US20130203894A1 - Cycloaliphatic carbonates as reactive diluents in epoxy resins - Google Patents

Cycloaliphatic carbonates as reactive diluents in epoxy resins Download PDF

Info

Publication number
US20130203894A1
US20130203894A1 US13/583,255 US201113583255A US2013203894A1 US 20130203894 A1 US20130203894 A1 US 20130203894A1 US 201113583255 A US201113583255 A US 201113583255A US 2013203894 A1 US2013203894 A1 US 2013203894A1
Authority
US
United States
Prior art keywords
epoxy
diluent
epoxy system
amine
delta
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/583,255
Inventor
Bruce L. Burton
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huntsman Petrochemical LLC
Original Assignee
Huntsman Petrochemical LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huntsman Petrochemical LLC filed Critical Huntsman Petrochemical LLC
Priority to US13/583,255 priority Critical patent/US20130203894A1/en
Assigned to HUNTSMAN PETROCHEMICAL LLC reassignment HUNTSMAN PETROCHEMICAL LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BURTON, BRUCE L.
Publication of US20130203894A1 publication Critical patent/US20130203894A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/68Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/0001Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/72Heating or cooling
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/226Mixtures of di-epoxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/24Di-epoxy compounds carbocyclic
    • C08G59/245Di-epoxy compounds carbocyclic aromatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/32Epoxy compounds containing three or more epoxy groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • C08G59/5006Amines aliphatic
    • C08G59/502Polyalkylene polyamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • C08G59/5026Amines cycloaliphatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/26Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds
    • C08G65/2618Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds the other compounds containing nitrogen
    • C08G65/2621Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds the other compounds containing nitrogen containing amine groups
    • C08G65/2624Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds the other compounds containing nitrogen containing amine groups containing aliphatic amine groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D13/00Assembly, mounting or commissioning of wind motors; Arrangements specially adapted for transporting wind motor components
    • F03D13/10Assembly of wind motors; Arrangements for erecting wind motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2063/00Use of EP, i.e. epoxy resins or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/0005Condition, form or state of moulded material or of the material to be shaped containing compounding ingredients
    • B29K2105/0014Catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/0005Condition, form or state of moulded material or of the material to be shaped containing compounding ingredients
    • B29K2105/0047Agents changing thermal characteristics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/08Blades for rotors, stators, fans, turbines or the like, e.g. screw propellers
    • B29L2031/082Blades, e.g. for helicopters
    • B29L2031/085Wind turbine blades
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2120/00Compositions for reaction injection moulding processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2363/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • C08J2363/02Polyglycidyl ethers of bis-phenols
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2230/00Manufacture
    • F05B2230/30Manufacture with deposition of material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • the present invention relates generally to methods of producing epoxy resin systems and more particularly to the use of cycloaliphatic carbonates as reactive diluents in epoxy resin systems.
  • Formulators of epoxy resin systems have long used various means for reducing the viscosity of formulations in order to effectively utilize the performance benefits ascribable to cured epoxy resins, relative to other available chemistries.
  • low viscosities provide desired benefits such as improvements in 1) mixing, 2) wetting (of surfaces, fillers, fibers, etc), 3) crack injection, 4) application (e.g. by roller, trowel, spray, etc.), and 5) infusion (e.g. for porous structure consolidation, preforms for composites, etc.).
  • diluents Lower molecular weight, lower viscosity compounds, termed “diluents,” are commonly added to epoxy formulations, commonly on the epoxy resin side of two-part formulations, for viscosity reduction. Diluents that polymerize into the system, known as reactive diluents, are preferred over the use of non-reactive diluents, since mechanical and thermal property reductions in the cured resin are less severe for reactive diluents. Property reductions become greater as diluent levels are increased, thus there is often a trade-off between achieving the desired low viscosity and maintaining the required properties in the cured resin. For this reason, decreasing viscosity while minimizing the level of diluent used is an ongoing goal as formulators simultaneously search for diluents having either greater efficiency or show lower property reduction.
  • Decreasing the peak exotherm temperature could be done in a variety of ways, such as: 1) pre-cooling of components, 2) incorporation of phase change materials, 3) direct cooling during polymerization, 4) substitution of reactants having lower reactivity, 5) addition of fillers (in greater quantity and/or of higher heat capacity or thermal conductivity), etc.
  • pre-cooling of components may raise viscosity and prevent good mixing, wetting, mold-filling, etc.
  • Phase change materials may be expensive, chemically reactive, soluble once liquid, change at non-optimum temperatures, etc.
  • Direct cooling is poorly effective in the thickest regions and may create additional residual stresses due to thermal expansion mismatches between components.
  • Components having lower reactivity are also typically slower curing and require additional heat for full polymerization, thus they create a need for longer cycle times or higher bake temperatures. Filler incorporation greatly affects the mechanical properties and thus may be specified and fixed. Additionally, though higher filler levels decrease exotherm temperatures, there are practical upper limits of use level, based on both processing and performance, which cannot be exceeded.
  • Reactive diluents have long enabled the use of epoxy formulations in new applications or as a way of achieving processing improvements in existing applications.
  • such diluents have included low molecular weight epoxies, low molecular weight compounds with reactive unsaturation (such as acrylates), lactones, and cycloaliphatic carbonates (U.S. Pat. No. 3,305,527; Feb. 21, 1967), among others.
  • low molecular weight epoxies and acrylates are known to have adverse health effects on some people exposed to them.
  • Aromatic glycidyl ethers such as phenyl glycidyl ether, are particularly known for causing allergic sensitization.
  • a diluent that reduces the maximum exotherm temperature caused by the epoxy resin polymerization reaction would be of particular utility since it would allow one to increase the temperature of the reactants prior to blending.
  • the ability to use higher resin formulation component temperatures reduces the need for diluents.
  • using a diluent that reduces the maximum exotherm temperature allows one to decrease the component viscosities by increasing the temperature(s) of the resin and hardener. At the same time this decreases the need for diluent, allowing a reduction in diluent level that improves the properties of the cured resin system, in particular by increasing the cured glass transition temperature.
  • Embodiments of the present invention disclose a method for limiting peak exotherm temperatures in epoxy systems comprising the steps of: combining an amine hardener, an epoxy and a diluent to form an epoxy system, wherein the diluent is selected from the group consisting of: ethylene carbonate, propylene carbonate, butylene carbonate, delta-valerolactam, delta-valerolactone, gamma valerolactone, butyrolactam, beta butyrolactone, gamma butyrolactone, and combinations thereof.
  • Embodiments of the present invention disclose an article of manufacture, such as a composite rotor blade for use in wind turbines, also termed a wind blade, produced by the method described above.
  • Embodiments of the present invention further disclose the use of the method described above for producing a molded epoxy composite article.
  • FIG. 1 shows the temperature rise during gel time testing.
  • the present invention relates to cycloaliphatic carbonates as reactive diluents in epoxy resins for decreasing the exotherm temperature of cast epoxy formulations, thus allowing an increase in the temperature(s) of the initial components.
  • the ability to increase the initial component temperature(s) while avoiding degradation and other ill-effects caused by too-high exotherm temperature(s) provides a significant further viscosity reduction and the benefits that such a reduction provides.
  • Such a viscosity reduction can also allow a further decrease in the level of reactive diluent, which can provide increases in certain thermal and mechanical properties. This use of these reactive diluents may have the advantages of lower ecotoxicity, less thermal degradation of the material in larger casts and shortened cycle times over epoxy systems that use other diluents.
  • Embodiments of the present invention disclose a method for limiting peak exotherm temperatures in an epoxy system.
  • the method comprises the step of combining an amine hardener, an epoxy and a diluent to form an epoxy system.
  • the amine hardener of the present invention may include any amine hardener suitable for use in epoxy systems.
  • Preferred amine hardeners include aliphatic amines having amine-hydrogen functionality greater than two amine hydrogens per molecule.
  • the amine or amine blend can contain both a polyetheramine and a cycloaliphatic amine.
  • the amine blend can be of a commercially available polyetheramine such as JEFFAMINE® D-230 amine (commercially available from the Huntsman Corporation, JEFFAMINE is a registered trademark of Huntsman Corporation) and isophorone diamine.
  • JEFFAMINE® D-230 amine commercially available from the Huntsman Corporation, JEFFAMINE is a registered trademark of Huntsman Corporation
  • isophorone diamine isophorone diamine.
  • the epoxy system of the present invention further comprises an epoxy.
  • Common epoxies that are particularly useful are aromatic glycidyl ethers based upon bisphenol A and/or bisphenol F.
  • the bisphenol A based epoxies are particularly economical and reactive enough to provide reasonable curing times with amine hardeners.
  • the epoxy resins may consist of multifunctional polyglycidyl ethers of dihydric phenols.
  • ARALDITE® PY 302-2 epoxy resin, a blend of Bisphenol A and Bisphenol F based resins, is a commercially available epoxy from the Huntsman Corporation of The Woodlands, Tex. (ARALDITE is a registered trademark of Huntsman Corporation).
  • ARALDITE is a registered trademark of Huntsman Corporation.
  • Epoxy systems of the present invention further comprise a diluent.
  • the diluent may include ethylene carbonate, propylene carbonate, butylene carbonate, delta-valerolactam, delta-valerolactone, gamma valerolactone, butyrolactam, beta butyrolactone, gamma butyrolactone, and combinations thereof.
  • the diluent is propylene carbonate.
  • the diluent may include several other small cyclic compounds such as: butyrolactam (a.k.a. 2-pyrrolidinone), beta-butyrolactone, gamma-butyrolactam, delta-valerolactam, delta-valerolactone, gamma-valerolactone, and combinations thereof.
  • the preferred levels of diluents will be at levels of less than about thirty weight percent due to their effect in reducing the glass transition temperatures of the cured polymers.
  • sufficient amounts of the compounds must be used in order to have enough to significantly decrease the exotherm temperature, thus it seems likely that levels greater than about two weight percent would be preferred.
  • Typical diluents used in epoxy systems are glycidyl ethers, such as diglycidyl ether of 1,4-butane diol (aliphatic) or phenyl glycidyl ether (aromatic).
  • the diglycidyl ether of 1,4-butane diol is typically used as a diluent in wind blade applications.
  • Embodiments of the present invention may replace a portion, if not all, of the glycidyl ether diluents with the diluents of the present invention.
  • diluents disclosed herein in place of epoxy functional diluents, such as the diglycidyl ether of 1,4-butanediol, in composite wind blade formulations may allow a manufacturer to heat the epoxy system a little hotter without exceeding a desired exothermic temperature limit. This may also shorten cycle times for production of items such as wind blades.
  • the epoxy systems disclosed herein are substantially free of an aliphatic glycidyl ether diluent.
  • the term “substantially free of an aliphatic glycidyl ether” or “substantially free of 1,4-butane diol” refers to epoxy systems that do not include any aliphatic glycidyl ether in the final composition, but may include minimal amounts of residual aliphatic glycidyl ether that is present in any remaining solvent or residual amounts of aliphatic glycidyl ether that leaches from any containers, molds or glassware used to synthesize and/or store the compositions.
  • substantially free of an aliphatic glycidyl ether refers to an aliphatic glycidyl ether content of less than about 0.12% by weight total in the final epoxy system, more particularly less than about 0.09% by weight in the final epoxy system.
  • residual amounts of aliphatic glycidyl ether may be present in the final epoxy system, the residual amount does not impart, or retract from, the physical properties, e.g., reduces the maximum exotherm temperature, increases the cured glass transition temperature of the epoxy system, etc.
  • any residual amounts of aliphatic glycidyl ether that are present do not contribute appreciable amounts of toxic substances to be considered a health hazard.
  • Embodiments of the present invention further comprise the step of heating the epoxy system.
  • the diluent-containing epoxy systems may have reduced exothermicity (i.e. those exhibiting lower peak exotherm temperatures), may be heated to higher initial temperatures, thus allowing for decreased amounts of diluents and/or higher molding temperatures with subsequent improvements in processing or thermal and/or mechanical performance. Any temperature suitable for molding that does not generate sufficient heat to cause problems such as outgassing, charring, discoloration, etc. is acceptable for embodiments of the present invention.
  • Embodiments of the present invention may further comprise the step of injecting, filling, or infusing the epoxy system into a mold.
  • This mold may be for such articles of manufacture such as a wind blade.
  • epoxy systems may further comprise one or more reactivity agents.
  • a reactivity agent such as glycerin carbonate adds a particularly short gel time and high exotherm temperature.
  • other carbonates not known for exotherm reduction, such as glycerin carbonate, may also be used in the formulation as a means of adjusting reactivity.
  • Other means of adjusting reactivity such as addition of glycerin, N-aminoethyl piperazine, or other reactive amines, commonly known to those skilled in the art, may also be used in conjunction with the methods disclosed herein and are herein referred to as “reactivity agents.”
  • epoxy systems may further comprise one or more additives.
  • Additives may comprise various processing aids, fillers, stabilizers, additives, adjuvants, and combinations thereof commonly used in curable epoxy formulations.
  • Embodiments of the present invention further teach an article of manufacture produced by the method described above.
  • the article of manufacture is a wind blade.
  • Embodiments of the present invention further teach the use of the method described above to produce a molded epoxy composite article.
  • the epoxy composite article is a composite blade used in the generation of electricity, particularly from the wind.
  • FIG. 1 shows the temperature rise during gel time testing (200 g).
  • the lines with the hollow triangle and square data points have respectively 10% and 5% by weight DY-D. Note that at both usage levels, the peak temperatures of the DY-D containing formulations exceed those of either of the PC containing formulations.
  • the curve at the left with the solid circle data points is of a generally similar formulation except it contains ten weight percent in the resin of glycerin carbonate (GC). The great exotherm temperature is due to the faster reaction caused by catalysis of the epoxide-amine reaction by the hydroxyl group of the glycerin carbonate. Thus this carbonate might be used in admixture with other diluents to speed curing and increase exotherm temperatures when such increases pose no problems.

Abstract

Embodiments of the present invention disclose a method for limiting peak exotherm temperatures in epoxy systems comprising the step of: combining an amine hardener, an epoxy and a diluent to form an epoxy system, wherein the diluent is selected from the group consisting of: ethylene carbonate, propylene carbonate, butylene carbonate, delta-valerolactam, delta-valerolactone, gamma valerolactone, butyrolactam, beta butyrolactone, gamma butyrolactone, and combinations thereof.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application claims priority to U.S. Pat. App. Ser. No. 61/312,924, filed Mar. 11, 2010, which is incorporated herein by reference.
  • STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT
  • Not applicable.
  • BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • The present invention relates generally to methods of producing epoxy resin systems and more particularly to the use of cycloaliphatic carbonates as reactive diluents in epoxy resin systems.
  • 2. Background of the Invention
  • Formulators of epoxy resin systems have long used various means for reducing the viscosity of formulations in order to effectively utilize the performance benefits ascribable to cured epoxy resins, relative to other available chemistries. For many epoxy resin applications, low viscosities provide desired benefits such as improvements in 1) mixing, 2) wetting (of surfaces, fillers, fibers, etc), 3) crack injection, 4) application (e.g. by roller, trowel, spray, etc.), and 5) infusion (e.g. for porous structure consolidation, preforms for composites, etc.).
  • Lower molecular weight, lower viscosity compounds, termed “diluents,” are commonly added to epoxy formulations, commonly on the epoxy resin side of two-part formulations, for viscosity reduction. Diluents that polymerize into the system, known as reactive diluents, are preferred over the use of non-reactive diluents, since mechanical and thermal property reductions in the cured resin are less severe for reactive diluents. Property reductions become greater as diluent levels are increased, thus there is often a trade-off between achieving the desired low viscosity and maintaining the required properties in the cured resin. For this reason, decreasing viscosity while minimizing the level of diluent used is an ongoing goal as formulators simultaneously search for diluents having either greater efficiency or show lower property reduction.
  • One relatively simple viscosity reduction method is heating the epoxy resin and hardener. This method is of limited utility in some cases since the heat increases the polymerization rate and unacceptably shortens the available processing time. Also, the higher initial temperatures of the reactants lead to higher exotherm temperatures that may exceed allowable limits. Too high of an exotherm temperature can lead to a variety of problems. In such applications where the mass of the reactive epoxy mixtures is great enough that the heat of reaction raises the temperature excessively, problems can arise from a variety of causes such as 1) thermal expansion of the components, 2) expansion of entrained gases, 3) volatilization of lower boiling components, 4) thermal degradation of the material (particularly in the thickest sections which become hottest), 5) sagging, 6) cycle time lengthening (e.g. due to needed cooling to attain rigidity for de-molding), 7) added thermal load in buildings where manufacturing is being done, etc. Thus, ways of decreasing the peak exotherm temperature of epoxy formulations are of benefit in may circumstances.
  • Decreasing the peak exotherm temperature could be done in a variety of ways, such as: 1) pre-cooling of components, 2) incorporation of phase change materials, 3) direct cooling during polymerization, 4) substitution of reactants having lower reactivity, 5) addition of fillers (in greater quantity and/or of higher heat capacity or thermal conductivity), etc. For certain applications several of these means of exotherm reduction are unacceptable. For instance, pre-cooling of components may raise viscosity and prevent good mixing, wetting, mold-filling, etc. Phase change materials may be expensive, chemically reactive, soluble once liquid, change at non-optimum temperatures, etc. Direct cooling is poorly effective in the thickest regions and may create additional residual stresses due to thermal expansion mismatches between components. Components having lower reactivity are also typically slower curing and require additional heat for full polymerization, thus they create a need for longer cycle times or higher bake temperatures. Filler incorporation greatly affects the mechanical properties and thus may be specified and fixed. Additionally, though higher filler levels decrease exotherm temperatures, there are practical upper limits of use level, based on both processing and performance, which cannot be exceeded.
  • Reactive diluents have long enabled the use of epoxy formulations in new applications or as a way of achieving processing improvements in existing applications. In the case of amine-cured epoxy resin systems, such diluents have included low molecular weight epoxies, low molecular weight compounds with reactive unsaturation (such as acrylates), lactones, and cycloaliphatic carbonates (U.S. Pat. No. 3,305,527; Feb. 21, 1967), among others. Of these, low molecular weight epoxies and acrylates are known to have adverse health effects on some people exposed to them. Aromatic glycidyl ethers, such as phenyl glycidyl ether, are particularly known for causing allergic sensitization.
  • Additionally, in some applications, such as the molding of large composite wind blades, decreasing or eliminating the use of common epoxy diluents (such as the diglycidyl ether of 1,4-butane diol) is beneficial to the thermal and mechanical properties of the cured resin but some minimum use level is necessary since viscosity reduction via heating is limited by the increase in maximum exotherm temperature that occurs when the temperatures of the reactive components are raised.
  • BRIEF SUMMARY OF SOME OF THE PREFERRED EMBODIMENTS
  • A diluent that reduces the maximum exotherm temperature caused by the epoxy resin polymerization reaction would be of particular utility since it would allow one to increase the temperature of the reactants prior to blending. The ability to use higher resin formulation component temperatures reduces the need for diluents. Thus using a diluent that reduces the maximum exotherm temperature allows one to decrease the component viscosities by increasing the temperature(s) of the resin and hardener. At the same time this decreases the need for diluent, allowing a reduction in diluent level that improves the properties of the cured resin system, in particular by increasing the cured glass transition temperature.
  • Embodiments of the present invention disclose a method for limiting peak exotherm temperatures in epoxy systems comprising the steps of: combining an amine hardener, an epoxy and a diluent to form an epoxy system, wherein the diluent is selected from the group consisting of: ethylene carbonate, propylene carbonate, butylene carbonate, delta-valerolactam, delta-valerolactone, gamma valerolactone, butyrolactam, beta butyrolactone, gamma butyrolactone, and combinations thereof.
  • Embodiments of the present invention disclose an article of manufacture, such as a composite rotor blade for use in wind turbines, also termed a wind blade, produced by the method described above.
  • Embodiments of the present invention further disclose the use of the method described above for producing a molded epoxy composite article.
  • The foregoing has outlined rather broadly the features and technical advantages of the present invention in order that the detailed description of the invention that follows may be better understood. Additional features and advantages of the invention will be described hereinafter that form the subject of the claims of the invention. It should be appreciated by those skilled in the art that the conception and the specific embodiments disclosed may be readily utilized as a basis for modifying or designing other structures for carrying out the same purposes of the present invention. It should also be realized by those skilled in the art that such equivalent constructions do not depart from the spirit and scope of the invention as set forth in the appended claims
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The following figure has been added to further clarify properties of the present invention.
  • FIG. 1 shows the temperature rise during gel time testing.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • The present invention relates to cycloaliphatic carbonates as reactive diluents in epoxy resins for decreasing the exotherm temperature of cast epoxy formulations, thus allowing an increase in the temperature(s) of the initial components. The ability to increase the initial component temperature(s) while avoiding degradation and other ill-effects caused by too-high exotherm temperature(s) provides a significant further viscosity reduction and the benefits that such a reduction provides. Such a viscosity reduction can also allow a further decrease in the level of reactive diluent, which can provide increases in certain thermal and mechanical properties. This use of these reactive diluents may have the advantages of lower ecotoxicity, less thermal degradation of the material in larger casts and shortened cycle times over epoxy systems that use other diluents.
  • Embodiments of the present invention disclose a method for limiting peak exotherm temperatures in an epoxy system. The method comprises the step of combining an amine hardener, an epoxy and a diluent to form an epoxy system.
  • The amine hardener of the present invention may include any amine hardener suitable for use in epoxy systems. Preferred amine hardeners include aliphatic amines having amine-hydrogen functionality greater than two amine hydrogens per molecule. In some embodiments the amine or amine blend can contain both a polyetheramine and a cycloaliphatic amine. In an embodiment, the amine blend can be of a commercially available polyetheramine such as JEFFAMINE® D-230 amine (commercially available from the Huntsman Corporation, JEFFAMINE is a registered trademark of Huntsman Corporation) and isophorone diamine. One skilled in the art, with the benefit of this disclosure will recognize suitable amine hardeners for use in the present invention.
  • The epoxy system of the present invention further comprises an epoxy. Common epoxies that are particularly useful are aromatic glycidyl ethers based upon bisphenol A and/or bisphenol F. The bisphenol A based epoxies are particularly economical and reactive enough to provide reasonable curing times with amine hardeners. In a preferred embodiment, the epoxy resins may consist of multifunctional polyglycidyl ethers of dihydric phenols. ARALDITE® PY 302-2 epoxy resin, a blend of Bisphenol A and Bisphenol F based resins, is a commercially available epoxy from the Huntsman Corporation of The Woodlands, Tex. (ARALDITE is a registered trademark of Huntsman Corporation). One skilled in the art, with the benefit of this disclosure, will recognize other suitable epoxies for use in this invention.
  • Epoxy systems of the present invention further comprise a diluent. In an embodiment, the diluent may include ethylene carbonate, propylene carbonate, butylene carbonate, delta-valerolactam, delta-valerolactone, gamma valerolactone, butyrolactam, beta butyrolactone, gamma butyrolactone, and combinations thereof. In an embodiment, the diluent is propylene carbonate. In another embodiment, the diluent may include several other small cyclic compounds such as: butyrolactam (a.k.a. 2-pyrrolidinone), beta-butyrolactone, gamma-butyrolactam, delta-valerolactam, delta-valerolactone, gamma-valerolactone, and combinations thereof.
  • It is anticipated that in most cases, the preferred levels of diluents will be at levels of less than about thirty weight percent due to their effect in reducing the glass transition temperatures of the cured polymers. On the other hand, sufficient amounts of the compounds must be used in order to have enough to significantly decrease the exotherm temperature, thus it seems likely that levels greater than about two weight percent would be preferred.
  • Typical diluents used in epoxy systems are glycidyl ethers, such as diglycidyl ether of 1,4-butane diol (aliphatic) or phenyl glycidyl ether (aromatic). The diglycidyl ether of 1,4-butane diol is typically used as a diluent in wind blade applications. Embodiments of the present invention may replace a portion, if not all, of the glycidyl ether diluents with the diluents of the present invention. The use of diluents disclosed herein, in place of epoxy functional diluents, such as the diglycidyl ether of 1,4-butanediol, in composite wind blade formulations may allow a manufacturer to heat the epoxy system a little hotter without exceeding a desired exothermic temperature limit. This may also shorten cycle times for production of items such as wind blades.
  • In accordance with certain embodiments, the epoxy systems disclosed herein are substantially free of an aliphatic glycidyl ether diluent. As used herein the term “substantially free of an aliphatic glycidyl ether” or “substantially free of 1,4-butane diol” refers to epoxy systems that do not include any aliphatic glycidyl ether in the final composition, but may include minimal amounts of residual aliphatic glycidyl ether that is present in any remaining solvent or residual amounts of aliphatic glycidyl ether that leaches from any containers, molds or glassware used to synthesize and/or store the compositions. In certain examples, “substantially free of an aliphatic glycidyl ether” refers to an aliphatic glycidyl ether content of less than about 0.12% by weight total in the final epoxy system, more particularly less than about 0.09% by weight in the final epoxy system. Though residual amounts of aliphatic glycidyl ether may be present in the final epoxy system, the residual amount does not impart, or retract from, the physical properties, e.g., reduces the maximum exotherm temperature, increases the cured glass transition temperature of the epoxy system, etc. In addition, any residual amounts of aliphatic glycidyl ether that are present do not contribute appreciable amounts of toxic substances to be considered a health hazard.
  • Embodiments of the present invention further comprise the step of heating the epoxy system. The diluent-containing epoxy systems may have reduced exothermicity (i.e. those exhibiting lower peak exotherm temperatures), may be heated to higher initial temperatures, thus allowing for decreased amounts of diluents and/or higher molding temperatures with subsequent improvements in processing or thermal and/or mechanical performance. Any temperature suitable for molding that does not generate sufficient heat to cause problems such as outgassing, charring, discoloration, etc. is acceptable for embodiments of the present invention.
  • Embodiments of the present invention may further comprise the step of injecting, filling, or infusing the epoxy system into a mold. This mold may be for such articles of manufacture such as a wind blade.
  • In another embodiment of the present invention, epoxy systems may further comprise one or more reactivity agents. When compared to a system containing a similar level of propylene carbonate, the use of a reactivity agent such as glycerin carbonate adds a particularly short gel time and high exotherm temperature. For this reason, other carbonates, not known for exotherm reduction, such as glycerin carbonate, may also be used in the formulation as a means of adjusting reactivity. Other means of adjusting reactivity, such as addition of glycerin, N-aminoethyl piperazine, or other reactive amines, commonly known to those skilled in the art, may also be used in conjunction with the methods disclosed herein and are herein referred to as “reactivity agents.”
  • In embodiments of the present invention, epoxy systems may further comprise one or more additives. Additives may comprise various processing aids, fillers, stabilizers, additives, adjuvants, and combinations thereof commonly used in curable epoxy formulations. One skilled in the art, with the benefit of this invention, will recognize other suitable additives for use with the present invention.
  • Embodiments of the present invention further teach an article of manufacture produced by the method described above. In an embodiment, the article of manufacture is a wind blade.
  • Embodiments of the present invention further teach the use of the method described above to produce a molded epoxy composite article. In an embodiment, the epoxy composite article is a composite blade used in the generation of electricity, particularly from the wind.
  • Embodiments of the present invention will be further illustrated by a consideration of the following examples, which are intended to be exemplary of the invention.
  • EXAMPLES Example 1
  • When 200 g masses of an epoxy formulation, having 15% (resin side) of either propylene carbonate or diglycidylether of 1,4-butanediol as a diluent, and an amine curing agent containing a polyetheramine and a cycloaliphatic amine were allowed to react at room temperature, the peak exotherm temperatures measured near the center of the mass were 35° C. and 73° C., respectively. Obviously the use of propylene carbonate as a diluent can limit the exothermic temperature rise compared to the diglycidylether of 1,4-butanediol. In larger masses, such as those used in composite applications, the difference between the two maximum exotherm temperatures is expected to become even larger.
  • Example 2
  • FIG. 1 shows the temperature rise during gel time testing (200 g).
  • Focusing on the four curves on the right side of the figure, they are stoichiometric mixtures of 1) bisphenol A/F epoxy resin, 2) an amine blend (20 wt.% isophorone diamine (IPDA) +80 wt. % polyetheramine (from Huntsman Corporation under the designation XTJ-678) and 3) either propylene carbonate (PC) or diglycidyl ether of 1,4-butanediol diluents (DY-D). The weight percentage diluent levels, based on the diluent plus the epoxy resin, are shown in the boxes in the figure. In particular, the lines with the hollow diamond and hexagonal data points have respectively 10% and 5% by weight PC. The lines with the hollow triangle and square data points have respectively 10% and 5% by weight DY-D. Note that at both usage levels, the peak temperatures of the DY-D containing formulations exceed those of either of the PC containing formulations. The curve at the left with the solid circle data points is of a generally similar formulation except it contains ten weight percent in the resin of glycerin carbonate (GC). The great exotherm temperature is due to the faster reaction caused by catalysis of the epoxide-amine reaction by the hydroxyl group of the glycerin carbonate. Thus this carbonate might be used in admixture with other diluents to speed curing and increase exotherm temperatures when such increases pose no problems.
  • Although the present invention and its advantages have been described in detail, it should be understood that various changes, substitutions and alterations may be made herein without departing from the spirit and scope of the invention as defined by the appended claims.

Claims (19)

What is claimed is:
1. A method for limiting peak exotherm temperatures in an epoxy system comprising the step of:
combining an amine hardener, an epoxy, and a diluent to form an epoxy system;
wherein the diluent is selected from the group consisting of: ethylene carbonate, propylene carbonate, butylene carbonate, delta-valerolactam, delta-valerolactone, gamma valerolactone, butyrolactam, beta butyrolactone, gamma butyrolactone, and combinations thereof.
2. The method of claim 1 wherein the diluent is propylene carbonate
3. The method of claim 1 wherein the diluent is selected from the group consisting of: delta-valerolactam, delta-valerolactone, gamma valerolactone, butyrolactam, beta butyrolactone, gamma butyrolactone, and combinations thereof.
4. The method of claim 1 wherein the epoxy system is substantially free of an aliphatic glycidyl ether.
5. The method of claim 4 wherein the aliphatic glycidyl ether comprises a diglycidyl ether of 1,4-butane diol.
6. The method of claim 1 wherein the amine hardener comprises an aliphatic amine having an amine-hydrogen functionality greater than two amine hydrogens per molecule.
7. The method of claim 1 wherein the epoxy comprises a multifunctional polyglycidyl ether of dihydric phenol.
8. The method of claim 1 further comprising the step of heating the epoxy system.
9. The method of claim 1 further comprising the step of injecting, filling, or infusing the epoxy system into a mold.
10. The method of claim 9 wherein the mold is a wind blade mold.
11. The method of claim 1, wherein the diluent has a weight percent in the epoxy system in the range of from about two percent to about thirty percent.
12. The method of claim 1 further comprising the step of adding a reactivity agent to the epoxy system.
13. The method of claim 12 wherein the reactivity agent is selected from the group consisting of: glycerin carbonate, glycerin, N-aminoethyl piperazine, and combinations thereof.
14. The method of claim 1 wherein the epoxy system further comprises an additive.
15. The method of claim 14 wherein the additive is selected from the group consisting of: a processing aid, a filler, a stabilizer, an additive, an adjuvant and combinations thereof.
16. An article of manufacture produced by the method of claim 1.
17. The article of manufacture of claim 16, wherein the article of manufacture comprises a wind blade.
18. The use of the method of claim 1 to produce a molded epoxy composite article.
19. The use of the method of claim 16 wherein the epoxy composite article comprises a composite blade used in the generation of electricity.
US13/583,255 2010-03-11 2011-03-03 Cycloaliphatic carbonates as reactive diluents in epoxy resins Abandoned US20130203894A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/583,255 US20130203894A1 (en) 2010-03-11 2011-03-03 Cycloaliphatic carbonates as reactive diluents in epoxy resins

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US31292410P 2010-03-11 2010-03-11
US13/583,255 US20130203894A1 (en) 2010-03-11 2011-03-03 Cycloaliphatic carbonates as reactive diluents in epoxy resins
PCT/US2011/026939 WO2011112405A1 (en) 2010-03-11 2011-03-03 Cycloaliphatic carbonates as reactive diluents in epoxy resins

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2011/026939 A-371-Of-International WO2011112405A1 (en) 2010-03-11 2011-03-03 Cycloaliphatic carbonates as reactive diluents in epoxy resins

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/364,801 Continuation US11130836B2 (en) 2010-03-11 2016-11-30 Cycloaliphatic carbonates as reactive diluents in epoxy resins

Publications (1)

Publication Number Publication Date
US20130203894A1 true US20130203894A1 (en) 2013-08-08

Family

ID=44563786

Family Applications (2)

Application Number Title Priority Date Filing Date
US13/583,255 Abandoned US20130203894A1 (en) 2010-03-11 2011-03-03 Cycloaliphatic carbonates as reactive diluents in epoxy resins
US15/364,801 Active 2031-07-02 US11130836B2 (en) 2010-03-11 2016-11-30 Cycloaliphatic carbonates as reactive diluents in epoxy resins

Family Applications After (1)

Application Number Title Priority Date Filing Date
US15/364,801 Active 2031-07-02 US11130836B2 (en) 2010-03-11 2016-11-30 Cycloaliphatic carbonates as reactive diluents in epoxy resins

Country Status (2)

Country Link
US (2) US20130203894A1 (en)
WO (1) WO2011112405A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201122296D0 (en) 2011-12-23 2012-02-01 Cytec Tech Corp Composite materials
KR20140135759A (en) * 2012-02-22 2014-11-26 바스프 에스이 Blends for composites
US9193862B2 (en) 2012-02-22 2015-11-24 Basf Se Blends for composite materials
GB201203341D0 (en) 2012-02-27 2012-04-11 Cytec Technology Group Curable resin composition and short-cure method
EP3607007A1 (en) * 2017-03-24 2020-02-12 3M Innovative Properties Company Aqueous primer composition and related methods
AT521316A1 (en) * 2018-06-07 2019-12-15 All Bones Gmbh Polymer mixture and its use in 3D printing

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2847342A (en) * 1957-03-07 1958-08-12 Gen Electric Ethoxyline resin compositions and their preparation
US3305527A (en) * 1964-12-09 1967-02-21 Celanese Coatings Company Inc Epoxide resin compositions
US4189564A (en) * 1978-10-19 1980-02-19 Texaco Development Corporation Non-crystallizing epoxy resin accelerator
US7049387B2 (en) * 2001-10-16 2006-05-23 Georgia-Pacific Resins, Inc. Cure accelerator system for phenolic resins
EP1852479A1 (en) * 2006-05-05 2007-11-07 M + S Metallschutz GmbH Method for protecting dynamically loaded surfaces and coating therefor
US20080197526A1 (en) * 2007-02-16 2008-08-21 Asjad Shafi Process for Preparing Composites Using Epoxy Resin Formulations
US20080299395A1 (en) * 2005-09-28 2008-12-04 Strange Andrew C Linerless Prepregs, Composite Articles Therefrom, and Related Methods

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4269879A (en) * 1979-04-20 1981-05-26 The Dampney Company Solventless epoxy-based coating composition, method of applying and article coated therewith
GB9028037D0 (en) * 1990-12-24 1991-02-13 Dow Rheinmuenster Stable amine advanced epoxy resin compositions
EP1546227B1 (en) * 2002-08-30 2009-12-23 Huntsman Petrochemical Corporation Polyether polyamine agents and mixtures therefor
US20090280709A1 (en) * 2004-09-01 2009-11-12 Ppg Industries Ohio, Inc. Polyurethanes, Articles and Coatings Prepared Therefrom and Methods of Making the Same
ATE397634T1 (en) * 2005-02-18 2008-06-15 Henkel Kgaa AMINE CURING EPOXY RESIN COMPOSITIONS HAVING A LOW SHRINKAGE LACTONE
EP1904578B1 (en) * 2005-07-15 2009-12-02 Huntsman Advanced Materials (Switzerland) GmbH Toughened compositon
CN101616793B (en) * 2007-02-22 2015-11-25 胡茨曼石油化学公司 Accelerators for polymerization of epoxy resins

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2847342A (en) * 1957-03-07 1958-08-12 Gen Electric Ethoxyline resin compositions and their preparation
US3305527A (en) * 1964-12-09 1967-02-21 Celanese Coatings Company Inc Epoxide resin compositions
US4189564A (en) * 1978-10-19 1980-02-19 Texaco Development Corporation Non-crystallizing epoxy resin accelerator
US7049387B2 (en) * 2001-10-16 2006-05-23 Georgia-Pacific Resins, Inc. Cure accelerator system for phenolic resins
US20080299395A1 (en) * 2005-09-28 2008-12-04 Strange Andrew C Linerless Prepregs, Composite Articles Therefrom, and Related Methods
EP1852479A1 (en) * 2006-05-05 2007-11-07 M + S Metallschutz GmbH Method for protecting dynamically loaded surfaces and coating therefor
US20080197526A1 (en) * 2007-02-16 2008-08-21 Asjad Shafi Process for Preparing Composites Using Epoxy Resin Formulations

Also Published As

Publication number Publication date
WO2011112405A1 (en) 2011-09-15
US20170081465A1 (en) 2017-03-23
US11130836B2 (en) 2021-09-28

Similar Documents

Publication Publication Date Title
US11130836B2 (en) Cycloaliphatic carbonates as reactive diluents in epoxy resins
EP2961785B1 (en) Anhydride accelerators for epoxy resin systems
JP5676474B2 (en) Divinylarene dioxide compound for vacuum resin infusion molding
WO2003040206A1 (en) Epoxy resin compositions for fiber-reinforced composite materials, process for production of the materials and fiber-reinforced composite materials
JP2014506622A (en) New curing agent for epoxy resin
EP2180012A1 (en) Curable epoxy resin and dicyandiamide solution
EP1602678B9 (en) Cure accelerators
JP2016504476A (en) 2,2 ', 6,6'-tetramethyl-4,4'-methylenebis (cyclohexylamine) as a curing agent for epoxy resins
WO2004078843A1 (en) Highly elastic epoxy resin composition
Varley et al. Effect of aromatic substitution on the cure reaction and network properties of anhydride cured triphenyl ether tetraglycidyl epoxy resins
KR20190104423A (en) Thermosetting epoxy resin composition and product obtained therefrom for the manufacture of electrical engineering products
KR101962932B1 (en) Use of N,N’-dimethyl-urones and method for curing epoxy resin compositions
JP6174461B2 (en) Epoxy resin composition and cured product
US11332571B2 (en) Epoxy resin system for structural composites
US20230062899A1 (en) Epoxy resin composition with epoxy groups and active hydrogens having different molar equivalents
JP5526700B2 (en) Polymaleimide composition
JPH0776616A (en) Epoxy resin composition for prepreg and prepreg
RU2479601C1 (en) Cold curing epoxide composition
RU2447104C1 (en) Epoxide compound
JPH01247414A (en) Epoxy resin composition for sealing optical semiconductor
JPS6028425A (en) Prepreg for resin composition

Legal Events

Date Code Title Description
AS Assignment

Owner name: HUNTSMAN PETROCHEMICAL LLC, TEXAS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BURTON, BRUCE L.;REEL/FRAME:028912/0882

Effective date: 20120827

STCB Information on status: application discontinuation

Free format text: ABANDONED -- AFTER EXAMINER'S ANSWER OR BOARD OF APPEALS DECISION