US20130136809A1 - 7-hyrdroxyfrullanolide its analogs for prevention control and treatment of metabolic disorders - Google Patents
7-hyrdroxyfrullanolide its analogs for prevention control and treatment of metabolic disorders Download PDFInfo
- Publication number
- US20130136809A1 US20130136809A1 US13/752,181 US201313752181A US2013136809A1 US 20130136809 A1 US20130136809 A1 US 20130136809A1 US 201313752181 A US201313752181 A US 201313752181A US 2013136809 A1 US2013136809 A1 US 2013136809A1
- Authority
- US
- United States
- Prior art keywords
- compound
- hydroxyfrullanolide
- biologically active
- furan
- hydroxy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000011282 treatment Methods 0.000 title claims abstract description 59
- 208000030159 metabolic disease Diseases 0.000 title claims abstract description 52
- 230000002265 prevention Effects 0.000 title claims abstract description 27
- XMPDAVDYIOMTLX-UHFFFAOYSA-N 7-hydroxy eudesm-4-en-6,12-olide Natural products C1CC2(C)CCCC(C)=C2C2OC(=O)C(=C)C21O XMPDAVDYIOMTLX-UHFFFAOYSA-N 0.000 claims abstract description 213
- 239000000203 mixture Substances 0.000 claims abstract description 180
- 208000001145 Metabolic Syndrome Diseases 0.000 claims abstract description 62
- 201000000690 abdominal obesity-metabolic syndrome Diseases 0.000 claims abstract description 61
- 239000004480 active ingredient Substances 0.000 claims abstract description 50
- 208000008589 Obesity Diseases 0.000 claims abstract description 46
- 235000020824 obesity Nutrition 0.000 claims abstract description 46
- 241001465754 Metazoa Species 0.000 claims abstract description 42
- 206010012601 diabetes mellitus Diseases 0.000 claims abstract description 20
- 210000001789 adipocyte Anatomy 0.000 claims description 54
- 239000000284 extract Substances 0.000 claims description 51
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 claims description 50
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 46
- 102100030431 Fatty acid-binding protein, adipocyte Human genes 0.000 claims description 41
- 230000014509 gene expression Effects 0.000 claims description 38
- 108010045374 CD36 Antigens Proteins 0.000 claims description 35
- 238000000034 method Methods 0.000 claims description 34
- 102000004169 proteins and genes Human genes 0.000 claims description 33
- 108090000623 proteins and genes Proteins 0.000 claims description 33
- 108010076365 Adiponectin Proteins 0.000 claims description 32
- 102000011690 Adiponectin Human genes 0.000 claims description 32
- 101001062864 Homo sapiens Fatty acid-binding protein, adipocyte Proteins 0.000 claims description 32
- 235000018102 proteins Nutrition 0.000 claims description 32
- 244000085223 Sphaeranthus indicus Species 0.000 claims description 31
- 102000017794 Perilipin-2 Human genes 0.000 claims description 29
- 108010067163 Perilipin-2 Proteins 0.000 claims description 29
- 210000002540 macrophage Anatomy 0.000 claims description 27
- -1 disintegrators Substances 0.000 claims description 26
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 claims description 25
- 239000008103 glucose Substances 0.000 claims description 25
- 108010016731 PPAR gamma Proteins 0.000 claims description 24
- 230000000694 effects Effects 0.000 claims description 24
- 108010015847 Non-Receptor Type 1 Protein Tyrosine Phosphatase Proteins 0.000 claims description 22
- 150000001875 compounds Chemical class 0.000 claims description 22
- 230000004130 lipolysis Effects 0.000 claims description 22
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 22
- 102100033001 Tyrosine-protein phosphatase non-receptor type 1 Human genes 0.000 claims description 21
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims description 21
- 239000000090 biomarker Substances 0.000 claims description 20
- 235000011187 glycerol Nutrition 0.000 claims description 20
- 201000010099 disease Diseases 0.000 claims description 19
- 238000004519 manufacturing process Methods 0.000 claims description 19
- 239000003981 vehicle Substances 0.000 claims description 19
- 102000001406 Perilipin Human genes 0.000 claims description 18
- 108060006002 Perilipin Proteins 0.000 claims description 18
- 102100038825 Peroxisome proliferator-activated receptor gamma Human genes 0.000 claims description 17
- 241000124008 Mammalia Species 0.000 claims description 16
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 claims description 16
- 229910052739 hydrogen Inorganic materials 0.000 claims description 16
- 239000001257 hydrogen Substances 0.000 claims description 16
- 125000004435 hydrogen atom Chemical class [H]* 0.000 claims description 16
- 241000196324 Embryophyta Species 0.000 claims description 15
- 206010020772 Hypertension Diseases 0.000 claims description 14
- GLUUGHFHXGJENI-UHFFFAOYSA-N Piperazine Chemical compound C1CNCCN1 GLUUGHFHXGJENI-UHFFFAOYSA-N 0.000 claims description 14
- 230000011759 adipose tissue development Effects 0.000 claims description 14
- 108010071584 oxidized low density lipoprotein Proteins 0.000 claims description 14
- 208000024172 Cardiovascular disease Diseases 0.000 claims description 13
- 239000003795 chemical substances by application Substances 0.000 claims description 13
- 102100027995 Collagenase 3 Human genes 0.000 claims description 12
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 12
- 108010076503 Matrix Metalloproteinase 13 Proteins 0.000 claims description 12
- 108010016160 Matrix Metalloproteinase 3 Proteins 0.000 claims description 12
- 102000014962 Monocyte Chemoattractant Proteins Human genes 0.000 claims description 12
- 108010064136 Monocyte Chemoattractant Proteins Proteins 0.000 claims description 12
- 102100030416 Stromelysin-1 Human genes 0.000 claims description 12
- 125000000217 alkyl group Chemical group 0.000 claims description 12
- 239000000243 solution Substances 0.000 claims description 12
- UNILWMWFPHPYOR-KXEYIPSPSA-M 1-[6-[2-[3-[3-[3-[2-[2-[3-[[2-[2-[[(2r)-1-[[2-[[(2r)-1-[3-[2-[2-[3-[[2-(2-amino-2-oxoethoxy)acetyl]amino]propoxy]ethoxy]ethoxy]propylamino]-3-hydroxy-1-oxopropan-2-yl]amino]-2-oxoethyl]amino]-3-[(2r)-2,3-di(hexadecanoyloxy)propyl]sulfanyl-1-oxopropan-2-yl Chemical compound O=C1C(SCCC(=O)NCCCOCCOCCOCCCNC(=O)COCC(=O)N[C@@H](CSC[C@@H](COC(=O)CCCCCCCCCCCCCCC)OC(=O)CCCCCCCCCCCCCCC)C(=O)NCC(=O)N[C@H](CO)C(=O)NCCCOCCOCCOCCCNC(=O)COCC(N)=O)CC(=O)N1CCNC(=O)CCCCCN\1C2=CC=C(S([O-])(=O)=O)C=C2CC/1=C/C=C/C=C/C1=[N+](CC)C2=CC=C(S([O-])(=O)=O)C=C2C1 UNILWMWFPHPYOR-KXEYIPSPSA-M 0.000 claims description 11
- 229940125773 compound 10 Drugs 0.000 claims description 10
- 239000003085 diluting agent Substances 0.000 claims description 10
- 229910052736 halogen Inorganic materials 0.000 claims description 10
- 150000002367 halogens Chemical class 0.000 claims description 10
- ZLVXBBHTMQJRSX-VMGNSXQWSA-N jdtic Chemical compound C1([C@]2(C)CCN(C[C@@H]2C)C[C@H](C(C)C)NC(=O)[C@@H]2NCC3=CC(O)=CC=C3C2)=CC=CC(O)=C1 ZLVXBBHTMQJRSX-VMGNSXQWSA-N 0.000 claims description 10
- 235000017807 phytochemicals Nutrition 0.000 claims description 10
- 229930000223 plant secondary metabolite Natural products 0.000 claims description 10
- 206010048554 Endothelial dysfunction Diseases 0.000 claims description 9
- 208000035150 Hypercholesterolemia Diseases 0.000 claims description 9
- 208000031226 Hyperlipidaemia Diseases 0.000 claims description 9
- 239000000969 carrier Substances 0.000 claims description 9
- 230000008694 endothelial dysfunction Effects 0.000 claims description 9
- 206010003210 Arteriosclerosis Diseases 0.000 claims description 8
- 101710118908 Fatty acid-binding protein, adipocyte Proteins 0.000 claims description 8
- 102000000380 Matrix Metalloproteinase 1 Human genes 0.000 claims description 8
- 108010016113 Matrix Metalloproteinase 1 Proteins 0.000 claims description 8
- 125000003545 alkoxy group Chemical group 0.000 claims description 8
- 208000011775 arteriosclerosis disease Diseases 0.000 claims description 8
- 102000016959 beta-3 Adrenergic Receptors Human genes 0.000 claims description 8
- 108010014502 beta-3 Adrenergic Receptors Proteins 0.000 claims description 8
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 8
- GHYOCDFICYLMRF-UTIIJYGPSA-N (2S,3R)-N-[(2S)-3-(cyclopenten-1-yl)-1-[(2R)-2-methyloxiran-2-yl]-1-oxopropan-2-yl]-3-hydroxy-3-(4-methoxyphenyl)-2-[[(2S)-2-[(2-morpholin-4-ylacetyl)amino]propanoyl]amino]propanamide Chemical compound C1(=CCCC1)C[C@@H](C(=O)[C@@]1(OC1)C)NC([C@H]([C@@H](C1=CC=C(C=C1)OC)O)NC([C@H](C)NC(CN1CCOCC1)=O)=O)=O GHYOCDFICYLMRF-UTIIJYGPSA-N 0.000 claims description 7
- 229930006000 Sucrose Natural products 0.000 claims description 7
- KGNDCEVUMONOKF-UGPLYTSKSA-N benzyl n-[(2r)-1-[(2s,4r)-2-[[(2s)-6-amino-1-(1,3-benzoxazol-2-yl)-1,1-dihydroxyhexan-2-yl]carbamoyl]-4-[(4-methylphenyl)methoxy]pyrrolidin-1-yl]-1-oxo-4-phenylbutan-2-yl]carbamate Chemical compound C1=CC(C)=CC=C1CO[C@H]1CN(C(=O)[C@@H](CCC=2C=CC=CC=2)NC(=O)OCC=2C=CC=CC=2)[C@H](C(=O)N[C@@H](CCCCN)C(O)(O)C=2OC3=CC=CC=C3N=2)C1 KGNDCEVUMONOKF-UGPLYTSKSA-N 0.000 claims description 7
- 229940125797 compound 12 Drugs 0.000 claims description 7
- 229940125833 compound 23 Drugs 0.000 claims description 7
- 229940126214 compound 3 Drugs 0.000 claims description 7
- 235000020825 overweight Nutrition 0.000 claims description 7
- 239000005720 sucrose Substances 0.000 claims description 7
- AOSZTAHDEDLTLQ-AZKQZHLXSA-N (1S,2S,4R,8S,9S,11S,12R,13S,19S)-6-[(3-chlorophenyl)methyl]-12,19-difluoro-11-hydroxy-8-(2-hydroxyacetyl)-9,13-dimethyl-6-azapentacyclo[10.8.0.02,9.04,8.013,18]icosa-14,17-dien-16-one Chemical compound C([C@@H]1C[C@H]2[C@H]3[C@]([C@]4(C=CC(=O)C=C4[C@@H](F)C3)C)(F)[C@@H](O)C[C@@]2([C@@]1(C1)C(=O)CO)C)N1CC1=CC=CC(Cl)=C1 AOSZTAHDEDLTLQ-AZKQZHLXSA-N 0.000 claims description 6
- SZUVGFMDDVSKSI-WIFOCOSTSA-N (1s,2s,3s,5r)-1-(carboxymethyl)-3,5-bis[(4-phenoxyphenyl)methyl-propylcarbamoyl]cyclopentane-1,2-dicarboxylic acid Chemical compound O=C([C@@H]1[C@@H]([C@](CC(O)=O)([C@H](C(=O)N(CCC)CC=2C=CC(OC=3C=CC=CC=3)=CC=2)C1)C(O)=O)C(O)=O)N(CCC)CC(C=C1)=CC=C1OC1=CC=CC=C1 SZUVGFMDDVSKSI-WIFOCOSTSA-N 0.000 claims description 6
- WWTBZEKOSBFBEM-SPWPXUSOSA-N (2s)-2-[[2-benzyl-3-[hydroxy-[(1r)-2-phenyl-1-(phenylmethoxycarbonylamino)ethyl]phosphoryl]propanoyl]amino]-3-(1h-indol-3-yl)propanoic acid Chemical compound N([C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)O)C(=O)C(CP(O)(=O)[C@H](CC=1C=CC=CC=1)NC(=O)OCC=1C=CC=CC=1)CC1=CC=CC=C1 WWTBZEKOSBFBEM-SPWPXUSOSA-N 0.000 claims description 6
- QFLWZFQWSBQYPS-AWRAUJHKSA-N (3S)-3-[[(2S)-2-[[(2S)-2-[5-[(3aS,6aR)-2-oxo-1,3,3a,4,6,6a-hexahydrothieno[3,4-d]imidazol-4-yl]pentanoylamino]-3-methylbutanoyl]amino]-3-(4-hydroxyphenyl)propanoyl]amino]-4-[1-bis(4-chlorophenoxy)phosphorylbutylamino]-4-oxobutanoic acid Chemical compound CCCC(NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](Cc1ccc(O)cc1)NC(=O)[C@@H](NC(=O)CCCCC1SC[C@@H]2NC(=O)N[C@H]12)C(C)C)P(=O)(Oc1ccc(Cl)cc1)Oc1ccc(Cl)cc1 QFLWZFQWSBQYPS-AWRAUJHKSA-N 0.000 claims description 6
- IWZSHWBGHQBIML-ZGGLMWTQSA-N (3S,8S,10R,13S,14S,17S)-17-isoquinolin-7-yl-N,N,10,13-tetramethyl-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-amine Chemical compound CN(C)[C@H]1CC[C@]2(C)C3CC[C@@]4(C)[C@@H](CC[C@@H]4c4ccc5ccncc5c4)[C@@H]3CC=C2C1 IWZSHWBGHQBIML-ZGGLMWTQSA-N 0.000 claims description 6
- 108010074051 C-Reactive Protein Proteins 0.000 claims description 6
- 102100032752 C-reactive protein Human genes 0.000 claims description 6
- 229940126657 Compound 17 Drugs 0.000 claims description 6
- LNUFLCYMSVYYNW-ZPJMAFJPSA-N [(2r,3r,4s,5r,6r)-2-[(2r,3r,4s,5r,6r)-6-[(2r,3r,4s,5r,6r)-6-[(2r,3r,4s,5r,6r)-6-[[(3s,5s,8r,9s,10s,13r,14s,17r)-10,13-dimethyl-17-[(2r)-6-methylheptan-2-yl]-2,3,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydro-1h-cyclopenta[a]phenanthren-3-yl]oxy]-4,5-disulfo Chemical compound O([C@@H]1[C@@H](COS(O)(=O)=O)O[C@@H]([C@@H]([C@H]1OS(O)(=O)=O)OS(O)(=O)=O)O[C@@H]1[C@@H](COS(O)(=O)=O)O[C@@H]([C@@H]([C@H]1OS(O)(=O)=O)OS(O)(=O)=O)O[C@@H]1[C@@H](COS(O)(=O)=O)O[C@H]([C@@H]([C@H]1OS(O)(=O)=O)OS(O)(=O)=O)O[C@@H]1C[C@@H]2CC[C@H]3[C@@H]4CC[C@@H]([C@]4(CC[C@@H]3[C@@]2(C)CC1)C)[C@H](C)CCCC(C)C)[C@H]1O[C@H](COS(O)(=O)=O)[C@@H](OS(O)(=O)=O)[C@H](OS(O)(=O)=O)[C@H]1OS(O)(=O)=O LNUFLCYMSVYYNW-ZPJMAFJPSA-N 0.000 claims description 6
- 125000003118 aryl group Chemical group 0.000 claims description 6
- 235000013361 beverage Nutrition 0.000 claims description 6
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 claims description 6
- 229940126543 compound 14 Drugs 0.000 claims description 6
- 229940125810 compound 20 Drugs 0.000 claims description 6
- 108010041382 compound 20 Proteins 0.000 claims description 6
- 229940126208 compound 22 Drugs 0.000 claims description 6
- 125000000753 cycloalkyl group Chemical group 0.000 claims description 6
- JAXFJECJQZDFJS-XHEPKHHKSA-N gtpl8555 Chemical compound OC(=O)C[C@H](N)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](C(C)C)C(=O)N1CCC[C@@H]1C(=O)N[C@H](B1O[C@@]2(C)[C@H]3C[C@H](C3(C)C)C[C@H]2O1)CCC1=CC=C(F)C=C1 JAXFJECJQZDFJS-XHEPKHHKSA-N 0.000 claims description 6
- 125000000623 heterocyclic group Chemical group 0.000 claims description 6
- 239000004615 ingredient Substances 0.000 claims description 6
- 244000005700 microbiome Species 0.000 claims description 6
- 230000004580 weight loss Effects 0.000 claims description 6
- GLGNXYJARSMNGJ-VKTIVEEGSA-N (1s,2s,3r,4r)-3-[[5-chloro-2-[(1-ethyl-6-methoxy-2-oxo-4,5-dihydro-3h-1-benzazepin-7-yl)amino]pyrimidin-4-yl]amino]bicyclo[2.2.1]hept-5-ene-2-carboxamide Chemical compound CCN1C(=O)CCCC2=C(OC)C(NC=3N=C(C(=CN=3)Cl)N[C@H]3[C@H]([C@@]4([H])C[C@@]3(C=C4)[H])C(N)=O)=CC=C21 GLGNXYJARSMNGJ-VKTIVEEGSA-N 0.000 claims description 5
- XJIHHYMEBKDQFZ-RQXOCINCSA-N (3r,3ar,5ar,8r,9bs)-3a-hydroxy-3,5a,9-trimethyl-8-[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-4,5,6,7,8,9b-hexahydro-3h-benzo[g][1]benzofuran-2-one Chemical compound O([C@H]1C(C)=C2[C@@H]3OC(=O)[C@@H]([C@@]3(CC[C@@]2(C)CC1)O)C)[C@@H]1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1O XJIHHYMEBKDQFZ-RQXOCINCSA-N 0.000 claims description 5
- ONBQEOIKXPHGMB-VBSBHUPXSA-N 1-[2-[(2s,3r,4s,5r)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]oxy-4,6-dihydroxyphenyl]-3-(4-hydroxyphenyl)propan-1-one Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1OC1=CC(O)=CC(O)=C1C(=O)CCC1=CC=C(O)C=C1 ONBQEOIKXPHGMB-VBSBHUPXSA-N 0.000 claims description 5
- OPFJDXRVMFKJJO-ZHHKINOHSA-N N-{[3-(2-benzamido-4-methyl-1,3-thiazol-5-yl)-pyrazol-5-yl]carbonyl}-G-dR-G-dD-dD-dD-NH2 Chemical compound S1C(C=2NN=C(C=2)C(=O)NCC(=O)N[C@H](CCCN=C(N)N)C(=O)NCC(=O)N[C@H](CC(O)=O)C(=O)N[C@H](CC(O)=O)C(=O)N[C@H](CC(O)=O)C(N)=O)=C(C)N=C1NC(=O)C1=CC=CC=C1 OPFJDXRVMFKJJO-ZHHKINOHSA-N 0.000 claims description 5
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 claims description 5
- 235000001014 amino acid Nutrition 0.000 claims description 5
- 150000001413 amino acids Chemical class 0.000 claims description 5
- 229940125758 compound 15 Drugs 0.000 claims description 5
- 229940126142 compound 16 Drugs 0.000 claims description 5
- 229940125782 compound 2 Drugs 0.000 claims description 5
- 229940126086 compound 21 Drugs 0.000 claims description 5
- 229940125898 compound 5 Drugs 0.000 claims description 5
- 235000013305 food Nutrition 0.000 claims description 5
- 230000002401 inhibitory effect Effects 0.000 claims description 5
- FXJAMUAVLABDHL-WVCDOIFUSA-N (3ar,5ar,9bs)-3a,8-dihydroxy-5a,9-dimethyl-3-methylidene-4,5,6,7,8,9b-hexahydrobenzo[g][1]benzofuran-2-one Chemical compound C1C[C@@]2(C)CCC(O)C(C)=C2[C@@H]2OC(=O)C(=C)[C@@]21O FXJAMUAVLABDHL-WVCDOIFUSA-N 0.000 claims description 4
- JELWJOFVJBOKMA-OAHLLOKOSA-N (5ar)-5a,9-dimethyl-2-oxo-4,5,6,7-tetrahydrobenzo[g][1]benzofuran-3-carbaldehyde Chemical compound C1CC2=C(C=O)C(=O)OC2=C2C(C)=CCC[C@@]21C JELWJOFVJBOKMA-OAHLLOKOSA-N 0.000 claims description 4
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 claims description 4
- 239000004375 Dextrin Substances 0.000 claims description 4
- 229920001353 Dextrin Polymers 0.000 claims description 4
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 claims description 4
- 235000019425 dextrin Nutrition 0.000 claims description 4
- 239000000499 gel Substances 0.000 claims description 4
- 229910052500 inorganic mineral Inorganic materials 0.000 claims description 4
- 150000002576 ketones Chemical class 0.000 claims description 4
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 claims description 4
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 claims description 4
- 239000011707 mineral Substances 0.000 claims description 4
- 235000010755 mineral Nutrition 0.000 claims description 4
- 229910052760 oxygen Inorganic materials 0.000 claims description 4
- 239000012188 paraffin wax Substances 0.000 claims description 4
- 239000000546 pharmaceutical excipient Substances 0.000 claims description 4
- 239000000843 powder Substances 0.000 claims description 4
- 239000003755 preservative agent Substances 0.000 claims description 4
- 229910052711 selenium Inorganic materials 0.000 claims description 4
- 229910052717 sulfur Inorganic materials 0.000 claims description 4
- 239000000725 suspension Substances 0.000 claims description 4
- 239000006188 syrup Substances 0.000 claims description 4
- 235000020357 syrup Nutrition 0.000 claims description 4
- UUOQGPOSYCFBFC-TZJOADAASA-N (3ar,5ar,9bs)-3a,8-dihydroxy-5a,9-dimethyl-3-(morpholin-4-ylmethyl)-4,5,6,7,8,9b-hexahydro-3h-benzo[g][1]benzofuran-2-one Chemical compound O([C@H]1C2=C(C(CC[C@]2(C)CC[C@]11O)O)C)C(=O)C1CN1CCOCC1 UUOQGPOSYCFBFC-TZJOADAASA-N 0.000 claims description 3
- JJTIUYSMVWORIT-WVCDOIFUSA-N (3ar,5ar,9bs)-3a-hydroxy-3,5a,9-trimethyl-4,5,6,7,8,9b-hexahydro-3h-benzo[g][1]benzofuran-2-one Chemical compound C1CC[C@]2(C)CC[C@@]3(O)C(C)C(=O)O[C@H]3C2=C1C JJTIUYSMVWORIT-WVCDOIFUSA-N 0.000 claims description 3
- RKPNEEXUCKXFQO-RWWRMHFQSA-N (3ar,5ar,9bs)-3a-hydroxy-5a,9-dimethyl-3-(piperidin-1-ylmethyl)-4,5,6,7,8,9b-hexahydro-3h-benzo[g][1]benzofuran-2-one Chemical compound O([C@H]1C2=C(CCC[C@]2(C)CC[C@]11O)C)C(=O)C1CN1CCCCC1 RKPNEEXUCKXFQO-RWWRMHFQSA-N 0.000 claims description 3
- IVACOVAJGWWAAS-UDCIOOCFSA-N (3as,5ar,9br)-3,5a,9-trimethyl-3,3a,4,5,6,7,8,9b-octahydrobenzo[g][1]benzofuran-2-one Chemical compound C([C@]1(C)CC2)CCC(C)=C1[C@H]1[C@@H]2C(C)C(=O)O1 IVACOVAJGWWAAS-UDCIOOCFSA-N 0.000 claims description 3
- XJIHHYMEBKDQFZ-SMJJCYASSA-N (3r,3ar,5ar,8r,9bs)-3a-hydroxy-3,5a,9-trimethyl-8-[(2r,3s,4r,5r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-4,5,6,7,8,9b-hexahydro-3h-benzo[g][1]benzofuran-2-one Chemical compound O([C@H]1C(C)=C2[C@@H]3OC(=O)[C@@H]([C@@]3(CC[C@@]2(C)CC1)O)C)[C@@H]1OC(CO)[C@H](O)[C@@H](O)[C@@H]1O XJIHHYMEBKDQFZ-SMJJCYASSA-N 0.000 claims description 3
- GUVRLHTUYIWOMY-DDUYRFODSA-N (3r,3ar,5ar,9bs)-3a-hydroxy-3-(methoxymethyl)-5a,9-dimethyl-4,5,6,7,8,9b-hexahydro-3h-benzo[g][1]benzofuran-2-one Chemical compound C1CC[C@]2(C)CC[C@@]3(O)[C@@H](COC)C(=O)O[C@H]3C2=C1C GUVRLHTUYIWOMY-DDUYRFODSA-N 0.000 claims description 3
- XZEACQOXUMQHJI-OAHLLOKOSA-N (5ar)-3,5a,9-trimethyl-4,5,6,7-tetrahydrobenzo[g][1]benzofuran-2-one Chemical compound C([C@]1(C)CC2)CC=C(C)C1=C1C2=C(C)C(=O)O1 XZEACQOXUMQHJI-OAHLLOKOSA-N 0.000 claims description 3
- BFOACSHANGQMEX-OAHLLOKOSA-N (5ar)-3-(bromomethyl)-5a,9-dimethyl-4,5,6,7-tetrahydrobenzo[g][1]benzofuran-2-one Chemical compound C1CC2=C(CBr)C(=O)OC2=C2C(C)=CCC[C@@]21C BFOACSHANGQMEX-OAHLLOKOSA-N 0.000 claims description 3
- NVXJDQXVTHYURW-UHFFFAOYSA-N 11alpha,13-dihydro-3alpha,7alpha-dihydroxyeudesm-4-en-6alpha,12-olide Natural products OC1CCC2(C)CCC3(O)C(C)C(=O)OC3C2=C1C NVXJDQXVTHYURW-UHFFFAOYSA-N 0.000 claims description 3
- PPPHDQNXPNUKNK-IUODEOHRSA-N 2-[(2r,4ar)-4a,8-dimethyl-3,4,5,6-tetrahydro-2h-naphthalen-2-yl]prop-2-enoic acid Chemical compound C1C[C@@H](C(=C)C(O)=O)C=C2C(C)=CCC[C@@]21C PPPHDQNXPNUKNK-IUODEOHRSA-N 0.000 claims description 3
- 208000012902 Nervous system disease Diseases 0.000 claims description 3
- 208000025966 Neurological disease Diseases 0.000 claims description 3
- XJIHHYMEBKDQFZ-LBYJFOIVSA-N Sphaeranthanolide Natural products O([C@H]1[C@@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1)[C@@H]1C(C)=C2[C@](C)(CC1)CC[C@@]1(O)[C@H](C)C(=O)O[C@@H]21 XJIHHYMEBKDQFZ-LBYJFOIVSA-N 0.000 claims description 3
- 230000032683 aging Effects 0.000 claims description 3
- 208000010877 cognitive disease Diseases 0.000 claims description 3
- 230000006378 damage Effects 0.000 claims description 3
- 230000007812 deficiency Effects 0.000 claims description 3
- 238000012377 drug delivery Methods 0.000 claims description 3
- 150000002118 epoxides Chemical group 0.000 claims description 3
- 150000000551 eudesmanolide derivatives Chemical class 0.000 claims description 3
- 230000007407 health benefit Effects 0.000 claims description 3
- 150000002466 imines Chemical class 0.000 claims description 3
- 230000036542 oxidative stress Effects 0.000 claims description 3
- 230000001737 promoting effect Effects 0.000 claims description 3
- 208000017520 skin disease Diseases 0.000 claims description 3
- 239000011782 vitamin Substances 0.000 claims description 3
- 229940088594 vitamin Drugs 0.000 claims description 3
- 235000013343 vitamin Nutrition 0.000 claims description 3
- 229930003231 vitamin Natural products 0.000 claims description 3
- LKKDASYGWYYFIK-JURCDPSOSA-N (+)-4-epi-cryptomeridiol Chemical compound C1CC[C@](C)(O)[C@H]2C[C@@H](C(C)(O)C)CC[C@@]21C LKKDASYGWYYFIK-JURCDPSOSA-N 0.000 claims description 2
- LKKDASYGWYYFIK-UHFFFAOYSA-N (-)-cryptomeridiol Natural products C1CCC(C)(O)C2CC(C(C)(O)C)CCC21C LKKDASYGWYYFIK-UHFFFAOYSA-N 0.000 claims description 2
- QMDOXPAVXVTWGC-UHFFFAOYSA-N (2alpha,6beta,7allpha)-2,7-Dihydroxy-4,11(13)-eudesumadien-12,6-olide Natural products C1CC2(C)CC(O)CC(C)=C2C2OC(=O)C(=C)C21O QMDOXPAVXVTWGC-UHFFFAOYSA-N 0.000 claims description 2
- RBRWLYYPSYRKKJ-LBQOFGEDSA-N (3ar,5ar,9bs)-3a-hydroxy-5a,9-dimethyl-3-(morpholin-4-ylmethyl)-4,5,6,7,8,9b-hexahydro-3h-benzo[g][1]benzofuran-2-one Chemical compound O([C@H]1C2=C(CCC[C@]2(C)CC[C@]11O)C)C(=O)C1CN1CCOCC1 RBRWLYYPSYRKKJ-LBQOFGEDSA-N 0.000 claims description 2
- GQXGIPOVHUXXQA-FIWHBWSRSA-N (5ar)-9-hydroxy-5a,9-dimethyl-3-(piperidin-1-ylmethyl)-5,6,7,8-tetrahydro-4h-benzo[g][1]benzofuran-2-one Chemical compound C([C@@]1(C)CCCC(C1=C1OC2=O)(O)C)CC1=C2CN1CCCCC1 GQXGIPOVHUXXQA-FIWHBWSRSA-N 0.000 claims description 2
- BJEPYKJPYRNKOW-REOHCLBHSA-N (S)-malic acid Chemical compound OC(=O)[C@@H](O)CC(O)=O BJEPYKJPYRNKOW-REOHCLBHSA-N 0.000 claims description 2
- OWEGMIWEEQEYGQ-UHFFFAOYSA-N 100676-05-9 Natural products OC1C(O)C(O)C(CO)OC1OCC1C(O)C(O)C(O)C(OC2C(OC(O)C(O)C2O)CO)O1 OWEGMIWEEQEYGQ-UHFFFAOYSA-N 0.000 claims description 2
- MAPRECFBTQVPIX-UHFFFAOYSA-N 2alpha-Acetoxy-5alpha-hydroxyisosphaerantholide Natural products CC(=O)OC1CC(=C)C2(O)C3OC(=O)C(=C)C3CCC2(C)C1 MAPRECFBTQVPIX-UHFFFAOYSA-N 0.000 claims description 2
- DOHRVHAOURGWKT-UHFFFAOYSA-N 2alpha-Acetoxy-7alpha-hydroxysphaerantholide Natural products C1CC2(C)CC(OC(=O)C)CC(C)=C2C2OC(=O)C(=C)C21O DOHRVHAOURGWKT-UHFFFAOYSA-N 0.000 claims description 2
- DNUVCKQEOUHKDL-UHFFFAOYSA-N 2alpha-Acetoxysphaerantholide Natural products C1CC2(C)CC(OC(=O)C)CC(C)=C2C2OC(=O)C(=C)C21 DNUVCKQEOUHKDL-UHFFFAOYSA-N 0.000 claims description 2
- OJYAVFSVHFLUKN-UHFFFAOYSA-N 2alpha-hydroxycostic acid Natural products C1CC(C(=C)C(O)=O)CC2C(=C)CC(O)CC21C OJYAVFSVHFLUKN-UHFFFAOYSA-N 0.000 claims description 2
- 125000002373 5 membered heterocyclic group Chemical group 0.000 claims description 2
- 125000004070 6 membered heterocyclic group Chemical group 0.000 claims description 2
- 125000003341 7 membered heterocyclic group Chemical group 0.000 claims description 2
- 229920001817 Agar Chemical group 0.000 claims description 2
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 claims description 2
- PYDYAPFBFDTVMM-UHFFFAOYSA-N Cryptomeridiol Natural products C1CCC(O)C2CC(C(C)(O)C)CCC21C PYDYAPFBFDTVMM-UHFFFAOYSA-N 0.000 claims description 2
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 claims description 2
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 claims description 2
- 239000011627 DL-alpha-tocopherol Substances 0.000 claims description 2
- 235000001815 DL-alpha-tocopherol Nutrition 0.000 claims description 2
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 claims description 2
- 229930091371 Fructose Natural products 0.000 claims description 2
- 239000005715 Fructose Substances 0.000 claims description 2
- RFSUNEUAIZKAJO-ARQDHWQXSA-N Fructose Chemical compound OC[C@H]1O[C@](O)(CO)[C@@H](O)[C@@H]1O RFSUNEUAIZKAJO-ARQDHWQXSA-N 0.000 claims description 2
- 108010010803 Gelatin Chemical group 0.000 claims description 2
- 239000002211 L-ascorbic acid Substances 0.000 claims description 2
- 235000000069 L-ascorbic acid Nutrition 0.000 claims description 2
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 claims description 2
- 240000007472 Leucaena leucocephala Species 0.000 claims description 2
- 235000010643 Leucaena leucocephala Nutrition 0.000 claims description 2
- 235000019510 Long pepper Nutrition 0.000 claims description 2
- GUBGYTABKSRVRQ-PICCSMPSSA-N Maltose Natural products O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@@H](CO)OC(O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-PICCSMPSSA-N 0.000 claims description 2
- 229920000168 Microcrystalline cellulose Polymers 0.000 claims description 2
- 240000003455 Piper longum Species 0.000 claims description 2
- 244000203593 Piper nigrum Species 0.000 claims description 2
- 235000008184 Piper nigrum Nutrition 0.000 claims description 2
- 239000002202 Polyethylene glycol Substances 0.000 claims description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 claims description 2
- 244000228451 Stevia rebaudiana Species 0.000 claims description 2
- 235000006092 Stevia rebaudiana Nutrition 0.000 claims description 2
- UEDUENGHJMELGK-HYDKPPNVSA-N Stevioside Chemical compound O([C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@H]1O[C@]12C(=C)C[C@@]3(C1)CC[C@@H]1[C@@](C)(CCC[C@]1([C@@H]3CC2)C)C(=O)O[C@H]1[C@@H]([C@@H](O)[C@H](O)[C@@H](CO)O1)O)[C@@H]1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1O UEDUENGHJMELGK-HYDKPPNVSA-N 0.000 claims description 2
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 claims description 2
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 claims description 2
- 229930003270 Vitamin B Chemical group 0.000 claims description 2
- 240000008042 Zea mays Species 0.000 claims description 2
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 claims description 2
- 235000002017 Zea mays subsp mays Nutrition 0.000 claims description 2
- DFPAKSUCGFBDDF-ZQBYOMGUSA-N [14c]-nicotinamide Chemical compound N[14C](=O)C1=CC=CN=C1 DFPAKSUCGFBDDF-ZQBYOMGUSA-N 0.000 claims description 2
- 239000008272 agar Chemical group 0.000 claims description 2
- 235000010419 agar Nutrition 0.000 claims description 2
- 239000003732 agents acting on the eye Substances 0.000 claims description 2
- BJEPYKJPYRNKOW-UHFFFAOYSA-N alpha-hydroxysuccinic acid Natural products OC(=O)C(O)CC(O)=O BJEPYKJPYRNKOW-UHFFFAOYSA-N 0.000 claims description 2
- 229940024606 amino acid Drugs 0.000 claims description 2
- 239000010775 animal oil Substances 0.000 claims description 2
- 230000000879 anti-atherosclerotic effect Effects 0.000 claims description 2
- 230000003178 anti-diabetic effect Effects 0.000 claims description 2
- 230000001315 anti-hyperlipaemic effect Effects 0.000 claims description 2
- 230000003276 anti-hypertensive effect Effects 0.000 claims description 2
- 230000002924 anti-infective effect Effects 0.000 claims description 2
- 230000003110 anti-inflammatory effect Effects 0.000 claims description 2
- 230000003579 anti-obesity Effects 0.000 claims description 2
- 230000000702 anti-platelet effect Effects 0.000 claims description 2
- 239000003146 anticoagulant agent Substances 0.000 claims description 2
- 230000003078 antioxidant effect Effects 0.000 claims description 2
- 125000003710 aryl alkyl group Chemical group 0.000 claims description 2
- 229960005070 ascorbic acid Drugs 0.000 claims description 2
- 125000000852 azido group Chemical group *N=[N+]=[N-] 0.000 claims description 2
- GUBGYTABKSRVRQ-QUYVBRFLSA-N beta-maltose Chemical compound OC[C@H]1O[C@H](O[C@H]2[C@H](O)[C@@H](O)[C@H](O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@@H]1O GUBGYTABKSRVRQ-QUYVBRFLSA-N 0.000 claims description 2
- 239000011230 binding agent Substances 0.000 claims description 2
- 239000000872 buffer Substances 0.000 claims description 2
- KDYFGRWQOYBRFD-NUQCWPJISA-N butanedioic acid Chemical compound O[14C](=O)CC[14C](O)=O KDYFGRWQOYBRFD-NUQCWPJISA-N 0.000 claims description 2
- FAPWYRCQGJNNSJ-UBKPKTQASA-L calcium D-pantothenic acid Chemical compound [Ca+2].OCC(C)(C)[C@@H](O)C(=O)NCCC([O-])=O.OCC(C)(C)[C@@H](O)C(=O)NCCC([O-])=O FAPWYRCQGJNNSJ-UBKPKTQASA-L 0.000 claims description 2
- 229960002079 calcium pantothenate Drugs 0.000 claims description 2
- 159000000007 calcium salts Chemical class 0.000 claims description 2
- CJZGTCYPCWQAJB-UHFFFAOYSA-L calcium stearate Chemical compound [Ca+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O CJZGTCYPCWQAJB-UHFFFAOYSA-L 0.000 claims description 2
- 239000008116 calcium stearate Substances 0.000 claims description 2
- 235000013539 calcium stearate Nutrition 0.000 claims description 2
- 239000002775 capsule Substances 0.000 claims description 2
- SKOLWUPSYHWYAM-UHFFFAOYSA-N carbonodithioic O,S-acid Chemical compound SC(S)=O SKOLWUPSYHWYAM-UHFFFAOYSA-N 0.000 claims description 2
- 239000000679 carrageenan Substances 0.000 claims description 2
- 235000010418 carrageenan Nutrition 0.000 claims description 2
- 229920001525 carrageenan Polymers 0.000 claims description 2
- 229940113118 carrageenan Drugs 0.000 claims description 2
- 239000005018 casein Chemical group 0.000 claims description 2
- BECPQYXYKAMYBN-UHFFFAOYSA-N casein, tech. Chemical group NCCCCC(C(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(CC(C)C)N=C(O)C(CCC(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(C(C)O)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(COP(O)(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(N)CC1=CC=CC=C1 BECPQYXYKAMYBN-UHFFFAOYSA-N 0.000 claims description 2
- 235000021240 caseins Nutrition 0.000 claims description 2
- 235000015165 citric acid Nutrition 0.000 claims description 2
- 235000005822 corn Nutrition 0.000 claims description 2
- 239000006071 cream Substances 0.000 claims description 2
- 125000004122 cyclic group Chemical group 0.000 claims description 2
- GVJHHUAWPYXKBD-UHFFFAOYSA-N d-alpha-tocopherol Natural products OC1=C(C)C(C)=C2OC(CCCC(C)CCCC(C)CCCC(C)C)(C)CCC2=C1C GVJHHUAWPYXKBD-UHFFFAOYSA-N 0.000 claims description 2
- 239000012153 distilled water Substances 0.000 claims description 2
- 235000013399 edible fruits Nutrition 0.000 claims description 2
- 239000000839 emulsion Substances 0.000 claims description 2
- 230000002708 enhancing effect Effects 0.000 claims description 2
- 239000000796 flavoring agent Substances 0.000 claims description 2
- 235000019634 flavors Nutrition 0.000 claims description 2
- 239000008273 gelatin Chemical group 0.000 claims description 2
- 229920000159 gelatin Chemical group 0.000 claims description 2
- 235000019322 gelatine Nutrition 0.000 claims description 2
- 235000011852 gelatine desserts Nutrition 0.000 claims description 2
- 239000008187 granular material Substances 0.000 claims description 2
- 239000007902 hard capsule Substances 0.000 claims description 2
- 125000005842 heteroatom Chemical group 0.000 claims description 2
- 238000002347 injection Methods 0.000 claims description 2
- 239000007924 injection Substances 0.000 claims description 2
- 238000001990 intravenous administration Methods 0.000 claims description 2
- 239000004310 lactic acid Substances 0.000 claims description 2
- 235000014655 lactic acid Nutrition 0.000 claims description 2
- 239000008101 lactose Substances 0.000 claims description 2
- 239000000314 lubricant Substances 0.000 claims description 2
- 235000019359 magnesium stearate Nutrition 0.000 claims description 2
- 235000011090 malic acid Nutrition 0.000 claims description 2
- 239000001630 malic acid Substances 0.000 claims description 2
- 239000008108 microcrystalline cellulose Substances 0.000 claims description 2
- 235000019813 microcrystalline cellulose Nutrition 0.000 claims description 2
- 229940016286 microcrystalline cellulose Drugs 0.000 claims description 2
- 229910052757 nitrogen Inorganic materials 0.000 claims description 2
- 125000004433 nitrogen atom Chemical group N* 0.000 claims description 2
- 229940125702 ophthalmic agent Drugs 0.000 claims description 2
- 239000001814 pectin Chemical group 0.000 claims description 2
- 235000010987 pectin Nutrition 0.000 claims description 2
- 229920001277 pectin Chemical group 0.000 claims description 2
- 239000008188 pellet Substances 0.000 claims description 2
- 239000000049 pigment Substances 0.000 claims description 2
- 239000006187 pill Substances 0.000 claims description 2
- 229920001223 polyethylene glycol Polymers 0.000 claims description 2
- 235000013772 propylene glycol Nutrition 0.000 claims description 2
- 239000011780 sodium chloride Substances 0.000 claims description 2
- 239000007901 soft capsule Substances 0.000 claims description 2
- 239000000600 sorbitol Substances 0.000 claims description 2
- 235000010356 sorbitol Nutrition 0.000 claims description 2
- 208000010110 spontaneous platelet aggregation Diseases 0.000 claims description 2
- 239000003381 stabilizer Substances 0.000 claims description 2
- OHHNJQXIOPOJSC-UHFFFAOYSA-N stevioside Natural products CC1(CCCC2(C)C3(C)CCC4(CC3(CCC12C)CC4=C)OC5OC(CO)C(O)C(O)C5OC6OC(CO)C(O)C(O)C6O)C(=O)OC7OC(CO)C(O)C(O)C7O OHHNJQXIOPOJSC-UHFFFAOYSA-N 0.000 claims description 2
- 229940013618 stevioside Drugs 0.000 claims description 2
- 235000019202 steviosides Nutrition 0.000 claims description 2
- 239000000829 suppository Substances 0.000 claims description 2
- 239000004094 surface-active agent Substances 0.000 claims description 2
- 239000003826 tablet Substances 0.000 claims description 2
- 235000002906 tartaric acid Nutrition 0.000 claims description 2
- 239000011975 tartaric acid Substances 0.000 claims description 2
- AOBORMOPSGHCAX-DGHZZKTQSA-N tocofersolan Chemical compound OCCOC(=O)CCC(=O)OC1=C(C)C(C)=C2O[C@](CCC[C@H](C)CCC[C@H](C)CCCC(C)C)(C)CCC2=C1C AOBORMOPSGHCAX-DGHZZKTQSA-N 0.000 claims description 2
- 229960000984 tocofersolan Drugs 0.000 claims description 2
- 230000000699 topical effect Effects 0.000 claims description 2
- 235000015112 vegetable and seed oil Nutrition 0.000 claims description 2
- 239000008158 vegetable oil Substances 0.000 claims description 2
- 235000019156 vitamin B Nutrition 0.000 claims description 2
- 239000011720 vitamin B Chemical group 0.000 claims description 2
- 239000001993 wax Substances 0.000 claims description 2
- UHVMMEOXYDMDKI-JKYCWFKZSA-L zinc;1-(5-cyanopyridin-2-yl)-3-[(1s,2s)-2-(6-fluoro-2-hydroxy-3-propanoylphenyl)cyclopropyl]urea;diacetate Chemical group [Zn+2].CC([O-])=O.CC([O-])=O.CCC(=O)C1=CC=C(F)C([C@H]2[C@H](C2)NC(=O)NC=2N=CC(=CC=2)C#N)=C1O UHVMMEOXYDMDKI-JKYCWFKZSA-L 0.000 claims description 2
- 102000049320 CD36 Human genes 0.000 claims 4
- 229910002012 Aerosil® Inorganic materials 0.000 claims 1
- 229940078456 calcium stearate Drugs 0.000 claims 1
- 229940057948 magnesium stearate Drugs 0.000 claims 1
- 229960002920 sorbitol Drugs 0.000 claims 1
- 206010033307 Overweight Diseases 0.000 abstract description 2
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 101
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 72
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 72
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 62
- HEDRZPFGACZZDS-MICDWDOJSA-N Trichloro(2H)methane Chemical compound [2H]C(Cl)(Cl)Cl HEDRZPFGACZZDS-MICDWDOJSA-N 0.000 description 54
- 210000004027 cell Anatomy 0.000 description 44
- 235000019439 ethyl acetate Nutrition 0.000 description 38
- 239000000306 component Substances 0.000 description 32
- 102000053028 CD36 Antigens Human genes 0.000 description 31
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 27
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 26
- NOESYZHRGYRDHS-UHFFFAOYSA-N insulin Chemical compound N1C(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(NC(=O)CN)C(C)CC)CSSCC(C(NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CCC(N)=O)C(=O)NC(CC(C)C)C(=O)NC(CCC(O)=O)C(=O)NC(CC(N)=O)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CSSCC(NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2C=CC(O)=CC=2)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2NC=NC=2)NC(=O)C(CO)NC(=O)CNC2=O)C(=O)NCC(=O)NC(CCC(O)=O)C(=O)NC(CCCNC(N)=N)C(=O)NCC(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC(O)=CC=3)C(=O)NC(C(C)O)C(=O)N3C(CCC3)C(=O)NC(CCCCN)C(=O)NC(C)C(O)=O)C(=O)NC(CC(N)=O)C(O)=O)=O)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C1CSSCC2NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(N)CC=1C=CC=CC=1)C(C)C)CC1=CN=CN1 NOESYZHRGYRDHS-UHFFFAOYSA-N 0.000 description 26
- 238000005160 1H NMR spectroscopy Methods 0.000 description 23
- 230000037396 body weight Effects 0.000 description 21
- 230000005764 inhibitory process Effects 0.000 description 20
- 238000004895 liquid chromatography mass spectrometry Methods 0.000 description 19
- 239000000377 silicon dioxide Substances 0.000 description 19
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 18
- 150000002500 ions Chemical class 0.000 description 18
- 238000003556 assay Methods 0.000 description 17
- HVYWMOMLDIMFJA-DPAQBDIFSA-N cholesterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 HVYWMOMLDIMFJA-DPAQBDIFSA-N 0.000 description 17
- 210000000229 preadipocyte Anatomy 0.000 description 17
- 208000001072 type 2 diabetes mellitus Diseases 0.000 description 17
- 230000004069 differentiation Effects 0.000 description 16
- 150000002632 lipids Chemical class 0.000 description 16
- 239000011541 reaction mixture Substances 0.000 description 15
- 238000003119 immunoblot Methods 0.000 description 14
- 102000004877 Insulin Human genes 0.000 description 13
- 108090001061 Insulin Proteins 0.000 description 13
- 238000004587 chromatography analysis Methods 0.000 description 13
- 229940125396 insulin Drugs 0.000 description 13
- 210000002966 serum Anatomy 0.000 description 13
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 12
- 239000002024 ethyl acetate extract Substances 0.000 description 12
- 230000006372 lipid accumulation Effects 0.000 description 12
- 201000001320 Atherosclerosis Diseases 0.000 description 11
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 11
- 239000012267 brine Substances 0.000 description 11
- 238000006243 chemical reaction Methods 0.000 description 11
- 235000019197 fats Nutrition 0.000 description 11
- 239000012044 organic layer Substances 0.000 description 11
- 239000011734 sodium Substances 0.000 description 11
- 229910052938 sodium sulfate Inorganic materials 0.000 description 11
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 11
- 239000007832 Na2SO4 Substances 0.000 description 10
- 239000002609 medium Substances 0.000 description 10
- 230000008569 process Effects 0.000 description 10
- 235000019786 weight gain Nutrition 0.000 description 9
- 238000001644 13C nuclear magnetic resonance spectroscopy Methods 0.000 description 8
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 8
- 206010022489 Insulin Resistance Diseases 0.000 description 8
- YNAVUWVOSKDBBP-UHFFFAOYSA-N Morpholine Chemical compound C1COCCN1 YNAVUWVOSKDBBP-UHFFFAOYSA-N 0.000 description 8
- NQRYJNQNLNOLGT-UHFFFAOYSA-N Piperidine Chemical compound C1CCNCC1 NQRYJNQNLNOLGT-UHFFFAOYSA-N 0.000 description 8
- 241000700159 Rattus Species 0.000 description 8
- 210000000577 adipose tissue Anatomy 0.000 description 8
- 238000010586 diagram Methods 0.000 description 8
- 230000006872 improvement Effects 0.000 description 8
- 230000001965 increasing effect Effects 0.000 description 8
- 239000003550 marker Substances 0.000 description 8
- 230000009467 reduction Effects 0.000 description 8
- 150000003626 triacylglycerols Chemical class 0.000 description 8
- 102000007469 Actins Human genes 0.000 description 7
- 108010085238 Actins Proteins 0.000 description 7
- 102000012132 Peroxisome proliferator-activated receptor gamma Human genes 0.000 description 7
- 230000015572 biosynthetic process Effects 0.000 description 7
- 239000013592 cell lysate Substances 0.000 description 7
- 239000012091 fetal bovine serum Substances 0.000 description 7
- 230000002503 metabolic effect Effects 0.000 description 7
- 239000000741 silica gel Substances 0.000 description 7
- 229910002027 silica gel Inorganic materials 0.000 description 7
- APIXJSLKIYYUKG-UHFFFAOYSA-N 3 Isobutyl 1 methylxanthine Chemical compound O=C1N(C)C(=O)N(CC(C)C)C2=C1N=CN2 APIXJSLKIYYUKG-UHFFFAOYSA-N 0.000 description 6
- 102000015779 HDL Lipoproteins Human genes 0.000 description 6
- 108010010234 HDL Lipoproteins Proteins 0.000 description 6
- 102000007330 LDL Lipoproteins Human genes 0.000 description 6
- 108010007622 LDL Lipoproteins Proteins 0.000 description 6
- 206010028980 Neoplasm Diseases 0.000 description 6
- IOVCWXUNBOPUCH-UHFFFAOYSA-M Nitrite anion Chemical compound [O-]N=O IOVCWXUNBOPUCH-UHFFFAOYSA-M 0.000 description 6
- 238000004113 cell culture Methods 0.000 description 6
- 239000003153 chemical reaction reagent Substances 0.000 description 6
- 235000012000 cholesterol Nutrition 0.000 description 6
- 229940125904 compound 1 Drugs 0.000 description 6
- 239000012228 culture supernatant Substances 0.000 description 6
- 235000005911 diet Nutrition 0.000 description 6
- 230000037213 diet Effects 0.000 description 6
- 230000006698 induction Effects 0.000 description 6
- 230000009469 supplementation Effects 0.000 description 6
- 238000005481 NMR spectroscopy Methods 0.000 description 5
- 230000000390 anti-adipogenic effect Effects 0.000 description 5
- 238000004440 column chromatography Methods 0.000 description 5
- 231100000673 dose–response relationship Toxicity 0.000 description 5
- 230000006870 function Effects 0.000 description 5
- PJPHIAMRKUNVSU-UHFFFAOYSA-N gamma-cyclocostunolide Natural products C1CC2(C)CCCC(C)=C2C2OC(=O)C(=C)C21 PJPHIAMRKUNVSU-UHFFFAOYSA-N 0.000 description 5
- 239000012528 membrane Substances 0.000 description 5
- 230000003389 potentiating effect Effects 0.000 description 5
- 239000002904 solvent Substances 0.000 description 5
- 238000003756 stirring Methods 0.000 description 5
- NAAJVHHFAXWBOK-ZDUSSCGKSA-N (+)-(S)-ar-turmerone Chemical compound CC(C)=CC(=O)C[C@H](C)C1=CC=C(C)C=C1 NAAJVHHFAXWBOK-ZDUSSCGKSA-N 0.000 description 4
- JJQNORUJCLAZCD-UHFFFAOYSA-N 7-HF Natural products C1CC2(C)CCC(=O)C(C)=C2C2OC(=O)C(=C)C21O JJQNORUJCLAZCD-UHFFFAOYSA-N 0.000 description 4
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 4
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 4
- 101100226596 Gallus gallus FABP gene Proteins 0.000 description 4
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 4
- 108060008682 Tumor Necrosis Factor Proteins 0.000 description 4
- 102000000852 Tumor Necrosis Factor-alpha Human genes 0.000 description 4
- 108010062497 VLDL Lipoproteins Proteins 0.000 description 4
- 230000000975 bioactive effect Effects 0.000 description 4
- 238000000423 cell based assay Methods 0.000 description 4
- 230000008021 deposition Effects 0.000 description 4
- 238000011161 development Methods 0.000 description 4
- 230000018109 developmental process Effects 0.000 description 4
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 4
- 239000003814 drug Substances 0.000 description 4
- 201000010063 epididymitis Diseases 0.000 description 4
- 235000021588 free fatty acids Nutrition 0.000 description 4
- 238000010874 in vitro model Methods 0.000 description 4
- 230000000977 initiatory effect Effects 0.000 description 4
- 230000004060 metabolic process Effects 0.000 description 4
- 239000002953 phosphate buffered saline Substances 0.000 description 4
- 238000011160 research Methods 0.000 description 4
- 229930004725 sesquiterpene Natural products 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- 238000003786 synthesis reaction Methods 0.000 description 4
- 210000001519 tissue Anatomy 0.000 description 4
- WCQMFNZZYQFFPS-TUVASFSCSA-N (3ar,5ar,9ar,9br)-9a-hydroperoxy-3a-hydroxy-5a-methyl-3,9-dimethylidene-4,5,6,7,8,9b-hexahydrobenzo[g][1]benzofuran-2-one Chemical compound C([C@@]1(CC2)C)CCC(=C)[C@]1(OO)[C@H]1[C@]2(O)C(=C)C(=O)O1 WCQMFNZZYQFFPS-TUVASFSCSA-N 0.000 description 3
- XMPDAVDYIOMTLX-NWANDNLSSA-N (3ar,5ar,9bs)-3a-hydroxy-5a,9-dimethyl-3-methylidene-4,5,6,7,8,9b-hexahydrobenzo[g][1]benzofuran-2-one Chemical compound C1C[C@@]2(C)CCCC(C)=C2[C@@H]2OC(=O)C(=C)[C@@]21O XMPDAVDYIOMTLX-NWANDNLSSA-N 0.000 description 3
- 238000009010 Bradford assay Methods 0.000 description 3
- 108010078791 Carrier Proteins Proteins 0.000 description 3
- 102000004127 Cytokines Human genes 0.000 description 3
- 108090000695 Cytokines Proteins 0.000 description 3
- 208000032928 Dyslipidaemia Diseases 0.000 description 3
- 102000004190 Enzymes Human genes 0.000 description 3
- 108090000790 Enzymes Proteins 0.000 description 3
- PJPHIAMRKUNVSU-NJZAAPMLSA-N Frullanolide Chemical compound C1C[C@@]2(C)CCCC(C)=C2[C@@H]2OC(=O)C(=C)[C@@H]21 PJPHIAMRKUNVSU-NJZAAPMLSA-N 0.000 description 3
- 108010002352 Interleukin-1 Proteins 0.000 description 3
- 102000000589 Interleukin-1 Human genes 0.000 description 3
- 208000017170 Lipid metabolism disease Diseases 0.000 description 3
- NPGIHFRTRXVWOY-UHFFFAOYSA-N Oil red O Chemical compound Cc1ccc(C)c(c1)N=Nc1cc(C)c(cc1C)N=Nc1c(O)ccc2ccccc12 NPGIHFRTRXVWOY-UHFFFAOYSA-N 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 241001622452 Sphaeranthus Species 0.000 description 3
- 238000000692 Student's t-test Methods 0.000 description 3
- 210000000227 basophil cell of anterior lobe of hypophysis Anatomy 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 3
- 201000011510 cancer Diseases 0.000 description 3
- 230000015556 catabolic process Effects 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- UREBDLICKHMUKA-CXSFZGCWSA-N dexamethasone Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@]2(F)[C@@H]1[C@@H]1C[C@@H](C)[C@@](C(=O)CO)(O)[C@@]1(C)C[C@@H]2O UREBDLICKHMUKA-CXSFZGCWSA-N 0.000 description 3
- 229960003957 dexamethasone Drugs 0.000 description 3
- 235000014113 dietary fatty acids Nutrition 0.000 description 3
- 235000015872 dietary supplement Nutrition 0.000 description 3
- 230000003828 downregulation Effects 0.000 description 3
- 229940079593 drug Drugs 0.000 description 3
- 210000002889 endothelial cell Anatomy 0.000 description 3
- 239000000194 fatty acid Substances 0.000 description 3
- 229930195729 fatty acid Natural products 0.000 description 3
- 150000004665 fatty acids Chemical class 0.000 description 3
- 239000001963 growth medium Substances 0.000 description 3
- 208000019622 heart disease Diseases 0.000 description 3
- 230000013632 homeostatic process Effects 0.000 description 3
- 238000001727 in vivo Methods 0.000 description 3
- 238000011534 incubation Methods 0.000 description 3
- 150000004668 long chain fatty acids Chemical class 0.000 description 3
- 108020004999 messenger RNA Proteins 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 230000035755 proliferation Effects 0.000 description 3
- 238000000746 purification Methods 0.000 description 3
- 230000002829 reductive effect Effects 0.000 description 3
- 150000004354 sesquiterpene derivatives Chemical class 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 238000012453 sprague-dawley rat model Methods 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- UFTFJSFQGQCHQW-UHFFFAOYSA-N triformin Chemical compound O=COCC(OC=O)COC=O UFTFJSFQGQCHQW-UHFFFAOYSA-N 0.000 description 3
- CGEFTVMNBWUBPA-JRBIZFICSA-N (3ar,5ar,9bs)-3-[(6-aminopurin-9-yl)methyl]-3a-hydroxy-5a,9-dimethyl-4,5,6,7,8,9b-hexahydro-3h-benzo[g][1]benzofuran-2-one Chemical compound C1=NC2=C(N)N=CN=C2N1CC1C(=O)O[C@H]2C3=C(C)CCC[C@]3(C)CC[C@]21O CGEFTVMNBWUBPA-JRBIZFICSA-N 0.000 description 2
- RWBPURDTBUVTIC-GKBHQIAISA-N (3ar,5ar,9bs)-3a-hydroxy-5a,9-dimethyl-3-(1,2,4-triazol-4-ylmethyl)-4,5,6,7,8,9b-hexahydro-3h-benzo[g][1]benzofuran-2-one Chemical compound O([C@H]1C2=C(CCC[C@]2(C)CC[C@]11O)C)C(=O)C1CN1C=NN=C1 RWBPURDTBUVTIC-GKBHQIAISA-N 0.000 description 2
- PMBVOJMEXOZLDU-LBQOFGEDSA-N (3ar,5ar,9bs)-3a-hydroxy-5a,9-dimethyl-3-(piperazin-1-ylmethyl)-4,5,6,7,8,9b-hexahydro-3h-benzo[g][1]benzofuran-2-one Chemical compound O([C@H]1C2=C(CCC[C@]2(C)CC[C@]11O)C)C(=O)C1CN1CCNCC1 PMBVOJMEXOZLDU-LBQOFGEDSA-N 0.000 description 2
- JJQNORUJCLAZCD-NWANDNLSSA-N (3ar,5as,9bs)-3a-hydroxy-5a,9-dimethyl-3-methylidene-5,6,7,9b-tetrahydro-4h-benzo[g][1]benzofuran-2,8-dione Chemical compound C1C[C@@]2(C)CCC(=O)C(C)=C2[C@@H]2OC(=O)C(=C)[C@@]21O JJQNORUJCLAZCD-NWANDNLSSA-N 0.000 description 2
- XZKIHKMTEMTJQX-UHFFFAOYSA-L 4-nitrophenyl phosphate(2-) Chemical compound [O-][N+](=O)C1=CC=C(OP([O-])([O-])=O)C=C1 XZKIHKMTEMTJQX-UHFFFAOYSA-L 0.000 description 2
- NSPMIYGKQJPBQR-UHFFFAOYSA-N 4H-1,2,4-triazole Chemical compound C=1N=CNN=1 NSPMIYGKQJPBQR-UHFFFAOYSA-N 0.000 description 2
- 102000008130 Cyclic AMP-Dependent Protein Kinases Human genes 0.000 description 2
- 108010049894 Cyclic AMP-Dependent Protein Kinases Proteins 0.000 description 2
- QOSSAOTZNIDXMA-UHFFFAOYSA-N Dicylcohexylcarbodiimide Chemical compound C1CCCCC1N=C=NC1CCCCC1 QOSSAOTZNIDXMA-UHFFFAOYSA-N 0.000 description 2
- 238000008157 ELISA kit Methods 0.000 description 2
- XKMLYUALXHKNFT-UUOKFMHZSA-N Guanosine-5'-triphosphate Chemical compound C1=2NC(N)=NC(=O)C=2N=CN1[C@@H]1O[C@H](COP(O)(=O)OP(O)(=O)OP(O)(O)=O)[C@@H](O)[C@H]1O XKMLYUALXHKNFT-UUOKFMHZSA-N 0.000 description 2
- 239000012981 Hank's balanced salt solution Substances 0.000 description 2
- 241000282412 Homo Species 0.000 description 2
- 239000003810 Jones reagent Substances 0.000 description 2
- 108010028554 LDL Cholesterol Proteins 0.000 description 2
- 102000005431 Molecular Chaperones Human genes 0.000 description 2
- 108010006519 Molecular Chaperones Proteins 0.000 description 2
- 239000000020 Nitrocellulose Substances 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 2
- 102000000019 Sterol Esterase Human genes 0.000 description 2
- 108010055297 Sterol Esterase Proteins 0.000 description 2
- 208000006011 Stroke Diseases 0.000 description 2
- OBUDKKBVZVHTBI-NTMBVEOVSA-N [(3ar,5ar,9bs)-3a-hydroxy-3,5a,9-trimethyl-2-oxo-4,5,6,7,8,9b-hexahydro-3h-benzo[g][1]benzofuran-8-yl] (e)-3-(2,5-dimethoxyphenyl)prop-2-enoate Chemical compound COC1=CC=C(OC)C(\C=C\C(=O)OC2C(=C3[C@@H]4OC(=O)C(C)[C@]4(O)CC[C@@]3(C)CC2)C)=C1 OBUDKKBVZVHTBI-NTMBVEOVSA-N 0.000 description 2
- 0 [1*]C1([2*])CCC2(C)CCC3([7*])C([5*])(CC([10*])([11*])C3([8*])C[9*])C2([5*])C1([3*])C[4*] Chemical compound [1*]C1([2*])CCC2(C)CCC3([7*])C([5*])(CC([10*])([11*])C3([8*])C[9*])C2([5*])C1([3*])C[4*] 0.000 description 2
- 230000003187 abdominal effect Effects 0.000 description 2
- 238000002835 absorbance Methods 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 2
- 230000001668 ameliorated effect Effects 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 2
- 229910000019 calcium carbonate Inorganic materials 0.000 description 2
- 230000001413 cellular effect Effects 0.000 description 2
- 208000020832 chronic kidney disease Diseases 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 238000013270 controlled release Methods 0.000 description 2
- ZOOGRGPOEVQQDX-KHLHZJAASA-N cyclic guanosine monophosphate Chemical compound C([C@H]1O2)O[P@](O)(=O)O[C@@H]1[C@H](O)[C@H]2N1C(N=C(NC2=O)N)=C2N=C1 ZOOGRGPOEVQQDX-KHLHZJAASA-N 0.000 description 2
- 230000001086 cytosolic effect Effects 0.000 description 2
- 208000035475 disorder Diseases 0.000 description 2
- 238000010828 elution Methods 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 239000000706 filtrate Substances 0.000 description 2
- 210000000497 foam cell Anatomy 0.000 description 2
- 235000012041 food component Nutrition 0.000 description 2
- 239000005417 food ingredient Substances 0.000 description 2
- 238000009472 formulation Methods 0.000 description 2
- 230000014101 glucose homeostasis Effects 0.000 description 2
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 description 2
- 244000144993 groups of animals Species 0.000 description 2
- 230000036541 health Effects 0.000 description 2
- 238000004128 high performance liquid chromatography Methods 0.000 description 2
- 229940088597 hormone Drugs 0.000 description 2
- 239000005556 hormone Substances 0.000 description 2
- 230000007062 hydrolysis Effects 0.000 description 2
- 238000006460 hydrolysis reaction Methods 0.000 description 2
- 239000005457 ice water Substances 0.000 description 2
- 238000000338 in vitro Methods 0.000 description 2
- 230000002757 inflammatory effect Effects 0.000 description 2
- 210000001596 intra-abdominal fat Anatomy 0.000 description 2
- 230000003834 intracellular effect Effects 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- 230000037356 lipid metabolism Effects 0.000 description 2
- 230000002366 lipolytic effect Effects 0.000 description 2
- 239000012139 lysis buffer Substances 0.000 description 2
- 230000001404 mediated effect Effects 0.000 description 2
- 239000000401 methanolic extract Substances 0.000 description 2
- PSHKMPUSSFXUIA-UHFFFAOYSA-N n,n-dimethylpyridin-2-amine Chemical compound CN(C)C1=CC=CC=N1 PSHKMPUSSFXUIA-UHFFFAOYSA-N 0.000 description 2
- 229930014626 natural product Natural products 0.000 description 2
- 229920001220 nitrocellulos Polymers 0.000 description 2
- 150000005830 nonesterified fatty acids Chemical class 0.000 description 2
- 201000008482 osteoarthritis Diseases 0.000 description 2
- 230000002018 overexpression Effects 0.000 description 2
- 230000008506 pathogenesis Effects 0.000 description 2
- 239000000419 plant extract Substances 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 238000011321 prophylaxis Methods 0.000 description 2
- 108700002051 rat Adipoq Proteins 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 2
- LPXPTNMVRIOKMN-UHFFFAOYSA-M sodium nitrite Chemical compound [Na+].[O-]N=O LPXPTNMVRIOKMN-UHFFFAOYSA-M 0.000 description 2
- UCSJYZPVAKXKNQ-HZYVHMACSA-N streptomycin Chemical compound CN[C@H]1[C@H](O)[C@@H](O)[C@H](CO)O[C@H]1O[C@@H]1[C@](C=O)(O)[C@H](C)O[C@H]1O[C@@H]1[C@@H](NC(N)=N)[C@H](O)[C@@H](NC(N)=N)[C@H](O)[C@H]1O UCSJYZPVAKXKNQ-HZYVHMACSA-N 0.000 description 2
- 208000011580 syndromic disease Diseases 0.000 description 2
- 238000012353 t test Methods 0.000 description 2
- VZGDMQKNWNREIO-UHFFFAOYSA-N tetrachloromethane Chemical compound ClC(Cl)(Cl)Cl VZGDMQKNWNREIO-UHFFFAOYSA-N 0.000 description 2
- 230000032258 transport Effects 0.000 description 2
- 230000017260 vegetative to reproductive phase transition of meristem Effects 0.000 description 2
- 230000003442 weekly effect Effects 0.000 description 2
- MZOFCQQQCNRIBI-VMXHOPILSA-N (3s)-4-[[(2s)-1-[[(2s)-1-[[(1s)-1-carboxy-2-hydroxyethyl]amino]-4-methyl-1-oxopentan-2-yl]amino]-5-(diaminomethylideneamino)-1-oxopentan-2-yl]amino]-3-[[2-[[(2s)-2,6-diaminohexanoyl]amino]acetyl]amino]-4-oxobutanoic acid Chemical compound OC[C@@H](C(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCCN=C(N)N)NC(=O)[C@H](CC(O)=O)NC(=O)CNC(=O)[C@@H](N)CCCCN MZOFCQQQCNRIBI-VMXHOPILSA-N 0.000 description 1
- JPQWWJZORKTMIZ-ZZXKWVIFSA-N 2,5-Dimethoxycinnamic acid Chemical compound COC1=CC=C(OC)C(\C=C\C(O)=O)=C1 JPQWWJZORKTMIZ-ZZXKWVIFSA-N 0.000 description 1
- IBYCSUBEDIAOOY-UHFFFAOYSA-N 2alpha-Hydroxysphaerantholide Natural products C1CC2(C)CC(O)CC(C)=C2C2OC(=O)C(=C)C21 IBYCSUBEDIAOOY-UHFFFAOYSA-N 0.000 description 1
- WSNKEJIFARPOSQ-UHFFFAOYSA-N 3-[4-(aminomethyl)-6-(trifluoromethyl)pyridin-2-yl]oxy-N-(1-benzothiophen-2-ylmethyl)benzamide Chemical compound NCC1=CC(=NC(=C1)C(F)(F)F)OC=1C=C(C(=O)NCC2=CC3=C(S2)C=CC=C3)C=CC=1 WSNKEJIFARPOSQ-UHFFFAOYSA-N 0.000 description 1
- NHQDETIJWKXCTC-UHFFFAOYSA-N 3-chloroperbenzoic acid Chemical compound OOC(=O)C1=CC=CC(Cl)=C1 NHQDETIJWKXCTC-UHFFFAOYSA-N 0.000 description 1
- XZKIHKMTEMTJQX-UHFFFAOYSA-N 4-Nitrophenyl Phosphate Chemical compound OP(O)(=O)OC1=CC=C([N+]([O-])=O)C=C1 XZKIHKMTEMTJQX-UHFFFAOYSA-N 0.000 description 1
- QFVHZQCOUORWEI-UHFFFAOYSA-N 4-[(4-anilino-5-sulfonaphthalen-1-yl)diazenyl]-5-hydroxynaphthalene-2,7-disulfonic acid Chemical compound C=12C(O)=CC(S(O)(=O)=O)=CC2=CC(S(O)(=O)=O)=CC=1N=NC(C1=CC=CC(=C11)S(O)(=O)=O)=CC=C1NC1=CC=CC=C1 QFVHZQCOUORWEI-UHFFFAOYSA-N 0.000 description 1
- 208000004611 Abdominal Obesity Diseases 0.000 description 1
- 102000014777 Adipokines Human genes 0.000 description 1
- 108010078606 Adipokines Proteins 0.000 description 1
- 206010002091 Anaesthesia Diseases 0.000 description 1
- 102000004881 Angiotensinogen Human genes 0.000 description 1
- 108090001067 Angiotensinogen Proteins 0.000 description 1
- PPPHDQNXPNUKNK-UHFFFAOYSA-N C=C(C(=O)O)C1C=C2C(C)=CCCC2(C)CC1 Chemical compound C=C(C(=O)O)C1C=C2C(C)=CCCC2(C)CC1 PPPHDQNXPNUKNK-UHFFFAOYSA-N 0.000 description 1
- PJPHIAMRKUNVSU-NUYPLMSZSA-N CC1(CC[C@@H](C2OC3=O)C3=C)C2=C(C)CCC1 Chemical compound CC1(CC[C@@H](C2OC3=O)C3=C)C2=C(C)CCC1 PJPHIAMRKUNVSU-NUYPLMSZSA-N 0.000 description 1
- ZKHQRXAUPVSLGS-UHFFFAOYSA-N CC1=C2C(=O)C34CCC5(CC3CC2(C)CCC1)C(=O)OC1C2=C(C)CCCC2(C)CCC15OC4=O Chemical compound CC1=C2C(=O)C34CCC5(CC3CC2(C)CCC1)C(=O)OC1C2=C(C)CCCC2(C)CCC15OC4=O ZKHQRXAUPVSLGS-UHFFFAOYSA-N 0.000 description 1
- JRFTVQAQQTVNQZ-UHFFFAOYSA-N CC1=C2C3OC(=O)C(CN4C=NC5=C4N=CC=C5N)C3CCC2(C)CCC1 Chemical compound CC1=C2C3OC(=O)C(CN4C=NC5=C4N=CC=C5N)C3CCC2(C)CCC1 JRFTVQAQQTVNQZ-UHFFFAOYSA-N 0.000 description 1
- XZEACQOXUMQHJI-UHFFFAOYSA-N CC1=CCCC2(C)CCC3=C(C)C(=O)OC3=C12 Chemical compound CC1=CCCC2(C)CCC3=C(C)C(=O)OC3=C12 XZEACQOXUMQHJI-UHFFFAOYSA-N 0.000 description 1
- PCXHDBNUWUHVRG-UHFFFAOYSA-N COCC1C(=O)OC2C3C(C)=CCCC3(C)CCC12O Chemical compound COCC1C(=O)OC2C3C(C)=CCCC3(C)CCC12O PCXHDBNUWUHVRG-UHFFFAOYSA-N 0.000 description 1
- 206010065941 Central obesity Diseases 0.000 description 1
- 244000045195 Cicer arietinum Species 0.000 description 1
- 235000010523 Cicer arietinum Nutrition 0.000 description 1
- 102000050079 Class B Scavenger Receptors Human genes 0.000 description 1
- IAZDPXIOMUYVGZ-WFGJKAKNSA-N Dimethyl sulfoxide Chemical compound [2H]C([2H])([2H])S(=O)C([2H])([2H])[2H] IAZDPXIOMUYVGZ-WFGJKAKNSA-N 0.000 description 1
- 208000030814 Eating disease Diseases 0.000 description 1
- 102000000476 Fatty Acid Transport Proteins Human genes 0.000 description 1
- 108010055870 Fatty Acid Transport Proteins Proteins 0.000 description 1
- 102000030914 Fatty Acid-Binding Human genes 0.000 description 1
- 108050003772 Fatty acid-binding protein 4 Proteins 0.000 description 1
- 208000019454 Feeding and Eating disease Diseases 0.000 description 1
- 102000020897 Formins Human genes 0.000 description 1
- 108091022623 Formins Proteins 0.000 description 1
- 208000002705 Glucose Intolerance Diseases 0.000 description 1
- 206010018429 Glucose tolerance impaired Diseases 0.000 description 1
- 206010019280 Heart failures Diseases 0.000 description 1
- 206010020710 Hyperphagia Diseases 0.000 description 1
- 206010056997 Impaired fasting glucose Diseases 0.000 description 1
- 208000026350 Inborn Genetic disease Diseases 0.000 description 1
- 102000003746 Insulin Receptor Human genes 0.000 description 1
- 108010001127 Insulin Receptor Proteins 0.000 description 1
- 102100025087 Insulin receptor substrate 1 Human genes 0.000 description 1
- 101710201824 Insulin receptor substrate 1 Proteins 0.000 description 1
- 208000031773 Insulin resistance syndrome Diseases 0.000 description 1
- 206010022491 Insulin resistant diabetes Diseases 0.000 description 1
- 108090001005 Interleukin-6 Proteins 0.000 description 1
- 108090001007 Interleukin-8 Proteins 0.000 description 1
- 108010063738 Interleukins Proteins 0.000 description 1
- 102000015696 Interleukins Human genes 0.000 description 1
- 102000016267 Leptin Human genes 0.000 description 1
- 108010092277 Leptin Proteins 0.000 description 1
- 102000004882 Lipase Human genes 0.000 description 1
- 108090001060 Lipase Proteins 0.000 description 1
- 239000004367 Lipase Substances 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- 108020005497 Nuclear hormone receptor Proteins 0.000 description 1
- 235000019483 Peanut oil Nutrition 0.000 description 1
- 229930182555 Penicillin Natural products 0.000 description 1
- JGSARLDLIJGVTE-MBNYWOFBSA-N Penicillin G Chemical compound N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)CC1=CC=CC=C1 JGSARLDLIJGVTE-MBNYWOFBSA-N 0.000 description 1
- 102000017795 Perilipin-1 Human genes 0.000 description 1
- 108010067162 Perilipin-1 Proteins 0.000 description 1
- 102000003728 Peroxisome Proliferator-Activated Receptors Human genes 0.000 description 1
- 108090000029 Peroxisome Proliferator-Activated Receptors Proteins 0.000 description 1
- 241000283984 Rodentia Species 0.000 description 1
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 1
- 229910018162 SeO2 Inorganic materials 0.000 description 1
- 102000007637 Soluble Guanylyl Cyclase Human genes 0.000 description 1
- 108010007205 Soluble Guanylyl Cyclase Proteins 0.000 description 1
- 102000040945 Transcription factor Human genes 0.000 description 1
- 108091023040 Transcription factor Proteins 0.000 description 1
- FZPYMZUVXJUAQA-ZDUSSCGKSA-N Turmerone Chemical compound CC(C)=CC(=O)C[C@H](C)C1=CCC(C)=CC1 FZPYMZUVXJUAQA-ZDUSSCGKSA-N 0.000 description 1
- FZPYMZUVXJUAQA-UHFFFAOYSA-N Turmerone Natural products CC(C)=CC(=O)CC(C)C1=CCC(C)=CC1 FZPYMZUVXJUAQA-UHFFFAOYSA-N 0.000 description 1
- 206010047141 Vasodilatation Diseases 0.000 description 1
- 210000001015 abdomen Anatomy 0.000 description 1
- 210000000579 abdominal fat Anatomy 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000035508 accumulation Effects 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 239000012190 activator Substances 0.000 description 1
- 239000000478 adipokine Substances 0.000 description 1
- 210000003486 adipose tissue brown Anatomy 0.000 description 1
- 210000000593 adipose tissue white Anatomy 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000000443 aerosol Substances 0.000 description 1
- 239000000556 agonist Substances 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- XOCANRBEOZQNAQ-KBPBESRZSA-N alpha-turmerone Natural products O=C(/C=C(\C)/C)C[C@H](C)[C@H]1C=CC(C)=CC1 XOCANRBEOZQNAQ-KBPBESRZSA-N 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 230000037005 anaesthesia Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000033115 angiogenesis Effects 0.000 description 1
- 238000010171 animal model Methods 0.000 description 1
- 230000001399 anti-metabolic effect Effects 0.000 description 1
- 239000000883 anti-obesity agent Substances 0.000 description 1
- XOCANRBEOZQNAQ-KGLIPLIRSA-N ar-turmerone Natural products C[C@H](CC(=O)C=C(C)C)[C@@H]1CC=C(C)C=C1 XOCANRBEOZQNAQ-KGLIPLIRSA-N 0.000 description 1
- 230000003143 atherosclerotic effect Effects 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 102000012740 beta Adrenergic Receptors Human genes 0.000 description 1
- 108010079452 beta Adrenergic Receptors Proteins 0.000 description 1
- 230000004071 biological effect Effects 0.000 description 1
- 230000008033 biological extinction Effects 0.000 description 1
- 239000013060 biological fluid Substances 0.000 description 1
- 230000031018 biological processes and functions Effects 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 230000036772 blood pressure Effects 0.000 description 1
- 238000010241 blood sampling Methods 0.000 description 1
- 239000001045 blue dye Substances 0.000 description 1
- 229940098773 bovine serum albumin Drugs 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- 210000000481 breast Anatomy 0.000 description 1
- RHDGNLCLDBVESU-UHFFFAOYSA-N but-3-en-4-olide Chemical compound O=C1CC=CO1 RHDGNLCLDBVESU-UHFFFAOYSA-N 0.000 description 1
- 235000014121 butter Nutrition 0.000 description 1
- 235000019577 caloric intake Nutrition 0.000 description 1
- 230000036996 cardiovascular health Effects 0.000 description 1
- 210000000748 cardiovascular system Anatomy 0.000 description 1
- 230000024245 cell differentiation Effects 0.000 description 1
- 230000003915 cell function Effects 0.000 description 1
- 239000008004 cell lysis buffer Substances 0.000 description 1
- 230000008619 cell matrix interaction Effects 0.000 description 1
- 239000006285 cell suspension Substances 0.000 description 1
- 230000033077 cellular process Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000009194 climbing Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 210000001072 colon Anatomy 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000000039 congener Substances 0.000 description 1
- 208000029078 coronary artery disease Diseases 0.000 description 1
- 230000034994 death Effects 0.000 description 1
- 230000007123 defense Effects 0.000 description 1
- 230000002939 deleterious effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000013237 diet-induced animal model Methods 0.000 description 1
- 208000016097 disease of metabolism Diseases 0.000 description 1
- 235000014632 disordered eating Nutrition 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000003937 drug carrier Substances 0.000 description 1
- 239000003596 drug target Substances 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 230000002526 effect on cardiovascular system Effects 0.000 description 1
- 230000002357 endometrial effect Effects 0.000 description 1
- 210000002472 endoplasmic reticulum Anatomy 0.000 description 1
- 230000003511 endothelial effect Effects 0.000 description 1
- 239000000066 endothelium dependent relaxing factor Substances 0.000 description 1
- 238000006735 epoxidation reaction Methods 0.000 description 1
- 239000000469 ethanolic extract Substances 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 108091022862 fatty acid binding Proteins 0.000 description 1
- 208000020694 gallbladder disease Diseases 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000003304 gavage Methods 0.000 description 1
- 230000030279 gene silencing Effects 0.000 description 1
- 208000016361 genetic disease Diseases 0.000 description 1
- 230000005802 health problem Effects 0.000 description 1
- 235000001497 healthy food Nutrition 0.000 description 1
- 210000003494 hepatocyte Anatomy 0.000 description 1
- 239000012676 herbal extract Substances 0.000 description 1
- 230000003284 homeostatic effect Effects 0.000 description 1
- 201000001421 hyperglycemia Diseases 0.000 description 1
- 208000003532 hypothyroidism Diseases 0.000 description 1
- 230000002989 hypothyroidism Effects 0.000 description 1
- 210000000987 immune system Anatomy 0.000 description 1
- 238000000099 in vitro assay Methods 0.000 description 1
- 208000027866 inflammatory disease Diseases 0.000 description 1
- 230000004068 intracellular signaling Effects 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- NRYBAZVQPHGZNS-ZSOCWYAHSA-N leptin Chemical compound O=C([C@H](CO)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CC=1C2=CC=CC=C2NC=1)NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CO)NC(=O)CNC(=O)[C@H](CCC(N)=O)NC(=O)[C@@H](N)CC(C)C)CCSC)N1CCC[C@H]1C(=O)NCC(=O)N[C@@H](CS)C(O)=O NRYBAZVQPHGZNS-ZSOCWYAHSA-N 0.000 description 1
- 229940039781 leptin Drugs 0.000 description 1
- 230000003902 lesion Effects 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 235000019421 lipase Nutrition 0.000 description 1
- 230000013190 lipid storage Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000002483 medication Methods 0.000 description 1
- 235000013336 milk Nutrition 0.000 description 1
- 239000008267 milk Substances 0.000 description 1
- 210000004080 milk Anatomy 0.000 description 1
- 210000003470 mitochondria Anatomy 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 210000001616 monocyte Anatomy 0.000 description 1
- 210000000663 muscle cell Anatomy 0.000 description 1
- 208000010125 myocardial infarction Diseases 0.000 description 1
- 230000014040 negative regulation of leukocyte activation Effects 0.000 description 1
- 230000001537 neural effect Effects 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 102000006255 nuclear receptors Human genes 0.000 description 1
- 108020004017 nuclear receptors Proteins 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 235000020830 overeating Nutrition 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 239000000312 peanut oil Substances 0.000 description 1
- 229940049954 penicillin Drugs 0.000 description 1
- 210000002824 peroxisome Anatomy 0.000 description 1
- 239000008194 pharmaceutical composition Substances 0.000 description 1
- 230000026731 phosphorylation Effects 0.000 description 1
- 238000006366 phosphorylation reaction Methods 0.000 description 1
- 230000036470 plasma concentration Effects 0.000 description 1
- 230000010118 platelet activation Effects 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000013641 positive control Substances 0.000 description 1
- 229940124606 potential therapeutic agent Drugs 0.000 description 1
- 239000011253 protective coating Substances 0.000 description 1
- 239000012474 protein marker Substances 0.000 description 1
- 230000005180 public health Effects 0.000 description 1
- 238000011552 rat model Methods 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- 230000000241 respiratory effect Effects 0.000 description 1
- 230000029058 respiratory gaseous exchange Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 239000011833 salt mixture Substances 0.000 description 1
- 239000012488 sample solution Substances 0.000 description 1
- 108091005484 scavenger receptor class B Proteins 0.000 description 1
- 102000014452 scavenger receptors Human genes 0.000 description 1
- 108010078070 scavenger receptors Proteins 0.000 description 1
- 230000003248 secreting effect Effects 0.000 description 1
- 230000000276 sedentary effect Effects 0.000 description 1
- JPJALAQPGMAKDF-UHFFFAOYSA-N selenium dioxide Chemical compound O=[Se]=O JPJALAQPGMAKDF-UHFFFAOYSA-N 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 230000019491 signal transduction Effects 0.000 description 1
- 230000011664 signaling Effects 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 208000019116 sleep disease Diseases 0.000 description 1
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 1
- CMZUMMUJMWNLFH-UHFFFAOYSA-N sodium metavanadate Chemical compound [Na+].[O-][V](=O)=O CMZUMMUJMWNLFH-UHFFFAOYSA-N 0.000 description 1
- 235000010288 sodium nitrite Nutrition 0.000 description 1
- 235000011152 sodium sulphate Nutrition 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 238000013222 sprague-dawley male rat Methods 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 239000012192 staining solution Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 229960005322 streptomycin Drugs 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- FDDDEECHVMSUSB-UHFFFAOYSA-N sulfanilamide Chemical compound NC1=CC=C(S(N)(=O)=O)C=C1 FDDDEECHVMSUSB-UHFFFAOYSA-N 0.000 description 1
- 229940124530 sulfonamide Drugs 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 208000024891 symptom Diseases 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 229940124597 therapeutic agent Drugs 0.000 description 1
- 230000001225 therapeutic effect Effects 0.000 description 1
- 230000035924 thermogenesis Effects 0.000 description 1
- RSPCKAHMRANGJZ-UHFFFAOYSA-N thiohydroxylamine Chemical compound SN RSPCKAHMRANGJZ-UHFFFAOYSA-N 0.000 description 1
- DCXXMTOCNZCJGO-UHFFFAOYSA-N tristearoylglycerol Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCC(OC(=O)CCCCCCCCCCCCCCCCC)COC(=O)CCCCCCCCCCCCCCCCC DCXXMTOCNZCJGO-UHFFFAOYSA-N 0.000 description 1
- 230000003827 upregulation Effects 0.000 description 1
- 230000002792 vascular Effects 0.000 description 1
- 230000024883 vasodilation Effects 0.000 description 1
- 230000009278 visceral effect Effects 0.000 description 1
- 230000004584 weight gain Effects 0.000 description 1
- 229910000166 zirconium phosphate Inorganic materials 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
- A23L33/00—Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
- A23L33/10—Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
- A23L33/105—Plant extracts, their artificial duplicates or their derivatives
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/185—Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
- A61K31/19—Carboxylic acids, e.g. valproic acid
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/335—Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
- A61K31/34—Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having five-membered rings with one oxygen as the only ring hetero atom, e.g. isosorbide
- A61K31/343—Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having five-membered rings with one oxygen as the only ring hetero atom, e.g. isosorbide condensed with a carbocyclic ring, e.g. coumaran, bufuralol, befunolol, clobenfurol, amiodarone
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/335—Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
- A61K31/35—Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom
- A61K31/352—Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom condensed with carbocyclic rings, e.g. methantheline
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/335—Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
- A61K31/365—Lactones
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/435—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
- A61K31/4353—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom ortho- or peri-condensed with heterocyclic ring systems
- A61K31/437—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom ortho- or peri-condensed with heterocyclic ring systems the heterocyclic ring system containing a five-membered ring having nitrogen as a ring hetero atom, e.g. indolizine, beta-carboline
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/535—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one oxygen as the ring hetero atoms, e.g. 1,2-oxazines
- A61K31/5375—1,4-Oxazines, e.g. morpholine
- A61K31/5377—1,4-Oxazines, e.g. morpholine not condensed and containing further heterocyclic rings, e.g. timolol
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K35/00—Medicinal preparations containing materials or reaction products thereof with undetermined constitution
- A61K35/12—Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K36/00—Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
- A61K36/18—Magnoliophyta (angiosperms)
- A61K36/185—Magnoliopsida (dicotyledons)
- A61K36/28—Asteraceae or Compositae (Aster or Sunflower family), e.g. chamomile, feverfew, yarrow or echinacea
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K36/00—Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
- A61K36/18—Magnoliophyta (angiosperms)
- A61K36/185—Magnoliopsida (dicotyledons)
- A61K36/38—Clusiaceae, Hypericaceae or Guttiferae (Hypericum or Mangosteen family), e.g. common St. Johnswort
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K45/00—Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
- A61K45/06—Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P1/00—Drugs for disorders of the alimentary tract or the digestive system
- A61P1/14—Prodigestives, e.g. acids, enzymes, appetite stimulants, antidyspeptics, tonics, antiflatulents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P17/00—Drugs for dermatological disorders
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/28—Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P3/00—Drugs for disorders of the metabolism
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P3/00—Drugs for disorders of the metabolism
- A61P3/04—Anorexiants; Antiobesity agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P3/00—Drugs for disorders of the metabolism
- A61P3/06—Antihyperlipidemics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P3/00—Drugs for disorders of the metabolism
- A61P3/08—Drugs for disorders of the metabolism for glucose homeostasis
- A61P3/10—Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
- A61P37/02—Immunomodulators
- A61P37/04—Immunostimulants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
- A61P9/10—Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
- A61P9/12—Antihypertensives
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23V—INDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
- A23V2002/00—Food compositions, function of food ingredients or processes for food or foodstuffs
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23V—INDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
- A23V2200/00—Function of food ingredients
- A23V2200/30—Foods, ingredients or supplements having a functional effect on health
Definitions
- the present invention discloses biologically active ingredient(s) comprising at least one component selected from 7-hydroxyfrullanolide, its analog(s) or the herbal extract(s) and fraction(s) standardized to 7-hydroxyfrullanolide or its analog(s) or mixtures thereof as a biologically active ingredient or their compositions, optionally containing one or more of pharmaceutically or dietetically acceptable diluents, vehicles, carriers and actives or mixtures thereof for the prevention, control and/or treatment of one or more of the metabolic disorders selected from metabolic syndrome, obesity, diabetes, endothelial dysfunction and other disease indications related thereto.
- the invention also relates to the amelioration of one or more of the biological marker proteins or metabolic processes related to metabolic syndrome, obesity and other metabolic disorders by 7-hydroxyfrullanolide or its analog(s) or the extract(s)/fraction(s) standardized to 7-hydroxyfrullanolide or its analog(s) or mixtures thereof or their compositions.
- Obesity is a medical condition in which excess body fat has accumulated to the extent that it may have an adverse effect on health, leading to reduced life expectancy and/or increased health problems.
- Body mass index (BMI) a measurement which compares weight and height, defines people as overweight (pre-obese) when their BMI is between 25 kg/m 2 and 30 kg/m 2 , and obese when it is greater than 30 kg/m 2 .
- Obesity increases the likelihood of various diseases, particularly heart disease, type 2 diabetes, breathing difficulties during sleep, certain types of cancer, and osteoarthritis. It is a leading preventable cause of death worldwide, with increasing prevalence in adults and children, and authorities view it as one of the most serious public health problems of the 21st century.
- Metabolic Syndrome also known as Syndrome X, insulin resistance syndrome and DysMetabolic Syndrome is a condition, wherein a group of diseased states, which increase atherosclerosis, stroke and diabetes. It was first described by Reaven in 1988 as a cluster of interrelated common clinical disorders, including obesity, insulin resistance, glucose intolerance, hypertension and dyslipidemia.
- Metabolic Syndrome was established by The Adult Treatment Panel-III (ATP-III) of the National Cholesterol Education Program in 2001. Five Criteria were selected by this Panel to identify individuals with Metabolic Syndrome including abdominal obesity, impaired fasting glucose, high triglyceride (TG), low HDL cholesterol (HDL-C) concentrations and increased blood pressure. Metabolic Syndrome is diagnosed, if any three of the components are present in an individual.
- U.S. Pat. No. 7,635,494 relates to a novel herbal composition
- a novel herbal composition comprising an extract of flowering and fruiting heads of the plant, Sphaeranthus indicus .
- the said extract of Sphaeranthus indicus contains a compound, 3a-hydroxy-5a,9-dimethyl-3-methylene-3a,4,5,5a,6,7,8,9b-octahydro-3H-naphtho[1,2-b]furan-2-one (7-Hydroxy-4,11(13)-eudesmadien-12,6-olide/7-hydroxyfrullanolide) (compound 1), as a bioactive marker.
- the application also relates to a composition
- a composition comprising 3a-hydroxy-5a,9-dimethyl-3-methylene-3a,4,5,5a,6,7,8,9b-octahydro-3H-naphtho[1,2-b]furan-2-one (compound 1) as an active ingredient, methods of manufacture of the said compositions, methods of administration of the said compositions to a subject in need of treatment for an inflammatory disorder.
- the publication also disclosed tumor necrosis factor- ⁇ (TNF- ⁇ ) and interleukin (IL-1, IL-6, IL-8) inhibitory activity of the said compositions.
- PCT Publication WO07036900A2 relates to a novel herbal composition
- a novel herbal composition comprising an extract of flowering and fruiting heads of the plant, Sphaeranthus indicus containing 3a-hydroxy-5a,9-dimethyl-3-methylene-3a,4,5,5a,6,7,8,9b-octahydro-3H-naphtho[1,2-b]-furan-2-one (7-Hydroxy-4,11(13)-eudesmadien-12,6-olide), as a bioactive marker and relates to methods of manufacture of the said compositions.
- PCT Publication WO06016228A2 relates to a compound or group of compounds present in an active principle derived from plants of the species Sphaeranthus , for the preparation of pharmaceutical formulations or food supplements for the prophylaxis and/or treatment of tumor diseases.
- the said invention furthermore relates to a novel method for the isolation of an active principle from Sphaeranthus plant parts which are effective in prophylaxis and/or treatment of cancers.
- the invention provides biologically active ingredient(s) comprising at least one component selected from 7-hydroxyfrullanolide, its analog(s); extract(s) and fraction(s) containing 7-hydroxyfrullanolide or its analog(s) or both; or mixtures thereof for the prevention, control and/or treatment of one or more metabolic disorders.
- the invention provides biologically active composition
- biologically active composition comprising at least one component selected from the list comprising 7-hydroxyfrullanolide, its analog(s); the extract(s) or fraction(s) containing 7-hydroxyfrullanolide/its analog(s) or both; or mixture(s) thereof as an active in combination with one or more ingredients selected from other biologically active components derived from plants, animals and microorganisms; pharmaceutically or dietetically acceptable active ingredients, vitamins, amino acids, minerals, vehicles, carriers and diluents or mixtures thereof for the prevention, control and/or treatment of one or more metabolic disorders.
- the invention provides biologically active ingredient(s) or their composition(s) for the amelioration of the expression/production of one or more biological marker proteins related to metabolic disorders.
- the invention provides compositions comprising at least one component selected from 7-hydroxyfrullanolide, its analogs, the extract(s) and fraction(s) standardized to 7-hydroxyfrullanolide or its analogs or mixtures thereof as an active ingredient and at least one component selected from pharmaceutically or dietetically acceptable phytochemical actives, plant extracts, diluents, vehicles, carriers and actives or mixtures thereof for the control, prevention and treatment of metabolic disorders, which include but not limited to metabolic syndrome or obesity, and/or one or more disease indications related to or associated with metabolic syndrome.
- the invention provides pharmaceutical or dietary supplement or food ingredient selected from 7-hydroxyfrullanolide, its analog(s) and the extract(s) and fraction(s) standardized to 7-hydroxyfrullanolide alone or its analogs or mixtures thereof or their composition(s) for the amelioration of the expression or production of one or more biological marker proteins related to or associated with metabolic syndrome, obesity and other disease conditions associated with metabolic syndrome including but not limited to Peroxisome proliferator-activated receptor gamma (PPAR ⁇ ), Adipose Differentiation Related Protein (ADRP), adipocyte CD36, Macrophage CD36, Monocyte Chemotactic protein (MCP-1), Oxidized LDL (Ox-LDL), adipocyte fatty-acid-binding protein (aP2/FABP4/A-FABP), beta-3 Adrenergic Receptor ( ⁇ 3AR), Perilipin, Adiponectin, Protein tyrosine phosphatase-1B (PTP-1B), Metalloproteinas
- the invention provides method(s) for the prevention, control and/or treatment of metabolic disorders, which include but not limited to obesity, over weight, diabetes, arteriosclerosis, cardiovascular diseases, hypertension, hypercholesteremia, hyperlipidemia, triglyceridemia, metabolic syndrome, endothelial dysfunction and other metabolic disorders in warm blooded animals, wherein the method comprises of administering to a warm blooded animal in need thereof an effective amount of a component selected from 7-hydroxyfrullanolide, its analog(s), the extract(s) and fraction(s) containing 7-hydroxyfrullanolide alone or its analogs or mixtures thereof or their composition(s).
- metabolic disorders include but not limited to obesity, over weight, diabetes, arteriosclerosis, cardiovascular diseases, hypertension, hypercholesteremia, hyperlipidemia, triglyceridemia, metabolic syndrome, endothelial dysfunction and other metabolic disorders in warm blooded animals
- the method comprises of administering to a warm blooded animal in need thereof an effective amount of a component selected from 7-hydroxy
- FIG. 1 Illustration of anti-adipogenic activity of 7-hydroxyfrullanolide (7-HF).
- 7-HF decreases the lipid content in mouse adipocytes by inhibiting adipogenesis process.
- Photomicrographs show lipid accumulation in Oil Red O stained 3T3-L1 adipocytes treated with either 0.1% DMSO as the vehicle control, or 1 ⁇ g/ml 7-HF. Arrows indicate the lipid vesicles in the cytoplasmic compartment of adipocytes.
- Figure III Amelioration of marker proteins of Adipogenesis and lipolysis by 7-hydroxyfrullanolide (7-HF).
- Figure illustrates modulation of marker proteins of adipogenesis and lipolysis processes by 7-HF in 3T3-L1 adipocytes.
- Representative immuno blots indicate down-regulation of various marker proteins such as PPAR ⁇ , ADRP, CD36, aP2, and perilipin.
- the 3T3-L1 mouse pre-adipocytes were allowed to differentiate in absence or presence of 1 ug/ml of 7-HF. Vehicle control cultures received only similar concentrations of DMSO. Expression of actin protein was evaluated in each blot as the internal control. Expression of each protein was measured densitometrically and normalized with actin expression.
- the comparative levels protein expressions are represented as bar diagrams (side panels).
- Figure IV Illustrates Representative photomicrographs show 7-HF inhibits lipid accumulation in high glucose induced macrophage cells of an in vitro model of atherosclerosis.
- the J774 mouse macrophage cells were exposed to high glucose (600 mg/dL) for 5 days in presence or absence of 1 ⁇ g/ml of 7-HF.
- Control cultures (A) received low glucose (100 mg/dL).
- B and C represent the macrophage cells supplemented with 600 mg/dL of glucose alone or in combination with 1 ⁇ g/ml of 7-HF, respectively.
- Figure V Illustration of the down-regulation of high glucose induced CD36 expression in macrophage cells 7-HF.
- the J774 mouse macrophage cells were exposed to high glucose (600 mg/dL) for 5 days in presence or absence of 1 ⁇ g/ml of 7-HF.
- Control culture received low glucose (100 mg/dL).
- Representative immuno-blot assay demonstrates down regulation of CD36 protein and expression of actin protein is considered as the internal control. Bar diagram shows the CD36 expression normalized with actin protein (lower panel).
- pNPP p-nitrophenyl phosphate
- Figure VIII Representative immunoblot showing over expression of adiponectin protein in 3T3-L1 adipocytes treated with 1 ⁇ g/ml of 7-hydroxyfrullanolide (7-HF). Protein expressions were densitometrically analyzed and normalized with the actin expression. Bar diagram in each panel shows normalized protein expressions in arbitrary units. In bar diagrams, the bars represent protein expressions in cells treated with vehicle control (a) and 7-HF (b).
- Figure IX Figure represents the natural analogs of 7-hydroxyfrullanolide isolated from Sphaeranthus indicus.
- Figure X Figure represents the semi-synthetic analogs of 7-hydroxyfrullanolide.
- Figure XIA Bar diagrammatic representation of body mean weight gain in HFD induced metabolic syndrome model of SD rats supplemented without (1) or with (2) ethyl acetate extract of Sphaeranthus indicus (SIE) from week-1 to week-8 of treatment. Each bar represents mean ⁇ SD, *p ⁇ 0.05.
- Figure XIB Line diagrammatic representations of body weight gain in diet induced metabolic syndrome model of SD rats supplemented with (2) or without (1) 7-hydroxyfrullanolide. Each line indicates change in mean body weight gain during eight-week treatment period.
- Obesity is excess body weight for a particular age, sex and height as a consequence of imbalance between energy intake and energy expenditure.
- the primary causes of obesity are either due to overeating, inadequate exercise or eating disorder, some genetic disorders, underlying illness (e.g. hypothyroidism), certain medications or sedentary lifestyle.
- Obesity increases the risk of many diseases and health conditions such as hypertension, dyslipidemia (for example, high total cholesterol or high levels of triglycerides), type 2 diabetes, coronary heart disease, stroke, gallbladder disease, osteoarthritis, sleep disorders, respiratory problems, tumors (endometrial, breast, and colon), arteriosclerosis and heart failure.
- Metabolic syndrome is a condition involving a set of disorders that enhances the risk of heart disease.
- the major components of metabolic syndrome are excess weight, the cardiovascular parameters (high blood pressure, dyslipidemia, high levels of triglycerides and low levels of HDL in the blood), atherosclerosis, diabetes and insulin resistance.
- a subject suffering with several of these components, i.e. metabolic syndrome is highly prone to heart disease, though each component is a risk factor.
- metabolic syndrome is highly prone to heart disease, though each component is a risk factor.
- Metabolic Syndrome Even though several classes of drugs are available in the market for the treatment of different components of Metabolic Syndrome and many of them are associated with a number of side effects, very few medicines are available to treat Metabolic Syndrome and none of them are comprehensive in addressing all the associated diseases.
- Adipogenesis is the differentiation and proliferation of pre-adipocytes into major adipocytes or fat cells and it has been one of the most intensely studied models of cellular differentiation. In the adipogenesis process, proliferation of preadipocytes or precursor fat cells is followed by the differentiation of these cells into mature adipocyte phenotype. The nuclear receptor PPAR- ⁇ is expressed predominantly in adipose tissue, where it is known to play a critical role in adipocyte differentiation and fat deposition. Adipocytes secrete proteins exhibiting either beneficial (leptin, adiponectin) or deleterious effects (angiotensinogen). A disturbance in the balance between these various secreted factors, in association with the effect of secretory products from macrophages (cytokines), leads to the development of metabolic syndrome.
- Lipolysis is the breakdown of stored lipid in adipocytes. ⁇ 3-Adrenoreceptor agonists can stimulate lipolysis in the white adipose tissue and thermogenesis in the brown adipose tissue. Adipose tissue lipolysis is the catabolic process leading to the breakdown of triglycerides stored in fat cells and release of fatty acids and glycerol. The proteins involved in the lipolytic process constitute drug targets for the treatment of obesity and the metabolic syndrome.
- phytochemical agents having the adipogenesis and lipolysis activities could be useful in the treatment of obesity, metabolic syndrome and other metabolic disorders.
- compositions and synergistic compositions of Sphaeranthus indicus in our earlier Indian provisional application no. 224/CHE/2009 filed on Feb. 2, 2009 and PCT application no. PCT/IN2010/000053 filed on Feb. 1, 2010.
- biomarkers expression such as PPAR- ⁇ , ADRP, CD 36, aP2, ⁇ 3AR and Perilipin by Sphaeranthus indicus ethanol extract (SIE) along with 7-hydroxyfrullanolide (LI054A01) was also disclosed.
- 7-HF potently inhibited lipid accumulation in 3T3-L1 human adipocyte cells as depicted in Figure I.
- 7-Hydroxyfrullanolide (1) exhibited 52.5% inhibition of lipid accumulation at 1 ⁇ g/ml concentration in 3T3-L1 Human pre-adipocyte cells in a cell based in vitro assay.
- 7-HF also inhibited lipid accumulation in high glucose induced J774 mouse macrophage cells of an in vitro model of atherosclerosis as depicted in FIG. IV.
- 7-Hydroxyfrullanolide potently enhanced lipolysis in 3T3-L1 Human pre-adipocyte cells. 7-HF showed 47.8% increase in lipolysis at 5 ⁇ g/ml concentration in an in vitro cell based assay.
- Adipocytes and macrophages play important role in the pathogenesis of metabolic syndrome and disease components associated with it. They both share a number of common features, including the ability to phagocytize and kill microorganisms and to secrete cytokines such as tumor necrosis factor (TNF) and interleukin-1 (IL-1).
- cytokines such as tumor necrosis factor (TNF) and interleukin-1 (IL-1).
- Critical transcription factors in adipocytes involved in regulating the expression of cytokines, inflammatory molecules, and fatty acid transporters are also expressed and have similar biologic roles in macrophages.
- the adipocytes in addition to accumulating fat during the obesity development, produce and circulate several low molecular weight bioactive protein molecules having powerful effects throughout the body. These protein markers are related to different components of metabolic disorders such as obesity and metabolic syndrome.
- PPAR- ⁇ Adipose Differentiation Related Protein
- ADRP Adipose Differentiation Related Protein
- CD36 Adipocyte Fatty-Acid-Binding Protein
- aP2/FABP4/A-FABP Adipocyte Fatty-Acid-Binding Protein
- ⁇ 3-AR Beta-3 adrenergic receptor
- adiponectin adiponectin and Perilipin
- Peroxisome proliferator-activated receptor- ⁇ is a nuclear receptor that plays a pivotal role in obesity and diabetes.
- An increase in adipose tissue mass can be the result of the production of new fat cells through the process of adipogenesis and the deposition of increased amounts of cytoplasmic triglyceride or lipid droplets per cell.
- proliferation of preadipocytes or precursor fat cells is followed by the differentiation of these cells to the mature adipocyte phenotype.
- PPAR- ⁇ is expressed predominantly in adipose tissue, wherein it is known to play a critical role in adipocyte differentiation and fat deposition.
- ADRP Adipose differentiation related protein
- ADRP mRNA Adipose differentiation related protein
- ADRP mRNA Adipose differentiation related protein
- the expression of ADRP is very low in undifferentiated adipocytes, but ADRP mRNA reaches 50 to 100-fold in few hours after the onset of adipose differentiation process. The above thus indicate the possible role of ADRP in the formation or stabilization of lipid droplets in adipocytes and other cells.
- ADRP specifically enhances uptake of long chain fatty acids by adipose tissue.
- ADRP is an important target to identify the compounds that can potentially control obesity and diabetes through regulation of the expression of ADRP.
- Adipocyte CD36 is a common protein marker expressed by both adipocytes and macrophages.
- the CD36 expressed in adipocytes is known to function as a fatty acid transporter (FAT). It is a scavenger receptor that binds and internalizes oxidized LDL (Ox LDL) in macrophages.
- CD36 also functions as a long-chain fatty acid (LCFA) transporter to facilitate the uptake of LCFAs in adipocytes.
- the CD36 expression is up-regulated by PPAR during the differentiation of both types of cells. It is also shown that the adipocytes can endocytose and lysosomally degrade Ox LDL, a process mainly mediated by CD36.
- the CD36 null animals thus found to show significant decrease in binding and uptake of oxidized low density lipoprotein and showed significant increase in fasting levels of cholesterol, nonesterified free fatty acids, and triacylglycerol.
- FABPs are molecular chaperones linked to metabolic and inflammatory pathways. Different members of the FABP family exhibit unique patterns of tissue expression/distribution and are expressed most abundantly in tissues involved in active lipid metabolism. FABPs play numerous functions. As lipid chaperones, for example, FABPs may actively facilitate the transport of lipids to specific compartments in the cell, such as to the lipid droplet for storage; to the endoplasmic reticulum for signaling, trafficking and membrane synthesis; to the mitochondria or peroxisome for oxidation.
- A-FABP is abundantly present in human serum and it may play a central role in the development of major components of the metabolic syndrome such as obesity, type 2 diabetes and cardiovascular diseases, through its distinct actions in adipocytes and macrophages.
- aP2 is an important marker for metabolic disorders.
- Perilipin is a protein that forms a coating around the lipid droplets in adipocytes. It is a protective coating against body's natural lipases, such as hormone-sensitive lipase, that breaks triglycerides into glycerol and free fatty acids by a process called lipolysis. Perilipin [PLIN] may play key role in obesity. Following ⁇ -adrenergic receptor activation, protein kinase A (PKA) hyperphosphorylates perilipin localized at the surface of the lipid droplet.
- PKA protein kinase A
- Phosphorylated perilipin changes conformation and translocate away from the lipid droplet, exposing the stored lipids to hormone-sensitive lipase-mediated hydrolysis of triglycerides (lipolysis) to release non esterified fatty acids (NEFA).
- NEFA non esterified fatty acids
- the inventors have thus evaluated the efficacy of 7-hydroxyfrullanolide in the modulation of the above metabolic biomarkers that are primarily responsible for the adipogenesis processes, insulin resistance in type 2 diabetes, obesity, metabolic syndrome and other metabolic disorders using an immunoblot assay in 3T3-L1 adipocytes. It was found surprisingly that 7-hydroxyfrullanolide potently ameliorated the levels of several adipocyte differentiation markers such as Peroxisome proliferator-activated receptor gamma (PPAR ⁇ ), ADRP, CD36, Fatty Acid Binding Protein 4 (aP2/FABP4) and intracellular lipid droplet surface associated protein (perilipin) (FIG. III) in a dose dependent manner. This unexpected result confirms the potential of 7-HF to control, prevent and treat metabolic disorders through modulating multiple disease targets.
- PPAR ⁇ Peroxisome proliferator-activated receptor gamma
- ADRP Adreatty Acid Binding Protein 4
- aP2/FABP4 Fatty Acid Binding
- CD36 is a prototypic member of the class B scavenger receptor family. It is widely expressed on the surface of monocytes and macrophages, and mediates uptake of oxidized low-density lipoprotein (Ox-LDL) as well as play a role in diverse cellular processes including foam cell formation, fatty acid transport, engulfment and removal of senescent cells, suppression of angiogenesis, and cellmatrix interactions. As such it can be an important risk factor of cardiovascular disease and a potential molecular maker of atherosclerosis. Hyperglycemia-induced synthesis of CD36 in macrophages has been associated with increased uptake of Ox-LDL by macrophages and foam cell formation in atherosclerotic lesions in people with diabetes.
- Ox-LDL oxidized low-density lipoprotein
- CD36 protein expression in high glucose induced J774 macrophage cells in presence or absence of 7-HF was evaluated using immunoblot assay and the results are summarized in Figure V.
- the CD36 levels were significantly enhanced in the cells treated with glucose. However, these levels were reduced back towards their base values in the cells treated with 7-HF when compared to the untreated control cells. This unexpected observation provides support in favor of the potential use of 7-HF for the prevention, control and treatment of cardiovascular diseases.
- Nitric oxide (NO) is a key biological molecule that, either directly or through intracellular signaling, stimulates host defenses in the immune system, maintains blood pressure in the cardiovascular system and modulates neural transmission in the brain.
- NO is an activator of soluble guanylyl cyclase, which converts guanosine triphosphate (GTP) to cyclic guanosine monophosphate (cGMP) and leads to vasodilatation and inhibition of leukocyte and platelet activation.
- GTP guanosine triphosphate
- cGMP cyclic guanosine monophosphate
- PIP-1B Protein tyrosine phosphatase 1B
- adipocytes adipocytes
- muscle cells adipocytes
- hepatocytes adipocytes
- hepatocytes adipocytes
- PTB-1B adipocytes
- Over expression of PTP-1B decreases insulin receptor and IRS-1 Phosphorylation and hence produces insulin resistance.
- Silencing of PIP-1B gene in an animal study astonishingly provided resistance from developing type 2 diabetes. Therefore, inhibition of PTP-1B has recently been emerged as a potential target to treat type 2 diabetes.
- the ability of 7-HF in modulating PIP-1B was evaluated in 3T3-L1 mouse preadipocytes.
- the adipocytes treated with 7-HF in the present invention exhibited significant inhibition of PTP-1B activity as summarized in Figure VII. This observation thus indicates that 7-HF can also be used as a potential therapeutic intervention to prevent, control and treat type 2 diabetes and insulin resistance.
- Adiponectin is an important adipokine hormone exclusively secreted from the adipose tissue and it modulates a number of metabolic processes including glucose homeostasis and lipid metabolism. It is known that low levels of adiponectin are associated with disease states such as obesity, diabetes and cardiovascular disease. Administration of adiponectin was proven to be beneficial in animal models of diabetes, obesity and atherosclerosis. High plasma concentrations of adiponectin were also found to associate with lower risk of Myocardial Infarction in men. Therefore, adiponectin has been established as a promising marker of obesity, metabolic syndrome and other metabolic disorders.
- adiponectin protein by 7-HF in 3T3-L1 adipocytes was evaluated in Western immunoblot assay.
- the cell culture, treatment protocol and immunoblot assay methodology were as per the standard protocol.
- 7-HF showed potent upregulation of adiponectin protein expression in 3T3-L1 mature adipocytes as depicted in Figure VIII, manifesting its potential use in the prevention, treatment and control of metabolic disorders, such as obesity, insulin resistance or Type 2 diabetes and endothelial dysfunction.
- 7-hydroxyfrullanolide could be able to modulate the marker proteins related to many disease conditions associated with metabolic disorders. This suggests that 7-hydroxyfrullanolide could be a potential therapeutic agent to prevent, treat and control metabolic syndrome, obesity, diabetes, atherosclerosis, endothelial dysfunction, chronic kidney disease (CKD) and other metabolic disorders in animals and humans.
- CKD chronic kidney disease
- the extracts containing 7-hydroxyfrullanolide and/or one or more of the analogs of 7-hydroxyfrullanolide also showed potent anti-adipogenic activity in 3T3-L1 Human pre-adipocyte cells.
- Metabolic syndrome condition was experimentally induced in male Sprague Dawley rats by feeding the rats with high fat, high cholesterol, high salt and high sucrose diet for eight weeks. After eight weeks of induction period, the rats were randomly divided into two groups with six animals in each group and the treatment group animals were supplemented orally with 250 mg/kg body weight of SIE in 10 mL of 0.5% CMC in water for further 8 weeks. The control group of animals received only the vehicle (10 mL/kg of 0.5% CMC in water) during this period. Body weight of individual animal was recorded weekly for the entire duration of the study. Mean body weights for the treatment group and control group were determined.
- the body weight gain was calculated at the end of 1st week, 4th week and 8th week after initiation of treatment in comparison to initial body weight.
- SIE at a dose of 250 mg/kg exhibited highly potent and statistically significant (p ⁇ 0.01) reduction in body weight gain (66.04%) in comparison to control group as summarized in figures XIA & XIB.
- Supplementation of SIE at 250 mg/kg also resulted in improvement in fat profile with 15.3, 12.7 and 22.9 percentage reductions respectively in serum cholesterol, LDL and triglycerides. This is well corroborated with its efficacy observed in improvement of adiponectin levels.
- HOMA Homeostasis Model Assessment
- ethyl acetate extract of Sphaeranthus indicus not only reduces obesity but also ameliorates various symptoms of metabolic syndrome including body weight gain, visceral and organ fat deposition and improves lipid profile, glucose homeostasis, insulin resistant type-II diabetes, ⁇ -cell function etc.
- 7-hydroxyfrullanolide, its analogs, the extracts/fractions containing 7-hydroxyfrullanolide or its analogs or both or mixtures thereof or their compositions can be potential pharmaceutical/dietary supplement/food ingredient for the control, prevention and treatment of one or more metabolic disorder(s) and/or for the amelioration of the expression/production of one or more of the biological markers related to metabolic disorders.
- the present invention comprises different aspects cited below:
- the word “component” or “biologically active ingredient” widely used in the specification and claims of the present invention refer to 7-hydroxyfrullanolide alone, or one or more of its analog(s); or the extracts or fraction standardized to 7-hydroxyfrallanolide or analog(s) or both; or mixtures thereof.
- the word “component” or “biologically active ingredient” are used interchangeably through out the specification and the same may be appreciated as such by the person skilled in the art.
- composition refers to combination of one or more of 7-hydroxyfrullanolide or one or more of its analog(s); or the extracts or fraction standardized to 7-hydroxyfrallanolide or analog(s) or both; or mixtures thereof with one or more of other biologically active components, vehicles, carriers and diluents etc.
- other biologically active components refers to extract(s) or fraction(s) or compound(s) derived from plants, animals and microorganisms.
- the invention provides biologically active ingredient(s) selected from one or more of 7-hydroxyfrullanolide alone, its analog(s) and the extract(s) or fraction(s) containing 7-hydroxyfrullanolide alone/its analog(s) or both or mixture(s) thereof as an active for the control, prevention and treatment of one or more metabolic disorder(s) and/or for the amelioration of the expression/production of one or more of the biological markers related to metabolic disorders.
- the invention provides biologically active ingredient(s) compositions comprising at least one component selected from 7-hydroxyfrullanolide, its analog(s), the extract(s) or fraction(s) containing 7-hydroxyfrullanolide/its analog(s) or both or mixture(s) thereof as an active in combination with one or more selected from biologically actives derived from plants, animals and microorganisms, pharmaceutically or dietetically acceptable active ingredients, vitamins, aminoacids, minerals, vehicles, carriers and diluents or mixtures thereof for the prevention, control and treatment of one or more metabolic disorder(s) and/or for the amelioration of the expression/production of one or more of the biological markers related to metabolic disorders.
- the metabolic disorders to be controlled/prevented/treated by the biologically active ingredient(s) or compositions described comprise obesity, over weight, diabetes, arteriosclerosis, cardiovascular diseases, hypertension, hypercholesteremia (LDL, HDL, VLDL), hyperlipidemia, triglyceridemia, metabolic syndrome, endothelial dysfunction and other metabolic disorders.
- the invention provides biologically active ingredient(s) selected from one or more of the components 7-hydroxyfrullanolide, its analog(s) and the extract(s) or fraction(s) containing 7-hydroxyfrullanolide alone or its analog(s) or mixture(s) thereof or their composition(s) for the amelioration of the expression or production of one or more biological marker proteins related to or associated with metabolic syndrome, obesity and other disease conditions associated with metabolic syndrome including but not limited to Peroxisome proliferator-activated receptor gamma (PPAR ⁇ ), Adipose Differentiation Related Protein (ADRP), adipocyte CD36, Macrophage CD36, Monocyte Chemotactic protein (MCP-1), Oxidized LDL (Ox-LDL), adipocyte fatty-acid-binding protein (aP2/FABP4/A-FABP), beta-3 Adrenergic Receptor ( ⁇ 3AR), Perilipin, Adiponectin Protein tyrosine phosphatase-1B (PTP-1B
- the 7-hydroxyfrullanolide and its analog(s) mentioned in the previous embodiments are of synthetic or semi-synthetic origin or natural origin, wherein the natural origin can be any plant species that produces 7-hydroxyfrullanolide or its analog(s) or mixtures thereof, more selectively Sphaeranthus indicus.
- the invention provides the extract(s) and fraction(s) comprising 7-hydroxyfrullanolide or its analogs or mixtures thereof, wherein these extracts or fraction can be derived from any plant species that produces 7-hydroxyfrullanolide or its analog or mixtures thereof, more selectively Sphaeranthus indicus.
- the invention provides biologically active ingredient(s) comprises of the extracts and fractions containing 7-hydroxyfrullanolide or its analogs or mixtures thereof wherein the said extracts and fractions contain 7-hydroxyfrullanolide or its analog(s) or mixtures thereof in the range of 0.001% to 100%, preferably 0.01 to 99%.
- the invention provides biologically active ingredient(s) compositions wherein the percentage of the extract or fraction standardized to 7-hydroxyfrullanolide or its analog(s) or both varies in the range from 0.01% to 99%, preferably 1% to 90% by weight in the composition.
- the invention provides extracts, fractions and compositions comprising 7-hydroxyfrullanolide or its analog(s) for the control, prevention and treatment of one or more metabolic disorder(s), wherein the concentration of 7-hydroxyfrullanolide or its analog(s) or mixtures thereof varies in the range from 0.01% to 99.9%.
- the invention provides biologically active ingredient(s) compositions comprising at least one component selected from 7-hydroxyfrullanolide, its analog(s), the extract(s) or fraction(s) containing 7-hydroxyfrullanolide or its analog(s) or mixture(s) thereof as an active for the control, prevention and treatment of one or more metabolic disorder(s), wherein the concentration of active in the composition varies in the range from 0.001% to 99.9%, preferably 0.01 to 95% by weight.
- the invention provides analogs of 7-hydroxyfrullanolide as described above for the control, prevention and treatment of metabolic disorder(s) and/or for the amelioration of the expression/production of one or more of the biological marker(s) related to metabolic disorder(s), where in the analogs comprises of the compounds represented by the general formula I given below:
- R 1 , R 2 , R 3 , R 4 and R 5 are each independently selected from H, hydrogen, hydroxy, halogen, —OOR 12 , alkoxy, —OC(O)R 12 and C(O)R 12 ; optionally R 1 and R 2 are taken together to form a ketone ( ⁇ O).
- the tricyclic ring system consisting of one or two or three double bonds.
- R 2 and R 3 together form a double bond
- R 3 and R 4 together form a double bond
- R 3 and R 5 together form a double bond
- R 5 and R 6 together form a double bond
- R 8 and R 9 together form a double bond
- R 3 and R 5 together form an epoxide ring
- R 7 is selected from hydrogen, hydroxy, halogen, alkoxy and —OC(O)R 12 ;
- R 8 is selected from hydrogen, hydroxy, halogen, alkoxy, —OC(O)R 12 , —C(O)R 12 and NR 13 R 14 ;
- R 9 is selected from hydroxy, alkyl, cycloalkyl, alkoxy, aryl, heterocyclyl, halogen, —OC(O)R 12 , —C(O)R 12 , azido and —NR 13 R 14 , —S(O) m R 15 , —OS(O) m R 15 ; wherein m is 0, 1 or 2;
- R 10 and R 11 are each independently selected from hydrogen, alkyl, halogen, OR 16 , —NH R 12 and SR 12 ; wherein R 16 is selected from hydrogen, alkyl and C(O)R 12 or R 10 and R 11 together form one of ketone ( ⁇ O), thiok
- the 7-hydroxyfrullanolide or its analogs used for the prevention, control or treatment of obesity, metabolic syndrome and other metabolic disorders or for making the composition of the present invention can be naturally derived from plant species or can be produced through synthesis or semisynthesis.
- the natural analogs of 7-hydroxyfrullanolide described above comprises of frullanolide/eudesmanoid sesquiterpene compounds selected from but not limited to frullanolides, 7-hydroxyfrullanolide (1); 11 ⁇ ,13-dihydro-3 ⁇ ,7 ⁇ -dihydroxy-4,5-epoxy-6 ⁇ ,7-eudesmanolide; 11 ⁇ ,13-dihydro-7 ⁇ -acetoxy-3 ⁇ -hydroxy-6 ⁇ ,7-eudesm-4-enolide; 3-keto- ⁇ -eudesmol; 11 ⁇ ,13-dihydro-3 ⁇ ,7 ⁇ -dihydroxyeudesm-4-en-6 ⁇ ,12-olide; 11 ⁇ ,13-dihydro-3 ⁇ ,7 ⁇ -dihydroxyfrullanolide; 11 ⁇ ,13-dihydro-7 ⁇ ,13-dihydroxyfrullanolide; 11 ⁇ ,13-dihydro-7 ⁇ -hydroxy-3 ⁇ -methaoxyfrullanolide (8); 2 ⁇ ,7 ⁇
- the invention provides biologically active ingredient(s) selected from 7-hydroxyfrullanolide or their analog(s) or their compositions as described above, wherein the synthetic and semi-synthetic analogs of 7-hydroxyfrullanolide comprises (3aR,5aR,9bS)-3,3a,4,5,5a,6,7,8-octahydro-3a,8-dihydroxy-5a,9-dimethyl-3-methylenenaphtho[1,2-b]furan-2(9bH)-one [compound-10, (12)], (3aR,5aS,9bS)-3a,4,5,5a,6,7-hexahydro-3a-hydroxy-5a,9-dimethyl-3-methylenenaphtho[1,2-b]furan-2,8(3H,9bH)-dione [compound-11, (13)], (R)-2,4,5,5a,6,7-hexahydro-5a,9-dimethyl-2-oxona
- the invention provides the extracts and fractions derived from Sphaeranthus indicus containing 7-hydroxyfrullanolide/other frullanolide(s)/eudesmanoid sesquiterpene(s)/other phytochemicals for the prevention, control and treatment of obesity, metabolic syndrome and other metabolic disorders or for making the compositions described above comprises, 7-hydroxyfrullanolide/other frullanolide(s)/eudesmanoid sesquiterpene(s)/other phytochemicals or mixture thereof varies in concentration range of 0.001% to 100%, preferably 0.01 to 99%.
- the concentration of the active compound-7-hydroxyfrullanolide/other frullanolide(s)/eudesmanoid sesquiterpene(s)/other phytochemicals in the compositions comprising Sphaeranthus indicus derived component as described in the previous embodiments varies in the range from 0.001% to 99%, preferably 0.01 to 95% by weight.
- the other biologically active components used for making the compositions comprise components having any health benefit selected from but not limited to anti-diabetic activity, anti-hyperlipidemic activity, anti-obesity activity, anti-hypertensive activity, anti-platelet aggregation activity, anti-infective activity, anti-atherosclerotic activity and anti-inflammatory activity, anti-oxidant activity and bio-enhancing activity.
- the invention provides biologically active ingredient(s) selected from 7-hydroxyfrullanolide, its analogs, the extracts and fractions containing 7-hydroxyfrullanolide or its analogs or mixtures thereof, derived from Sphaeranthus indicus , or their composition, wherein said extract(s) or active fraction(s) or active compound(s) or phytochemicals or mixtures thereof are derived from at least one of the plant parts selected from but not limited to leaves, flower heads, fruits, stem, bark, root, whole plant or mixtures thereof, preferably flower heads.
- biologically active ingredient(s) and their compositions as described in previous embodiments, wherein said 7-hydroxyfrullanolide, it natural analogs, the extract(s) or active fraction(s) containing 7-hydroxyfrullanolide or it natural analog(s) or mixtures thereof or phytochemicals or mixtures thereof derived from Sphaeranthus indicus are obtained through extraction using solvents selected from one or more of organic solvents, alcohols, hydroalcohols, water or mixtures thereof or those followed by partitions and/or chromatography.
- biologically or pharmaceutically acceptable excipients, vehicles and carriers employed in the present invention include, but are not limited to, surfactants, binders, diluents, disintegrators, lubricants, preservatives, stabilizers, buffers, suspensions and drug delivery systems.
- the examples of the biologically or pharmaceutically acceptable excipients, carriers and diluents comprise glucose, fructose, sucrose, maltose, yellow dextrin, white dextrin, aerosol, microcrystalline cellulose, calcium stearate, magnesium stearate, sorbitol, stevioside, corn syrup, lactose, citric acid, tartaric acid, malic acid, succinic acid, lactic acid, L-ascorbic acid, dl-alpha-tocopherol, glycerin, propylene glycol, glycerin fatty ester, poly glycerin fatty ester, sucrose fatty ester, sorbitan fatty ester, propylene glycol fatty ester, acacia, carrageenan, casein, gelatin, pectin, agar, vitamin B group, nicotinamide, calcium pantothenate, amino acids, calcium salts, pigments, flavors, preservatives, distilled
- the invention provides biologically active ingredient(s) or their composition(s) as claimed in preceding embodiments, wherein said component or composition is administered orally, topically or parenterally or by inhalation to a subject or mammal or warm blooded animal in need thereof.
- the invention provides biologically active ingredient(s) or their composition(s) as claimed in preceding embodiments, wherein said components or compositions can be formulated into any suitable formulation like oral agents such as tablets, soft capsule, hard capsule, soft gel capsules, pills, granules, powders, emulsions, suspensions, syrups, pellets, food, beverages, concentrated shots, drops and the like; and parenteral agents such as injections, intravenous drip and the like; suppositories; and transdermal agents such as patches, topical creams and gel; ophthalmic agents; nasal agents; and food or beverages.
- oral agents such as tablets, soft capsule, hard capsule, soft gel capsules, pills, granules, powders, emulsions, suspensions, syrups, pellets, food, beverages, concentrated shots, drops and the like
- parenteral agents such as injections, intravenous drip and the like
- suppositories and transdermal agents such as patches, topical creams and gel
- ophthalmic agents
- the invention provides a method for the control/prevention/treating of a metabolic disorder selected from but not limited to obesity, over weight, diabetes, arteriosclerosis, cardiovascular diseases, hypertension, hypercholesteremia, hyperlipidemia, triglyceridemia, metabolic syndrome, endothelial dysfunction and other metabolic disorders in a mammal or warm blooded animal in need thereof, wherein the method comprises administering a therapeutically effective amount of at least one biologically active ingredient(s) selected from 7-hydroxyfrullanolide, its analog(s), the extract(s) or fraction(s) comprising 7-hydroxyfrullanolide/its analogs or both as an active or mixtures thereof or their compositions as described in preceding embodiments.
- a metabolic disorder selected from but not limited to obesity, over weight, diabetes, arteriosclerosis, cardiovascular diseases, hypertension, hypercholesteremia, hyperlipidemia, triglyceridemia, metabolic syndrome, endothelial dysfunction and other metabolic disorders in a mammal or warm blooded animal in need thereof, where
- the invention provides a method of promoting lipolysis and/or inhibiting adipogenesis comprising administering to a subject or mammal or warm blooded animal in need thereof a therapeutically effective quantity of at least one biologically active ingredient(s) selected from 7-hydroxyfrullanolide, its analog(s), the extract(s) or fraction(s) comprising 7-hydroxyfrullanolide/its analog(s) or both or mixtures thereof as an active or their compositions as described in the preceding embodiments.
- the invention provides a method of using biologically active ingredient(s) selected from 7-hydroxyfrullanolide or its analogs; the extract(s) or fraction(s) comprising 7-hydroxyfrullanolide or its analog(s) or both or their compositions for the amelioration of the expression or production of biological markers selected from but not limited to PPAR- ⁇ , C-reactive protein (CRP), Adipose Differentiation Related Protein (ADRP), adipocyte CD36, macrophage CD36, Monocyte Chemotactic protein (MCP-1), Oxidized LDL, Adipocyte Fatty-acid-Binding Protein (aP2/FABP4/A-FABP), Beta-3 adrenergic receptor ( ⁇ 3-AR), adiponectin, Perilipin, Protein tyrosine phosphatase 1B (PTP 1B), Metalloproteinase-1 (MMP-1), Matrix Metalloproteinase-3 (MMP-3) and Matrix Metalloproteina
- the components selected from 7-hydroxyfrullanolide, its analogs; the extract(s) or fraction(s) or mixtures thereof derived from Sphaeranthus indicus comprising 7-hydroxyfrullanolide as an active ingredient or their compositions as described above can be optionally combined with bio-availability enhancing agents selected from but not limited to extract(s), fraction(s), pure compound(s) derived from Piper nigrum or Piper longum , and Stevia rebaudiana.
- the components selected from 7-hydroxyfrullanolide or its analogs or compositions comprising the extract(s), fraction(s), active compound(s) or phytochemical(s) or mixtures thereof derived from Sphaeranthus indicus comprising 7-hydroxyfrullanolide as an active ingredient or their compositions claimed in the present invention are delivered in the form of controlled release tablets, using controlled release polymer-based coatings by the techniques including nanotechnology, microencapsulation, colloidal carrier systems and other drug delivery systems known in the art.
- the said formulation can be designed for once a daily administration or multiple administrations per day.
- the components selected from 7-hydroxyfrullanolide or its analogs or the extracts or fractions containing 7-hydroxyfrullanolide or their compositions described/claimed in the present invention can also be formulated into or added to existing or new food and beverage form(s) and animal feeds as a healthy food or beverage or feed for prevention, control or treatment of one or more of the diseases including but not limited to obesity, diabetes, hypertension, cardiovascular diseases, neurological disorders, Alzheimer's, cognitive disorders, oxidative stress, skin disorders, aging of the skin, UV irradiated damage, hypercholesterolemia, variations of LDL, HDL & VLDL, hyperlipidemia, triglyceridemia, immune deficiency, cancer, metabolic syndrome, for bringing about weight loss effectively, for producing lean body mass, for using during weight loss program as well as for other metabolic disorders.
- the diseases including but not limited to obesity, diabetes, hypertension, cardiovascular diseases, neurological disorders, Alzheimer's, cognitive disorders, oxidative stress, skin disorders, aging of the skin, UV ir
- the invention provides the use of ingredient(s) or composition(s) for prevention, control and treatment of one or more diseases several diseases or disease conditions including but not limited to obesity, diabetes, hypertension, atherosclerosis, cardiovascular diseases, neurological disorders, Alzheimer's, cognitive disorders, oxidative stress, skin disorders, aging of the skin, UV irradiated damage, hypercholesterolemia, variations of LDL, HDL & VLDL, hyperlipidemia, triglyceridemia, immune deficiency, cancer, metabolic syndrome, for bringing about weight loss effectively, for producing lean body mass, for using during weight loss program as well as for other metabolic disorders.
- diseases or disease conditions including but not limited to obesity, diabetes, hypertension, atherosclerosis, cardiovascular diseases, neurological disorders, Alzheimer's, cognitive disorders, oxidative stress, skin disorders, aging of the skin, UV irradiated damage, hypercholesterolemia, variations of LDL, HDL & VLDL, hyperlipidemia, triglyceridemia, immune deficiency, cancer, metabolic syndrome,
- the invention provides a method of prevention/control/treatment of one or more metabolic disorders selected from obesity, over weight, diabetes, atherosclerosis, arteriosclerosis, cardiovascular diseases, hypertension, hypercholesterolemia, variations of LDL, HDL, VLDL, hyperlipidemia, triglyceridemia, metabolic syndrome, endothelial dysfunction and other metabolic disorders in a mammal or warm blooded animal in need thereof, wherein the method comprises administering to mammal or warm blooded animal a therapeutically effective amount of at least one biologically active ingredient(s) from 7-hydroxyfrullanolide, its analog(s), the extract(s) or fraction(s) comprising 7-hydroxyfrullanolide or its analog(s) or both as an active or mixtures thereof or their compositions.
- one or more metabolic disorders selected from obesity, over weight, diabetes, atherosclerosis, arteriosclerosis, cardiovascular diseases, hypertension, hypercholesterolemia, variations of LDL, HDL, VLDL, hyperlipidemia, triglyceridemia, metabolic
- the invention provides a method of promoting lipolysis and/or inhibiting adipogenesis in a subject or mammal or warm blooded animal in need thereof comprising administering to said subject or mammal or warm blooded animal a therapeutically effective quantity of at least one biologically active ingredient(s) selected from 7-hydroxyfrullanolide, its analog(s), the extract(s) or fraction(s) comprising 7-hydroxyfrullanolide or its analog(s) or both or mixtures thereof as an active or their compositions.
- the invention provides a method of amelioration of the expression or production of at least one biological marker selected from PPAR- ⁇ , C-reactive protein (CRP), Adipose Differentiation Related Protein (ADRP), adipocyte CD36, macrophage CD36, Monocyte Chemotactic protein (MCP-1), Oxidized LDL, Adipocyte Fatty-acid-Binding Protein (aP2/FABP4/A-FABP), Beta-3 adrenergic receptor ( ⁇ 3-AR), adiponectin, Perilipin, Protein tyrosine phosphatase 1B (PTP 1B), Metalloproteinase-1 (MMP-1), Matrix Metalloproteinase-3 (MMP-3) and Matrix Metalloproteinase-13 (MMP-13) in a subject or mammal or warm blooded animal in need thereof, wherein the method comprises administering to the subject or mammal or warm blooded animal a biologically active ingredient(s) selected from 7-
- SIE Sphaeranthus indicus Ethyl Acetate Extract
- Sphaeranthus indicus flower heads (2.2 kg) were charged into a pilot extractor and extracted with ethyl acetate (22 L) at reflux temperature for 2 h.
- the extract was filtered and the spent raw material was re-extracted twice with ethyl acetate (2 ⁇ 13 L) under similar conditions.
- the combined extract was fine filtered and concentrated over a climbing film evaporator to obtain residue (174 g).
- the ethyl acetate extract showed 11% of 7-hydroxy-4, 11(13)-eudesmadien-12,6-olide (7-hydroxyfrullanolide) by HPLC method of analysis.
- Sphaeranthus indicus flower heads (7 kg) were taken into a pilot extractor and extracted with methanol (56 L) at 80° C. temperature for 2 h. The extract was filtered and the spent raw material was re-extracted twice with methanol (2 ⁇ 40 L) under similar conditions. The combined extract was fine filtered and concentrated under vacuum to obtain a residue (1 kg). The methanol extract was suspended in water (1 L) and extracted with ethyl acetate (3 ⁇ 1.5 L). The combined organic layer was evaporated under vacuum and the residue (300 g) was subjected to column chromatography over silica column using eluants of increasing polarity from hexane to acetone.
- the fraction-I was subjected to re-chromatography over silica column using solvents of increasing polarity from chloroform to ethyl acetate.
- the fraction (3 g) eluted with chloroform was evaporated and the residue subjected to repeated chromatography over silica gel using ethyl acetate/hexane mixture to obtain turmerone (2); 60 mg.
- the fractions eluted of the fraction-I column with 2-5% ethyl acetate/chloroform were combined and evaporated, and the residue was subjected to repeated chromatography over silica gel using acetone/hexane and chloroform/hexane mixtures to yield compound-1 (3); 40 mg and compound-2 (4); 50 mg.
- the fraction-II obtained of the main column was subjected to re-chromatography over silica column using chloroform and ethyl acetate/chloroform mixtures as eluants.
- the fractions eluted with chloroform and 5% ethyl acetate/chloroform mixture were combined and evaporated.
- the residue (5 g) was re-purified on silica column again using ethyl acetate/chloroform mixtures and the fraction eluted with 2% ethyl acetate/chloroform was evaporated under vacuum to provide compound-5 (7); 15 mg.
- the fraction eluted with 10% ethyl acetate/chloroform mixture was evaporated to yield a further quantity (3 g) of 7-hydroxyfrullanolide.
- the fraction (12 g) eluted with 20% ethyl acetate/chloroform mixture was subjected to further purification on silica column using acetone/hexane mixtures and the fraction so obtained using 10% acetone/hexane was re-purified on silica column using ethyl acetate/chloroform mixtures to obtain compound-6 (8); 100 mg.
- the other fraction obtained on elution with 20% acetone/hexane mixture furnished compound-7 (9); 20 mg upon evaporation of the solvent.
- the fraction (5 g) eluted with 60% ethyl acetate/chloroform mixture was subjected to further purification on silica column using ethyl acetate to obtain compound-8 (10); 30 mg.
- the fraction-III obtained of the main column was purified on silica column using methanol/ethyl acetate mixtures and the fraction eluted with 5% methanol/ethyl acetate upon evaporation of the solvent yielded compound-9 (11); (1500 mg).
- the RM was then allowed to RT and continued the stirring for 2 h.
- the RM was then poured into ice-cold water and the mixture extracted with EtOAc.
- the organic layer was washed with brine, dried over Na 2 SO 4 and concentrated under vacuum.
- the residue 600 mg was subjected to column chromatography on silica column using acetone/hexane mixtures to obtain 120 mg of compound-16 (18, 24%) in the fraction eluted with 25% of acetone/hexane.
- DMEM Dulbecco's Modified Eagles Medium
- FBS Fetal Bovine Serum
- the differentiating cells were treated with 1.0 or 2 or 2.5 g/ml of 7-hydroxyfrullanolide (1) or different natural analogs (structure numbers 3 to 11) or semi-synthetic analogs (structure numbers 12 to 25) of 7-HF.
- the cells were maintained in the medium for another 3-5 days.
- the cells incubated with 0.1% DMSO were considered as the vehicle control.
- cells were washed with phosphate buffered saline (PBS) and fixed with 10% buffered formalin for 1 h at room temperature.
- PBS phosphate buffered saline
- Fixed cells were stained with Oil Red O solution to measure the cellular neutral lipid accumulation.
- the lipolytic activity was assessed in mature adipocytes as per the procedure of Chemicon International, USA, by measuring free glycerol secreted into the culture medium.
- DMEM Dulbecco's Modified Eagles Medium
- FBS Fetal Bovine Serum
- the differentiation of pre-adipocyte cells was initiated in a differentiation medium containing 10 g/ml insulin, 1.0 M dexamethasone, and 0.5 mM isobutylmethylxanthine (IBMX). The cells were differentiated for 5 days and then the culture medium was removed.
- the monolayer was washed twice with wash solution (Hank's balanced salt solution), and then 250 L of incubation solution (Hank's balanced salt solution plus 2% bovine serum albumin) was added to the wells in triplicate in presence or absence of 7-hydroxyfrullanolide or its analogs or the extracts containing 7-HF, and the cells were further incubated for 16 h.
- 200 ⁇ L of free glycerol assay reagent was added to 25 L of culture supernatants and controls containing glycerol standard. The samples and the controls were incubated for 15 min, and the absorbance was read at 540 nm.
- a standard curve constructed from the glycerol was used to calculate the concentration of free glycerol in the culture supernatants.
- the percentage increase in glycerol concentration in the sample solutions compared to the control containing the known concentrations of glycerol corresponds to the percentage acceleration of lipolysis by test compound.
- the percentage increase in lipolysis accelerated by 7-HF was found to be 47.8% at 5 ⁇ g/ml concentration.
- the data is summarized in Figure II.
- the data for other compounds is summarized in Table-2.
- Mouse pre-adipocyte 3T3-L1 cells are maintained in Dulbecco's Modified Eagles Medium (DMEM) supplemented with 2 mM glutamine, 4.5 g/L glucose and 10% fetal bovine serum. Equal number of cells was plated in each well of 24-well culture plates. Cells were pre-treated separately with 1 ⁇ g/mL 7-hydroxyfrullanolide for 2 h and followed by addition of differentiation medium containing 500 nM insulin, 1.0 ⁇ M dexamethasone, and 0.5 mM isobutylmethylxanthine (IBMX) for 48 h. Thereafter, cells were further incubated with post differentiation medium (DMEM containing 100 nM insulin) in presence or absence of 7-HF.
- DMEM Dulbecco's Modified Eagles Medium
- adipocyte differentiation markers such as Peroxisome proliferator-activated receptor gamma (PPAR ⁇ ), CD36, adipocyte fatty acid binding protein (aP2); and intracellular lipid droplet surface associated protein, perilipin expression were evaluated by immunoblot assay.
- FIG. IV Representative photomicrographs showing inhibition of lipid accumulation by 7-HF in high glucose induced macrophage cells of an in vitro model of atherosclerosis are shown in Figure IV.
- the control culture was supplemented with 100 mg/dL glucose.
- the cells were harvested and lysed with lysis buffer. Cell lysates were clarified at 14,000 g. Protein concentration was measured by Bradford method.
- Equal number (5000 cells) of human endothelial cells was plated in each well of a 96-well cell culture plate.
- the cells were treated with various concentrations (0.1, 0.25, 0.5 and 1.0 ng/ml) of 7-HF for 24 h.
- the control cultures received 0.01% (v/v) DMSO as the vehicle.
- the culture supernatants were collected and mixed with equal volume of Griess reagent [1:1 mixture of NED solution (0.1% N-1-napthylethulenediamine dihydrochloride in water) and Sulfanylamide solution (1% sulfanilamide in 5% phosphoric acid)]. The reaction was allowed for 10 min at room temperature.
- Equal number of 3T3-L1 mouse preadipocytes was seeded into cell culture dishes. After 24 h, the cells were treated either with different concentrations of 7-HF or 500M Sodium vanadate (Na 2 VO 3 ) for further 48 h. Thereafter, the washed cells were lysed with cell lysis buffer and the clarified at 14,000 g for 10 min at 4° C. The protein concentrations were calculated by Bradford method and the cell lysates were reacted with equal volume of substrate reagent containing 10 mM p-nitrophenyl phosphate (pNPP). After 1 h incubation at 37° C., the reaction was stopped with 1N NaOH and the developed color was read at 405 nm. The specific enzyme activity was calculated by using an extinction coefficient of 1.78 ⁇ 10 4 M ⁇ 1 cm ⁇ 1 for pNPP at A 405 . The inhibition shown by 7-HF is depicted in Figure VII.
- SIE Sphaeranthus indicus ethyl acetate extract
- Treatment Following 8 weeks induction phase, the animals were treated orally (using oral feeding gavage) with allocated test substance or vehicle daily for 8 weeks.
- the treatment group animals were supplemented orally with 250 mg/kg body weight of SIE in mL of 0.5% CMC in water for further 8 weeks.
- the control group of animals received only the vehicle (10 mL of 0.5% CMC in water) during this period.
- all animals were provided with the standard rodent diet till the end of the study.
- Body weights Body weight of individual animal was recorded weekly for the entire duration of the study. Mean body weights for the treatment group and control group were determined. The body weight gain was calculated at the end of 1 st week, 4 th week and 8 th week after initiation of treatment in comparison to initial body weight. In comparison to the control group, SIE at 250 mg/kg dose exhibited highly potent and statistically significant (p ⁇ 0.01) reduction in body weight gain (66.04%) in comparison to control group. The results of body weight gain for the treatment groups and control group are summarized in figures XIA & XIB.
- Serum Biochemistry Blood sampling was done via sinus orbital plexus under mild anesthesia, before induction, before initiation of treatment and after completion of treatment.
- biochemical parameters including lipid profile were evaluated using biochemistry reagents supplied by Human, Germany, in an automated clinical chemistry analyzer HumaStar300, Make: Human, Germany.
- Supplementation of ethyl acetate extract of Sphaeranthus indicus (SIE) at 250 mg/kg resulted in improvement in fat profile with 15.3, 12.7 and 22.9 percentage reductions respectively in serum cholesterol, LDL and triglycerides.
- SIE Sphaeranthus indicus
- the Homeostasis Model Assessment (HOMA): The Homeostasis Model Assessment (HOMA): The Homeostasis Model Assessment (HOMA): The Homeostasis Model Assessment (HOMA): The Homeostasis Model Assessment (HOMA): The Homeostasis Model Assessment (HOMA): The Homeostasis Model Assessment (HOMA): The Homeostasis Model Assessment (HOMA): The Homeostasis Model Assessment (HOMA):
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- General Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Pharmacology & Pharmacy (AREA)
- Medicinal Chemistry (AREA)
- Natural Medicines & Medicinal Plants (AREA)
- Engineering & Computer Science (AREA)
- Epidemiology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Organic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Mycology (AREA)
- Botany (AREA)
- Biotechnology (AREA)
- Medical Informatics (AREA)
- Alternative & Traditional Medicine (AREA)
- Microbiology (AREA)
- Diabetes (AREA)
- Immunology (AREA)
- Biomedical Technology (AREA)
- Nutrition Science (AREA)
- Hematology (AREA)
- Obesity (AREA)
- Food Science & Technology (AREA)
- Polymers & Plastics (AREA)
- Neurology (AREA)
- Neurosurgery (AREA)
- Cardiology (AREA)
- Heart & Thoracic Surgery (AREA)
- Zoology (AREA)
- Cell Biology (AREA)
- Virology (AREA)
- Developmental Biology & Embryology (AREA)
- Psychiatry (AREA)
Abstract
The invention discloses biologically active ingredient(s) selected from 7-hydroxyfrullanolide, its analogs, the ex-tract(s) and fraction(s) standardized to 7-hydroxyfrullanolide or its analogs or both or mixtures thereof or their composition(s) for the prevention, control and treatment of one or more obesity, overweight, metabolic syndrome, diabetes and other metabolic disorders or for producing lean body mass in a warm blooded animal in need thereof.
Description
- The present invention discloses biologically active ingredient(s) comprising at least one component selected from 7-hydroxyfrullanolide, its analog(s) or the herbal extract(s) and fraction(s) standardized to 7-hydroxyfrullanolide or its analog(s) or mixtures thereof as a biologically active ingredient or their compositions, optionally containing one or more of pharmaceutically or dietetically acceptable diluents, vehicles, carriers and actives or mixtures thereof for the prevention, control and/or treatment of one or more of the metabolic disorders selected from metabolic syndrome, obesity, diabetes, endothelial dysfunction and other disease indications related thereto.
- The invention also relates to the amelioration of one or more of the biological marker proteins or metabolic processes related to metabolic syndrome, obesity and other metabolic disorders by 7-hydroxyfrullanolide or its analog(s) or the extract(s)/fraction(s) standardized to 7-hydroxyfrullanolide or its analog(s) or mixtures thereof or their compositions.
- Obesity is a medical condition in which excess body fat has accumulated to the extent that it may have an adverse effect on health, leading to reduced life expectancy and/or increased health problems. Body mass index (BMI), a measurement which compares weight and height, defines people as overweight (pre-obese) when their BMI is between 25 kg/m2 and 30 kg/m2, and obese when it is greater than 30 kg/m2. Obesity increases the likelihood of various diseases, particularly heart disease,
type 2 diabetes, breathing difficulties during sleep, certain types of cancer, and osteoarthritis. It is a leading preventable cause of death worldwide, with increasing prevalence in adults and children, and authorities view it as one of the most serious public health problems of the 21st century. - Metabolic Syndrome also known as Syndrome X, insulin resistance syndrome and DysMetabolic Syndrome is a condition, wherein a group of diseased states, which increase atherosclerosis, stroke and diabetes. It was first described by Reaven in 1988 as a cluster of interrelated common clinical disorders, including obesity, insulin resistance, glucose intolerance, hypertension and dyslipidemia.
- A criteria for diagnosing Metabolic Syndrome was established by The Adult Treatment Panel-III (ATP-III) of the National Cholesterol Education Program in 2001. Five Criteria were selected by this Panel to identify individuals with Metabolic Syndrome including abdominal obesity, impaired fasting glucose, high triglyceride (TG), low HDL cholesterol (HDL-C) concentrations and increased blood pressure. Metabolic Syndrome is diagnosed, if any three of the components are present in an individual.
- A lot of research is being carried out over a decade to develop agents to control Metabolic Syndrome. The application of metabolic markers for the control of this syndrome has also been attempted.
- Based on the information cited above and several other documents, the inventors of the present invention have felt the need for the development of an effective compound or composition which can efficiently be used for the prevention, control and treatment of obesity, metabolic syndrome and several other associated and related diseases.
- 3α-hydroxy-5α,9-dimethyl-3-methylene-3α,4,5,5α,6,7,8,9β-octahydro-3H-naphthol[1,2-b]furan-2-one (7-α-Hydroxy-4,11(13)-eudesmadien-12,6-olide or 7-hydroxyfrullanolide) is a natural compound isolated from the flower heads of Sphaeranthus indicus. 7-hydroxyfrullanolide (7-HF) is a sesquiterpene compound.
- None of the published literature describes anti-obese or anti-metabolic syndrome potential of 7-HF. The amelioration of biomarkers or biological processes related to metabolic disorders such as obesity, metabolic syndrome and other disease conditions associated with metabolic syndrome by 7-hydroxyfrullanolide also not known.
- Some of the patent literature of Sphaeranthus is quoted below:
- U.S. Pat. No. 7,635,494 relates to a novel herbal composition comprising an extract of flowering and fruiting heads of the plant, Sphaeranthus indicus. The said extract of Sphaeranthus indicus contains a compound, 3a-hydroxy-5a,9-dimethyl-3-methylene-3a,4,5,5a,6,7,8,9b-octahydro-3H-naphtho[1,2-b]furan-2-one (7-Hydroxy-4,11(13)-eudesmadien-12,6-olide/7-hydroxyfrullanolide) (compound 1), as a bioactive marker. The application also relates to a composition comprising 3a-hydroxy-5a,9-dimethyl-3-methylene-3a,4,5,5a,6,7,8,9b-octahydro-3H-naphtho[1,2-b]furan-2-one (compound 1) as an active ingredient, methods of manufacture of the said compositions, methods of administration of the said compositions to a subject in need of treatment for an inflammatory disorder. The publication also disclosed tumor necrosis factor-α (TNF-α) and interleukin (IL-1, IL-6, IL-8) inhibitory activity of the said compositions.
- PCT Publication WO07036900A2 relates to a novel herbal composition comprising an extract of flowering and fruiting heads of the plant, Sphaeranthus indicus containing 3a-hydroxy-5a,9-dimethyl-3-methylene-3a,4,5,5a,6,7,8,9b-octahydro-3H-naphtho[1,2-b]-furan-2-one (7-Hydroxy-4,11(13)-eudesmadien-12,6-olide), as a bioactive marker and relates to methods of manufacture of the said compositions.
- PCT Publication WO06016228A2 relates to a compound or group of compounds present in an active principle derived from plants of the species Sphaeranthus, for the preparation of pharmaceutical formulations or food supplements for the prophylaxis and/or treatment of tumor diseases. The said invention furthermore relates to a novel method for the isolation of an active principle from Sphaeranthus plant parts which are effective in prophylaxis and/or treatment of cancers.
- According to our knowledge, there is no prior art relating to the usage of 7-hydroxyfrullanolide or its analogs and their compositions for the amelioration of metabolic markers or for the control, prevention and treatment of diseased conditions associated with or related to obesity, metabolic Syndrome and other metabolic disorders.
- In the primary embodiment, the invention provides biologically active ingredient(s) comprising at least one component selected from 7-hydroxyfrullanolide, its analog(s); extract(s) and fraction(s) containing 7-hydroxyfrullanolide or its analog(s) or both; or mixtures thereof for the prevention, control and/or treatment of one or more metabolic disorders.
- In another embodiment the invention provides biologically active composition comprising at least one component selected from the list comprising 7-hydroxyfrullanolide, its analog(s); the extract(s) or fraction(s) containing 7-hydroxyfrullanolide/its analog(s) or both; or mixture(s) thereof as an active in combination with one or more ingredients selected from other biologically active components derived from plants, animals and microorganisms; pharmaceutically or dietetically acceptable active ingredients, vitamins, amino acids, minerals, vehicles, carriers and diluents or mixtures thereof for the prevention, control and/or treatment of one or more metabolic disorders.
- In yet another embodiment, the invention provides biologically active ingredient(s) or their composition(s) for the amelioration of the expression/production of one or more biological marker proteins related to metabolic disorders.
- In yet another embodiment, the invention provides compositions comprising at least one component selected from 7-hydroxyfrullanolide, its analogs, the extract(s) and fraction(s) standardized to 7-hydroxyfrullanolide or its analogs or mixtures thereof as an active ingredient and at least one component selected from pharmaceutically or dietetically acceptable phytochemical actives, plant extracts, diluents, vehicles, carriers and actives or mixtures thereof for the control, prevention and treatment of metabolic disorders, which include but not limited to metabolic syndrome or obesity, and/or one or more disease indications related to or associated with metabolic syndrome.
- In still another embodiment, the invention provides pharmaceutical or dietary supplement or food ingredient selected from 7-hydroxyfrullanolide, its analog(s) and the extract(s) and fraction(s) standardized to 7-hydroxyfrullanolide alone or its analogs or mixtures thereof or their composition(s) for the amelioration of the expression or production of one or more biological marker proteins related to or associated with metabolic syndrome, obesity and other disease conditions associated with metabolic syndrome including but not limited to Peroxisome proliferator-activated receptor gamma (PPARγ), Adipose Differentiation Related Protein (ADRP), adipocyte CD36, Macrophage CD36, Monocyte Chemotactic protein (MCP-1), Oxidized LDL (Ox-LDL), adipocyte fatty-acid-binding protein (aP2/FABP4/A-FABP), beta-3 Adrenergic Receptor (β3AR), Perilipin, Adiponectin, Protein tyrosine phosphatase-1B (PTP-1B), Metalloproteinase-1 (MMP-1), Matrix Metalloproteinase-3 (MMP-3) and Matrix Metalloproteinase-13 (MMP-13).
- In the other embodiment, the invention provides method(s) for the prevention, control and/or treatment of metabolic disorders, which include but not limited to obesity, over weight, diabetes, arteriosclerosis, cardiovascular diseases, hypertension, hypercholesteremia, hyperlipidemia, triglyceridemia, metabolic syndrome, endothelial dysfunction and other metabolic disorders in warm blooded animals, wherein the method comprises of administering to a warm blooded animal in need thereof an effective amount of a component selected from 7-hydroxyfrullanolide, its analog(s), the extract(s) and fraction(s) containing 7-hydroxyfrullanolide alone or its analogs or mixtures thereof or their composition(s).
- Figure I: Illustration of anti-adipogenic activity of 7-hydroxyfrullanolide (7-HF). 7-HF decreases the lipid content in mouse adipocytes by inhibiting adipogenesis process. Photomicrographs show lipid accumulation in Oil Red O stained 3T3-L1 adipocytes treated with either 0.1% DMSO as the vehicle control, or 1 μg/ml 7-HF. Arrows indicate the lipid vesicles in the cytoplasmic compartment of adipocytes.
- Figure II: Illustration of prolipolytic activity of 7-hydroxyfrullanolide (7-HF). Bar diagram represents 7-HF increases glycerol release into the cell culture supernatant in a dose dependent manner. Equal number of 313-L1 mouse pre-adipocytes was differentiated and maintained in post differentiation medium to obtain mature adipocytes. The mature adipocytes were treated with 2.5 and 5.0 μg/ml of 7-HF for 2 h. Lypolytic potential of 7-HF was evaluated by measuring the released glycerol in the culture supernatant by Glycerol assay reagent. Each bar represents the mean±SD of released glycerol (n=6). P value of <0.05 was considered as statistically significant (Students t test).
- Figure III: Amelioration of marker proteins of Adipogenesis and lipolysis by 7-hydroxyfrullanolide (7-HF). Figure illustrates modulation of marker proteins of adipogenesis and lipolysis processes by 7-HF in 3T3-L1 adipocytes. Representative immuno blots indicate down-regulation of various marker proteins such as PPARγ, ADRP, CD36, aP2, and perilipin. The 3T3-L1 mouse pre-adipocytes were allowed to differentiate in absence or presence of 1 ug/ml of 7-HF. Vehicle control cultures received only similar concentrations of DMSO. Expression of actin protein was evaluated in each blot as the internal control. Expression of each protein was measured densitometrically and normalized with actin expression. The comparative levels protein expressions are represented as bar diagrams (side panels).
- Figure IV: Illustrates Representative photomicrographs show 7-HF inhibits lipid accumulation in high glucose induced macrophage cells of an in vitro model of atherosclerosis. The J774 mouse macrophage cells were exposed to high glucose (600 mg/dL) for 5 days in presence or absence of 1 μg/ml of 7-HF. Control cultures (A) received low glucose (100 mg/dL). B and C represent the macrophage cells supplemented with 600 mg/dL of glucose alone or in combination with 1 μg/ml of 7-HF, respectively.
- Figure V: Illustration of the down-regulation of high glucose induced CD36 expression in macrophage cells 7-HF. The J774 mouse macrophage cells were exposed to high glucose (600 mg/dL) for 5 days in presence or absence of 1 μg/ml of 7-HF. Control culture received low glucose (100 mg/dL). Representative immuno-blot assay demonstrates down regulation of CD36 protein and expression of actin protein is considered as the internal control. Bar diagram shows the CD36 expression normalized with actin protein (lower panel).
- Figure VI: Bar diagram represents increased nitric oxide production in human endothelial cells induced by 7-HF in a dose dependent manner. Equal number of human endothelial cells was treated with various concentrations of 7-HF (0.1, 0.25, 0.50, 1.00 ng/ml respectively) as indicated for 24 h. The control cultures received 0.01% (v/v) DMSO as the vehicle. Culture supernatants were collected and the nitrite concentrations were estimated quantitatively by Griess reagent. Each bar represents mean±SD of nitrite concentration (μM) (n=5). * indicates significance, p<0.01 (vs. control).
- Figure VII: Bar diagram represents inhibition of PTP-1B activity in 3T3-L1 cells. 7-HF inhibits PTP-1B activity in 3T3-L1 cells in a dose dependent manner. Equal number of 3T3-L1 mouse pre-adipocytes was treated with either 1.0 or 2.5 □g/ml of 7-HF for 48 h. Cells were treated with 50 □M Na2VO3 as a positive control. PTP-1B activity in cell lysates was analyzed based on the hydrolysis of p-nitrophenyl phosphate (pNPP) substrate. Each bar represents the mean±SD of enzyme activity in pmol/min/□g of cell lysate protein (n=5). * indicates significance at P<0.05 (vs. control), and # indicates P<0.001 (vs. control).
- Figure VIII: Representative immunoblot showing over expression of adiponectin protein in 3T3-L1 adipocytes treated with 1 μg/ml of 7-hydroxyfrullanolide (7-HF). Protein expressions were densitometrically analyzed and normalized with the actin expression. Bar diagram in each panel shows normalized protein expressions in arbitrary units. In bar diagrams, the bars represent protein expressions in cells treated with vehicle control (a) and 7-HF (b).
- Figure IX: Figure represents the natural analogs of 7-hydroxyfrullanolide isolated from Sphaeranthus indicus.
- Figure X: Figure represents the semi-synthetic analogs of 7-hydroxyfrullanolide.
- Figure XIA: Bar diagrammatic representation of body mean weight gain in HFD induced metabolic syndrome model of SD rats supplemented without (1) or with (2) ethyl acetate extract of Sphaeranthus indicus (SIE) from week-1 to week-8 of treatment. Each bar represents mean±SD, *p<0.05.
- Figure XIB: Line diagrammatic representations of body weight gain in diet induced metabolic syndrome model of SD rats supplemented with (2) or without (1) 7-hydroxyfrullanolide. Each line indicates change in mean body weight gain during eight-week treatment period.
- Figure XII: Bar diagrammatic representation of increase in serum adiponectin concentration in diet induced metabolic syndrome model of Sprague Dawley rats. Each bar indicates mean±SD of serum adiponectin concentration at 0 day and after 56 days of treatment with either vehicle (1) or ethyl acetate extract of Sphaeranthus indicus (SIE) (2) as indicated in the diagram. N=6, * indicates statistical significance (t-test, 8 weeks vs. 0 week).
- Figure XIII: Bar diagrammatic representation of reduction of HOMA Index in ethyl acetate extract of Sphaeranthus indicus (SIE) supplemented metabolic syndrome model of Sprague Dawley rats. Each bar indicates mean±SD of HOMA Index (arbitrary units) at 0 week and at 8 weeks of supplement with either vehicle (1) or 250 mg/kg of SIE (2). N=6; * indicates statistical significance (t-test, SIE group vs. control at 8 weeks).
- Obesity is excess body weight for a particular age, sex and height as a consequence of imbalance between energy intake and energy expenditure. The primary causes of obesity are either due to overeating, inadequate exercise or eating disorder, some genetic disorders, underlying illness (e.g. hypothyroidism), certain medications or sedentary lifestyle. Obesity increases the risk of many diseases and health conditions such as hypertension, dyslipidemia (for example, high total cholesterol or high levels of triglycerides),
type 2 diabetes, coronary heart disease, stroke, gallbladder disease, osteoarthritis, sleep disorders, respiratory problems, tumors (endometrial, breast, and colon), arteriosclerosis and heart failure. - Metabolic syndrome is a condition involving a set of disorders that enhances the risk of heart disease. The major components of metabolic syndrome are excess weight, the cardiovascular parameters (high blood pressure, dyslipidemia, high levels of triglycerides and low levels of HDL in the blood), atherosclerosis, diabetes and insulin resistance. A subject suffering with several of these components, i.e. metabolic syndrome is highly prone to heart disease, though each component is a risk factor. Even though several classes of drugs are available in the market for the treatment of different components of Metabolic Syndrome and many of them are associated with a number of side effects, very few medicines are available to treat Metabolic Syndrome and none of them are comprehensive in addressing all the associated diseases. Hence there exists a great medicinal need for developing agents for the prevention, control and treatment against metabolic syndrome, obesity, diabetes, hypertension and atherosclerosis especially using safe and beneficial natural compounds.
- Keeping this in mind the inventors have conducted extensive research investigation involving several in vitro and in vivo experiments on several plant extracts, fractions and pure compounds and found surprisingly that administration of 7-hydroxyfrullanolide (7-HF) in a therapeutically effective amount in cell based studies potently ameliorated metabolic processes which include inhibition of adipogenesis and promotion of adipolysis (lipolysis). In addition, 7-HF was also found to potently modulate the expression and production of many bioactive protein molecules related to different components of metabolic disorders such as obesity and metabolic syndrome. These unexpected aspects of the present invention are summarized below.
- Adipogenesis: Adipogenesis is the differentiation and proliferation of pre-adipocytes into major adipocytes or fat cells and it has been one of the most intensely studied models of cellular differentiation. In the adipogenesis process, proliferation of preadipocytes or precursor fat cells is followed by the differentiation of these cells into mature adipocyte phenotype. The nuclear receptor PPAR-γ is expressed predominantly in adipose tissue, where it is known to play a critical role in adipocyte differentiation and fat deposition. Adipocytes secrete proteins exhibiting either beneficial (leptin, adiponectin) or deleterious effects (angiotensinogen). A disturbance in the balance between these various secreted factors, in association with the effect of secretory products from macrophages (cytokines), leads to the development of metabolic syndrome.
- Lipolysis: Lipolysis is the breakdown of stored lipid in adipocytes. β3-Adrenoreceptor agonists can stimulate lipolysis in the white adipose tissue and thermogenesis in the brown adipose tissue. Adipose tissue lipolysis is the catabolic process leading to the breakdown of triglycerides stored in fat cells and release of fatty acids and glycerol. The proteins involved in the lipolytic process constitute drug targets for the treatment of obesity and the metabolic syndrome.
- Thus the phytochemical agents having the adipogenesis and lipolysis activities could be useful in the treatment of obesity, metabolic syndrome and other metabolic disorders.
- We have disclosed the compositions and synergistic compositions of Sphaeranthus indicus in our earlier Indian provisional application no. 224/CHE/2009 filed on Feb. 2, 2009 and PCT application no. PCT/IN2010/000053 filed on Feb. 1, 2010. The ameliorative effect of biomarkers expression such as PPAR-γ, ADRP, CD 36, aP2, β3AR and Perilipin by Sphaeranthus indicus ethanol extract (SIE) along with 7-hydroxyfrullanolide (LI054A01) was also disclosed.
- In a cell based assay, 7-HF potently inhibited lipid accumulation in 3T3-L1 human adipocyte cells as depicted in Figure I. 7-Hydroxyfrullanolide (1) exhibited 52.5% inhibition of lipid accumulation at 1 μg/ml concentration in 3T3-L1 Human pre-adipocyte cells in a cell based in vitro assay. In addition, 7-HF also inhibited lipid accumulation in high glucose induced J774 mouse macrophage cells of an in vitro model of atherosclerosis as depicted in FIG. IV. Further, 7-Hydroxyfrullanolide potently enhanced lipolysis in 3T3-L1 Human pre-adipocyte cells. 7-HF showed 47.8% increase in lipolysis at 5 μg/ml concentration in an in vitro cell based assay.
- Adipocytes and macrophages play important role in the pathogenesis of metabolic syndrome and disease components associated with it. They both share a number of common features, including the ability to phagocytize and kill microorganisms and to secrete cytokines such as tumor necrosis factor (TNF) and interleukin-1 (IL-1). Critical transcription factors in adipocytes involved in regulating the expression of cytokines, inflammatory molecules, and fatty acid transporters are also expressed and have similar biologic roles in macrophages. The adipocytes, in addition to accumulating fat during the obesity development, produce and circulate several low molecular weight bioactive protein molecules having powerful effects throughout the body. These protein markers are related to different components of metabolic disorders such as obesity and metabolic syndrome. The expression and production of several of these metabolic markers, which include but not limited to PPAR-γ, Adipose Differentiation Related Protein (ADRP), CD36, Adipocyte Fatty-Acid-Binding Protein (aP2/FABP4/A-FABP), Beta-3 adrenergic receptor (β3-AR), adiponectin and Perilipin, become abnormal during obesity and metabolic syndrome and other disease conditions associated with metabolic syndrome.
- A brief description of some of the metabolic biomarker molecules that are involved in the pathogenesis and control of metabolic syndrome and the disease conditions associated is outlined below:
- Peroxisome proliferator-activated receptor-γ (PPAR-γ): Peroxisome proliferator-activated receptor-γ (PPAR-γ) is a nuclear receptor that plays a pivotal role in obesity and diabetes. An increase in adipose tissue mass can be the result of the production of new fat cells through the process of adipogenesis and the deposition of increased amounts of cytoplasmic triglyceride or lipid droplets per cell. In the adipogenesis process, proliferation of preadipocytes or precursor fat cells is followed by the differentiation of these cells to the mature adipocyte phenotype. PPAR-γ is expressed predominantly in adipose tissue, wherein it is known to play a critical role in adipocyte differentiation and fat deposition.
- Adipose differentiation related protein (ADRP): ADRP is a 50 kD protein and it's mRNA (ADRP mRNA), which is 1.7 Kb in size, is expressed at high level in adipose tissue. The expression of ADRP is very low in undifferentiated adipocytes, but ADRP mRNA reaches 50 to 100-fold in few hours after the onset of adipose differentiation process. The above thus indicate the possible role of ADRP in the formation or stabilization of lipid droplets in adipocytes and other cells. ADRP specifically enhances uptake of long chain fatty acids by adipose tissue. Hence ADRP is an important target to identify the compounds that can potentially control obesity and diabetes through regulation of the expression of ADRP.
- Adipocyte CD36: CD36 is a common protein marker expressed by both adipocytes and macrophages. The CD36 expressed in adipocytes is known to function as a fatty acid transporter (FAT). It is a scavenger receptor that binds and internalizes oxidized LDL (Ox LDL) in macrophages. CD36 also functions as a long-chain fatty acid (LCFA) transporter to facilitate the uptake of LCFAs in adipocytes. The CD36 expression is up-regulated by PPAR during the differentiation of both types of cells. It is also shown that the adipocytes can endocytose and lysosomally degrade Ox LDL, a process mainly mediated by CD36. The CD36 null animals thus found to show significant decrease in binding and uptake of oxidized low density lipoprotein and showed significant increase in fasting levels of cholesterol, nonesterified free fatty acids, and triacylglycerol.
- Fatty-Acid-Binding Protein (aP2/FABP4): FABPs are molecular chaperones linked to metabolic and inflammatory pathways. Different members of the FABP family exhibit unique patterns of tissue expression/distribution and are expressed most abundantly in tissues involved in active lipid metabolism. FABPs play numerous functions. As lipid chaperones, for example, FABPs may actively facilitate the transport of lipids to specific compartments in the cell, such as to the lipid droplet for storage; to the endoplasmic reticulum for signaling, trafficking and membrane synthesis; to the mitochondria or peroxisome for oxidation. A-FABP is abundantly present in human serum and it may play a central role in the development of major components of the metabolic syndrome such as obesity,
type 2 diabetes and cardiovascular diseases, through its distinct actions in adipocytes and macrophages. Hence aP2 is an important marker for metabolic disorders. - Perilipin: Perilipin is a protein that forms a coating around the lipid droplets in adipocytes. It is a protective coating against body's natural lipases, such as hormone-sensitive lipase, that breaks triglycerides into glycerol and free fatty acids by a process called lipolysis. Perilipin [PLIN] may play key role in obesity. Following β-adrenergic receptor activation, protein kinase A (PKA) hyperphosphorylates perilipin localized at the surface of the lipid droplet. Phosphorylated perilipin changes conformation and translocate away from the lipid droplet, exposing the stored lipids to hormone-sensitive lipase-mediated hydrolysis of triglycerides (lipolysis) to release non esterified fatty acids (NEFA). Perilipin is thus an important regulator of lipid storage, lipolysis and energy balance and is an important target for developing anti-obesity drugs.
- The inventors have thus evaluated the efficacy of 7-hydroxyfrullanolide in the modulation of the above metabolic biomarkers that are primarily responsible for the adipogenesis processes, insulin resistance in
type 2 diabetes, obesity, metabolic syndrome and other metabolic disorders using an immunoblot assay in 3T3-L1 adipocytes. It was found surprisingly that 7-hydroxyfrullanolide potently ameliorated the levels of several adipocyte differentiation markers such as Peroxisome proliferator-activated receptor gamma (PPARγ), ADRP, CD36, Fatty Acid Binding Protein 4 (aP2/FABP4) and intracellular lipid droplet surface associated protein (perilipin) (FIG. III) in a dose dependent manner. This unexpected result confirms the potential of 7-HF to control, prevent and treat metabolic disorders through modulating multiple disease targets. - Efficacy of 7-hydroxyfrullanolide in the improvement of cardiovascular health Macrophage CD36: CD36 is a prototypic member of the class B scavenger receptor family. It is widely expressed on the surface of monocytes and macrophages, and mediates uptake of oxidized low-density lipoprotein (Ox-LDL) as well as play a role in diverse cellular processes including foam cell formation, fatty acid transport, engulfment and removal of senescent cells, suppression of angiogenesis, and cellmatrix interactions. As such it can be an important risk factor of cardiovascular disease and a potential molecular maker of atherosclerosis. Hyperglycemia-induced synthesis of CD36 in macrophages has been associated with increased uptake of Ox-LDL by macrophages and foam cell formation in atherosclerotic lesions in people with diabetes.
- Inhibition of CD36 protein expression in high glucose induced J774 macrophage cells in presence or absence of 7-HF was evaluated using immunoblot assay and the results are summarized in Figure V. The CD36 levels were significantly enhanced in the cells treated with glucose. However, these levels were reduced back towards their base values in the cells treated with 7-HF when compared to the untreated control cells. This unexpected observation provides support in favor of the potential use of 7-HF for the prevention, control and treatment of cardiovascular diseases.
- Nitric oxide (NO): Nitric oxide (NO) is a key biological molecule that, either directly or through intracellular signaling, stimulates host defenses in the immune system, maintains blood pressure in the cardiovascular system and modulates neural transmission in the brain. NO is an activator of soluble guanylyl cyclase, which converts guanosine triphosphate (GTP) to cyclic guanosine monophosphate (cGMP) and leads to vasodilatation and inhibition of leukocyte and platelet activation. As the biologically active component of endothelium-derived relaxing factor, NO plays critical roles in the maintenance of vascular homeostasis. Hence, compounds that enhance the NO levels can have potential health benefits in humans. However, the volatile nature of NO makes it unsuitable for most detection methods. In the cell, NO undergoes a series of reactions with several molecules present in biological fluids and is eventually metabolized to nitrite (NO2 −) and nitrate (NO3 −). Hence measuring the nitrite level gives an indication of nitric oxide. The ability of 7-HF to modulate the NO level was evaluated in a human endothelial (HE) cellular model and found surprisingly significant and dose dependent increase in NO concentration in cell culture supernant following administration of the HE cells with 7-HF. The data is summarized in Figure VI.
- Inhibition of Protein Tyrosine Phosphatase 1B (PIP-1B) by 7-HF:
- Resistance to the hormone insulin is the hallmark of
type 2 diabetes and obesity. Protein tyrosine phosphatase 1B (PIP-1B) is regarded as a physiological negative regulator of insulin signal transduction in insulin sensitive cells such as adipocytes, muscle cells and hepatocytes. In insulin resistant diabetes and obesity, the PTB-1B is over expressed and its enzyme activity is increased. Over expression of PTP-1B decreases insulin receptor and IRS-1 Phosphorylation and hence produces insulin resistance. Silencing of PIP-1B gene in an animal study astonishingly provided resistance from developingtype 2 diabetes. Therefore, inhibition of PTP-1B has recently been emerged as a potential target to treattype 2 diabetes. The ability of 7-HF in modulating PIP-1B was evaluated in 3T3-L1 mouse preadipocytes. Surprisingly, the adipocytes treated with 7-HF in the present invention exhibited significant inhibition of PTP-1B activity as summarized in Figure VII. This observation thus indicates that 7-HF can also be used as a potential therapeutic intervention to prevent, control and treattype 2 diabetes and insulin resistance. - Modulation of Adiponectin by 7-HF:
- Adiponectin is an important adipokine hormone exclusively secreted from the adipose tissue and it modulates a number of metabolic processes including glucose homeostasis and lipid metabolism. It is known that low levels of adiponectin are associated with disease states such as obesity, diabetes and cardiovascular disease. Administration of adiponectin was proven to be beneficial in animal models of diabetes, obesity and atherosclerosis. High plasma concentrations of adiponectin were also found to associate with lower risk of Myocardial Infarction in men. Therefore, adiponectin has been established as a promising marker of obesity, metabolic syndrome and other metabolic disorders. The modulation of adiponectin protein by 7-HF in 3T3-L1 adipocytes was evaluated in Western immunoblot assay. The cell culture, treatment protocol and immunoblot assay methodology were as per the standard protocol. 7-HF showed potent upregulation of adiponectin protein expression in 3T3-L1 mature adipocytes as depicted in Figure VIII, manifesting its potential use in the prevention, treatment and control of metabolic disorders, such as obesity, insulin resistance or
Type 2 diabetes and endothelial dysfunction. - It was quite unexpected and surprising to see that a single ingredient, 7-hydroxyfrullanolide could be able to modulate the marker proteins related to many disease conditions associated with metabolic disorders. This suggests that 7-hydroxyfrullanolide could be a potential therapeutic agent to prevent, treat and control metabolic syndrome, obesity, diabetes, atherosclerosis, endothelial dysfunction, chronic kidney disease (CKD) and other metabolic disorders in animals and humans.
- Several natural analogs, namely compound-1 to compound-9 and their structures are depicted as those with
numbers 3 to 11 respectively in FIG. IX, have been isolated as congeners of 7-hydroxyfrullanolide from Sphaeranthus indicus alcohol extract and their structures characterized using IR, 1H NMR, 13C NMR and Mass Spectral data. Several of these natural analogs have shown potent anti-adipogenesis activity in the cell based assay. Out of these compound-2(4), compound-3(5), compound-5(7), compound-7(9) and compound-8(10) are found to be new to the best of our knowledge. The anti-adipogenic potential of some of these analogs are summarized in Table-1. - Similarly, several synthetic analogs of 7-hydroxyfrullanolide, named sequentially as compound-10 to compound-23 in the present invention, have been prepared using a semi-synthetic process and their structures are depicted as those with
numbers 12 to 25 respectively as in Figure X. Their biological activity was evaluated in a cell based assay. These compounds also exhibited antiadipogenic potential and inhibited lipid accumulation in human 3T3-L1 adipocytes as summarized in Table-1. - The extracts containing 7-hydroxyfrullanolide and/or one or more of the analogs of 7-hydroxyfrullanolide also showed potent anti-adipogenic activity in 3T3-L1 Human pre-adipocyte cells. The ethyl acetate extract of Sphaeranthus indicus (SIE) containing 11% of 7-hydroxyfrullanolide, for example, showed 65.9% inhibition of lipid accumulation at 10 μg/mL concentration in human 3T3-L1 pre-adipocyte cells. Further, SIE accelerated the lipolysis by 26.7% at 25 μg/mL as indicated by the percentage increase in glycerol release in the lipolysis assay.
- The efficacy shown by SIE in vitro models was further evaluated in an in vivo rat model of metabolic syndrome (MS). Metabolic syndrome condition was experimentally induced in male Sprague Dawley rats by feeding the rats with high fat, high cholesterol, high salt and high sucrose diet for eight weeks. After eight weeks of induction period, the rats were randomly divided into two groups with six animals in each group and the treatment group animals were supplemented orally with 250 mg/kg body weight of SIE in 10 mL of 0.5% CMC in water for further 8 weeks. The control group of animals received only the vehicle (10 mL/kg of 0.5% CMC in water) during this period. Body weight of individual animal was recorded weekly for the entire duration of the study. Mean body weights for the treatment group and control group were determined. The body weight gain was calculated at the end of 1st week, 4th week and 8th week after initiation of treatment in comparison to initial body weight. SIE at a dose of 250 mg/kg exhibited highly potent and statistically significant (p<0.01) reduction in body weight gain (66.04%) in comparison to control group as summarized in figures XIA & XIB.
- Assessment of serum adiponectin in MS rats: The serum adiponectin concentration in the treatment and control groups of animals was assessed using double antibody based sandwich rat adiponectin ELISA kit. The data revealed that daily supplementation of SIE at 250 mg/kg body weight for 8 weeks resulted in significant (p=0.00618) improvement in serum adiponectin concentration, when compared to the baseline as summarized in Figure XII. The control group, however, did not show such improvement in serum adiponectin concentration.
- Supplementation of SIE at 250 mg/kg also resulted in improvement in fat profile with 15.3, 12.7 and 22.9 percentage reductions respectively in serum cholesterol, LDL and triglycerides. This is well corroborated with its efficacy observed in improvement of adiponectin levels.
- Homeostasis Model Assessment (HOMA):
-
- The HOMA index was calculated based on serum insulin and glucose levels using the formula: Fasting insulin concentration (μU/mL)×Fasting glucose concentration (mmol/L)/22.5. The data presented in Figure XIII manifested that compared to the control group, supplementation of a daily dose of 250 mg/kg of ethyl acetate extract of Sphaeranthus indicus (SIE) for 8-weeks resulted in significant reduction of HOMA index. The Homeostatic Model Assessment (HOMA) is widely considered as a measure of insulin resistance and beta cell function in clinical research. The data indicates that (SIE) can be a therapeutic agent to improve insulin sensitivity and β-cell function.
- Based on the above animal study, it is obvious that ethyl acetate extract of Sphaeranthus indicus (SIE) not only reduces obesity but also ameliorates various symptoms of metabolic syndrome including body weight gain, visceral and organ fat deposition and improves lipid profile, glucose homeostasis, insulin resistant type-II diabetes, β-cell function etc.
- The foregoing thus suggest that 7-hydroxyfrullanolide, its analogs, the extracts/fractions containing 7-hydroxyfrullanolide or its analogs or both or mixtures thereof or their compositions can be potential pharmaceutical/dietary supplement/food ingredient for the control, prevention and treatment of one or more metabolic disorder(s) and/or for the amelioration of the expression/production of one or more of the biological markers related to metabolic disorders.
- The present invention comprises different aspects cited below:
- For the purpose of this invention, the word “component” or “biologically active ingredient” widely used in the specification and claims of the present invention refer to 7-hydroxyfrullanolide alone, or one or more of its analog(s); or the extracts or fraction standardized to 7-hydroxyfrallanolide or analog(s) or both; or mixtures thereof. The word “component” or “biologically active ingredient” are used interchangeably through out the specification and the same may be appreciated as such by the person skilled in the art.
- The word “composition” used in the specification and claims of the present invention refers to combination of one or more of 7-hydroxyfrullanolide or one or more of its analog(s); or the extracts or fraction standardized to 7-hydroxyfrallanolide or analog(s) or both; or mixtures thereof with one or more of other biologically active components, vehicles, carriers and diluents etc.
- The phrase “other biologically active components” refers to extract(s) or fraction(s) or compound(s) derived from plants, animals and microorganisms.
- In an important embodiment, the invention provides biologically active ingredient(s) selected from one or more of 7-hydroxyfrullanolide alone, its analog(s) and the extract(s) or fraction(s) containing 7-hydroxyfrullanolide alone/its analog(s) or both or mixture(s) thereof as an active for the control, prevention and treatment of one or more metabolic disorder(s) and/or for the amelioration of the expression/production of one or more of the biological markers related to metabolic disorders.
- In another important embodiment, the invention provides biologically active ingredient(s) compositions comprising at least one component selected from 7-hydroxyfrullanolide, its analog(s), the extract(s) or fraction(s) containing 7-hydroxyfrullanolide/its analog(s) or both or mixture(s) thereof as an active in combination with one or more selected from biologically actives derived from plants, animals and microorganisms, pharmaceutically or dietetically acceptable active ingredients, vitamins, aminoacids, minerals, vehicles, carriers and diluents or mixtures thereof for the prevention, control and treatment of one or more metabolic disorder(s) and/or for the amelioration of the expression/production of one or more of the biological markers related to metabolic disorders.
- In the other important embodiment, the metabolic disorders to be controlled/prevented/treated by the biologically active ingredient(s) or compositions described comprise obesity, over weight, diabetes, arteriosclerosis, cardiovascular diseases, hypertension, hypercholesteremia (LDL, HDL, VLDL), hyperlipidemia, triglyceridemia, metabolic syndrome, endothelial dysfunction and other metabolic disorders.
- In the other embodiment, the invention provides biologically active ingredient(s) selected from one or more of the components 7-hydroxyfrullanolide, its analog(s) and the extract(s) or fraction(s) containing 7-hydroxyfrullanolide alone or its analog(s) or mixture(s) thereof or their composition(s) for the amelioration of the expression or production of one or more biological marker proteins related to or associated with metabolic syndrome, obesity and other disease conditions associated with metabolic syndrome including but not limited to Peroxisome proliferator-activated receptor gamma (PPARγ), Adipose Differentiation Related Protein (ADRP), adipocyte CD36, Macrophage CD36, Monocyte Chemotactic protein (MCP-1), Oxidized LDL (Ox-LDL), adipocyte fatty-acid-binding protein (aP2/FABP4/A-FABP), beta-3 Adrenergic Receptor (β3AR), Perilipin, Adiponectin Protein tyrosine phosphatase-1B (PTP-1B), Metalloproteinase-1 (MMP-1), Matrix Metalloproteinase-3 (MMP-3) and Matrix Metalloproteinase-13 (MMP-13).
- In another embodiment of the invention the 7-hydroxyfrullanolide and its analog(s) mentioned in the previous embodiments are of synthetic or semi-synthetic origin or natural origin, wherein the natural origin can be any plant species that produces 7-hydroxyfrullanolide or its analog(s) or mixtures thereof, more selectively Sphaeranthus indicus.
- In another embodiment the invention provides the extract(s) and fraction(s) comprising 7-hydroxyfrullanolide or its analogs or mixtures thereof, wherein these extracts or fraction can be derived from any plant species that produces 7-hydroxyfrullanolide or its analog or mixtures thereof, more selectively Sphaeranthus indicus.
- In another embodiment the invention provides biologically active ingredient(s) comprises of the extracts and fractions containing 7-hydroxyfrullanolide or its analogs or mixtures thereof wherein the said extracts and fractions contain 7-hydroxyfrullanolide or its analog(s) or mixtures thereof in the range of 0.001% to 100%, preferably 0.01 to 99%.
- In another embodiment, the invention provides biologically active ingredient(s) compositions wherein the percentage of the extract or fraction standardized to 7-hydroxyfrullanolide or its analog(s) or both varies in the range from 0.01% to 99%, preferably 1% to 90% by weight in the composition.
- In the other embodiment, the invention provides extracts, fractions and compositions comprising 7-hydroxyfrullanolide or its analog(s) for the control, prevention and treatment of one or more metabolic disorder(s), wherein the concentration of 7-hydroxyfrullanolide or its analog(s) or mixtures thereof varies in the range from 0.01% to 99.9%.
- In the other embodiment, the invention provides biologically active ingredient(s) compositions comprising at least one component selected from 7-hydroxyfrullanolide, its analog(s), the extract(s) or fraction(s) containing 7-hydroxyfrullanolide or its analog(s) or mixture(s) thereof as an active for the control, prevention and treatment of one or more metabolic disorder(s), wherein the concentration of active in the composition varies in the range from 0.001% to 99.9%, preferably 0.01 to 95% by weight.
- In a further embodiment the invention provides analogs of 7-hydroxyfrullanolide as described above for the control, prevention and treatment of metabolic disorder(s) and/or for the amelioration of the expression/production of one or more of the biological marker(s) related to metabolic disorder(s), where in the analogs comprises of the compounds represented by the general formula I given below:
- Wherein R1, R2, R3, R4 and R5 are each independently selected from H, hydrogen, hydroxy, halogen, —OOR12, alkoxy, —OC(O)R12 and C(O)R12; optionally R1 and R2 are taken together to form a ketone (═O).
- The tricyclic ring system consisting of one or two or three double bonds.
- Optionally R2 and R3 together form a double bond;
- Optionally R3 and R4 together form a double bond;
- Optionally R3 and R5 together form a double bond;
- Optionally R5 and R6 together form a double bond;
- Optionally R8 and R9 together form a double bond;
- Further optionally R3 and R5 together form an epoxide ring
- R7 is selected from hydrogen, hydroxy, halogen, alkoxy and —OC(O)R12; R8 is selected from hydrogen, hydroxy, halogen, alkoxy, —OC(O)R12, —C(O)R12 and NR13R14; R9 is selected from hydroxy, alkyl, cycloalkyl, alkoxy, aryl, heterocyclyl, halogen, —OC(O)R12, —C(O)R12, azido and —NR13R14, —S(O)mR15, —OS(O)mR15; wherein m is 0, 1 or 2;
R10 and R11 are each independently selected from hydrogen, alkyl, halogen, OR16, —NH R12 and SR12; wherein R16 is selected from hydrogen, alkyl and C(O)R12 or R10 and R11 together form one of ketone (═O), thioketone (═S), imine (═NH) and selenoketone (═Se);
R12 is selected from hydrogen and alkyl;
R13 and R14 are each independently selected from hydrogen, alkyl, cycloalkyl, aralkyl, aryl, heterocyclyl, —C(O)R12 and C(S)NHR12; or R13 and R14 together with the N atom to which they are bonded, form a 5-, 6-, or 7-membered heterocyclic ring, optionally having one or more additional heteroatoms selected from O, N, S and Se;
R15 is selected from hydrogen, alkyl, cycloalkyl, aryl, heterocyclyl
X is selected from O, NH, S and Se. - The 7-hydroxyfrullanolide or its analogs used for the prevention, control or treatment of obesity, metabolic syndrome and other metabolic disorders or for making the composition of the present invention can be naturally derived from plant species or can be produced through synthesis or semisynthesis.
- In other embodiment, the natural analogs of 7-hydroxyfrullanolide described above comprises of frullanolide/eudesmanoid sesquiterpene compounds selected from but not limited to frullanolides, 7-hydroxyfrullanolide (1); 11α,13-dihydro-3α,7α-dihydroxy-4,5-epoxy-6β,7-eudesmanolide; 11α,13-dihydro-7α-acetoxy-3β-hydroxy-6β,7-eudesm-4-enolide; 3-keto-β-eudesmol; 11α,13-dihydro-3α,7α-dihydroxyeudesm-4-en-6α,12-olide; 11α,13-dihydro-3α,7α-dihydroxyfrullanolide; 11α,13-dihydro-7α,13-dihydroxyfrullanolide; 11α,13-dihydro-7α-hydroxy-3β-methaoxyfrullanolide (8); 2α,7α-dihydroxy-4-en-11,13-dihydroeudesm-6,12-olide; 2α-hydroxycostic acid; 3-keto-7α-hydroxyeudesm-4-en-6,12-olide (cryptomeridiol); 4-epicryptomeridiol; sphaeranthanolide (11); 2α-hydroxysphaerantholide; 2α-acetoxysphaerantholide; 2α,7α-dihydroxysphaerantholide; 2α-acetoxy-7α-hydroxysphaerantholide; 2α-acetoxy-5α-hydroxyisosphaerantholide, eudesmanolide dimer [compound-2, (4)], (3aR,5aR,9aR,9bR)-decahydro-9a-hydroperoxy-3a-hydroxy-5a-methyl-3,9-dimethylenenaphtho[1,2-b]furan-2(9bH)-one [compound-3, (5)], (3aS,5aR,9bR)-3,3a,4,5,5a,6,7,8-octahydro-3,5a,9-trimethylnaphtho[1,2-b]furan-2(9bH)-one [compound-4, (6)], (R)-5,5a,6,7-tetrahydro-3,5a,9-trimethylnaphtho[1,2-b]furan-2(4H)-one [compound-5, (7)], (3R,3aR,5aR,9bS)-3,3a,4,5,5a,6,7,8-octahydro-3a-hydroxy-3-(methoxymethyl)-5a,9-dimethylnaphtho[1,2-b]furan-2(9bH)-one [compound-6, (8)], 2-((3R,8aR)-1,2,3,7,8,8a-hexahydro-5,8a-dimethylnaphthalen-3-yl)acrylic acid [compound-7, (9)], (3aR,5aR,9bS)-3-((6-amino-9H-purin-9-yl)methyl)-3,3a,4,5,5a,6,7,8-octahydro-3a-hydroxy-5a,9-dimethylnaphtho[1,2-b]furan-2(9bH)-one [compound-8, (10)], (3R,3aR,5aR,8R,9bS)-8-((2R,3S,4R,5R)-tetrahydro-3,4,5-trihydroxy-6-(hydroxymethyl)-2H-pyran-2-yloxy)-3,3a,4,5,5a,6,7,8-octahydro-3a-hydroxy-3,5a,9-trimethylnaphtho[1,2-b]furan-2(9bH)-one [compound-9, (11)].
- In another embodiment, the invention provides biologically active ingredient(s) selected from 7-hydroxyfrullanolide or their analog(s) or their compositions as described above, wherein the synthetic and semi-synthetic analogs of 7-hydroxyfrullanolide comprises (3aR,5aR,9bS)-3,3a,4,5,5a,6,7,8-octahydro-3a,8-dihydroxy-5a,9-dimethyl-3-methylenenaphtho[1,2-b]furan-2(9bH)-one [compound-10, (12)], (3aR,5aS,9bS)-3a,4,5,5a,6,7-hexahydro-3a-hydroxy-5a,9-dimethyl-3-methylenenaphtho[1,2-b]furan-2,8(3H,9bH)-dione [compound-11, (13)], (R)-2,4,5,5a,6,7-hexahydro-5a,9-dimethyl-2-oxonaphtho[1,2-b]furan-3-carbaldehyde [compound-12, (14)], 4,5-epoxy-7-hydroxyfrullanolide [compound-13, (15)], (R)-3-(bromomethyl)-5,5a,6,7-tetrahydro-5a,9-dimethylnaphtho[1,2-b]furan-2(4H)-one [compound-14, (16)], (3aR,5aR,9bS)-3,3a,4,5,5a,6,7,8-octahydro-3a-hydroxy-3,5a,9-trimethylnaphtho[1,2-b]furan-2(9bH)-one [compound-15, (17)], (2E)-(3aR,5aR,9bS)-2,3,3a,4,5,5a,6,7,8,9b-decahydro-3a-hydroxy-3,5a,9-trimethyl-2-oxonaphtho[1,2-b]furan-8-yl 3-(2,5-dimethoxyphenyl)acrylate [compound-16, (18)], (3aR,5aR,9bS)-3,3a,4,5,5a,6,7,8-octahydro-3a-hydroxy-5a,9-dimethyl-3-(morpholinomethyl)naphtho[1,2-b)]furan-2(9bH)-one [compound-17, (19)], (3aR,5aR,9bS)-3,3a,4,5,5a,6,7,8-octahydro-3a,8-dihydroxy-5a,9-dimethyl-3-(morpholinomethyl)naphtho[1,2-b]furan-2(9bH)-one [compound-18, (20)], (3aR,5aR,9bS)-3,3a,4,5,5a,6,7,8-octahydro-3a-hydroxy-5a,9-dim ethyl-3-((piperidin-1-yl)methyl)naphtho[1,2-b]furan-2(9bH)-one [compound-19, (21)], (5aR)-5,5a,6,7,8,9-hexahydro-9-hydroxy-5a,9-dimethyl-3-((piperidin-1-yl)methyl)naphtho[1,2-b)]furan-2(4H)-one [compound-20, (22)], (3aR,5aR,9bS)-3-((4H-1,2,4-triazol-4-yl)methyl)-3,3a,4,5,5a,6,7,8-octahydro-3a-hydroxy-5a,9-dimethylnaphtho[1,2-b]furan-2(9bH)-one [compound-21, (23)], (3aR,5aR,9bS)-3,3a,4,5,5a,6,7,8-octahydro-3a-hydroxy-5a,9-dimethyl-3-((piperazin-1-yl)methyl)naphtho[1,2-b]furan-2(9bH)-one [compound-22, (24)] and piperazine bis-7-hydroxyfrullanolide [compound-23, (25) represented by the structure numbers 12 through 25 respectively as depicted in Figure X.
- In another embodiment, the invention provides the extracts and fractions derived from Sphaeranthus indicus containing 7-hydroxyfrullanolide/other frullanolide(s)/eudesmanoid sesquiterpene(s)/other phytochemicals for the prevention, control and treatment of obesity, metabolic syndrome and other metabolic disorders or for making the compositions described above comprises, 7-hydroxyfrullanolide/other frullanolide(s)/eudesmanoid sesquiterpene(s)/other phytochemicals or mixture thereof varies in concentration range of 0.001% to 100%, preferably 0.01 to 99%.
- In another embodiment, the concentration of the active compound-7-hydroxyfrullanolide/other frullanolide(s)/eudesmanoid sesquiterpene(s)/other phytochemicals in the compositions comprising Sphaeranthus indicus derived component as described in the previous embodiments varies in the range from 0.001% to 99%, preferably 0.01 to 95% by weight.
- In another embodiment of the invention, the other biologically active components used for making the compositions comprise components having any health benefit selected from but not limited to anti-diabetic activity, anti-hyperlipidemic activity, anti-obesity activity, anti-hypertensive activity, anti-platelet aggregation activity, anti-infective activity, anti-atherosclerotic activity and anti-inflammatory activity, anti-oxidant activity and bio-enhancing activity.
- In another embodiment, the invention provides biologically active ingredient(s) selected from 7-hydroxyfrullanolide, its analogs, the extracts and fractions containing 7-hydroxyfrullanolide or its analogs or mixtures thereof, derived from Sphaeranthus indicus, or their composition, wherein said extract(s) or active fraction(s) or active compound(s) or phytochemicals or mixtures thereof are derived from at least one of the plant parts selected from but not limited to leaves, flower heads, fruits, stem, bark, root, whole plant or mixtures thereof, preferably flower heads.
- In another embodiment of the invention, biologically active ingredient(s) and their compositions as described in previous embodiments, wherein said 7-hydroxyfrullanolide, it natural analogs, the extract(s) or active fraction(s) containing 7-hydroxyfrullanolide or it natural analog(s) or mixtures thereof or phytochemicals or mixtures thereof derived from Sphaeranthus indicus are obtained through extraction using solvents selected from one or more of organic solvents, alcohols, hydroalcohols, water or mixtures thereof or those followed by partitions and/or chromatography.
- The examples of the biologically or pharmaceutically acceptable excipients, vehicles and carriers employed in the present invention include, but are not limited to, surfactants, binders, diluents, disintegrators, lubricants, preservatives, stabilizers, buffers, suspensions and drug delivery systems.
- The examples of the biologically or pharmaceutically acceptable excipients, carriers and diluents comprise glucose, fructose, sucrose, maltose, yellow dextrin, white dextrin, aerosol, microcrystalline cellulose, calcium stearate, magnesium stearate, sorbitol, stevioside, corn syrup, lactose, citric acid, tartaric acid, malic acid, succinic acid, lactic acid, L-ascorbic acid, dl-alpha-tocopherol, glycerin, propylene glycol, glycerin fatty ester, poly glycerin fatty ester, sucrose fatty ester, sorbitan fatty ester, propylene glycol fatty ester, acacia, carrageenan, casein, gelatin, pectin, agar, vitamin B group, nicotinamide, calcium pantothenate, amino acids, calcium salts, pigments, flavors, preservatives, distilled water, saline, aqueous glucose solution, alcohol, propylene glycol and polyethylene glycol, various animal and vegetable oils, white soft paraffin, paraffin and wax.
- In another embodiment, the invention provides biologically active ingredient(s) or their composition(s) as claimed in preceding embodiments, wherein said component or composition is administered orally, topically or parenterally or by inhalation to a subject or mammal or warm blooded animal in need thereof.
- In another embodiment, the invention provides biologically active ingredient(s) or their composition(s) as claimed in preceding embodiments, wherein said components or compositions can be formulated into any suitable formulation like oral agents such as tablets, soft capsule, hard capsule, soft gel capsules, pills, granules, powders, emulsions, suspensions, syrups, pellets, food, beverages, concentrated shots, drops and the like; and parenteral agents such as injections, intravenous drip and the like; suppositories; and transdermal agents such as patches, topical creams and gel; ophthalmic agents; nasal agents; and food or beverages.
- In another embodiment, the invention provides a method for the control/prevention/treating of a metabolic disorder selected from but not limited to obesity, over weight, diabetes, arteriosclerosis, cardiovascular diseases, hypertension, hypercholesteremia, hyperlipidemia, triglyceridemia, metabolic syndrome, endothelial dysfunction and other metabolic disorders in a mammal or warm blooded animal in need thereof, wherein the method comprises administering a therapeutically effective amount of at least one biologically active ingredient(s) selected from 7-hydroxyfrullanolide, its analog(s), the extract(s) or fraction(s) comprising 7-hydroxyfrullanolide/its analogs or both as an active or mixtures thereof or their compositions as described in preceding embodiments.
- In another embodiment, the invention provides a method of promoting lipolysis and/or inhibiting adipogenesis comprising administering to a subject or mammal or warm blooded animal in need thereof a therapeutically effective quantity of at least one biologically active ingredient(s) selected from 7-hydroxyfrullanolide, its analog(s), the extract(s) or fraction(s) comprising 7-hydroxyfrullanolide/its analog(s) or both or mixtures thereof as an active or their compositions as described in the preceding embodiments.
- In another embodiment, the invention provides a method of using biologically active ingredient(s) selected from 7-hydroxyfrullanolide or its analogs; the extract(s) or fraction(s) comprising 7-hydroxyfrullanolide or its analog(s) or both or their compositions for the amelioration of the expression or production of biological markers selected from but not limited to PPAR-γ, C-reactive protein (CRP), Adipose Differentiation Related Protein (ADRP), adipocyte CD36, macrophage CD36, Monocyte Chemotactic protein (MCP-1), Oxidized LDL, Adipocyte Fatty-acid-Binding Protein (aP2/FABP4/A-FABP), Beta-3 adrenergic receptor (β3-AR), adiponectin, Perilipin, Protein tyrosine phosphatase 1B (PTP 1B), Metalloproteinase-1 (MMP-1), Matrix Metalloproteinase-3 (MMP-3) and Matrix Metalloproteinase-13 (MMP-13).
- In a further embodiment of the present invention, the components selected from 7-hydroxyfrullanolide, its analogs; the extract(s) or fraction(s) or mixtures thereof derived from Sphaeranthus indicus comprising 7-hydroxyfrullanolide as an active ingredient or their compositions as described above can be optionally combined with bio-availability enhancing agents selected from but not limited to extract(s), fraction(s), pure compound(s) derived from Piper nigrum or Piper longum, and Stevia rebaudiana.
- In alternative embodiment of the invention, the components selected from 7-hydroxyfrullanolide or its analogs or compositions comprising the extract(s), fraction(s), active compound(s) or phytochemical(s) or mixtures thereof derived from Sphaeranthus indicus comprising 7-hydroxyfrullanolide as an active ingredient or their compositions claimed in the present invention are delivered in the form of controlled release tablets, using controlled release polymer-based coatings by the techniques including nanotechnology, microencapsulation, colloidal carrier systems and other drug delivery systems known in the art. The said formulation can be designed for once a daily administration or multiple administrations per day.
- In other embodiment of the invention, the components selected from 7-hydroxyfrullanolide or its analogs or the extracts or fractions containing 7-hydroxyfrullanolide or their compositions described/claimed in the present invention can also be formulated into or added to existing or new food and beverage form(s) and animal feeds as a healthy food or beverage or feed for prevention, control or treatment of one or more of the diseases including but not limited to obesity, diabetes, hypertension, cardiovascular diseases, neurological disorders, Alzheimer's, cognitive disorders, oxidative stress, skin disorders, aging of the skin, UV irradiated damage, hypercholesterolemia, variations of LDL, HDL & VLDL, hyperlipidemia, triglyceridemia, immune deficiency, cancer, metabolic syndrome, for bringing about weight loss effectively, for producing lean body mass, for using during weight loss program as well as for other metabolic disorders.
- In other embodiment, the invention provides the use of ingredient(s) or composition(s) for prevention, control and treatment of one or more diseases several diseases or disease conditions including but not limited to obesity, diabetes, hypertension, atherosclerosis, cardiovascular diseases, neurological disorders, Alzheimer's, cognitive disorders, oxidative stress, skin disorders, aging of the skin, UV irradiated damage, hypercholesterolemia, variations of LDL, HDL & VLDL, hyperlipidemia, triglyceridemia, immune deficiency, cancer, metabolic syndrome, for bringing about weight loss effectively, for producing lean body mass, for using during weight loss program as well as for other metabolic disorders.
- In other embodiment, the invention provides a method of prevention/control/treatment of one or more metabolic disorders selected from obesity, over weight, diabetes, atherosclerosis, arteriosclerosis, cardiovascular diseases, hypertension, hypercholesterolemia, variations of LDL, HDL, VLDL, hyperlipidemia, triglyceridemia, metabolic syndrome, endothelial dysfunction and other metabolic disorders in a mammal or warm blooded animal in need thereof, wherein the method comprises administering to mammal or warm blooded animal a therapeutically effective amount of at least one biologically active ingredient(s) from 7-hydroxyfrullanolide, its analog(s), the extract(s) or fraction(s) comprising 7-hydroxyfrullanolide or its analog(s) or both as an active or mixtures thereof or their compositions.
- In other embodiment, the invention provides a method of promoting lipolysis and/or inhibiting adipogenesis in a subject or mammal or warm blooded animal in need thereof comprising administering to said subject or mammal or warm blooded animal a therapeutically effective quantity of at least one biologically active ingredient(s) selected from 7-hydroxyfrullanolide, its analog(s), the extract(s) or fraction(s) comprising 7-hydroxyfrullanolide or its analog(s) or both or mixtures thereof as an active or their compositions.
- In other embodiment the invention provides a method of amelioration of the expression or production of at least one biological marker selected from PPAR-γ, C-reactive protein (CRP), Adipose Differentiation Related Protein (ADRP), adipocyte CD36, macrophage CD36, Monocyte Chemotactic protein (MCP-1), Oxidized LDL, Adipocyte Fatty-acid-Binding Protein (aP2/FABP4/A-FABP), Beta-3 adrenergic receptor (β3-AR), adiponectin, Perilipin, Protein tyrosine phosphatase 1B (PTP 1B), Metalloproteinase-1 (MMP-1), Matrix Metalloproteinase-3 (MMP-3) and Matrix Metalloproteinase-13 (MMP-13) in a subject or mammal or warm blooded animal in need thereof, wherein the method comprises administering to the subject or mammal or warm blooded animal a biologically active ingredient(s) selected from 7-hydroxyfrullanolide or its analogs; the extract(s) or fraction(s) containing 7-hydroxyfrullanolide or its analog(s) or both or mixtures thereof in their composition(s).
- The unexpected and superior ameliorating effects of 7-hydroxyfrullanolide or its analogs or the extracts/fraction containing 7-hydroxyfrullanolide or mixtures thereof their compositions claimed in the present invention are illustrated by the following non-limiting examples:
- Sphaeranthus indicus flower heads (2.2 kg) were charged into a pilot extractor and extracted with ethyl acetate (22 L) at reflux temperature for 2 h. The extract was filtered and the spent raw material was re-extracted twice with ethyl acetate (2×13 L) under similar conditions. The combined extract was fine filtered and concentrated over a climbing film evaporator to obtain residue (174 g). The ethyl acetate extract showed 11% of 7-hydroxy-4, 11(13)-eudesmadien-12,6-olide (7-hydroxyfrullanolide) by HPLC method of analysis.
- Sphaeranthus indicus flower heads (7 kg) were taken into a pilot extractor and extracted with methanol (56 L) at 80° C. temperature for 2 h. The extract was filtered and the spent raw material was re-extracted twice with methanol (2×40 L) under similar conditions. The combined extract was fine filtered and concentrated under vacuum to obtain a residue (1 kg). The methanol extract was suspended in water (1 L) and extracted with ethyl acetate (3×1.5 L). The combined organic layer was evaporated under vacuum and the residue (300 g) was subjected to column chromatography over silica column using eluants of increasing polarity from hexane to acetone. The fractions eluted with 20% acetone/hexane were combined and evaporated under vacuum to give a residue (fraction-I; 49 g). The fractions eluted with 40% acetone/hexane were combined and evaporated under vacuum to give a residue (fraction-II; 35 g). The fraction eluted with 60% acetone/hexane was evaporated under vacuum to give a residue (fraction-III).
- The fraction-I was subjected to re-chromatography over silica column using solvents of increasing polarity from chloroform to ethyl acetate. The fraction (3 g) eluted with chloroform was evaporated and the residue subjected to repeated chromatography over silica gel using ethyl acetate/hexane mixture to obtain turmerone (2); 60 mg. The fractions eluted of the fraction-I column with 2-5% ethyl acetate/chloroform were combined and evaporated, and the residue was subjected to repeated chromatography over silica gel using acetone/hexane and chloroform/hexane mixtures to yield compound-1 (3); 40 mg and compound-2 (4); 50 mg. The fractions eluted with 5-10% ethyl acetate/chloroform mixtures were evaporated under vacuum to obtain 7-hydroxyfrullanolide (1); 13 g). The fractions obtained on elution with 15% ethyl acetate/chloroform mixture were evaporated and the residue was subjected to further chromatography over silica gel using same solvent system to obtain compound-3 (5); 20 mg. The fraction eluted with 20% ethyl acetate/chloroform was subjected to repeated chromatography on silica column using ethyl acetate/chloroform mixtures, followed by final purification on HPLC to obtain compound-4 (6); 24 mg.
- The fraction-II obtained of the main column was subjected to re-chromatography over silica column using chloroform and ethyl acetate/chloroform mixtures as eluants. The fractions eluted with chloroform and 5% ethyl acetate/chloroform mixture were combined and evaporated. The residue (5 g) was re-purified on silica column again using ethyl acetate/chloroform mixtures and the fraction eluted with 2% ethyl acetate/chloroform was evaporated under vacuum to provide compound-5 (7); 15 mg. The fraction eluted with 10% ethyl acetate/chloroform mixture was evaporated to yield a further quantity (3 g) of 7-hydroxyfrullanolide. The fraction (12 g) eluted with 20% ethyl acetate/chloroform mixture was subjected to further purification on silica column using acetone/hexane mixtures and the fraction so obtained using 10% acetone/hexane was re-purified on silica column using ethyl acetate/chloroform mixtures to obtain compound-6 (8); 100 mg. The other fraction obtained on elution with 20% acetone/hexane mixture furnished compound-7 (9); 20 mg upon evaporation of the solvent. The fraction (5 g) eluted with 60% ethyl acetate/chloroform mixture was subjected to further purification on silica column using ethyl acetate to obtain compound-8 (10); 30 mg.
- The fraction-III obtained of the main column was purified on silica column using methanol/ethyl acetate mixtures and the fraction eluted with 5% methanol/ethyl acetate upon evaporation of the solvent yielded compound-9 (11); (1500 mg).
- 7-hydroxyfrullanolide (1): NMR δH (400 MHz, CDCl3): 6.24 (s, 1H), 5.80 (s 1H), 5.02 (s, 1H), 2.12 (m, 2H), 1.68 (m, 1H), 1.95 (td J-12.4, 3.2 Hz, 1H), 1.80 (m, 1H), 1.68 (m, 1H) 1.65 (m, 1H), 1.52 (td; J=14, 3.1 Hz, 1H), 1.42 (m, 2H), 1.35 (m, 1H), 1.77 (s, 3H), 1.07 (s, 3H); NMR βC (100 MHz, d6-DMSO): 168.99, 144.84, 140.41, 126.97, 120.91, 81.42, 76.02, 38.85, 34.97, 33.15, 32.77, 31.57, 26.15, 19.88, 18.21; LCMS (ESI, positive scan): m/z 249 (M+H)+.
- ar-Turmerone (2): 1H NMR (CDCl3, 400 MHz): δ 7.10 (4H, s), 6.02 (1H, t, J=1.2 Hz), 3.28 (1H, sextet, J=7.6 Hz), 2.70 (1H, dd, J=6.0, 15.6 Hz), 2.60 (1H, J=8.4, 15.6 Hz), 2.31 (3H, s), 2.10 (3H, d, J=0.8 Hz), 1.85 (3H, d, J=0.8 Hz), 1.24 (3H, d, J=7.2 Hz); 13C NMR (CDCl3, 400 MHz): δ 199.77, 154.84, 143.71, 135.51, 129.08, 126.65, 124.15, 52.70, 35.32, 29.67, 27.53, 21.95, 20.91, 20.64.
- 3,3a,4,5,5a,6,7,8-octahydro-5a,9-dimethyl-3-methylenenaphtho[1,2-b]furan-2(9bH)-one [Compound 1 (3)]: 1H NMR (CDCl3, 400 MHz): δ 6.16 (1H, s), 5.57 (1H, s), 5.26 (1H, d, J=5.6 Hz), 2.95 (1H, m), 2.09 (2H, m), 1.83 (1H, m), 1.76 (3H, s), 1.61-1.71 (4H, m), 1.51-1.23 (9H, m), 1.08 (3H, s); LCMS: 232 (M+H)+ +ve ion mode.
- Eudesmanolide dimer [Compound-2, (4)]: NMR (CDCl3, 400 MHz): δ 6.20 (1H, s), 3.28 (1H, dd, J=6.0, 12.8 Hz), 2.74 (1H, m), 2.52 (2H, m), 2.23 (2H, m), 2.14 (1H, m), 2.10 (1H, m), 2.04 (1H, m), 2.02 (1H, m), 1.99 (1H, m), 1.92 (1H, m), 1.88 (3H, s), 1.84 (1H, m), 1.78 (1H, m), 1.74 (1H, m), 1.68 (1H, s), 1.68 (3H, s), 1.61 (1H, m), 1.60 (1H, m), 1.54 (1H, m), 1.48 (1H, m), 1.41 (1H, m), 1.38 (1H, m), 1.19 (2H, m), 1.06 (3H, s), 0.98 (3H, s); 13C NMR (CDCl3, 100 MHz): δ 206.32, 177.13, 175.07, 140.21, 139.85, 138.13, 127.88, 88.69, 82.78, 52.61, 52.46, 51.26, 39.99, 38.39, 38.14, 37.74, 33.82, 33.05, 32.45, 32.40, 27.74, 27.13, 26.37, 25.38, 24.13, 20.84, 20.63, 19.73, 19.61, 18.51, 18.36; LCMS: 478 (M+Na)+, +ve ion mode.
- (3aR,5aR,9aR,9bR)-decahydro-9a-hydroperoxy-3a-hydroxy-5a-methyl-3,9-dimethylenenaphtho[1,2-b]furan-2(9bH)-one [Compound-3, (5)]: 1H NMR (CDCl3, 400 MHz): δ 7.82 (1H, br s), 6.19 (1H, s), 5.80 (1H, s), 5.39 (1H, s), 5.29 (1H, s), 4.75 (1H, s), 3.32 (1H, br s), 2.42-2.26 (4H, m), 1.88-1.98 (4H, m), 1.63-1.78 (12H, m), 1.37-1.42 (2H, m), 1.16-1.09-1.16 (4H, m), 1.04 (3H, s), 0.84-0.94 (4H, m); 13C NMR (CDCl3, 400 MHz): δ 167.87, 143.34, 142.57, 119.70, 115.98, 86.99, 78.38, 75.69, 38.13, 35.97, 32.36, 30.35, 29.67, 21.92, 20.29; LCMS: 279 (M−H)− negative ion mode.
- (3aS,5aR,9bR)-3,3a,4,5,5a,6,7,8-octahydro-3,5a,9-trimethylnaphtho[1,2-b]furan-2(9bH)-one [Compound-4, (6)]: 1H NMR (CDCl3, 400 MHz): δ 5.30 (1H, s), 4.90 (1H, s), 4.80 (1H, d, J=5.2 Hz), 3.77 (1H, t, J=5.2 Hz), 2.79 (1H, q, J=7.2), 1.87 (1H td, J=4.4 Hz), 1.815 (3H, s), 1.61 (1H, m), 1.59 (1H, m), 1.52 (2H, m), 1.48 (1H, m), 1.45 (1H, m), 1.27 (1H, m), 1.18 (1H, m), 1.04 (3H, d, J=7.2 Hz), 0.92 (3H, s); 13C NMR (CDCl3, 400 MHz): δ 176.66, 139.38, 130.01, 79.39, 75.92, 67.30, 47.30, 34.46, 33.87, 33.14, 27.38, 24.40, 23.60, 17.04, 6.798.
- (R)-5,5a,6,7-tetrahydro-3,5a,9-trimethylnaphtho[1,2-b]furan-2(4H)-one [Compound-5, (7)]: 1H NMR (CDCl3, 400 MHz): δ 5.83 (1H, m), 2.65 (2H, m), 2.30-2.35 (1H, m), 2.16-2.23 (2H, m), 2.13 (3H, s), 1.89 (3H, s), 1.841-1.60-1.84 (7H, m), 1.48-1.54 (2H, m), 1.28-1.46 (3H, m), 1.08 (3H, s); LCMS: m/z 233 (M+H)+, +ve ion mode.
- (3R,3aR,5aR,9bS)-3,3a,4,5,5a,6,7,8-octahydro-3a-hydroxy-3-(methoxymethyl)-5a,9-dimethylnaphtho[1,2-b]furan-2(9bH)-one [Compound-6, (8)]: 1H NMR (CDCl3, 400 MHz): δ 5.01 (1H, s), 3.88 (1H, dd, J=5.2, 9.6 Hz), 3.74 (1H, t, J=11.2 Hz), 3.40 (3H, s), 3.18 (1H, dd, J=4.8, 10.8 Hz), 1.92-2.15 (4H, m), 1.79 (3H, s), 1.60-1.68 (3H, m), 1.40-1.50 (4H, m), 1.05 (3H, s); LCMS: m/z 303 (M+Na)+ +ve ion mode.
- 2-((3R,8aR)-1,2,3,7,8,8a-hexahydro-5,8a-dimethylnaphthalen-3-yl)acrylic acid [Compound-7, (9)]: 1H NMR (CDCl3, 400 MHz): δ 6.32 (1H, s), 5.71 (1H, s), 5.55 (1H, bs), 5.38 (1H, bs), 3.43 (1H, m), 2.25 (3H, t J=7.8, 11.2 Hz), 2.03-2.09 (3H, m), 1.78 (3H, s), 1.63 (5H, m), 1.47 (2H, d, J=5.2 Hz), 1.00 (3H, s); LCMS: m/z 231 (M−H)− −ve ion mode.
- (3aR,5aR,9bS)-3-((6-amino-9H-purin-9-yl)methyl)-3,3a,4,5,5a,6,7,8-octahydro-3a-hydroxy-5a,9-dimethylnaphtho[1,2-b]furan-2(9bH)-one [Compound-8, (10)]: 1H NMR (DMSO, 400 MHz): δ 8.22 (2H, d J=6 Hz), 7.22 (2H, bs), 5.47 (1H, s), 5.08 (1H, s), 4.51 (2H, d, J=7.2 Hz), 3.58 (1H, t, J=7.2, 14 Hz), 2.07-2.14 (3H, m), 1.78-1.82 (3H, m), 1.75 (3H, s), 1.34-1.66 (10-H, m), 1.05 (3H, s).
- (3R,3aR,5aR,8R,9bS)-8-((2R,3S,4R,5R)-tetrahydro-3,4,5-trihydroxy-6-(hydroxymethyl)-2H-pyran-2-yloxy)-3,3a,4,5,5a,6,7,8-octahydro-3a-hydroxy-3,5a,9-trimethylnaphtho[1,2-b]furan-2(9bH)-one [Compound-9, (Sphaeranthanolide; 11): NMR δH (400 MHz, d4MeOH): 5.01 (d; J=1.1 Hz, 1H), 4.38 (d; J=7.2 Hz, 1H) 4.142 (d; J=1.6 Hz, 1H), 3.91 (dd; J=12.7, 5.2 Hz, 1H), 3.71 (dd; J=12.7, 1.9 Hz, 1H), 3.39 (ddd; J=9, 7.81 Hz, 1H), 3.33 (m, 1H), 3.20 (m, 1H), 3.19 (dd; J=7.8, 9 Hz, 1H), 2.82 (q; J=7.2 Hz, 1H), 1.97 (s, 3H), 1.91 (m, 1H), 1.85 (m, 1H), 1.70 (m, 1H), 1.69 (m, 1H), 1.65 (m, 1H), 1.59 (m, 2H), 1.43 (m, H), 1.17 (d; J=7.2 Hz, 3H); NMR δC (100 MHz, d4-MeOH): 178.22, 139.21, 133.94, 101.88, 81.54, 78.27, 78.01, 77.88, 75.99, 75.07, 72.00, 63.02, 49.21, 35.25, 34.66, 25.42, 24.27, 24.25, 17.24, 7.24; LCMS (ESI, positive scan): m/z 429.21 (M+H)+.
- A mixture of 7-hydroxyfrullanolide (1 g, 0.00403 mol) and 10 mL of ethanol was taken in a RB flask and treated slowly with SeO2 (1.4 g, 0.0126 mol) at room temperature, The reaction mixture (RM) was then stirred at 70° C. for 12 h and then poured into ice-cold water. The mixture was extracted with EtOAc and the organic layer washed with brine, dried over Na2SO4 and concentrated. The residue (1.2 g) was subjected to chromatography eluting with chloroform followed by 2% and 5% methanol/chloroform mixtures as eluants. The fractions eluted with 5% methanol/chloroform were monitored, the fractions containing the compounds were combined and evaporated to obtain 700 mg of compound-10 [(12), 70%] and 50 mg of compound-11 [(13), 4.7%]. Compound-10: 1H NMR (CDCl3, 400 MHz); δ 6.29 (1H, s), 5.84 (1H, s), 4.99 (1H, s), 4.08 (1H, d, J=3.2 Hz), 3.10 (1H, brs), 2.22 (1H, brs), 2.06 (1H, tt, J=3.2, 14.4 Hz), 1.94 (3H, s), 1.90 (1H, m), 1.66-1.79 (3H, m), 1.55 (1H, m), 1.28-1.44 (2H, m), 1.08 (3H, s). 13C NMR (CDCl3, 100 MHz); δ 168.0, 142.9, 138.2, 130.9, 120.7, 80.3, 68.4, 33.6, 32.5, 32.1, 31.1, 26.6, 24.2, 16.8; LC/MS: 287 (M+Na)+, 303 (M+K)+ positive ion mode.
- Compound-11: 1H NMR (CDCl3, 400 MHz); δ 6.398 (1H, s), 5.952 (1H, s), 5.138 (1H, s), 2.711 (2H, m), 2.583-2.482 (2H, m), 2.09-1.94 (2H, m), 1.913 (3H, s), 1.773-1.617 (2H, m), 1.538-1.431 (1H, m), 1.284 (3H, s). LC/MS: 261 (M−H)− negative ion mode.
- A mixture of 2.0 g of 7-hydroxyfrullanolide (0.00806 mol) and 40 ml of dichloromethane was taken in a Round Bottom (RB) flask and treated with 39 g of silica gel adsorbed Jones reagent (13 ml of Jones reagent was adsorbed on 26 gm of silica gel). The reaction mixture was stirred at room temperature. After 3 h, the mixture was filtered and the solid was washed with chloroform. The combined filtrate was concentrated and the residue (2.08 g) was subjected to silica column chromatography using EtOAc/hexane mixtures as eluant. The fractions eluted with 10% EtOAc/hexane were monitored and the fractions containing the oxidized product were evaporated to obtain 50 mg of Compound-12 [(14), 2.3%] as a colorless solid.
- Compound-12: 1H NMR (CDCl3 400 MHz): δ 9.98 (1H, s), 6.15 (1H, m), 3.45 (1H, dt, J=4.0, 20.0 Hz), 2.96 (1H, p, J=8.8 Hz), 2.19 (3H, t, J=1.2 Hz), 1.73 (2H, dd, J=3.2, 9.6 Hz), 1.61 (2H, dd, J=3.6, 8.4 Hz), 1.14 (3H, s); LC/MS: 245 (M+H)+, 267 (M+Na)+ positive ion mode.
- A mixture of 7-HF (300 mg, 0.0012 mol) and 5 mL of methylene chloride in a round bottomed flask was treated slowly with m-chloroperbenzoic acid (417 mg, 0.0024 mol) and the contents stirred at rt. After 1.5 h, the reaction mixture was poured into ice-water and the mixture was extracted with EtOAc. The EtOAc layer was washed with NaHCO3 solution followed by brine, dry over Na2SO4 and concentrated under vacuum. The residue (300 mg) was purified on a silica column using acetone/hexane mixtures. The fractions eluted with 30% acetone/hexane were monitored on TLC and the fractions containing Compound-13 (15) were combined and evaporated under vacuum to form a solid (71.5 mg).
- Compound-13: 1H NMR (CDCl3 400 MHz): δ 6.25 (1H, s), 5.84 (1H, s), 3.91 (1H, s), 2.56 (1H, s), 2.009-1.944-2.01 (3H, m), 1.91-1.74 (5H, m), 1.59-1.69 (4H, m), 1.43 (1H, m), 1.38 (3H, s), 1.32-1.27 (3H, m), 1.12 (3H, s), 0.97 (1H, m); 13C NMR (CDCl3, 100 MHz): δ 167.9, 143.6, 121.1, 83.5, 75.8, 63.7, 62.7, 33.7, 32.0, 31.9, 31.0, 27.7, 19.9, 19.7, 15.2; LC/MS: 263 (M−H)− negative ion mode.
- To a mixture 7-Hydroxyfrullanolide (500 mg, 0.002 mol) in carbon tetrachloride (5 mL) was slowly added 720 mg (0.004 mol) of NBS at Room Temperature (RT). After 1 h, the reaction mixture was poured into ice water and extracted with ethyl acetate. The organic layer was washed with brine, dried over Na2SO4 and evaporated under vacuum. The residue (500 mg) was subjected to column chromatography over silica gel using ethyl acetate/hexane mixtures. The fraction eluted with ethyl acetate/hexane was evaporated to obtain compound-14 [(16); 200 mg, 32.2%]
- Compound-14: 1H NMR (CDCl13400 MHz): δ 5.95 (1H, m), 4.21 (2H, s), 2.83-2.88 (1H, m), 2.67-2.76 (1H, m), 2.32-2.40 (1H, m), 2.22-2.27 (1H, m), 2.14 (3H, m), 1.71 (2H, m), 1.57 (2H, m), 1.11 (3H, m).
- To a mixture of 7-α-HF (500 mg) in 10 ml of ethanol in a RB flask under stirring was added 10 mg of Pd on CaCO3. The RB flask is flushed with H2 gas and the stirring continued under H2 atmosphere. After 1 h, the reaction mixture was filtered through super cell. The filtrate was concentrated under vacuum and the residue (500 mg) was subjected to column chromatography on silica gel using ethyl acetate/chloroform mixtures to yield 200 mg (40%) of Compound-15 (17).
- Compound-15: 1H NMR (CDCl3 400 MHz): δ 4.96 (1H, d, J=0.8 Hz), 2.78 (1H, q, J=7.2 Hz), 2.08-2.14 (3H, m), 1.81 (2H, m), 1.79 (3H, s), 1.64 (1H, m), 1.37-1.56 (5H, m), 1.20 (3H, d, J=7.2 Hz), 1.05 (3H, s); LC/MS: 273 (M+Na)+ positive ion mode.
- A solution of (3aR,5aR,9bS)-3,3a,4,5,5a,6,7,8-octahydro-3a,8-dihydroxy-5a,9-dimethyl-3-methylenenaphtho[1,2-b]furan-2(9bH)-one (compound-10; 300 mg, 0.00113 mol), 2,5-dimethoxy cinnamic acid (280 mg, 0.013 mol), 6 mL of methylene dichloride (MDC), 50 mg of dimethylaminopyridine (DMAP) was taken in a RB flask and treated slowly with a solution of 351 mg of dicyclohexylcarbodiimide (DCC) (0.0017 mol) dissolved in 4 mL of MDC under stirring at 0° C. The RM was then allowed to RT and continued the stirring for 2 h. The RM was then poured into ice-cold water and the mixture extracted with EtOAc. The organic layer was washed with brine, dried over Na2SO4 and concentrated under vacuum. The residue (600 mg) was subjected to column chromatography on silica column using acetone/hexane mixtures to obtain 120 mg of compound-16 (18, 24%) in the fraction eluted with 25% of acetone/hexane.
- Compound-16: 1H NMR (CDCl3,400 MHz): δ 7.91 (1H, d, J=16.0 Hz), 7.44 (1H, d, J=8.4 Hz), 6.50 (1H, dd, J=8.4, 2.4 Hz), 6.46 (1H, d, J=16.0 Hz), 6.48 (1H, d, J=2.0 Hz), 5.34 (1H, d, J=4.0 Hz), 3.88 (3H, s), 3.84 (3H, s), 2.52 (1H, q, J=7.6 Hz), 2.05 (2H, m), 1.848 (3H, s), 1.84 (2H, m), 1.68 (2H, m), 1.47 (1H, m), 1.138 (1H, m), 1.34 (3H, d, J=7.6 Hz), 1.23 (1H, m), 1.10 (3H, s); LC/MS: 479.3 (M+Na)+ positive ion mode, 455 (M−H)−, 491 (M+2H2O—H)− negative ion mode.
- To a solution of 7-hydroxyfrullanolide (300 mg, 0.0012 mol) in 5 mL of THF in a RB flask was added slowly morpholine (87 μL, 0.0014 mol) under stirring at RT. After 1.5 h, the RM was poured into ice-cold water and the mixture extracted with EtOAc. The organic layer was washed with brine, dried over Na2SO4 and concentrated under vacuum. The residue (300 mg) was purified on silica column using acetone/chloroform mixtures to obtain 150 mg (yield 38%) of compound-17 (19) in the fractions eluted with 15% acetone/chloroform.
- Compound-17: 1H NMR (CDCl3, 400 MHz): δ 5.02 (1H, s), 3.74 (2H, m), 3.67 (2H, m), 3.08 (1H, dd, J=7.6, 8.8 Hz), 2.84 (1H, d, J=7.6 Hz), 2.84 (1H, d, J=8.8 Hz), 2.73 (2H, m), 2.44 (2H, m), 2.09 (2H, m), 1.91 (1H, dt, J=4.0, 14.0 Hz), 1.79 (3H, m), 1.705-1.58-1.70 (4H, m), 1.40-1.47 (3H, m), 1.06 (3H, s); LC/MS: 336.4 (M+H)+, 358.4 (M+Na)+ positive ion mode.
- A mixture of 300 mg (0.0011 mol) of compound-10 (12)] and morpholine (0.169 mL, 0.00135 mol) in mL of THF in a RB flask was stirred at RT for one and half hours and poured in ice cold water. The mixture was extracted with EtOAc and the organic layer washed with brine, dried over sodium sulfate and concentrated under vacuum. The residue was subjected to chromatography on silica column using acetone/chloroform mixtures. The fraction eluted with 40% acetone/chloroform yielded 100 mg (yield: 25%) of compound-18 (20).
- Compound-18: 1H NMR (CDCl3, 400 MHz): δ 4.95 (1H, s), 3.95 (1H, d, J=3.2 Hz) 3.74 (2H, m), 3.67 (2H, m), 3.08 (1H, dd, J=6.0, 10.0 Hz), 2.84 (2H, m), 2.72 (2H, m), 2.44 (2H, m), 2.04 (1H, dt, J=3.2, 13.6 Hz), 1.98 (1H, m), 1.96 (3H, s), 1.60-1.89 (6H, m), 1.35-1.48 (2H, m), 1.04 (3H, s).
- To a mixture of 7-HF (300 mg, 0.0012 mol) in 5 mL of THF in a RB flask was slowly added piperidine (0.143 mL, 0.0014 mol) at rt and the mixture stirred for 1.5 h. The reaction mixture was then poured into ice cold water and the mixture extracted with EtOAc. The organic layer was washed with brine, dried over Na2SO4 and evaporated under vacuum. The residue (300 mg) was subjected chromatography over silica column using methanol/chloroform mixtures. The fraction eluted with 40% of acetone/hexane yielded compound-19 [(21), yield 44%].
- Compound-19: 1H NMR (CDCl3, 400 MHz): δ 5.02 (1H, s), 3.10 (1H, dd, J=5.6, 10.8 Hz), 2.85 (1H, d, J=11.2 Hz), 2.79 (2H, dd, J=5.6, 11.2 Hz), 2.70 (2H, brs), 2.41 (2H, brs), 2.17 (3H, s), 2.151-2.06 (3H, m), 1.81-1.85 (2H, m), 1.79 (3H, s), 1.56-1.71 (4H, m), 1.505-1.38-1.50 (3H, m), 1.05 (3H, s).
- To a mixture of epoxide [compound-13, (15); 300 mg, 0.00113 mol] in 5 mL of THF in a RB flask was slowly added piperidine (144 μL, 0.0013 mol) at Room Temperature (RT) and the mixture stirred for 24 h. Then the Reaction Mixture (RM) was poured in to ice-cold water and the mixture was extracted with EtOAc. The organic layer was washed with brine, dried over Na2SO4 and concentrated under vacuum. The residue (400 mg) was purified on a silica column using acetone/chloroform mixtures. The fraction eluted with 30% acetone/chloroform yielded compound-20 [(22); 150 mg) with a
percentage yield 40%. - Compound-20: 1H NMR (CDCl3, 400 MHz): δ 3.27 (2H, s), 2.93 (1H, m), 2.27 (1H, m), 2.41 (4H, m), 1.90 (1H, m), 1.63-1.85 (6H, m), 1.55-1.59 (6H, m), 1.53 (3H, s), 1.46 (4H, m), 1.21 (3H, s). LC/MS: 332 (M+H)+ positive ion mode
- To a mixture of 7-HF (300 mg, 0.0012 mol) in 5 mL of THF in a RB flask was slowly added 1,2,4-triazole (0.1 g, 0.0014 mol) at RT and the mixture stirred for 1.5 h. The reaction mixture was then poured into ice-cold water and the mixture extracted with EtOAc. The organic layer was washed with brine, dried over Na2SO4 and evaporated under vacuum. The residue (300 mg) was subjected chromatography over silica column using methanol/chloroform mixtures. The fraction eluted with 40% of acetone/hexane yielded compound-21 [(23), yield 79%].
- Compound-21: 1H NMR (CDCl3,400 MHz): δ 8.21 (1H, s), 8.02 (1H, s), 5.10 (1H, s), 5.06 (1H, s), 4.82 (1H, dd, J=2.4, 14.4 Hz), 4.36 (1H, dd, J=11.2, 14.8 Hz), 3.19 (1H, dd, J=2.8, 11.2 Hz), 2.16 (1H, m), 2.08 (1H, dd, J=6.0, 17.6 Hz), 1.90 (2H, m), 1.80 (3H, s), 1.77 (2H, m), 1.47 (3H, m), 1.07 (3H, s). LC/MS: 318 (M+H)+, 340 (M+Na)+, 356 (M+K)+ positive ion mode.
- To a mixture of 7-HF (300 mg, 0.0012 mol) in 5 mL of THF in a RB flask was slowly added piperazine (624 mg, 0.0072 mol) at RT and the mixture stirred for 1.5 h. The reaction mixture was poured into ice cold water and the mixture extracted with EtOAc. The organic layer was washed with brine, dried over Na2SO4 and evaporated under vacuum. The residue (300 mg) was subjected chromatography over silica column using acetone/hexane mixtures. The fraction eluted with 30% acetone/hexane yielded 170 mg of compound-22 [(24), yield 51%].
- Compound-22: 1H NMR (CDCl3, 400 MHz): δ 5.02 (1H, s), 3.06 (1H, m), 2.94 (5H, m,), 2.71 (2H, brs), 2.73 (2H, m), 2.40 (2H, brs), 2.154-2.03 (2H, m), 1.87 (1H, td, J=3.6, 14.0 Hz), 1.79 (3H, m), 1.56-1.71 (4H, m), 1.38-1.49 (4H, m), 1.06 (3H, s); LC/MS: 335 (M+H)+ positive ion mode.
- To a mixture of 7-HF (300 mg, 0.0012 mol) in 5 mL of THF in a RB flask was slowly added piperazine (124 mg, 0.0014 mol) at RT and the mixture stirred for 1.5 h. The reaction mixture was then poured into ice cold water and the mixture extracted with EtOAc. The organic layer was washed with brine, dry over Na2SO4 and evaporated under vacuum. The residue (300 mg) was subjected chromatography over silica column using acetone/hexane mixtures. The fraction eluted with 30% of acetone/hexane yielded 30 mg of compound-23 (25).
- Compound-23: 1H NMR (CDCl3, 400 MHz): δ 5.01 (2H, s), 3.06 (2H, dd, J=5.2, 11.2 Hz), 2.87 (2H, d, J=13.2 Hz), 2.80 (4H, dd, J=5.6, 13.2 Hz), 2.11 (4H, m), 1.91 (2H, td, J=2.8, 13.2 Hz), 1.80 (2H, m), 1.79 (6H, s), 1.39-1.70 (18H, m), 1.05 (6H, s); 13C NMR (CDCl3, 100 MHz): δ 174.2, 140.3, 126.7, 79.7, 77.5, 77.2, 53.2, 49.3, 39.5, 35.0, 33.5, 33.2, 19.7, 25.9, 25.4, 19.4, 18.2; LC/MS: 583 (M+H)+, 605 (M+Na)+ positive ion mode.
- One hundred thousand 3T3-L1 Human pre-adipocyte cells in Dulbecco's Modified Eagles Medium (DMEM) containing 10% Fetal Bovine Serum (FBS) were taken into each well of a 24-well plate and incubated for 48 h at 37° C. and 5% CO2. The differentiation of pre-adipocyte cells was initiated in a differentiation medium containing 10 μg/ml insulin, 1.0 μM dexamethasone, and 0.5 mM isobutylmethylxanthine (IBMX) for 48 h. After this the medium was replaced by DMEM containing 10 ug/ml insulin and incubated for 3 days. Then the differentiating cells were treated with 1.0 or 2 or 2.5 g/ml of 7-hydroxyfrullanolide (1) or different natural analogs (
structure numbers 3 to 11) or semi-synthetic analogs (structure numbers 12 to 25) of 7-HF. The cells were maintained in the medium for another 3-5 days. The cells incubated with 0.1% DMSO were considered as the vehicle control. After the incubation period, cells were washed with phosphate buffered saline (PBS) and fixed with 10% buffered formalin for 1 h at room temperature. One small aliquot of cell suspension was separated for cell counting in hemocytometer chamber. Fixed cells were stained with Oil Red O solution to measure the cellular neutral lipid accumulation. Briefly, cells were washed with PBS, fixed with 10% buffered formalin and stained with Oil Red O solution (0.5 g in 100 ml isopropanol) for min. After removing the staining solution, the dye retained in the cells will be eluted into isopropanol and OD measured at 550 nm. The inhibition of fat accumulation in the treated cells was compared with the mock treated differentiated adipocytes. The treated and control cells were also analyzed and compared for inhibition of lipid accumulation visually under microscope and recorded digitally in suitable image capture system. The anti-adipogenic activity by 7-HF is depicted in Figure I and the percentage inhibition of lipid accumulation shown by 7-HF and its natural and semi-synthetic analogs is summarized in Table-1. -
TABLE 1 Concentration S. No Compound (μg/mL) % inhibition 1 7-HF (1) 1.0 52.5 2 2.5 63.5 3 Compound-1 2.5 19.4 4 Compound-3 2.5 40.5 5 Compound-4 2.5 10.0 6 Compound-10 2.0 45.0 7 Compound-11 2.0 8.0 8 Compound-12 2.0 55.0 9 Compound-13 2.0 79.7 10 Compound-14 2.0 14.0 11 Compound-17 2.0 36.2 12 Compound-18 2.5 133 13 Compound-19 2.0 23.3 14 Compound-20 2.0 7 15 Compound-22 1.0 15 16 Compound-23 1.0 15.2 - The lipolytic activity was assessed in mature adipocytes as per the procedure of Chemicon International, USA, by measuring free glycerol secreted into the culture medium. One hundred thousand 3T3-L1 Human pre-adipocyte cells in Dulbecco's Modified Eagles Medium (DMEM) containing 10% Fetal Bovine Serum (FBS) were taken into each well of a 24-well plate and incubated for 48 h at 37° C. and 5% CO2. The differentiation of pre-adipocyte cells was initiated in a differentiation medium containing 10 g/ml insulin, 1.0 M dexamethasone, and 0.5 mM isobutylmethylxanthine (IBMX). The cells were differentiated for 5 days and then the culture medium was removed. The monolayer was washed twice with wash solution (Hank's balanced salt solution), and then 250 L of incubation solution (Hank's balanced salt solution plus 2% bovine serum albumin) was added to the wells in triplicate in presence or absence of 7-hydroxyfrullanolide or its analogs or the extracts containing 7-HF, and the cells were further incubated for 16 h. To measure lipolysis, 200 μL of free glycerol assay reagent was added to 25 L of culture supernatants and controls containing glycerol standard. The samples and the controls were incubated for 15 min, and the absorbance was read at 540 nm. A standard curve constructed from the glycerol was used to calculate the concentration of free glycerol in the culture supernatants. The percentage increase in glycerol concentration in the sample solutions compared to the control containing the known concentrations of glycerol corresponds to the percentage acceleration of lipolysis by test compound. The percentage increase in lipolysis accelerated by 7-HF was found to be 47.8% at 5 μg/ml concentration. The data is summarized in Figure II. The data for other compounds is summarized in Table-2.
-
TABLE 2 Concentration % acceleration S. No Compound (μg/mL) of lipolysis 1 7-HF (1) 5 47.8 2 Compound-1 10 44.6 3 Compound-3 5 39.6 7 Compound-12 5 45.2 8 Compound-13 5 52.8 - Experimental protocol: Mouse pre-adipocyte 3T3-L1 cells are maintained in Dulbecco's Modified Eagles Medium (DMEM) supplemented with 2 mM glutamine, 4.5 g/L glucose and 10% fetal bovine serum. Equal number of cells was plated in each well of 24-well culture plates. Cells were pre-treated separately with 1 μg/mL 7-hydroxyfrullanolide for 2 h and followed by addition of differentiation medium containing 500 nM insulin, 1.0 μM dexamethasone, and 0.5 mM isobutylmethylxanthine (IBMX) for 48 h. Thereafter, cells were further incubated with post differentiation medium (DMEM containing 100 nM insulin) in presence or absence of 7-HF. Finally, the cells were harvested, washed with chilled phosphate buffered saline and lysed with the lysis buffer. The protein extracts were clarified at 14,000 g for 20 min. Protein content was measured in Bradford method by using Coomassie blue dye and cell lysates were stored in aliquots at −80° C. until further use. The modulation of adipocyte differentiation markers such as Peroxisome proliferator-activated receptor gamma (PPARγ), CD36, adipocyte fatty acid binding protein (aP2); and intracellular lipid droplet surface associated protein, perilipin expression were evaluated by immunoblot assay.
- Inhibition of protein expression of biomarker molecules adipocytes in presence or absence of 7-hydroxyfrullanolide (7-HF) was evaluated in immunoblot assay. Briefly, equal amount of cell lysates proteins were resolved in 7.5% SDS-PAGE; thereafter, the proteins were transferred to nitrocellulose membrane. After blocking the non-specific sites, the membrane was incubated with either anti-PPARγ, or anti-CD36, or anti-aP2, or anti-ADRP, or anti-perilipin antibody. Finally, the specific immuno-reactive bands were developed with West-pico chemiluminescent substrate (Pierce Biotechnology, IL, USA), and the immunoblot images were recorded in a Kodak Image Station (Kodak, USA). Band intensities were calculated densitometrically and normalized with expression of actin in respective samples. The data is summarized in Figure III.
- Experimental protocol: This was evaluated in glucose induced J774, mouse macrophage cells. Briefly, the cells were cultured in DMEM with 2 mM Glutamine, 100 U/mL penicillin, 100 mg/mL streptomycin and 10% fetal bovine serum (Hyclone, Logan, Utah). Equal number of cells was seeded into 35 mm petri dishes (Corning, USA) one day before the experiment. The culture media was replaced with fresh, glucose free DMEM supplemented with 10% fetal bovine serum. 7-HF was diluted at 1 g and all cultures were pre-incubated for 2 hours at 5% CO2 at 37° C., and then incubated with 600 mg/dL of glucose for 5 days. Representative photomicrographs showing inhibition of lipid accumulation by 7-HF in high glucose induced macrophage cells of an in vitro model of atherosclerosis are shown in Figure IV. The control culture was supplemented with 100 mg/dL glucose. The cells were harvested and lysed with lysis buffer. Cell lysates were clarified at 14,000 g. Protein concentration was measured by Bradford method.
- Inhibition of CD36 protein expression in high glucose induced J774 macrophage cells in presence or absence of 7-HF was evaluated in immunoblot assay. Briefly, equal amount of cell lysates proteins were resolved in 7.5% SDS-PAGE; thereafter, the proteins were transferred to nitrocellulose membrane. After blocking the non-specific sites, the membrane was incubated with CD36 antibody (R&D Systems, Minneapolis, Minn.). Finally, the specific immuno-reactive bands were developed with West-pico chemiluminescent substrate (Pierce Biotechnology, IL, USA), and the immunoblot images were recorded in a Kodak Image Station (Kodak, USA). Band intensities were calculated densitometrically and normalized with expression of actin in respective samples. The results are summarized in Figure V.
- Equal number (5000 cells) of human endothelial cells was plated in each well of a 96-well cell culture plate. The cells were treated with various concentrations (0.1, 0.25, 0.5 and 1.0 ng/ml) of 7-HF for 24 h. The control cultures received 0.01% (v/v) DMSO as the vehicle. After 24 h, the culture supernatants were collected and mixed with equal volume of Griess reagent [1:1 mixture of NED solution (0.1% N-1-napthylethulenediamine dihydrochloride in water) and Sulfanylamide solution (1% sulfanilamide in 5% phosphoric acid)]. The reaction was allowed for 10 min at room temperature. Finally, the color reaction was read at 550 nm in a micro-plate reader (BioRad, USA). Known concentrations of sodium nitrite were reacted to obtain a standard curve. Modulation of nitrite production in 7-HF treated cultures was quantitatively assessed by extrapolating the absorbance readings obtained from the test samples into the standard plot. The data is summarized in Figure VI.
- Equal number of 3T3-L1 mouse preadipocytes was seeded into cell culture dishes. After 24 h, the cells were treated either with different concentrations of 7-HF or 500M Sodium vanadate (Na2VO3) for further 48 h. Thereafter, the washed cells were lysed with cell lysis buffer and the clarified at 14,000 g for 10 min at 4° C. The protein concentrations were calculated by Bradford method and the cell lysates were reacted with equal volume of substrate reagent containing 10 mM p-nitrophenyl phosphate (pNPP). After 1 h incubation at 37° C., the reaction was stopped with 1N NaOH and the developed color was read at 405 nm. The specific enzyme activity was calculated by using an extinction coefficient of 1.78×104 M−1cm−1 for pNPP at A405. The inhibition shown by 7-HF is depicted in Figure VII.
- Modulation of adiponectin protein by 7-hydroxyfrullanolide (7-HF) in 3T3-L1 adipocytes was evaluated in Western immunoblot assay. The cell culture, treatment protocol and immunoblot assay methodology were the same as described above in Example 18. Figure VIII summarizes the enhancement of adiponectin protein expression in 3T3-L1 mature adipocytes by 7-HF.
- Efficacy of the Sphaeranthus indicus ethyl acetate extract (SIE) was tested in high fat, high cholesterol, high salt and high sucrose diet induced model of metabolic syndrome. Induction: A batch of 12 Sprague Dawley Rats was randomly divided into 2 groups, each comprised of 6 animals. Animals were acclimatized for 7 days prior to study initiation. Metabolic syndrome was induced by feeding the rats with the metabolic syndrome diet containing 32 g of roasted bengal gram, 27 g of sucrose, 17 g of milk powder, 5 g of mineral salt mixture, 1 g of yeast, 2 g of butter, 11 g of groundnut oil and 5 g of cholesterol per 100 g of the diet for 8 weeks.
- Treatment: Following 8 weeks induction phase, the animals were treated orally (using oral feeding gavage) with allocated test substance or vehicle daily for 8 weeks. The treatment group animals were supplemented orally with 250 mg/kg body weight of SIE in mL of 0.5% CMC in water for further 8 weeks. The control group of animals received only the vehicle (10 mL of 0.5% CMC in water) during this period. During the treatment phase, all animals were provided with the standard rodent diet till the end of the study.
- Body weights: Body weight of individual animal was recorded weekly for the entire duration of the study. Mean body weights for the treatment group and control group were determined. The body weight gain was calculated at the end of 1st week, 4th week and 8th week after initiation of treatment in comparison to initial body weight. In comparison to the control group, SIE at 250 mg/kg dose exhibited highly potent and statistically significant (p<0.01) reduction in body weight gain (66.04%) in comparison to control group. The results of body weight gain for the treatment groups and control group are summarized in figures XIA & XIB.
- Fat Tissue Weight:
- Abdominal and epididymal fat were isolated and weighed at the termination of the study and the results were represented in Table-3. Abdominal and epididymal fat weights in the treatment group are lower, when compared to those in the control group. The total fat was significantly reduced (p<0.05) in the treatment group supplemented with ethyl acetate extract of Sphaeranthus indicus (SIE).
- Weight of Fat Tissues Isolated from Abdomen and Epididymal Area of Rats.
-
TABLE 3 Treatment Abdominal fat (g) Epididymal fat (g) Total fat (g) Control 4.52 ± 1.16 4.18 ± 1.56 8.70 ± 2.52 (10 mL/kg) SIE (250 mg/kg) 2.28 ± 0.78 3.07 ± 0.74 5.36 ± 0.89 Values expressed as mean weight ± SD - Serum Biochemistry: Blood sampling was done via sinus orbital plexus under mild anesthesia, before induction, before initiation of treatment and after completion of treatment. Various biochemical parameters including lipid profile were evaluated using biochemistry reagents supplied by Human, Germany, in an automated clinical chemistry analyzer HumaStar300, Make: Human, Germany. Mean values of the biochemical parameters especially serum cholesterol levels and triglycerides levels were estimated before induction, after induction/before treatment and after treatment. Supplementation of ethyl acetate extract of Sphaeranthus indicus (SIE) at 250 mg/kg resulted in improvement in fat profile with 15.3, 12.7 and 22.9 percentage reductions respectively in serum cholesterol, LDL and triglycerides.
- Estimation of Biomarker Adiponectin: The serum adiponectin concentration for the control and treatment groups of animals were assessed using double antibody based sandwich rat adiponectin ELISA kit. The assay was performed following the instructions provided by the manufacturer (Linco Research, USA). The sensitivity of the assay is 0.155 ng/ml. Adiponectin assay revealed that supplementation of SIE at a dose of 250 mg/day/kg body weight for 8-weeks resulted in significant (p=0.00618) improvement in serum adiponectin concentration, in comparison with the baseline. The control group, however, did not show improvement in serum adiponectin concentration. The results are summarized in Figure XII.
- The Homeostasis Model Assessment (HOMA): The HOMA index was calculated based on serum insulin and glucose levels, using the following formula:
-
Fasting insulin concentration (μU/mL)×Fasting glucose concentration (mmol/L)/22.5. - The supplementation of treatment group of rats with a daily dose of 250 mg/kg body weight for 8-week treatment period resulted in significant reduction of HOMA index compared to control group. The data is presented in Figure XIII.
- Those of ordinary skill in the art will appreciate that changes could be made to the embodiments described above without departing from the broad inventive concept thereof. It is understood, therefore, that this invention is not limited to the particular embodiments or examples disclosed, but is intended to cover modifications within the objectives and scope of the present invention as defined in the specification.
Claims (25)
1. Biologically active ingredient(s) comprising at least one component selected from 7-hydroxyfrullanolide, its analog(s); extract(s) and fraction(s) containing 7-hydroxyfrullanolide or its analog(s) or both; or mixtures thereof for the prevention, control and/or treatment of one or more metabolic disorders.
2. A biologically active composition comprising at least one component selected from the list comprising 7-hydroxyfrullanolide, its analog(s); the extract(s) or fraction(s) containing 7-hydroxyfrullanolide/its analog(s) or both; or mixture(s) thereof as an active in combination with one or more ingredients selected from other biologically active components derived from plants, animals and microorganisms; pharmaceutically or dietetically acceptable active ingredients, vitamins, aminoacids, minerals, vehicles, carriers and diluents or mixtures thereof for the prevention, control and/or treatment of one or more metabolic disorders.
3. The biologically active ingredient or their composition according to claim 1 , wherein said metabolic disorders comprise obesity, over weight, diabetes, arteriosclerosis, cardiovascular diseases, hypertension, hypercholesteremia, hyperlipidemia, triglyceridemia, metabolic syndrome, endothelial dysfunction and other metabolic disorders.
4. The biologically active ingredient(s) or their composition according to claim 1 , for the amelioration of the expression/production of one or more biological marker proteins related to metabolic disorders.
5. The biologically active ingredient(s) or their composition according to claim 4 , wherein said biological marker proteins comprise Peroxisome proliferator-activated receptor gamma (PPARγ), Adipose Differentiation Related Protein (ADRP), adipocyte CD36, Macrophage CD36, Monocyte Chemotactic protein (MCP-1), Oxidized LDL (Ox-LDL), adipocyte fatty-acid-binding protein (aP2/FABP4/A-FABP), beta-3 Adrenergic Receptor (β3AR), Perilipin, Adiponectin, Protein tyrosine phosphatase-1B (PTP-1B), Matrix Metalloproteinase-1 (MMP-1), Matrix Metalloproteinase-3 (MMP-3), and Matrix Metalloproteinase-13 (MMP-13).
6. The biologically active ingredient(s) or their composition according to claim 1 , wherein the analog(s) of 7-hydroxyfrullanolide comprises of the compound(s) represented by the general formula I given below;
Wherein R1, R2, R3, R4 and R5 are each independently selected from hydrogen, hydroxy, halogen, —OOR12, alkoxy, —OC(O)R12 and C(O)R12; optionally R1 and R2 are taken together to form a ketone (═O).
The tricyclic ring system consists of one or two or three double bonds.
Optionally R2 and R3 together form a double bond;
Optionally R3 and R4 together form a double bond;
Optionally R3 and R5 together form a double bond;
Optionally R5 and R6 together form a double bond;
Optionally R8 and R9 together form a double bond;
Further optionally R3 and R5 together form an epoxide ring
R7 is selected from hydrogen, hydroxy, halogen, alkoxy and —OC(O)R12; R8 is selected from hydrogen, hydroxy, halogen, alkoxy, —OC(O)R12, —C(O)R12 and NR13R14; R9 is selected from hydroxy, alkyl, cycloalkyl, alkoxy, aryl, heterocyclyl, halogen, —OC(O)R12, —C(O)R12, azido and —NR13R14, —S(O)mR15, —OS(O)mR15; wherein m is 0, 1 or 2;
R10 and R11 are each independently selected from hydrogen, alkyl, halogen, OR16, —NH R12 and SR12; wherein R16 is selected from hydrogen, alkyl and C(O)R12 or R10 and R11 together form one of ketone (═O), thioketone (S), imine (NH) and selenoketone (Se);
R12 is selected from hydrogen and alkyl;
R13 and R14 are each independently selected from hydrogen, alkyl, cycloalkyl, aralkyl, aryl, heterocyclyl, —C(O)R12 and —C(S)NHR12; or R13 and R14 together with the N atom to which they are bonded, to form a 5-, 6-, or 7-membered heterocyclic ring, optionally having one or more additional heteroatoms selected from O, N, S and Se;
R15 is selected from hydrogen, alkyl, cycloalkyl, aryl, heterocyclyl
X is selected from O, NH, S and Se
7-8. (canceled)
9. The biologically active ingredient(s) or their composition according to claim 1 , wherein the analogs of 7-hydroxyfrullanolide are natural analogs selected from the group consisting of 11α,13-dihydro-3α,7α-dihydroxy-4,5-epoxy-6β,7-eudesmanolide; 11α,13-dihydro-7α-acetoxy-3β-hydroxy-6β,7-eudesm-4-enolide; 3-keto-β-eudesmol; 11α,13-dihydro-3α,7α-dihydroxyeudesm-4-en-6α,12-olide; 11α,13-dihydro-3α,7α-dihydroxyfrullanolide; 11α, 13-dihydro-7α,13-dihydroxyfrullanolide; 11α, 13-dihydro-7α-hydroxy-13-methaoxyfrullanolide; 2α, 7α-dihydroxy-4-en-11,13-dihydroeudesm-6,12-olide; 2α-hydroxycostic acid; 3-keto-7α-hydroxyeudesm-4-en-6,12-elide (cryptomeridiol); 4-epicryptomeridiol; sphaeranthanolide; 2a-hydroxysphaerantholide; 2α-acetoxysphaerantholide; 2α,7α-dihydroxysphaerantholide; 2α-acetoxy-7α-hydroxysphaerantholide; 2α-acetoxy-5α-hydroxyisosphaerantholide; eudesmanolide dimer (compound-2); 5aR,9aR,9bR)-decahydro-9a-hydroperoxy-3a-hydroxy-5a-methyl-3,9-dimethylenenaphtho[1,2-b]furan-2(9bH)-one (compound-3); (3aS,5aR,9bR)-3,3a,4,5,5a,6,7,8-octahydro-3,5a,9-trimethylnaphtho[1,2-b]furan-2(9bH)-one (compound-4); (R)-5,5a,6,7-tetrahydro-3,5a,9-trimethylnaphtho[1,2-b]furan-2(4H)-one (compound-5), (3R,3aR,5aR,9bS)-3,3a,4,5,5a,6,7,8-octahydro-3a-hydroxy-3-(methoxymethyl)-5a, 9-dimethylnaphtho[1,2-b]furan-2(9bH)-one (compound-6); 2-((3R,8aR)-1,2,3,7,8,8a-hexahydro-5,8a-dimethylnaphthalen-3-yl)acrylic acid (compound-7); (3aR,5aR,9bS)-3-((6-amino-9H-purin-9-yl)methyl)-3,3a,4, octahydro-3a-hydroxy-5a, 9-dimethylnaphtho[1,2-b]furan-2 (9bH)-one (compound-8); (3R,3aR,5aR,8R,9bS)-8-((2R,3S,4R,5R)-tetrahydro-3,4,5-trihydroxy-6-(hydroxymethyl)-2H-pyran-2-yloxy)-3,3a,4,5,5a,6,7,8-octahydro-3a-hydroxy-3,5a,9-trimethylnaphtho[1,2-b]furan-2(9bH)-one (compound-9) and mixtures thereof.
10. The biologically active ingredient(s) or their composition according to claim 1 , wherein the analogs of 7-hydroxyfrullanolide are synthetic/semi-synthetic analogs selected from the group consisting of (3aR,5aR,9bS)-3,3a,4,5,5a,6,7,8-octahydro-3a,8-dihydroxy-5a,9-dimethyl-3-methylene naphtho[1,2-b]furan-2(9bH)-one (compound-10); 5aS,9bS)-3a,4,5,5a,6,7-hexahydro-3a-hydroxy-5a,9-dimethyl-3-methylene naphtho[1,2-b]furan-2,8(3H,9bH)-dione (compound-11); (R)-2,4,5,5a,6,7-hexahydro-5a,9-dimethyl-2-oxonaphtho[1,2-b]furan-3-carbaldehyde (compound-12); 4,5-epoxy-7-hydroxyfrullanolide (compound-13); (R)-3-(bromomethyl)-5,5a,6,7-tetrahydro-5a,9-dimethylnaphtho[1,2-b]furan-2(4H)-one (compound-14; (3aR,5aR,9bS)-3,3a,4,5,5a,6,7,8-octa hydro-3a-hydroxy-3,5a, 9-trimethylnaphtho[1,2-b]furan-2(9bH)-one (compound-15); (2E)-(3aR,5aR,9bS)-2,3,3a,4,5,5a,6,7,8,9b decahydro-3a-hydroxy-3,5a,9-trimethyl-2-oxonaphtho[1,2-b]furan-8-yl 3-(2,5-dimethoxyphenypacrylate (compound-16); (3aR,5aR,9bS)-3,3a,4,5,5a,6,7,8-octahydro-3a-hydroxy-5a,9-dimethyl-3-(morpholinomethyl)naphtho[1,2-b]furan 2(9bH)-one (compound-17); (3aR,5aR,9bS)-3,3a,4,5,5a,6,7,8-octahydro-3a,8-dihydroxy-5a, 9-dimethyl-3-(morpholinomethyl)naphtho[1,2-b]furan-2(9bH)-one (compound-18); (3aR,5aR,9bS)-3,3a,4,5,5a,6,7,8-octahydro-3a-hydroxy-5a,9 dimethyl-3-((piperidin-1-yl)methyl)naphtho[1,2-b]furan-2(9bH)-one (compound-19); (5aR)-5,5a,6,7,8,9-hexahydro-9-hydroxy-5a,9-dimethyl-3-((piperidin-1-yl)methyl)naphtho[1,2-b]furan-2(4H)-one (compound-20); (3aR,5aR,9bS)-3-((4H-1,2,4-triazol-4-yl)methyl)-3,3a,4,5,5a,6,7,8-octahydro-3a-hydroxy-5a,9-dimethylnaphtho furan-2 (9bH)-one (compound-21), (3aR,5aR,9bS)-3,3a, 4,5,5a,6,7,8-octahydro-3a hydroxy-5a,9-dimethyl-3-((piperazin-1-yl)methyl)naphtho[1,2-b]furan-2(9bH)-one (compound-22) and piperazine bis-7-hydroxyfrullanolide (compound-23) as substantially depicted in figure X by structures 12 through 25.
11-12. (canceled)
13. The biologically active ingredient(s) comprising at least one component selected from 7-hydroxyfrullanolide, its analog(s); extract(s) and fraction(s) containing 7-hydroxyfrullanolide or its analog(s) or both; or mixtures thereof according to claim 1 , wherein the said extracts and fractions contain 7-hydroxyfrullanolide or its analog(s) or mixtures thereof in the range of 0.001% to 100%, preferably 0.01 to 99%.
14-15. (canceled)
16. The biologically active composition according to claim 2 , wherein the other biologically active components used for making the compositions comprise extract(s), fraction(s), active compound(s), phytochemical(s) or powder(s) derived from plant(s), animal(s) or microorganisms having one or more health benefits selected from but not limited to anti-diabetic activity, anti-hyperlipidemic activity, anti-obesity activity, anti-hypertensive activity, anti-platelet aggregation activity, anti-infective activity, anti-atherosclerotic activity, anti-inflammatory activity, anti-oxidant activity and bio-enhancing activity.
17. The biologically active ingredient(s) or their compositions according to claim 1 , can be optionally combined with bio-availability enhancing agents selected from but not limited to extract(s), fraction(s), pure compound(s) derived from Piper nigrum or Piper longum or Stevia rebaudiana.
18. The biologically active ingredient(s) or their compositions according to claim 1 , wherein the 7-hydroxyfrullanolide, its analogs; extracts and fractions containing 7-hydroxyfrullanolide or its analogs or mixtures thereof are derived from Sphaeranthus indicus, wherein said extract(s) or active fraction(s) or active compound(s) or phytochemicals or mixtures thereof are derived from at least one of the plant parts selected from leaves, flower heads, fruits, stem, bark, root, whole plant or mixtures thereof, preferably flower heads.
19. The biologically active ingredient(s) or their compositions according to claim 2 , wherein, the pharmaceutically or dietetically acceptable excipients, vehicles and carriers comprise surfactants, binders, diluents, disintegrators, lubricants, preservatives, stabilizers, buffers, suspensions and drug delivery systems.
20. The biologically active ingredient(s) or their compositions according to claim 19 , wherein the pharmaceutically or dietetically acceptable excipients, carriers and diluents comprise glucose, fructose, sucrose, maltose, yellow dextrin, white dextrin, aerosil, microcrystalline cellulose, calcium stearate, magnesium stearate, sorbitol, stevioside, corn syrup, lactose, citric acid, tartaric acid, malic acid, succinic acid, lactic acid, L-ascorbic acid, dl-alpha-tocopherol, glycerin, propylene glycol, glycerin fatty ester, poly glycerin fatty ester, sucrose fatty ester, sorbitan fatty ester, propylene glycol fatty ester, acacia, carrageenan, casein, gelatin, pectin, agar, vitamin B group, nicotinamide, calcium pantothenate, amino acids, calcium salts, pigments, flavors, preservatives, distilled water, saline, aqueous glucose solution, alcohol, propylene glycol and polyethylene glycol, various animal and vegetable oils, white soft paraffin, paraffin and wax.
21. The biologically active ingredient(s) or its composition(s) according to claim 1 , wherein said ingredient(s) or composition(s) is administered orally, topically, parenterally or by inhalation to a subject or mammal or warm blooded animal in need thereof.
22. (canceled)
23. The biologically active ingredient(s) or its composition(s) according to claim 1 , wherein said ingredient(s) or composition(s) can be formulated as oral agents such as tablets, soft capsule, hard capsule, soft gel capsules, pills, granules, powders, emulsions, suspensions, syrups, pellets, food, beverages, concentrated shots, drops and the like; and parenteral agents such as injections, intravenous drip and the like; suppositories; and transdermal agents such as patches, topical creams and gel; ophthalmic agents; nasal agents; and food or beverages.
24-25. (canceled)
26. Use of biologically active ingredient or its composition(s) according to claim 1 for prevention, control and/or treatment of one or more diseases or conditions including but not limited to obesity, diabetes, hypertension, arteriosclerosis, cardiovascular diseases, neurological disorders, Alzheimer's, cognitive disorders, oxidative stress, skin disorders, aging of the skin, UV irradiated damage, hypercholesterolemia, hyperlipidemia, triglyceridemia, immune deficiency, metabolic syndrome, for bringing about weight loss effectively, for producing lean body mass, for using during weight loss program as well as for other metabolic disorders.
27. A method of preventing/controlling/treating one or more metabolic disorders selected from obesity, over weight, diabetes, arteriosclerosis, cardiovascular diseases, hypertension, hypercholesterolemia, hyperlipidemia, triglyceridemia, metabolic syndrome, endothelial dysfunction and other metabolic disorders in a mammal or warm blooded animal in need thereof, wherein the method comprises administering to mammal or warm blooded animal a therapeutically effective amount of at least one biologically active ingredient or its composition(s) according to claim 1 .
28. A method of promoting lipolysis and/or inhibiting adipogenesis in a subject or mammal or warm blooded animal in need thereof comprising administering to said subject or mammal or warm blooded animal a therapeutically effective quantity of at least one biologically active ingredient or its composition(s) according to claim 1 .
29. A method of amelioration of the expression or production of at least one biological marker selected from PPAR-γ, C-reactive protein (CRP), Adipose Differentiation Related Protein (ADRP), adipocyte CD36, macrophage CD36, Monocyte Chemotactic protein (MCP-1), Oxidized LDL, Adipocyte Fatty-acid-Binding Protein (aP2/FABP4/A-FABP), Beta-3 adrenergic receptor (β3-AR), adiponectin, Perilipin, Protein tyrosine phosphatase 1B (PTP 1B), Matrix Metalloproteinase-1 (MMP-1), Matrix Metalloproteinase-3 (MMP-3) and Matrix Metalloproteinase-13 (MMP-13) in a subject or mammal or warm blooded animal in need thereof, wherein the method comprises administering to the subject or mammal or warm blooded animal at least one biologically active ingredient or its composition(s) according to claim 1 .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/752,181 US20130136809A1 (en) | 2009-02-02 | 2013-01-28 | 7-hyrdroxyfrullanolide its analogs for prevention control and treatment of metabolic disorders |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
IN224CH2009 | 2009-02-02 | ||
IN224/CHE/2009 | 2009-02-02 | ||
US13/146,965 US9241964B2 (en) | 2009-02-02 | 2010-02-01 | Composition from Sphaeranthus indicus and Garcinia mangostana for the control of metabolic syndrome |
PCT/IN2010/000053 WO2010100653A2 (en) | 2009-02-02 | 2010-02-01 | Composition from sphaeranthus indicus and garcinia mangostana for the control of metabolic syndrome |
PCT/IN2010/000494 WO2012014216A1 (en) | 2010-07-28 | 2010-07-28 | 7-hydroxyfrullanolide and its analogs for prevention, control and treatment of metabolic disorders |
US13/752,181 US20130136809A1 (en) | 2009-02-02 | 2013-01-28 | 7-hyrdroxyfrullanolide its analogs for prevention control and treatment of metabolic disorders |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/IN2010/000494 Continuation WO2012014216A1 (en) | 2009-02-02 | 2010-07-28 | 7-hydroxyfrullanolide and its analogs for prevention, control and treatment of metabolic disorders |
Publications (1)
Publication Number | Publication Date |
---|---|
US20130136809A1 true US20130136809A1 (en) | 2013-05-30 |
Family
ID=42710066
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/146,965 Active 2030-03-13 US9241964B2 (en) | 2009-02-02 | 2010-02-01 | Composition from Sphaeranthus indicus and Garcinia mangostana for the control of metabolic syndrome |
US13/752,181 Abandoned US20130136809A1 (en) | 2009-02-02 | 2013-01-28 | 7-hyrdroxyfrullanolide its analogs for prevention control and treatment of metabolic disorders |
US14/951,175 Active 2032-03-26 US10471114B2 (en) | 2009-02-02 | 2015-11-24 | Composition from Sphaeranthus indicus and Garcinia mangostana for the control of metabolic syndrome |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/146,965 Active 2030-03-13 US9241964B2 (en) | 2009-02-02 | 2010-02-01 | Composition from Sphaeranthus indicus and Garcinia mangostana for the control of metabolic syndrome |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/951,175 Active 2032-03-26 US10471114B2 (en) | 2009-02-02 | 2015-11-24 | Composition from Sphaeranthus indicus and Garcinia mangostana for the control of metabolic syndrome |
Country Status (8)
Country | Link |
---|---|
US (3) | US9241964B2 (en) |
EP (1) | EP2391374B1 (en) |
JP (1) | JP2012516842A (en) |
KR (1) | KR101682489B1 (en) |
CN (1) | CN102292093B (en) |
AU (1) | AU2010220058B2 (en) |
CA (1) | CA2751227C (en) |
WO (1) | WO2010100653A2 (en) |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8846315B2 (en) | 2008-08-12 | 2014-09-30 | Zinfandel Pharmaceuticals, Inc. | Disease risk factors and methods of use |
EP2324126B1 (en) | 2008-08-12 | 2014-04-23 | Zinfandel Pharmaceuticals, Inc. | METHOD OF IDENTIFYING Alzheimer's DISEASE RISK FACTORS |
JP2011079752A (en) * | 2009-10-05 | 2011-04-21 | Kracie Home Products Ltd | Pancreatic lipase inhibitor, food and beverage composition containing the same and pharmaceutical composition |
CN103108556A (en) * | 2010-09-11 | 2013-05-15 | 莱拉营养食品有限公司 | Ingredients derived from sphaeranthus indicus |
JP5976271B2 (en) * | 2010-12-24 | 2016-08-23 | クラシエホームプロダクツ株式会社 | Lipase inhibitor and cosmetics, food / beverage composition and pharmaceutical composition containing the same |
MA34828B1 (en) | 2011-01-10 | 2014-01-02 | Zinfandel Pharmaceuticals Inc | METHODS AND MEDICAMENT PRODUCTS FOR THE TREATMENT OF ALZHEIMER'S DISEASE |
KR101508294B1 (en) * | 2012-07-05 | 2015-04-07 | 동국대학교 산학협력단 | Composition for preventing or treating Hepatitis C comprising extract of Garcinia Mangostana or Gamma, alpha-mangostins |
JP2014034562A (en) * | 2012-08-10 | 2014-02-24 | Lotte Kenko Sangyo:Kk | Adiponectin production promoting agent |
TW201427677A (en) * | 2012-10-23 | 2014-07-16 | Piramal Entpr Ltd | Herbal composition for the prevention and treatment of TNF- α mediated diseases |
RU2015152566A (en) * | 2013-06-19 | 2017-07-20 | Ассесс Бузинесс Груп Интернэшнл Ллс | Plant-based ketohexokinase inhibitors to support weight management |
JP6511604B2 (en) * | 2013-07-10 | 2019-05-15 | 和久 前田 | Method for producing metabolic syndrome therapeutic agent |
CN106361784B (en) * | 2015-07-24 | 2020-08-14 | 山酮新药开发股份有限公司 | Use of mangosteen fruit shell extract for treating skin diseases |
TWI565472B (en) * | 2016-02-02 | 2017-01-11 | 基業生物科技股份有限公司 | Purple mangosteen (garcinia mangostana) composition and use of purple mangosteen composition for preparation of medication and health food for enhancing learning ability and memory of patient with alzheimer's disease |
CA3023426A1 (en) * | 2016-05-21 | 2017-11-30 | Laila Impex | Dietary supplements and compositions for enhancing physical performance and energy levels |
CN111773208A (en) * | 2019-09-20 | 2020-10-16 | 厦门医学院 | Application of garcinia fruit extract gamma-mangostin in preparation of pharmaceutical composition for reducing blood sugar and blood pressure |
CN111758967B (en) * | 2020-07-15 | 2022-10-11 | 张兆熙 | Giant salamander collagen peptide composition and application thereof |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3647054B2 (en) * | 1993-11-12 | 2005-05-11 | 御木本製薬株式会社 | Antioxidant |
JPH09110688A (en) * | 1995-10-13 | 1997-04-28 | Meiji Milk Prod Co Ltd | Antibacterial agent |
FR2774905B1 (en) * | 1998-02-17 | 2000-06-09 | Codif International Sa | USE OF A COSMETIC COMPOSITION COMPRISING AT LEAST ONE SUBSTANCE WHICH INCLUDES A PYRONE GROUPING |
GB9921229D0 (en) * | 1999-09-08 | 1999-11-10 | Med Eq As | Compositions |
JP2002047125A (en) * | 2000-05-26 | 2002-02-12 | Shiseido Co Ltd | Skin care preparation for inhibiting sebum secretion |
CA2520955C (en) * | 2003-03-31 | 2009-11-24 | Council Of Scientific And Industrial Research | A process for preparation of hypoglycemic foods and formulations thereof |
EP1750523B1 (en) * | 2004-03-17 | 2010-07-21 | Nestec S.A. | Compositions and methods for reducing or preventing obesity |
JP4247154B2 (en) * | 2004-03-18 | 2009-04-02 | 有限会社 坂本薬草園 | PPARγ activator |
JP5140231B2 (en) * | 2004-04-08 | 2013-02-06 | 株式会社ロッテ | IκB kinase inhibitor |
WO2006134609A2 (en) * | 2005-06-16 | 2006-12-21 | Mmi Corporation | Novel anticancer agent, methods for obtaining the same and pharmaceutical compositions thereof |
SI1931366T1 (en) * | 2005-09-30 | 2013-10-30 | Piramal Enterprises Limited | Herbal composition for inflammatory disorders |
EA014070B1 (en) * | 2005-09-30 | 2010-08-30 | Пирамал Лайф Сайнсиз Лимитед | Use of a herbal composition for the treatment of inflammatory disorders |
FR2908310B1 (en) | 2006-11-14 | 2009-07-10 | Phytodia | AGONIST PRODUCTS OF TGR5 AND THEIR APPLICATIONS |
WO2008093848A1 (en) | 2007-02-02 | 2008-08-07 | Sunstar Inc. | Composition for decreasing inflammation marker comprising phosphatidylcholine |
-
2010
- 2010-02-01 AU AU2010220058A patent/AU2010220058B2/en active Active
- 2010-02-01 EP EP10748413.1A patent/EP2391374B1/en active Active
- 2010-02-01 CN CN201080004917.9A patent/CN102292093B/en active Active
- 2010-02-01 WO PCT/IN2010/000053 patent/WO2010100653A2/en active Application Filing
- 2010-02-01 JP JP2011547063A patent/JP2012516842A/en active Pending
- 2010-02-01 CA CA2751227A patent/CA2751227C/en active Active
- 2010-02-01 KR KR1020117020360A patent/KR101682489B1/en active IP Right Grant
- 2010-02-01 US US13/146,965 patent/US9241964B2/en active Active
-
2013
- 2013-01-28 US US13/752,181 patent/US20130136809A1/en not_active Abandoned
-
2015
- 2015-11-24 US US14/951,175 patent/US10471114B2/en active Active
Non-Patent Citations (3)
Title |
---|
Ambavade et al. Indian J Pharmacol Vol 38, Issue 4 (August 2006) 254-259 * |
Bafna et al. Ars Pharmaceutica, 45:3; (2004) 281-291. * |
Rahman et al. Journal of Natural Products. Vol. 57, No. 9 (September 1994) pp. 1251-1255. * |
Also Published As
Publication number | Publication date |
---|---|
EP2391374B1 (en) | 2018-11-14 |
EP2391374A4 (en) | 2014-01-08 |
WO2010100653A8 (en) | 2011-08-04 |
WO2010100653A3 (en) | 2010-11-04 |
US20160074457A1 (en) | 2016-03-17 |
CA2751227C (en) | 2021-10-26 |
WO2010100653A2 (en) | 2010-09-10 |
AU2010220058A1 (en) | 2011-07-21 |
KR101682489B1 (en) | 2016-12-05 |
CA2751227A1 (en) | 2010-09-10 |
AU2010220058B2 (en) | 2016-02-18 |
JP2012516842A (en) | 2012-07-26 |
US20110280951A1 (en) | 2011-11-17 |
US10471114B2 (en) | 2019-11-12 |
EP2391374A2 (en) | 2011-12-07 |
CN102292093A (en) | 2011-12-21 |
US9241964B2 (en) | 2016-01-26 |
CN102292093B (en) | 2015-01-28 |
KR20110122158A (en) | 2011-11-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20130136809A1 (en) | 7-hyrdroxyfrullanolide its analogs for prevention control and treatment of metabolic disorders | |
JP5816171B2 (en) | Compounds, compositions and methods for protecting brain health in neurodegenerative disorders | |
US8703215B2 (en) | Agents from Ficus hispida for the amelioration of metabolic syndrome and related diseases | |
EP3017822B1 (en) | Composition for treating or preventing inflammatory skin disease, comprising, as active ingredient, immature citrus fruit extract, or synephrine or salt thereof | |
US8293292B2 (en) | Extract of Fraxinus excelsior seeds and therapeutic applications therefor | |
US8048455B2 (en) | Treatment of cancer and inflammatory disorder | |
US9849151B2 (en) | Salacia compositions, methods of treatment by their administration, and methods of their preparation | |
Hashimoto et al. | Isolation and synthesis of TNF-a release inhibitors from Fijian kawa (Piper methysticum) | |
KR20190090362A (en) | A composition for imobesity containing dicaffeoylquinic acid | |
Tong et al. | Peptides derived from rice α-globulin reduce atherosclerosis in apolipoprotein E-deficient mice by inhibiting TNF-α-induced vascular endothelial cells injury | |
KR100697235B1 (en) | Composition for the prevention and treatment of obesity and type 2 diabetes comprising a Tussilago farfara extract or Tussilagone | |
US20170224757A1 (en) | Natural extracts for modulating pp2a methylation, and providing antioxidant and anti inflammatory activity | |
WO2012014216A1 (en) | 7-hydroxyfrullanolide and its analogs for prevention, control and treatment of metabolic disorders | |
KR100460438B1 (en) | Polyacetylene group compounds, novel inhibitors of acyl CoA:diacylglycerol acyltransferase and the process for preparing thereof | |
KR20000026053A (en) | Lignan compound isolated from magnolia flower or extract of magnolia flower having inhibition activity for generation of leukotrienes | |
Korthikunta et al. | Design, synthesis, and evaluation of benzofuran-based chromenochalcones for antihyperglycemic and antidyslipidemic activities | |
US20130324605A1 (en) | Uses of cimiracemate a and related compounds for treating inflammation and modulating immune responses | |
KR102690860B1 (en) | Composition for Preventing or Treating Inflammatory Diseases Comprising Metabolites from Antarctic Fungal Strain Pleosporales sp. SF-7343 | |
KR100577320B1 (en) | Agent for lowering triglycerides containing Quinolone alkaloid as inhibitors of acyl CoA:diacylglycerol acyltransferase, the method for preparing thereof and pharmaceutical compositions containing the same | |
KR100911672B1 (en) | Health food composition for strengthening bone matrix and method for separating components for strengthening bone matrix | |
KR101342082B1 (en) | Pharmaceutical composition for preventing and treating inflammation comprising ethyl linoleate | |
WO2009128583A1 (en) | Novel compounds and fractions for enhancing ucp expression | |
KR20240102080A (en) | Composition for preventing or treating neuroinflammatory diseases comprising diosgenin derivatives |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: LAILA NUTRACEUTICALS, VIRGINIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:GOKARAJU, GANGA RAJU;GOKARAJU, RAMA RAJU;GOKARAJU, VENKATA KANAKA RANGA RAJU;AND OTHERS;SIGNING DATES FROM 20130122 TO 20130125;REEL/FRAME:029707/0048 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |