US20130127026A1 - Connecting material, method for manufacturing connecting material and semiconductor device - Google Patents

Connecting material, method for manufacturing connecting material and semiconductor device Download PDF

Info

Publication number
US20130127026A1
US20130127026A1 US13/745,448 US201313745448A US2013127026A1 US 20130127026 A1 US20130127026 A1 US 20130127026A1 US 201313745448 A US201313745448 A US 201313745448A US 2013127026 A1 US2013127026 A1 US 2013127026A1
Authority
US
United States
Prior art keywords
series alloy
alloy layer
connecting material
semiconductor element
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/745,448
Inventor
Osamu Ikeda
Masahide Okamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US13/745,448 priority Critical patent/US20130127026A1/en
Publication of US20130127026A1 publication Critical patent/US20130127026A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49579Lead-frames or other flat leads characterised by the materials of the lead frames or layers thereon
    • H01L23/49582Metallic layers on lead frames
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/02Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating by means of a press ; Diffusion bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/04Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating by means of a rolling mill
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0222Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in soldering, brazing
    • B23K35/0233Sheets, foils
    • B23K35/0238Sheets, foils layered
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/017Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of aluminium or an aluminium alloy, another layer being formed of an alloy based on a non ferrous metal other than aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/27Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies
    • H01L24/741Apparatus for manufacturing means for bonding, e.g. connectors
    • H01L24/743Apparatus for manufacturing layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/2612Auxiliary members for layer connectors, e.g. spacers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29101Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • H01L2224/29111Tin [Sn] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/831Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector the layer connector being supplied to the parts to be connected in the bonding apparatus
    • H01L2224/83101Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector the layer connector being supplied to the parts to be connected in the bonding apparatus as prepeg comprising a layer connector, e.g. provided in an insulating plate member
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8338Bonding interfaces outside the semiconductor or solid-state body
    • H01L2224/83399Material
    • H01L2224/834Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/83438Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/83455Nickel [Ni] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/83801Soldering or alloying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/83801Soldering or alloying
    • H01L2224/83805Soldering or alloying involving forming a eutectic alloy at the bonding interface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/73Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01009Fluorine [F]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01012Magnesium [Mg]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01015Phosphorus [P]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01027Cobalt [Co]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0103Zinc [Zn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01032Germanium [Ge]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0105Tin [Sn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01074Tungsten [W]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01075Rhenium [Re]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01322Eutectic Alloys, i.e. obtained by a liquid transforming into two solid phases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0133Ternary Alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/014Solder alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/157Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2924/15738Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950 C and less than 1550 C
    • H01L2924/15747Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12736Al-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31678Of metal

Definitions

  • the present invention relates to a technology for a connecting material. More particularly, the present invention relates to a technology effectively applied to a structure and a manufacturing method of the connecting material, and a semiconductor device, a power semiconductor device and a power module using the connecting material.
  • FIG. 1 and FIG. 2 As a technology that the inventors of the present invention have been examined, a semiconductor device using a connecting material will be described with reference to FIG. 1 and FIG. 2 .
  • FIG. 1 is a diagram showing a structure of a conventional semiconductor device.
  • FIG. 2 is a diagram for explaining the flash caused by remelted solder.
  • a semiconductor device 7 is manufactured by connecting a semiconductor element 1 onto a frame 2 by solder 3 , wire-bonding an inner lead of a lead 5 and an electrode of the semiconductor element 1 by a wire 4 , and then sealing these components by sealing resin 6 or inert gas.
  • the semiconductor device 7 is reflow soldered using Sn—Ag—Cu series medium-temperature lead-free solder to a printed circuit board.
  • the melting point of the Sn—Ag—Cu series lead-free solder is as high as about 220° C., and it is supposed that a connecting portion is heated up to 260° C. at the reflow connection. Therefore, for the temperature hierarchy, high-lead solder having a melting point of 290° C. or higher is used in the die bonding of a semiconductor element in a semiconductor device.
  • the high-lead solder contains lead of 85 wt.% or more as its constituent, and the environmental load of the high-lead solder is larger than that of Sn—Pb eutectic solder that has been prohibited by the RoHS directive that took effect in July, 2006. Therefore, the development of a substitute connecting material to replace the high-lead solder has been desired.
  • the melting point of the Sn—Ag—Cu series solder that has been already developed is 260° C. or lower. Therefore, if the solder is used in the die bonding of a semiconductor element, it is melted in the secondary mounting (maximum temperature: 260° C.). In the case where a surrounding area of the connecting portion is molded with resin, when the inner solder is melted, due to the volume expansion in the melting, the so-called flash occurs in some cases as shown in FIG. 2 , in which the solder 3 leaks from the interface between the sealing resin 6 and the frame 2 .
  • Au series solders such as Au—Sn, Au—Si and Au—Ge, Zn and Zn—Al series solders, and Bi, Bi—Cu, and Bi—Ag solders have been reported, and further examination has been made all over the world.
  • the Au series solder contains Au of 80 wt.% or more as its constituent, and thus it lacks versatility in terms of cost.
  • the Bi series solder has a heat conductivity of about 9 W/mK which is lower than that of the current high-lead solder, and it is supposed that the application thereof to a power semiconductor device, a power module and others requiring high heat dissipation characteristics is difficult.
  • Zn and Zn—Al series solders have a high heat conductivity of about 100 W/mK, the solder wettability thereof is low (in particular, Zn—Al series solder) and the solder itself is hard, and there occurs a problem that a semiconductor element is frequently broken due to the thermal stress at the time of cooling after the connection.
  • Patent Document 1 Japanese Patent Application Laid-Open Publication No. 2002-358539 (Patent Document 1) and Japanese Patent Application Laid-Open Publication No. 2004-358540 (Patent Document 2), by using an alloy consisting of Al of 1 to 7 wt.%, Mg of 0.5 to 6 wt.%, Ga of 0.1 to 20 wt.%, P of 0.001 to 0.5 wt.% and the balance of Zn, an alloy consisting of Ge of 2 to 9 wt.%, Al of 2 to 9 wt.%, P of 0.001 to 0.5 wt.% and the balance of Zn, or an alloy consisting of Ge of 2 to 9 wt.%, Al of 2 to 9 wt.%, Mg of 0.01 to 0.5 wt.%, P of 0.001 to 0.5 wt.% and the balance of Zn, the wettability of the Zn series solder alloy to Cu and Ni is improved and the melting point thereof is decreased.
  • Patent Document 3 an In, Ag or Au layer is provided for an outermost surface of a Zn—Al series alloy, thereby suppressing the oxidation of the surface of the Zn—Al series alloy and improving the wettability.
  • processes such as plating and evaporation onto the Zn—Al surface are indispensable for providing the In, Ag or Au layer, the processes for manufacturing the material are increased.
  • the hardness can be reduced by adding In, the effect enough to prevent the breakage of the semiconductor element due to the thermal stress at the time of cooling after the connection cannot be expected.
  • the inventors of the present invention have thought that a Zn—Al series alloy can be replaced with high-lead solder.
  • a Zn—Al series alloy can be replaced with high-lead solder.
  • sufficient considerations are not given to the following points. That is, since Al is contained in a Zn—Al series alloy, sufficient wetness cannot be ensured. Since the surface treatment is carried out for the Zn—Al series alloy, the processes for manufacturing the material are increased. Further, the breakage of a semiconductor element due to the thermal stress at the time of cooling after the connection or in the temperature cycle cannot be suppressed.
  • an object of the present invention is to provide a connecting material capable of applying a Zn—-Al series alloy having a melting point of 260° C. or higher to the connection, improving the wetness at the time of connection, reducing the processes for manufacturing the material and improving the connection reliability for the thermal stress.
  • the present invention provides a connecting material having a Zn series alloy layer formed on the outermost surface of an Al series alloy layer.
  • the connecting material in which an Al content of the Al series alloy layer is 99 to 100wt.% and the connecting material in which a Zn content of the Zn series alloy layer is 90 to 100wt.% are provided.
  • the present invention provides a manufacturing method of a connecting material in which a connecting material having an Al series alloy layer formed on a Zn series alloy layer and another Zn series alloy layer formed thereon is manufactured by a clad rolling or a pressure forming.
  • the present invention provides a semiconductor device in which a semiconductor element is connected to a frame by the connecting material (die-bonding structure), a semiconductor device in which a metal cap is connected to a substrate by the connecting material (hermetic sealing structure) and a semiconductor device in which a semiconductor element is connected by the connection material used as bumps (flip-chip mounting structure).
  • FIG. 1 is a diagram showing a structure of a conventional semiconductor device
  • FIG. 2 is a diagram for describing the flash caused by remelted solder in the semiconductor device in FIG. 1 ;
  • FIG. 3 is a diagram for describing the clad rolling in an embodiment of the present invention.
  • FIG. 4 is a diagram for describing the pressure forming in the embodiment of the present invention.
  • FIG. 5 is a diagram showing a cross section of the connecting material according to the embodiment of the present invention.
  • FIG. 6 is a diagram showing the configuration of the connecting material in FIG. 5 ;
  • FIG. 7 is a diagram showing a cross section of a semiconductor device using the connecting material in FIG. 6 (examples 1 to 12) in the embodiment of the present invention.
  • FIG. 8 is a diagram showing a picture of a cross section of a connecting portion in the connecting material in the semiconductor device in FIG. 7 ;
  • FIG. 9 is a diagram showing the evaluation results of the wettability and the reflow test in the semiconductor device in
  • FIG. 7 together with the results in the comparison examples
  • FIG. 10 is a diagram showing a cross section of another semiconductor device using the connecting material in FIG. 6 (examples 13 to 24) in the embodiment of the present invention.
  • FIG. 11 is a diagram showing a metal cap integrated with a connecting material in the semiconductor device in FIG. 7 ;
  • FIG. 12 is a diagram showing the evaluation results of the wettability in the semiconductor device in FIG. 10 together with the results in the comparison examples.
  • FIG. 13 is a diagram showing a cross section and a mounting structure of still another semiconductor device using the connecting material in FIG. 6 in the embodiment of the present invention.
  • the first invention is to provide a connecting material having a Zn series alloy layer formed on the outermost surface of an Al series alloy layer.
  • a Zn—Al alloy since Al is contained, an Al oxide film is formed on the surface at the moment of melting. Therefore, unless the film is mechanically broken, the sufficient wetness cannot be obtained.
  • the surface of the connecting material is the Zn series alloy containing only a little amount of Al regarded as an impurity. Therefore, sufficient wetness can be ensured before the Zn series alloy and the Al series alloy are reacted to from an Al oxide film in the connection. Also, since the melting portion turns to a Zn—Al series alloy in the connection, the melting point thereof decreases to about 380° C.
  • the thermal stress generated at the time of cooling after the connection can be reduced compared with that of pure Zn, and the breakage of a semiconductor element can be suppressed.
  • the soft Al functions as a stress buffer material, and thus, the connection reliability can be improved. Even if the temperature is not increased to 420° C. which is the melting point of Zn in the connection, since the diffusion proceeds between the Zn layer and the Al layer in contact with each other if the temperature is 380° C. or higher, the Zn—Al eutectic crystal having the melting point of 380° C. is formed, and hence, the connection is achieved.
  • the second invention is to provide a connecting material in which an Al content of the Al series alloy layer is 99 to 100 wt.%.
  • the 0.2% offset yield strength is preferably 30 N/mm 2 or less.
  • the thickness of the Al layer is preferably 30 to 200 ⁇ m. When the thickness thereof is 30 ⁇ m or less, since the thermal stress cannot be sufficiently buffered, the chip crack occurs in some cases.
  • the thickness thereof is 200 ⁇ m or more, since Al, Mg, Ag and Zn have a thermal expansion rate higher than that of a Cu frame, the effect of the thermal expansion is increased and the problem of the decrease in reliability due to the occurrence of the chip crack or the like may occur.
  • the third invention is to provide a connecting material in which a Zn content of the Zn series alloy layer is 90 to 100 wt.% (other than principal constituent, an Al content is less than 0.01 wt.%).
  • a Zn content of the Zn series alloy layer is 90 to 100 wt.% (other than principal constituent, an Al content is less than 0.01 wt.%).
  • Al of 0.01 wt.% or more is contained in the Zn series alloy, there is the possibility that the preferable wetness cannot be obtained due to the increase of the amount of an Al oxide film on the surface of the connecting material at the time of connection.
  • the thickness of the Zn series alloy layer is preferably 5 to 100 ⁇ m. When the thickness thereof is less than 5 ⁇ m, it is difficult to ensure the wetness in the entire connecting portion.
  • the fourth invention is to provide a manufacturing method for manufacturing a connecting material having an Al series alloy layer formed on a Zn series alloy layer and another Zn series alloy layer formed thereon by the clad rolling.
  • a connecting material having an Al series alloy layer formed on a Zn series alloy layer and another Zn series alloy layer formed thereon by the clad rolling.
  • Zn series alloy layers 101 a and an Al series alloy layer 102 a are brought into contact with each other and are largely deformed by pressure. Therefore, the oxide film formed on the surfaces of the Zn series alloy layers 101 a and the Al series alloy layer 102 a is broken, and the metal junction is made by the new surfaces.
  • the thermal load at a temperature in which the diffusion of Zn and Al becomes significant is not applied. Therefore, Al does not diffuse in the Zn layer disposed on the surface and does not reach the outermost layer, and the good wetness can be obtained at the time of connection.
  • the fifth invention is to provide a manufacturing method for manufacturing a connecting material having an Al series alloy layer formed on a Zn series alloy layer and another Zn series alloy layer formed thereon by the pressure forming.
  • a pressure forming machine 104 when the pressure forming is performed using a pressure forming machine 104 , Zn series alloy layers 101 b and an Al series alloy layer 102 b are brought into contact with each other and are largely deformed by pressure. Therefore, the oxide film formed on the surfaces of the Zn series alloy layers 101 b and the Al series alloy layer 102 b is broken, and the metal junction is made by the new surfaces.
  • FIG. 5 shows a cross section of a connecting material according to the embodiment of the present invention.
  • a Zn series alloy layer (simply referred to as Zn layer or Zn) 101 as a lower layer
  • an Al series alloy layer (simply referred to as Al layer or Al) 102 as an intermediate layer
  • a Zn series alloy layer (simply referred to as Zn layer or Zn) 101 as an upper layer
  • this connecting material is manufactured by stacking the Zn series alloy layer 101 a, the Al series alloy layer 102 a and the Zn series alloy layer 101 a and then performing the rolling process, that is, the clad rolling.
  • FIG. 6 shows all the connecting materials (referred to as clad material) thus manufactured.
  • the thicknesses of the Zn layer, the Al layer and the Zn layer are 10, 50 and 10 ⁇ m, respectively.
  • the thicknesses thereof are 20, 50 and 20 ⁇ m
  • the thicknesses thereof are 20, 100 and 20 ⁇ m, respectively.
  • the connecting material 10 is used for the die bonding of the semiconductor device 11 .
  • This semiconductor device 11 includes a semiconductor element 1 , a frame 2 connecting the semiconductor element 1 , a lead 5 whose one end functions as an external terminal, a wire 4 connecting the other end of the lead 5 and an electrode of the semiconductor element 1 , and a sealing resin 6 which seals the semiconductor element 1 and the wire 4 , and the semiconductor element 1 and the frame 2 are connected by the connecting material 10 .
  • the connecting material 10 is supplied onto the frame 2 made of solid Cu or the frame 2 on which the Ni, Ni/Ag or Ni/Au plating is performed and the semiconductor element 1 is placed thereon, and thereafter, the heating is performed at 400° C. for 1 min. in an N 2 atmosphere while applying pressure, whereby the semiconductor element 1 is die-bonded.
  • FIG. 8 shows the cross section of the connecting portion at that time.
  • a Zn—Al alloy layer formed by the reaction between Zn and Al at the time of connection is formed between the frame 2 and an Al layer of the connecting material 10 .
  • the semiconductor element 1 and the Al layer of the connecting material 10 Thereafter, the semiconductor element 1 and the lead 5 are wire-bonded by the wire 4 , and are sealed with the sealing resin 6 at 180° C.
  • FIG. 9 shows the evaluation results of the wettability at the time of the die bonding and the connection durability after performing the reflow test with the maximum temperature of 260° C. or higher for the semiconductor device three times, with respect to the examples 1 to 12 (using clad materials 1 , 2 and 3 in FIG. 6 ).
  • the wettability is evaluated as 0 when 90% or more of the wetness to an area of a semiconductor element is obtained, evaluated as ⁇ when less than 90% to 75% or more of the wetness is obtained, and evaluated as x when the wetness is less than 75%.
  • the examples where the connection area after the reflow test is decreased by 5% or more in comparison to the connection area before the reflow test are evaluated as x and the examples where it is decreased by less than 5% are evaluated as O.
  • the wetness of 90% or more can be obtained for the frames having the Ni, Ni/Ag, or Ni/Au plating.
  • the wetness is about 80% and is evaluated as ⁇ .
  • the reflow test at 260° C. there is no change in the connection area in all of the examples 1 to 12.
  • the wetness is less than 75% for all the frames.
  • almost no wetness can be obtained.
  • 90% or more of the wetness can be obtained when the connection is performed at the temperature of the melting point of Zn, that is, 420° C. or higher.
  • the thermal stress generated due to the difference in thermal expansion rate between the semiconductor element and the Cu frame at the time of cooling after the connection cannot be alleviated, and the semiconductor element is broken in some examples.
  • the semiconductor material 10 of the present embodiment when used for the die bonding of the semiconductor device 11 , since a Zn series alloy layer containing 0.01 wt.% or less of Al is formed on the outermost surface of an Al series alloy layer, the formation of an Al oxide film on the surface of the connecting material at the time of connection is suppressed, and the preferable wetness that cannot be obtained with the Zn—Al alloy can be obtained. Further, when an Al series alloy layer is left after the connection, since the soft Al functions as a stress buffer material, the high connection reliability can be achieved.
  • the connecting material 10 a of the present invention is used as the sealing material of a semiconductor device 21 requiring the hermetic sealing.
  • This semiconductor device 21 includes a semiconductor element 1 , a module substrate 23 connecting the semiconductor element 1 , a lead 5 whose one end functions as an external terminal, a wire 4 connecting the other end of the lead 5 and an electrode of the semiconductor element 1 , and a metal cap 22 which hermetically seals the semiconductor element 1 and the wire 4 and is connected to the module substrate 23 , and the module substrate 23 and the metal cap 22 are connected by the connecting material 10 a.
  • chip components and others are also connected onto the module substrate 23 .
  • the connecting material 10 a is placed between the module substrate 23 and the metal cap 22 , and the module substrate 23 and the metal cap 22 are connected while applying pressure at 400° C.
  • a metal cap 22 a integrated with a connecting material composed of a metal alloy 24 such as kovar or invar, an Al series alloy layer 102 and a Zn series alloy layer 101 processed together by the clad rolling as shown in FIG. 11 can be used for achieving the hermetic sealing.
  • FIG. 12 shows the evaluation results of the wettability at the time of die bonding with respect to the examples 13 to 24 (using the clad materials 1 , 2 and 3 in FIG. 6 ).
  • the wettability is evaluated as O when the wetness capable of maintaining the hermeticity to the sealing area can be obtained, and evaluated as x when the hermeticity cannot be maintained due to a void, crack and others.
  • the wetness capable of sufficiently maintaining the hermeticity can be obtained for the frames having the Ni, Ni/Ag or Ni/Au plating.
  • the evaluation is x due to the insufficient wetness and the formation of voids.
  • the connecting material 10 a of the present embodiment when used as the sealing material of the semiconductor device 21 , the formation of an Al oxide film on the surface of the connecting material at the time of the connection can be suppressed, and the wetness capable of sufficiently maintaining the hermeticity can be obtained.
  • the connecting material 10 of the present invention can be used instead of the lead-free solder 3 for the connection between the semiconductor element 1 and the module substrate 23 .
  • the effects similar to those of the above-described examples 1 to 12 can be achieved.
  • the connecting material 10 b of the present invention is used as a bump in the semiconductor device 31 requiring the flip-chip mounting as shown in FIG. 13 .
  • the semiconductor device 31 includes a semiconductor element 1 , and the semiconductor element 1 and a substrate 34 on which the semiconductor element 1 is to be mounted are connected by the connecting material 10 b.
  • the connecting material 10 b is placed between a pad obtained by performing an Ni or Ni/Au plating 36 onto a Cu wiring 35 of the substrate 34 and an electrode obtained by performing a Zn plating 33 onto an Al wiring 32 of the semiconductor element 1 , and the substrate 34 and the semiconductor element 1 are connected while applying pressure at 380° C.
  • the connecting material 10 b of the present embodiment when used as the bump of the semiconductor device 31 , the formation of an Al oxide film on the surface of the connecting material at the time of the connection can be suppressed, and the preferable wetness can be obtained.
  • the present invention can be applied to various types of semiconductor devices as long as the semiconductor device is die-bonded.
  • semiconductor devices include, for example, an alternator diode, an IGBT module, a front-end module such as an RF module, a power module for a vehicle, and others.
  • the connecting material of the present invention can be effectively used for the die bonding, the sealing material for the hermetic sealing, and the flip-chip bonding of a semiconductor device, a power semiconductor device, a power module and others.
  • the connecting material having a Zn series alloy layer formed on the outermost surface of an Al series alloy layer since the connecting material having a Zn series alloy layer formed on the outermost surface of an Al series alloy layer is used, the formation of an Al oxide film on the surface of the connecting material at the time of connection can be suppressed, and the preferable wetness can be obtained. Also, since the Al series alloy layer functions as a stress buffer material after the connection, the high connection reliability can be achieved. As a result, it becomes possible to apply a Zn—Al series alloy having a melting point of 260° C. or higher to the connection, improve the wetness at the time of connection, reduce the processes for manufacturing the material and improve the connection reliability for the thermal stress.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Die Bonding (AREA)
  • Wire Bonding (AREA)

Abstract

In a connecting material of the present invention, a Zn series alloy layer is formed on an outermost surface of an Al series alloy layer. In particular, in the connecting material, an Al content of the Al series alloy layer is 99 to 100 wt.% or a Zn content of the Zn series alloy layer is 90 to 100 wt.%. By using this connecting material, the formation of an Al oxide film on the surface of the connecting material at the time of the connection can be suppressed, and preferable wetness that cannot be obtained with the Zn—Al alloy can be obtained. Further, a high connection reliability can be achieved when an Al series alloy layer is left after the connection, since the soft Al thereof functions as a stress buffer material.

Description

    CROSS-REFERENCE TO RELATED APPLICATION
  • The present application claims priority from Japanese Patent Application No. JP 2006-314168 filed on Nov. 21, 2006, the content of which is hereby incorporated by reference into this application.
  • This application is a Continuing application of Application No. 13/228,169, filed Sep. 8, 2011, which is a Divisional application of Application No. 11/943,632, filed Nov. 21, 2007, the contents of which are incorporated herein by reference in their entirety.
  • TECHNICAL FIELD OF THE INVENTION
  • The present invention relates to a technology for a connecting material. More particularly, the present invention relates to a technology effectively applied to a structure and a manufacturing method of the connecting material, and a semiconductor device, a power semiconductor device and a power module using the connecting material.
  • BACKGROUND OF THE INVENTION
  • As a technology that the inventors of the present invention have been examined, a semiconductor device using a connecting material will be described with reference to FIG. 1 and FIG. 2.
  • FIG. 1 is a diagram showing a structure of a conventional semiconductor device. FIG. 2 is a diagram for explaining the flash caused by remelted solder.
  • As shown in FIG. 1, a semiconductor device 7 is manufactured by connecting a semiconductor element 1 onto a frame 2 by solder 3, wire-bonding an inner lead of a lead 5 and an electrode of the semiconductor element 1 by a wire 4, and then sealing these components by sealing resin 6 or inert gas.
  • The semiconductor device 7 is reflow soldered using Sn—Ag—Cu series medium-temperature lead-free solder to a printed circuit board. The melting point of the Sn—Ag—Cu series lead-free solder is as high as about 220° C., and it is supposed that a connecting portion is heated up to 260° C. at the reflow connection. Therefore, for the temperature hierarchy, high-lead solder having a melting point of 290° C. or higher is used in the die bonding of a semiconductor element in a semiconductor device. The high-lead solder contains lead of 85 wt.% or more as its constituent, and the environmental load of the high-lead solder is larger than that of Sn—Pb eutectic solder that has been prohibited by the RoHS directive that took effect in July, 2006. Therefore, the development of a substitute connecting material to replace the high-lead solder has been desired.
  • At present, the melting point of the Sn—Ag—Cu series solder that has been already developed is 260° C. or lower. Therefore, if the solder is used in the die bonding of a semiconductor element, it is melted in the secondary mounting (maximum temperature: 260° C.). In the case where a surrounding area of the connecting portion is molded with resin, when the inner solder is melted, due to the volume expansion in the melting, the so-called flash occurs in some cases as shown in FIG. 2, in which the solder 3 leaks from the interface between the sealing resin 6 and the frame 2. Alternatively, if not leaks, the action of leakage occurs, and as a result, a large void 8 is formed in the solder after its solidification, so that a defective product is produced. As candidates of the substitute material, Au series solders such as Au—Sn, Au—Si and Au—Ge, Zn and Zn—Al series solders, and Bi, Bi—Cu, and Bi—Ag solders have been reported, and further examination has been made all over the world.
  • However, the Au series solder contains Au of 80 wt.% or more as its constituent, and thus it lacks versatility in terms of cost. The Bi series solder has a heat conductivity of about 9 W/mK which is lower than that of the current high-lead solder, and it is supposed that the application thereof to a power semiconductor device, a power module and others requiring high heat dissipation characteristics is difficult. Further, although Zn and Zn—Al series solders have a high heat conductivity of about 100 W/mK, the solder wettability thereof is low (in particular, Zn—Al series solder) and the solder itself is hard, and there occurs a problem that a semiconductor element is frequently broken due to the thermal stress at the time of cooling after the connection.
  • In Japanese Patent Application Laid-Open Publication No. 2002-358539 (Patent Document 1) and Japanese Patent Application Laid-Open Publication No. 2004-358540 (Patent Document 2), by using an alloy consisting of Al of 1 to 7 wt.%, Mg of 0.5 to 6 wt.%, Ga of 0.1 to 20 wt.%, P of 0.001 to 0.5 wt.% and the balance of Zn, an alloy consisting of Ge of 2 to 9 wt.%, Al of 2 to 9 wt.%, P of 0.001 to 0.5 wt.% and the balance of Zn, or an alloy consisting of Ge of 2 to 9 wt.%, Al of 2 to 9 wt.%, Mg of 0.01 to 0.5 wt.%, P of 0.001 to 0.5 wt.% and the balance of Zn, the wettability of the Zn series solder alloy to Cu and Ni is improved and the melting point thereof is decreased. However, since Al and Mg are contained, an Al oxide film and an Mg oxide film are formed on a surface of the melting portion by the heating in the connection. Since these films decrease the wetness, there is the possibility that the sufficient wetness cannot be obtained unless the film is mechanically broken by scrubbing or the like. Further, since no improvement is achieved in the hardness of the solder, the improvement for the breakage of a semiconductor element due to the thermal stress at the time of cooling after the connection or in the temperature cycle cannot be expected.
  • In Japanese Patent Application Laid-Open Publication No. 2002-261104 (Patent Document 3), an In, Ag or Au layer is provided for an outermost surface of a Zn—Al series alloy, thereby suppressing the oxidation of the surface of the Zn—Al series alloy and improving the wettability. However, since processes such as plating and evaporation onto the Zn—Al surface are indispensable for providing the In, Ag or Au layer, the processes for manufacturing the material are increased. Similarly, though the hardness can be reduced by adding In, the effect enough to prevent the breakage of the semiconductor element due to the thermal stress at the time of cooling after the connection cannot be expected.
  • SUMMARY OF THE INVENTION
  • The inventors of the present invention have thought that a Zn—Al series alloy can be replaced with high-lead solder. In the above-described conventional technologies, sufficient considerations are not given to the following points. That is, since Al is contained in a Zn—Al series alloy, sufficient wetness cannot be ensured. Since the surface treatment is carried out for the Zn—Al series alloy, the processes for manufacturing the material are increased. Further, the breakage of a semiconductor element due to the thermal stress at the time of cooling after the connection or in the temperature cycle cannot be suppressed.
  • In consideration of these points, an object of the present invention is to provide a connecting material capable of applying a Zn—-Al series alloy having a melting point of 260° C. or higher to the connection, improving the wetness at the time of connection, reducing the processes for manufacturing the material and improving the connection reliability for the thermal stress.
  • The above and other objects and novel characteristics of the present invention will be apparent from the description of this specification and the accompanying drawings.
  • The typical ones of the inventions disclosed in this application will be briefly described as follows.
  • The present invention provides a connecting material having a Zn series alloy layer formed on the outermost surface of an Al series alloy layer. In particular, the connecting material in which an Al content of the Al series alloy layer is 99 to 100wt.% and the connecting material in which a Zn content of the Zn series alloy layer is 90 to 100wt.% are provided.
  • Further, the present invention provides a manufacturing method of a connecting material in which a connecting material having an Al series alloy layer formed on a Zn series alloy layer and another Zn series alloy layer formed thereon is manufactured by a clad rolling or a pressure forming.
  • Further, the present invention provides a semiconductor device in which a semiconductor element is connected to a frame by the connecting material (die-bonding structure), a semiconductor device in which a metal cap is connected to a substrate by the connecting material (hermetic sealing structure) and a semiconductor device in which a semiconductor element is connected by the connection material used as bumps (flip-chip mounting structure).
  • These and other objects, features and advantages of the invention will be apparent from the following more particular description of preferred embodiments of the invention, as illustrated in the accompanying drawings.
  • BRIEF DESCRIPTIONS OF THE DRAWINGS
  • FIG. 1 is a diagram showing a structure of a conventional semiconductor device;
  • FIG. 2 is a diagram for describing the flash caused by remelted solder in the semiconductor device in FIG. 1;
  • FIG. 3 is a diagram for describing the clad rolling in an embodiment of the present invention;
  • FIG. 4 is a diagram for describing the pressure forming in the embodiment of the present invention;
  • FIG. 5 is a diagram showing a cross section of the connecting material according to the embodiment of the present invention;
  • FIG. 6 is a diagram showing the configuration of the connecting material in FIG. 5;
  • FIG. 7 is a diagram showing a cross section of a semiconductor device using the connecting material in FIG. 6 (examples 1 to 12) in the embodiment of the present invention;
  • FIG. 8 is a diagram showing a picture of a cross section of a connecting portion in the connecting material in the semiconductor device in FIG. 7;
  • FIG. 9 is a diagram showing the evaluation results of the wettability and the reflow test in the semiconductor device in
  • FIG. 7 together with the results in the comparison examples;
  • FIG. 10 is a diagram showing a cross section of another semiconductor device using the connecting material in FIG. 6 (examples 13 to 24) in the embodiment of the present invention;
  • FIG. 11 is a diagram showing a metal cap integrated with a connecting material in the semiconductor device in FIG. 7;
  • FIG. 12 is a diagram showing the evaluation results of the wettability in the semiconductor device in FIG. 10 together with the results in the comparison examples; and
  • FIG. 13 is a diagram showing a cross section and a mounting structure of still another semiconductor device using the connecting material in FIG. 6 in the embodiment of the present invention.
  • DESCRIPTIONS OF THE PREFERRED EMBODIMENTS
  • Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. Note that components having the same function are denoted by the same reference symbols throughout the drawings for describing the embodiment, and the repetitive description thereof will be omitted.
  • (Outline of the Embodiments of the Present Invention)
  • The first invention is to provide a connecting material having a Zn series alloy layer formed on the outermost surface of an Al series alloy layer. In the case of a Zn—Al alloy, since Al is contained, an Al oxide film is formed on the surface at the moment of melting. Therefore, unless the film is mechanically broken, the sufficient wetness cannot be obtained. On the other hand, in the present invention, the surface of the connecting material is the Zn series alloy containing only a little amount of Al regarded as an impurity. Therefore, sufficient wetness can be ensured before the Zn series alloy and the Al series alloy are reacted to from an Al oxide film in the connection. Also, since the melting portion turns to a Zn—Al series alloy in the connection, the melting point thereof decreases to about 380° C. Accordingly, since it is lower than the melting point of Zn, that is, 420° C., the thermal stress generated at the time of cooling after the connection can be reduced compared with that of pure Zn, and the breakage of a semiconductor element can be suppressed. By leaving an Al alloy layer at the time of connection, the soft Al functions as a stress buffer material, and thus, the connection reliability can be improved. Even if the temperature is not increased to 420° C. which is the melting point of Zn in the connection, since the diffusion proceeds between the Zn layer and the Al layer in contact with each other if the temperature is 380° C. or higher, the Zn—Al eutectic crystal having the melting point of 380° C. is formed, and hence, the connection is achieved.
  • The second invention is to provide a connecting material in which an Al content of the Al series alloy layer is 99 to 100 wt.%. The closer to 100% the purity of Al becomes, the softer the material becomes, and the stress buffering function can be achieved easily. Meanwhile, when the Al purity is less than 99 wt.%, since the 0.2% offset yield strength becomes an undesirable value and the hardness is increased, the stress buffering function is difficult to obtain. The 0.2% offset yield strength is preferably 30 N/mm2 or less. The thickness of the Al layer is preferably 30 to 200 μm. When the thickness thereof is 30 μm or less, since the thermal stress cannot be sufficiently buffered, the chip crack occurs in some cases. When the thickness thereof is 200 μm or more, since Al, Mg, Ag and Zn have a thermal expansion rate higher than that of a Cu frame, the effect of the thermal expansion is increased and the problem of the decrease in reliability due to the occurrence of the chip crack or the like may occur.
  • The third invention is to provide a connecting material in which a Zn content of the Zn series alloy layer is 90 to 100 wt.% (other than principal constituent, an Al content is less than 0.01 wt.%). When Al of 0.01 wt.% or more is contained in the Zn series alloy, there is the possibility that the preferable wetness cannot be obtained due to the increase of the amount of an Al oxide film on the surface of the connecting material at the time of connection. The thickness of the Zn series alloy layer is preferably 5 to 100 μm. When the thickness thereof is less than 5 μm, it is difficult to ensure the wetness in the entire connecting portion.
  • The fourth invention is to provide a manufacturing method for manufacturing a connecting material having an Al series alloy layer formed on a Zn series alloy layer and another Zn series alloy layer formed thereon by the clad rolling. As shown in FIG. 3, when the clad rolling is performed using a roller 103, Zn series alloy layers 101 a and an Al series alloy layer 102 a are brought into contact with each other and are largely deformed by pressure. Therefore, the oxide film formed on the surfaces of the Zn series alloy layers 101 a and the Al series alloy layer 102 a is broken, and the metal junction is made by the new surfaces. In the clad rolling, the thermal load at a temperature in which the diffusion of Zn and Al becomes significant is not applied. Therefore, Al does not diffuse in the Zn layer disposed on the surface and does not reach the outermost layer, and the good wetness can be obtained at the time of connection.
  • The fifth invention is to provide a manufacturing method for manufacturing a connecting material having an Al series alloy layer formed on a Zn series alloy layer and another Zn series alloy layer formed thereon by the pressure forming. As shown in FIG. 4, when the pressure forming is performed using a pressure forming machine 104, Zn series alloy layers 101 b and an Al series alloy layer 102 b are brought into contact with each other and are largely deformed by pressure. Therefore, the oxide film formed on the surfaces of the Zn series alloy layers 101 b and the Al series alloy layer 102 b is broken, and the metal junction is made by the new surfaces. In the pressure forming, if the thermal load is reduced to a temperature level in which the diffusion of Zn and Al is not significant, Al does not diffuse in the Zn layer disposed on the surface and does not reach the outermost layer, and the good wetness can be obtained at the time of connection.
  • Hereinafter, embodiments and examples based on the above-described first to fifth inventions will be specifically described. Herein, the descriptions will be made based on the connecting material used in the die bonding of a semiconductor device, a power semiconductor device and a power module and manufactured by the clad rolling.
  • Embodiment
  • FIG. 5 shows a cross section of a connecting material according to the embodiment of the present invention. In the connecting material according to the present embodiment, a Zn series alloy layer (simply referred to as Zn layer or Zn) 101 as a lower layer, an Al series alloy layer (simply referred to as Al layer or Al) 102 as an intermediate layer and a Zn series alloy layer (simply referred to as Zn layer or Zn) 101 as an upper layer are formed. As shown in FIG. 3 described above, this connecting material is manufactured by stacking the Zn series alloy layer 101 a, the Al series alloy layer 102 a and the Zn series alloy layer 101 a and then performing the rolling process, that is, the clad rolling.
  • FIG. 6 shows all the connecting materials (referred to as clad material) thus manufactured. In the clad material 1, the thicknesses of the Zn layer, the Al layer and the Zn layer are 10, 50 and 10 μm, respectively. In the clad material 2, the thicknesses thereof are 20, 50 and 20 μm, and in the clad material 3, the thicknesses thereof are 20, 100 and 20 μm, respectively.
  • Examples 1 to 12
  • In the examples 1 to 12, as shown in FIG. 7, the connecting material 10 is used for the die bonding of the semiconductor device 11. This semiconductor device 11 includes a semiconductor element 1, a frame 2 connecting the semiconductor element 1, a lead 5 whose one end functions as an external terminal, a wire 4 connecting the other end of the lead 5 and an electrode of the semiconductor element 1, and a sealing resin 6 which seals the semiconductor element 1 and the wire 4, and the semiconductor element 1 and the frame 2 are connected by the connecting material 10.
  • In the manufacture of the semiconductor device 11, the connecting material 10 is supplied onto the frame 2 made of solid Cu or the frame 2 on which the Ni, Ni/Ag or Ni/Au plating is performed and the semiconductor element 1 is placed thereon, and thereafter, the heating is performed at 400° C. for 1 min. in an N2 atmosphere while applying pressure, whereby the semiconductor element 1 is die-bonded. FIG. 8 shows the cross section of the connecting portion at that time. A Zn—Al alloy layer formed by the reaction between Zn and Al at the time of connection is formed between the frame 2 and an Al layer of the connecting material 10. The same is true between the semiconductor element 1 and the Al layer of the connecting material 10. Thereafter, the semiconductor element 1 and the lead 5 are wire-bonded by the wire 4, and are sealed with the sealing resin 6 at 180° C.
  • FIG. 9 shows the evaluation results of the wettability at the time of the die bonding and the connection durability after performing the reflow test with the maximum temperature of 260° C. or higher for the semiconductor device three times, with respect to the examples 1 to 12 (using clad materials 1, 2 and 3 in FIG. 6). The wettability is evaluated as 0 when 90% or more of the wetness to an area of a semiconductor element is obtained, evaluated as Δ when less than 90% to 75% or more of the wetness is obtained, and evaluated as x when the wetness is less than 75%. With regard to the reflow test at 260° C. (maximum temperature), the examples where the connection area after the reflow test is decreased by 5% or more in comparison to the connection area before the reflow test are evaluated as x and the examples where it is decreased by less than 5% are evaluated as O.
  • According to the evaluation results, when the clad materials 1 to 3 (Zn/Al/Zn) are used for the connection, the wetness of 90% or more can be obtained for the frames having the Ni, Ni/Ag, or Ni/Au plating. However, for the frames made of solid Cu, the wetness is about 80% and is evaluated as Δ. With regard to the reflow test at 260° C., there is no change in the connection area in all of the examples 1 to 12.
  • Meanwhile, in the comparison examples 1 to 4 where the conventional connecting material (Zn—6Al (wt.%)) is used, a hard Al oxide film is formed on the surface of the melt Zn—Al alloy.
  • Therefore, the wetness is less than 75% for all the frames. In particular, in the cases of the solid Cu frame and the Ni plating frame, almost no wetness can be obtained. In the comparison examples 5 to 8 using the conventional connecting material (Zn), 90% or more of the wetness can be obtained when the connection is performed at the temperature of the melting point of Zn, that is, 420° C. or higher. However, the thermal stress generated due to the difference in thermal expansion rate between the semiconductor element and the Cu frame at the time of cooling after the connection cannot be alleviated, and the semiconductor element is broken in some examples. When semiconductor devices are manufactured using the semiconductor elements saved from the breakage and the reflow test is performed thereto, the breakage of the semiconductor elements is observed.
  • As described above, according to the examples 1 to 12, when the semiconductor material 10 of the present embodiment is used for the die bonding of the semiconductor device 11, since a Zn series alloy layer containing 0.01 wt.% or less of Al is formed on the outermost surface of an Al series alloy layer, the formation of an Al oxide film on the surface of the connecting material at the time of connection is suppressed, and the preferable wetness that cannot be obtained with the Zn—Al alloy can be obtained. Further, when an Al series alloy layer is left after the connection, since the soft Al functions as a stress buffer material, the high connection reliability can be achieved.
  • Examples 13 to 24
  • In the examples 13 to 24, as shown in FIG. 10, the connecting material 10 a of the present invention is used as the sealing material of a semiconductor device 21 requiring the hermetic sealing. This semiconductor device 21 includes a semiconductor element 1, a module substrate 23 connecting the semiconductor element 1, a lead 5 whose one end functions as an external terminal, a wire 4 connecting the other end of the lead 5 and an electrode of the semiconductor element 1, and a metal cap 22 which hermetically seals the semiconductor element 1 and the wire 4 and is connected to the module substrate 23, and the module substrate 23 and the metal cap 22 are connected by the connecting material 10 a. Note that, in the semiconductor device 21, chip components and others are also connected onto the module substrate 23.
  • In the manufacture of the semiconductor device 21, after the semiconductor element 1, the chip components and others are connected to the module substrate 23 by an Sn series lead-free solder 3, conductive adhesive, a Cu powder/Sn powder compound material or the like, the connecting material 10 a is placed between the module substrate 23 and the metal cap 22, and the module substrate 23 and the metal cap 22 are connected while applying pressure at 400° C.
  • Note that, with regard to the metal cap, a metal cap 22 a integrated with a connecting material composed of a metal alloy 24 such as kovar or invar, an Al series alloy layer 102 and a Zn series alloy layer 101 processed together by the clad rolling as shown in FIG. 11 can be used for achieving the hermetic sealing.
  • FIG. 12 shows the evaluation results of the wettability at the time of die bonding with respect to the examples 13 to 24 (using the clad materials 1, 2 and 3 in FIG. 6). The wettability is evaluated as O when the wetness capable of maintaining the hermeticity to the sealing area can be obtained, and evaluated as x when the hermeticity cannot be maintained due to a void, crack and others.
  • According to the evaluation results, when connecting materials such as the clad materials 1, 2 and 3 (Zn/Al/Zn) are used for the connection, the wetness capable of sufficiently maintaining the hermeticity can be obtained for the frames having the Ni, Ni/Ag or Ni/Au plating. However, for the solid Cu frame, the evaluation is x due to the insufficient wetness and the formation of voids.
  • Meanwhile, in the comparison examples 9 to 12 where the conventional connecting material (Zn—6Al (wt.%)) is used, a hard Al oxide film is formed on the surface of the melt Zn—Al alloy. Therefore, the hermeticity cannot be maintained due to the insufficient wetness and the formation of voids.
  • As described above, according to the examples 13 to 24, when the connecting material 10 a of the present embodiment is used as the sealing material of the semiconductor device 21, the formation of an Al oxide film on the surface of the connecting material at the time of the connection can be suppressed, and the wetness capable of sufficiently maintaining the hermeticity can be obtained.
  • In the semiconductor device 21 shown in FIG. 10, the connecting material 10 of the present invention can be used instead of the lead-free solder 3 for the connection between the semiconductor element 1 and the module substrate 23. In this case, the effects similar to those of the above-described examples 1 to 12 can be achieved.
  • Other Example
  • In other example, the connecting material 10 b of the present invention is used as a bump in the semiconductor device 31 requiring the flip-chip mounting as shown in FIG. 13. The semiconductor device 31 includes a semiconductor element 1, and the semiconductor element 1 and a substrate 34 on which the semiconductor element 1 is to be mounted are connected by the connecting material 10 b.
  • In the manufacture of the semiconductor device 31, the connecting material 10 b is placed between a pad obtained by performing an Ni or Ni/Au plating 36 onto a Cu wiring 35 of the substrate 34 and an electrode obtained by performing a Zn plating 33 onto an Al wiring 32 of the semiconductor element 1, and the substrate 34 and the semiconductor element 1 are connected while applying pressure at 380° C.
  • Also in this example, when the connecting material 10 b of the present embodiment is used as the bump of the semiconductor device 31, the formation of an Al oxide film on the surface of the connecting material at the time of the connection can be suppressed, and the preferable wetness can be obtained.
  • In the foregoing, the invention made by the inventors of the present invention has been concretely described based on the embodiments. However, it is needless to say that the present invention is not limited to the foregoing embodiments and various modifications and alterations can be made within the scope of the present invention.
  • More specifically, in the description above, although the application of the present invention has been described with using the die boding of a semiconductor device as an example, the present invention can be applied to various types of semiconductor devices as long as the semiconductor device is die-bonded. Such semiconductor devices include, for example, an alternator diode, an IGBT module, a front-end module such as an RF module, a power module for a vehicle, and others.
  • Further, in the foregoing description, the case where a semiconductor device is reflow-mounted onto a module substrate has been described. However, the present invention can be applied to the case where the semiconductor device is used for the MCM (Multi Chip Module) structure.
  • As described above, the connecting material of the present invention can be effectively used for the die bonding, the sealing material for the hermetic sealing, and the flip-chip bonding of a semiconductor device, a power semiconductor device, a power module and others.
  • The effects obtained by typical aspects of the present invention will be briefly described below.
  • According to the present invention, since the connecting material having a Zn series alloy layer formed on the outermost surface of an Al series alloy layer is used, the formation of an Al oxide film on the surface of the connecting material at the time of connection can be suppressed, and the preferable wetness can be obtained. Also, since the Al series alloy layer functions as a stress buffer material after the connection, the high connection reliability can be achieved. As a result, it becomes possible to apply a Zn—Al series alloy having a melting point of 260° C. or higher to the connection, improve the wetness at the time of connection, reduce the processes for manufacturing the material and improve the connection reliability for the thermal stress.
  • The invention may be embodied in other specific forms without departing from the spirit or essential characteristics thereof. The present embodiment is therefore to be considered in all respects as illustrative and not restrictive, the scope of the invention being indicated by the appended claims rather than by the foregoing description and all changes which come within the meaning and range of equivalency of the claims are therefore intended to be embraced therein.

Claims (8)

What is claimed is:
1. A connecting material, comprising:
an Al series alloy layer; and
a Zn series alloy layer formed on an outermost surface of the Al series alloy layer.
2. The connecting material according to claim 1, wherein an Al content of the Al series alloy layer is 99 to 100 wt.%.
3. The connecting material according to claim 1, wherein a Zn content of the Zn series alloy layer is 90 to 100 wt.%.
4. A method for manufacturing a connecting material,
wherein the connecting material is formed by stacking an Al series alloy layer on a first Zn series alloy layer, stacking a second Zn series alloy layer on the Al series alloy layer, and then performing a clad rolling or pressure forming.
5. A semiconductor device, comprising:
a semiconductor element;
a frame connecting the semiconductor element;
a lead whose one end functions as an external terminal;
a wire connecting the other end of the lead and an electrode of the semiconductor element; and
a resin sealing the semiconductor element and the wire,
wherein a connecting material connecting the semiconductor element and the frame includes an Al series alloy layer and a Zn series alloy layer formed on an outermost surface of the Al series alloy layer.
6. A semiconductor device, comprising:
a semiconductor element;
a substrate connecting the semiconductor element;
a lead whose one end functions as an external terminal;
a wire connecting the other end of the lead and an electrode of the semiconductor element; and
a metal cap hermetically sealing the semiconductor element and the wire and connected to the substrate,
wherein a connecting material connecting the substrate and the metal cap includes an Al series alloy layer and a Zn series alloy layer formed on an outermost surface of the Al series alloy layer.
7. The semiconductor device according to claim 6,
wherein the connecting material connecting the semiconductor element and the substrate includes an Al series alloy layer and a Zn series alloy layer formed on an outermost surface of the Al series alloy layer.
8. A semiconductor device, comprising:
a semiconductor element,
wherein a connecting material connecting the semiconductor element and a substrate having the semiconductor element mounted thereon includes an Al series alloy layer and a Zn series alloy layer formed on an outermost surface of the Al series alloy layer.
US13/745,448 2006-11-21 2013-01-18 Connecting material, method for manufacturing connecting material and semiconductor device Abandoned US20130127026A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/745,448 US20130127026A1 (en) 2006-11-21 2013-01-18 Connecting material, method for manufacturing connecting material and semiconductor device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006-314168 2006-11-21
JP2006314168A JP4390799B2 (en) 2006-11-21 2006-11-21 Connection material, method for manufacturing connection material, and semiconductor device
US11/943,632 US20080206590A1 (en) 2006-11-21 2007-11-21 Connecting material, method for manufacturing connecting material, and semiconductor device
US13/745,448 US20130127026A1 (en) 2006-11-21 2013-01-18 Connecting material, method for manufacturing connecting material and semiconductor device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11/943,632 Division US20080206590A1 (en) 2006-11-21 2007-11-21 Connecting material, method for manufacturing connecting material, and semiconductor device

Publications (1)

Publication Number Publication Date
US20130127026A1 true US20130127026A1 (en) 2013-05-23

Family

ID=39478728

Family Applications (3)

Application Number Title Priority Date Filing Date
US11/943,632 Abandoned US20080206590A1 (en) 2006-11-21 2007-11-21 Connecting material, method for manufacturing connecting material, and semiconductor device
US13/228,169 Active US8356742B2 (en) 2006-11-21 2011-09-08 Method for manufacturing a semiconductor device using an Al-Zn connecting material
US13/745,448 Abandoned US20130127026A1 (en) 2006-11-21 2013-01-18 Connecting material, method for manufacturing connecting material and semiconductor device

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US11/943,632 Abandoned US20080206590A1 (en) 2006-11-21 2007-11-21 Connecting material, method for manufacturing connecting material, and semiconductor device
US13/228,169 Active US8356742B2 (en) 2006-11-21 2011-09-08 Method for manufacturing a semiconductor device using an Al-Zn connecting material

Country Status (5)

Country Link
US (3) US20080206590A1 (en)
JP (1) JP4390799B2 (en)
KR (2) KR100953470B1 (en)
CN (2) CN101185991B (en)
TW (1) TW200829361A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9236166B2 (en) 2010-07-22 2016-01-12 Heraeus Deutschland GmbH & Co. KG Core-jacket bonding wire

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007023284A1 (en) * 2005-08-24 2007-03-01 Fry's Metals Inc. Reducing joint embrittlement in lead-free soldering processes
US8150698B2 (en) 2007-02-26 2012-04-03 Nuance Communications, Inc. Invoking tapered prompts in a multimodal application
JP2010073908A (en) * 2008-09-19 2010-04-02 Hitachi Ltd Semiconductor apparatus and method of manufacturing the same
JP5261214B2 (en) * 2009-01-29 2013-08-14 住友軽金属工業株式会社 Method for manufacturing aluminum clad material for heat generating component cooling device
JP5738523B2 (en) * 2009-09-09 2015-06-24 株式会社日立製作所 Connection material, connection method, and manufacturing method of semiconductor device
CN102473650B (en) * 2009-09-09 2014-09-24 株式会社日立制作所 Connecting material, semiconductor device and method for manufacturing semiconductor device
JP5723523B2 (en) * 2009-09-11 2015-05-27 株式会社日立製作所 Connecting material, manufacturing method of connecting material, semiconductor device, manufacturing method of semiconductor device, power module
US20110147438A1 (en) * 2009-12-23 2011-06-23 Carl Ludwig Deppisch Clad solder thermal interface material
JP2011159544A (en) * 2010-02-02 2011-08-18 Nec Corp Power feeding structure
EP2544225A4 (en) * 2010-03-01 2018-07-25 Osaka University Semiconductor device and bonding material for semiconductor device
JP5540857B2 (en) * 2010-04-16 2014-07-02 日立金属株式会社 Lead component, semiconductor package using the same, and lead component manufacturing method
JP5601275B2 (en) 2010-08-31 2014-10-08 日立金属株式会社 Bonding material, manufacturing method thereof, and manufacturing method of bonding structure
JP5821991B2 (en) * 2010-08-31 2015-11-24 日立金属株式会社 Semiconductor module and bonding material
JP5741033B2 (en) * 2011-02-08 2015-07-01 日立金属株式会社 Connection material, method for manufacturing the same, and semiconductor device using the same
JP5578326B2 (en) * 2011-03-29 2014-08-27 日立金属株式会社 Lead component, manufacturing method thereof, and semiconductor package
US9735126B2 (en) * 2011-06-07 2017-08-15 Infineon Technologies Ag Solder alloys and arrangements
JP5675525B2 (en) * 2011-07-28 2015-02-25 日産自動車株式会社 Semiconductor device manufacturing method and semiconductor device
JP2013038330A (en) * 2011-08-10 2013-02-21 Toshiba Corp Semiconductor device manufacturing method and semiconductor device
CN102412446B (en) * 2011-11-14 2013-12-11 江苏大学 Method for connecting copper clad aluminum composite wire
JP5930680B2 (en) * 2011-11-30 2016-06-08 株式会社日立製作所 Semiconductor device and manufacturing method thereof
EP3557609A1 (en) * 2012-05-07 2019-10-23 Heraeus Deutschland GmbH & Co KG Method of manufacturing an aluminium coated copper ribbon and a device using the same
EP2992551B1 (en) * 2013-04-29 2017-03-29 ABB Schweiz AG Module arrangement for power semiconductor devices
JP6127941B2 (en) * 2013-11-29 2017-05-17 日立金属株式会社 Solder joint material and manufacturing method thereof
US9633957B2 (en) * 2014-11-28 2017-04-25 Infineon Technologies Ag Semiconductor device, a power semiconductor device, and a method for processing a semiconductor device
JP6078577B2 (en) * 2015-04-22 2017-02-08 株式会社日立製作所 Connection material, connection method, semiconductor device, and semiconductor device manufacturing method
US11618111B2 (en) 2016-08-17 2023-04-04 Mitsubishi Electric Corporation Method of manufacturing plate-shaped solder and manufacturing device
WO2018167929A1 (en) 2017-03-16 2018-09-20 三菱電機株式会社 Device for manufacturing plate solder and method for manufacturing same
JP6952552B2 (en) * 2017-09-27 2021-10-20 株式会社日立製作所 Connection materials and thermoelectric conversion modules and electronics
JP7429368B2 (en) * 2019-11-27 2024-02-08 国立大学法人 東京大学 Device manufacturing method and bonding equipment, semiconductor device
JP6887184B1 (en) * 2020-07-31 2021-06-16 ニホンハンダ株式会社 Laminated body and manufacturing method of laminated body

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6759590B2 (en) * 2002-03-22 2004-07-06 David H. Stark Hermetically sealed micro-device package with window

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2987814A (en) * 1957-01-25 1961-06-13 Reynolds Metals Co Process and product of zinc and aluminum lamination
US3079310A (en) * 1960-08-26 1963-02-26 James V Sheridan Electroplating zinc on aluminum
JPS5877784A (en) 1981-10-30 1983-05-11 Yamaha Motor Co Ltd Production of composite material
JPS62173095A (en) 1986-01-24 1987-07-29 Showa Alum Corp Sheet material for soldering
NO174455C (en) * 1991-06-14 1994-05-11 Norsk Hydro As Method of joining aluminum components
US5316863A (en) * 1992-05-18 1994-05-31 Alcan International Limited Self-brazing aluminum laminated structure
JPH0637139A (en) * 1992-05-19 1994-02-10 Sony Corp Manufacture of semiconductor device
US6503640B2 (en) * 2000-05-19 2003-01-07 Corus Aluminium Walzeprodukte Gmbh Method of manufacturing an assembly of brazed dissimilar metal components
JP2002261104A (en) 2001-03-01 2002-09-13 Hitachi Ltd Semiconductor device and electronic equipment
JP3800977B2 (en) * 2001-04-11 2006-07-26 株式会社日立製作所 Products using Zn-Al solder
US6815086B2 (en) * 2001-11-21 2004-11-09 Dana Canada Corporation Methods for fluxless brazing
US7451906B2 (en) * 2001-11-21 2008-11-18 Dana Canada Corporation Products for use in low temperature fluxless brazing
JP3686978B2 (en) 2002-03-29 2005-08-24 コナミ株式会社 3D image composition apparatus and method, and information storage medium
US7247392B2 (en) * 2002-05-29 2007-07-24 Furukawa-Sky Aluminum Corp. Aluminum alloy heat exchanger and method of producing the same
JP2004332051A (en) 2003-05-08 2004-11-25 Mitsubishi Materials Corp METHOD OF PRODUCING HIGH PURITY Cu SPUTTERING TARGET WITH BACKING PLATE MADE OF Al ALLOY
JP2004358540A (en) 2003-06-06 2004-12-24 Sumitomo Metal Mining Co Ltd High-temperature brazing filler metal
JP4611797B2 (en) * 2005-04-28 2011-01-12 三菱アルミニウム株式会社 Aluminum alloy plate material for radiator tubes with excellent brazeability, and radiator tube and heat exchanger provided with the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6759590B2 (en) * 2002-03-22 2004-07-06 David H. Stark Hermetically sealed micro-device package with window

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9236166B2 (en) 2010-07-22 2016-01-12 Heraeus Deutschland GmbH & Co. KG Core-jacket bonding wire

Also Published As

Publication number Publication date
KR20080046106A (en) 2008-05-26
CN102437130A (en) 2012-05-02
JP2008126272A (en) 2008-06-05
CN102437130B (en) 2016-08-03
US8356742B2 (en) 2013-01-22
CN101185991A (en) 2008-05-28
CN101185991B (en) 2012-01-11
TW200829361A (en) 2008-07-16
US20080206590A1 (en) 2008-08-28
KR20100031708A (en) 2010-03-24
JP4390799B2 (en) 2009-12-24
KR100953470B1 (en) 2010-04-16
TWI340678B (en) 2011-04-21
US20120000965A1 (en) 2012-01-05
KR100998115B1 (en) 2010-12-02

Similar Documents

Publication Publication Date Title
US8356742B2 (en) Method for manufacturing a semiconductor device using an Al-Zn connecting material
US6563225B2 (en) Product using Zn-Al alloy solder
US7256501B2 (en) Semiconductor device and manufacturing method of the same
KR100719905B1 (en) Sn-bi alloy solder and semiconductor using the same
US8110437B2 (en) Method for attaching a semiconductor chip in a plastic encapsulant, optoelectronic semiconductor component and method for the production thereof
JP5152125B2 (en) Connection material, method for manufacturing connection material, and semiconductor device
JP5035134B2 (en) Electronic component mounting apparatus and manufacturing method thereof
US8525330B2 (en) Connecting member for connecting a semiconductor element and a frame, formed of an Al-based layer and first and second Zn-based layers provided on surfaces of the Al-based layer
US6011305A (en) Semiconductor device having metal alloy for electrodes
CN111433910B (en) Semiconductor device and method for manufacturing semiconductor device
JP5738523B2 (en) Connection material, connection method, and manufacturing method of semiconductor device
JP5723523B2 (en) Connecting material, manufacturing method of connecting material, semiconductor device, manufacturing method of semiconductor device, power module
JP5251849B2 (en) Connection material and method for manufacturing semiconductor device
JP2962351B2 (en) Bonding structure to semiconductor chip and semiconductor device using the same
JP6078577B2 (en) Connection material, connection method, semiconductor device, and semiconductor device manufacturing method
JP2006352175A (en) Semiconductor integrated circuit device
JP2002198485A (en) Semiconductor mounting body, semiconductor device using the same and manufacturing method therefor

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION