US20130184421A1 - Supramolecular Functional Materials - Google Patents

Supramolecular Functional Materials Download PDF

Info

Publication number
US20130184421A1
US20130184421A1 US13/789,193 US201313789193A US2013184421A1 US 20130184421 A1 US20130184421 A1 US 20130184421A1 US 201313789193 A US201313789193 A US 201313789193A US 2013184421 A1 US2013184421 A1 US 2013184421A1
Authority
US
United States
Prior art keywords
metal
ligand
functional material
supramolecular
chemical formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/789,193
Inventor
Manuel Antonio Fernandes
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of the Witwatersrand, Johannesburg
Original Assignee
University of the Witwatersrand, Johannesburg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of the Witwatersrand, Johannesburg filed Critical University of the Witwatersrand, Johannesburg
Priority to US13/789,193 priority Critical patent/US20130184421A1/en
Assigned to UNIVERSITY OF THE WITWATERSRAND, JOHANNESBURG reassignment UNIVERSITY OF THE WITWATERSRAND, JOHANNESBURG ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: FERNANDES, MANUEL ANTONIO
Publication of US20130184421A1 publication Critical patent/US20130184421A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F130/00Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal
    • C08F130/04Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal containing a metal
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G79/00Macromolecular compounds obtained by reactions forming a linkage containing atoms other than silicon, sulfur, nitrogen, oxygen, and carbon with or without the latter elements in the main chain of the macromolecule
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic System
    • C07F15/06Cobalt compounds
    • C07F15/065Cobalt compounds without a metal-carbon linkage
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F3/00Compounds containing elements of Groups 2 or 12 of the Periodic System
    • C07F3/06Zinc compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G83/00Macromolecular compounds not provided for in groups C08G2/00 - C08G81/00
    • C08G83/008Supramolecular polymers

Definitions

  • This invention relates to supramolecular functional materials, particularly to coordination networks, more particularly to coordination polymers, and more particularly to metal based one-dimensional coordination polymers.
  • Supramolecular chemistry is a relatively young branch of chemistry having undergone much of its development in the latter half of the 20th century [1]. The reason for this is twofold, firstly a thorough understanding of synthetic methods resulting in supramolecular systems was needed and secondly, powerful analytical technology used in structure elucidation and in physico-chemical property determination needed to be developed [1].
  • Analytical techniques that have been successfully employed in this regard include UV-visible, florescence-, and infra-red spectroscopy, nuclear magnetic resonance, powder X-ray diffraction and most importantly single-crystal X-ray diffraction [1].
  • the close packing of metal ions in a one-dimensional coordination polymer is favoured for the formation of functional materials characterized by displaying at least one physico-chemical property known to the group comprising: molecular ferromagnets, metallic and superconducting polymers, non-linear optical materials, ferroelectric materials and molecular magnets.
  • At least one supramolecular functional material comprising at least one, one-dimensional, metal-based coordination network.
  • each, metal-based coordination network prefferably be a metal-based one-dimensional coordination polymer, preferably comprising at least one organic ligand and at least one metal ion.
  • the metal-based coordination polymer to include at least one solvent molecule.
  • metal ion and the organic ligand to form a chain structure when coordinated to one another to form the metal-based one-dimensional coordination polymer.
  • metal ion, the organic ligand and the solvent molecule to form a chain structure and, thus form the metal-based one-dimensional coordination polymer.
  • organic ligand to act, in use, as a bridging group between the metal ion forming the chain structure, for the organic ligand to be a carboxylate ligand.
  • the metal ion to be a transition group element, preferably selected from the group consisting of: titanium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, zinc and cadmium.
  • metal-based coordination polymer to exhibit, in use, magnetic, electronic and/or optical physico-chemical properties.
  • the invention extends to a method of producing at least one supramolecular functional material comprising at least one metal-based coordination network, preferably a one-dimensional metal-based coordination network, alternatively a two-dimensional metal-based coordination network, further alternatively a three dimensional metal-based coordination network.
  • the method of producing the, or each, metal-based coordination network to be a metal-based one-dimensional coordination polymer, preferably comprising at least one organic ligand and at least one metal ion.
  • the method to include, in use, at least one solvent molecule.
  • the metal ion, the organic ligand and the solvent molecule forms a chain structure and, thus forming the metal-based one-dimensional coordination polymer, alternatively a two-dimensional coordination polymer, further alternatively a three-dimensional coordination polymer.
  • organic ligand acts, in use, as a bridging group between the metal ions forming the chain structure, for the organic ligand to be a carboxylate ligand.
  • the metal ion is a transition group element, preferably selected from the group consisting of: titanium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, zinc and cadmium.
  • metal-based coordination polymer to exhibit, in use, magnetic, electronic and/or optical physico-chemical properties.
  • At least one reaction condition is selectable from a group consisting of: volume of reaction vessel, material composition of reaction vessel, temperature, pressure, humidity and gas defining an atmosphere inside reaction vessel.
  • FIG. 1 a - 1 d shows diagrams and schemes relating to structure I
  • FIG. 1 a shows the ligand-metal-ligand repeat unit forming the metal-based one-dimensional coordination polymer of the chemical formula [Zn(C 10 H 9 O 3 ) 2 ] n ;
  • FIG. 1 b shows the coordination environment as a sequence of tetrahedra forming the metal-based one-dimensional coordination polymer of the chemical formula [Zn(C 10 H 9 O 3 ) 2 ] n ;
  • FIG. 1 c a ball and stick representation of the crystal structure of the metal-based one-dimensional coordination polymer of the chemical formula [Zn(C 10 H 9 O 3 ) 2 ] n highlighting the coordination bonds between the ligand and metal ion;
  • FIG. 1 d a packing diagram of the crystal structure of [Zn(C 10 H 9 O 3 ) 2 ] n as viewed down the crystallographic c-axis;
  • FIG. 2 a - 2 d shows diagrams and schemes relating to structure II
  • FIG. 2 a shows the ligand-metal-ligand repeat unit forming the metal-based one-dimensional coordination polymer of the chemical formula [Co(C 10 H 9 O 3 ) 2 ] n ;
  • FIG. 2 b shows the coordination environment as a sequence of polyhedra forming the metal-based one-dimensional coordination polymer of the chemical formula [Co(C 10 H 9 O 3 ) 2 ] n ;
  • FIG. 2 c a ball and stick representation of the crystal structure of the metal-based one-dimensional coordination polymer of the chemical formula [Co(C 10 H 9 O 3 ) 2 ] n highlighting the coordination bonds between the ligand and metal ion;
  • FIG. 2 d a packing diagram of the crystal structure of [Co(C 10 H 9 O 3 ) 2 ] n as viewed down the crystallographic b-axis;
  • FIG. 3 a - 3 d shows diagrams and schemes relating to structure III
  • FIG. 3 a shows the ligand-metal-ligand repeat unit forming the metal-based one-dimensional coordination polymer of the chemical formula [Co(C 8 H 7 O 2 ) 2 ] n ;
  • FIG. 3 b shows the coordination environment as a sequence of polyhedra forming the metal-based one-dimensional coordination polymer of the chemical formula [Co(C 8 H 7 O 2 ) 2 ] n ;
  • FIG. 3 c a ball and stick representation of the crystal structure of the metal-based one-dimensional coordination polymer of the chemical formula [Co(C 8 H 7 O 2 ) 2 ] n highlighting the coordination bonds between the ligand and metal ion;
  • FIG. 3 d a packing diagram of the crystal structure of [Co(C 8 H 7 O 2 ) 2 ] n as viewed down the crystallographic c-axis;
  • FIG. 4 a - 4 d shows diagrams and schemes relating to structure IV
  • FIG. 4 a shows the ligand-metal-ligand repeat unit forming the metal-based one-dimensional coordination polymer of the chemical formula [Co(C 11 H 7 O 2 ) 2 (C 3 H 7 O)] n ;
  • FIG. 4 b shows the coordination environment as a sequence of polyhedra forming the metal-based one-dimensional coordination polymer of the chemical formula [Co(C 11 H 7 O 2 ) 2 (C 3 H 7 O)] n ;
  • FIG. 4 c a ball and stick representation of the crystal structure of the metal-based one-dimensional coordination polymer of the chemical formula [Co(C 11 H 7 O 2 ) 2 (C 3 H 7 O)] n highlighting the coordination bonds between the ligand and metal ion;
  • FIG. 4 d a packing diagram of the crystal structure of [Co(C 11 H 7 O 2 ) 2 (C 3 H 7 O)] n as viewed down the crystallographic a-axis;
  • FIG. 5 a - 5 d shows diagrams and schemes relating to structure V
  • FIG. 5 a shows the ligand-metal-ligand repeat unit forming the metal-based one-dimensional coordination polymer of the chemical formula [Co(C 15 H 9 O 2 ) 4 (C 3 H 7 O) 2 ] n ;
  • FIG. 5 b shows the coordination environment as a sequence of polyhedra forming the metal-based one-dimensional coordination polymer of the chemical formula [Co(C 15 H 9 O 2 ) 4 (C 3 H 7 O) 2 ] n ;
  • FIG. 5 c a ball and stick representation of the crystal structure of the metal-based one-dimensional coordination polymer of the chemical formula [Co(C 15 H 9 O 2 ) 4 (C 3 H 7 O) 2 ] n highlighting the coordination bonds between the ligand and metal ion;
  • FIG. 5 d a packing diagram of the crystal structure of [Co(C 15 H 9 O 2 ) 4 (C 3 H 7 O) 2 ] n as viewed down the crystallographic b-axis;
  • FIG. 6 shows the coordination environment of structure III partly in a space-filling representation and partly in a ball and stick representation, and;
  • FIG. 7 shows the crystallographic data for structures I to V.
  • FIG. ( 1 a ) to ( 1 d ) shows structure I of chemical formula [Zn(C 10 H 9 O 3 )2] n .
  • FIG. ( 1 a ) shows the ligand-metal-ligand repeat unit [L 1 -M-L 2 ] n forming a metal-based one-dimensional coordination polymer of the chemical formula [Zn(C 10 H 9 O 3 ) 2 ] n where n is any integer 1 to infinity, the metal is Zn 2+ and the ligand (L 1 and L 2 ) is o-methoxy-cinnamate.
  • Coordination bonds formed between oxygen atoms of the carboxylate group comprising the ligand (o-methoxy-cinnamate) and the metal (zinc) ion are indicated by broken lines.
  • the coordination environment of the metal-based one-dimensional coordination polymer of the chemical formula [Zn(C 10 H 9 O 3 ) 2 ] n is shown in ( 1 b ) as a sequence of polyhedra wherein the polyhedra are all tetrahedral.
  • FIG. 1 c ) shows a ball and stick representation of the crystal structure of the metal-based one-dimensional coordination polymer of the chemical formula [Zn(C 10 H 9 O 3 ) 2 ] n highlighting the coordination bonds between the ligand and metal ion.
  • FIG. 1 d shows a packing diagram of the crystal structure of [Zn(C 10 H 9 O 3 ) 2 ] as viewed down the crystallographic c-axis. This is considered to be a very unusual structure as the ligands (o-methoxy-cinnamate) are arranged around the Zn 2+ in a propeller like 3 1 screw axis arrangement resulting in a chiral structure crystallised in the chiral space group P3 1 .
  • metal-based one-dimensional coordination polymer of the chemical formula [Zn(C 10 H 9 O 3 ) 2 ] n where n is any integer 1 to infinity, the metal is Zn 2+ and the ligand is o-methoxy-cinnamate may crystallize in other space groups and comprise polymorphs of the P3 1 structure. Crystallisation of [Zn(C 10 H 9 O 3 ) 2 ] was achieved by heating a solution containing zinc metal and o-methoxy-cinnamatic acid at about 80° C. for about one week.
  • FIGS. 2 a ) to ( 2 d ) shows structure II of chemical formula [Co(C 10 H 9 O 3 ) 2 ] n .
  • FIG. 2 a shows the ligand-metal-ligand repeat unit forming the metal-based one-dimensional coordination polymer of the chemical formula [Co(C 10 H 9 O 3 ) 2 ] n where n is any integer 1 to infinity, the metal is Co 2+ and the ligand is o-methoxy-cinnamate.
  • Coordination bonds formed between oxygen atoms of the carboxylate group comprising the ligand (o-methoxy-cinnamate) and the metal (cobalt) ion are indicated by broken lines.
  • the coordination environment of the metal-based one-dimensional coordination polymer of the chemical formula [Co(C 10 H 9 O 3 ) 2 ] n is shown in ( 2 b ) as a sequence of polyhedral wherein the polyhedra are an alternating sequence of corner sharing tetrahedra and octahedra.
  • FIG. 2 c ) shows a ball and stick representation of the crystal structure of the metal-based one-dimensional coordination polymer of the chemical formula [Co(C 10 H 9 O 3 ) 2 ] highlighting the coordination bonds between the ligand and metal ion.
  • the distance between cobalt ions (Co—Co) comprising the metal-based one-dimensional coordination polymer was measured as 3.169 ⁇ and 3.199 ⁇ .
  • One of the interesting features of this crystal structure is that the arrangement of molecules around the cobalt ions causes the cobalt ions to be extremely close to one another along the chain comprising the metal-based one-dimensional coordination polymer. It is this distance which facilitates magnetic, electronic and/or optical physico-chemical properties or any combination of said physico-chemical properties characteristic of the metal-based one-dimensional coordination polymer of the chemical formula [Co(C 10 H 9 O 3 ) 2 ].
  • FIG. 2 d shows a packing diagram of the crystal structure of [Co(C 10 H 9 O 3 ) 2 ] as viewed down the crystallographic b-axis.
  • the crystal structure crystallises in the monoclinic, centrosymmetric space group P2 1 /c.
  • metal-based one-dimensional coordination polymer of the chemical formula [Co(C 10 H 9 O 3 ) 2 ] where n is any integer 1 to infinity, the metal is Co 2+ and the ligand is o-methoxy-cinnamate may crystallise in other space groups and comprise polymorphs of the P2 1 /c structure.
  • FIGS. 3 a ) to ( 3 d ) shows structure III of chemical formula [Co(C 8 H 7 O 2 ) 2 ] n .
  • FIG. 3 a ) shows the ligand-metal-ligand repeat unit forming the metal-based one-dimensional coordination polymer of the chemical formula [Co(C 8 H 7 O 2 ) 2 ] n where n is any integer 1 to infinity, the metal is Co 2+ and the ligand is p-toluate. Coordination bonds formed between oxygen atoms of the carboxylate group comprising the ligand (p-toluate) and the metal (cobalt) ion are indicated by broken lines.
  • the coordination environment of the metal-based one-dimensional coordination polymer of the chemical formula [Co(C 8 H 7 O 2 ) 2 ] n is shown in ( 3 b ) as a sequence of polyhedra wherein the polyhedra are an alternating sequence of corner sharing tetrahedra and octahedra.
  • FIG. 3 c ) shows a ball and stick representation of the crystal structure of the metal-based one-dimensional coordination polymer of the chemical formula [Co(C 8 H 7 O 2 ) 2 ] n highlighting the coordination bonds between the ligand and metal ion.
  • the distance between cobalt ions (Co—Co) comprising the metal-based one-dimensional coordination polymer was measured as 3.143 ⁇ .
  • FIG. 3 d shows a packing diagram of the crystal structure of [Co(C 8 H 7 O 2 ) 2 ] n as viewed down the crystallographic c-axis.
  • the crystal structure crystallises in the orthorhombic, centrosymmetric space group Pbcn.
  • metal-based one-dimensional coordination polymer of the chemical formula [Co(C 8 H 7 O 2 ) 2 ] n where n is any integer 1 to infinity, the metal is Co 2+ and the ligand is p-toluate may crystallise in other space groups and comprise polymorphs of the Pbcn structure.
  • FIGS. 4 a ) to ( 4 d ) shows structure IV of chemical formula [Co(C 11 H 7 O 2 ) 2 (C 3 H 7 O)] n .
  • FIG. 4 a ) shows the ligand-metal-ligand repeat unit forming the metal-based one-dimensional coordination polymer of the chemical formula [Co(C 11 H 7 O 2 ) 2 (C 3 H 7 O)] n where n is any integer 1 to infinity, the metal is Co 2+ and the ligand is naphthalene-1-carboxylic acid. Coordination bonds formed between oxygen atoms of the carboxylate group comprising the ligand (naphthalene-1-carboxylic acid) and the metal (cobalt) ion are indicated by broken lines.
  • the coordination environment of the metal-based one-dimensional coordination polymer of the chemical formula [Co(C 11 H 7 O 2 ) 2 (C 3 H 7 O)] n is shown in ( 4 b ) as a sequence of polyhedra wherein the polyhedra are an alternating sequence of corner sharing tetrahedra and octahedra.
  • FIG. 4 c ) shows a ball and stick representation of the crystal structure of the metal-based one-dimensional coordination polymer of the chemical formula [Co(C 11 H 7 O 2 ) 2 (C 3 H 7 O)] n highlighting the coordination bonds between the ligand and metal ion and between the isopropanol solvent and the metal ion.
  • FIG. 4 d shows a packing diagram of the crystal structure of [Co(C 11 H 7 O 2 ) 2 (C 3 H 7 O)] n as viewed down the crystallographic a-axis.
  • the crystal structure crystallises in the orthorhombic, non-centrosymmetric space group Pna2 1 .
  • FIGS. 5 a ) to ( 5 d ) shows structure V of chemical formula [Co(C 15 H 9 O 2 ) 4 (C 3 H 7 O) 2 ] n .
  • FIG. 5 a ) shows the ligand-metal-ligand repeat unit forming the metal-based one-dimensional coordination polymer of the chemical formula [Co(C 15 H 9 O 2 ) 4 (C 3 H 7 O) 2 ] n where n is any integer 1 to infinity, the metal is Co 2+ and the ligand is anthracene-2-carboxylic acid.
  • Coordination bonds formed between oxygen atoms of the carboxylate group comprising the ligand (anthracene-2-carboxylic acid) and the metal (cobalt) ion are indicated by broken lines.
  • the coordination environment of the metal-based one-dimensional coordination polymer of the chemical formula [Co(C 15 H 9 O 2 ) 4 (C 3 H 7 O) 2 ] n is shown in ( 5 b ) as a sequence of polyhedra wherein the polyhedra are an alternating sequence of edge sharing tetrahedra and octahedra.
  • FIG. 5 c shows a ball and stick representation of the crystal structure of the metal-based one-dimensional coordination polymer of the chemical formula [Co(C 15 H 9 O 2 ) 4 (C 3 H 7 O) 2 ] n highlighting the coordination bonds between the ligand and metal ion and between the isopropanol solvent and the metal ion.
  • the distance between cobalt ions (Co—Co) comprising the metal-based one-dimensional coordination polymer was measured as 3.482 ⁇ and 5.169 ⁇ .
  • FIG. 5 d shows a packing diagram of the crystal structure of [Co(C 15 H 9 O 2 ) 4 (C 3 H 7 O) 2 ] n as viewed down the crystallographic b-axis.
  • the crystal structure crystallises in the monoclinic, non-centrosymmetric space group P2 1 .
  • FIG. 6 shows the coordination environment of structure III partly in a space-filling representation and partly in a ball and stick representation to indicate that the Co 2+ ions at closer than the sum of their van der Waals radii facilitating magnetic, electronic and/or optical physico-chemical properties or any combination of said physico-chemical properties characteristic of the metal-based one-dimensional coordination polymer herein described.
  • FIG. 7 shows the crystallographic data for structures I to V.
  • Embodiments of the invention will be illustrated by the following non-limiting examples of their synthesis and crystallisation.
  • Several metal-based one-dimensional coordination polymers comprising zinc and cobalt metal ions and various aromatic carboxylates as ligands, have been crystallised via selective chemical reactive/interactive conditions.
  • the at least one supramolecular material comprising metal-based coordination networks in the form of metal-based one-dimensional coordination polymers are generally made via the direct reaction of the ligands (L) with the metal (M).
  • the usual method of crystallisation is via reaction of a ligand (L) with a metal salt (M + ).
  • Manganese supramolecular functional materials as well as the zinc supramolecular functional materials described herein, were obtained by synthetic methods similar to those described in the preceding paragraph.
  • structure I was crystallised by heating a solution containing zinc metal and o-methoxy-cinnamic acid at 80° C. for a week.

Abstract

The field of this invention relates to supramolecular functional materials, particularly to coordination networks, more particularly to coordination polymers, more particularly to metal based one-dimensional coordination polymers. The metal based one-dimensional coordination polymers comprises a repeat unit [L1-M-L2]n where L1 and L2 are one of a plurality of carboxylate ligands and L1 can be the same as L2, M is a metal, particularly a transition metal, and n is an integer from 1 to infinity. The metal based one-dimensional coordination polymers display one or more physico-chemical properties giving at least one functionality to the supramolecular material. Furthermore, a method of forming the metal based one-dimensional coordination polymers is provided by a chemical reaction between said organic ligand and said metal where said method comprises at least one selectable chemical reaction condition from the group comprising: volume of reaction vessel, material composition of reaction vessel, temperature, pressure, humidity and gas defining an atmosphere inside reaction vessel.

Description

    RELATED APPLICATIONS
  • This application is a continuation of U.S. application Ser. No. 12/862,251 filed on Aug. 24, 2010, which claims the benefit of U.S. Provisional Application No. 61/275,090, filed on Aug. 24, 2009.
  • The entire teachings of the above applications are incorporated herein by reference.
  • FIELD OF THE INVENTION
  • This invention relates to supramolecular functional materials, particularly to coordination networks, more particularly to coordination polymers, and more particularly to metal based one-dimensional coordination polymers.
  • BACKGROUND OF THE INVENTION
  • Supramolecular chemistry is a relatively young branch of chemistry having undergone much of its development in the latter half of the 20th century [1]. The reason for this is twofold, firstly a thorough understanding of synthetic methods resulting in supramolecular systems was needed and secondly, powerful analytical technology used in structure elucidation and in physico-chemical property determination needed to be developed [1]. Analytical techniques that have been successfully employed in this regard include UV-visible, florescence-, and infra-red spectroscopy, nuclear magnetic resonance, powder X-ray diffraction and most importantly single-crystal X-ray diffraction [1]. Subsequently, the interest in supramolecular chemistry and the understanding of and rational design of property specific materials has increased over the last fifty years making supramolecular chemistry one of the fastest growing and most interdisciplinary areas in chemistry [1, 2, 3]. The quest to be able to manipulate and predict the nature of intermolecular forces in the design of property specific supramolecular entities remains one of the greatest scientific challenges of our day [1, 4, 5, 6].
  • One of the most studied areas at the moment is the formation of novel metal-organic frameworks (MOF's) and coordination polymers due to the possibility of using metal ions to align molecules in a desired direction [3, 7, 8]. One-dimensional (1D) coordination polymers have been extensively researched and subject to many review articles. It has been envisaged that these supramolecular materials could be used as molecular ferromagnets, metallic and superconducting polymers, non-linear optical materials and ferroelectric materials [9]. In more recent times the research focus has been aimed at magnetism and in particular room-temperature and near-room temperature molecular magnets [10-12]. The close packing of metal ions in a one-dimensional coordination polymer is favoured for the formation of functional materials characterized by displaying at least one physico-chemical property known to the group comprising: molecular ferromagnets, metallic and superconducting polymers, non-linear optical materials, ferroelectric materials and molecular magnets.
  • One of the chief problems encountered in this area of research is finding reliable methods for producing materials with interesting and possibly useful properties. Additionally, new materials showing promising physico-chemical properties are often extremely difficult to characterize and the exact formula and/or crystal structure of many of these materials remains unknown. Methods of ensuring successful single-crystal formation suitable for single-crystal X-ray diffraction need to be developed.
  • REFERENCES
    • 1. Marais, C. G. (2008). The thermodynamics and kinetics of sorption. M.Sc thesis. University of Stellenbosch, South Africa.
    • 2. Lehn, J-M. (1993). Science, 260, 1762.
    • 3. Kitagawa, S., Kitaura, R., & Noro, S-I. (2004). Angew. Chem. Int. Ed., 43, 2334.
    • 4. Ball, P. (1996). Nature, 381, 648.
    • 5. Maddox, J. (1988). Nature, 335.
    • 6. Gavezzotii, A. (1994). Acc. Chem. Res., 27,309.
    • 7. Ferey, G. (2008). Chem. Soc. Rev., 37, 191.
    • 8. Janiak, C. (2003). Dalton Trans., 2781.
    • 9. Chen, C-T., Suslick, K. S., (1993). Coord. Chem. Rev., 128, 293.
    • 10. Jain, R., Kabir, K., Gilroy, J. B., Mitchell, K. A. R., Wong, K-C., Hicks, R. G. (2007). Nature, 445, 291.
    • 11. Harvey, M. D., Crawford, T. D., Yee, G. T. (2008). Inorg. Chem., 47, 5649.
    • 12. Miller, J. S. (2008) In Engineering of Crystalline Materials Properties (ed J. J. Novoa, D. Braga and L. Addadi), Springer Science & Business Media B.V., Dordrecht, The Netherlands, pp. 291-306.
  • The relevant teachings of the above references are incorporated herein by reference.
  • OBJECT OF INVENTION
  • It is an object of this invention to provide novel supramolecular functional materials comprising metal-based one-dimensional coordination polymers and at least one reliable method for their formation to at least alleviate the current disadvantage found in the current state of the art.
  • SUMMARY OF THE INVENTION
  • In accordance with this invention there is provided at least one supramolecular functional material comprising at least one, one-dimensional, metal-based coordination network.
  • There is further provided for the, or each, metal-based coordination network to be a metal-based one-dimensional coordination polymer, preferably comprising at least one organic ligand and at least one metal ion.
  • There is also provided for the metal-based coordination polymer to include at least one solvent molecule.
  • There is also provided for the metal ion and the organic ligand to form a chain structure when coordinated to one another to form the metal-based one-dimensional coordination polymer.
  • There is also provided for the metal ion, the organic ligand and the solvent molecule to form a chain structure and, thus form the metal-based one-dimensional coordination polymer.
  • There is also provided for the organic ligand to act, in use, as a bridging group between the metal ion forming the chain structure, for the organic ligand to be a carboxylate ligand.
  • There is also provided for the metal ion to be a transition group element, preferably selected from the group consisting of: titanium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, zinc and cadmium.
  • There also provided for the metal-based coordination polymer to exhibit, in use, magnetic, electronic and/or optical physico-chemical properties.
  • The invention extends to a method of producing at least one supramolecular functional material comprising at least one metal-based coordination network, preferably a one-dimensional metal-based coordination network, alternatively a two-dimensional metal-based coordination network, further alternatively a three dimensional metal-based coordination network.
  • There is also provided for the method of producing the, or each, metal-based coordination network to be a metal-based one-dimensional coordination polymer, preferably comprising at least one organic ligand and at least one metal ion.
  • There is also provided for the method to include, in use, at least one solvent molecule.
  • There is also provided for the method wherein the metal ion and the organic ligand forms a chain structure when coordinated to one another forming the metal-based one-dimensional coordination polymer.
  • There is also provided for the method wherein the metal ion, the organic ligand and the solvent molecule forms a chain structure and, thus forming the metal-based one-dimensional coordination polymer, alternatively a two-dimensional coordination polymer, further alternatively a three-dimensional coordination polymer.
  • There is also provided for the method wherein the organic ligand acts, in use, as a bridging group between the metal ions forming the chain structure, for the organic ligand to be a carboxylate ligand.
  • There is also provided for the method wherein the metal ion is a transition group element, preferably selected from the group consisting of: titanium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, zinc and cadmium.
  • There also provided the method wherein the metal-based coordination polymer to exhibit, in use, magnetic, electronic and/or optical physico-chemical properties.
  • There also provided the method wherein at least one reaction condition is selectable from a group consisting of: volume of reaction vessel, material composition of reaction vessel, temperature, pressure, humidity and gas defining an atmosphere inside reaction vessel.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The foregoing will be apparent from the following more particular description of example embodiments of the invention, as illustrated in the accompanying drawings in which like reference characters refer to the same parts throughout the different views. The drawings are not necessarily to scale, emphasis instead being placed upon illustrating embodiments of the present invention.
  • FIG. 1 a-1 d shows diagrams and schemes relating to structure I;
  • FIG. 1 a shows the ligand-metal-ligand repeat unit forming the metal-based one-dimensional coordination polymer of the chemical formula [Zn(C10H9O3)2]n;
  • FIG. 1 b shows the coordination environment as a sequence of tetrahedra forming the metal-based one-dimensional coordination polymer of the chemical formula [Zn(C10H9O3)2]n;
  • FIG. 1 c a ball and stick representation of the crystal structure of the metal-based one-dimensional coordination polymer of the chemical formula [Zn(C10H9O3)2]n highlighting the coordination bonds between the ligand and metal ion;
  • FIG. 1 d a packing diagram of the crystal structure of [Zn(C10H9O3)2]n as viewed down the crystallographic c-axis;
  • FIG. 2 a-2 d shows diagrams and schemes relating to structure II;
  • FIG. 2 a shows the ligand-metal-ligand repeat unit forming the metal-based one-dimensional coordination polymer of the chemical formula [Co(C10H9O3)2]n;
  • FIG. 2 b shows the coordination environment as a sequence of polyhedra forming the metal-based one-dimensional coordination polymer of the chemical formula [Co(C10H9O3)2]n;
  • FIG. 2 c a ball and stick representation of the crystal structure of the metal-based one-dimensional coordination polymer of the chemical formula [Co(C10H9O3)2]n highlighting the coordination bonds between the ligand and metal ion;
  • FIG. 2 d a packing diagram of the crystal structure of [Co(C10H9O3)2]n as viewed down the crystallographic b-axis;
  • FIG. 3 a-3 d shows diagrams and schemes relating to structure III;
  • FIG. 3 a shows the ligand-metal-ligand repeat unit forming the metal-based one-dimensional coordination polymer of the chemical formula [Co(C8H7O2)2]n;
  • FIG. 3 b shows the coordination environment as a sequence of polyhedra forming the metal-based one-dimensional coordination polymer of the chemical formula [Co(C8H7O2)2]n;
  • FIG. 3 c a ball and stick representation of the crystal structure of the metal-based one-dimensional coordination polymer of the chemical formula [Co(C8H7O2)2]n highlighting the coordination bonds between the ligand and metal ion;
  • FIG. 3 d a packing diagram of the crystal structure of [Co(C8H7O2)2]n as viewed down the crystallographic c-axis;
  • FIG. 4 a-4 d shows diagrams and schemes relating to structure IV;
  • FIG. 4 a shows the ligand-metal-ligand repeat unit forming the metal-based one-dimensional coordination polymer of the chemical formula [Co(C11H7O2)2(C3H7O)]n;
  • FIG. 4 b shows the coordination environment as a sequence of polyhedra forming the metal-based one-dimensional coordination polymer of the chemical formula [Co(C11H7O2)2(C3H7O)]n;
  • FIG. 4 c a ball and stick representation of the crystal structure of the metal-based one-dimensional coordination polymer of the chemical formula [Co(C11H7O2)2(C3H7O)]n highlighting the coordination bonds between the ligand and metal ion;
  • FIG. 4 d a packing diagram of the crystal structure of [Co(C11H7O2)2(C3H7O)]n as viewed down the crystallographic a-axis;
  • FIG. 5 a-5 d shows diagrams and schemes relating to structure V;
  • FIG. 5 a shows the ligand-metal-ligand repeat unit forming the metal-based one-dimensional coordination polymer of the chemical formula [Co(C15H9O2)4(C3H7O)2]n;
  • FIG. 5 b shows the coordination environment as a sequence of polyhedra forming the metal-based one-dimensional coordination polymer of the chemical formula [Co(C15H9O2)4(C3H7O)2]n;
  • FIG. 5 c a ball and stick representation of the crystal structure of the metal-based one-dimensional coordination polymer of the chemical formula [Co(C15H9O2)4(C3H7O)2]n highlighting the coordination bonds between the ligand and metal ion;
  • FIG. 5 d a packing diagram of the crystal structure of [Co(C15H9O2)4(C3H7O)2]n as viewed down the crystallographic b-axis;
  • FIG. 6 shows the coordination environment of structure III partly in a space-filling representation and partly in a ball and stick representation, and;
  • FIG. 7 shows the crystallographic data for structures I to V.
  • DETAILED DESCRIPTION OF THE INVENTION
  • A description of example embodiments of the invention follows.
  • The teachings of all patents, published applications and references cited herein are incorporated by reference in their entirety.
  • While this invention has been particularly shown and described with references to example embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the scope of the invention encompassed by the appended claims.
  • Referring to the drawings, (1 a) to (1 d) shows structure I of chemical formula [Zn(C10H9O3)2]n. FIG. (1 a) shows the ligand-metal-ligand repeat unit [L1-M-L2]n forming a metal-based one-dimensional coordination polymer of the chemical formula [Zn(C10H9O3)2]n where n is any integer 1 to infinity, the metal is Zn2+ and the ligand (L1 and L2) is o-methoxy-cinnamate. Coordination bonds formed between oxygen atoms of the carboxylate group comprising the ligand (o-methoxy-cinnamate) and the metal (zinc) ion are indicated by broken lines. The coordination environment of the metal-based one-dimensional coordination polymer of the chemical formula [Zn(C10H9O3)2]n is shown in (1 b) as a sequence of polyhedra wherein the polyhedra are all tetrahedral. FIG. 1 c) shows a ball and stick representation of the crystal structure of the metal-based one-dimensional coordination polymer of the chemical formula [Zn(C10H9O3)2]n highlighting the coordination bonds between the ligand and metal ion. The distance between zinc ions (Zn—Zn) comprising the metal-based one-dimensional coordination polymer was measured as 3.469 Å. FIG. 1 d) shows a packing diagram of the crystal structure of [Zn(C10H9O3)2] as viewed down the crystallographic c-axis. This is considered to be a very unusual structure as the ligands (o-methoxy-cinnamate) are arranged around the Zn2+ in a propeller like 31 screw axis arrangement resulting in a chiral structure crystallised in the chiral space group P31. There is provided that metal-based one-dimensional coordination polymer of the chemical formula [Zn(C10H9O3)2]n where n is any integer 1 to infinity, the metal is Zn2+ and the ligand is o-methoxy-cinnamate may crystallize in other space groups and comprise polymorphs of the P31 structure. Crystallisation of [Zn(C10H9O3)2] was achieved by heating a solution containing zinc metal and o-methoxy-cinnamatic acid at about 80° C. for about one week.
  • FIGS. 2 a) to (2 d) shows structure II of chemical formula [Co(C10H9O3)2]n. FIG. 2 a shows the ligand-metal-ligand repeat unit forming the metal-based one-dimensional coordination polymer of the chemical formula [Co(C10H9O3)2]n where n is any integer 1 to infinity, the metal is Co2+ and the ligand is o-methoxy-cinnamate. Coordination bonds formed between oxygen atoms of the carboxylate group comprising the ligand (o-methoxy-cinnamate) and the metal (cobalt) ion are indicated by broken lines. The coordination environment of the metal-based one-dimensional coordination polymer of the chemical formula [Co(C10H9O3)2]n is shown in (2 b) as a sequence of polyhedral wherein the polyhedra are an alternating sequence of corner sharing tetrahedra and octahedra. FIG. 2 c) shows a ball and stick representation of the crystal structure of the metal-based one-dimensional coordination polymer of the chemical formula [Co(C10H9O3)2] highlighting the coordination bonds between the ligand and metal ion.
  • The distance between cobalt ions (Co—Co) comprising the metal-based one-dimensional coordination polymer was measured as 3.169 Å and 3.199 Å. One of the interesting features of this crystal structure is that the arrangement of molecules around the cobalt ions causes the cobalt ions to be extremely close to one another along the chain comprising the metal-based one-dimensional coordination polymer. It is this distance which facilitates magnetic, electronic and/or optical physico-chemical properties or any combination of said physico-chemical properties characteristic of the metal-based one-dimensional coordination polymer of the chemical formula [Co(C10H9O3)2]. FIG. 2 d) shows a packing diagram of the crystal structure of [Co(C10H9O3)2] as viewed down the crystallographic b-axis. The crystal structure crystallises in the monoclinic, centrosymmetric space group P21/c. There is provided that metal-based one-dimensional coordination polymer of the chemical formula [Co(C10H9O3)2] where n is any integer 1 to infinity, the metal is Co2+ and the ligand is o-methoxy-cinnamate may crystallise in other space groups and comprise polymorphs of the P21/c structure.
  • FIGS. 3 a) to (3 d) shows structure III of chemical formula [Co(C8H7O2)2]n. FIG. 3 a) shows the ligand-metal-ligand repeat unit forming the metal-based one-dimensional coordination polymer of the chemical formula [Co(C8H7O2)2]n where n is any integer 1 to infinity, the metal is Co2+ and the ligand is p-toluate. Coordination bonds formed between oxygen atoms of the carboxylate group comprising the ligand (p-toluate) and the metal (cobalt) ion are indicated by broken lines. The coordination environment of the metal-based one-dimensional coordination polymer of the chemical formula [Co(C8H7O2)2]n is shown in (3 b) as a sequence of polyhedra wherein the polyhedra are an alternating sequence of corner sharing tetrahedra and octahedra. FIG. 3 c) shows a ball and stick representation of the crystal structure of the metal-based one-dimensional coordination polymer of the chemical formula [Co(C8H7O2)2]n highlighting the coordination bonds between the ligand and metal ion. The distance between cobalt ions (Co—Co) comprising the metal-based one-dimensional coordination polymer was measured as 3.143 Å. One of the interesting features of this crystal structure is that the arrangement of molecules around the cobalt ions causes the cobalt ions to be extremely close to one another along the chain comprising the metal-based one-dimensional coordination polymer. It is this distance which facilitates magnetic, electronic and/or optical physico-chemical properties or any combination of said physico-chemical properties characteristic of the metal-based one-dimensional coordination polymer of the chemical formula [Co(C8H7O2)2]n. FIG. 3 d) shows a packing diagram of the crystal structure of [Co(C8H7O2)2]n as viewed down the crystallographic c-axis. The crystal structure crystallises in the orthorhombic, centrosymmetric space group Pbcn. There is provided that metal-based one-dimensional coordination polymer of the chemical formula [Co(C8H7O2)2]n where n is any integer 1 to infinity, the metal is Co2+ and the ligand is p-toluate may crystallise in other space groups and comprise polymorphs of the Pbcn structure.
  • FIGS. 4 a) to (4 d) shows structure IV of chemical formula [Co(C11H7O2)2(C3H7O)]n. FIG. 4 a) shows the ligand-metal-ligand repeat unit forming the metal-based one-dimensional coordination polymer of the chemical formula [Co(C11H7O2)2(C3H7O)]n where n is any integer 1 to infinity, the metal is Co2+ and the ligand is naphthalene-1-carboxylic acid. Coordination bonds formed between oxygen atoms of the carboxylate group comprising the ligand (naphthalene-1-carboxylic acid) and the metal (cobalt) ion are indicated by broken lines. The coordination environment of the metal-based one-dimensional coordination polymer of the chemical formula [Co(C11H7O2)2(C3H7O)]n is shown in (4 b) as a sequence of polyhedra wherein the polyhedra are an alternating sequence of corner sharing tetrahedra and octahedra. FIG. 4 c) shows a ball and stick representation of the crystal structure of the metal-based one-dimensional coordination polymer of the chemical formula [Co(C11H7O2)2(C3H7O)]n highlighting the coordination bonds between the ligand and metal ion and between the isopropanol solvent and the metal ion. The distance between cobalt ions (Co—Co) comprising the metal-based one-dimensional coordination polymer was measured as 3.224 Å, 3.470 Å and 3.475 Å. FIG. 4 d) shows a packing diagram of the crystal structure of [Co(C11H7O2)2(C3H7O)]n as viewed down the crystallographic a-axis. The crystal structure crystallises in the orthorhombic, non-centrosymmetric space group Pna21. There is provided that metal-based one-dimensional coordination polymer of the chemical formula [Co(C11H7O2)2(C3H7O)]n where n is any integer 1 to infinity, the metal is Co2+ and the ligand is naphthalene-1-carboxylic acid may crystallise in other space groups and comprise polymorphs of the structure Pna21.
  • FIGS. 5 a) to (5 d) shows structure V of chemical formula [Co(C15H9O2)4(C3H7O)2]n. FIG. 5 a) shows the ligand-metal-ligand repeat unit forming the metal-based one-dimensional coordination polymer of the chemical formula [Co(C15H9O2)4(C3H7O)2]n where n is any integer 1 to infinity, the metal is Co2+ and the ligand is anthracene-2-carboxylic acid. Coordination bonds formed between oxygen atoms of the carboxylate group comprising the ligand (anthracene-2-carboxylic acid) and the metal (cobalt) ion are indicated by broken lines. The coordination environment of the metal-based one-dimensional coordination polymer of the chemical formula [Co(C15H9O2)4(C3H7O)2]n is shown in (5 b) as a sequence of polyhedra wherein the polyhedra are an alternating sequence of edge sharing tetrahedra and octahedra. FIG. (5 c) shows a ball and stick representation of the crystal structure of the metal-based one-dimensional coordination polymer of the chemical formula [Co(C15H9O2)4(C3H7O)2]n highlighting the coordination bonds between the ligand and metal ion and between the isopropanol solvent and the metal ion. The distance between cobalt ions (Co—Co) comprising the metal-based one-dimensional coordination polymer was measured as 3.482 Å and 5.169 Å. FIG. 5 d) shows a packing diagram of the crystal structure of [Co(C15H9O2)4(C3H7O)2]n as viewed down the crystallographic b-axis. The crystal structure crystallises in the monoclinic, non-centrosymmetric space group P21. There is provided that metal-based one-dimensional coordination polymer of the chemical formula [Co(C15H9O2)4(C3H7O)2]n . where n is any integer 1 to infinity, the metal is Co2+ and the ligand is anthracene-2-carboxylic acid may crystallize in other space groups and comprise polymorphs of the structure P21.
  • FIG. 6 shows the coordination environment of structure III partly in a space-filling representation and partly in a ball and stick representation to indicate that the Co2+ ions at closer than the sum of their van der Waals radii facilitating magnetic, electronic and/or optical physico-chemical properties or any combination of said physico-chemical properties characteristic of the metal-based one-dimensional coordination polymer herein described.
  • FIG. 7 shows the crystallographic data for structures I to V.
  • EXAMPLES
  • Embodiments of the invention will be illustrated by the following non-limiting examples of their synthesis and crystallisation. Several metal-based one-dimensional coordination polymers comprising zinc and cobalt metal ions and various aromatic carboxylates as ligands, have been crystallised via selective chemical reactive/interactive conditions.
  • The at least one supramolecular material comprising metal-based coordination networks in the form of metal-based one-dimensional coordination polymers are generally made via the direct reaction of the ligands (L) with the metal (M). The usual method of crystallisation is via reaction of a ligand (L) with a metal salt (M+).
  • A typical non-limiting example of the crystallisation method used to form the supramolecular material of structure V is given.
  • 0.2 g of anthracene-9-carboxylic acid and 0.027 g of Co metal (previously washed using 2M hydrochloric acid) were inserted into a Teflon hydrothermal bomb reactor. To this was added 10 ml of isopropanol. The reactor was then partially immersed in an oil bath and heated at 130° C. for 48 hours, followed by slow cooling to room temperature over 2 hours. The reaction product was then collected by filtration resulting in fine purple needle-like crystals (0.058 g). A single crystal of this was then selected and a single-crystal X-ray diffraction data set collected and solved. This structure, structure V, is presented in FIGS. 5 a) to (5 d).
  • Manganese supramolecular functional materials, as well as the zinc supramolecular functional materials described herein, were obtained by synthetic methods similar to those described in the preceding paragraph.
  • Not all structures employed the use of the Teflon hydrothermal bomb. For example structure I was crystallised by heating a solution containing zinc metal and o-methoxy-cinnamic acid at 80° C. for a week.

Claims (12)

What is claimed is:
1. A method of producing at least one supramolecular functional material comprising at least one polymeric repeat unit, the at least one polymeric repeat unit comprising at least one ligand and at least one metal ion, wherein said method comprises a chemical reaction between an at least one ligand and an at least one metal.
2. The method of producing at least one supramolecular functional material according to claim 1, wherein the at least one ligand is a carboxylate ligand and the at least one metal is a transition metal.
3. The method of producing at least one supramolecular functional material according to claim 1, wherein the chemical reaction takes place in the presence of at least one solvent.
4. The method of producing at least one supramolecular functional material according to claim 3, wherein the method comprises at least one selectable chemical reaction condition.
5. The method of producing at least one supramolecular functional material according to claim 4, wherein the at least one selectable chemical reaction condition is selected from the group comprising: volume of a reaction vessel, material composition of a reaction vessel, temperature, pressure, humidity and gas defining an atmosphere inside a reaction vessel.
6. A supramolecular functional material of the chemical formula [Zn(C10H9O3)2]n crystallised in the space group P31 wherein n is any integer from 1 to infinity.
7. A supramolecular functional material of the chemical formula [Co(C10H9O3)2]n crystallised in the space group P21/c wherein n is any integer from 1 to infinity.
8. A supramolecular functional material of the chemical formula [Co(C11H7O2)2(C3H7O)]n crystallised in the space group Pna21 wherein n is any integer from 1 to infinity.
9. A supramolecular functional material of the chemical formula [Co(C15H9O2)4(C3H7O)2]n crystallised in the space group P21 wherein n is any integer from 1 to infinity.
10. The method of producing at least one supramolecular functional material according to claim 3, wherein the reaction takes place in the presence of a carboxylic acid.
11. The method of producing at least one supramolecular functional material according to claim 10, wherein the chemical reaction takes place inside a hydrothermal bomb reactor.
12. The method of producing at least one supramolecular functional material according to claim 10, wherein the chemical reaction comprises crystallisation from a heated solution containing the at least one ligand and the at least one metal.
US13/789,193 2009-08-24 2013-03-07 Supramolecular Functional Materials Abandoned US20130184421A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/789,193 US20130184421A1 (en) 2009-08-24 2013-03-07 Supramolecular Functional Materials

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US27509009P 2009-08-24 2009-08-24
US12/862,251 US8455602B2 (en) 2009-08-24 2010-08-24 Supramolecular functional materials
US13/789,193 US20130184421A1 (en) 2009-08-24 2013-03-07 Supramolecular Functional Materials

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US12/862,251 Continuation US8455602B2 (en) 2009-08-24 2010-08-24 Supramolecular functional materials

Publications (1)

Publication Number Publication Date
US20130184421A1 true US20130184421A1 (en) 2013-07-18

Family

ID=43605863

Family Applications (2)

Application Number Title Priority Date Filing Date
US12/862,251 Expired - Fee Related US8455602B2 (en) 2009-08-24 2010-08-24 Supramolecular functional materials
US13/789,193 Abandoned US20130184421A1 (en) 2009-08-24 2013-03-07 Supramolecular Functional Materials

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US12/862,251 Expired - Fee Related US8455602B2 (en) 2009-08-24 2010-08-24 Supramolecular functional materials

Country Status (1)

Country Link
US (2) US8455602B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114672033A (en) * 2021-11-24 2022-06-28 上海交通大学 Two-dimensional coordination polymer based on isocyano coordination

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102199331B (en) * 2011-05-30 2012-12-19 周涛 Process method for thermoplastic soft magnetic supermolecular material assembled by complexing subject and object
US9539559B2 (en) 2013-02-06 2017-01-10 The Board Of Regents Of The University Of Texas System Metal-organic frameworks for selective separations
US9562005B2 (en) 2013-07-23 2017-02-07 Northwestern University Metallated metal-organic frameworks
US9610560B2 (en) * 2014-02-03 2017-04-04 Northwestern University Metal-organic framework compounds with ligand-functionalized metal nodes
CN103881377B (en) 2014-04-14 2016-04-20 云南银峰新材料有限公司 A kind of LCP derivative/soft magnetic ferrite matrix material and preparation method thereof
WO2016081685A1 (en) 2014-11-20 2016-05-26 Northwestern University Zirconium- and hafnium-based metal-organic frameworks as epoxide ring-opening catalysts
CN107417923B (en) * 2017-05-19 2020-11-13 广西师范大学 N, N' -bis (salicyloyl) manganese terephthaloyl hydrazide polymer and synthetic method and application thereof
CN113265064B (en) * 2021-05-28 2022-07-01 重庆师范大学 Cadmium-based supramolecular polymer and preparation method and application thereof
CN115894951B (en) * 2022-11-11 2023-09-01 聊城大学 Sm-MOF preparation method and application of Sm-MOF in fluorescence identification and photocatalysis

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE608859A (en) * 1960-10-06
US5656709A (en) * 1994-05-24 1997-08-12 Kabushiki Kaisha Toyota Chuo Kenkyusho Hybrid material and process for producing the same
US6340730B1 (en) * 1999-12-06 2002-01-22 Univation Technologies, Llc Multiple catalyst system
US6608149B2 (en) * 2000-12-04 2003-08-19 Univation Technologies, Llc Polymerization process
AU2002345362A1 (en) * 2001-06-20 2003-01-08 Showa Denko K.K. Light emitting material and organic light-emitting device
EP1513612A2 (en) * 2002-06-19 2005-03-16 University Of Iowa Research Foundation Gas storage materials and devices
WO2004113421A1 (en) * 2003-06-18 2004-12-29 Hitachi Chemical Co., Ltd. High-molecular copolymer containing metal coordination compound and organic electroluminescence element using the same
DE10345572A1 (en) * 2003-09-29 2005-05-19 Covion Organic Semiconductors Gmbh metal complexes
DE102004032527A1 (en) * 2004-07-06 2006-02-02 Covion Organic Semiconductors Gmbh Electroluminescent polymers
US20060289839A1 (en) * 2005-06-23 2006-12-28 Emmerson Gordon T Metal salts of organic acids as conductivity promoters
DE102005043165A1 (en) * 2005-09-12 2007-03-22 Merck Patent Gmbh metal complexes
EP1987043B1 (en) * 2006-02-09 2015-05-27 Simon Fraser University Birefringent metal-containing coordination polymers
EP1987094A1 (en) * 2006-02-21 2008-11-05 Ciba Holding Inc. Aromatic phosphate acid ester flame retardant compositions
MX2008013190A (en) * 2006-04-12 2009-02-10 Interhealth Nutraceuticals Inc Trivalent chromium compounds, compositions and methods of use.
JP5262104B2 (en) * 2006-12-27 2013-08-14 住友化学株式会社 Metal complexes, polymer compounds, and devices containing them
US20090048414A1 (en) * 2007-08-16 2009-02-19 Uchicago Argonne, Llc Magnetic coupling through strong hydrogen bonds
US8222179B2 (en) * 2007-08-30 2012-07-17 The Regents Of The University Of Michigan Porous coordination copolymers and methods for their production
EP2062906A1 (en) * 2007-11-22 2009-05-27 Universiteit van Amsterdam Coordination complex system comprising tautomeric ligands
GB0723714D0 (en) * 2007-12-04 2008-01-16 Cambridge Entpr Ltd Supramolecular handcuffs in polymeric architecture
US8142645B2 (en) * 2008-01-03 2012-03-27 Headwaters Technology Innovation, Llc Process for increasing the mono-aromatic content of polynuclear-aromatic-containing feedstocks
US7951745B2 (en) * 2008-01-03 2011-05-31 Wilmington Trust Fsb Catalyst for hydrocracking hydrocarbons containing polynuclear aromatic compounds
JP5609022B2 (en) * 2008-06-23 2014-10-22 住友化学株式会社 Polymer compound containing residue of metal complex and device using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114672033A (en) * 2021-11-24 2022-06-28 上海交通大学 Two-dimensional coordination polymer based on isocyano coordination

Also Published As

Publication number Publication date
US20110046335A1 (en) 2011-02-24
US8455602B2 (en) 2013-06-04

Similar Documents

Publication Publication Date Title
US8455602B2 (en) Supramolecular functional materials
Cussen et al. Crystal and magnetic structures of 2H BaMnO3
Schoedel et al. Network Diversity through Decoration of Trigonal‐Prismatic Nodes: Two‐Step Crystal Engineering of Cationic Metal–Organic Materials
Min et al. One-dimensional copper–pyridinedicarboxylate polymer containing square-planar Cu (II) centers exhibiting antiferromagnetic coupling
Yao et al. Magnetic modulation and cation-exchange in a series of isostructural (4, 8)-connected metal–organic frameworks with butterfly-like [M4 (OH) 2 (RCO2) 8] building units
Fromm et al. Coordination polymer networks: an alternative to classical polymers?
Wang et al. Tetranuclear manganese carboxylate complexes with a trigonal pyramidal metal topology via controlled potential electrolysis
Eichhöfer et al. Homoleptic 1-D iron selenolate complexes—synthesis, structure, magnetic and thermal behaviour of 1∞[Fe (SeR) 2](R= Ph, Mes)
Liu et al. A new 3D Cd (II) metal–organic framework with discrete (H2O) 6 clusters based on flexible cyclohexane-1, 2, 4, 5-tetracarboxylic acid ligand
Lv et al. Syntheses, structures and properties of nickel (II) and manganese (II) coordination polymers based on V-shaped bis-imidazole and aromatic carboxylate ligands
Liao et al. Syntheses and structure characterization of inorganic/organic coordination polymers: Ag (dpa), Co (O3PH)(4, 4′-bpy)(H2O), Zn (O3PH)(4, 4′-bpy) 0.5 and Mn [O2PH (C6H5)] 2 (4, 4′-bpy)(dpa= 2, 2′-dipyridylamine; 4, 4′-bpy= 4, 4′-bipyridine)
Bahrin et al. Alkali-and alkaline-earth metal–organic networks based on a tetra (4-carboxyphenyl) bimesitylene-linker
Wasson et al. Hydrothermal synthesis, crystal structures, and properties of two 3-D network nickel nicotinate coordination polymers:[Ni4 (μ-H2O) 2 (nicotinate) 8· 2H2O] and [Ni2 (H2O) 2 (nicotinate) 4 (4, 4′-bpy)]
KR101737390B1 (en) cobalt clusters-based supremolecular triple-stranded helicates and one-dimensional coordination polymer using thereof and producing methods thereof
Carlucci et al. Crystallization behavior of coordination polymers. 1. Kinetic and thermodynamic features of 1, 3-Bis (4-pyridyl) propane/MCl2 systems
Zheng et al. Structural evolution and magnetic properties of a series of coordination polymers featuring dinuclear secondary-building units and adamantane-dicarboxylato ligands
CN108299515B (en) Cobalt complex with reversible thermochromism characteristic and preparation method and application thereof
ZA200907705B (en) Supramolecular functional materials
CN104017006A (en) Heterocyclic coordination polymer and preparation method thereof
Wang et al. Synthesis and structural characterization of a novel two-dimensional 3d-4f heterometallic coordination framework based on pentanuclear lanthanide cluster
Du et al. Multidimensional Snowflake‐shaped (3, 9)‐connected Metal‐Organic Frameworks Composed of Ni3 (μ3‐O) Building Blocks and Symmetry Ligand Pyridine‐3, 5‐dicarboxylic Acid
Cen et al. Two new 3-D Cd (II) metal–organic frameworks based on flexible cyclohexane-1, 2, 4, 5-tetracarboxylic acid ligand
Kim et al. Open layers based on metal-oxide chains linked by cyclohexanedicarboxylate ligands
Zhao et al. Reversible adsorption of a planar cyclic (H2O) 6 cluster held in a 2D CuII-coordination framework
Zheng et al. New 1D and 2D metal oxygen connectivities in Cu (II) succinato and glutarato coordination polymers:[Cu3 (H2O) 2 (OH) 2 (C4H4O4) 2]· 4H2O,[Cu4 (H2O) 2 (OH) 4 (C4H4O4) 2]· 5H2O and [Cu5 (OH) 6 (C5H6O4) 2]· 4H2O

Legal Events

Date Code Title Description
AS Assignment

Owner name: UNIVERSITY OF THE WITWATERSRAND, JOHANNESBURG, SOU

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:FERNANDES, MANUEL ANTONIO;REEL/FRAME:030549/0018

Effective date: 20130418

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION