JP2006352175A - Semiconductor integrated circuit device - Google Patents

Semiconductor integrated circuit device Download PDF

Info

Publication number
JP2006352175A
JP2006352175A JP2006270656A JP2006270656A JP2006352175A JP 2006352175 A JP2006352175 A JP 2006352175A JP 2006270656 A JP2006270656 A JP 2006270656A JP 2006270656 A JP2006270656 A JP 2006270656A JP 2006352175 A JP2006352175 A JP 2006352175A
Authority
JP
Japan
Prior art keywords
lead
plating
wire
solder
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006270656A
Other languages
Japanese (ja)
Other versions
JP2006352175A5 (en
Inventor
Yoshinori Miyaki
美典 宮木
Hiromichi Suzuki
博通 鈴木
Takeshi Kaneda
剛 金田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renesas Technology Corp
Original Assignee
Renesas Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renesas Technology Corp filed Critical Renesas Technology Corp
Priority to JP2006270656A priority Critical patent/JP2006352175A/en
Publication of JP2006352175A publication Critical patent/JP2006352175A/en
Publication of JP2006352175A5 publication Critical patent/JP2006352175A5/ja
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/27Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies
    • H01L24/741Apparatus for manufacturing means for bonding, e.g. connectors
    • H01L24/743Apparatus for manufacturing layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L24/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29005Structure
    • H01L2224/29007Layer connector smaller than the underlying bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/3201Structure
    • H01L2224/32012Structure relative to the bonding area, e.g. bond pad
    • H01L2224/32014Structure relative to the bonding area, e.g. bond pad the layer connector being smaller than the bonding area, e.g. bond pad
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/4501Shape
    • H01L2224/45012Cross-sectional shape
    • H01L2224/45015Cross-sectional shape being circular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48455Details of wedge bonds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/485Material
    • H01L2224/48505Material at the bonding interface
    • H01L2224/48599Principal constituent of the connecting portion of the wire connector being Gold (Au)
    • H01L2224/486Principal constituent of the connecting portion of the wire connector being Gold (Au) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/48663Principal constituent of the connecting portion of the wire connector being Gold (Au) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/48664Palladium (Pd) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/741Apparatus for manufacturing means for bonding, e.g. connectors
    • H01L2224/743Apparatus for manufacturing layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/78Apparatus for connecting with wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/78Apparatus for connecting with wire connectors
    • H01L2224/787Means for aligning
    • H01L2224/78743Suction holding means
    • H01L2224/78744Suction holding means in the lower part of the bonding apparatus, e.g. in the apparatus chuck
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • H01L2224/83192Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed only on another item or body to be connected to the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/8512Aligning
    • H01L2224/85148Aligning involving movement of a part of the bonding apparatus
    • H01L2224/85169Aligning involving movement of a part of the bonding apparatus being the upper part of the bonding apparatus, i.e. bonding head, e.g. capillary or wedge
    • H01L2224/8518Translational movements
    • H01L2224/85181Translational movements connecting first on the semiconductor or solid-state body, i.e. on-chip, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/8538Bonding interfaces outside the semiconductor or solid-state body
    • H01L2224/85399Material
    • H01L2224/854Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/85463Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/85464Palladium (Pd) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/922Connecting different surfaces of the semiconductor or solid-state body with connectors of different types
    • H01L2224/9222Sequential connecting processes
    • H01L2224/92242Sequential connecting processes the first connecting process involving a layer connector
    • H01L2224/92247Sequential connecting processes the first connecting process involving a layer connector the second connecting process involving a wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L2224/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01019Potassium [K]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01028Nickel [Ni]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0103Zinc [Zn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01046Palladium [Pd]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0105Tin [Sn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01051Antimony [Sb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01074Tungsten [W]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01322Eutectic Alloys, i.e. obtained by a liquid transforming into two solid phases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/014Solder alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/1015Shape
    • H01L2924/1016Shape being a cuboid
    • H01L2924/10162Shape being a cuboid with a square active surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/20Parameters
    • H01L2924/207Diameter ranges
    • H01L2924/20751Diameter ranges larger or equal to 10 microns less than 20 microns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/20Parameters
    • H01L2924/207Diameter ranges
    • H01L2924/20752Diameter ranges larger or equal to 20 microns less than 30 microns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/20Parameters
    • H01L2924/207Diameter ranges
    • H01L2924/20753Diameter ranges larger or equal to 30 microns less than 40 microns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress

Abstract

<P>PROBLEM TO BE SOLVED: To provide a means which effectively prevents a wire from breaking due to an increase in heat quantity applied to a semiconductor integrated circuit device. <P>SOLUTION: A metal layer containing a palladium layer is formed on a portion to which a connecting member having conductivity is connected; and an alloy layer which has a melting point higher than that of tin-lead eutectic solder and does not contain lead as main constitutional metal is provided on a portion outside a portion sealed with resin. The metal layer is provided on the connecting portion so that the thickness of a portion where the connecting member having conductivity is crimped is 10 μm or more. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、半導体集積回路装置に関し、特にワイヤ断線の防止に有効な技術に関する。   The present invention relates to a semiconductor integrated circuit device, and more particularly to a technique effective in preventing wire breakage.

従来の半導体集積回路の組立プロセスにおいては、次の工程を行っている。すなわち、Agスポットメッキ工程において、モールドにより封止されるプレス又はエッチングされたリードフレームのリード(以下、インナーリード)の先端部(チップ及びリードフレームをAu(金)線によってワイヤボンディングする部分を含む)にAgスポットメッキを施す。次に、パッケージの組立工程において、ダイボンディング、ワイヤボンディング、及び封止するパッケージの組立を行う。その後の外装メッキ工程(ディップ工程も含む)において、プリント基板又は回路基板に取り付けるため、モールドにより封止されないリード(以下、アウターリード)の基板との接触部を含む部分に予めSn-Pb(錫-鉛)系半田層を外装メッキによって付着形成する。上記Agスポットメッキ工程から外装メッキ工程が終了後、製品の加工工程へとすすむ。   In the conventional assembly process of a semiconductor integrated circuit, the following steps are performed. That is, in the Ag spot plating process, the tip of the lead (hereinafter referred to as the inner lead) of the pressed or etched lead frame sealed by the mold (including a portion where the chip and the lead frame are wire-bonded with Au (gold) wire) ) Ag spot plating. Next, in the assembly process of the package, die bonding, wire bonding, and assembly of the package to be sealed are performed. In the subsequent exterior plating process (including the dipping process), Sn-Pb (tin) is attached in advance to the portion including the contact portion of the lead (hereinafter referred to as the outer lead) that is not sealed by the mold to be attached to the printed circuit board or circuit board. -Lead) solder layer is deposited by exterior plating. After the outer spot plating process is completed from the Ag spot plating process, the process proceeds to the product processing process.

しかし、環境問題への対策が求められている昨今、特にPbについては特開平5―270860号公報(特許文献1)等における指摘どおり、半導体集積回路装置等の電子部品一般並びに実装基板等においても、環境対策上適当なレベルにPbを削減することが求められている。   However, in recent years when countermeasures against environmental problems have been demanded, especially as for Pb, as pointed out in JP-A-5-270860 (Patent Document 1), etc., in general electronic components such as semiconductor integrated circuit devices and mounting substrates, etc. Therefore, it is required to reduce Pb to an appropriate level for environmental measures.

従来は、Pbを削減するために、外装メッキ工程において用いるSn -PbはんだをPbを主要金属として含有しない他のはんだ(合金)、すなわち鉛フリー代替はんだ(鉛フリー金属で構成されるはんだ)に代えることで対処してきている。鉛フリー代替はんだには、Sn-Pb並の溶融温度範囲と優れた接合性、特にぬれ性が要求される。これらの要求に完全に合致する組成は現在なく、プリント配線基板、チップ部品、半導体パッケージ等の部材に応じた使い分けをしているのが現状である。そこで、用途に応じて、SnをベースにしたSn基合金で様々な組成、例えば、特開平10-93004号公報(特許文献2)において、従来のアウターリードに付着形成していたはんだ層に用いる金属をSn-Pb(錫-鉛)系に代わってSn-Bi(錫-ビスマス)系を用いる発明が提案されている。また、はんだの金属成分の構成については、特開平11-179586号公報(特許文献3)に Sn-Ag-Bi(錫-銀-ビスマス)系はんだを用いてパッケージアウターリード及び基板実装する発明が提案されている。
特開平5―270860号公報 特開平10−93004号公報 特開平11−179586号公報 特開平11-40723号公報 特開平11-220084号公報 特開平10-284666号公報 特開平10-298798号公報 特開平10-18056号公報 特開平11-8341号公報
Conventionally, in order to reduce Pb, Sn-Pb solder used in the exterior plating process is replaced with other solders (alloys) that do not contain Pb as the main metal, that is, lead-free alternative solder (solder composed of lead-free metal). It has been dealt with by replacing. Lead-free alternative solder is required to have the same melting temperature range as Sn-Pb and excellent bondability, especially wettability. There is currently no composition that completely meets these requirements, and the present situation is that the composition is properly used according to members such as a printed wiring board, a chip component, and a semiconductor package. Therefore, depending on the application, Sn-based alloys based on Sn are used in various compositions, for example, a solder layer that is attached to a conventional outer lead in Japanese Patent Laid-Open No. 10-93004 (Patent Document 2). There has been proposed an invention in which a Sn—Bi (tin-bismuth) system is used instead of a Sn—Pb (tin-lead) system. Regarding the configuration of the metal component of the solder, an invention in which a package outer lead and a substrate are mounted using Sn-Ag-Bi (tin-silver-bismuth) solder in Japanese Patent Laid-Open No. 11-179586 (Patent Document 3) is disclosed. Proposed.
JP-A-5-270860 Japanese Patent Laid-Open No. 10-93004 JP 11-179586 A Japanese Patent Laid-Open No. 11-40723 Japanese Patent Laid-Open No. 11-220084 JP-A-10-284666 JP-A-10-298798 Japanese Patent Laid-Open No. 10-18056 Japanese Patent Laid-Open No. 11-8341

外装メッキにSn-Pb共晶代替鉛フリーはんだを用いる場合には、用途毎にSn基合金を選択することは従来技術にて述べた通りであるが、特に、車載部品、成長著しい携帯用電子機器および高信頼性部品においては、接合強度および耐熱疲労特性が優れた合金が望まれている。接合強度および耐熱疲労特性が優れ、高信頼性を重視した場合のSn基合金としてはSn-Ag系合金が知られており、一般的にはSn-Pb共晶はんだの融点が183℃であるのに対して、ほとんどのSn-Ag系合金の融点は200℃以上とSn-Pb共晶はんだの融点より高いものである。したがって、現状においてはSn-Pb共晶代替鉛フリーはんだを用いて半導体集積回路を実装する際のリフロー温度は高くならざるを得ない。そこで、本願発明者はインナーリードがAgメッキされ、Sn-Pb共晶はんだより融点が高い鉛フリー代替はんだを用いてアウターリードがメッキされた半導体集積回路装置を従来よりも高いリフロー温度で実装し、その評価を行った。その結果、ワイヤ断線が原因の製品不良が発生することが判明した。   When using Sn-Pb eutectic alternative lead-free solder for exterior plating, selecting an Sn-based alloy for each application is as described in the prior art. In equipment and highly reliable parts, alloys having excellent bonding strength and heat fatigue resistance are desired. Sn-Ag alloy is known as an Sn-based alloy with excellent bonding strength and heat fatigue resistance and high reliability, and the melting point of Sn-Pb eutectic solder is generally 183 ° C In contrast, the melting point of most Sn—Ag alloys is 200 ° C. or higher, which is higher than the melting point of Sn—Pb eutectic solder. Therefore, at present, the reflow temperature when mounting a semiconductor integrated circuit using Sn-Pb eutectic alternative lead-free solder must be increased. Therefore, the present inventor mounted a semiconductor integrated circuit device in which the inner lead is Ag-plated and the outer lead is plated using a lead-free alternative solder having a melting point higher than that of the Sn-Pb eutectic solder at a higher reflow temperature than before. The evaluation was performed. As a result, it was found that a product defect caused by wire breakage occurred.

そこで、本願発明の一つの目的は、 Sn-Pb共晶はんだより融点が高い鉛フリー代替はんだを用いてアウターリードがメッキされた半導体集積回路装置が従来よりも高いリフロー温度で実装されることにより発生するワイヤ断線を効果的に防止する手段を提供することにある。   Accordingly, one object of the present invention is that a semiconductor integrated circuit device in which outer leads are plated using a lead-free alternative solder having a higher melting point than Sn-Pb eutectic solder is mounted at a higher reflow temperature than before. An object of the present invention is to provide means for effectively preventing wire breakage that occurs.

他の本願発明の一つの目的は、リフロー温度が上昇するために限らず、一般に半導体集積回路装置に加わる熱量の増加が原因のワイヤ断線を効果的に防止する手段を提供することにある。   Another object of the present invention is not to increase the reflow temperature, but to provide means for effectively preventing wire breakage caused by an increase in the amount of heat generally applied to a semiconductor integrated circuit device.

本願において開示される発明のうち、代表的なものの概要を簡単に説明すれば、次の通りである。すなわち、導電性を有する接続部材と、該接続部材が接続される部分にパラジウム層を含む金属層が設けられ、鉛を主要構成金属とするはんだよりも融点が高く主要構成金属として鉛を含まない合金層が樹脂によって封止される部分より外の部分に設けられた被接続部材と、該接続される部分を封止する樹脂とを具備することを特徴とする半導体集積回路装置である。   Of the inventions disclosed in the present application, the outline of typical ones will be briefly described as follows. That is, a conductive connecting member and a metal layer including a palladium layer are provided at a portion to which the connecting member is connected, and has a melting point higher than that of solder containing lead as a main constituent metal, and does not contain lead as a main constituent metal. A semiconductor integrated circuit device comprising: a member to be connected provided in a portion outside the portion where the alloy layer is sealed with resin; and a resin that seals the portion to be connected.

上記発明は、接続部材が接続される部分をメッキ等で付着形成するなどの手段を通じて設ける金属としてPd(パラジウム)を用いている。 導電性を有する接続部材としてのAu線等のワイヤ並びにCu合金や42アロイといった被接続部材としてのフレーム材料との接合性に問題がなく、かつ、PdはAgに比して硬い金属でありキャピラリのめりこみによる欠点が少なく、また、被接続部材単体毎の付着金属厚のばらつきが少ないからである。ただし、付着形成の場所として接続部材が接続される部分としたのは、PdはSn-Pb系金属及びAgに比べてコストが低くないため、接続部材との接合性に問題がない限り、最小限の面積に留めるべきであり、特に、面積の大きいアウターリード等の樹脂封止体外の部分の付着形成に用いるとなると、コスト削減の目的が効果的に果たせないからである。   In the above invention, Pd (palladium) is used as the metal provided through a means such as plating to form a portion to which the connection member is connected. There is no problem in bonding properties with wires such as Au wires as conductive connecting members and frame materials as connected members such as Cu alloys and 42 alloys, and Pd is a metal that is harder than Ag and capillary This is because there are few defects due to the penetration, and there is little variation in the thickness of the attached metal for each connected member. However, the part where the connection member is connected as the place of adhesion formation is the minimum as long as there is no problem in bondability with the connection member because Pd is not lower in cost than Sn-Pb metal and Ag. This is because it should be limited to a limited area. In particular, when it is used for adhesion formation of a portion outside the resin sealing body such as an outer lead having a large area, the purpose of cost reduction cannot be effectively achieved.

付着形成後、該付着形成箇所に物理的変形力を加える成型加工等により発生するおそれのあるメッキ割れ等の問題については、本願発明ではメッキ箇所が封止され、かつ、成形加工されないため問題とはならない。さらに、Pdを用いることにより、Agのマイグレーションの回避、また、メッキ時に猛毒のシアンが不要になるなどのメリットもある。   After adhesion formation, problems such as plating cracks that may occur due to molding processing or the like that applies physical deformation force to the adhesion formation location are problematic because the plating location is sealed and not molded in the present invention. Must not. In addition, the use of Pd has advantages such as avoiding Ag migration and eliminating the need for highly toxic cyan during plating.

また、鉛を主要構成金属とするはんだよりも融点が高く、主要構成金属として鉛を含まない合金を該樹脂により封止される部分より外の部分に付着形成した被接続部材としたのは、被接続部材としてのフレームの材料である42Ni-Fe合金等のCuフレーム以外の材質でも用いることができるようにするためと、インナーリード先端部と同じPdメッキをしてしまうと、材料費の面でコスト削減が図れないし、全面Pdメッキに固有の問題を回避するためである。   In addition, the melting point is higher than that of solder containing lead as a main constituent metal, and the connected member formed by adhering an alloy containing no lead as a main constituent metal to a portion outside the portion sealed with the resin is as follows. In order to be able to use materials other than Cu frame such as 42Ni-Fe alloy which is the material of the frame as the connected member, and the same Pd plating as the inner lead tip part, the material cost This is because the cost cannot be reduced and the problems inherent to the entire surface Pd plating are avoided.

さらに、インナーリードの先端部にPdメッキするという本願発明の技術思想は、メッキ厚のばらつきを少なくし接合強度を増すことが可能である点で、チップシュリンクに伴うワイヤの細線化にも適用できることをも本願発明者は見出した。   Furthermore, the technical idea of the present invention that Pd plating is applied to the tip of the inner lead can be applied to the thinning of the wire accompanying chip shrink because it can reduce the plating thickness variation and increase the bonding strength. The present inventor has also found out.

したがって、本願において開示される発明のうち、もう一つの代表的なものの概要を簡単に説明すれば、次の通りである。すなわち、径が30μm以下のワイヤと、該ワイヤが接続される部分にパラジウム層を含む金属層が設けられ、主要構成金属として鉛を含むはんだを樹脂により封止される部分より外の部分に設けられた被接続部材と、該接続される部分を封止する樹脂とを具備することを特徴とする半導体集積回路装置である。   Therefore, the outline of another representative one of the inventions disclosed in the present application will be briefly described as follows. That is, a wire having a diameter of 30 μm or less and a metal layer including a palladium layer are provided at a portion to which the wire is connected, and a solder containing lead as a main constituent metal is provided at a portion outside the portion sealed with resin. A semiconductor integrated circuit device comprising: a connected member to be connected; and a resin for sealing the connected portion.

パラジウム金属層が接合部材に付着形成されることにより、接合強度が向上するため、鉛フリー化に完全に移行していない現状においても、パッケージの多ピン化若しくは大型化、またチップシュリンクに伴うワイヤの細線化(ワイヤ径が現状の30μm以下)に対しても、組立歩留まり向上及び信頼性向上に有効である。また、接続される部分にパラジウム金属層が付着形成されていればよいため、付着形成工程のコストと材料費のコストとの関係でインナーリードの先端部に加えてタブにもパラジウム金属層が付着形成されていても良い。   Since the palladium metal layer is adhered and formed on the bonding member, the bonding strength is improved, so even in the current situation where the transition to lead-free has not been made completely, the number of pins or the size of the package is increased, and the wire associated with chip shrink This is effective for improving the assembly yield and improving the reliability even when the wire is thinned (the wire diameter is 30 μm or less at present). In addition, since the palladium metal layer only needs to be attached and formed at the connected part, the palladium metal layer is attached to the tab in addition to the tip of the inner lead due to the cost of the adhesion forming process and the material cost. It may be formed.

以下に本願に記載された発明を着想するに至った経緯について詳しく述べる。   The background of the idea for the invention described in the present application will be described in detail below.

本願発明者はワイヤの断線の原因を究明すべく、評価を繰り返し、それらの発生原因を新たに特定した。解析の結果、ワイヤのリード側断線不良は「モールド後のワイヤ断線不良」及び「リフロー後リード圧着部の断線不良」の2種類が考えられることが判明した。まず、モールド後のワイヤ断線不良の原因は、リードの振動による応力とレジンの硬化収縮による応力であると考えられる。図1のとおり、ゲート33からレジンを注入(充填時間で10秒)すると、レジン流れによりインナーリード4の先端部が上下に振動をする。この振動によりワイヤ19はストレスを受け、特にゲート部付近のピンが最も振動ストレスを受けやすい。更に、ゲート33から遠い位置からゲート33に向かって(図の右から左へ)レジンが硬化収縮するため、ワイヤ19に引っ張り力が加わり、接合強度が相対的に弱いリード側圧着部からワイヤ断線が発生していると考えられる。   The inventor of the present application repeated evaluation to find out the cause of the wire breakage, and newly identified the cause of the occurrence. As a result of the analysis, it has been found that there are two types of wire-side disconnection failures: “wire disconnection failure after molding” and “wire disconnection failure of lead crimp after reflow”. First, it is considered that the cause of wire disconnection failure after molding is stress due to vibration of the lead and stress due to hardening shrinkage of the resin. As shown in FIG. 1, when the resin is injected from the gate 33 (filling time is 10 seconds), the tip of the inner lead 4 vibrates up and down by the resin flow. This vibration causes the wire 19 to be stressed, and in particular, the pin near the gate is most susceptible to vibration stress. Further, since the resin is cured and contracted from a position far from the gate 33 toward the gate 33 (from the right to the left in the figure), a tensile force is applied to the wire 19 and the wire breaks from the lead side crimping portion having a relatively low bonding strength. Is considered to have occurred.

次に、リフロー後のリード圧着部の断線不良の原因は、リードフレームの膨張36及びレジンの膨張35のそれぞれの違いによるものと考えられる。図2にその模式図を記載する。レジンの硬化物物性はレジンのガラス転移点Tg(150〜160℃)で大きく変化し、特に熱膨張係数α(=1.4)は、Tg以上の領域(α2)はTg以下での(α1)の約4〜5倍の値になる。リフロー時の温度はTgの温度よりも高いため、リフロー時レジンの膨張(α2)により、ワイヤ19にダメージが加わり、強度の弱い箇所(図2のAの部分)にクラック37が入り、図3に示したとおり、リードフレームの膨張36とレジンの膨張35の差34によって断線に至る。   Next, it is considered that the cause of the disconnection failure of the lead crimping portion after reflow is due to the difference between the expansion 36 of the lead frame and the expansion 35 of the resin. FIG. 2 shows a schematic diagram thereof. The physical properties of the cured resin greatly change at the glass transition point Tg (150 to 160 ° C.) of the resin. Particularly, the coefficient of thermal expansion α (= 1.4) is (α1) in the region (α2) above Tg and below (α1). The value is about 4 to 5 times. Since the temperature at the time of reflow is higher than the temperature of Tg, the wire 19 is damaged due to the expansion (α2) of the resin at the time of reflow, and a crack 37 enters a weak portion (portion A in FIG. 2). As shown in FIG. 5, the disconnection is caused by the difference 34 between the expansion 36 of the lead frame and the expansion 35 of the resin.

鉛フリー化により融点の高いSn基合金の代替はんだを用いるとリフロー温度は上昇するため、パッケージに加えられる熱量が増大し、特にリードフレームの膨張とレジンの膨張の差が助長される。したがって、上述のワイヤ断線不良のうちリフロー後のリード側圧着部の断線不良が特に問題となることが判明した。   If an alternative solder of Sn-based alloy having a high melting point is used due to lead-free soldering, the reflow temperature rises, so the amount of heat applied to the package increases, and in particular, the difference between the expansion of the lead frame and the expansion of the resin is promoted. Therefore, it has been found that among the above-mentioned wire disconnection failures, the disconnection failure of the lead-side crimped portion after reflow is particularly problematic.

ここで、本願発明者はAgメッキの厚さとワイヤ断線の関係を評価した。その結果、メッキ厚がある一定の厚さの範囲になければ、ワイヤ断線が発生しやすくなることが明らかとなった。その理由を解析すると、あまりに薄いメッキ厚では、Au線圧着時にAgとAuとの接合面の面積が十分に確保できず、熱応力によるワイヤの変形でワイヤ断線が発生してしまうことが考えられる。また、 Agメッキをある厚さ以上に厚くすると、ワイヤ圧着時に、Agメッキ面が必要以上に変形し、接合エネルギーを吸収してしまう。その結果、十分な接合が得られなくなるし、また、接合面の断面形状が金線の熱変形に対する応力による引っぱりに対して弱い形状となってしまうと考えられる。   Here, this inventor evaluated the relationship between the thickness of Ag plating and a wire breakage. As a result, it has been clarified that wire breakage tends to occur unless the plating thickness is within a certain range. Analyzing the reason, if the plating thickness is too thin, it is possible that the area of the joint surface between Ag and Au cannot be secured sufficiently when crimping Au wire, and wire breakage may occur due to deformation of the wire due to thermal stress. . Further, if the Ag plating is made thicker than a certain thickness, the Ag plating surface is deformed more than necessary when the wire is crimped, and the bonding energy is absorbed. As a result, it is considered that sufficient bonding cannot be obtained, and the cross-sectional shape of the bonding surface is weak against pulling due to stress against thermal deformation of the gold wire.

更にリフロー後のリード側圧着部の断線不良を形状の側面から説明する。キャピラリ20によってワイヤ19がAgスポットメッキ面に圧着されている時の断面図を図4に記載する。図4の斜線部がキャピラリ20の先端であり、その先端の径は170μmであり、Au線ワイヤ19の径は30μmである。図において、リードフレーム7の厚さは150μmである。先に述べた通りAgメッキ38の厚はAgメッキされるリードフレーム毎に1.5μm〜10μmくらいまで厚さのばらつきが生じてしまうため、Agメッキ厚の特定は困難である。したがって、図においては断線不良が生じると考えられるメッキ厚が比較的厚い場合を想定している。   Furthermore, the disconnection defect of the lead side crimping part after reflow will be described from the side of the shape. FIG. 4 shows a cross-sectional view when the wire 19 is pressure-bonded to the Ag spot plating surface by the capillary 20. 4 is the tip of the capillary 20, the diameter of the tip is 170 μm, and the diameter of the Au wire 19 is 30 μm. In the drawing, the thickness of the lead frame 7 is 150 μm. As described above, the thickness of the Ag plating 38 varies from 1.5 μm to 10 μm for each Ag-plated lead frame, so it is difficult to specify the Ag plating thickness. Therefore, in the figure, it is assumed that the plating thickness, which is considered to cause disconnection failure, is relatively thick.

ワイヤ圧着した場合に、Agは相対的に柔らかい金属であるためキャピラリ20がAgメッキ38の面にめりこみ、図4のとおりAgメッキ38の面の一部が盛り上がる。すると、図4のAの部分のAu線ワイヤ19の厚さが相対的に薄くなってしまい、ワイヤ強度が弱い箇所になる。ボンディング後のリード側圧着部の斜視図を図5に記載する。図5においてA線を記載した部分が図4におけるAの部分である。リフロー後にはリードフレームの膨張とレジンの膨張の差により図6のように図4のAの部分から断線が発生する。参考までに、モールド後のワイヤ断線不良のリード側圧着部の斜視図を図7に記載する。リフロー後のリード側圧着部の断線不良は断線したワイヤが圧着部と重なるように断線するが、モールド後のリード側圧着部のワイヤ断線不良では断線したワイヤが圧着部と離れるように断線する。以上のとおり、厚さが比較的厚いAgメッキ面にキャピラリ20がめりこむことによってワイヤ強度が弱い箇所ができることが原因であることを本願発明者の分析の結果明らかとなった。   When wire is crimped, since Ag is a relatively soft metal, the capillary 20 sinks into the surface of the Ag plating 38, and a part of the surface of the Ag plating 38 rises as shown in FIG. Then, the thickness of the Au wire 19 in the portion A in FIG. 4 becomes relatively thin, and the wire strength is weak. FIG. 5 shows a perspective view of the lead side crimping portion after bonding. In FIG. 5, the portion indicated by the A line is the portion A in FIG. After reflow, disconnection occurs from the portion A in FIG. 4 due to the difference between the expansion of the lead frame and the expansion of the resin. For reference, FIG. 7 shows a perspective view of the lead-side crimping portion with defective wire breakage after molding. The disconnection failure of the lead side crimping portion after reflow is disconnected so that the disconnected wire overlaps with the crimping portion. However, in the case of the wire disconnection failure of the lead side crimping portion after molding, the disconnected wire is disconnected so as to be separated from the crimping portion. As described above, it has been clarified as a result of the analysis by the present inventor that the cause is that a portion having weak wire strength is formed by the capillary 20 being recessed into a relatively thick Ag-plated surface.

近年は設計上要求されるAgメッキ厚が数μmと薄くなってきており、Agメッキ面の厚さのバラツキを評価した結果、現状のAgメッキプロセスでは、多数の被メッキ物を扱う際に初期の設定メッキ厚を維持することは困難であり、被メッキ物毎のメッキ厚を比較すると1.5μm〜10μmの範囲にばらついてしまうことが判明した。そこで、本願発明者はリードフレーム毎のAgメッキ厚のばらつきを抑えるべく、最大厚さを従来の10μmから5〜8μmの範囲に収まるように試みた。しかし、現状のAgメッキプロセスでは、先に述べた通り最大厚さ10μmが限界であり、最大厚さを5〜8μmの範囲に収めることは困難であった。したがって、現状のAgメッキプロセスではメッキ厚のバラツキをこれ以上小さくすることは困難であると考えられる。   In recent years, the Ag plating thickness required for design has become as thin as several μm, and as a result of evaluating the variation in the thickness of the Ag plating surface, the current Ag plating process is the initial stage when handling a large number of objects to be plated. It is difficult to maintain the set plating thickness, and it has been found that when the plating thickness for each object to be plated is compared, it varies within the range of 1.5 μm to 10 μm. Therefore, the inventor of the present application tried to keep the maximum thickness within the range of 10 μm to 5 to 8 μm in order to suppress variations in Ag plating thickness for each lead frame. However, in the current Ag plating process, as described above, the maximum thickness is 10 μm, and it is difficult to keep the maximum thickness in the range of 5 to 8 μm. Therefore, it is considered that it is difficult to further reduce the plating thickness variation in the current Ag plating process.

そこで、ワイヤ強度が弱い箇所ができるという上述の問題を解決するため、インナーリード先端部に付着形成する金属層をAgより硬く、かつ、厚さのばらつきが少ない金属を用いるという新たな着想をし、かつ、製造コストを最小限に留めるに最適な金属を採用すべく評価検討した結果、本願発明に想到した。   Therefore, in order to solve the above-mentioned problem that a portion with weak wire strength is formed, a new idea of using a metal that is harder than Ag and has a small variation in thickness is used for the metal layer adhered to the tip of the inner lead. In addition, as a result of evaluation and examination to adopt an optimum metal for minimizing the manufacturing cost, the present invention has been conceived.

次に、上述のとおりパラジウム金属層がインナーリードの先端部に付着形成されることにより、リフロー後のリード側圧着部の断線が防止できる理由についてリード側圧着部形状の観点から説明する。   Next, the reason why the lead-side crimped portion after reflow can be prevented from being disconnected by forming the palladium metal layer on the tip of the inner lead as described above will be described from the viewpoint of the lead-side crimped portion shape.

キャピラリ20によってワイヤ19がPdメッキ10の面に圧着されている時の断面図を図8に記載する。図8の斜線部がキャピラリ20の先であり、その先端の径は170μmであり、Au線ワイヤ19の径は30μmである例が記載されている。ワイヤ19を圧着した場合に、Pdは相対的に硬い金属であるため、メッキ面がAgである時に比べてキャピラリ20があまりめりこまない。すると、図8のAの部分のAu線ワイヤ19の肉厚tは図4のAの部分に比べて、十分な厚さが確保でき、ワイヤ強度を保つことができる。ボンディング後のリード側圧着部の斜視図を図9に記載する。図9においてA線を記載した部分が図8におけるAの部分である。図5に比べて図9の方が金線の肉厚が確保されていることがわかる。リフロー後にはリードフレームの膨張とレジンの膨張の差により図9の矢印の方向に応力が加えられる。しかし、強度の弱い箇所がないため、Agメッキのときのような断線したワイヤが圧着部と重なるような断線は発生しない。キャピラリ20の圧着の力は、リードフレーム7の厚さ150μm、Pdメッキ10の厚が最小で0.02μm、最大0.15μmの時に金線肉厚tが10μm以上を確保するような力であればワイヤ断線は少なくとも発生しない。   A cross-sectional view when the wire 19 is pressure-bonded to the surface of the Pd plating 10 by the capillary 20 is shown in FIG. The hatched portion in FIG. 8 is the tip of the capillary 20, the diameter of the tip is 170 μm, and the diameter of the Au wire 19 is 30 μm. When the wire 19 is crimped, since the Pd is a relatively hard metal, the capillary 20 is not so depressed compared to when the plated surface is Ag. Then, the thickness t of the Au wire 19 in the portion A in FIG. 8 can be sufficiently thick as compared with the portion A in FIG. 4, and the wire strength can be maintained. FIG. 9 shows a perspective view of the lead side crimping portion after bonding. In FIG. 9, the portion indicated by the A line is the portion A in FIG. It can be seen that the thickness of the gold wire is secured in FIG. 9 compared to FIG. After reflow, stress is applied in the direction of the arrow in FIG. 9 due to the difference between the expansion of the lead frame and the expansion of the resin. However, since there is no weak portion, there is no disconnection in which the disconnected wire overlaps with the crimping part as in Ag plating. The crimping force of the capillary 20 is as long as the wire thickness t is 10 μm or more when the lead frame 7 has a thickness of 150 μm, the Pd plating 10 has a minimum thickness of 0.02 μm, and a maximum of 0.15 μm. Disconnection does not occur at least.

次に、被接続部材にPd金属層を付着形成するという本願発明の技術思想は、鉛フリー化とは直接関係なく、接続部材の細線化にも適用できることを着想するに至った理由について述べる。   Next, the reason why the technical idea of the present invention of depositing and forming a Pd metal layer on a member to be connected can be applied to the thinning of the connecting member without being directly related to lead-free is described.

本願の代表的な発明における条件を評価した結果、パッケージの大きさが変わらないことが前提となって評価していたことに着目した。ここで、ワイヤ断線はリードフレームの膨張及びレジンの膨張の違いによって引き起こされることは上述の説明の通りである。したがって、多ピン化に伴ってパッケージが大きくなると前記膨張の違いは更に顕著になると考えられる。容積が大きくなるため、熱容量が大きくなり、リフローの際にレジンに加えられる熱量も増加するからである。また、多ピン化するため、リフロー時に基板からピンを通じて流入する熱量も増加することとなる。   As a result of evaluating the conditions in the representative invention of the present application, it was noted that the evaluation was based on the premise that the size of the package does not change. Here, as described above, the wire breakage is caused by the difference between the expansion of the lead frame and the expansion of the resin. Therefore, it is considered that the difference in expansion becomes more conspicuous as the package becomes larger as the number of pins increases. This is because the volume increases, the heat capacity increases, and the amount of heat applied to the resin during reflow also increases. In addition, since the number of pins is increased, the amount of heat flowing from the substrate through the pins during reflow also increases.

さらに、チップシュリンクによって狭ピッチ化する場合でも、同じサイズのパッケージに比べるとパッケージにはより多くの熱量が加えられることになる。よって、同じピン数のパッケージでもチップシュリンクにより、パッケージサイズが小さくなり、それに伴ってワイヤボンディングのパッドピッチも狭くなり、ワイヤ径も小さくなる。チップシュリンクに伴うワイヤの細線化、すなわち、現行のワイヤ径30μmが更に細くなるに従い、メッキ厚をより薄くする必要が生じると考えられる。将来的には現行のAgスポットメッキプロセスで実現可能な範囲のメッキ厚のばらつきでは大きすぎて接合が不安定になると考えられるからである。   Furthermore, even when the pitch is narrowed by chip shrink, a larger amount of heat is applied to the package than a package of the same size. Therefore, even for a package having the same number of pins, the package size is reduced due to chip shrink, and accordingly, the pad pitch of wire bonding is reduced and the wire diameter is also reduced. It is considered that it is necessary to make the plating thickness thinner as the wire becomes thinner due to chip shrink, that is, as the current wire diameter of 30 μm becomes thinner. This is because, in the future, it is considered that the variation in the plating thickness that can be realized by the current Ag spot plating process is too large and the bonding becomes unstable.

すなわち、リフロー温度に変化がなくとも多ピン化やチップシュリンクに伴う狭ピッチ化によってパッケージに加えられる熱量が増加することはリフロー温度が上がることに相当する。したがって、被接続部材にPd金属層を付着形成するという技術思想は、金属厚のばらつきを少なくし接合強度を増すことが可能である点で、鉛フリー化とは直接関係なく適用できる。   That is, even if there is no change in the reflow temperature, an increase in the amount of heat applied to the package due to the increase in the number of pins and the narrowing of pitch associated with chip shrinking corresponds to an increase in the reflow temperature. Therefore, the technical idea of depositing and forming the Pd metal layer on the connected member can be applied without being directly related to lead-free because it can reduce the variation in metal thickness and increase the bonding strength.

尚、本願に記載された発明とは技術思想が全く異なるが、鉛フリー化が実現可能な対処法としてPPL(Pre-solder Plated Leadframe)プロセスがある。PPLプロセスとは、接続性が良いパラジウム金属を用いて、封止前にダイボンディング部、インナーリード及びアウターリードを含むリードフレーム全体の上にメッキするプロセスである。PPLプロセスはメッキに使用する金属がパラジウムであるため鉛フリー化が可能となる。さらに、PPLプロセスでは従来封止後におこなわれていた外装メッキ工程が不要なので、アウターリードの半田メッキ省略による組立時間の短縮化及び組立プロセス全体のオートメーションも可能となる。   Although the technical idea is completely different from the invention described in the present application, there is a PPL (Pre-solder Plated Leadframe) process as a countermeasure that can realize lead-free. The PPL process is a process in which palladium metal having good connectivity is plated on the entire lead frame including the die bonding portion, inner leads, and outer leads before sealing. The PPL process can be made lead-free because the metal used for plating is palladium. Furthermore, the PPL process does not require the exterior plating process that has been performed after sealing, so that the assembly time can be shortened and the entire assembly process can be automated by omitting solder plating of the outer leads.

しかし、フレーム材の材質とPd金属との電位差によって局部電池が形成されるため腐食するおそれがあり、フレーム材として42アロイ(42Ni-Fe)合金等のFe系フレームの使用が不可能であり、銅合金に限定されてしまう。もっとも、バリアメタルをPd金属層との間にいれることによってFe系フレームの使用は可能となるが、実アセンブリ工程でダムバーカットやリード先端切断時、断面の素材が露出され、その断面より素材腐食が集中的に加速されるため、かつ、製造プロセスが複雑化するため製造コストの面で不利になるため、不適当である。また、フレーム状態からアウターリードのメッキが施されているため、封止により発生する樹脂バリ等を除去するバリ取り作業において、アウターリード表面を汚染させ、基板実装時のはんだ濡れ性を劣化させる可能性が高くなってしまう。さらに、パラジウムは鉛系はんだに比べて硬い金属であるため、メッキ後にアウターリード成形するとメッキ剥がれが発生してしまうという問題も生ずる。   However, since a local battery is formed by the potential difference between the material of the frame material and the Pd metal, there is a risk of corrosion, and it is impossible to use an Fe-based frame such as 42 alloy (42Ni-Fe) alloy as the frame material, Limited to copper alloys. However, it is possible to use an Fe-based frame by placing the barrier metal between the Pd metal layer, but the material of the cross section is exposed when the dam bar cut or lead tip is cut in the actual assembly process. Since corrosion is intensively accelerated and the manufacturing process becomes complicated, it is disadvantageous in terms of manufacturing costs. In addition, since the outer leads are plated from the frame state, it is possible to contaminate the outer lead surfaces and deteriorate the solder wettability during board mounting in the deburring operation to remove resin burrs generated by sealing. It will be high. Furthermore, since palladium is a metal harder than lead-based solder, there also arises a problem that if the outer lead is formed after plating, peeling of the plating occurs.

したがって、仮に上述のようなPdメッキプロセスを本願発明の課題であるワイヤ断線防止を解決する手段として採用したとしても被メッキ物毎のメッキ厚の相違を小さくすることが結果的に可能にはなるが、上述のデメリットがあるため、課題の解決手段としては不適当であることは言うまでもない。   Therefore, even if the Pd plating process as described above is adopted as a means for solving the wire disconnection prevention which is the subject of the present invention, it is possible to reduce the difference in plating thickness for each object to be plated. However, it is needless to say that the above-mentioned disadvantages are inappropriate as a means for solving the problem.

また、本願発明者は出願するに際して、「リードフレーム上にPdメッキする」との観点で公知例調査を行った。その結果、特開平11-40723号公報(特許文献4)及び特開平11-220084号公報(特許文献5)において、少なくともアウターリードを含むリードの一部又は全部をPd(パラジウム)系金属でメッキをする発明が提案されている。また、外装メッキ工程を不要とし組立プロセス全体のオートメーションを可能にすることに主眼を置いてリードの全部をPd(パラジウム)系金属でメッキをする発明として、特開平10-284666号公報(特許文献6)、特開平10-298798号公報(特許文献7)及び特開平10-18056号公報(特許文献8)が提案されており、Pd(パラジウム)系金属層の最表面に更にAu-Ag合金メッキを施すとの観点で特開平11-8341号公報(特許文献9)が提案されている。   In addition, the inventor of the present application conducted a known example investigation from the viewpoint of “Pd plating on the lead frame” when applying. As a result, in Japanese Patent Laid-Open No. 11-40723 (Patent Document 4) and Japanese Patent Laid-Open No. 11-220084 (Patent Document 5), at least a part or all of the lead including the outer lead is plated with a Pd (palladium) metal. An invention has been proposed. Japanese Patent Laid-Open No. 10-284666 (Patent Document) discloses an invention in which all the leads are plated with a Pd (palladium) metal, with the primary objective of eliminating the need for an exterior plating process and enabling automation of the entire assembly process. 6), Japanese Patent Laid-Open No. 10-298798 (Patent Document 7) and Japanese Patent Laid-Open No. 10-18056 (Patent Document 8) have been proposed, and an Au-Ag compound is further formed on the outermost surface of the Pd (palladium) metal layer. Japanese Patent Laid-Open No. 11-8341 (Patent Document 9) has been proposed from the viewpoint of applying gold plating.

本願によって開示される発明のうち、代表的なものによって得られる効果を簡単に説明すれば、以下の通りである。   The effects obtained by the representative ones of the inventions disclosed by the present application will be briefly described as follows.

本発明によれば、鉛フリー化に対応したLSIパッケージ、特に鉛系はんだより融点が高い鉛フリー代替はんだを用いたLSIパッケージを提供することができ、組立歩留まり向上及び信頼性向上を図ることが可能となる。また、パッケージの多ピン化若しくは大型化、チップシュリンクに伴うワイヤの細線化に対応したLSIパッケージを提供することができ、組立歩留まり向上及び信頼性向上を図ることが可能となる。   According to the present invention, it is possible to provide an LSI package compatible with lead-free, particularly an LSI package using a lead-free alternative solder having a melting point higher than that of a lead-based solder, and can improve assembly yield and reliability. It becomes possible. Further, it is possible to provide an LSI package that can cope with an increase in the number of pins or an increase in the size of the package and a reduction in the thickness of the wire due to chip shrink, and it is possible to improve the assembly yield and the reliability.

以下、本発明の実施の形態を図面を用いて詳細に説明する。なお、実施の形態を説明するための全図において同一機能を有するものは同一の符号を付し、その繰り返しの説明は省略する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. Note that components having the same function are denoted by the same reference symbols throughout the drawings for describing the embodiments, and the repetitive description thereof is omitted.

本実施例の半導体集積回路装置は、インナーリードの先端部がパラジウムスポットメッキされ、アウターリードがSn-Ag系合金メッキされた半導体集積回路装置である。   The semiconductor integrated circuit device of this embodiment is a semiconductor integrated circuit device in which the tip of the inner lead is spot-plated with palladium and the outer lead is plated with Sn—Ag alloy.

本実施例においては208ピンでパッケージサイズが28mm角を例に掲げている。   In this embodiment, 208 pins and a package size of 28 mm square are listed as an example.

図10には半導体集積回路装置に用いるリードフレームの繰り返し単位が4つ記載されている。繰り返し単位の数は4つに限らないことはいうまでもない。また、材質は本実施例中ではCu合金であるが、42Ni-Fe等の鉄系リードフレームであってもよい。本実施例においてはパラジウム全面メッキを行わないので、パラジウム全面メッキで問題となるアウターリードでの局部電池の発生が起こらないからである。   FIG. 10 shows four lead frame repeating units used in the semiconductor integrated circuit device. Needless to say, the number of repeating units is not limited to four. The material is a Cu alloy in this embodiment, but may be an iron-based lead frame such as 42Ni-Fe. This is because, in this embodiment, the entire palladium plating is not performed, so that local batteries are not generated on the outer leads, which is a problem with the entire palladium plating.

図11にはインナーリード4の先端部にパラジウムメッキ1をした一つのリードフレーム7の拡大図が記載されている。タブ(ダイパッド)2はいわゆる小タブであり、チップ搭載面の面積はその上に搭載される半導体チップの主面の面積よりも小さく設定されている。小タブを用いることで、リフロークラックが発生してしまう危険性をも未然に防ぐことが可能である。本実施例においては小タブであるが、クロスタブ方式(吊りリード3の幅しかない方式)でも良いし、通常のタブであってもよい。また、本実施例においてはダイパッド2にパラジウムメッキをしないが、ダイパッド2にパラジウムメッキをしてもよい。   FIG. 11 shows an enlarged view of one lead frame 7 in which the inner lead 4 is plated with palladium 1. The tab (die pad) 2 is a so-called small tab, and the area of the chip mounting surface is set smaller than the area of the main surface of the semiconductor chip mounted thereon. By using a small tab, it is possible to prevent the risk of reflow cracks. In this embodiment, it is a small tab, but it may be a cross tab method (a method having only the width of the suspension lead 3) or a normal tab. In this embodiment, the die pad 2 is not palladium plated, but the die pad 2 may be palladium plated.

図12には図11のリードフレーム7の拡大図のA-B断面図が記載されている。リードの先端部にパラジウムメッキ1が施されている。パラジウムメッキされる部分は最低限ワイヤボンディング部がスポットメッキされる大きさであればよい。メッキを施すに際しては、リードフレーム7の背面及び前記リードの先端部以外の部分を絶縁材でマスクして電解メッキによって行う。したがって、後述する最低限必要なインナーリード先端の表面のメッキに加えて、厚さ方向にもメッキが施されることとなる。最低限必要なメッキ領域についてワイヤ径30μmのAu線ワイヤ19を用いてワイヤボンディングする場合を例にとって説明すると、図19に記載のとおりスポットメッキの最低必要領域21は圧着幅aと圧着長bとで表現されるワイヤ圧着部の面積a×bの約75%であり、本実施例においては、a、bともに少なくとも90μm、また、前記最低必要領域21の位置はリードフレーム先端から300μmにその中心がくるようにしている。   FIG. 12 shows an A-B cross-sectional view of an enlarged view of the lead frame 7 of FIG. A palladium plating 1 is applied to the tip of the lead. The portion to be plated with palladium may be at least as large as the wire bonding portion is spot-plated. When the plating is performed, the rear surface of the lead frame 7 and the portion other than the tip of the lead are masked with an insulating material and electrolytic plating is performed. Therefore, in addition to the minimum required plating of the surface of the inner lead tip described later, plating is also applied in the thickness direction. The minimum required plating area will be described by taking as an example the case of wire bonding using an Au wire wire 19 having a wire diameter of 30 μm. As shown in FIG. 19, the minimum required area 21 for spot plating includes a crimping width a and a crimping length b. In this embodiment, both a and b are at least 90 μm, and the position of the minimum required region 21 is 300 μm from the tip of the lead frame. Is coming.

また、吊りリード3を変形させることでダイパッド2をインナーリード4の面よりも下に位置させるいわゆるタブ下げを行っている。レジン注入時にチップ上下のレジン注入速度の差を緩和して、振動を防止するためである。   In addition, so-called tab lowering is performed such that the die pad 2 is positioned below the surface of the inner lead 4 by deforming the suspension lead 3. This is because the difference in resin injection speed between the top and bottom of the chip is eased during resin injection to prevent vibration.

図13に本実施例におけるインナーリード先端部のパラジウムメッキの構成が記載されている。パラジウムメッキは3層からなっており、インナーリードにまず下地メッキとしてNiメッキ11をし、その上からパラジウムメッキ10をし、最後に耐食性を向上させるため、Auフラッシュメッキ9をする。本実施例における各層の具体的な厚さは、インナーリード厚が150μmであり、Niメッキが1.0μm、パラジウムメッキが0.15μm、Auフラッシュメッキが約1nmである。   FIG. 13 shows the structure of palladium plating at the tip of the inner lead in this embodiment. The palladium plating consists of three layers. First, Ni plating 11 is applied to the inner lead as a base plating, then palladium plating 10 is applied thereon, and finally Au flash plating 9 is applied to improve corrosion resistance. The specific thickness of each layer in this example is 150 μm for the inner lead thickness, 1.0 μm for Ni plating, 0.15 μm for palladium plating, and about 1 nm for Au flash plating.

ダイボンディング工程について、図14を用いて説明する。図14は図11のC-D断面図が記載されている。タブ下げ後のリードフレーム7をステージ16に載せ、ダイパッド2の下面に接触させる。ダイボンディングするための接着材15をシリンジ12に入れたディスペンサ13をダイパッド上方に位置させて、接着材15をダイパッド上面に貼着する。ここで、接着材15は消費電力の小さい半導体デバイス用の導電性ペースト(銀粉やカーボンを含有させた有機樹脂)を用いている。ダイボンド材に要求される特性は、良熱伝導体特性である他に半導体素子やリードフレーム7の被膜とのはんだ濡れ性、半導体デバイスの使用時と不使用時の温度差に起因するはんだの熱疲労特性などの観点で導電性ペーストが有効だからである。また、本願発明がPbの削減を目的としているので、通常パワーデバイスで用いられるPbを主成分とする金属はんだは用いることはない。しかし、金属はんだを用いないという意味ではなく、あくまでも鉛フリーのはんだであれば使用可能である。但し、鉛フリー化の観点のないもう一つの代表的な発明の場合には、 Pbを主成分とする金属はんだを用いることもあることは言うまでもない。次の工程を図15を用いて説明する。接着材15が貼着されたリードフレームの上方にコレット17により半導体チップ18を移動させた後、チップをチップ固着位置に固着する。コレット17の形状は断面形状が図15のような四角錐であり、真空吸引することで、コレット17と半導体チップ18をコレット17に密着させている。   The die bonding process will be described with reference to FIG. FIG. 14 is a sectional view taken along the line CD of FIG. The lead frame 7 after the tab is lowered is placed on the stage 16 and brought into contact with the lower surface of the die pad 2. The dispenser 13 in which the adhesive material 15 for die bonding is placed in the syringe 12 is positioned above the die pad, and the adhesive material 15 is attached to the upper surface of the die pad. Here, the adhesive 15 uses a conductive paste (an organic resin containing silver powder or carbon) for semiconductor devices with low power consumption. The characteristics required for the die-bonding material are good heat conductor characteristics, solder wettability with the film of the semiconductor element and the lead frame 7, and the heat of the solder due to the temperature difference between when the semiconductor device is used and when it is not used. This is because the conductive paste is effective in terms of fatigue characteristics. In addition, since the present invention aims to reduce Pb, metal solder mainly composed of Pb, which is usually used in power devices, is not used. However, this does not mean that metal solder is not used, and any lead-free solder can be used. However, it goes without saying that in the case of another representative invention without the viewpoint of lead-free, a metal solder mainly composed of Pb may be used. The next step will be described with reference to FIG. After the semiconductor chip 18 is moved by the collet 17 above the lead frame to which the adhesive material 15 is adhered, the chip is fixed to the chip fixing position. The shape of the collet 17 is a quadrangular pyramid as shown in FIG. 15, and the collet 17 and the semiconductor chip 18 are brought into close contact with the collet 17 by vacuum suction.

ワイヤボンディング工程について図16を用いて説明する。ダイボンディング工程後、チップ18の下面とインナーリード4の下面をステージ16に固定する。ステージ16中には切り欠き等のダイパッド2が収納される部分が予め設けられている。固定後、キャピラリ20をチップ18上のパッドからインナーリード4上へとボンディングする。図17にワイヤボンディング箇所の拡大図を記載する。ワイヤボンディング後の圧着部の形状の模式図を図18に記載した。本願発明の場合、ワイヤ径のdは30μmであり、圧着幅Wは最大で105μm、圧着長も最大で105μmである。L、W及びd間の関係を、1.5≦W/d≦3.5、1.5≦L/d≦3.5の範囲に収まるようにすれば、良好な圧着状態を得ることができることが発明者の評価の結果明らかとなっている。   The wire bonding process will be described with reference to FIG. After the die bonding process, the lower surface of the chip 18 and the lower surface of the inner lead 4 are fixed to the stage 16. In the stage 16, a part for storing the die pad 2 such as a notch is provided in advance. After fixing, the capillary 20 is bonded from the pad on the chip 18 onto the inner lead 4. FIG. 17 shows an enlarged view of the wire bonding portion. A schematic diagram of the shape of the crimping part after wire bonding is shown in FIG. In the present invention, the wire diameter d is 30 μm, the crimping width W is 105 μm at the maximum, and the crimping length is also 105 μm at the maximum. As a result of the inventor's evaluation, it is possible to obtain a good crimped state if the relationship between L, W and d is within the range of 1.5 ≦ W / d ≦ 3.5 and 1.5 ≦ L / d ≦ 3.5. It is clear.

上述したワイヤボンディング工程が完了した後のリードフレーム7は図20に記載されているとおりであり、次にモールド工程で樹脂封止を行う。モールド工程では、リードフレーム7を封止金型22で挟み込み、樹脂注入口23から樹脂24を流し込む。本実施例では流し込みの速度は充填時間が10秒間になるようにしている。流し込みに際してはリードフレーム7の上と下で同じ速度で樹脂が流し込まれるようにする必要がある。これはモールドに際してリードフレーム7の振動幅を極力小さくして、ワイヤ19にかかるストレスを軽減してワイヤ断線を防止するためである。   The lead frame 7 after the completion of the above-described wire bonding process is as shown in FIG. 20, and then resin sealing is performed in a molding process. In the molding step, the lead frame 7 is sandwiched between the sealing molds 22 and the resin 24 is poured from the resin injection port 23. In this embodiment, the pouring speed is set so that the filling time is 10 seconds. When pouring, the resin needs to be poured at the same speed above and below the lead frame 7. This is because the vibration width of the lead frame 7 is made as small as possible during molding to reduce the stress applied to the wire 19 and prevent wire breakage.

樹脂封止後、アウターリード5に外装メッキをし、外装メッキが完了した状態が図22に記載されている。本実施例においては外装メッキに用いる金属はSn-Ag系金属にCu及び又はBi若しくは双方を加えた合金である。Pb削減を実現し、リフロー温度が高いリフロー実装を想定しているためである。したがって、上記合金だけでなく、Zn、In、Sb等とSn若しくはSn 系合金との合金でもよいことは言うまでもない。リフロー実装の場合には接合用のクリームはんだはSn-Ag系、Sn-Zn系、Sn-Bi系など実装温度が異なるものがある。現状においてはSn-Ag系金属はPb含有はんだの融点よりも融点が高い。しかし、他の実施例においては、外装メッキは鉛系のはんだを用いることになる。インナーリード4にパラジウムメッキをすることにより、インナーリード4とワイヤ19の接続強度が増すことに着目した場合には、外装メッキが鉛系のはんだに限る必要はないからである。   FIG. 22 shows a state where the outer lead 5 is subjected to exterior plating after the resin sealing, and the exterior plating is completed. In this embodiment, the metal used for the exterior plating is an alloy obtained by adding Cu and / or Bi or both to a Sn—Ag metal. This is because Pb reduction is realized and reflow mounting with a high reflow temperature is assumed. Therefore, it goes without saying that not only the above alloy but also an alloy of Zn, In, Sb, etc. and Sn or Sn-based alloy may be used. In the case of reflow mounting, there are soldering solders with different mounting temperatures such as Sn-Ag, Sn-Zn, and Sn-Bi. At present, Sn-Ag metal has a melting point higher than that of Pb-containing solder. However, in other embodiments, the exterior plating uses lead-based solder. This is because the outer plating need not be limited to lead-based solder when attention is paid to increasing the connection strength between the inner lead 4 and the wire 19 by plating the inner lead 4 with palladium.

外装メッキ完了後、アウターリード5を成形する工程がある。まず、図23に記載の通り、アウターリード5の根元で樹脂封止体を挟み込んで固定し、パンチ25によりアウターリード5を成形する。成形後、図24に記載の通り、下方からダイを移動させることにより、アウターリード5の先端部分を切断成形する。   There is a step of forming the outer lead 5 after the exterior plating is completed. First, as shown in FIG. 23, the resin sealing body is sandwiched and fixed at the base of the outer lead 5, and the outer lead 5 is formed by the punch 25. After molding, as shown in FIG. 24, the tip of the outer lead 5 is cut and molded by moving the die from below.

本実施例における完成品の模式図を図25に、模式図の透視図を図27に、図27中のE-F断面図を図26に記載する。ピン数は208ピンであるが、煩雑となるのを避けるため、同図においてピン数を省略して記載している。樹脂封止体の形状は一つの角を落とし、印を刻印することで実装時のハンドリングの際にパッケージの方向性を確保している。本実施例における完成品の具体的な寸法は、樹脂封止体の大きさDは28mm角、アウターリード5を含めた半導体パッケージの外形寸法は30.6±0.2mm、高さは最大で3.56mmである。また、リードのピッチpは0.5mm、各リードの幅wは0.2mm、厚さtは0.15mmである。樹脂封止体からアウターリード先端までの水平方向の長さaは1.3mm、曲げられたアウターリードの先端の長さkは0.5mmである。   FIG. 25 is a schematic diagram of the finished product in this example, FIG. 27 is a perspective view of the schematic diagram, and FIG. 26 is a cross-sectional view taken along line EF in FIG. Although the number of pins is 208, in order to avoid complication, the number of pins is omitted in FIG. The shape of the resin encapsulant is dropped at one corner and imprinted with a mark to ensure the directionality of the package during handling during mounting. The specific dimensions of the finished product in this example are as follows: the size D of the resin sealing body is 28 mm square, the external dimensions of the semiconductor package including the outer leads 5 are 30.6 ± 0.2 mm, and the maximum height is 3.56 mm. is there. The lead pitch p is 0.5 mm, the width w of each lead is 0.2 mm, and the thickness t is 0.15 mm. The length a in the horizontal direction from the resin sealing body to the outer lead tip is 1.3 mm, and the length k of the bent outer lead tip is 0.5 mm.

配線基板へ実装する工程を図28、図29を用いて説明図する。アウターリード5の先の実装面よりも大きなフットプリント29に半田ペースト28を塗布する。塗布後パッケージ31を上から配置し、熱を加えることで実装する。リフローの方式はベーパーフェーズリフロー、エアリフロー、赤外線リフローなどがある。実施例においては、リフロー温度は255℃であり、通常のSn-Pb系はんだのリフロー温度235℃に比べて20℃ほど高くなっている。はんだの融点が高いことに対応するためである。また、配線基板30のフットプリント29の具体的な大きさは、幅aは0.20〜0.25mm、長さbは1.3mmである。   The process of mounting on a wiring board will be described with reference to FIGS. A solder paste 28 is applied to a footprint 29 larger than the previous mounting surface of the outer lead 5. After application, the package 31 is placed from above and mounted by applying heat. Reflow methods include vapor phase reflow, air reflow, and infrared reflow. In the embodiment, the reflow temperature is 255 ° C., which is about 20 ° C. higher than the reflow temperature of 235 ° C. of ordinary Sn—Pb solder. This is to cope with the high melting point of the solder. The specific size of the footprint 29 of the wiring board 30 is such that the width a is 0.20 to 0.25 mm and the length b is 1.3 mm.

この大きさの範囲であれば、配置時にパッケージの位置が多少のズレても、リフローによってセルフアラインし、実装位置のズレによる問題は生じないからである。   This is because, within this size range, even if the position of the package is slightly shifted at the time of placement, self-alignment is performed by reflow, and there is no problem due to a shift in the mounting position.

上述の実施例においては、QFPを製造するために本発明を適用した場合について説明したが、QFPに限られずQFNやQFJ等の表面実装型パッケージで適用できるし、チップ中程に配置したパッドをワイヤでリードと接続するSmall Outline Non-leaded package といったワイヤ接続部分を有するパッケージ全般に適用できる。さらに、実施例においては接続部材であるワイヤを被接続部材であるインナーリードに圧着接続する部分の接続強度を向上させているが、接続部材はワイヤに限られず、被接続部材もリードに限られない。例えば、図30に示す断面概略図のように基材にポリイミドテープ43等の絶縁材を用い、はんだボールで基板実装するChip Size Package 等において、接続部材42としてのリードを半導体チップ39に圧着接続する部分であるパッド40にPdメッキを施す場合等にも適用できる。すなわち、本願発明は半導体製品において、接続部分の接続性・信頼性の向上全般に適用することができる。   In the above-described embodiments, the case where the present invention is applied to manufacture a QFP has been described. However, the present invention is not limited to the QFP, and can be applied to a surface mount package such as QFN or QFJ. It can be applied to all packages that have wire connection parts such as Small Outline Non-leaded packages that are connected to leads with wires. Further, in the embodiment, the connection strength of the portion where the wire as the connection member is crimped and connected to the inner lead as the connection member is improved, but the connection member is not limited to the wire, and the connection member is also limited to the lead. Absent. For example, as shown in the schematic cross-sectional view of FIG. 30, the lead as the connection member 42 is crimped and connected to the semiconductor chip 39 in a chip size package or the like in which an insulating material such as polyimide tape 43 is used as the base material and the substrate is mounted with solder balls. The present invention can also be applied to the case where Pd plating is applied to the pad 40 that is a portion to be applied. In other words, the present invention can be applied to the improvement of the connectivity and reliability of the connection parts in semiconductor products.

モールド後のワイヤ断線不良の発生メカニズムの図である。It is a figure of the generation | occurrence | production mechanism of the wire disconnection defect after a mold. リフロー後リード側圧着部のクラック発生メカニズムの図である。It is a figure of the crack generation mechanism of the lead side crimping part after reflow. リフロー後リード側圧着部の断線発生の図である。It is a figure of the disconnection generation | occurrence | production of the lead side crimping | compression-bonding part after reflow. Agメッキ面へのワイヤボンディングのワイヤ圧着時の拡大図である。It is an enlarged view at the time of wire crimping of wire bonding to the Ag plating surface. Agメッキ面へのワイヤボンディングのワイヤ圧着部の斜視図である。It is a perspective view of the wire crimping | compression-bonding part of the wire bonding to Ag plating surface. Agメッキのリフロー後ワイヤ断線の図である。It is a figure of the wire disconnection after reflow of Ag plating. Agメッキのレジン硬化収縮後ワイヤ断線の図である。It is a figure of the wire disconnection after resin hardening shrinkage | contraction of Ag plating. Pdメッキ面へのワイヤボンディングのワイヤ圧着時の拡大図である。It is an enlarged view at the time of wire crimping of wire bonding to a Pd plating surface. Pdメッキ面へのワイヤボンディングのワイヤ圧着部の斜視図である。It is a perspective view of the wire crimping | compression-bonding part of the wire bonding to a Pd plating surface. 本発明の一実施例であるリードフレームの平面図である。It is a top view of the lead frame which is one Example of the present invention. 本発明の一実施例であるリードフレームの拡大平面図である。1 is an enlarged plan view of a lead frame that is one embodiment of the present invention. FIG. 図11のA-B断面図である。FIG. 12 is a cross-sectional view taken along the line A-B in FIG. 11. インナーリード先端のPdメッキ詳細断面図である。It is Pd plating detailed sectional drawing of the inner lead front-end | tip. 本フレームを使用したダイボンディング工程の接着剤塗布の図である。It is a figure of adhesive application of the die bonding process using this frame. 本フレームを使用したダイボンディング工程のチップ搭載の図である。It is a figure of chip mounting of the die bonding process using this frame. 本フレームを使用したワイヤボンディング工程の図である。It is a figure of the wire bonding process using this frame. 本フレームを使用したワイヤボンディング工程のPdメッキ部拡大図である。It is a Pd plating part enlarged view of the wire bonding process using this frame. Pdメッキ面へワイヤボンディングした際のAu線圧着部の形状の図である。It is a figure of the shape of the Au wire crimping part at the time of wire bonding to the Pd plating surface. Pdメッキ面へのワイヤボンディング圧着部の斜視図である。It is a perspective view of the wire bonding crimping | compression-bonding part to a Pd plating surface. 本発明の一実施例であるリードフレームのワイヤボンディング完了後の拡大平面図である。It is an enlarged plan view after completion of wire bonding of the lead frame which is one embodiment of the present invention. 本フレームを使用した樹脂封止工程の断面図である。It is sectional drawing of the resin sealing process which uses this flame | frame. 本フレームを使用したアウターリードメッキ後の断面図である。It is sectional drawing after outer lead plating which uses this flame | frame. 本フレームを使用した曲げ加工の図である。It is a figure of the bending process which uses this frame. 本フレームを使用したリード先端揃え加工の図である。It is a figure of lead tip alignment processing using this frame. 本フレームを使用したパッケージの完成品上面図である。It is a finished product top view of a package using this frame. 本フレームを使用したパッケージの完成品のE-F断面図である。It is EF sectional drawing of the finished product of the package which uses this flame | frame. 本フレームを使用したパッケージの完成品透視図である。It is a finished product perspective view of a package using this frame. 本パッケージの基板実装図である。It is a board | substrate mounting drawing of this package. 本パッケージの基板実装後の実装基板の上面図である。It is a top view of the mounting board after board mounting of this package. 周辺パッド構造のFan-InタイプCSPの断面概略図である。FIG. 6 is a schematic cross-sectional view of a Fan-In type CSP having a peripheral pad structure.

符号の説明Explanation of symbols

1:インナーリード先端めっき 2:ダイパッド 3:吊りリード 4:インナーリード 5:アウターリード 6:ダムバー 7:リードフレーム 8:ダムバー位置 9:Au(金)フラッシュメッキ 10:Pd(パラジウム)メッキ 11:Ni(ニッケル)メッキ 12:シリンジ 13:ディスペンサ 14:ノズル 15:接着剤 16:ステージ 17:コレット 18:半導体チップ 19:Au(金)線ワイヤ 20:キャピラリ 21:最低必要領域 22:封止金型 23:樹脂注入口 24:樹脂 25:パンチ 26:ダイ 27:ヒータ 28:はんだペースト 29:フットプリント 30:配線基板 31:半導体パッケージ 32:配線 33:ゲート 34:膨張差 35:レジンの膨張 36:リードフレームの膨張 37:クラック 38:Ag(銀)メッキ 39:半導体チップ 40:パッド 41:絶縁樹脂 42:接続部材 43:テープ基材。 1: Inner lead tip plating 2: Die pad 3: Suspended lead 4: Inner lead 5: Outer lead 6: Dam bar 7: Lead frame 8: Dam bar position 9: Au (gold) flash plating 10: Pd (palladium) plating 11: Ni (Nickel) plating 12: Syringe 13: Dispenser 14: Nozzle 15: Adhesive 16: Stage 17: Collet 18: Semiconductor chip 19: Au (gold) wire 20: Capillary 21: Minimum required area 22: Sealing mold 23 : Resin injection port 24: Resin 25: Punch 26: Die 27: Heater 28: Solder paste 29: Footprint 30: Wiring substrate 31: Semiconductor package 32: Wiring 33: Gate 34: Expansion difference 35: Resin expansion 36: Lead Expansion of frame 37: Crack 38: Ag (silver) plating 39: Semiconductor chip 40: Pad 41: Insulating resin 42: Connection member 43: Tape base material

Claims (1)

導電性を有する接続部材と、
該接続部材が圧着される部分にパラジウム層が設けられた被接続部材と、
前記圧着部分を封止する樹脂と、を有する半導体集積回路装置であって、
前記接続部材の圧着部分の厚さが10μm以上であることを特徴とする半導体集積回路装置。
A conductive connecting member;
A connected member in which a palladium layer is provided in a portion to which the connecting member is crimped;
A semiconductor integrated circuit device having a resin for sealing the crimping portion,
A semiconductor integrated circuit device, wherein a thickness of a crimping portion of the connection member is 10 μm or more.
JP2006270656A 2006-10-02 2006-10-02 Semiconductor integrated circuit device Pending JP2006352175A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006270656A JP2006352175A (en) 2006-10-02 2006-10-02 Semiconductor integrated circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006270656A JP2006352175A (en) 2006-10-02 2006-10-02 Semiconductor integrated circuit device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2000046724A Division JP2001230360A (en) 2000-02-18 2000-02-18 Semiconductor integrated circuit device and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JP2006352175A true JP2006352175A (en) 2006-12-28
JP2006352175A5 JP2006352175A5 (en) 2007-03-29

Family

ID=37647599

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006270656A Pending JP2006352175A (en) 2006-10-02 2006-10-02 Semiconductor integrated circuit device

Country Status (1)

Country Link
JP (1) JP2006352175A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8319330B2 (en) 2010-07-16 2012-11-27 Renesas Electronics Corporation Semiconductor package having exterior plating films formed over surfaces of outer leads
JP2017195252A (en) * 2016-04-19 2017-10-26 富士通テン株式会社 Print wiring board

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8319330B2 (en) 2010-07-16 2012-11-27 Renesas Electronics Corporation Semiconductor package having exterior plating films formed over surfaces of outer leads
JP2017195252A (en) * 2016-04-19 2017-10-26 富士通テン株式会社 Print wiring board
US10573619B2 (en) 2016-04-19 2020-02-25 Fujitsu Ten Limited Printed wiring board

Similar Documents

Publication Publication Date Title
KR100750012B1 (en) Semiconductor integrated circuit device
US6550666B2 (en) Method for forming a flip chip on leadframe semiconductor package
US8101514B2 (en) Semiconductor device having elastic solder bump to prevent disconnection
US6828660B2 (en) Semiconductor device with double nickel-plated leadframe
US20080087996A1 (en) Semiconductor device and manufacturing method of the same
US8975757B2 (en) Lead-free solder connection structure and solder ball
JP2002299540A (en) Semiconductor device and manufacturing method therefor
US8669652B2 (en) Lead component and method for manufacturing the same, and semiconductor package
JP2007059485A (en) Semiconductor device, substrate and method of manufacturing semiconductor device
US20100167466A1 (en) Semiconductor package substrate with metal bumps
US20040183166A1 (en) Preplated leadframe without precious metal
JP2006352175A (en) Semiconductor integrated circuit device
KR20100050640A (en) Lead frame for manufacturing semiconductor package and method for plating the same
JP2001094004A (en) Semiconductor device, external connecting terminal body structure and method for producing semiconductor device
KR20070015164A (en) External palladium plating structure of semiconductor component and semiconductor device manufacturing method
JP4668729B2 (en) Manufacturing method of semiconductor device
JP2009238984A (en) Semiconductor device and its manufacturing method
JPH0558259B2 (en)

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070209

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090602

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091013