvitz | Coagulating aid and method of treating water therewith |
US5433863A (en) * | 1993-11-17 | 1995-07-18 | Nalco Chemical Company | Method for clarifying wastewater containing surfactants |
US20030089661A1 (en) * | 2001-11-01 | 2003-05-15 | Akzo Nobel N.V. | Treatment of polyaluminium compounds |
US20030213752A1 (en) * | 2002-05-16 | 2003-11-20 | Halliburton Energy Services, Inc. | Alum pellets |
US7329356B2 (en) * | 2004-12-21 | 2008-02-12 | Aquagems Laboratories, Llc | Flocculating agent for clarifying the water of man-made static water bodies |
US20070256982A1 (en) * | 2006-03-03 | 2007-11-08 | Kelley Douglas G | Compositions and Methods for Wastewater Treatment |
Non-Patent Citations (1)
Title |
---|
Peter Gebbie, Using polyaluminium coagulants in water treatment, setpember 2001, 64th annual water industry engineers and operators conference, pgs. 39-47 * |
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US12180099B2 (en) * | 2012-03-28 | 2024-12-31 | Dober Chemical Corp. | Water treatment compositions and methods of use |
US12172911B2 (en) | 2012-03-28 | 2024-12-24 | Dober Chemical Corp. | Water treatment compositions and methods of use |
US10301205B2 (en) * | 2014-03-12 | 2019-05-28 | Ecolab Usa Inc. | Waste water decontamination |
EP3116831B1 (en) * | 2014-03-12 | 2020-03-25 | Ecolab USA Inc. | Waste water decontamination |
TWI689469B (zh) * | 2014-03-12 | 2020-04-01 | 美商藝康美國公司 | 廢水去汙 |
WO2015138092A1 (en) * | 2014-03-12 | 2015-09-17 | Ecolab Usa Inc. | Waste water decontamination |
US12110241B2 (en) | 2017-03-14 | 2024-10-08 | M Vest Water As | Compositions and method for removing impurities from a fluid stream |
NO20170373A1 (no) * | 2017-03-14 | 2018-09-17 | M Vest Water As | Produkt, fremgangsmåte og anvendelse for fjerning av forurensing i vann |
WO2018167598A1 (en) * | 2017-03-14 | 2018-09-20 | M Vest Water As | Compositions and method for removing impurities from a fluid stream |
NO344503B1 (no) * | 2017-03-14 | 2020-01-20 | M Vest Water As | Produkt, fremgangsmåte og anvendelse for fjerning av forurensing i vann |
CN107055911A (zh) * | 2017-05-16 | 2017-08-18 | 衢州学院 | 一种利用桔瓣脱囊衣废水资源化制备的果胶除磷剂及制备方法 |
GB2579308A (en) * | 2017-09-04 | 2020-06-17 | M Vest Water As | Composition and method for removing impurities from a fluid |
JP2020534151A (ja) * | 2017-09-04 | 2020-11-26 | エム ヴェスト ウォーター アクティーゼルスカブ | 流体から不純物を除去するための組成物および方法 |
AU2018326840B2 (en) * | 2017-09-04 | 2021-10-07 | M Vest Water As | Composition and method for removing impurities from a fluid |
US11247920B2 (en) | 2017-09-04 | 2022-02-15 | M Vest Water ASA | Composition and method for removing impurities from a fluid |
NO346509B1 (no) * | 2017-09-04 | 2022-09-12 | M Vest Water As | Produkt, fremgangsmåte og anvendelse for vannrensing |
GB2579308B (en) * | 2017-09-04 | 2022-10-19 | M Vest Water As | Composition and method for removing impurities from a fluid |
JP7345473B2 (ja) | 2017-09-04 | 2023-09-15 | エム ヴェスト ウォーター アクティーゼルスカブ | 流体から不純物を除去するための組成物および方法 |
WO2019043654A1 (en) * | 2017-09-04 | 2019-03-07 | M Vest Water As | COMPOSITION AND METHOD FOR REMOVING THE IMPURITIES OF A LIQUID |
NO20171426A1 (no) * | 2017-09-04 | 2019-03-05 | M Vest Water As | Produkt, fremgangsmåte og anvendelse for vannrensing |
CN111977767A (zh) * | 2020-09-01 | 2020-11-24 | 荆门市咏泉水质检测有限公司 | 黄原胶和阿拉伯胶混合作为水处理助凝剂的应用方法 |
CN114044564A (zh) * | 2021-01-29 | 2022-02-15 | 合肥工业大学智能制造技术研究院 | 一种右旋糖酐基絮凝剂的制备方法及其澄清养鱼循环水的方法 |
Also Published As
Publication number | Publication date |
---|---|
CL2014002564A1 (es) | 2015-06-05 |
EP2831001A2 (en) | 2015-02-04 |
WO2013148882A2 (en) | 2013-10-03 |
CA2868053A1 (en) | 2013-10-03 |
MX2014011542A (es) | 2015-06-23 |
PE20142350A1 (es) | 2015-01-18 |
AU2013239687A2 (en) | 2014-12-04 |
WO2013148882A3 (en) | 2013-12-05 |
US12180099B2 (en) | 2024-12-31 |
US20160221847A1 (en) | 2016-08-04 |
MX384047B (es) | 2025-03-14 |
BR112014023880A8 (pt) | 2017-07-11 |
US20150090667A1 (en) | 2015-04-02 |
US20250136483A1 (en) | 2025-05-01 |
CA2868053C (en) | 2020-09-22 |
CO7111298A2 (es) | 2014-11-10 |
AU2013239687B2 (en) | 2017-11-30 |
NZ700313A (en) | 2017-03-31 |
CN104284866A (zh) | 2015-01-14 |
BR112014023880A2 (enrdf_load_stackoverflow) | 2017-06-20 |
US12172911B2 (en) | 2024-12-24 |
EP2831001A4 (en) | 2016-04-27 |
AU2013239687A1 (en) | 2014-11-20 |
CN104284866B (zh) | 2017-05-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20250136483A1 (en) | Water treatment compositions and methods of use | |
US10040710B2 (en) | Use of a dual polymer system for enhanced water recovery and improved separation of suspended solids and other substances from an aqueous media | |
US9546102B2 (en) | Method for pretreatment of wastewater and recreational water with nanocomposites | |
Aboelfetoh et al. | Binary coagulation system (graphene oxide/chitosan) for polluted surface water treatment | |
EP3033305B1 (en) | Method for pretreatment of wastewater with nanocomposites and bridging polymers | |
US11192808B2 (en) | Method for production of potable water | |
Jun et al. | Effectiveness of coagulants and coagulant aids for the removal of filter-clogging Synedra | |
Liu et al. | Synthesis of antibacterial polyaluminium silicate sulfate/sepiolitenano composite coagulant for oilfield sewage treatment | |
Fosso‐Kankeu et al. | Flocculation performances of polymers and nanomaterials for the treatment of industrial wastewaters | |
Lichtfouse et al. | Chitosan for direct bioflocculation processes | |
Okour et al. | An effective method of wastewater treatment using titanium salt and a coagulant aid of chitosan | |
Hassan et al. | Removal of boron from industrial wastewater by chitosan via chemical precipitation | |
CN1305778C (zh) | 联合使用甲壳胺和海藻酸钠处理废水的方法 | |
Coruh | Use of calcium alginate as a coagulant in water treatment | |
Li et al. | Simple synthesis and excellent coagulation performance of a novel red soil-based coagulant | |
Wang et al. | Application of chitosan in removing algae by dissolved air flotation | |
BR102015031927A2 (pt) | Compact system and method for treating effluents | |
KR20230037563A (ko) | 수처리에서의 클로라민 및 양이온성 중합체의 용도 | |
NO344181B1 (en) | A method for removal of impurities from a liquid by coagulation using a composition of dissolved chitosan and zirconium salt | |
Ida Nurhidaya A Aziz | Chocolate Processing Wastewater | |
Li et al. | The Characteristics of Chitosan Applied in Drinking Water Treatment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: HALOSOURCE, INC., WASHINGTON Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KNEIB, FRANCIS;NICHOLS, EVERETT J.;SCOTT, JAMES R.;AND OTHERS;SIGNING DATES FROM 20130520 TO 20130528;REEL/FRAME:030764/0954 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |
|
AS | Assignment |
Owner name: DOBER CHEMICAL CORP., ILLINOIS Free format text: NUNC PRO TUNC ASSIGNMENT;ASSIGNOR:HALOSOURCE, INC.;REEL/FRAME:038804/0436 Effective date: 20160601 |