US20130199146A1 - Cordless mower including cooling air flow arrangement - Google Patents

Cordless mower including cooling air flow arrangement Download PDF

Info

Publication number
US20130199146A1
US20130199146A1 US13/804,898 US201313804898A US2013199146A1 US 20130199146 A1 US20130199146 A1 US 20130199146A1 US 201313804898 A US201313804898 A US 201313804898A US 2013199146 A1 US2013199146 A1 US 2013199146A1
Authority
US
United States
Prior art keywords
drive motor
mower
deck
battery
blade
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/804,898
Inventor
Richard P. Rosa
David M. Shaver
Patrick Marcil
Joshua D. Eaton
Mark Slobodian
James D. Marshall
Michael A. Milligan
Patrick W. Mooney
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Black and Decker Inc
Original Assignee
Black and Decker Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US12/426,499 external-priority patent/US20090266042A1/en
Priority claimed from US29/361,418 external-priority patent/USD642119S1/en
Priority claimed from US12/838,898 external-priority patent/US8653786B2/en
Application filed by Black and Decker Inc filed Critical Black and Decker Inc
Priority to US13/804,898 priority Critical patent/US20130199146A1/en
Publication of US20130199146A1 publication Critical patent/US20130199146A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D34/00Mowers; Mowing apparatus of harvesters
    • A01D34/01Mowers; Mowing apparatus of harvesters characterised by features relating to the type of cutting apparatus
    • A01D34/412Mowers; Mowing apparatus of harvesters characterised by features relating to the type of cutting apparatus having rotating cutters
    • A01D34/63Mowers; Mowing apparatus of harvesters characterised by features relating to the type of cutting apparatus having rotating cutters having cutters rotating about a vertical axis
    • A01D34/67Mowers; Mowing apparatus of harvesters characterised by features relating to the type of cutting apparatus having rotating cutters having cutters rotating about a vertical axis hand-guided by a walking operator
    • A01D34/68Mowers; Mowing apparatus of harvesters characterised by features relating to the type of cutting apparatus having rotating cutters having cutters rotating about a vertical axis hand-guided by a walking operator with motor driven cutters or wheels
    • A01D34/69Mowers; Mowing apparatus of harvesters characterised by features relating to the type of cutting apparatus having rotating cutters having cutters rotating about a vertical axis hand-guided by a walking operator with motor driven cutters or wheels with motor driven wheels
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D34/00Mowers; Mowing apparatus of harvesters
    • A01D34/01Mowers; Mowing apparatus of harvesters characterised by features relating to the type of cutting apparatus
    • A01D34/412Mowers; Mowing apparatus of harvesters characterised by features relating to the type of cutting apparatus having rotating cutters
    • A01D34/63Mowers; Mowing apparatus of harvesters characterised by features relating to the type of cutting apparatus having rotating cutters having cutters rotating about a vertical axis
    • A01D34/81Casings; Housings
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D34/00Mowers; Mowing apparatus of harvesters
    • A01D34/01Mowers; Mowing apparatus of harvesters characterised by features relating to the type of cutting apparatus
    • A01D34/412Mowers; Mowing apparatus of harvesters characterised by features relating to the type of cutting apparatus having rotating cutters
    • A01D34/63Mowers; Mowing apparatus of harvesters characterised by features relating to the type of cutting apparatus having rotating cutters having cutters rotating about a vertical axis
    • A01D34/82Other details
    • A01D34/824Handle arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • B60L1/003Supplying electric power to auxiliary equipment of vehicles to auxiliary motors, e.g. for pumps, compressors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0061Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electrical machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/52Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells characterised by DC-motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/66Arrangements of batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/80Exchanging energy storage elements, e.g. removable batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/21Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having the same nominal voltage
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/249Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for aircraft or vehicles, e.g. cars or trains
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D34/00Mowers; Mowing apparatus of harvesters
    • A01D34/006Control or measuring arrangements
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D34/00Mowers; Mowing apparatus of harvesters
    • A01D34/01Mowers; Mowing apparatus of harvesters characterised by features relating to the type of cutting apparatus
    • A01D34/412Mowers; Mowing apparatus of harvesters characterised by features relating to the type of cutting apparatus having rotating cutters
    • A01D34/63Mowers; Mowing apparatus of harvesters characterised by features relating to the type of cutting apparatus having rotating cutters having cutters rotating about a vertical axis
    • A01D34/76Driving mechanisms for the cutters
    • A01D34/78Driving mechanisms for the cutters electric
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D42/00Mowers convertible to apparatus for purposes other than mowing; Mowers capable of performing operations other than mowing
    • A01D42/005Mulching
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D69/00Driving mechanisms or parts thereof for harvesters or mowers
    • A01D69/02Driving mechanisms or parts thereof for harvesters or mowers electric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/40Working vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/12Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/36Temperature of vehicle components or parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2250/00Driver interactions
    • B60L2250/24Driver interactions by lever actuation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • the present disclosure relates to lawn mowers and more specifically to a cordless electric lawn mower.
  • a cordless mower includes a deck, a rechargeable battery, a blade for cutting grass, a blade motor and a drive motor.
  • the deck is supported by front and rear wheels and has a top side, a bottom side, a front end and a rear end.
  • the rechargeable battery is supported on the deck.
  • the blade is on the bottom side of the deck and is coupled with a blade motor.
  • the drive motor is connected to the rear wheels for driving said rear wheels to move the mower and is located in a chamber at the rear of the mower adjacent the rear wheels.
  • the chamber has an opening therein to allow air to flow through.
  • a cordless mower includes a deck, a rechargeable battery, a drive motor, a speed lever and a control circuit.
  • the deck is supported by front and rear wheels and has a top side, a bottom side, a front end and a rear end.
  • the rechargeable battery is supported on said deck.
  • the drive motor is connected to the rear wheels for driving said rear wheels to move the mower.
  • the speed lever is controlled by a user to set the speed of the mower.
  • the control circuit is connected to the speed lever and controls the amount of current delivered from the battery to the drive motor. The control circuit monitors the drive motor and shuts off the drive motor when the current being delivered exceeds a predetermined current for a predetermined period of time.
  • a cordless mower includes a deck, a rechargeable battery, a drive motor, a blade motor and a handle.
  • the deck is supported by front and rear wheels and has a top side, a bottom side, a front end and a rear end.
  • the rechargeable battery is supported on said deck.
  • the drive motor is connected to the rear wheels for driving said rear wheels to move the mower.
  • the blade motor is coupled to a blade.
  • the handle is secured to the rear end of said deck.
  • the handle has a blade bail for controlling power to the blade motor and a drive bail for controlling power to said drive motor so that power to the blade motor and the drive motor are independently controlled.
  • a cordless mower includes a deck, a rechargeable battery, a blade for cutting grass and a mulch door.
  • the deck is supported by front and rear wheels and has a top side, a bottom side, a front end and a rear end.
  • the bottom side defines a cutting chamber and a discharge passage extending rearwardly from the cutting chamber to the rear of said mower.
  • the rechargeable battery is supported on said deck.
  • the blade is arranged within the cutting chamber.
  • the mulch door is positioned in said discharge passage and is movable between an open and closed position. The mulch door rotates about a vertical shaft that is connected to a knob located at a top side of the deck.
  • FIG. 1 is a schematic block diagram of an exemplary battery-powered mower constructed in accordance with the teachings of the present disclosure
  • FIG. 2 is a perspective view of an exemplary battery-powered lawn mower constructed in accordance with the teachings of the present disclosure
  • FIG. 3 is a partial perspective view of the exemplary battery-powered lawn mower shown in FIG. 2 in a first configuration
  • FIG. 4 is a partial perspective view of the exemplary battery-powered lawn mower shown in FIG. 2 ;
  • FIG. 5 is a partial perspective view of the exemplary battery-powered lawn mower shown in FIG. 2 in a second configuration
  • FIG. 6 is a perspective view of the exemplary battery-powered lawn mower shown in FIG. 2 with the battery being removed from the pocket;
  • FIG. 7 is a partial plan view of the exemplary battery-powered lawn mower shown in FIG. 2 with the battery removed to illustrate the pocket;
  • FIG. 8 is a perspective view of the battery of the exemplary battery-powered lawn mower shown in FIG. 2 ;
  • FIG. 9 is another perspective view of the battery of the exemplary battery-powered lawn mower shown in FIG. 2 ;
  • FIG. 10 is a bottom view of the battery of the exemplary battery-powered lawn mower shown in FIG. 2 ;
  • FIG. 11 is a partial perspective view of the battery of the exemplary battery-powered lawn mower shown in FIG. 2 with a portion of the battery housing removed to illustrate a series of cells housed therein;
  • FIG. 12 is a partial perspective view of a control of the exemplary battery-powered lawn mower shown in FIG. 2 ;
  • FIG. 13 is a perspective view of a safety key corresponding to the exemplary battery-powered lawn mower shown in FIG. 2 ;
  • FIG. 14 is a partial sectional view of the safety key of FIG. 13 ;
  • FIG. 15 is a partial perspective view of the battery of the exemplary battery-powered lawn mower shown in FIG. 2 with an exemplary charger cable;
  • FIG. 16 is a partial perspective view of the exemplary control assembly shown in FIG. 12 with an exemplary charger cable;
  • FIG. 17 is another partial perspective view of a control assembly of the exemplary battery-powered lawn mower shown in FIG. 2 ;
  • FIG. 18 is a partial plan view of the exemplary battery-powered lawn mower shown in FIG. 2 in a mulch configuration
  • FIG. 19 is a partial plan views of the exemplary battery-powered lawn mower shown in FIG. 2 in a discharge configuration
  • FIG. 20 is a partial perspective view of a drive mechanism of the exemplary battery-powered lawn mower shown in FIG. 2 ;
  • FIG. 21 is a partial perspective rear view of the exemplary battery-powered lawn mower shown in FIG. 2 showing a mulch door;
  • FIG. 22 is another partial perspective rear view of the exemplary battery-powered lawn mower shown in FIG. 2 showing a mulch door;
  • FIG. 23 is another partial perspective view of the exemplary battery-powered lawn mower shown in FIG. 2 ;
  • FIG. 24 is a partial perspective view of a mulch door rotation mechanism of the exemplary battery-powered lawn mower shown in FIG. 2 ;
  • FIG. 25 is a partial perspective view of a mulch door rotation mechanism of the exemplary battery-powered lawn mower shown in FIG. 2 ;
  • FIG. 26 is another partial perspective rear view of the exemplary battery-powered lawn mower shown in FIG. 2 ;
  • FIG. 27 is another partial perspective rear view of the exemplary battery-powered lawn mower shown in FIG. 2 ;
  • FIG. 28 is a partial perspective view of the exemplary battery-powered lawn mower shown in FIG. 2 with a portion of the deck removed;
  • FIG. 29 is a partial sectional view taken through the deck of the exemplary battery-powered lawn mower shown in FIG. 2 ;
  • FIG. 30 is a partial perspective view of a knob assembly of the exemplary battery-powered lawn mower shown in FIG. 2 ;
  • FIG. 31 is a side view of the exemplary battery-powered lawn mower shown in FIG. 2 in a storage configuration.
  • the mower 10 includes a battery 12 , a cutting mechanism 14 for driving blade(s) 16 , a drive mechanism 18 for driving wheels 30 , a control circuit 20 and a user interface 22 .
  • the battery 12 supplies power to the cutting mechanism 14 and the drive mechanism 18 , which in the exemplary embodiment shown is a blade motor 54 and a drive motor 56 , respectively.
  • the amount of power delivered to the drive mechanism 18 by the battery 12 is determined by the control circuit 20 which is managed by the user interface 22 .
  • the exemplary battery-powered lawn mower 10 includes a deck 50 that provides a mounting structure for various components of the mower 10 , including the blade motor 54 and the drive motor 56 , and generally forms the housing for the blade(s) 16 coupled to the blade motor 54 .
  • a shroud 13 is placed over the deck 50 to protect the internal components of the mower 10 .
  • the shroud 13 defines a pocket 51 that receives the battery 12 .
  • the battery 12 has a shape that corresponds to the shape of the pocket 51 such that the battery 12 fits snugly within the pocket 51 .
  • the pocket 51 includes a base portion 719 with a plurality of walls 715 arranged substantially perpendicular to the base portion 719 .
  • the shape of the battery 12 complements the shape of the pocket 51 such that the battery 12 can be inserted within the pocket in a single orientation.
  • Pocket 51 can define one or more recesses 712 A-D ( FIG. 7 ) that correspond to one or more projections 752 A-D ( FIGS. 9-10 ) on the battery 12 and one or more projections 714 A-C that correspond to one or more recesses 754 A-C defined by the battery 12 .
  • the battery 12 can be inserted within the pocket 51 only when the projection(s) 752 A-D, 714 A-C and recess(es) 754 A-C, 712 A-D are properly aligned. Furthermore, the projection(s) 752 A-D, 714 A-C and recess(es) 754 A-C, 712 A-D can assist with guiding the battery 12 to the proper positioning within the pocket 51 . Additionally, the walls 715 of pocket 51 can be tapered to assist in guiding the battery 12 to the proper positioning within the pocket 51 .
  • the location of the battery 12 is such that the mower 10 is well-balanced and stable.
  • the battery 12 (and pocket 51 ) is positioned rearward of the longitudinal center 702 of the deck 50 such that a user may more easily maneuver the mower 10 . This position puts more weight towards the rear of the mower, which provides increased traction to the rear drive wheel(s) 30 and also aids in tilting or lifting the front wheels off the ground for better maneuverability.
  • the battery 12 and pocket 51 may be positioned in the approximate center of the width of the deck 50 to increase stability and inhibit sideways tipping.
  • the blade motor 54 (and the axis of rotation of the blade 16 ) is arranged along the longitudinal center 702 of the deck 50 ( FIGS. 18 and 19 ).
  • the center 706 of the battery 12 /pocket 51 can be positioned rearward of the longitudinal center 702 by at least fifty percent of the distance L 1 between the longitudinal center 702 and the rear wheel axle axis 708 .
  • the distance L 1 between the longitudinal center 702 and the rear wheel axle axis 708 is at least twice the distance L 2 between the center 706 of the battery 12 /pocket 51 .
  • the distance L 1 can be 380 millimeters and the distance L 2 can be 160 millimeters such that the distance L 1 is 2.375 times the distance L 2 .
  • the depth of the pocket 51 can be increased. Increasing the depth of the pocket 51 reduces the overall height of the mower 10 with the battery 12 installed. Further, the battery 12 can comprise a large portion of the overall weight of the mower 10 . Thus, increasing the depth of the pocket 51 also lowers the center of gravity of the mower 10 .
  • a latch assembly 720 is coupled to the shroud 13 . While latch assembly 720 is an over-center type latch, other latching configurations are may be substituted therefore, such as sliding latches or rotating latches.
  • the latch assembly 720 includes a latch 722 and lever 724 .
  • the latch 722 engages a latch catch 755 formed on the battery 12 to secure the battery 12 within the pocket 51 in a first configuration, as shown in FIG. 3 .
  • the lever 724 is rotated, as shown in FIG. 4 , to disengage the latch 724 from the latch catch 755 . In a second configuration shown in FIG.
  • the latch 722 is fully opened and completely disengaged from the battery 12 such that the battery 12 can be freely removed from the pocket 51 .
  • the battery 12 can be removed from the pocket 51 by moving the battery 12 in the direction of the arrow shown in FIG. 6 .
  • the latching assembly 720 may further include a biasing member, e.g., a spring that biases the latching assembly 720 to be in the second configuration.
  • a biasing member e.g., a spring that biases the latching assembly 720 to be in the second configuration.
  • the biasing member may automatically move the latch 722 to the fully opened position shown in FIG. 5 .
  • the latching assembly 720 may be easily moved from the first configuration ( FIG. 3 ) to the second configuration ( FIG. 5 ) by a user utilizing one hand.
  • a user manually engages the latch 722 with the latch catch 755 while rotating the lever 724 .
  • the lever 724 is moved to the lock position while the latch 722 is engaged with the latch catch 755 ( FIG. 3 ).
  • a mower connector 716 is provided within the pocket 51 .
  • the mower connector 716 can include one or more projections 717 extending from the pocket 51 .
  • the one or more projections 717 are configured to mate with corresponding recess(es) 757 of a first battery connector 756 in a male-female connector configuration.
  • the projection(s) 717 and recess(es) 757 may act as guide features that assist in positioning the battery 12 within the pocket 51 .
  • the mower connector 716 and/or the first battery connector 756 can be self-aligning to ensure a proper connection between the mower 10 and battery 12 .
  • the latching assembly 720 is used to fully secure and couple the mower connector 716 with the first battery connector 756 .
  • the battery 12 may include a second battery connector 758 ( FIGS. 8 and 15 ), e.g., for connection with a charger cable 780 ( FIG. 15 ).
  • the second battery connector 758 ( FIG. 8 ) is located on a portion of the battery 12 that is inaccessible to a user when the battery 12 is in the first configuration, i.e., secured within pocket 51 , such that the battery 12 cannot be charged through the second battery connector 758 when the mower 10 is operating.
  • the first battery connector 756 is utilized to provide power to the mower 10 and also to charge the battery 12
  • the second battery connector 758 is used only to charge the battery 12 (via charger cable 780 ).
  • the charger cable 780 can be constructed to engage with the second battery connector 758 in a single orientation. Any or all of the mower connector 716 , first battery connector 756 and second battery connector 758 can be one or more Anderson-type electrical connectors to ensure proper electrical connections.
  • the charger cable 780 is connected to an electrical connector portion 732 associated with user interface 22 , as is described more fully below.
  • User interface 22 is electrically coupled to the mower connector 716 such that power may be provided to the battery 12 when coupled with mower connector 716 .
  • FIGS. 12 and 16 A portion of an exemplary user interface 22 is shown in FIGS. 12 and 16 .
  • User interface 22 includes an electrical connector portion 732 that has three electrical connectors 734 A-C.
  • Electrical connectors 734 A-C can be any type of electrical connector, such as Anderson-type electrical connectors.
  • Electrical connectors 734 A and 734 B are utilized to connect with charger cable 780 to charge the mower 10 .
  • Electrical connectors 734 A and 734 C are utilized to connect with a safety key 740 ( FIGS. 13-14 ), further described below.
  • the electrical connectors 734 A-C can be arranged such that the charger cable 780 can be engaged with electrical connector portion 732 in a single orientation, i.e., connected with electrical connectors 734 A and 734 B.
  • safety key 740 includes two electrical connectors 742 A and 742 B. Electrical connectors 742 A and 742 B are configured to mate with electrical connectors 734 A and 734 C of the user interface 22 . For example only, electrical connectors 742 A and 742 B may be coupled by a jumper 744 to electrically couple electrical connectors 734 A and 734 C when the safety key 740 is mated with electrical connector portion 732 .
  • Safety key 740 includes a keyed portion 746 that has a shape that corresponds and complements the shaped of keyed portion 736 of user interface 22 .
  • the keyed portions 736 , 746 and electrical connectors 742 A, 742 B, 734 A and 734 C may be constructed and arranged symmetrically such that the safety key 740 can properly mate with electrical connector portion 734 in either of two orientations, i.e., 742 A with 734 A and 742 B with 734 C or 742 A with 734 C and 742 B with 734 A.
  • the safety key 740 operates to connect the battery 12 with the blade and drive motors 54 , 56 when mated with the electrical connector portion 732 .
  • electrical connectors 734 A and 734 C are decoupled and power from the battery 12 cannot be delivered to either the blade and/or drive motors 54 , 56 .
  • Battery 12 includes three cells 770 A-C, which can be connected in series and arranged within a housing 760 .
  • the housing 760 includes a first portion 762 mated with a second portion 764 .
  • the first battery connector 756 is arranged on the second portion 764 and the second battery connector 758 is arranged on the first portion 762 .
  • the battery 12 further includes a first handle 766 A and a second handle 766 B.
  • the first and second handles 766 A-B may be utilized by a user to insert or remove the battery 12 from the pocket 51 .
  • the first and second handles 766 A-B are monolithically formed with the first portion 762 of the housing 760 .
  • the first handle 766 A is arranged on a first side 767 of the housing 760 and the second handle 766 B is arranged on a second side 769 of the housing 760 that is opposite the first side to encourage a user to use two hands when handling the battery 12 .
  • the battery 12 is inserted within pocket 51 as follows.
  • a user positions the battery 12 within pocket 51 .
  • the user may grasp first and second handles 766 A-B in order to lift and position the battery 12 within pocket 51 .
  • the battery 12 is properly positioned and fully inserted within pocket 51 such that the first battery connector 756 engages and mates with mower connector 716 .
  • various features of the battery 12 and/or pocket 51 assist in the proper positioning and insertion of the battery 12 (projections 752 A-D, 714 A-C, 717 , recess(es) 754 A-C, 712 A-D, 757 , etc.).
  • the user engages the latch 722 with the battery 12 , for example, latch catch 755 .
  • the user then rotates the lever 724 to lock the latch 722 and fully secure the battery 12 within the pocket 51 .
  • the battery 12 is removed from being fully secured within pocket 51 as follows.
  • a user rotates lever 724 to unlock the latch 722 from engagement with the battery 12 .
  • the latch 722 automatically disengages from the battery 12 upon being unlocked.
  • the user manually disengages the latch 722 from battery 12 .
  • a user then grasps the battery (such as, first and second handles 766 A-B) in order to remove the battery 12 from pocket 51 .
  • the mower connector 716 automatically disengages from first battery connector 756 as the battery 12 is removed from pocket 51 .
  • FIG. 17 Another view of the user interface 22 is shown in FIG. 17 .
  • User interface 22 is secured to a handle assembly 100 .
  • the handle assembly 100 can include handle frames 103 that generally extend at an angle from the mower deck 50 to a handle grip 105 .
  • the handle assembly 100 can include a first or blade bail 101 and a second or drive bail 102 .
  • the blade bail 101 can cooperate with a control cable 104 A to selectively provide power from battery 12 to blade motor 54 to drive blade 16 .
  • the drive bail 102 can cooperate with control cable 104 B to communicate with the drive motor 56 .
  • the blade bail 101 can be rotated toward the handle grip 105 about an axis 101 A.
  • the drive bail 102 can be rotated toward the handle grip 105 about an axis 102 A.
  • Blade bail 101 is actuated to switch the mower 10 between a cutting OFF mode and a cutting ON mode. In the cutting OFF mode, the blade bail 101 electrically disconnects the battery 12 from the blade motor 54 such that the blade 16 is not driven. In the cutting ON mode, the blade bail 101 electrically connects the battery 12 to the blade motor 54 such that the blade 16 may be driven.
  • drive bail 102 is actuated to switch the mower 10 between a self-drive OFF mode and a self-drive ON mode. In the self-drive OFF mode, the drive bail 102 electrically disconnects the battery 12 from the drive motor 56 such that the mower 10 is not propelled. In the self-drive ON mode, the drive bail 102 electrically connects the battery 12 to the drive motor 56 such that the mower 10 is propelled, e.g., by drive wheel(s) 30 .
  • user interface 22 can further include a safety lock-out mechanism 107 , which prevents coupling the battery 12 with the blade motor 54 . Therefore, in order to actuate the blade motor 54 , a user depresses the lock-out mechanism 107 and pulls the blade bail 101 toward the handle grip 105 (that is, rotates the mower blade bail handle 101 counterclockwise in FIG. 17 ) to start the blade motor 54 . In this manner, a user must complete two independent steps to actuate the blade bail 101 and start rotation of blade 16 .
  • An example lock-out mechanism 107 is disclosed in U.S. Pat. No. 7,762,049, which is herein incorporated by reference in its entirety.
  • the drive speed of mower 10 can be adjusted by moving a speed control lever 108 on the user interface 22 .
  • the speed control lever 108 is coupled to the control circuit 20 which controls the power delivery from the battery 12 to the drive motor 56 .
  • Adjustment of the speed control lever 108 varies the voltage provided to drive motor 56 and thereby varies the speed of the mower 10 .
  • the drive speed of the mower 10 could be adjusted based on the position of the drive bail 102 such that, as the drive bail 102 is rotated clockwise, it progressively makes the drive mechanism 18 (and the lawn mower 10 as a whole) go faster.
  • the voltage may be varied, for example, by changing the duty cycle of a pulse width modulated voltage signal or by adjusting the magnitude of the voltage delivered to the drive mechanism 18 .
  • the bottom of deck 50 defines a cutting chamber 120 in which blade 16 is arranged.
  • Cutting chamber 120 can have a toroidal shape.
  • the deck 50 in combination with a discharge plate 121 , defines discharge passage 122 .
  • Discharge passage 122 extends from the cutting chamber 120 to a discharge port 123 .
  • the discharge passage 122 provides an outlet for grass and/or other waste to exit the cutting chamber 120 , e.g., to be discharged or collected by a collection bag 80 .
  • a mulch door 124 can be coupled to the deck 50 and be arranged between the cutting chamber 120 and discharge passage 122 .
  • Mulch door 124 can be shaped to complement the toroidal shape of the cutting chamber 120 .
  • the mulch door 124 is movable between a discharge position ( FIG. 19 ) and a mulch position ( FIG. 18 ). In the discharge position, the mulch door 124 unblocks discharge passageway 122 to open the cutting chamber 120 to the discharge port 123 .
  • mulch door 124 can be arranged to be tangent to the discharge passage 122 in the discharge configuration (as shown in FIG. 19 in which discharge plate 121 is not shown). In the mulch position, mulch door 124 blocks discharge passageway 122 .
  • the mulch door 124 can be rotated between the discharge and mulch positions.
  • a mulch door rotation mechanism 130 can be coupled with the mulch door 124 to rotate the mulch door 124 between the discharge and mulch positions.
  • the mulch door rotation mechanism 130 can include a knob 131 that is coupled to the mulch door 124 such that the mulch door 124 rotates with the knob 131 .
  • the knob 131 is coupled to the mulch door 124 by a vertical shaft 133 that extends through a spacer 134 .
  • the spacer 134 is coupled to the deck 50 and is configured to support the knob 131 in the proper position in relation to deck 50 .
  • Discharge plate 121 and deck 50 cooperate to define a grass outlet aperture 125 in discharge passage 122 ( FIG. 22 ).
  • the grass outlet aperture 125 provides an outlet for grass clippings and other waste to exit discharge passage 122 .
  • the mulch door 124 will sweep any grass clippings/waste from the discharge passage 122 /discharge plate 121 out of the grass outlet aperture 125 .
  • the mulch door rotation mechanism 130 can further include a locking mechanism 132 that secures the knob 131 and mulch door 124 in specific positions, such as the discharge configuration and the mulch configuration.
  • the locking mechanism 132 includes a compression spring 135 , a pin 136 and one or more detents defined by the spacer 134 , such as first and second detents 137 A, 137 B.
  • the pin 136 is fixedly coupled to and rotatable with knob 131 and is arranged within an aperture 138 defined by spacer 134 .
  • the pin 136 is movable within aperture 138 and interacts with first and second detents 137 A, 137 B to provide locking positions for the mulch door 124 .
  • Compression spring 135 is arranged between spacer 134 and knob 131 and acts to bias the knob 131 to be in the positions defined by detents 137 A, 137 B.
  • a user pushes on knob 131 to compress the compression spring 135 and release the pin 136 from one of the detent positions. The knob 131 can then be freely rotated to another position.
  • grass clippings and other waste will travel through the discharge passage 122 and out of the discharge port 123 during operation of mower 10 .
  • This waste can either be collected in collection bag 80 or be discharged.
  • FIG. 26 shows a discharge door 127 attached to the rear of the mower 10 to deflect grass clippings/waste from the discharge passage 122 downwardly.
  • Discharge door 127 can be U-shaped or otherwise constructed such that discharge door 127 defines a discharge cavity 128 to provide the space necessary for the passage of the clippings.
  • the discharge door 128 can include an angled portion 127 A that directs the flow of grass clippings/waste out of the bottom of the discharge cavity 128 .
  • collection bag 80 can be coupled to deck 50 as is known in the art, for example, by lifting discharge door 127 , as illustrated in FIGS. 21 and 23 .
  • Mower 10 includes a blade motor 54 for driving blade 16 and a drive motor 56 for imposing motion onto drive wheel(s) 30 in order to propel the mower 10 .
  • the blade and drive motors 54 , 56 can be operated independently. That is, the blade 16 can be powered by the blade motor 54 without the drive motor 56 propelling the mower 10 and the drive motor 56 can be powered to propel the mower 10 without the blade motor 54 driving the blade 16 .
  • Drive motor 56 may be coupled to driving wheel(s) 30 through at least one gear mechanism.
  • the present exemplary gear mechanism shown in FIG. 20 is a multi-stage gear reduction having a planetary gear assembly 57 , a self-drive transmission 58 , a drive axle gear 59 A, and a wheel gear 31 .
  • the planetary gear assembly 57 and a self-drive transmission 58 translates a rotational output of the drive motor 56 into a rotational output of a drive axle 59 coupled to drive wheel(s) 30 .
  • the self-drive transmission 58 is a worm gear that engages the drive motor 56 (through planetary gear assembly 57 ) to the drive wheel(s) 30 during self-drive operation, while permitting free-wheeling operation when the drive motor 56 is not powered.
  • the drive axle 59 is coupled to the drive wheel(s) 30 through a drive axle gear 59 A that interacts with a wheel gear 31 .
  • the gear mechanism provides a gear reduction from the drive motor 56 to the drive wheels 30 to translate the revolutions per minute (“rpm”) of the drive motor 56 to the drive speed of the motor (the rpm of the drive wheels 30 ).
  • the drive motor 56 can operate between 6,000 and 17,000 revolutions per minute and the gear mechanism can have a gear reduction between 90:1 and 130:1, for example.
  • the planetary gear assembly 57 provides a first gear reduction (a planetary gear reduction) from drive motor 56 , while self-drive transmission 58 provides a second gear reduction (a worm gear reduction). Additionally, the gear ratio of the drive axle gear 59 A and wheel gear 31 can provide a third reduction.
  • the first gear reduction can be 3.67:1
  • the second gear reduction can be 9:1
  • the third gear reduction can be 3.25:1 to provide a total gear reduction from drive motor 56 to wheel(s) of 107.3:1.
  • the maximum drive speed of mower 10 will be approximately 2.5 miles per hour.
  • blade motor 54 is coupled to deck 50 with a first end 54 A arranged within a chamber 90 defined by deck 50 and a second end 54 B coupled to the blade 16 in the cutting chamber 120 .
  • Blade motor 54 is configured to be cooled by a flow of air entering the first end 54 A from the cooling chamber 90 and exiting from the second end 54 B into the cutting chamber 120 .
  • Air can enter chamber 90 , e.g., through one or more windows 92 defined by deck 50 to provide a vent to external air, as described more fully below.
  • the blade motor 54 is configured to convey air from the chamber 90 to the cutting chamber 120 in order to cool the blade motor 54 .
  • Drive motor 56 is arranged adjacent the rear wheels in a second chamber 91 defined by the deck 50 . Due to its location behind the battery, the limited space of this second chamber 91 makes cooling the drive motor 56 difficult. Therefore, the second chamber 91 includes one or more windows 92 that allow air in the second chamber 91 to escape into an air passageway connected to the first chamber 90 .
  • the air passageway is defined by the deck 50 and shroud 13 (not shown in FIG. 28 ) and is located to the side of the battery in FIG. 28 .
  • Air in the first chamber 90 is then vented to the external environment through blade motor 54 . Additionally, operation of the blade motor 54 will create negative pressure in the first chamber 90 relative to the second chamber 91 and generate an air flow from the second chamber 91 to help cool the drive motor 56 .
  • control circuit 20 can be configured to protect the mower 10 from an electrical overload condition, such as a short circuit. Upon detection of an overload condition, the control circuit 20 will electrically disconnect the battery 12 from the drive motor 56 .
  • An overload condition can include the situation in which current provided to the drive motor 56 exceeds a threshold. Alternatively or in addition to current exceeding a threshold, an overload condition can include current exceeding a threshold for a predetermined period. In some embodiments, an overload condition can include current exceeding a second threshold for a second predetermined period, in which the second threshold is greater than the first threshold and the second predetermined period is shorter than the first predetermined period.
  • an overload condition can be defined as a condition in which current delivered to the drive motor 56 is greater than 10 amperes but less than 15 amperes for a period of 5 or more seconds, or greater than 15 amperes for a period of 1 or more seconds. While the above description is limited to describing an overload condition for the drive motor 56 , it will be appreciated that an overload condition for blade motor 54 is also within the scope of the present disclosure.
  • control circuit 20 can be configured to provide a soft-start to drive motor 56 in order to reduce or eliminate abrupt movement (or “jump”) of the mower 10 at the beginning of self-drive operation.
  • the control circuit 20 upon actuation of the drive bail 102 the control circuit 20 will gradually increase the voltage provided to drive motor 56 until reaching the desired operating voltage, e.g., the operating voltage determined by the position of speed control lever 108 .
  • control circuit 20 will increase the voltage provided to drive motor 56 over a predetermined period, such as 1-3 seconds.
  • the handle assembly 100 is capable of being rotated in relation to the deck 50 in order to “fold” the handle assembly 100 over the deck 50 to reduce the size of mower 10 for storage.
  • two handle plates 200 fixedly coupled to deck 50 can be utilized to couple the handle assembly 100 with the deck 50 .
  • Handle frames 103 can be rotatably coupled to handle plates 200 by fasteners 201 , such as a nut and bolt.
  • a knob assembly 210 that is offset from the fasteners 201 can interact with one or more openings 202 A-C defined by handle plates 200 to inhibit rotation of the handle assembly 100 . Openings 202 A and 202 B are utilized to lock the handle assembly 100 in the proper position for operation of mower 10 .
  • Openings 202 A and 202 B each correspond to a different position of handle assembly 100 , which can be selected based on user preference. Opening 202 C corresponds to a storage position in which handle assembly 100 is folded over deck 50 .
  • the storage position ( FIG. 31 ) of handle assembly 100 permits mower 10 to be stored vertically, e.g., with a contact portion 205 of handle plates 200 in resting on a storage surface.
  • an exemplary knob assembly 210 includes a graspable knob 212 that is coupled with an extension peg 214 by a pin 216 inserted into an opening 218 defined by graspable knob 212 .
  • Extension peg 214 can be biased to an extended or locked position, e.g., by a spring, in which knob contact surface 213 contacts handle frame 103 and extension peg 214 is extended, e.g., into openings 202 A-C.
  • a user pulls on graspable knob 212 .
  • graspable knob 212 can move the knob assembly 210 to a released position in which extension peg 214 is retracted such that extension peg 214 does not interact with opening(s) 202 A-C and the handle assembly can be freely rotated.
  • graspable knob 212 can define an aperture 215 that interacts with a projection 106 formed on handle frames 103 .
  • the shape of aperture 215 can complement the shape of projection 106 to inhibit rotation of the graspable knob 212 in the locked position and to secure the knob assembly in the released position when the graspable knob 212 is rotated.

Abstract

A cordless mower includes a deck, a rechargeable battery, a blade for cutting grass, a blade motor and a drive motor. The deck is supported by front and rear wheels and has a top side, a bottom side, a front end and a rear end. The rechargeable battery is supported on the deck. The blade is on the bottom side of the deck and is coupled with a blade motor. The drive motor is connected to the rear wheels for driving said rear wheels to move the mower. The drive motor is located in a chamber at the rear of the mower adjacent the rear wheels. The chamber has an opening therein to allow air to flow through.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is a division of U.S. Ser. No. 12/975,499 filed Dec. 22, 2010, which is a continuation-in-part of U.S. Ser. No. 12/838,898 filed Jul. 19, 2010, which is a continuation-in-part of U.S. Design Application No. 29/361,418 filed on May 11, 2010, (now U.S. Pat. No. D642,119 issued on Jul. 26, 2011) and a continuation-in-part of U.S. application Ser. No. 12/426,499 filed Apr. 20, 2009, which claims the benefit and priority of U.S. Provisional Application No. 61/048,002 filed Apr. 25, 2008. The entire disclosure of each of the above applications is incorporated herein by reference.
  • FIELD
  • The present disclosure relates to lawn mowers and more specifically to a cordless electric lawn mower.
  • BACKGROUND
  • Due to concerns regarding urban air pollution, the problems and maintenance needs of gas engines, as well as other factors, electric lawn mowers are gaining in popularity. Moreover, due to the inconveniences and operating limitations of corded electric mowers, battery operated cordless electric mowers may be preferred. As described herein however, such battery operated mowers can have drawbacks.
  • Some of these drawbacks can be associated with the functionality of the battery, including battery life and the storage and transfer of the battery, including insertion and removal of the battery from the mower.
  • Other drawbacks are associated with self-drive transmissions that use a belt-tensioning drive system, whereby the tension on a set of variable stepped sheaves can be configured to control the speed of a drive axle from a continuous speed motor. Such a system however is inefficient because the self-drive motor must run constantly at high speed, thereby constantly drawing maximum power. Furthermore, as is known in the art, efficiency losses are observed in such a slipping belt system.
  • According to other drawbacks associated with battery operated mowers, in some instances during high-load grass cutting (i.e., wet, and/or thick grass), the operating speed of the blade motor(s) is reduced while the speed of a self-drive motor is unchanged. In this way, cutting performance is degraded because the speed of the self-drive motor is not adjusted to compensate for the reduced operating speed of the blade motor.
  • Other drawbacks associated with battery operated mowers involve a cumbersome mulching mode switching process and inadequate driver feedback information. For example, it may be desirable for an operator to easily obtain information relating to battery-power, mower blade operation, self-drive motor operation and/or other information, such as operational faults associated with the mower.
  • SUMMARY
  • A cordless mower includes a deck, a rechargeable battery, a blade for cutting grass, a blade motor and a drive motor. The deck is supported by front and rear wheels and has a top side, a bottom side, a front end and a rear end. The rechargeable battery is supported on the deck. The blade is on the bottom side of the deck and is coupled with a blade motor. The drive motor is connected to the rear wheels for driving said rear wheels to move the mower and is located in a chamber at the rear of the mower adjacent the rear wheels. The chamber has an opening therein to allow air to flow through.
  • A cordless mower includes a deck, a rechargeable battery, a drive motor, a speed lever and a control circuit. The deck is supported by front and rear wheels and has a top side, a bottom side, a front end and a rear end. The rechargeable battery is supported on said deck. The drive motor is connected to the rear wheels for driving said rear wheels to move the mower. The speed lever is controlled by a user to set the speed of the mower. The control circuit is connected to the speed lever and controls the amount of current delivered from the battery to the drive motor. The control circuit monitors the drive motor and shuts off the drive motor when the current being delivered exceeds a predetermined current for a predetermined period of time.
  • A cordless mower includes a deck, a rechargeable battery, a drive motor, a blade motor and a handle. The deck is supported by front and rear wheels and has a top side, a bottom side, a front end and a rear end. The rechargeable battery is supported on said deck. The drive motor is connected to the rear wheels for driving said rear wheels to move the mower. The blade motor is coupled to a blade. The handle is secured to the rear end of said deck. The handle has a blade bail for controlling power to the blade motor and a drive bail for controlling power to said drive motor so that power to the blade motor and the drive motor are independently controlled.
  • A cordless mower includes a deck, a rechargeable battery, a blade for cutting grass and a mulch door. The deck is supported by front and rear wheels and has a top side, a bottom side, a front end and a rear end. The bottom side defines a cutting chamber and a discharge passage extending rearwardly from the cutting chamber to the rear of said mower. The rechargeable battery is supported on said deck. The blade is arranged within the cutting chamber. The mulch door is positioned in said discharge passage and is movable between an open and closed position. The mulch door rotates about a vertical shaft that is connected to a knob located at a top side of the deck.
  • Further areas of applicability will become apparent from the description provided herein. It should be understood that the description and specific examples are intended for purposes of illustration only and are not intended to limit the scope of the present disclosure.
  • DRAWINGS
  • The drawings described herein are for illustration purposes only and are not intended to limit the scope of the present disclosure in any way.
  • FIG. 1 is a schematic block diagram of an exemplary battery-powered mower constructed in accordance with the teachings of the present disclosure;
  • FIG. 2 is a perspective view of an exemplary battery-powered lawn mower constructed in accordance with the teachings of the present disclosure;
  • FIG. 3 is a partial perspective view of the exemplary battery-powered lawn mower shown in FIG. 2 in a first configuration;
  • FIG. 4 is a partial perspective view of the exemplary battery-powered lawn mower shown in FIG. 2;
  • FIG. 5 is a partial perspective view of the exemplary battery-powered lawn mower shown in FIG. 2 in a second configuration;
  • FIG. 6 is a perspective view of the exemplary battery-powered lawn mower shown in FIG. 2 with the battery being removed from the pocket;
  • FIG. 7 is a partial plan view of the exemplary battery-powered lawn mower shown in FIG. 2 with the battery removed to illustrate the pocket;
  • FIG. 8 is a perspective view of the battery of the exemplary battery-powered lawn mower shown in FIG. 2;
  • FIG. 9 is another perspective view of the battery of the exemplary battery-powered lawn mower shown in FIG. 2;
  • FIG. 10 is a bottom view of the battery of the exemplary battery-powered lawn mower shown in FIG. 2;
  • FIG. 11 is a partial perspective view of the battery of the exemplary battery-powered lawn mower shown in FIG. 2 with a portion of the battery housing removed to illustrate a series of cells housed therein;
  • FIG. 12 is a partial perspective view of a control of the exemplary battery-powered lawn mower shown in FIG. 2;
  • FIG. 13 is a perspective view of a safety key corresponding to the exemplary battery-powered lawn mower shown in FIG. 2;
  • FIG. 14 is a partial sectional view of the safety key of FIG. 13;
  • FIG. 15 is a partial perspective view of the battery of the exemplary battery-powered lawn mower shown in FIG. 2 with an exemplary charger cable;
  • FIG. 16 is a partial perspective view of the exemplary control assembly shown in FIG. 12 with an exemplary charger cable;
  • FIG. 17 is another partial perspective view of a control assembly of the exemplary battery-powered lawn mower shown in FIG. 2;
  • FIG. 18 is a partial plan view of the exemplary battery-powered lawn mower shown in FIG. 2 in a mulch configuration;
  • FIG. 19 is a partial plan views of the exemplary battery-powered lawn mower shown in FIG. 2 in a discharge configuration;
  • FIG. 20 is a partial perspective view of a drive mechanism of the exemplary battery-powered lawn mower shown in FIG. 2;
  • FIG. 21 is a partial perspective rear view of the exemplary battery-powered lawn mower shown in FIG. 2 showing a mulch door;
  • FIG. 22 is another partial perspective rear view of the exemplary battery-powered lawn mower shown in FIG. 2 showing a mulch door;
  • FIG. 23 is another partial perspective view of the exemplary battery-powered lawn mower shown in FIG. 2;
  • FIG. 24 is a partial perspective view of a mulch door rotation mechanism of the exemplary battery-powered lawn mower shown in FIG. 2;
  • FIG. 25 is a partial perspective view of a mulch door rotation mechanism of the exemplary battery-powered lawn mower shown in FIG. 2;
  • FIG. 26 is another partial perspective rear view of the exemplary battery-powered lawn mower shown in FIG. 2;
  • FIG. 27 is another partial perspective rear view of the exemplary battery-powered lawn mower shown in FIG. 2;
  • FIG. 28 is a partial perspective view of the exemplary battery-powered lawn mower shown in FIG. 2 with a portion of the deck removed;
  • FIG. 29 is a partial sectional view taken through the deck of the exemplary battery-powered lawn mower shown in FIG. 2;
  • FIG. 30 is a partial perspective view of a knob assembly of the exemplary battery-powered lawn mower shown in FIG. 2; and
  • FIG. 31 is a side view of the exemplary battery-powered lawn mower shown in FIG. 2 in a storage configuration.
  • DETAILED DESCRIPTION
  • With initial reference to FIG. 1, an exemplary battery-powered lawn mower 10 (hereinafter, mower) is schematically illustrated. The mower 10 includes a battery 12, a cutting mechanism 14 for driving blade(s) 16, a drive mechanism 18 for driving wheels 30, a control circuit 20 and a user interface 22. The battery 12 supplies power to the cutting mechanism 14 and the drive mechanism 18, which in the exemplary embodiment shown is a blade motor 54 and a drive motor 56, respectively. The amount of power delivered to the drive mechanism 18 by the battery 12 is determined by the control circuit 20 which is managed by the user interface 22.
  • With reference to FIGS. 2 and 28, the exemplary battery-powered lawn mower 10 will be described. The mower 10 includes a deck 50 that provides a mounting structure for various components of the mower 10, including the blade motor 54 and the drive motor 56, and generally forms the housing for the blade(s) 16 coupled to the blade motor 54. A shroud 13 is placed over the deck 50 to protect the internal components of the mower 10.
  • With reference to FIGS. 6 and 7, the shroud 13 defines a pocket 51 that receives the battery 12. The battery 12 has a shape that corresponds to the shape of the pocket 51 such that the battery 12 fits snugly within the pocket 51.
  • With additional reference to FIG. 7, the pocket 51 includes a base portion 719 with a plurality of walls 715 arranged substantially perpendicular to the base portion 719. The shape of the battery 12 complements the shape of the pocket 51 such that the battery 12 can be inserted within the pocket in a single orientation. Pocket 51 can define one or more recesses 712A-D (FIG. 7) that correspond to one or more projections 752A-D (FIGS. 9-10) on the battery 12 and one or more projections 714A-C that correspond to one or more recesses 754A-C defined by the battery 12. In this manner, the battery 12 can be inserted within the pocket 51 only when the projection(s) 752A-D, 714A-C and recess(es) 754A-C, 712A-D are properly aligned. Furthermore, the projection(s) 752A-D, 714A-C and recess(es) 754A-C, 712A-D can assist with guiding the battery 12 to the proper positioning within the pocket 51. Additionally, the walls 715 of pocket 51 can be tapered to assist in guiding the battery 12 to the proper positioning within the pocket 51.
  • The location of the battery 12 is such that the mower 10 is well-balanced and stable. The battery 12 (and pocket 51) is positioned rearward of the longitudinal center 702 of the deck 50 such that a user may more easily maneuver the mower 10. This position puts more weight towards the rear of the mower, which provides increased traction to the rear drive wheel(s) 30 and also aids in tilting or lifting the front wheels off the ground for better maneuverability. In addition, the battery 12 and pocket 51 may be positioned in the approximate center of the width of the deck 50 to increase stability and inhibit sideways tipping.
  • The blade motor 54 (and the axis of rotation of the blade 16) is arranged along the longitudinal center 702 of the deck 50 (FIGS. 18 and 19). The center 706 of the battery 12/pocket 51 can be positioned rearward of the longitudinal center 702 by at least fifty percent of the distance L1 between the longitudinal center 702 and the rear wheel axle axis 708. In other words, the distance L1 between the longitudinal center 702 and the rear wheel axle axis 708 is at least twice the distance L2 between the center 706 of the battery 12/pocket 51. For example only, the distance L1 can be 380 millimeters and the distance L2 can be 160 millimeters such that the distance L1 is 2.375 times the distance L2.
  • In order to further increase stability and inhibit tipping of the mower 10, the depth of the pocket 51 can be increased. Increasing the depth of the pocket 51 reduces the overall height of the mower 10 with the battery 12 installed. Further, the battery 12 can comprise a large portion of the overall weight of the mower 10. Thus, increasing the depth of the pocket 51 also lowers the center of gravity of the mower 10.
  • With reference to FIGS. 3-6, a latch assembly 720 is coupled to the shroud 13. While latch assembly 720 is an over-center type latch, other latching configurations are may be substituted therefore, such as sliding latches or rotating latches. The latch assembly 720 includes a latch 722 and lever 724. The latch 722 engages a latch catch 755 formed on the battery 12 to secure the battery 12 within the pocket 51 in a first configuration, as shown in FIG. 3. The lever 724 is rotated, as shown in FIG. 4, to disengage the latch 724 from the latch catch 755. In a second configuration shown in FIG. 5, the latch 722 is fully opened and completely disengaged from the battery 12 such that the battery 12 can be freely removed from the pocket 51. As more fully described below, the battery 12 can be removed from the pocket 51 by moving the battery 12 in the direction of the arrow shown in FIG. 6.
  • The latching assembly 720 may further include a biasing member, e.g., a spring that biases the latching assembly 720 to be in the second configuration. Upon releasing the latch 722 from engagement with the latch catch 755, the biasing member may automatically move the latch 722 to the fully opened position shown in FIG. 5. In this manner, the latching assembly 720 may be easily moved from the first configuration (FIG. 3) to the second configuration (FIG. 5) by a user utilizing one hand. In order to secure the battery 12 within the pocket 51, a user manually engages the latch 722 with the latch catch 755 while rotating the lever 724. Then, the lever 724 is moved to the lock position while the latch 722 is engaged with the latch catch 755 (FIG. 3).
  • With reference to FIGS. 2, 7 and 10, in order to electrically couple the battery 12 with the other components of the mower 10, a mower connector 716 is provided within the pocket 51. The mower connector 716 can include one or more projections 717 extending from the pocket 51. The one or more projections 717 are configured to mate with corresponding recess(es) 757 of a first battery connector 756 in a male-female connector configuration. The projection(s) 717 and recess(es) 757 may act as guide features that assist in positioning the battery 12 within the pocket 51. The mower connector 716 and/or the first battery connector 756 can be self-aligning to ensure a proper connection between the mower 10 and battery 12. In some embodiments, the latching assembly 720 is used to fully secure and couple the mower connector 716 with the first battery connector 756. The battery 12 may include a second battery connector 758 (FIGS. 8 and 15), e.g., for connection with a charger cable 780 (FIG. 15). The second battery connector 758 (FIG. 8) is located on a portion of the battery 12 that is inaccessible to a user when the battery 12 is in the first configuration, i.e., secured within pocket 51, such that the battery 12 cannot be charged through the second battery connector 758 when the mower 10 is operating. In this way, the first battery connector 756 is utilized to provide power to the mower 10 and also to charge the battery 12, while the second battery connector 758 is used only to charge the battery 12 (via charger cable 780). With reference to FIG. 15, the charger cable 780 can be constructed to engage with the second battery connector 758 in a single orientation. Any or all of the mower connector 716, first battery connector 756 and second battery connector 758 can be one or more Anderson-type electrical connectors to ensure proper electrical connections.
  • While the battery 12 is secured within pocket 51, the charger cable 780 is connected to an electrical connector portion 732 associated with user interface 22, as is described more fully below. User interface 22 is electrically coupled to the mower connector 716 such that power may be provided to the battery 12 when coupled with mower connector 716.
  • A portion of an exemplary user interface 22 is shown in FIGS. 12 and 16. User interface 22 includes an electrical connector portion 732 that has three electrical connectors 734A-C. Electrical connectors 734A-C can be any type of electrical connector, such as Anderson-type electrical connectors. Electrical connectors 734A and 734B are utilized to connect with charger cable 780 to charge the mower 10. Electrical connectors 734A and 734C are utilized to connect with a safety key 740 (FIGS. 13-14), further described below. In order to inhibit improper connections, the electrical connectors 734A-C can be arranged such that the charger cable 780 can be engaged with electrical connector portion 732 in a single orientation, i.e., connected with electrical connectors 734A and 734B.
  • In FIGS. 13 and 14, safety key 740 includes two electrical connectors 742A and 742B. Electrical connectors 742A and 742B are configured to mate with electrical connectors 734A and 734C of the user interface 22. For example only, electrical connectors 742A and 742B may be coupled by a jumper 744 to electrically couple electrical connectors 734A and 734C when the safety key 740 is mated with electrical connector portion 732. Safety key 740 includes a keyed portion 746 that has a shape that corresponds and complements the shaped of keyed portion 736 of user interface 22. The keyed portions 736, 746 and electrical connectors 742A, 742B, 734A and 734C may be constructed and arranged symmetrically such that the safety key 740 can properly mate with electrical connector portion 734 in either of two orientations, i.e., 742A with 734A and 742B with 734C or 742A with 734C and 742B with 734A. The safety key 740 operates to connect the battery 12 with the blade and drive motors 54, 56 when mated with the electrical connector portion 732. When the safety key is removed from the electrical connector portion 732, electrical connectors 734A and 734C are decoupled and power from the battery 12 cannot be delivered to either the blade and/or drive motors 54, 56.
  • An exemplary battery 12 will be described with particular reference to FIGS. 8-11. Battery 12 includes three cells 770A-C, which can be connected in series and arranged within a housing 760. However, it should be understood that the battery may include any number of cells and fall within the scope of the present disclosure. The housing 760 includes a first portion 762 mated with a second portion 764. The first battery connector 756 is arranged on the second portion 764 and the second battery connector 758 is arranged on the first portion 762.
  • The battery 12 further includes a first handle 766A and a second handle 766B. The first and second handles 766A-B may be utilized by a user to insert or remove the battery 12 from the pocket 51. In a non-limiting example, the first and second handles 766A-B are monolithically formed with the first portion 762 of the housing 760. The first handle 766A is arranged on a first side 767 of the housing 760 and the second handle 766B is arranged on a second side 769 of the housing 760 that is opposite the first side to encourage a user to use two hands when handling the battery 12.
  • With reference to FIGS. 7, 8 and 10, the battery 12 is inserted within pocket 51 as follows. A user positions the battery 12 within pocket 51. For example only, the user may grasp first and second handles 766A-B in order to lift and position the battery 12 within pocket 51. The battery 12 is properly positioned and fully inserted within pocket 51 such that the first battery connector 756 engages and mates with mower connector 716. As described above, various features of the battery 12 and/or pocket 51 assist in the proper positioning and insertion of the battery 12 (projections 752A-D, 714A-C, 717, recess(es) 754A-C, 712A-D, 757, etc.).
  • Once the battery 12 is fully inserted within pocket 51 and the first battery connector 756 is engaged and mated with mower connector 716, the user engages the latch 722 with the battery 12, for example, latch catch 755. The user then rotates the lever 724 to lock the latch 722 and fully secure the battery 12 within the pocket 51.
  • The battery 12 is removed from being fully secured within pocket 51 as follows. A user rotates lever 724 to unlock the latch 722 from engagement with the battery 12. In some embodiments, the latch 722 automatically disengages from the battery 12 upon being unlocked. Alternatively, the user manually disengages the latch 722 from battery 12. A user then grasps the battery (such as, first and second handles 766A-B) in order to remove the battery 12 from pocket 51. In various embodiments, the mower connector 716 automatically disengages from first battery connector 756 as the battery 12 is removed from pocket 51.
  • Another view of the user interface 22 is shown in FIG. 17. User interface 22 is secured to a handle assembly 100. The handle assembly 100 can include handle frames 103 that generally extend at an angle from the mower deck 50 to a handle grip 105. The handle assembly 100 can include a first or blade bail 101 and a second or drive bail 102. The blade bail 101 can cooperate with a control cable 104A to selectively provide power from battery 12 to blade motor 54 to drive blade 16. The drive bail 102 can cooperate with control cable 104B to communicate with the drive motor 56. In one example, the blade bail 101 can be rotated toward the handle grip 105 about an axis 101A. The drive bail 102 can be rotated toward the handle grip 105 about an axis 102A.
  • Blade bail 101 is actuated to switch the mower 10 between a cutting OFF mode and a cutting ON mode. In the cutting OFF mode, the blade bail 101 electrically disconnects the battery 12 from the blade motor 54 such that the blade 16 is not driven. In the cutting ON mode, the blade bail 101 electrically connects the battery 12 to the blade motor 54 such that the blade 16 may be driven. Similarly, drive bail 102 is actuated to switch the mower 10 between a self-drive OFF mode and a self-drive ON mode. In the self-drive OFF mode, the drive bail 102 electrically disconnects the battery 12 from the drive motor 56 such that the mower 10 is not propelled. In the self-drive ON mode, the drive bail 102 electrically connects the battery 12 to the drive motor 56 such that the mower 10 is propelled, e.g., by drive wheel(s) 30.
  • In order to inhibit unintended starting of the blade 16, user interface 22 can further include a safety lock-out mechanism 107, which prevents coupling the battery 12 with the blade motor 54. Therefore, in order to actuate the blade motor 54, a user depresses the lock-out mechanism 107 and pulls the blade bail 101 toward the handle grip 105 (that is, rotates the mower blade bail handle 101 counterclockwise in FIG. 17) to start the blade motor 54. In this manner, a user must complete two independent steps to actuate the blade bail 101 and start rotation of blade 16. An example lock-out mechanism 107 is disclosed in U.S. Pat. No. 7,762,049, which is herein incorporated by reference in its entirety.
  • To start the drive mechanism 18 a user urges the drive bail 102 toward the handle grip 105 (that is, rotates the drive bail 102 clockwise in FIG. 17). The drive speed of mower 10 can be adjusted by moving a speed control lever 108 on the user interface 22. The speed control lever 108 is coupled to the control circuit 20 which controls the power delivery from the battery 12 to the drive motor 56. Adjustment of the speed control lever 108 varies the voltage provided to drive motor 56 and thereby varies the speed of the mower 10. Alternatively, the drive speed of the mower 10 could be adjusted based on the position of the drive bail 102 such that, as the drive bail 102 is rotated clockwise, it progressively makes the drive mechanism 18 (and the lawn mower 10 as a whole) go faster. The voltage may be varied, for example, by changing the duty cycle of a pulse width modulated voltage signal or by adjusting the magnitude of the voltage delivered to the drive mechanism 18.
  • With reference to FIGS. 18-25, the bottom of deck 50 defines a cutting chamber 120 in which blade 16 is arranged. Cutting chamber 120 can have a toroidal shape. The deck 50, in combination with a discharge plate 121, defines discharge passage 122. Discharge passage 122 extends from the cutting chamber 120 to a discharge port 123. During operation of mower 10, the discharge passage 122 provides an outlet for grass and/or other waste to exit the cutting chamber 120, e.g., to be discharged or collected by a collection bag 80. A mulch door 124 can be coupled to the deck 50 and be arranged between the cutting chamber 120 and discharge passage 122. Mulch door 124 can be shaped to complement the toroidal shape of the cutting chamber 120. The mulch door 124 is movable between a discharge position (FIG. 19) and a mulch position (FIG. 18). In the discharge position, the mulch door 124 unblocks discharge passageway 122 to open the cutting chamber 120 to the discharge port 123. For example, mulch door 124 can be arranged to be tangent to the discharge passage 122 in the discharge configuration (as shown in FIG. 19 in which discharge plate 121 is not shown). In the mulch position, mulch door 124 blocks discharge passageway 122.
  • The mulch door 124 can be rotated between the discharge and mulch positions. Referring to FIGS. 23-25, a mulch door rotation mechanism 130 can be coupled with the mulch door 124 to rotate the mulch door 124 between the discharge and mulch positions. The mulch door rotation mechanism 130 can include a knob 131 that is coupled to the mulch door 124 such that the mulch door 124 rotates with the knob 131. As shown in the example illustrated in FIGS. 24-25, the knob 131 is coupled to the mulch door 124 by a vertical shaft 133 that extends through a spacer 134. The spacer 134 is coupled to the deck 50 and is configured to support the knob 131 in the proper position in relation to deck 50.
  • Discharge plate 121 and deck 50 cooperate to define a grass outlet aperture 125 in discharge passage 122 (FIG. 22). The grass outlet aperture 125 provides an outlet for grass clippings and other waste to exit discharge passage 122. For example, during rotation of mulch door 124 from the mulch position (FIG. 20) to the discharge position (FIG. 19) the mulch door 124 will sweep any grass clippings/waste from the discharge passage 122/discharge plate 121 out of the grass outlet aperture 125.
  • The mulch door rotation mechanism 130 can further include a locking mechanism 132 that secures the knob 131 and mulch door 124 in specific positions, such as the discharge configuration and the mulch configuration. In the illustrated example, the locking mechanism 132 includes a compression spring 135, a pin 136 and one or more detents defined by the spacer 134, such as first and second detents 137A, 137B. The pin 136 is fixedly coupled to and rotatable with knob 131 and is arranged within an aperture 138 defined by spacer 134. The pin 136 is movable within aperture 138 and interacts with first and second detents 137A, 137B to provide locking positions for the mulch door 124. Compression spring 135 is arranged between spacer 134 and knob 131 and acts to bias the knob 131 to be in the positions defined by detents 137A, 137B. In order to rotate the mulch door 124, a user pushes on knob 131 to compress the compression spring 135 and release the pin 136 from one of the detent positions. The knob 131 can then be freely rotated to another position.
  • As described above, with the mulch door 124 in the discharge position grass clippings and other waste will travel through the discharge passage 122 and out of the discharge port 123 during operation of mower 10. This waste can either be collected in collection bag 80 or be discharged.
  • In order to permit rear discharge of grass clippings/waste while preventing the clippings from striking a user of mower 10, a discharge door 127 can be coupled to deck 50. FIG. 26 shows a discharge door 127 attached to the rear of the mower 10 to deflect grass clippings/waste from the discharge passage 122 downwardly. Discharge door 127 can be U-shaped or otherwise constructed such that discharge door 127 defines a discharge cavity 128 to provide the space necessary for the passage of the clippings. The discharge door 128 can include an angled portion 127A that directs the flow of grass clippings/waste out of the bottom of the discharge cavity 128. In order to collect grass clippings/waste, collection bag 80 can be coupled to deck 50 as is known in the art, for example, by lifting discharge door 127, as illustrated in FIGS. 21 and 23.
  • Mower 10 includes a blade motor 54 for driving blade 16 and a drive motor 56 for imposing motion onto drive wheel(s) 30 in order to propel the mower 10. The blade and drive motors 54, 56 can be operated independently. That is, the blade 16 can be powered by the blade motor 54 without the drive motor 56 propelling the mower 10 and the drive motor 56 can be powered to propel the mower 10 without the blade motor 54 driving the blade 16.
  • Drive motor 56 may be coupled to driving wheel(s) 30 through at least one gear mechanism. However, the present exemplary gear mechanism shown in FIG. 20 is a multi-stage gear reduction having a planetary gear assembly 57, a self-drive transmission 58, a drive axle gear 59A, and a wheel gear 31. The planetary gear assembly 57 and a self-drive transmission 58 translates a rotational output of the drive motor 56 into a rotational output of a drive axle 59 coupled to drive wheel(s) 30. The self-drive transmission 58 is a worm gear that engages the drive motor 56 (through planetary gear assembly 57) to the drive wheel(s) 30 during self-drive operation, while permitting free-wheeling operation when the drive motor 56 is not powered. The drive axle 59 is coupled to the drive wheel(s) 30 through a drive axle gear 59A that interacts with a wheel gear 31.
  • The gear mechanism provides a gear reduction from the drive motor 56 to the drive wheels 30 to translate the revolutions per minute (“rpm”) of the drive motor 56 to the drive speed of the motor (the rpm of the drive wheels 30). The drive motor 56 can operate between 6,000 and 17,000 revolutions per minute and the gear mechanism can have a gear reduction between 90:1 and 130:1, for example. The planetary gear assembly 57 provides a first gear reduction (a planetary gear reduction) from drive motor 56, while self-drive transmission 58 provides a second gear reduction (a worm gear reduction). Additionally, the gear ratio of the drive axle gear 59A and wheel gear 31 can provide a third reduction. For example only, the first gear reduction can be 3.67:1, the second gear reduction can be 9:1 and the third gear reduction can be 3.25:1 to provide a total gear reduction from drive motor 56 to wheel(s) of 107.3:1. In this example, if the drive motor 56 operates at 10,000 revolutions per minute and the drive wheel(s) 30 diameter is 9 inches, the maximum drive speed of mower 10 will be approximately 2.5 miles per hour.
  • During operation of mower 10, the blade and drive motors 54, 56 generate heat and may need to be cooled. For example, as shown in FIGS. 28 and 29, blade motor 54 is coupled to deck 50 with a first end 54A arranged within a chamber 90 defined by deck 50 and a second end 54B coupled to the blade 16 in the cutting chamber 120. Blade motor 54 is configured to be cooled by a flow of air entering the first end 54A from the cooling chamber 90 and exiting from the second end 54B into the cutting chamber 120. Air can enter chamber 90, e.g., through one or more windows 92 defined by deck 50 to provide a vent to external air, as described more fully below. In this manner, the blade motor 54 is configured to convey air from the chamber 90 to the cutting chamber 120 in order to cool the blade motor 54.
  • Drive motor 56 is arranged adjacent the rear wheels in a second chamber 91 defined by the deck 50. Due to its location behind the battery, the limited space of this second chamber 91 makes cooling the drive motor 56 difficult. Therefore, the second chamber 91 includes one or more windows 92 that allow air in the second chamber 91 to escape into an air passageway connected to the first chamber 90. The air passageway is defined by the deck 50 and shroud 13 (not shown in FIG. 28) and is located to the side of the battery in FIG. 28.
  • Air in the first chamber 90 is then vented to the external environment through blade motor 54. Additionally, operation of the blade motor 54 will create negative pressure in the first chamber 90 relative to the second chamber 91 and generate an air flow from the second chamber 91 to help cool the drive motor 56.
  • In some embodiments, control circuit 20 can be configured to protect the mower 10 from an electrical overload condition, such as a short circuit. Upon detection of an overload condition, the control circuit 20 will electrically disconnect the battery 12 from the drive motor 56. An overload condition can include the situation in which current provided to the drive motor 56 exceeds a threshold. Alternatively or in addition to current exceeding a threshold, an overload condition can include current exceeding a threshold for a predetermined period. In some embodiments, an overload condition can include current exceeding a second threshold for a second predetermined period, in which the second threshold is greater than the first threshold and the second predetermined period is shorter than the first predetermined period. For example only, an overload condition can be defined as a condition in which current delivered to the drive motor 56 is greater than 10 amperes but less than 15 amperes for a period of 5 or more seconds, or greater than 15 amperes for a period of 1 or more seconds. While the above description is limited to describing an overload condition for the drive motor 56, it will be appreciated that an overload condition for blade motor 54 is also within the scope of the present disclosure.
  • In addition to overload protection, control circuit 20 can be configured to provide a soft-start to drive motor 56 in order to reduce or eliminate abrupt movement (or “jump”) of the mower 10 at the beginning of self-drive operation. In some embodiments, upon actuation of the drive bail 102 the control circuit 20 will gradually increase the voltage provided to drive motor 56 until reaching the desired operating voltage, e.g., the operating voltage determined by the position of speed control lever 108. For example only, control circuit 20 will increase the voltage provided to drive motor 56 over a predetermined period, such as 1-3 seconds.
  • In some embodiments, the handle assembly 100 is capable of being rotated in relation to the deck 50 in order to “fold” the handle assembly 100 over the deck 50 to reduce the size of mower 10 for storage. For example and with reference to FIGS. 23, 30 and 31, two handle plates 200 fixedly coupled to deck 50 can be utilized to couple the handle assembly 100 with the deck 50. Handle frames 103 can be rotatably coupled to handle plates 200 by fasteners 201, such as a nut and bolt. A knob assembly 210 that is offset from the fasteners 201 can interact with one or more openings 202A-C defined by handle plates 200 to inhibit rotation of the handle assembly 100. Openings 202A and 202B are utilized to lock the handle assembly 100 in the proper position for operation of mower 10. Openings 202A and 202B each correspond to a different position of handle assembly 100, which can be selected based on user preference. Opening 202C corresponds to a storage position in which handle assembly 100 is folded over deck 50. The storage position (FIG. 31) of handle assembly 100 permits mower 10 to be stored vertically, e.g., with a contact portion 205 of handle plates 200 in resting on a storage surface.
  • With specific reference to FIG. 30, an exemplary knob assembly 210 includes a graspable knob 212 that is coupled with an extension peg 214 by a pin 216 inserted into an opening 218 defined by graspable knob 212. Extension peg 214 can be biased to an extended or locked position, e.g., by a spring, in which knob contact surface 213 contacts handle frame 103 and extension peg 214 is extended, e.g., into openings 202A-C. In order to release extension peg 214 from opening 202A, 202B or 202C, a user pulls on graspable knob 212. Furthermore, rotation of graspable knob 212 can move the knob assembly 210 to a released position in which extension peg 214 is retracted such that extension peg 214 does not interact with opening(s) 202A-C and the handle assembly can be freely rotated. For example only, graspable knob 212 can define an aperture 215 that interacts with a projection 106 formed on handle frames 103. The shape of aperture 215 can complement the shape of projection 106 to inhibit rotation of the graspable knob 212 in the locked position and to secure the knob assembly in the released position when the graspable knob 212 is rotated.
  • While the disclosure has been described in the specification and illustrated in the drawings with reference to various embodiments, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the disclosure as defined in the claims. Furthermore, the mixing and matching of features, elements and/or functions between various embodiments is expressly contemplated herein so that one of ordinary skill in the art would appreciate from this disclosure that features, elements and/or functions of one embodiment may be incorporated into another embodiment as appropriate, unless described otherwise above. Moreover, many modifications may be made to adapt a particular situation or material to the teachings of the disclosure without departing from the essential scope thereof. Therefore, it is intended that the disclosure not be limited to the particular embodiments illustrated by the drawings and described in the specification as the best mode presently contemplated for carrying out this disclosure, but that the disclosure will include any embodiments falling within the foregoing description and the appended claims.

Claims (14)

1.-5. (canceled)
6. A cordless mower comprising:
a deck supported by front and rear wheels, the deck having a top side, a bottom side, a front end and a rear end;
a rechargeable battery supported on said deck;
a drive motor connected to the rear wheels for driving said rear wheels to move the mower;
a speed lever controlled by a user to set the speed of the mower; and
a control circuit connected to the speed lever that controls the amount of current delivered from the battery to the drive motor, the control circuit monitoring the drive motor and shutting off the drive motor when the current being delivered exceeds a first predetermined current for a first predetermined period of time.
7. The cordless mower of claim 6, wherein the control circuit shuts off the drive motor when the current being delivered exceeds a second predetermined current for a second predetermined time period, wherein the second predetermined current is higher than the first predetermined current, and the second predetermined time period is shorter than the first predetermined time period.
8. The cordless mower of claim 6 wherein the drive motor is connected to the rear wheels through at least one gear mechanism, the drive motor having an rpm of 6,000 to 17,000 rpm and the gear mechanism having a gear reduction between 90:1 and 130:1.
9. The cordless mower of claim 8, wherein the gear mechanism has three separate gear reductions, and at least one is a planetary gear reduction and another a worm gear reduction.
10. The cordless mower of claim 6, further including a blade motor mounted generally centrally on the deck, the blade motor and drive motor being powered by the rechargeable battery, the blade motor having independent controls from the drive motor.
11. A cordless mower comprising:
a deck supported by front and rear wheels, the deck having a top side, a bottom side, a front end and a rear end;
a rechargeable battery supported on said deck;
a drive motor connected to the rear wheels for driving said rear wheels to move the mower;
a blade motor coupled to a blade;
a handle secured to said the rear end of said deck, and said handle having a blade bail for controlling power to the blade motor and a drive bail for controlling power to said drive motor so that power to the blade motor and the drive motor are independently controlled.
12. The cordless mower of claim 11, further comprising a control circuit monitoring the drive motor and shutting off the drive motor when the current being delivered exceeds a first predetermined current for a first predetermined period of time.
13. The cordless mower of claim 12, wherein the control circuit shuts off the drive motor when the current being delivered exceeds a second predetermined current for a second predetermined time period, wherein the second predetermined current is higher than the first predetermined current, and the second predetermined time period is shorter than the first predetermined time period.
14. The cordless mower of claim 11, further comprising a safety key that is electrically coupled to both the blade motor and drive motor, so that when present, electrical power may be delivered from the battery to both the blade motor and drive motor, and when absent, no power can be delivered to the blade motor and drive motor.
15. The cordless mower of claim 11 wherein the drive motor is connected to the rear wheels through at least one gear mechanism, the drive motor having an rpm of 6,000 to 17,000 rpm and the gear mechanism having a gear reduction between 90:1 and 130:1.
16. A cordless mower comprising:
a deck supported by front and rear wheels, the deck having a top side, a bottom side, a front end and a rear end, the bottom side defining a cutting chamber and a discharge passage extending rearwardly from the cutting chamber to the rear of said mower;
a rechargeable battery supported on said deck;
a blade for cutting grass arranged within the cutting chamber; and
a mulch door positioned in said discharge passage and movable between an open and closed position, the mulch door rotating about a vertical shaft that is connected to a user controlled knob located at a top side of the deck.
17. The cordless mower of claim 16 wherein the discharge passage defines a grass outlet aperture at the rear end of the deck and the mulch door is positioned inwardly of the grass outlet aperture and wherein the mulch door swings outwardly when moving from the closed to open position so that any debris in the discharge passage behind the mulch door is swept into the grass outlet aperture and removed from the discharge passage.
18. The cordless mower of claim 16 further including a rear discharge door spaced from the rear end of the deck to create a discharge cavity to direct debris downward.
US13/804,898 2008-04-25 2013-03-14 Cordless mower including cooling air flow arrangement Abandoned US20130199146A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/804,898 US20130199146A1 (en) 2008-04-25 2013-03-14 Cordless mower including cooling air flow arrangement

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US4800208P 2008-04-25 2008-04-25
US12/426,499 US20090266042A1 (en) 2008-04-25 2009-04-20 Mower
US29/361,418 USD642119S1 (en) 2010-05-11 2010-05-11 Battery
US12/838,898 US8653786B2 (en) 2008-04-25 2010-07-19 Cordless mower including battery with two charging connectors
US12/975,499 US8429885B2 (en) 2008-04-25 2010-12-22 Cordless mower including cooling air flow arrangement
US13/804,898 US20130199146A1 (en) 2008-04-25 2013-03-14 Cordless mower including cooling air flow arrangement

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US12/975,499 Division US8429885B2 (en) 2008-04-25 2010-12-22 Cordless mower including cooling air flow arrangement

Publications (1)

Publication Number Publication Date
US20130199146A1 true US20130199146A1 (en) 2013-08-08

Family

ID=45349068

Family Applications (2)

Application Number Title Priority Date Filing Date
US12/975,499 Active 2029-09-07 US8429885B2 (en) 2008-04-25 2010-12-22 Cordless mower including cooling air flow arrangement
US13/804,898 Abandoned US20130199146A1 (en) 2008-04-25 2013-03-14 Cordless mower including cooling air flow arrangement

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US12/975,499 Active 2029-09-07 US8429885B2 (en) 2008-04-25 2010-12-22 Cordless mower including cooling air flow arrangement

Country Status (3)

Country Link
US (2) US8429885B2 (en)
EP (1) EP2468085B1 (en)
CN (1) CN202476097U (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100018787A1 (en) * 2008-07-08 2010-01-28 Ktm Sportmotorcycle Ag Electrically operated vehicle with a rider saddle
CN104641784A (en) * 2013-11-21 2015-05-27 罗伯特·博世有限公司 Lawnmower battery arrangement
US9338940B2 (en) 2014-02-27 2016-05-17 Honda Motor Co., Ltd. Drive systems and methods for implementing engine stall protection in a self-propelled machine
US20210112734A1 (en) * 2019-10-17 2021-04-22 Bluebird Turf Products LLLP, A Delaware Limited Liabiliy Partnership Electric Power Rake For Lawn Care

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5689753B2 (en) * 2011-06-14 2015-03-25 株式会社マキタ Electric lawn mower
JP5912305B2 (en) * 2011-06-14 2016-04-27 株式会社マキタ Electric lawn mower
US9462747B2 (en) 2011-11-03 2016-10-11 Brigs & Stratton Corporation Vertically storable engine and mower
AU2012244374B2 (en) * 2011-11-03 2017-08-03 Briggs & Stratton, Llc Vertically storable engine and mower
US9433147B2 (en) 2011-11-03 2016-09-06 Briggs & Stratton Corporation Vertically storable engine and mower
EP2636295B1 (en) * 2012-03-07 2014-09-10 Robert Bosch GmbH Lawn-care apparatus
JP5726795B2 (en) * 2012-03-21 2015-06-03 株式会社クボタ Mower
US20130312566A1 (en) * 2012-05-25 2013-11-28 Chadwick A. Shaffer Implement and operator control for use with same
US11606900B2 (en) 2012-10-15 2023-03-21 Chervon (Hk) Limited Gardening tool
US9596806B2 (en) 2013-10-10 2017-03-21 Chervon (Hk) Limited Control system for controlling the operation of a gardening tool
US9888627B2 (en) 2012-10-15 2018-02-13 Chervon (Hk) Limited Lawncare apparatus with a foldable operating arm
JP6211470B2 (en) * 2014-06-16 2017-10-11 株式会社クボタ Moore
JP6322061B2 (en) * 2014-06-16 2018-05-09 株式会社クボタ Moore
CN204180540U (en) * 2014-10-27 2015-03-04 常州格力博有限公司 Can stand upside down place mower structure
CN105794388A (en) * 2014-12-30 2016-07-27 南京德朔实业有限公司 Power tool
CN106258180B (en) * 2015-05-20 2019-03-08 南京德朔实业有限公司 Hand-push type mower
CN106385982B (en) * 2015-07-29 2019-04-19 南京德朔实业有限公司 Grass trimmer
CN105325128B (en) * 2015-11-28 2017-06-09 宁波市德霖机械有限公司 The operating mechanism and its hay mover of a kind of hay mover
USD841572S1 (en) 2016-03-08 2019-02-26 Briggs & Stratton Corporation Battery
CN105917861B (en) * 2016-06-20 2019-05-03 常州格力博有限公司 A kind of tedder
JP2018088853A (en) * 2016-11-30 2018-06-14 本田技研工業株式会社 Electric working machine
JP2018092746A (en) * 2016-11-30 2018-06-14 本田技研工業株式会社 Battery attachment structure
CN107593087A (en) * 2017-09-09 2018-01-19 浙江亚特电器有限公司 A kind of hay mover
CN209710730U (en) 2017-12-28 2019-12-03 南京德朔实业有限公司 Straddle riding type power-operated mower
US10299432B1 (en) 2018-02-21 2019-05-28 Honda Motor Co., Ltd. Latching mechanism for pivotable handle
JP7068959B2 (en) * 2018-08-02 2022-05-17 株式会社クボタ Battery connector assembly and battery equipment
CN109392418A (en) * 2018-10-09 2019-03-01 常州格力博有限公司 Tedder
CN109258065B (en) * 2018-11-27 2020-07-24 嘉兴市瑞鑫塑业有限公司 Double-layer intercepting full-wrapping type cutting mower
WO2020140971A1 (en) * 2019-01-04 2020-07-09 南京德朔实业有限公司 Lawn mower
CN211671395U (en) * 2019-01-04 2020-10-16 南京德朔实业有限公司 Grass cutter
TWM612458U (en) 2019-03-12 2021-06-01 美商米沃奇電子工具公司 Power tool
US11490566B2 (en) * 2019-04-08 2022-11-08 Honda Motor Co., Ltd. Apparatus and method for cooling lawnmower components
CN110073815B (en) * 2019-05-05 2022-07-05 浙江亚特电器股份有限公司 Rechargeable built-in battery lawn mower
JP2021023230A (en) * 2019-08-07 2021-02-22 本田技研工業株式会社 Work machine
US20210112710A1 (en) * 2019-10-18 2021-04-22 Bluebird Turf Products LLLP, A Delaware Limited Liability Partnership Electric Power Hover Lawn Mower
US11317561B2 (en) 2019-10-22 2022-05-03 Honda Motor Co., Ltd. Lawnmower propulsion system for use with DC power source
US11638397B2 (en) 2020-02-10 2023-05-02 Techtronic Cordless Gp Control assembly coupled to handle of an implement
WO2021194553A1 (en) * 2020-03-24 2021-09-30 Husqvarna Ab Drive assembly for lawn care vehicle
US11769927B2 (en) * 2020-12-30 2023-09-26 Exmark Manufacturing Company Incorporated Battery housing
US20220287234A1 (en) * 2021-03-14 2022-09-15 Honda Motor Co., Ltd. Lawn mower and handle thereof
CN115520038A (en) 2021-06-25 2022-12-27 南京泉峰科技有限公司 Outdoor walking equipment
US20230114884A1 (en) * 2021-10-13 2023-04-13 Briggs & Stratton, Llc Zero turn radius mower with removable battery packs
US20230119910A1 (en) * 2021-10-14 2023-04-20 Briggs & Stratton, Llc Lawn Tractor with Removable Battery Packs

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030085680A1 (en) * 2001-11-02 2003-05-08 Tsutomu Wakitani Electric working machine
US20040134175A1 (en) * 2002-11-22 2004-07-15 Osborne Christopher M. Hybrid power equipment
US20070272510A1 (en) * 2006-05-24 2007-11-29 Honda Motor Co., Ltd. Travel-driving mechanism for self-propelled working machine
US20080277188A1 (en) * 2006-07-07 2008-11-13 Hydro-Gear Limited Partnership Front Steering Module For A Zero Turn Radius Vehicle
US20090065273A1 (en) * 2007-09-11 2009-03-12 Hydro-Gear Limited Partnership Control Systems And Methods For Electric Drive Utility Vehicles
US20090201650A1 (en) * 2007-09-11 2009-08-13 Hydro-Gear Limited Partnership Controller Assemblies For Electric Drive Utility Vehicles

Family Cites Families (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3550714A (en) 1964-10-20 1970-12-29 Mowbot Inc Lawn mower
US3536051A (en) * 1968-03-11 1970-10-27 Eaton Stamping Co Electric starting system for small engines
US3593505A (en) * 1968-09-04 1971-07-20 Toro Mfg Corp Mower motor cooling system
EP0009798B1 (en) * 1978-10-03 1982-11-03 Black & Decker Inc. Vegetation cutter
USD300132S (en) 1986-04-11 1989-03-07 General Electric Company Battery for a portable radio
USD301228S (en) 1986-04-11 1989-05-23 General Electric Company Battery for a portable radio
US4753062A (en) 1987-06-11 1988-06-28 Capro, Inc. Lawn mower and safety control therefor
US4847513A (en) 1988-02-26 1989-07-11 Black & Decker Inc. Power-operated device with a cooling facility
US4944142A (en) * 1988-08-22 1990-07-31 Honda Giken Kogyo Kabushiki Kaisha Power lawnmower construction
USD321680S (en) 1989-03-13 1991-11-19 Blount Wendell G Battery case
USD320974S (en) 1989-08-03 1991-10-22 General Electric Company Battery for a portable radio
USD320379S (en) 1989-08-07 1991-10-01 General Electric Company Battery for a portable radio
US5085043A (en) 1990-06-01 1992-02-04 Black & Decker Inc. Electro-mechanical interlock and module system for lawn mower or other electrical device
US5163273A (en) 1991-04-01 1992-11-17 Wojtkowski David J Automatic lawn mower vehicle
EP0585021A3 (en) 1992-08-18 1994-05-18 Black & Decker Inc. Improvements in battery operated electric machines
US5606851A (en) * 1993-09-22 1997-03-04 Briggs & Stratton Corporation Battery-powered lawn cutting system
US5819513A (en) * 1993-09-22 1998-10-13 Briggs & Stratton Corporation Power head assembly for electric grass cutting device
GB2303719B (en) 1995-07-26 2000-01-26 Black & Decker Inc An energy management system for a cordless vegetation cutter
USD387329S (en) 1996-07-29 1997-12-09 Datasouth Computer Corporation Battery pack adapter
GB2338392A (en) 1998-06-16 1999-12-22 Black & Decker Inc Switch for battery powered lawn mower.
US7007446B2 (en) * 2000-10-26 2006-03-07 Textron Inc. Battery-powered walk-behind greensmower
JP3776773B2 (en) * 2001-08-22 2006-05-17 本田技研工業株式会社 Electric lawn mower
JP3776772B2 (en) * 2001-08-22 2006-05-17 本田技研工業株式会社 Electric lawn mower
TWI248783B (en) * 2001-08-22 2006-02-11 Honda Motor Co Ltd Electric lawn mower
TWM278226U (en) * 2001-08-22 2005-10-21 Honda Motor Co Ltd Electric lawn mower
US7111443B2 (en) * 2002-10-11 2006-09-26 The Toro Copmany Walk reel mower with electric drive and automatic slow down system
USD499070S1 (en) 2003-03-13 2004-11-30 Hopkins Manufacturing Corporation Break-away battery box
DE102004016707A1 (en) 2004-04-05 2005-10-13 Wolf-Geräte AG Lawnmower with mulching function
US20060059880A1 (en) 2004-09-13 2006-03-23 Angott Paul G Unmanned utility vehicle
US7367173B2 (en) 2005-03-02 2008-05-06 Textron Inc. Greens mower data display and controller
GB0615241D0 (en) 2006-08-01 2006-09-06 Bosch Gmbh Robert Lawn-care apparatus
US7479754B2 (en) * 2006-10-17 2009-01-20 Desa Ip Llc Hybrid electric lawnmower
US7728534B2 (en) * 2006-10-17 2010-06-01 Mtd Products Inc Hybrid electric lawnmower
US20090266042A1 (en) 2008-04-25 2009-10-29 Mooney P Wade Mower
US8653786B2 (en) 2008-04-25 2014-02-18 Black & Decker Inc. Cordless mower including battery with two charging connectors
USD604235S1 (en) 2008-09-19 2009-11-17 The Coleman Company, Inc. Power cartridge insert
US7762049B2 (en) 2008-12-31 2010-07-27 Black & Decker Inc. Electric mower having two-motion activation system
USD614125S1 (en) 2009-02-16 2010-04-20 Andreas Stihl Ag & Co. Kg Battery
JP5531211B2 (en) 2010-04-08 2014-06-25 株式会社 神崎高級工機製作所 Electric work vehicle

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030085680A1 (en) * 2001-11-02 2003-05-08 Tsutomu Wakitani Electric working machine
US20040134175A1 (en) * 2002-11-22 2004-07-15 Osborne Christopher M. Hybrid power equipment
US20070272510A1 (en) * 2006-05-24 2007-11-29 Honda Motor Co., Ltd. Travel-driving mechanism for self-propelled working machine
US20080277188A1 (en) * 2006-07-07 2008-11-13 Hydro-Gear Limited Partnership Front Steering Module For A Zero Turn Radius Vehicle
US20090065273A1 (en) * 2007-09-11 2009-03-12 Hydro-Gear Limited Partnership Control Systems And Methods For Electric Drive Utility Vehicles
US20090201650A1 (en) * 2007-09-11 2009-08-13 Hydro-Gear Limited Partnership Controller Assemblies For Electric Drive Utility Vehicles

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100018787A1 (en) * 2008-07-08 2010-01-28 Ktm Sportmotorcycle Ag Electrically operated vehicle with a rider saddle
US8973689B2 (en) * 2008-07-08 2015-03-10 Ktm Sportmotorcycle Ag Electrically operated vehicle with a rider saddle
CN104641784A (en) * 2013-11-21 2015-05-27 罗伯特·博世有限公司 Lawnmower battery arrangement
US9338940B2 (en) 2014-02-27 2016-05-17 Honda Motor Co., Ltd. Drive systems and methods for implementing engine stall protection in a self-propelled machine
US20210112734A1 (en) * 2019-10-17 2021-04-22 Bluebird Turf Products LLLP, A Delaware Limited Liabiliy Partnership Electric Power Rake For Lawn Care

Also Published As

Publication number Publication date
EP2468085B1 (en) 2015-04-29
CN202476097U (en) 2012-10-10
US20110088362A1 (en) 2011-04-21
US8429885B2 (en) 2013-04-30
EP2468085A1 (en) 2012-06-27

Similar Documents

Publication Publication Date Title
US8429885B2 (en) Cordless mower including cooling air flow arrangement
US8653786B2 (en) Cordless mower including battery with two charging connectors
US7805920B2 (en) Lawn mower having steeply inclined exit tunnel and battery access through rear face of mower cutting deck
US9282695B2 (en) Electric power mower
EP2048933B1 (en) Lawn-care apparatus
US20090266042A1 (en) Mower
US20130049477A1 (en) Electric-powered cultivator
US9277687B2 (en) Tiller housing
US20230363309A1 (en) Electric motor for outdoor power equipment
JP5545477B2 (en) Electric tool
CN111877244A (en) Snow sweeper
US20210153431A1 (en) Battery Adapter Plate for Wheeled Outdoor Power Equipment
US11317561B2 (en) Lawnmower propulsion system for use with DC power source
CN212316812U (en) Snow sweeper
WO2023018759A1 (en) Lawnmower with reduced clearance space
US20240122099A1 (en) Walk behind power tools
EP4353067A1 (en) Walk behind power tools
WO2021203620A1 (en) Lawn mower
WO2023236841A1 (en) Snow sweeper
WO2024055274A1 (en) Walk-behind outdoor power machine
CN213094953U (en) Grass cutter
DE102022101209A1 (en) Electrical working machine
WO2024081399A2 (en) Integraterd charger onboard electrified chore product

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION