US20130160851A1 - Solar cell module - Google Patents

Solar cell module Download PDF

Info

Publication number
US20130160851A1
US20130160851A1 US13/774,156 US201313774156A US2013160851A1 US 20130160851 A1 US20130160851 A1 US 20130160851A1 US 201313774156 A US201313774156 A US 201313774156A US 2013160851 A1 US2013160851 A1 US 2013160851A1
Authority
US
United States
Prior art keywords
sub
solar cell
main
frame member
bottom piece
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/774,156
Inventor
Moritaka Nakamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to US13/774,156 priority Critical patent/US20130160851A1/en
Publication of US20130160851A1 publication Critical patent/US20130160851A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S20/00Supporting structures for PV modules
    • H02S20/20Supporting structures directly fixed to an immovable object
    • H02S20/22Supporting structures directly fixed to an immovable object specially adapted for buildings
    • H02S20/23Supporting structures directly fixed to an immovable object specially adapted for buildings specially adapted for roof structures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S30/00Structural details of PV modules other than those related to light conversion
    • H02S30/10Frame structures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S25/00Arrangement of stationary mountings or supports for solar heat collector modules
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S80/00Details, accessories or component parts of solar heat collectors not provided for in groups F24S10/00-F24S70/00
    • F24S80/40Casings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Photovoltaic Devices (AREA)
  • Roof Covering Using Slabs Or Stiff Sheets (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)

Abstract

A solar cell module (1 a) is constituted such that a solar cell panel (9) is held using a main frame member (10) that holds one side of the solar cell panel (9) and a sub-frame member (20) that holds an adjoining side that adjoins this one side, the main frame member (10) is constituted from a solar cell panel main holding portion (11), a main wall portion (12), and a main bottom piece (16), the sub-frame member (20) is constituted from a solar cell panel sub-holding portion (21), a sub-wall portion (22), and a sub-bottom piece (26), the sub-bottom piece (26) of the sub-frame member (20) is positioned above the main bottom piece (16) of the main frame member (10), the lower surface near the side end of this sub-bottom piece (26) abuts against the upper surface near the side end of the main bottom piece (16), and a water barrier piece (28) bent upward is formed at the inner side edge of this sub-bottom piece (26).

Description

    TECHNICAL FIELD
  • The present invention relates to a solar cell module that holds a solar cell panel so as to surround that solar cell panel using a frame member, and that is installed in an inclined manner on an inclined place such as a roof.
  • BACKGROUND ART
  • Generally, solar cell modules are constituted from a solar cell panel and a frame member that holds this solar cell panel. As frame members used for such a solar cell module, members with various structures are known.
  • As the structure of the frame member, a frame member is known that has a structure provided with an outer wall perpendicularly formed along one side of the solar cell panel, and a solar cell panel holding unit that is horizontally formed at the upper part of this outer wall, and that has a U-shaped cross section.
  • By inserting a side of the solar cell panel into the inside of the U shape of the solar cell panel holding unit whose cross section is U-shaped, the frame member sandwiches the solar cell panel from above and below, forming a solar cell module.
  • Further, in order to fix a solar cell module in an installation place, the frame member is provided with a bottom piece that horizontally projects at the lower edge of the outer wall of this frame member. As a solar cell module using such a frame member, various modules have been conventionally known (see FIGS. 1 to 3 of Patent Document 1, for example).
  • With the solar cell module described in Patent Document 1, a bottom piece provided at the lower edge of a frame member used for this solar cell module projects from the lower edge of the frame member toward the outer side, which is opposite the solar cell panel side (inner side).
  • Note that in this specification, for solar cell modules that hold the periphery of a solar cell panel using a frame member, it is assumed that the “inner side” means the “side in the direction where the solar cell panel is located”, and the “outer side” means the side opposite this “inner side”, that is, the “side in the direction opposite the direction where the solar cell panel is located”.
  • Patent document 1: JP H9-96071A
  • DISCLOSURE OF INVENTION Problems to be Solved by the Invention
  • As described above, with the solar cell module described in Patent Document 1, the bottom piece provided at the lower edge of the frame member used for this solar cell module projects from the lower edge of the frame member toward the outer side, which is opposite the solar cell panel side (inner side).
  • Then, to arrange and install such solar cell modules, because of the bottom piece that projects from the lower edge of the frame member toward the outer side, space for disposing this bottom piece is necessary between the solar cell module and the solar, cell module installed adjacently to it. Consequently, this wastes installation space.
  • In view of the above, in order to solve this, a frame member has been considered where a bottom piece of the frame member used for fixing a solar cell module projects from the lower edge of the frame member toward the inner side, that is, the solar cell panel side.
  • FIG. 24 is a partial exploded perspective view showing the structure of a solar cell module 3 b according to a conventional example using such a frame member. This solar cell module 3 b according to the conventional example has the following structure. That is, in FIG. 24, a solar cell panel 9 has a rectangular shape, and using two pairs of members, each pair constituted from a main frame member 50 that holds one side of this solar cell panel 9 and a sub-frame member 70 that holds an adjoining side that adjoins this one side, the solar cell panel 9 is held.
  • The above-mentioned main frame member 50 is constituted from a solar cell panel main holding portion 51, a main wall portion 52, and a main bottom piece 56. Among these, the solar cell panel main holding portion 51 has a U-shaped cross section, and inside the U shape, sandwiches one side of the solar cell panel 9 from above and below so as to hold the solar cell panel 9. The main wall portion 52 is connected to the bottom of the solar cell panel main holding portion 51 and extends downward therefrom. The main bottom piece 56 is provided to the inner side of the lower edge of the main wall portion 52, extending inward.
  • The sub-frame member 70 is constituted from a solar cell panel sub-holding portion 71, a sub-wall portion 72, and a sub-bottom piece 76.
  • Among these, the solar cell panel sub-holding portion 71 has a U-shaped cross section, and inside the U shape, sandwiches an adjoining side of the solar cell panel 9 from above and below so as to hold the solar cell panel 9. The sub-wall portion 72 is provided with a sub-outer wall 73 and a sub-inner wall 74 that extend downward with an internal space 77 sandwiched therebetween, and a sub-base piece 75 that closes the internal space 77 at the lower edges of the sub-outer wall 73 and the sub-inner wall 74, provided under this solar cell panel sub-holding portion 71, the sub-wall portion 72 being constituted with a side end opening of the internal space 77 closed by abutting against with the main wall portion 52 of the main frame member 50. The sub-bottom piece 76 is provided to the inner side of the lower edge of the sub-inner wall 74 of the sub-wall portion 72, extending inward.
  • With the solar cell module 3 b according to the above-mentioned conventional example, since the solar cell panel 9 is held using the main frame member 50 and the sub-frame member 70, when attempting to connect the corners of the main frame member 50 and the sub-frame member 70, as shown in FIG. 24, the main bottom piece 56 of the main frame member 50 and the sub-bottom piece 76 of the sub-frame member 70 collide with each other, the main frame member 50 and the sub-frame member 70 cannot be connected as they are.
  • In order to connect the main frame member 50 and the sub-frame member 70, it is necessary to remove a part of the sub-bottom piece 76 of the sub-frame member 70 (removal necessary portion 78) as shown in FIG. 24, and, therefore additional man-hours and costs for this task have been necessary.
  • In view of this, as a solar cell module that does not require the above-mentioned removal work, a new solar cell module 3 a has been proposed. FIG. 20 is a partial perspective view showing such a solar cell module 3 a, FIG. 21 is a partial exploded perspective view showing the structure of this solar cell module 3 a, FIG. 22 is a partial plan view thereof and FIG. 23 is a cross-sectional view taken along E-E in FIG. 22. Note that in FIGS. 20, 22, and 23, a solar cell panel 9 is omitted.
  • The new solar cell module 3 a according to this conventional example is a module using a sub-frame member 60, instead of the sub-frame member 70 of the solar cell module 3 b according to the above-described conventional example. The sub-frame member 60 has the almost same structure as the above-mentioned sub-frame member 70.
  • That is, in FIGS. 20 to 23, similar to the sub-frame member 70, this sub-frame member 60 is constituted from a solar cell panel sub-holding portion 61, a sub-wall portion 62, and a sub-bottom piece 66. Among these, the solar cell panel sub-holding portion 61 has a U-shaped cross section, and inside the U shape, sandwiches an adjoining side of the solar cell panel 9 from above and below, holding the solar cell panel 9. The sub-wall portion 62 is provided with a sub-outer wall 63 and a sub-inner wall 64 that extend downward with an internal space 67 sandwiched therebetween, and a sub-base piece 65 that closes the internal space 67 at the lower edges of the sub-outer wall 63 and the sub-inner wall 64, provided under the solar cell panel sub-holding portion 61, the sub-wall portion 62 being constituted with a side end opening of the internal space 67 closed by abutting against with the main wall portion 52 of the main frame member 50. The sub-bottom piece 66 is provided to the inner side of the lower part of the sub-inner wall 64 of the sub-wall portion 62, extending inward.
  • As shown in FIGS. 20 to 23, the sub-frame member 60 used for the new solar cell module 3 a according to this conventional example differs from the above-mentioned sub-frame member 70 in that the sub-bottom piece 66 of this sub-frame member 60 is provided extending such that the sub-bottom piece 66 is positioned not at the lower edge of the sub-inner wall 64 of the sub-wall portion 62, but at the lower part of the sub-inner wall 64 of the sub-wall portion 62, and furthermore above the main bottom piece 56 of the main frame member 50, and the lower surface near the side end of the sub-bottom piece 66 abuts against the upper surface near the side end of the main bottom piece 56 of the main frame member 50.
  • Therefore, with the solar cell module 3 a, it is possible to connect the corners of the main frame member 50 and the sub-frame member 60 such that the sub-bottom piece 66 of the sub-frame member 60 does not collide with the main bottom piece 56 of the main frame member 50.
  • Incidentally, there are many cases in which the solar cell module 3 a according to the conventional example constituted as described above is installed in an inclined manner on an installation place such as an inclined roof, in order to be able to use sunlight efficiently, when used for a residence, for instance.
  • In this case, as shown in FIG. 20, generally, the solar cell module 3 a is installed in an inclined manner such that one of the sub-frame members 60 is in the lowest position. Note that FIGS. 20 and 21 show that the solar cell module 3 a is inclined relative to a horizontal surface 6 with an inclination angle 7. In this way, if the solar cell module 3 a is installed in an inclined manner, when it is raining or the like, rainwater flows on the main bottom piece 56 of the inclined main frame member 50 from a higher position to a lower position.
  • The above-described solar cell module 3 a has a structure in which the sub-bottom piece 66 of the sub-frame member 60 is provided extending such that the sub-bottom piece 66 is positioned above the main bottom piece 56 of the main frame member 50, and the lower surface near the side end of the sub-bottom piece 66 abuts against the upper surface near the side end of the main bottom piece 56 of the main frame member 50. Accordingly, along the stream direction indicated by an arrow 8 as shown in FIG. 20, rainwater flows from a higher position to a lower position, climbs over the level difference between the main bottom piece 56 and the sub-bottom piece 66, and flows onto the upper surface of the sub-bottom piece 66, from the main bottom piece 56.
  • The rainwater that has flowed onto this sub-bottom piece 66 flows into the internal space 67 of the sub-wall portion 62 through a gap between the sub-inner wall 64 of the sub-wall portion 62 and the main wall portion 52, for instance. As described above, this internal space 67 is closed with the side end opening of the internal space 67 abutting against the main wall portion 52 of the main frame member 50.
  • Then, the rainwater that has flowed into the internal space 67 of this sub-wall portion 62 may freeze during periods of extreme cold in cold locations, for instance. As described above, since the internal space 67 of the sub-wall portion 62 is closed, if rainwater and the like flow into this internal space 67 and freeze therein, a gap and the like around the internal space 67 will freeze clue to this rainwater and the like. Accordingly, this internal space 67 becomes a closed space, and during periods of extreme cold in cold locations, for instance, rainwater may freeze and expand in volume, which may damage the sub-wall portion 62 of the sub-frame member 60. Thus, this has been one of the causes of damage to the solar cell module 3 a.
  • In view of the above, the present invention has been conceived in order to improve such circumstances, and is aimed at providing a solar cell module that can be prevented from being damaged due to the freezing of rainwater and the like that have flowed in, if the solar cell module is installed in an inclined manner on an inclined place such as a roof.
  • Means for Solving the Problems
  • As a solar cell module of the present invention, it is possible to constitute two types of solar cell modules, namely a first solar cell module and a second solar cell module. First, the first solar cell module is described.
  • The first solar cell module of the present invention holds a solar cell panel so as to surround the solar cell panel on its inner side using a plurality of pairs of members, each pair constituted from a main frame member that holds one side of the solar cell panel and a sub-frame member that holds an adjoining side that adjoins this one side. Further, this first solar cell module is installed in an inclined manner on an inclined place such as a roof, such that one of the sub-frame members is in the lowest position.
  • The main frame member of the above-mentioned first solar cell module is provided with a solar cell panel main holding portion, a main wall portion, and a main bottom piece. Among these, the solar cell panel main holding portion has a U-shaped cross section, and sandwiches the one side of the solar cell panel from above and below inside the U shape, holding the solar cell panel. The main wall portion is connected to the bottom of the solar cell panel main holding portion, extending downward therefrom. The main bottom piece is provided to the inner side of the lower edge of the main wall portion, extending inward.
  • The sub-frame member of the above-mentioned first solar cell module is provided with a solar cell panel sub-holding portion, a sub-wall portion, and a sub-bottom piece. Among these, the solar cell panel sub-holding portion has a U-shaped cross section, and sandwiches the adjoining side of the solar cell panel from above and below inside the U shape, holding the solar cell panel.
  • The sub-wall portion is provided with a sub-outer wall and a sub-inner wall that extend downward with an internal space sandwiched therebetween, and a sub-base piece that closes the internal space at the lower edges of the sub-outer wall and the sub-inner wall, provided under the solar cell panel sub-holding portion, the sub-wall portion being constituted with a side end opening of the internal space closed by abutting against the main wall portion of the main frame member. The sub-bottom piece is provided to the inner side of the lower part of the sub-inner wall of the sub-wall portion, extending inward.
  • A feature of the above-mentioned first solar cell module is that the sub-bottom piece is positioned above the main bottom piece of the main frame member, and the lower surface near the side end of the sub-bottom piece abuts against the upper surface near the side end of the main bottom piece of the main frame member, and a water barrier piece bent upward is formed at the inner side edge of the sub-bottom piece.
  • Accordingly, if the above-mentioned first solar cell module is installed in an inclined manner, when it is raining, even though rainwater and the like flow on the main bottom piece of the inclined main frame member from a higher position to a lower position, due to the water barrier piece that is bent upward and formed at the inner side edge of the sub-bottom piece of the sub-frame member, rainwater and the like are dammed up and discharged downward from the inner side edge of the main bottom piece of the main frame member. Therefore, rainwater and the like are prevented from flowing onto the sub-bottom piece.
  • Consequently, with the above-mentioned first solar cell module, as described above, the side end opening of the internal space of the sub-frame member is closed by abutting against the main wall portion of the main frame member and, further, the flow of rainwater and the like onto the sub-bottom piece is prevented. Therefore, rainwater and the like do not flow into the internal space of the sub-wall portion. Accordingly, it is possible to avoid the sub-wall portion of the sub-frame member being damaged due to rainwater that has flowed into the internal space of the sub-wall portion freezing and expanding in volume. Therefore, if the above-mentioned first solar cell module is installed in an inclined manner on an inclined place such as a roof, it is possible to prevent the module being damaged due to the freezing of rainwater and the like that have flowed into it.
  • With the above-mentioned first solar cell module, it is preferable that the water barrier piece is formed such that the angle formed by the water barrier piece and the sub-bottom piece is between 90 degrees and 120 degrees. Further, in this case, it is preferable that the water barrier piece is formed such that the edge surface of this water barrier piece is substantially parallel to the sub-bottom piece. Further, it is preferable that the water barrier piece is formed such that the height to the edge surface of the water barrier piece from the upper surface of the sub-bottom piece is 2 mm or more.
  • Next, the second solar cell module of the present invention is descried. Similar to the first solar cell module of the present invention, the second solar cell module of the present invention holds a solar cell panel so as to surround the solar cell panel on its inner side using a plurality of pairs of members, each pair constituted from a main frame member that holds one side of the solar cell panel and a sub-frame member that holds an adjoining side that adjoins the one side. Similar to the first solar cell module, this second solar cell module is installed in an inclined manner on an inclined place such as a roof such that one of the sub-frame members is in the lowest position.
  • The main frame member of the above-mentioned second solar cell module is provided with a solar cell panel main holding portion, a main wall portion, and a main bottom piece. Among these, the solar cell panel main holding portion has a U-shaped cross section, and sandwiches the one side of the solar cell panel from above and below inside the U shape, holding the solar cell panel. The main wall portion is connected to the bottom of the solar cell panel main holding portion, extending downward therefrom. The main bottom piece is provided to the inner side of the lower edge of the main wall portion, extending inward.
  • The sub-frame member of the above-mentioned second solar cell module is provided with a solar cell panel sub-holding portion, a sub-wall portion, and a sub-bottom piece. Among these, the solar cell panel sub-holding portion has a U-shaped cross section, and sandwiches the adjoining side of the solar cell panel from above and below inside the U shape, holding the solar cell panel.
  • The sub-wall portion is provided with a sub-outer wall and a sub-inner wall that extend downward with an internal space sandwiched therebetween, and a sub-base piece that closes the internal space at the lower edges of the sub-outer wall and the sub-inner wall, provided under the solar cell panel sub-holding portion, the sub-wall portion being constituted with a side end opening of the internal space closed by abutting against the main wall portion of the main frame member. The sub-bottom piece is provided to the inner side of the lower part of the sub-inner wall of the sub-wall portion, extending inward.
  • A feature of the above-mentioned second solar cell module is that the sub-bottom piece is positioned above the main bottom piece of the main frame member, and is formed such that there is a gap into which water can flow between the sub-bottom piece and the main bottom piece.
  • Accordingly, if the above-mentioned second solar cell module is installed in an inclined manner, when it is raining, even though rainwater and the like flow on the main bottom piece of the inclined main frame member from a higher position to a lower position, since there is a gap into which water can flow between the sub-bottom piece of the sub-frame member and the main bottom piece of the main frame member, rainwater and the like flow into the gap into which this water can flow, and are discharged downward. Therefore, rainwater and the like are prevented from flowing onto the sub-bottom piece.
  • Consequently, with the above-mentioned second solar cell module, as described above, the side end opening of the internal space of the sub-frame member is closed by abutting against the main wall portion of the main frame member and, further, the flow of rainwater and the like onto the sub-bottom piece is prevented. Therefore, rainwater and the like do not flow into the internal space of the sub-wall portion. Accordingly, it is possible to avoid the sub-wall portion of the sub-frame member being damaged due to rainwater that has flowed into the internal space of the sub-wall portion freezing and expanding in volume. Therefore, if the above-mentioned second solar cell module is installed in an inclined manner on an inclined place such as a roof, it is possible to prevent the module being damaged due to the freezing of rainwater and the like that have flowed into it.
  • Effects of the Invention
  • According to the present invention, with a solar cell module, the lower surface near the side end of a sub-bottom piece of a sub-frame member abuts against the upper surface near the side end of a main bottom piece of a main frame member, and a water barrier piece bent upward is formed at the inner side edge of the sub-bottom piece. Alternatively, the sub-bottom piece of the sub-frame member is positioned above the main bottom piece of the main frame member, and a gap into which water can flow is formed between the sub-bottom piece and the main bottom piece.
  • Accordingly, if the solar cell module is installed in an inclined manner, when it is raining, even though rainwater and the like flow on the main bottom piece of the inclined main frame member from a higher position to a lower position, due to the water barrier piece that is bent upward and formed at the inner side edge of the sub-bottom piece of the sub-frame member, rainwater and the like are dammed up and discharged downward from the inner side edge of the main bottom piece of the main frame member. Therefore, rainwater and the like are prevented from flowing onto the sub-bottom piece. Alternatively, since there is a gap into which water can flow between the sub-bottom piece of the sub-frame member and the main bottom piece of the main frame member, rainwater and the like flow into the gap into which this water can flow, and are discharged downward. Therefore, rainwater and the like are prevented from flowing onto the sub-bottom piece.
  • Therefore, since the flow of rainwater and the like onto this sub-bottom piece is prevented, rainwater and the like do not flow into the internal space of the sub-wall portion. Accordingly, it is possible to avoid the sub-wall portion of the sub-frame member being damaged due to rainwater that has flowed into the internal space of the sub-wall portion freezing and expanding in volume. For that reason, if the solar cell module is installed in an inclined manner on an inclined place such as a roof, it is possible to prevent the module being damaged due to the freezing of rainwater and the like that have flowed into it.
  • BRIEF DESCRIPTION OF DRAWINGS
  • [FIG. 1] FIG. 1 is a partial perspective view of a solar cell module according to Embodiment 1 of the present invention.
  • [FIG. 2] FIG. 2 is a partial exploded perspective view of the solar cell module according to Embodiment 1 of the present invention.
  • [FIG. 3] FIG. 3 is a partial plan view of the solar cell module according to Embodiment 1 of the present invention.
  • [FIG. 4] FIG. 4 is a cross-sectional view taken along A-A in FIG. 3.
  • [FIG. 5] FIG. 5 is a (first) cross-sectional view showing the shape of the edge of a water barrier piece of a sub-frame member of the solar cell module according to Embodiment 1 of the present invention.
  • [FIG. 6] FIG. 6 is a (second) cross-sectional view showing the shape of the edge of the water barrier piece of the sub-frame member of the solar cell module according to Embodiment 1 of the present invention.
  • [FIG. 7] FIG. 7 is a (third) cross-sectional view showing the shape of the edge of the water barrier piece of the sub-frame member of the solar cell module according to Embodiment 1 of the present invention.
  • [FIG. 8] FIG. 8 is a partial perspective view of a solar cell module according to Embodiment 2 of the present invention.
  • [FIG. 9] FIG. 9 is a partial exploded perspective view of the solar cell module according to Embodiment 2 of the present invention.
  • [FIG. 10] FIG. 10 is a partial plan view of the solar cell module according to Embodiment 2 of the present invention.
  • [FIG. 11] FIG. 11 is a cross-sectional view taken along B-B in FIG. 10.
  • [FIG. 12] FIG. 12 is a partial perspective view of a solar cell module according to Embodiment 3 of the present invention.
  • [FIG. 13] FIG. 13 is a partial exploded perspective view of the solar cell module according to Embodiment 3 of the present invention.
  • [FIG. 14] FIG. 14 is a partial plan view of the solar cell module according to Embodiment 3 of the present invention.
  • [FIG. 15] FIG. 15 is a cross-sectional view taken along C-C in FIG. 14.
  • [FIG. 16] FIG. 16 is a partial perspective view of a solar cell module according to Embodiment 4 of the present invention.
  • [FIG. 17] FIG. 17 is a partial exploded perspective view of the solar cell module according to Embodiment 4 of the present invention.
  • [FIG. 18] FIG. 18 is a partial plan view of the solar cell module according to Embodiment 4 of the present invention.
  • [FIG. 19] FIG. 19 is a cross-sectional view taken along D-D in FIG. 18.
  • [FIG. 20] FIG. 20 is a partial perspective view of a solar cell module according to an improved conventional example.
  • [FIG. 21] FIG. 21 is a partial exploded perspective view of the solar cell module according to the improved conventional example.
  • [FIG. 22] FIG. 22 is a partial plan view of the solar cell module according to the improved conventional example.
  • [FIG. 23] FIG. 23 is a cross-sectional view taken along E-E in FIG. 22.
  • [FIG. 24] FIG. 24 is a partial exploded perspective view of a solar cell module according to the conventional example.
  • DESCRIPTION OF REFERENCE NUMERALS
  • 1 a solar cell module
  • 1 b solar cell module
  • 2 a solar cell module
  • 2 b solar cell module
  • 3 a solar cell module
  • 3 b solar cell module
  • 6 horizontal surface
  • 7 inclination angle
  • 8 stream direction
  • 9 solar cell panel
  • 10 main frame member
  • 11 solar cell panel main holding portion
  • 12 main wall portion
  • 13 main outer wall
  • 14 main inner wall
  • 15 main base piece
  • 16 main bottom piece
  • 17 internal space
  • 20 sub-frame member
  • 21 solar cell panel sub-holding portion
  • 22 sub-wall portion
  • 23 sub-outer wall
  • 24 sub-inner wall
  • 25 sub-base piece
  • 26 sub-bottom piece
  • 27 internal space
  • 28 water barrier piece
  • 30 main frame member
  • 31 solar cell panel main holding portion
  • 32 main wall portion
  • 33 main outer wall
  • 34 main inner wall
  • 35 main base piece
  • 36 main bottom piece
  • 37 internal space
  • 40 sub-frame member
  • 41 solar cell panel sub-holding portion
  • 42 sub-wall portion
  • 43 sub-outer wall
  • 44 sub-inner wall
  • 45 sub-base piece
  • 46 sub-bottom piece
  • 47 internal space
  • 48 gap
  • 50 main frame member
  • 51 solar cell panel main holding portion
  • 54 main inner wall
  • 55 main base piece
  • 56 main bottom piece
  • 57 internal space
  • 60 sub-frame member
  • 61 solar cell panel sub-holding portion
  • 62 sub-wall portion
  • 63 sub-outer wall
  • 64 sub-inner wall
  • 65 sub-base piece
  • 66 sub-bottom piece
  • 67 internal space
  • 70 sub-frame member
  • 71 solar cell panel sub-holding portion
  • 72 sub-wall portion
  • 73 sub-outer wall
  • 74 sub-inner wall
  • 75 sub-base piece
  • 76 sub-bottom piece
  • 77 internal space
  • 78 removal necessary portion
  • BEST MODE FOR CARRYING OUT THE INVENTION
  • Next, solar cell modules according to Embodiments of the present invention are described with reference to the drawings. In the description of these embodiments, solar cell modules according to four types of embodiments, namely Embodiments 1 to 4, are described.
  • Embodiment 1
  • FIG. 1 is a partial perspective view showing the structure of a solar cell module 1 a according to Embodiment 1, FIG. 2 is a partial exploded perspective view thereof, FIG. 3 is a partial plan view thereof, and FIG. 4 is a cross-sectional view taken along A-A in FIG. 3. Note that in FIGS. 1, 3, and 4, a solar cell panel 9 is omitted, and FIGS. 1 and 2 show that the solar cell module 1 a is inclined relative to a horizontal surface 6 with an inclination angle 7. That is, the solar cell module 1 a according to Embodiment 1 is installed in an inclined manner on an inclined place such as a roof, such that one of the sub-frame members 20 described later is in the lowest position.
  • The solar cell module 1 a according to this Embodiment 1 has the following structure. That is, in FIGS. 1 to 4, the solar cell panel 9 has a rectangular shape, and using two pairs of members, each pair constituted from a main frame member 10 that holds one side of this solar cell panel 9 and a sub-frame member 20 that holds an adjoining side that adjoins this one side, the solar cell panel 9 is held so as to be surrounded on the inner side.
  • The above-mentioned main frame member 10 is constituted from a solar cell panel main holding portion 11, a main wall portion 12, and a main bottom piece 16. Among these, the solar cell panel main holding portion 11 has a U-shaped cross section, and inside the U shape, sandwiches one side of the solar cell panel 9 from above and below, holding the solar cell panel 9. The main wall portion 12 is constituted from a main outer wall 13 that is connected to the bottom of the solar cell panel main holding portion 11 and extends downward therefrom. The main bottom piece 16 is provided to the inner side of the lower edge of the Main wall portion 12, extending inward.
  • The sub-frame member 20 is constituted from a solar cell panel sub-holding portion 21, a sub-wall portion 22, and a sub-bottom piece 26. Among these, the solar cell panel sub-holding portion 21 has a U-shaped cross section, and inside the U shape, sandwiches an adjoining side of the solar cell panel 9 from above and below, holding the solar cell panel 9.
  • The sub-wall portion 22 is provided with a sub-outer wall 23 and a sub-inner wall 24 that extend downward with an internal space 27 sandwiched therebetween, and a sub-base piece 25 that closes the internal space 27 at the lower edges of the sub-outer wall 23 and the sub-inner wall 24, provided under the solar cell panel sub-holding portion 21, the sub-wall portion 22 being constituted with a side end opening of the internal space 27 closed by abutting against the internal surface of the main wall portion 12 of the main frame member 10. The sub-bottom piece 26 is provided to the inner side of the lower part of the sub-inner wall 24 of the sub-wall portion 22, extending inward.
  • With the above-described solar cell module 1 a, as shown in FIG. 4, the sub-bottom piece 26 of the sub-frame member 20 is positioned above the main bottom piece 16 of the main frame member 10, and the lower surface near the side end of this sub-bottom piece 26 abuts against the upper surface near the side end of the main bottom piece 16. Further, a water barrier piece 28 bent upward is formed at the inner side edge of this sub-bottom piece 26.
  • Accordingly, if the above-mentioned solar cell module 1 a is installed in an inclined manner, when it is raining, even though rainwater and the like flow on the main bottom piece 16 of the inclined main frame member 10 from a higher position to a lower position, due to the water barrier piece 28 that is bent upward and formed at the inner side edge of the sub-bottom piece 26 of the sub-frame member 20, as indicated by a stream direction 8 shown in FIG. 1, rainwater and the like are dammed up and discharged downward from the inner side edge of the main bottom piece 16 of the main frame member 10. Therefore, rainwater and the like are prevented from flowing onto the upper surface of the sub-bottom piece 26 of the sub-frame member 20.
  • Consequently, with the above-mentioned solar cell module 1 a, as described above, the side end opening of the internal space 27 of the sub-frame member 20 is closed by abutting against the main wall portion 12 of the main frame member 10 and, further, the flow of rainwater and the like onto the upper surface of the sub-bottom piece 26 of the sub-frame member 20 is prevented. Therefore, rainwater and the like do not flow into the internal space 27 of the sub-wall portion 22 of the sub-frame member 20. Accordingly, it is possible to avoid the sub-wall portion 22 of the sub-frame member 20 being damaged due to rainwater that has flowed into the internal space 27 of this sub-wall portion 22 freezing and expanding in volume. Therefore, if the above-described solar cell module 1 a is installed in an inclined manner on an inclined place such as a roof, it is possible to prevent the module being damaged due to the freezing of rainwater and the like that have flowed into it.
  • With the above-mentioned solar cell module 1 a according to Embodiment 1, the angle formed by the water barrier piece 28 and the sub-bottom piece 26 is 90 degrees as shown in FIG. 5. However, the angle is not limited to this, and the angle formed by the water barrier piece 28 and the sub-bottom piece 26 may be an angle between 90 degrees shown in FIGS. 5 and 120 degrees shown in FIG. 6. As the angle formed by the water barrier piece 28 and the sub-bottom piece 26, using 90 degrees to 120 degrees is superior compared with a case of using angles other than these, which has been confirmed in an experiment using a trial product.
  • Further, as shown in FIG. 7, it is preferable to form the water barrier piece 28 such that the edge surface of this water barrier piece 28 is substantially parallel to the sub-bottom piece 26. By giving the end of this water barrier piece 28 such a shape, when rainwater and the like flow on the main bottom piece 16 of the inclined main frame member 10 from a higher position to a lower position, rainwater and the like are not easily allowed to climb over this water barrier piece 28.
  • Moreover, it is preferable to form the water barrier piece 28 such that the height to the edge surface of the water barrier piece 28 from the upper surface of the sub-bottom piece 26 is 2 mm or more. A favorable result can be obtained if the height to the edge surface of the water barrier piece 28 from the upper surface of the sub-bottom piece 26 is made 2 mm or more, which has been confirmed in an experiment using a trial product.
  • Embodiment 2
  • FIG. 8 is a partial perspective view showing the structure of a solar cell module 1 b according to Embodiment 2, FIG. 9 is a partial exploded perspective view thereof, FIG. 10 is a partial plan view thereof, and FIG. 11 is a cross-sectional view taken along B-B in FIG. 10. Note that in FIGS. 8, 10, and 11, a solar cell panel 9 is omitted, and FIGS. 8 and 9 show that the solar cell module 1 b is inclined relative to a horizontal surface 6 with an inclination angle 7. That is, the solar cell module 1 b according to Embodiment 2 is installed in an inclined manner on an inclined place such as a roof, such that one of the sub-frame members 20 described later is in the lowest position, similar to the solar cell module 1 a according to Embodiment 1.
  • The solar cell module 1 b according to Embodiment 2 is almost the same as the solar cell module 1 a according to Embodiment 1. The solar cell module 1 b according to Embodiment 2 differs from the solar cell module 1 a according to Embodiment 1 in that, compared with the solar cell module 1 a according to Embodiment 1 provided with the main wall portion 12 of the main frame member 10 formed only using the main outer wall 13, the solar cell module 1 b according to Embodiment 2 is provided with the main wall portion 12 of the main frame member 10 constituted from the main outer wall 13, a main inner wall 14, and a main base piece 15, and furthermore an internal space 17 formed therein.
  • Therefore, the sub-frame member 20 of the solar cell module 1 b in Embodiment 2 is completely the same as that of the solar cell module 1 a in Embodiment 1, and provision of the water barrier piece 28 to the sub-frame member 20 is similar to the solar cell module 1 a according to Embodiment 1.
  • Accordingly, the function and effect provided to the solar cell module 1 b according to Embodiment 2 are completely the same as the function and effect provided to the solar cell module 1 a according to Embodiment 1.
  • Embodiment 3
  • FIG. 12 is a partial perspective view showing the structure of a solar cell module 2 a according to Embodiment 3, FIG. 13 is a partial exploded perspective view thereof, FIG. 14 is a partial plan view thereof, and FIG. 15 is a cross-sectional view taken along C-C in FIG. 14. Note that in FIGS. 12, 14, and 15, a solar cell panel 9 is omitted, and FIGS. 12 and 13 show that the solar cell module 2 a is inclined relative to a horizontal surface 6 with an inclination angle 7. That is, the solar cell module 2 a according to Embodiment 3 is installed in an inclined manner on an inclined place such as a roof, such that one of the sub-frame members 40 described later is in the lowest position.
  • The solar cell module 2 a according to this Embodiment 3 has the following structure. That is, in FIGS. 12 to 15, the solar cell panel 9 has a rectangular shape, and using two pairs of members, each pair constituted from a main frame member 30 that holds one side of this solar cell panel 9 and a sub-frame member 40 that holds an adjoining side that adjoins this one side, the solar cell panel 9 is held so as to be surrounded on the inner side.
  • The above-mentioned main frame member 30 is constituted from a solar cell panel main holding portion 31, a main wall portion 32, and a main bottom piece 36. Among these, the solar cell panel main holding portion 31 has a U-shaped cross section, and inside the U shape, sandwiches one side of the solar cell panel 9 from above and below, holding the solar cell panel 9. The main wall portion 32 is constituted from a main outer wall 33 that is connected to the bottom of the solar cell panel main holding portion 31 and extends downward therefrom. The main bottom piece 36 is provided to the inner side of the lower edge of the main wall portion 32, extending inward.
  • The sub-frame member 40 is constituted from a solar cell panel sub-holding portion 41, a sub-wall portion 42, and a sub-bottom piece 46. Among these, the solar cell panel sub-holding portion 41 has a U-shaped cross section, and inside the U shape, sandwiches an adjoining side of the solar cell panel 9 from above and below so as to hold the solar cell panel 9.
  • The sub-wall portion 42 is provided with a sub-outer wall 43 and a sub-inner wall 44 that extend downward with an internal space 47 sandwiched therebetween, and a sub-base piece 45 that closes the internal space 47 at the lower edges of the sub-outer wall 43 and the sub-inner wall 44, provided under the solar cell panel sub-holding portion 41, the sub-wall portion 42 being constituted with a side end opening of the internal space 47 closed by abutting against the internal surface of the main wall portion 32 of the main frame member 30. The sub-bottom piece 46 is provided to the inner side of the lower part of the sub-inner wall 44 of the sub-wall portion 42, extending inward.
  • With the above-mentioned solar cell module 2 a, as shown in FIG. 15, the sub-bottom piece 46 of the sub-frame member 40 is positioned above the main bottom piece 36 of the main frame member 30, and a gap 48 into which water can flow is formed between the sub-bottom piece 46 of the sub-frame member 40 and the main bottom piece 36 of the main frame member 30.
  • Accordingly, if the above-mentioned solar cell module 2 a is installed in an inclined manner, when it is raining, even though rainwater and the like flow on the main bottom piece 36 of the inclined main frame member 30 from a higher position to a lower position, since the gap 48 into which water can flow is formed between the sub-bottom piece 46 of the sub-frame member 40 and the main bottom piece 36 of the main frame member 30, rainwater and the like flow into the gap 48 into which this water can flow, and are discharged downward as indicated by a stream direction 8 shown in FIG. 12. Therefore, rainwater and the like are prevented from flowing onto the upper surface of the sub-bottom piece 46.
  • Consequently, with the above-mentioned solar cell module 2 a, as described above, the side end opening of the internal space 47 of the sub-frame member 40 is closed by abutting against the main wall portion 32 of the main frame member 30 and, further, the flow of rainwater and the like onto the upper surface of the sub-bottom piece 46 of the sub-frame member 40 is prevented. Therefore, rainwater and the like do not flow into the internal space 47 of the sub-wall portion 42. Accordingly, it is possible to avoid the sub-wall portion 42 of the sub-frame member 40 being damaged due to rainwater that has flowed into the internal space 47 of the sub-wall portion 42 freezing and expanding in volume. Therefore, if the above-mentioned solar cell module 2 a is installed in an inclined manner on an inclined place such as a roof, it is possible to prevent the module being damaged due to the freezing of rainwater and the like that have flowed into it.
  • Embodiment 4
  • FIG. 16 is a partial perspective view showing the structure of a solar cell module 2 b according to Embodiment 4, FIG. 17 is a partial exploded perspective view thereof, FIG. 18 is a partial plan view thereof, and FIG. 19 is a cross-sectional view taken along D-D in FIG. 18. Note that in FIGS. 16, 18, and 19, a solar cell panel 9 is omitted, and FIGS. 16 and 17 show that the solar cell module 2 b is inclined relative to a horizontal surface 6 with an inclination angle 7. That is, the solar cell module 2 b according to Embodiment 4 is installed in an inclined manner on an inclined place such as a roof, such that one of the sub-frame members 40 described later is in the lowest position, similar to the solar cell module 2 a according to Embodiment 3.
  • The solar cell module 2 b according to Embodiment 4 is almost the same as the solar cell module 2 a according to Embodiment 3. The solar cell module 2 b according to Embodiment 4 differs from the solar cell module 2 a according to Embodiment 3 in that, compared with the solar cell module 2 a according to Embodiment 3 provided with the main wall portion 32 of the main frame member 30 formed only using the main outer wall 33, the solar cell module 2 b according to Embodiment 4 is provided with the main wall portion 32 of the main frame member 30 constituted from the main outer wall 33, a main inner wall 34, and a main base piece 35, and furthermore an internal space 37 formed therein.
  • Therefore, the sub-frame member 40 of the solar cell module 2 b in Embodiment 4 is completely the same as that of the solar cell module 2 a in Embodiment 3. As shown in FIG. 19, the sub-bottom piece 46 of the sub-frame member 40 is positioned above the main bottom piece 36 of the main frame member 30, and a gap 48 into which water can flow is formed between the sub-bottom piece 46 of the sub-frame member 40 and the main bottom piece 36 of the main frame member 30, which is similar to the solar cell module 2 a according to Embodiment 3.
  • Accordingly, the function and effect provided to the solar cell module 2 b according to Embodiment 4 are completely the same as the function and effect provided to the solar cell module 2 a according to Embodiment 3.
  • The present invention may be embodied in various other forms without departing from the gist or essential characteristics thereof. Therefore, the embodiments disclosed in this application are to be considered in all respects as illustrative and not limiting. The scope of the invention is indicated by the appended claims rather than by the foregoing description, and all modifications or changes that come within the meaning and range of equivalency of the claims are intended to be embraced therein.
  • This application claims priority on Japanese Patent Application No. 2007-226606 filed in Japan on Aug. 31, 2007, the contents of which are incorporated herein by reference. Furthermore, the entire contents of references cited in the present specification are herein specifically incorporated by reference.
  • INDUSTRIAL APPLICABILITY
  • A solar cell module of the present invention is useful since it is possible to prevent the module being damaged due to the freezing of rainwater and the like that have flowed into it if the module is installed in an inclined manner on an inclined place such as a roof.

Claims (5)

1. A solar cell module that holds a solar cell panel so as to surround the solar cell panel on its inner side using a plurality of pairs of members, each pair constituted from a main frame member that holds one side of the solar cell panel and a sub-frame member that holds an adjoining side that adjoins the one side, and that can be installed in an inclined manner on an inclined place, such as a roof, such that one of the sub-frame members is in a lowest position, wherein
the main frame member comprises:
a solar cell panel main holding portion that has a U-shaped cross section, and sandwiches the one side of the solar cell panel from above and below inside the U shape, holding the solar cell panel;
a main wall portion that is connected to the bottom of the solar cell panel main holding portion, extending downward therefrom; and
a main bottom piece that is provided to an inner side of a lower edge of the main wall portion, extending inward,
the sub-frame member comprises:
a solar cell panel sub-holding portion that has a U-shaped cross section, and sandwiches the adjoining side of the solar cell panel from above and below inside the U shape, holding the solar cell panel;
a sub-wall portion comprising a sub-outer wall and a sub-inner wall that extend downward with an internal space sandwiched therebetween, and a sub-base piece that closes the internal space at lower edges of the sub-outer wall and the sub-inner wall, provided under the solar cell panel sub-holding portion, the sub-wall portion being constituted with a side end opening of the internal space closed by abutting against the main wall portion of the main frame member; and
a sub-bottom piece that is provided to an inner side of a lower part of the sub-inner wall of the sub-wall portion, extending inward, and
the sub-bottom piece is positioned above the main bottom piece of the main frame member, and a lower surface near a side end of the sub-bottom piece abuts against an upper surface near a side end of the main bottom piece of the main frame member, and a water barrier piece bent upward is formed at an inner side edge of the sub-bottom piece.
2. The solar cell module according to claim 1,
wherein the water barrier piece is formed such that an angle formed by the water barrier piece and the sub-bottom piece is between 90 degrees and 120 degrees.
3. The solar-cell module according to claim 2,
wherein the water barrier piece is formed such that an edge surface of the water barrier piece is substantially parallel to the sub-bottom piece.
4. The solar cell module according to claim 3;
wherein the water barrier piece is formed such that a height to the edge surface of the water barrier piece from an upper surface of the sub-bottom piece is at least 2 mm.
5. (canceled)
US13/774,156 2007-08-31 2013-02-22 Solar cell module Abandoned US20130160851A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/774,156 US20130160851A1 (en) 2007-08-31 2013-02-22 Solar cell module

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2007226606 2007-08-31
JP2007226606A JP4209451B1 (en) 2007-08-31 2007-08-31 Solar cell module
PCT/JP2008/065296 WO2009028550A1 (en) 2007-08-31 2008-08-27 Solar cell module
US67471710A 2010-02-23 2010-02-23
US13/774,156 US20130160851A1 (en) 2007-08-31 2013-02-22 Solar cell module

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2008/065296 Division WO2009028550A1 (en) 2007-08-31 2008-08-27 Solar cell module
US67471710A Division 2007-08-31 2010-02-23

Publications (1)

Publication Number Publication Date
US20130160851A1 true US20130160851A1 (en) 2013-06-27

Family

ID=40325699

Family Applications (2)

Application Number Title Priority Date Filing Date
US12/674,717 Expired - Fee Related US8404966B2 (en) 2007-08-31 2008-08-27 Solar cell module
US13/774,156 Abandoned US20130160851A1 (en) 2007-08-31 2013-02-22 Solar cell module

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US12/674,717 Expired - Fee Related US8404966B2 (en) 2007-08-31 2008-08-27 Solar cell module

Country Status (5)

Country Link
US (2) US8404966B2 (en)
EP (1) EP2182133A1 (en)
JP (1) JP4209451B1 (en)
CN (1) CN101796252B (en)
WO (1) WO2009028550A1 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009164434A (en) * 2008-01-08 2009-07-23 Sharp Corp Solar cell module
JP4616369B2 (en) * 2008-06-17 2011-01-19 シャープ株式会社 Solar cell module
US8061091B2 (en) 2008-06-27 2011-11-22 Sunpower Corporation Photovoltaic module kit including connector assembly for non-penetrating array installation
US8220210B2 (en) * 2008-06-27 2012-07-17 Sunpower Corporation Photovoltaic module and module arrays
US8234824B2 (en) 2008-06-27 2012-08-07 Sunpower Corporation Photovoltaic module with removable wind deflector
US20110155127A1 (en) * 2009-12-31 2011-06-30 Du Pont Apollo Limited Frame for solar module
US20120073630A1 (en) * 2010-09-28 2012-03-29 Perfect Source Technology Corp. Rectangular protective frame for solar cell module
JP5868209B2 (en) * 2012-02-17 2016-02-24 シャープ株式会社 Drainage structure of solar cell module and solar cell module
US9906186B2 (en) 2012-07-20 2018-02-27 Mitsubishi Electric Corporation Holding frame and solar cell module
JP6183581B2 (en) * 2012-09-28 2017-08-23 パナソニックIpマネジメント株式会社 Solar cell module
US9397605B2 (en) * 2013-10-30 2016-07-19 Kevin Stapleton Panel mounting bracket with under-mounting clamp and related methods
US20150287858A1 (en) * 2014-04-02 2015-10-08 Sunedison Llc Photovoltaic module integrated mounting and electronics systems
CN105262414A (en) * 2015-09-11 2016-01-20 杭州帷盛科技有限公司 Mounting structure of photovoltaic power generation system
WO2019191691A1 (en) 2018-03-30 2019-10-03 Sunpower Corporation Single-walled connecting key framesets
JP2023549798A (en) * 2021-05-12 2023-11-29 寧徳時代新能源科技股▲分▼有限公司 Electrode assemblies, battery cells, batteries and power consumption devices

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4392009A (en) * 1981-10-16 1983-07-05 Exxon Research And Engineering Co. Solar power module
US4433200A (en) * 1981-10-02 1984-02-21 Atlantic Richfield Company Roll formed pan solar module
US6959517B2 (en) * 2003-05-09 2005-11-01 First Solar, Llc Photovoltaic panel mounting bracket
JP2008085132A (en) * 2006-09-28 2008-04-10 Showa Shell Sekiyu Kk Cis system thin film solar battery module
US20080223432A1 (en) * 2007-03-15 2008-09-18 Chang Chi Lee Fixing frame for a solar energy module
US20090025314A1 (en) * 2005-04-07 2009-01-29 Tatsuya Komamine Mounting Structure of Solar Cell Module
JP2009057757A (en) * 2007-08-31 2009-03-19 Sharp Corp Solar-cell module
JP2009135304A (en) * 2007-11-30 2009-06-18 Sharp Corp Solar cell module

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3301161A1 (en) 1983-01-15 1984-07-19 Bayer Ag, 5090 Leverkusen THERMOPLASTIC MOLDS
JPS59138251U (en) 1983-03-07 1984-09-14 株式会社ほくさん Solar panel mounting equipment
JP3455750B2 (en) 1995-09-29 2003-10-14 シャープ株式会社 Mounting structure of solar cell module
US6182403B1 (en) * 1996-08-30 2001-02-06 Canon Kabushiki Kaisha Combination solar battery and roof unit and mounting method thereof
JP3754259B2 (en) 2000-02-15 2006-03-08 シャープ株式会社 Solar cell module and method for manufacturing solar cell module
AUPQ668200A0 (en) * 2000-04-04 2000-05-04 Erling, Peter S Framing systems for solar panels
JP4595832B2 (en) 2006-02-24 2010-12-08 カシオ計算機株式会社 Imaging apparatus, program, and storage medium

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4433200A (en) * 1981-10-02 1984-02-21 Atlantic Richfield Company Roll formed pan solar module
US4392009A (en) * 1981-10-16 1983-07-05 Exxon Research And Engineering Co. Solar power module
US6959517B2 (en) * 2003-05-09 2005-11-01 First Solar, Llc Photovoltaic panel mounting bracket
US20090025314A1 (en) * 2005-04-07 2009-01-29 Tatsuya Komamine Mounting Structure of Solar Cell Module
JP2008085132A (en) * 2006-09-28 2008-04-10 Showa Shell Sekiyu Kk Cis system thin film solar battery module
US20080223432A1 (en) * 2007-03-15 2008-09-18 Chang Chi Lee Fixing frame for a solar energy module
JP2009057757A (en) * 2007-08-31 2009-03-19 Sharp Corp Solar-cell module
JP2009135304A (en) * 2007-11-30 2009-06-18 Sharp Corp Solar cell module

Also Published As

Publication number Publication date
JP4209451B1 (en) 2009-01-14
WO2009028550A1 (en) 2009-03-05
JP2009059947A (en) 2009-03-19
CN101796252B (en) 2011-10-19
US8404966B2 (en) 2013-03-26
EP2182133A1 (en) 2010-05-05
US20110120529A1 (en) 2011-05-26
CN101796252A (en) 2010-08-04

Similar Documents

Publication Publication Date Title
US8404966B2 (en) Solar cell module
EP2228829B1 (en) Solar battery module device
US9184693B2 (en) Supporting device for solar panel
AU2008345895B2 (en) Solar cell module
US8572906B2 (en) Solar cell module
JP4290750B2 (en) Solar cell module fixing structure, solar cell module frame and fixing member
US9188365B2 (en) Frame for supporting solar module
US20110088781A1 (en) Solar cell module
AU2006324729A1 (en) Frame body for solar cell module
WO2011038001A1 (en) Integrated mount for solar panels
JP6746369B2 (en) Solar cell module
JP4377466B2 (en) Roof-integrated solar array
JP5889033B2 (en) Frame, solar cell module provided with this frame, installation structure of solar cell module, and installation method of solar cell module
JP6449006B2 (en) Roof structure
KR20220163234A (en) Fixing unit of solar panel and roof system comprising the same and the method thereof
JP2002129710A (en) Photovoltaic power generator
WO2023276124A1 (en) Carport
JP6594626B2 (en) Roof structure
CN216356606U (en) Frame and photovoltaic module mounting structure
JP6051042B2 (en) Solar panel laying structure
JP6027390B2 (en) Snow cover method for existing solar cell roof
FR2962464A1 (en) Device for integrating photovoltaic modules in inclined roof of building, has photovoltaic set that is formed of photovoltaic modules, and hooking elements attaching photovoltaic set on set of vats
JP2019071752A (en) Solar cell module and installation structure of solar cell module
TWM627941U (en) Waterproof bracket for roof-mounted photovoltaic module
KR200342318Y1 (en) Photovoltaic cell panel formed with roof finisher

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION