US20130136317A1 - Vein image capture device - Google Patents

Vein image capture device Download PDF

Info

Publication number
US20130136317A1
US20130136317A1 US13/742,878 US201313742878A US2013136317A1 US 20130136317 A1 US20130136317 A1 US 20130136317A1 US 201313742878 A US201313742878 A US 201313742878A US 2013136317 A1 US2013136317 A1 US 2013136317A1
Authority
US
United States
Prior art keywords
image capture
capture device
body part
vein
support
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US13/742,878
Other versions
US8923573B2 (en
Inventor
Takashi Shinzaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Assigned to FUJITSU LIMITED reassignment FUJITSU LIMITED ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SHINZAKI, TAKASHI
Publication of US20130136317A1 publication Critical patent/US20130136317A1/en
Application granted granted Critical
Publication of US8923573B2 publication Critical patent/US8923573B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • G06K9/00885
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F21/00Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F21/30Authentication, i.e. establishing the identity or authorisation of security principals
    • G06F21/31User authentication
    • G06F21/32User authentication using biometric data, e.g. fingerprints, iris scans or voiceprints
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F21/00Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F21/70Protecting specific internal or peripheral components, in which the protection of a component leads to protection of the entire computer
    • G06F21/82Protecting input, output or interconnection devices
    • G06F21/83Protecting input, output or interconnection devices input devices, e.g. keyboards, mice or controllers thereof
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/10Image acquisition
    • G06V10/12Details of acquisition arrangements; Constructional details thereof
    • G06V10/14Optical characteristics of the device performing the acquisition or on the illumination arrangements
    • G06V10/143Sensing or illuminating at different wavelengths
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/40Spoof detection, e.g. liveness detection
    • G06V40/45Detection of the body part being alive
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L63/00Network architectures or network communication protocols for network security
    • H04L63/08Network architectures or network communication protocols for network security for authentication of entities
    • H04L63/0861Network architectures or network communication protocols for network security for authentication of entities using biometrical features, e.g. fingerprint, retina-scan

Definitions

  • the present invention is related to a vein image capture device for shooting a vein pattern image.
  • biometric technology With the recent development of biometric technology, provided are various types of devices for personal identification by recognizing the physical characteristics of a body part of a person by capturing, for example, the fingerprints of limbs, the retina of an eye, the face, the blood vessels, etc. of a person.
  • the blood vessels of a palm or a finger, and palm prints provide a relatively large amount of personal characteristic data, they are appropriate for personal identification with reliability. Furthermore, the pattern of blood vessels (vein) is not changed throughout one's lifetime after it is determined in the womb, that is, unique throughout the world, which is appropriate for personal identification.
  • an illumination device emits near-infrared light to the palm
  • the near-infrared light reflected by the palm is captured by a camera provided with an image sensor (patent documents 1 and 2). Since the hemoglobin in the red blood cells absorbs the near-infrared light, the quantity of the reflected near-infrared light from the vein parts decreases when the near-infrared light is emitted to the palm. Therefore, the camera may shoot the position of the vein on the palm based on the strength level of the near-infrared light.
  • vein image capture device designed as a unitary construction of an illumination device and a camera.
  • the vein image capture device requests the thickness for the device to be embedded in the door.
  • Patent Document 1 Japanese Laid-open Patent Publication No. 2007-249615
  • Patent Document 2 Japanese Laid-open Patent Publication No. 2007-30569
  • the vein image capture device includes: an illumination device which illuminates a body part of a living body; an image capture device which captures a vein pattern of the body part by receiving light reflected by the body part; and a support device which is provided between the body part and the image capture device, passes the reflected light, and supports the illumination device at the body part side.
  • the image capture device is separated from the support device by a distance at which the image capture device receives the reflected light.
  • FIGS. 1A and 1B are schematic diagrams of examples of the configuration of the vein image capture device according to the first embodiment
  • FIG. 2 is a schematic diagram of an example of the configuration of an illumination device according to the first embodiment
  • FIGS. 3A and 3B are schematic diagrams of examples of the configuration of the vein image capture device according to the second embodiment
  • FIG. 4 is a schematic diagram of an example of the configuration of an illumination device according to the second embodiment
  • FIGS. 5A and 5B are schematic diagrams of variation examples of the configuration of the vein image capture device according to the second embodiment.
  • FIGS. 6A and 6B illustrate the shape and size of the contour pattern of the illumination device.
  • FIG. 1A is a side view of the vein image capture device 100
  • FIG. 1B is a front view of the vein image capture device 100
  • the arrow in solid line indicates the direction of the travel of the light.
  • the vein image capture device 100 is provided at, for example, the entrance of a building, and captures a vein pattern of the palm of a person to be checked for authentication such as a visitor etc.
  • the vein image capture device 100 includes an image capture device 10 , an illumination device 20 , and a support device 30 for supporting the illumination device 20 .
  • the image capture device 10 is, for example, a camera provided with an image sensor, and is attached to a wall surface 50 .
  • the illumination device 20 has a plurality of light sources, and illuminates the palm ha of a person to be checked for authentication by emitting the near-infrared light.
  • the plurality of light sources may be, for example, an LED (light emitting diode) .
  • the support device 30 is, for example, a door, a window, etc., and is provided between the palm ha of a person to be checked for authentication and the image capture device 10 . At least a part of the support device 30 is formed by a transparent object such as glass which transmits the reflected light from the palm ha of the person to be checked for authentication.
  • the image capture device 10 captures the vein pattern of the palm ha by receiving the reflected light which has transmitted through the support device 30 . To be more detail, the image capture device 10 captures the vein pattern of the palm ha by receiving the diffused light in the illuminated palm ha.
  • the image capture device 10 is a camera having a narrow-angle lens
  • a camera with a lens having the angle of view of 5.72° is used.
  • a camera with a lens having the angle of view of 2.86° is used.
  • the illumination device 20 is provided at the palm ha side in the support device 30 .
  • the reason is described below.
  • the illumination device 20 when the illumination device 20 is provided at the image capture device 10 side in the support device 30 , the illumination device 20 illuminates the palm through the support device 30 .
  • the illumination device 20 when the light emitted from the illumination device 20 directly enters support device 30 , there is the possibility that the optical noise caused by the reflection of the light in the support device 30 has the influence on the captured image.
  • the illumination device 20 is provided at the palm ha side in the support device 30 , the illumination device 20 illustrates the palm ha without passing through the support device 30 . In this case, since the light emitted from the illumination device 20 does not directly enter the support device 30 , the reflection of the light in the support device 30 may be suppressed.
  • the support device 30 if the support device 30 is made of glass, the support device 30 reflects the light at the reflectance of about 10% when the light emitted from the illumination device 20 directly enters the support device 30 . In this case, there is the possibility that a whiteout occurs as optical noise on the image of a captured vein pattern.
  • the reflectance of the light when the surface reflected light from the palm ha enters glass is about 5%. Furthermore, the reflectance of the light when the diffused light in the illuminated palm ha enters glass is lower than 5%.
  • the illumination device 20 when the illumination device 20 is provided at the illumination device 20 side in the support device 30 , when the illumination device 20 is provided at the palm ha side in the support device 30 , the reflection of the light may be suppressed in the support device 30 , and the occurrence of the optical noise may be reduced.
  • the vein image capture device 100 the image capture device 10 is separated from the support device 30 by the distance at which the image capture device 10 may receive light reflected from the palm ha of a person to be checked for authentication. That is, in the vein image capture device 100 , the image capture device 10 is separated from the illumination device 20 .
  • a door and a window may function as the support device 30 of the illumination device 20 . That is, as compared with the vein image capture device in which the illumination device and the image capture device are incorporated as a unitary construction, the vein image capture device 100 according to the first embodiment maybe applied although the thickness of the door or window is thicker.
  • the contour pattern of the illumination device 20 is circular.
  • FIG. 2 is a schematic diagram of the configuration of the illumination device 20 , and an enlarged view of FIG. 1B .
  • the illumination device 20 has the configuration in which, for example, a plurality of LEDs 21 are arranged on the contour pattern PT marked circularly.
  • the illumination device 20 is provided in the support device 30 so that the image capture device 10 is positioned may be positioned in the area AR enclosed in the contour pattern PT.
  • the palm ha is irradiated with the light emitted from the plurality of LEDs 21 .
  • the light reflected from the palm ha enters the image capture device 10 through an area AR.
  • the vein image capture device 100 has the illumination device 20 , the image capture device 10 , and the support device 30 which supports the illumination device 20 .
  • the illumination device 20 illuminates the palm ha of a person to be checked for authentication, and the image capture device 10 captures the vein pattern of the palm ha by receiving the light reflected by the palm ha.
  • the support device 30 supports the illumination device 20 at the palm ha side.
  • the occurrence of the optical noise may be suppressed on the captured image of the vein pattern.
  • the image capture device 10 is separated from the support device 30 by the distance at which the image capture device 10 may receive the light reflected by the palm ha.
  • the image capture device 10 is separated from the illumination device 20 .
  • the support device 30 is only to support the illumination device 20 , and the thickness of the support device may be thicker as compared with the case in which the support device 30 supports both image capture device and illumination device, thereby realizing a wider application of the vein image capture device.
  • the distance between the support device 30 and the palm ha longer than the distance between the image capture device 10 and the support device 30 , avoided is the fluctuation of the magnification of the image of the vein pattern which is caused by different distances between the support device 30 and the palm ha each time the authentication is checked.
  • the vein image capture device 100 may include a control device for synchronizing the illuminating timing for the illumination device 20 with the capturing timing of the image capture device 10 .
  • the power consumption of the illumination device 20 may be reduced, and the infrared illumination time for the palm ha may be shortened.
  • FIG. 3A is a side view of the vein image capture device 100 a
  • FIG. 3B is a front view of the vein image capture device 100 a.
  • the arrow in solid line indicates the direction of the travel of the light (same in FIG. 5A ).
  • the vein image capture device 100 a includes an image capture device 10 a, an illumination device 20 a, and a support device 30 a for supporting the illumination device 20 a.
  • a glass window of a car is used as the support device 30 a for supporting the illumination device 20 a.
  • the glass window of a car door 60 is used as the support device 30 a.
  • the image capture device 10 a is provided for a support of a parking lot, for example.
  • the image capture device 10 a is provided for a support 50 a. A driver stops his or her car beside the support 50 a. As illustrated in FIG.
  • the stopping position of the car is set so that the image capture device 10 a may be positioned in an area AR 2 enclosed by the contour pattern designed circularly in the illumination device 20 a.
  • the driver holds his or her palm ha from inside the car up to the illumination device 20 a, thereby inputting the vein pattern to the image capture device 10 a.
  • the support device 30 a supports the illumination device 20 a from inside the car, that is, at the palm ha side. Therefore, the 100 a also suppress the occurrence of the optical noise on the image of the captured vein pattern.
  • the vein image capture device 100 a has a communication device for performing wireless communications between the support 50 a and the car door 60 .
  • the support 50 a is provided with a radio antenna 71 a
  • the car door 60 is provided with a radio switch 71 b for illumination.
  • the radio switch 71 a emits radio waves.
  • the radio switch 71 b receives the radio waves from the radio antenna 71 a.
  • the radio switch 71 b turns on the switch of the illumination device 20 a, thereby turning on the illumination device 20 a.
  • the directivity and the intensity of the radio waves are set so that the radio switch 71 b may receive the radio waves when the image capture device 10 a is positioned in the area AR 2 enclosed by the illumination device 20 arranged circularly.
  • the driver is only to operate the car so that the illumination device 20 a may be at the position where the illumination device 20 a is turned on without confirming whether or not the image capture device 10 a is in the area AR 2 .
  • the image capture device 10 a has a physical or electronic tracking function, and a vein pattern of the palm ha may be captured by tracking the portion where the palm ha is held up by detecting the contour pattern of the illumination device 20 a.
  • the image capture device 10 may capture the contour pattern of the palm ha.
  • the directivity and intensity of the radio waves from the radio antenna 71 a are set so that the radio switch 71 b may receive the corresponding radio waves in a range where the image capture device 10 a may perform tracking on the palm ha.
  • the glass window of the car door 60 is inclined to the ground in many cases. Concretely, in the direction toward a ceiling 65 of the car, the glass window is inclined to the inside of the car.
  • the brightness of the illumination device 20 a is designed to decrease in the direction toward the ceiling 65 of the car. In other words, in the illumination device 20 a , the closer to the palm ha, the lower the brightness becomes, which is described below concretely with reference to FIG. 4 .
  • FIG. 4 is a schematic diagram, and an enlarged view of FIG. 3B .
  • the broken line indicates the wiring of the LED 21 .
  • the illumination device 20 a has the configuration in which a plurality of LEDs 21 are arranged on the circularly marked contour pattern PT 2 .
  • the palm ha is irradiated with the light emitted from the plurality of LEDs 21 .
  • the voltage of +5V is applied in parallel to each of the plurality of LEDs 21 .
  • a resistor is connected to each of the plurality of LEDs 21 .
  • resistors R 1 , R 2 , R 3 , R 4 , R 5 , and R 6 are connected in series to each of the LED 21 .
  • R 1 through R 6 indicate the values of resistance.
  • the values of resistance are set as R 1 >R 2 >R 3 >R 4 >F 5 >R 6 . With the settings, the closer to the ceiling 65 of the car, the lower the current and the brightness become.
  • the closer to the palm ha the lower current passes through the LED 21 , and the lower the brightness becomes.
  • the farther the LED 21 is the higher current passes, thereby increasing the brightness.
  • the palm ha of the driver is evenly irradiated with light.
  • the vein image capture device 100 a illustrated in FIG. 4 is provided with a communication device for performing wireless communications between the support 50 a and the car door 60 . Instead, a communication device for performing communications using signal light between the support 50 a and the car door 60 may be provided.
  • FIGS. 5A and 5B illustrate an example of a vein image capture device 100 b used when a communication device for performing communications using signal light is provided.
  • the vein image capture device 100 b illustrated in FIGS. 5A and 5B has the support 50 a provided with a pyroelectric sensor 81 and a signal light transmission unit 82 a, and the car door 60 is provided with a signal light reception unit 82 b.
  • the pyroelectric sensor 81 is connected to the signal light transmission unit 82 a.
  • the pyroelectric sensor 81 detects a mobile object which emits infrared light. Upon detection of the object, the pyroelectric sensor 81 transmits a detection signal to the signal light transmission unit 82 a. Therefore, the pyroelectric sensor 81 functions as a detection device.
  • the pyroelectric sensor 81 Upon detection of a car approaching the support 50 a, the pyroelectric sensor 81 transmits a detection signal to the signal light transmission unit 82 a. Upon receipt of the detection signal, the signal light transmission unit 82 a transmits pulse light to the outside of the support 50 a. At the car door 60 , upon receipt of the pulse light transmitted from the signal light transmission unit 82 a, the signal light reception unit 82 b turns on the illumination device 20 a.
  • the direction of the transmission of the pulse light from the signal light transmission unit 82 a is set so that, for example, the signal light reception unit 82 b may receive the pulse light when the image capture device 10 is located in the area AR 2 enclosed by the circularly arranged illumination devices 20 . Otherwise, when the image capture device 10 has a tracking function, the direction of the transmission of the pulse light from the signal light transmission unit 82 a is set so that the signal light reception unit 82 b may receive the pulse light in the range in which the image capture device 10 a may perform tracking on the palm ha. With the configuration, the driver is only to operate the car so that the illumination device 20 a is turned on without confirming whether or not the image capture device 10 a is located in the area AR 2 .
  • the vein image capture device 100 a is provided with a glass window of a car as the support device 30 a for supporting the illumination device 20 a, and the image capture device 10 a is attached to, for example, a support of a parking lot etc.
  • the support device 30 a supports the illumination device 20 a at the inside of the car, that is, on the palm ha side. With the configuration, the occurrence of optical noise may be suppressed on the image of a captured vein pattern.
  • a light source for emitting near-infrared light is used as a light source of an illumination device (LED in this example), but the present invention is not limited to this application. It is obvious that a light source of am illumination device is not limited to a device which emits near-infrared light, but any device which emits light having a plurality of wavelengths may be used. Furthermore, in an illumination device having a light source which emits light of a plurality of wavelengths, the illustration timing for emitting light of each wavelength is shifted, and each illustration timing may be synchronized with the capture timing of an image capture device.
  • an illumination device may be provided with a light source for emitting near-infrared light and a light source for emitting visible light
  • the illustration timing of emitting the near-infrared light is synchronized with the capture timing of the image capture device
  • the illustration timing of emitting the visible light is synchronized with the capture timing of the image capture device.
  • the vein pattern may be captured with the timing of emitting the near-infrared light
  • the palm print may be captured with the timing of emitting the visible light.
  • the palm print may be used in authentication, thereby improving the authentication accuracy.
  • FIGS. 6A and 6B illustrate the shape and size of the contour pattern of an illumination device.
  • a contour pattern of the illumination device is not limited to the rectangular shape as illustrated in 6 A, but various shapes may be used.
  • a contour pattern of an illumination device may be circular as illustrated in FIG. 6B .
  • the preferable size LA of the contour pattern of the illumination device may be 10 cm through 13 cm with the size of a palm taken into account.
  • a pyroelectric sensor is provided as a detection device.
  • an example of providing a pyroelectric sensor is not limited to the application above.
  • a pyroelectric sensor is vertical for the wall surface 50 , and when the pyroelectric sensor detects that a visitor approaches the device, the illumination device 20 may be turned on.
  • the image capture device is provided with a photodetector device such as an optical sensor etc.
  • the illumination device emits light to the palm
  • the image capture device automatically start capturing an image when the photodetector device receives the light reflected by the palm.
  • the image capture device corrects an image of the captured vein pattern of the palm based on the size of the captured contour pattern of the illumination device.
  • the image capture device may calculate the distance between the support device and the image capture device based on the size of the image of the captured contour pattern of the illumination device, and correct the image of the captured vein pattern of the palm.
  • the image of the vein pattern may be corrected in an appropriate size.
  • the vein pattern of a palm is used in authentication.
  • the living body part used in authentication is not limited to a palm.
  • a device which uses a vein pattern of any other living body part such as the retina of an eye may use the method described above.
  • the support device may be only to support the illumination device. Therefore, as compared with the case in which the support device supports both image capture device and illumination device, the thickness of the support device may be reduced, and various attachment conditions are satisfied.

Abstract

A vein image capture device includes an illumination device, an image capture device, and a support device. The image capture device captures an image of a vein pattern of a body part by receiving light reflected by the body part. The support device is arranged between the body part and the image capture device to transmit at least apart of the reflected light and support the illumination device at the body part side. The image capture device is separated from the support device by the distance at which the image capture device may receive the reflected light.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is a continuation of International application No. PCT/JP2010/062355, filed on Jul. 22, 2010, the entire contents of which are incorporated herein by reference.
  • FIELD
  • The present invention is related to a vein image capture device for shooting a vein pattern image.
  • BACKGROUND
  • With the recent development of biometric technology, provided are various types of devices for personal identification by recognizing the physical characteristics of a body part of a person by capturing, for example, the fingerprints of limbs, the retina of an eye, the face, the blood vessels, etc. of a person.
  • Especially, since the blood vessels of a palm or a finger, and palm prints provide a relatively large amount of personal characteristic data, they are appropriate for personal identification with reliability. Furthermore, the pattern of blood vessels (vein) is not changed throughout one's lifetime after it is determined in the womb, that is, unique throughout the world, which is appropriate for personal identification.
  • As a concrete method of capturing a vein image, an illumination device emits near-infrared light to the palm, the near-infrared light reflected by the palm is captured by a camera provided with an image sensor (patent documents 1 and 2). Since the hemoglobin in the red blood cells absorbs the near-infrared light, the quantity of the reflected near-infrared light from the vein parts decreases when the near-infrared light is emitted to the palm. Therefore, the camera may shoot the position of the vein on the palm based on the strength level of the near-infrared light.
  • There may be restrictions on the installation of a vein image capture device designed as a unitary construction of an illumination device and a camera. For example, when the vein image capture device is to be installed on the door of an apartment, the vein image capture device requests the thickness for the device to be embedded in the door.
  • Patent Document 1: Japanese Laid-open Patent Publication No. 2007-249615 Patent Document 2: Japanese Laid-open Patent Publication No. 2007-30569 SUMMARY
  • According to an aspect of the vein image capture device of the present invention, the vein image capture device includes: an illumination device which illuminates a body part of a living body; an image capture device which captures a vein pattern of the body part by receiving light reflected by the body part; and a support device which is provided between the body part and the image capture device, passes the reflected light, and supports the illumination device at the body part side. The image capture device is separated from the support device by a distance at which the image capture device receives the reflected light.
  • The object and advantages of the invention will be realized and attained by means of the elements and combinations particularly pointed out in the claims.
  • It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory and are not restrictive of the invention.
  • BRIEF DESCRIPTION OF DRAWINGS
  • FIGS. 1A and 1B are schematic diagrams of examples of the configuration of the vein image capture device according to the first embodiment;
  • FIG. 2 is a schematic diagram of an example of the configuration of an illumination device according to the first embodiment;
  • FIGS. 3A and 3B are schematic diagrams of examples of the configuration of the vein image capture device according to the second embodiment;
  • FIG. 4 is a schematic diagram of an example of the configuration of an illumination device according to the second embodiment;
  • FIGS. 5A and 5B are schematic diagrams of variation examples of the configuration of the vein image capture device according to the second embodiment; and
  • FIGS. 6A and 6B illustrate the shape and size of the contour pattern of the illumination device.
  • DESCRIPTION OF EMBODIMENTS
  • An example of the embodiments is described below with reference to the attached drawings.
  • First Embodiment
  • First, an example of the configuration of a vein image capture device 100 is described with reference to FIGS. 1A and 1B. FIG. 1A is a side view of the vein image capture device 100, and FIG. 1B is a front view of the vein image capture device 100. In FIG. 1A, the arrow in solid line indicates the direction of the travel of the light.
  • The vein image capture device 100 is provided at, for example, the entrance of a building, and captures a vein pattern of the palm of a person to be checked for authentication such as a visitor etc.
  • As illustrated in FIG. 1A, the vein image capture device 100 includes an image capture device 10, an illumination device 20, and a support device 30 for supporting the illumination device 20.
  • The image capture device 10 is, for example, a camera provided with an image sensor, and is attached to a wall surface 50. The illumination device 20 has a plurality of light sources, and illuminates the palm ha of a person to be checked for authentication by emitting the near-infrared light. The plurality of light sources may be, for example, an LED (light emitting diode) . The support device 30 is, for example, a door, a window, etc., and is provided between the palm ha of a person to be checked for authentication and the image capture device 10. At least a part of the support device 30 is formed by a transparent object such as glass which transmits the reflected light from the palm ha of the person to be checked for authentication. The image capture device 10 captures the vein pattern of the palm ha by receiving the reflected light which has transmitted through the support device 30. To be more detail, the image capture device 10 captures the vein pattern of the palm ha by receiving the diffused light in the illuminated palm ha.
  • It is preferable that the image capture device 10 is a camera having a narrow-angle lens, The longer the distance between the device and the object to be shot, the narrower the angle of view is. For example, when the vein pattern of a palm of 15 cm is captured, and when the distance between the image capture device 10 and the palm ha is 1.5 m, a camera with a lens having the angle of view of 5.72° is used. When the distance between the image capture device 10 and the palm ha is 3 m, a camera with a lens having the angle of view of 2.86° is used. In addition, when the distance between the image capture device 10 and the palm ha is 5 cm as in the case of an ATM (automated teller machine) , a camera with a lens having the angle of view of about 112.62° is used. Thus, the longer the distance from the object to be shot, the narrower the angle of view of the lens becomes for a camera as the image capture device 10, thereby allowing the light reflected by the palm ha to easily enter the image capture device 10.
  • The illumination device 20 is provided at the palm ha side in the support device 30. The reason is described below. For example, when the illumination device 20 is provided at the image capture device 10 side in the support device 30, the illumination device 20 illuminates the palm through the support device 30. Thus, when the light emitted from the illumination device 20 directly enters support device 30, there is the possibility that the optical noise caused by the reflection of the light in the support device 30 has the influence on the captured image. On the other hand, when the illumination device 20 is provided at the palm ha side in the support device 30, the illumination device 20 illustrates the palm ha without passing through the support device 30. In this case, since the light emitted from the illumination device 20 does not directly enter the support device 30, the reflection of the light in the support device 30 may be suppressed.
  • For example, if the support device 30 is made of glass, the support device 30 reflects the light at the reflectance of about 10% when the light emitted from the illumination device 20 directly enters the support device 30. In this case, there is the possibility that a whiteout occurs as optical noise on the image of a captured vein pattern. On the other hand, the reflectance of the light when the surface reflected light from the palm ha enters glass is about 5%. Furthermore, the reflectance of the light when the diffused light in the illuminated palm ha enters glass is lower than 5%.
  • That is, as compared with the case in which the illumination device 20 is provided at the illumination device 20 side in the support device 30, when the illumination device 20 is provided at the palm ha side in the support device 30, the reflection of the light may be suppressed in the support device 30, and the occurrence of the optical noise may be reduced.
  • In addition, in the vein image capture device 100, the image capture device 10 is separated from the support device 30 by the distance at which the image capture device 10 may receive light reflected from the palm ha of a person to be checked for authentication. That is, in the vein image capture device 100, the image capture device 10 is separated from the illumination device 20. With the arrangement, for example, a door and a window may function as the support device 30 of the illumination device 20. That is, as compared with the vein image capture device in which the illumination device and the image capture device are incorporated as a unitary construction, the vein image capture device 100 according to the first embodiment maybe applied although the thickness of the door or window is thicker.
  • Described below is the configuration of the illumination device 20. As illustrated in FIG. 1B, the contour pattern of the illumination device 20 is circular.
  • The illumination device 20 is described below with reference to FIG. 2. FIG. 2 is a schematic diagram of the configuration of the illumination device 20, and an enlarged view of FIG. 1B. As illustrated in FIG. 2, the illumination device 20 has the configuration in which, for example, a plurality of LEDs 21 are arranged on the contour pattern PT marked circularly. The illumination device 20 is provided in the support device 30 so that the image capture device 10 is positioned may be positioned in the area AR enclosed in the contour pattern PT. The palm ha is irradiated with the light emitted from the plurality of LEDs 21. The light reflected from the palm ha enters the image capture device 10 through an area AR.
  • As described above, the vein image capture device 100 according to the first embodiment has the illumination device 20, the image capture device 10, and the support device 30 which supports the illumination device 20. The illumination device 20 illuminates the palm ha of a person to be checked for authentication, and the image capture device 10 captures the vein pattern of the palm ha by receiving the light reflected by the palm ha. At this point, the support device 30 supports the illumination device 20 at the palm ha side. Thus, the occurrence of the optical noise may be suppressed on the captured image of the vein pattern. Also in the vein image capture device 100 according to the first embodiment, the image capture device 10 is separated from the support device 30 by the distance at which the image capture device 10 may receive the light reflected by the palm ha. That is, the image capture device 10 is separated from the illumination device 20. Thus, the support device 30 is only to support the illumination device 20, and the thickness of the support device may be thicker as compared with the case in which the support device 30 supports both image capture device and illumination device, thereby realizing a wider application of the vein image capture device. In addition, by keeping the distance between the support device 30 and the palm ha longer than the distance between the image capture device 10 and the support device 30, avoided is the fluctuation of the magnification of the image of the vein pattern which is caused by different distances between the support device 30 and the palm ha each time the authentication is checked.
  • It is not always requested that the illumination device 20 is kept turned on. Instead, the vein image capture device 100 may include a control device for synchronizing the illuminating timing for the illumination device 20 with the capturing timing of the image capture device 10. With the configuration, the power consumption of the illumination device 20 may be reduced, and the infrared illumination time for the palm ha may be shortened.
  • Second Embodiment
  • Next, an example of the configuration of a vein image capture device 100 a is described with reference to FIGS. 3A and 3B. FIG. 3A is a side view of the vein image capture device 100 a, and FIG. 3B is a front view of the vein image capture device 100 a. In FIG. 3A, the arrow in solid line indicates the direction of the travel of the light (same in FIG. 5A).
  • As illustrated in FIG. 3A, the vein image capture device 100 a includes an image capture device 10 a, an illumination device 20 a, and a support device 30 a for supporting the illumination device 20 a. In the vein image capture device 100 a according to the second embodiment, a glass window of a car is used as the support device 30 a for supporting the illumination device 20 a. In the example illustrated in FIG. 3A, the glass window of a car door 60 is used as the support device 30 a. The image capture device 10 a is provided for a support of a parking lot, for example. In the example illustrated in FIG. 3A, the image capture device 10 a is provided for a support 50 a. A driver stops his or her car beside the support 50 a. As illustrated in FIG. 3B, the stopping position of the car is set so that the image capture device 10 a may be positioned in an area AR2 enclosed by the contour pattern designed circularly in the illumination device 20 a. After stopping the car, the driver holds his or her palm ha from inside the car up to the illumination device 20 a, thereby inputting the vein pattern to the image capture device 10 a.
  • In the vein image capture device 100 a according to the second embodiment, as with the vein image capture device 100 according to the first embodiment, the support device 30 a supports the illumination device 20 a from inside the car, that is, at the palm ha side. Therefore, the 100 a also suppress the occurrence of the optical noise on the image of the captured vein pattern.
  • In addition, the vein image capture device 100 a has a communication device for performing wireless communications between the support 50 a and the car door 60. Concretely, as illustrated in FIG. 3A, the support 50 a is provided with a radio antenna 71 a, and the car door 60 is provided with a radio switch 71 b for illumination. The radio switch 71 a emits radio waves. When the car approaches the support 50 a, the radio switch 71 b receives the radio waves from the radio antenna 71 a. Upon receipt of the radio waves, the radio switch 71 b turns on the switch of the illumination device 20 a, thereby turning on the illumination device 20 a. The directivity and the intensity of the radio waves are set so that the radio switch 71 b may receive the radio waves when the image capture device 10 a is positioned in the area AR2 enclosed by the illumination device 20 arranged circularly. With the configuration, the driver is only to operate the car so that the illumination device 20 a may be at the position where the illumination device 20 a is turned on without confirming whether or not the image capture device 10 a is in the area AR2.
  • It is assumed that the image capture device 10 a has a physical or electronic tracking function, and a vein pattern of the palm ha may be captured by tracking the portion where the palm ha is held up by detecting the contour pattern of the illumination device 20 a. With the configuration, although the position of the area AR2 enclosed by the illumination device and the position of the image capture device 10 a are somewhat shifted from each other due to the shift of the stopping position of the car, the image capture device 10 may capture the contour pattern of the palm ha. In this case, the directivity and intensity of the radio waves from the radio antenna 71 a are set so that the radio switch 71 b may receive the corresponding radio waves in a range where the image capture device 10 a may perform tracking on the palm ha.
  • Furthermore, the glass window of the car door 60 is inclined to the ground in many cases. Concretely, in the direction toward a ceiling 65 of the car, the glass window is inclined to the inside of the car. To evenly illuminate the palm ha of the driver, the brightness of the illumination device 20 a is designed to decrease in the direction toward the ceiling 65 of the car. In other words, in the illumination device 20 a, the closer to the palm ha, the lower the brightness becomes, which is described below concretely with reference to FIG. 4.
  • FIG. 4 is a schematic diagram, and an enlarged view of FIG. 3B. In FIG. 4, the broken line indicates the wiring of the LED 21.
  • As illustrated in FIG. 4, as with the illumination device 20 according to the first embodiment, the illumination device 20 a has the configuration in which a plurality of LEDs 21 are arranged on the circularly marked contour pattern PT2. The palm ha is irradiated with the light emitted from the plurality of LEDs 21.
  • As illustrated in FIG. 4, the voltage of +5V is applied in parallel to each of the plurality of LEDs 21. Then, a resistor is connected to each of the plurality of LEDs 21. Concretely, sequentially from the ceiling of the car, resistors R1, R2, R3, R4, R5, and R6 are connected in series to each of the LED 21. Assume that the R1 through R6 indicate the values of resistance. The values of resistance are set as R1>R2>R3>R4>F5>R6. With the settings, the closer to the ceiling 65 of the car, the lower the current and the brightness become. That is, the closer to the palm ha, the lower current passes through the LED 21, and the lower the brightness becomes. On the other hand, the farther the LED 21 is, the higher current passes, thereby increasing the brightness. Thus, the palm ha of the driver is evenly irradiated with light.
  • The vein image capture device 100 a illustrated in FIG. 4 is provided with a communication device for performing wireless communications between the support 50 a and the car door 60. Instead, a communication device for performing communications using signal light between the support 50 a and the car door 60 may be provided. FIGS. 5A and 5B illustrate an example of a vein image capture device 100 b used when a communication device for performing communications using signal light is provided.
  • The vein image capture device 100 b illustrated in FIGS. 5A and 5B has the support 50 a provided with a pyroelectric sensor 81 and a signal light transmission unit 82 a, and the car door 60 is provided with a signal light reception unit 82 b. The pyroelectric sensor 81 is connected to the signal light transmission unit 82 a. The pyroelectric sensor 81 detects a mobile object which emits infrared light. Upon detection of the object, the pyroelectric sensor 81 transmits a detection signal to the signal light transmission unit 82 a. Therefore, the pyroelectric sensor 81 functions as a detection device. Upon detection of a car approaching the support 50 a, the pyroelectric sensor 81 transmits a detection signal to the signal light transmission unit 82 a. Upon receipt of the detection signal, the signal light transmission unit 82 a transmits pulse light to the outside of the support 50 a. At the car door 60, upon receipt of the pulse light transmitted from the signal light transmission unit 82 a, the signal light reception unit 82 b turns on the illumination device 20 a.
  • The direction of the transmission of the pulse light from the signal light transmission unit 82 a is set so that, for example, the signal light reception unit 82 b may receive the pulse light when the image capture device 10 is located in the area AR2 enclosed by the circularly arranged illumination devices 20. Otherwise, when the image capture device 10 has a tracking function, the direction of the transmission of the pulse light from the signal light transmission unit 82 a is set so that the signal light reception unit 82 b may receive the pulse light in the range in which the image capture device 10 a may perform tracking on the palm ha. With the configuration, the driver is only to operate the car so that the illumination device 20 a is turned on without confirming whether or not the image capture device 10 a is located in the area AR2.
  • As described above, the vein image capture device 100 a according to the second embodiment is provided with a glass window of a car as the support device 30 a for supporting the illumination device 20 a, and the image capture device 10 a is attached to, for example, a support of a parking lot etc. As with the first embodiment, the support device 30 a supports the illumination device 20 a at the inside of the car, that is, on the palm ha side. With the configuration, the occurrence of optical noise may be suppressed on the image of a captured vein pattern.
  • Variation Example
  • Described next is a variation example of each embodiment.
  • In the vein image capture device according to each of the embodiments above, a light source for emitting near-infrared light is used as a light source of an illumination device (LED in this example), but the present invention is not limited to this application. It is obvious that a light source of am illumination device is not limited to a device which emits near-infrared light, but any device which emits light having a plurality of wavelengths may be used. Furthermore, in an illumination device having a light source which emits light of a plurality of wavelengths, the illustration timing for emitting light of each wavelength is shifted, and each illustration timing may be synchronized with the capture timing of an image capture device. For example, an illumination device may be provided with a light source for emitting near-infrared light and a light source for emitting visible light, the illustration timing of emitting the near-infrared light is synchronized with the capture timing of the image capture device, and the illustration timing of emitting the visible light is synchronized with the capture timing of the image capture device. With the configuration, the vein pattern may be captured with the timing of emitting the near-infrared light, and the palm print may be captured with the timing of emitting the visible light. Thus, in addition to the vein pattern of the palm, the palm print may be used in authentication, thereby improving the authentication accuracy.
  • FIGS. 6A and 6B illustrate the shape and size of the contour pattern of an illumination device. A contour pattern of the illumination device is not limited to the rectangular shape as illustrated in 6A, but various shapes may be used. For example, it is obvious that a contour pattern of an illumination device may be circular as illustrated in FIG. 6B. The preferable size LA of the contour pattern of the illumination device may be 10 cm through 13 cm with the size of a palm taken into account.
  • In the above-mentioned example of the vein image capture device according to the second embodiment, a pyroelectric sensor is provided as a detection device. However, an example of providing a pyroelectric sensor is not limited to the application above. Also in the vein image capture device according to the first embodiment, a pyroelectric sensor is vertical for the wall surface 50, and when the pyroelectric sensor detects that a visitor approaches the device, the illumination device 20 may be turned on.
  • It is also preferable that, in the vein image capture device according to each of the above-mentioned embodiments, the image capture device is provided with a photodetector device such as an optical sensor etc., the illumination device emits light to the palm, and the image capture device automatically start capturing an image when the photodetector device receives the light reflected by the palm.
  • It is also preferable in the vein image capture device according to each of the above-mentioned embodiments that the image capture device corrects an image of the captured vein pattern of the palm based on the size of the captured contour pattern of the illumination device. Concretely, the image capture device may calculate the distance between the support device and the image capture device based on the size of the image of the captured contour pattern of the illumination device, and correct the image of the captured vein pattern of the palm. Thus, the image of the vein pattern may be corrected in an appropriate size.
  • Furthermore, in each of the above-mentioned embodiments, it is assumed that the vein pattern of a palm is used in authentication. However, it is obvious that the living body part used in authentication is not limited to a palm. For example, it is obvious that a device which uses a vein pattern of any other living body part such as the retina of an eye may use the method described above.
  • The embodiment of the present invention is not limited to the examples according to the embodiments above, but any variations are accepted within the gist of the present invention or the scope of the concept of the present invention described in the claims for the patent and the entire specification thereof.
  • According to the present embodiment, the support device may be only to support the illumination device. Therefore, as compared with the case in which the support device supports both image capture device and illumination device, the thickness of the support device may be reduced, and various attachment conditions are satisfied.
  • All examples and conditional language recited herein are intended for pedagogical purposes to aid the reader in understanding the invention and the concepts contributed by the inventor to furthering the art, and are to be construed as being without limitation to such specifically recited examples and conditions, nor does the organization of such examples in the specification relate to a showing of the superiority and inferiority of the invention. Although the embodiments of the present invention have been described in detail, it should be understood that the various changes, substitutions, and alterations could be made hereto without departing from the spirit and scope of the invention.

Claims (8)

What is claimed is:
1. A vein image capture device comprising:
an illumination unit configured to illuminate a body part of a living body;
an image pickup unit configured to capture a vein pattern of the body part by receiving light reflected by the body part; and
a support unit configured to be provided between the body part and the image pickup unit, pass the reflected light, and support the illumination unit at the body part side, wherein
the image pickup unit is separated from the support unit by a distance at which the image pickup unit receives the reflected light.
2. The device according to claim 1, further comprising a control unit configured to synchronize illustration timing by the illumination unit with capture timing by the image pickup unit.
3. The device according to claim 1, wherein:
the illumination unit has a light source including a plurality of wavelengths; and
the image pickup unit captures the body part depending on the illustration timing of the light source of each wavelength.
4. The device according to claim 1, wherein:
the support unit is a window of a car; and
brightness of the illumination unit is set so that the brightness becomes lower in a direction toward a ceiling of the car.
5. The device according to claim 1, wherein
the illumination unit has a contour pattern indicating a capture range; and
a plurality of light sources are arranged along the contour pattern.
6. The device according to claim 5, wherein
the image pickup unit calculates a distance between the support unit and the image pickup unit based on a size of an image of the captured contour pattern, and corrects an image of the captured vein pattern of the body part based on the calculated distance.
7. The device according to claim 5, wherein
the image pickup unit performs tracking by detecting the contour pattern.
8. A vein image capture method by a vein image capture device, the method comprising:
configuring, by an illumination unit, to illuminate a body part of a living body; and
configuring, by an image pickup unit, to capture a vein pattern of the body part by receiving light reflected by the body part, wherein
the vein image capture device comprises a support unit configured to be provided between the body part and the image pickup unit, pass the reflected light, and support the illumination unit at the body part side, and
the image pickup unit is separated from the support unit by a distance at which the image pickup unit receives the reflected light.
US13/742,878 2010-07-22 2013-01-16 Vein image capture apparatus Expired - Fee Related US8923573B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/062355 WO2012011181A1 (en) 2010-07-22 2010-07-22 Vein image capturing device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/062355 Continuation WO2012011181A1 (en) 2010-07-22 2010-07-22 Vein image capturing device

Publications (2)

Publication Number Publication Date
US20130136317A1 true US20130136317A1 (en) 2013-05-30
US8923573B2 US8923573B2 (en) 2014-12-30

Family

ID=45496621

Family Applications (1)

Application Number Title Priority Date Filing Date
US13/742,878 Expired - Fee Related US8923573B2 (en) 2010-07-22 2013-01-16 Vein image capture apparatus

Country Status (3)

Country Link
US (1) US8923573B2 (en)
JP (1) JP5814920B2 (en)
WO (1) WO2012011181A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140168167A1 (en) * 2012-12-19 2014-06-19 Bruce C.S. Chou Stray-light-coupled biometrics sensing module and electronic apparatus using the same
US20160210504A1 (en) * 2015-01-21 2016-07-21 Hyundai Motor Company Vehicle, method for controlling the same and gesture recognition apparatus therein
US20170032203A1 (en) * 2015-07-29 2017-02-02 Industrial Technology Research Institute Biometric device and method thereof and wearable carrier
US9613282B2 (en) 2012-11-14 2017-04-04 Golan Weiss Biometric methods and systems for enrollment and authentication
US20180032826A1 (en) * 2015-07-29 2018-02-01 Industrial Technology Research Institute Biometric device and wearable carrier
US20180089519A1 (en) * 2016-09-26 2018-03-29 Michael Raziel Multi-modal user authentication
CN111095247A (en) * 2017-09-15 2020-05-01 Lg电子株式会社 Digital device and biometric authentication method in digital device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2709037A3 (en) * 2012-09-17 2015-04-08 Tata Consultancy Services Limited Enclosure for biometric sensor
CH707230B1 (en) * 2012-11-20 2016-02-29 Frank Türen Ag Door system with contactless access control and contactless door operation.
US10931859B2 (en) 2016-05-23 2021-02-23 InSyte Systems Light emitter and sensors for detecting biologic characteristics
US10713458B2 (en) 2016-05-23 2020-07-14 InSyte Systems Integrated light emitting display and sensors for detecting biologic characteristics

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6850631B1 (en) * 1998-02-20 2005-02-01 Oki Electric Industry Co., Ltd. Photographing device, iris input device and iris image input method
US20060080547A1 (en) * 2004-10-08 2006-04-13 Fujitsu Limited Biometrics authentication method and biometrics authentication device
US20060192868A1 (en) * 2004-04-01 2006-08-31 Masahiro Wakamori Eye image capturing device and portable terminal
US20060204132A1 (en) * 2005-03-04 2006-09-14 Fujitsu Limited Method and apparatus for acquiring image of internal structure, and computer product
US20080063244A1 (en) * 2006-09-13 2008-03-13 Yuichiro Tanaka Biometric apparatus and biometric method
US20080069411A1 (en) * 2006-09-15 2008-03-20 Friedman Marc D Long distance multimodal biometric system and method
JP2008212311A (en) * 2007-03-02 2008-09-18 Ricoh Co Ltd Biometrics device
US20090281432A1 (en) * 2008-05-12 2009-11-12 Teruyuki Higuchi Biological pattern imaging device, biological pattern imaging method, and biological pattern imaging program
US20100177182A1 (en) * 2006-04-07 2010-07-15 Novarix Ltd Vein navigation device
US20110211056A1 (en) * 2010-03-01 2011-09-01 Eye-Com Corporation Systems and methods for spatially controlled scene illumination
US20110222740A1 (en) * 2010-03-12 2011-09-15 Hitachi, Ltd. Finger vein authentication unit
US20120195477A1 (en) * 2008-10-17 2012-08-02 Harumi Kiyomizu Finger vein authentication device
US8270729B2 (en) * 2006-08-07 2012-09-18 Fujitsu Limited Image authenticating apparatus, image authenticating method, recording medium, electronic device, and circuit substrate
US20130200995A1 (en) * 2011-07-29 2013-08-08 Panasonic Corporation Apparatus for controlling vehicle opening/closing element

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007030569A (en) 2005-07-22 2007-02-08 Denso Corp Vein authentication device for vehicle
JP4708232B2 (en) 2006-03-16 2011-06-22 富士通株式会社 Imaging device
JP2008071137A (en) * 2006-09-14 2008-03-27 Canon Inc Image reader and biometrics authentication device
JP5398241B2 (en) * 2008-12-01 2014-01-29 三菱電機株式会社 Image processing device

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6850631B1 (en) * 1998-02-20 2005-02-01 Oki Electric Industry Co., Ltd. Photographing device, iris input device and iris image input method
US20060192868A1 (en) * 2004-04-01 2006-08-31 Masahiro Wakamori Eye image capturing device and portable terminal
US20060080547A1 (en) * 2004-10-08 2006-04-13 Fujitsu Limited Biometrics authentication method and biometrics authentication device
US20060204132A1 (en) * 2005-03-04 2006-09-14 Fujitsu Limited Method and apparatus for acquiring image of internal structure, and computer product
US20100177182A1 (en) * 2006-04-07 2010-07-15 Novarix Ltd Vein navigation device
US8270729B2 (en) * 2006-08-07 2012-09-18 Fujitsu Limited Image authenticating apparatus, image authenticating method, recording medium, electronic device, and circuit substrate
US20080063244A1 (en) * 2006-09-13 2008-03-13 Yuichiro Tanaka Biometric apparatus and biometric method
US20080069411A1 (en) * 2006-09-15 2008-03-20 Friedman Marc D Long distance multimodal biometric system and method
JP2008212311A (en) * 2007-03-02 2008-09-18 Ricoh Co Ltd Biometrics device
US20090281432A1 (en) * 2008-05-12 2009-11-12 Teruyuki Higuchi Biological pattern imaging device, biological pattern imaging method, and biological pattern imaging program
US20120195477A1 (en) * 2008-10-17 2012-08-02 Harumi Kiyomizu Finger vein authentication device
US20110211056A1 (en) * 2010-03-01 2011-09-01 Eye-Com Corporation Systems and methods for spatially controlled scene illumination
US20110222740A1 (en) * 2010-03-12 2011-09-15 Hitachi, Ltd. Finger vein authentication unit
US20130200995A1 (en) * 2011-07-29 2013-08-08 Panasonic Corporation Apparatus for controlling vehicle opening/closing element

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Lingyu, W. and Leedham, G. "Near- and Far-Infrared Imaging for Vein Pattern Biometrics." 2006 Proceedings of the IEEE International Conference on Video and Signal Based Surveillance. *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9613282B2 (en) 2012-11-14 2017-04-04 Golan Weiss Biometric methods and systems for enrollment and authentication
US10339403B2 (en) 2012-11-14 2019-07-02 Golan Weiss Methods and systems of enrollment and authentication
US9298317B2 (en) * 2012-12-19 2016-03-29 J-Metrics Technology Co., Ltd. Stray-light-coupled biometrics sensing module and electronic apparatus using the same
US20140168167A1 (en) * 2012-12-19 2014-06-19 Bruce C.S. Chou Stray-light-coupled biometrics sensing module and electronic apparatus using the same
US9898652B2 (en) * 2015-01-21 2018-02-20 Hyundai Motor Company Vehicle, method for controlling the same and gesture recognition apparatus therein
US20160210504A1 (en) * 2015-01-21 2016-07-21 Hyundai Motor Company Vehicle, method for controlling the same and gesture recognition apparatus therein
US20170032203A1 (en) * 2015-07-29 2017-02-02 Industrial Technology Research Institute Biometric device and method thereof and wearable carrier
US20180032826A1 (en) * 2015-07-29 2018-02-01 Industrial Technology Research Institute Biometric device and wearable carrier
US20200042810A1 (en) * 2015-07-29 2020-02-06 Industrial Technology Research Institute Biometric device and method thereof and wearable carrier
US10679081B2 (en) * 2015-07-29 2020-06-09 Industrial Technology Research Institute Biometric device and wearable carrier
US11037007B2 (en) * 2015-07-29 2021-06-15 Industrial Technology Research Institute Biometric device and method thereof and wearable carrier
US20210264180A1 (en) * 2015-07-29 2021-08-26 Industrial Technology Research Institute Biometric device and method thereof and wearable carrier
US20180089519A1 (en) * 2016-09-26 2018-03-29 Michael Raziel Multi-modal user authentication
CN111095247A (en) * 2017-09-15 2020-05-01 Lg电子株式会社 Digital device and biometric authentication method in digital device
EP3682355A4 (en) * 2017-09-15 2021-06-02 LG Electronics Inc. Digital device and biometric authentication method therein

Also Published As

Publication number Publication date
WO2012011181A1 (en) 2012-01-26
JP5814920B2 (en) 2015-11-17
US8923573B2 (en) 2014-12-30
JPWO2012011181A1 (en) 2013-09-09

Similar Documents

Publication Publication Date Title
US8923573B2 (en) Vein image capture apparatus
US7978259B2 (en) Image capturing apparatus for guiding light emitted from a plurality of light emitting devices
KR100864272B1 (en) Light guide member, illumination apparatus, and image capturing apparatus using the same
US7777808B2 (en) Image capturing apparatus having distance measurement function
US7679671B2 (en) Image capturing for capturing an image of an object by illuminating the object and receiving light from the object
EP1654984B1 (en) Finger identification method and apparatus
US11433803B2 (en) Vehicle door handle assembly with light sensing module
WO2008039252A3 (en) Multimodal ocular biometric system
US20140368649A1 (en) Image Recognition System Controlled Illumination Device
CN105122784A (en) Object recognition in low-lux and high-lux conditions
CN107845627A (en) More proximity detection optical sensors
US9619690B2 (en) Authentication apparatus, prism member for authentication and authentication method
US10360423B2 (en) Image sensor with range and light-level detection
US20150054932A1 (en) Authentication apparatus, prism member for authentication and authentication method
KR101548624B1 (en) Iris recognized system for automatically adjusting focusing of the iris and the method thereof
CN201788469U (en) Optical image taking system
EP3220042B1 (en) Luminaire with motion detection means
KR20180000158A (en) Electronic device having optical apparatus and optical sensing method of electronic device
CN111026295A (en) Sensing module and electronic equipment
KR20130119778A (en) Apparatus for recognizing face
JP2010140153A (en) Living body imaging device and biometrics device
KR101027872B1 (en) Automatic on/off switch device using camera and thereof
CN114282564A (en) Electronic equipment
KR20050088564A (en) System for iris recognized using of exterior light interception filter

Legal Events

Date Code Title Description
AS Assignment

Owner name: FUJITSU LIMITED, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SHINZAKI, TAKASHI;REEL/FRAME:029844/0696

Effective date: 20130111

FEPP Fee payment procedure

Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

LAPS Lapse for failure to pay maintenance fees

Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20181230