US20130075026A1 - Method for bonding plastic mold member onto metal housing - Google Patents

Method for bonding plastic mold member onto metal housing Download PDF

Info

Publication number
US20130075026A1
US20130075026A1 US13/447,280 US201213447280A US2013075026A1 US 20130075026 A1 US20130075026 A1 US 20130075026A1 US 201213447280 A US201213447280 A US 201213447280A US 2013075026 A1 US2013075026 A1 US 2013075026A1
Authority
US
United States
Prior art keywords
metal housing
bonding
member onto
plastic member
plastic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/447,280
Inventor
Yu-Chih Chang
Shih-Pu Yu
Chang-Li LIU
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ichia Technologies Inc
Original Assignee
Ichia Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ichia Technologies Inc filed Critical Ichia Technologies Inc
Assigned to ICHIA TECHNOLOGIES, INC. reassignment ICHIA TECHNOLOGIES, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CHANG, YU-CHIH, LIU, Chang-li, YU, SHIH-PU
Publication of US20130075026A1 publication Critical patent/US20130075026A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • B29C45/14311Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles using means for bonding the coating to the articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B15/00Pretreatment of the material to be shaped, not covered by groups B29B7/00 - B29B13/00
    • B29B15/08Pretreatment of the material to be shaped, not covered by groups B29B7/00 - B29B13/00 of reinforcements or fillers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • B29C45/14778Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles the article consisting of a material with particular properties, e.g. porous, brittle
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J5/00Adhesive processes in general; Adhesive processes not provided for elsewhere, e.g. relating to primers
    • C09J5/06Adhesive processes in general; Adhesive processes not provided for elsewhere, e.g. relating to primers involving heating of the applied adhesive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2705/00Use of metals, their alloys or their compounds, for preformed parts, e.g. for inserts

Definitions

  • the present invention relates to a method for fabricating a metal-plastic composite body, and more particularly, to a method for bonding plastic mold members onto a metal housing.
  • the conventional method for fabricating the above-mentioned composite article may comprise the steps of molding the metal piece and the plastic piece separately, applying an adhesive on the metal piece, and then stacking and bonding the metal piece and plastic piece together by pressing.
  • the metal housing used in 3C product is usually provided with irregular curved surfaces rather than simple plane structures, and the plastic piece may also have corresponding curved surfaces. It is very difficult for two curved surfaces to bond each other, thereby hindering the yield enhancement.
  • CFRP carbon fiber reinforced plastic
  • a method for fabricating a composite body comprised of metal alloy and thermosetting resin is disclosed in Japanese Patent Publication No. 2010-274600. Please refer to FIG. 2 , the method comprises: applying particular chemical agent on a metal alloy body 1 to form a surface with nanopores, and then forming a surface layer made of metal oxide or metal phosphides. Final, forming a plastic member 4 on the surface of metal alloy body 1 by insert injection molding process.
  • buttons are disclosed in Japanese Patent Publication No. 2007-179952.
  • the method features the following steps: bonding a metal coating of an outer key top piece and a white coating of an inner key top piece via a fusion layer.
  • a method for fabricating push-buttons is disclosed in Japanese Patent Publication No. 2009-81030.
  • the adhesive used for bonding the cover member and key top is applied in dot array between said cover member and said key top in order to facilitate the degassing process during the fabrication.
  • a metal surface treatment method is disclosed in China Patent Publication No. 1827839.
  • the method comprises: applying a primer first, coating a metal film by vacuum deposition, and then spray a transparent hard film on a metal piece for protection.
  • the purpose of said method is to fabricate the Mg alloy product with a metal texture by surface-treating a raw piece of Mg alloy via vacuum deposition process.
  • a method of fabricating metal-resin composite articles by injection molding is disclosed in Japanese Patent Publication No. 2011-11505. Please refer to FIG. 3 , the resin part 30 is molded on the rear of a metal body 20 and the surface of the metal body 20 is decorated by a decorative sheet F simultaneously with the molding of the resin part 30 .
  • a method of fabricating composite articles is disclosed in Japanese Patent Publication No. 2011-11505.
  • the method comprises: forming a decorative sheet on one surface of a metal body simultaneously with the injection of a molten resin, thereby forming a composite article comprised of the metal body and injected resin in desired mold shape.
  • a method of fabricating a resin molding equipped with transparent insert material is disclosed in Japanese Patent Publication No. 2011-73314 to provide a resin molding in which strength of a resin part is improved.
  • the method comprises: providing a metallic frame material 4 arranged on the outer periphery of the insert material 3 , and sticking an adhesive sheet 5 on the reverse side over the insert material 3 and the frame material 4 .
  • a resin part 7 is then formed around the insert material 3 and engaging with at least a part of the periphery 4 A of the frame material 4 by injection molding.
  • the main purpose of the present invention is to provide a method for bonding a plastic member onto a metal housing in order to overcome the shortcomings and disadvantages in prior art.
  • a method for bonding a plastic member onto a metal housing comprising the steps of: preparing a metal housing having an inner surface and an outer surface; subjecting the metal housing to a physical processing, thereby forming a bonding area on the inner surface; forming an adhesive layer on the bonding area; and subjecting the metal housing to a plastic injection molding, thereby bonding a plastic mold member on the adhesive layer.
  • FIG. 1 is a schematic view of a carbon fiber reinforced plastic pre-preg tightly bonded to a metal alloy disclosed in Japanese Patent Publication No. 2011-73191.
  • FIG. 2 is a schematic view of a composite comprised of metal alloy and thermosetting resin disclosed in Japanese Patent Publication No. 2010-274600.
  • FIG. 3 is a schematic view of a metal-resin composite fabricated by injection molding disclosed in Japanese Patent Publication No. 2011-11505.
  • FIG. 4 is a schematic view of a resin molding method using transparent inserting materials disclosed in Japanese Patent Publication No. 2011-73314.
  • FIG. 5 is a side view of a composite body with plastic members bonded on a metal housing exemplified in the present invention.
  • FIG. 6 is a cross-sectional view of the composite body with plastic members bonded on a metal housing in FIG. 5 taken along the line I-I′.
  • FIG. 6A is an enlarged view of the portion in circle of FIG. 6 .
  • FIG. 7 is a flowchart of the method for fabricating a composite body with plastic members bonded onto a metal housing according to one preferred embodiment of the present invention.
  • FIG. 8 is a flowchart of the method for fabricating a composite body with plastic members bonded onto a metal housing according to another preferred embodiment of the present invention.
  • FIGS. 5 , 6 and 6 A wherein FIG. 5 is a side view of a composite body with plastic members bonded on a metal housing, FIG. 6 is a cross-sectional view of the composite body with plastic members bonded on metal housing in FIG. 5 taken along the line I-I′, and FIG. 6A is an enlarged view of the portion in circle in FIG. 6 .
  • the composite body with plastic members bonded on a metal housing may be a cell phone housing or a battery cover. As shown in FIGS.
  • the composite body 1 with plastic members bonded on a metal housing of the present invention includes a metal housing 10 and a plastic mold member 12 formed on the inner surface S 1 of the metal housing 10 , wherein the plastic mold member 12 is comprised of input/output jacks 12 a, assembly structures 12 b and/or reinforcement structures 12 c.
  • the plastic mold member 12 is injection-molded on a bonding area S B in one inner surface S 1 of the metal housing 10 .
  • the bonding area S B is formed by physical processing or chemical processing before performing the inject-molding of bonding area S B .
  • the plastic mold member 12 is inject-molded on an adhesive layer 112 , thereby establishing a tight bonding with the metal housing 10 .
  • a decorating layer 101 may also be coated on an outer surface S 0 of the metal housing 10 to render various textures and appearances.
  • the above-mentioned physical processing for forming the bonding surface S B may include roughening treatment by sandblast, laser etching, plasma treatment, UV plasma treatment, or die pressing, while the chemical processing may include chemical etching and shaping.
  • FIG. 7 is a flowchart of the method for fabricating a composite body with plastic members bonded on a metal housing according to one preferred embodiment of the present invention.
  • the method for fabricating a composite body with plastic members bonded on a metal housing comprises two sub-flows S 100 and S 102 , wherein the sub-flow S 100 is the fabricating flow for the metal housing, while the sub-flow S 102 mainly comprises the steps of insert injection molding, surface finishing or treatment, and quality inspection for back-end product.
  • a feeding step and an incoming inspection for metal material are performed (step M 01 ), wherein the foregoing metal material may be stainless steel, Mg alloy, Al alloy or Mg—Al alloy.
  • step M 02 a punch-shaping to obtain the desired shape of metal housing is performed (step M 02 ), wherein the shape can be that of a cell phone housing or a battery cover. Then, a milling process (step M 03 ) and a deburring process (step M 04 ) are performed.
  • a bonding area is formed on the inner surface of metal housing (step M 05 ).
  • the bonding area may be subjected to a surface treatment by physical processing, such as sandblast.
  • physical processing such as sandblast.
  • other physical processes like laser etching, plasma treatment, UV plasma treatment or die molding, may also be utilized to obtain roughened surface.
  • the bonding area may also be formed by chemical processing, such as chemical etching and shaping.
  • a cleaning process (step M 06 ) and a process for coating adhesive (step M 07 ) are performed.
  • the adhesive coating or adhesive bonding primers can be formed on the surface-treated bonding area by a spraying, a dispensing or a printing method to form an adhesive layer on said bonding area.
  • a baking process is finally performed (step M 08 ). This way the sub-flow S 100 is completed.
  • the metal housing treated by the sub-flow S 100 is ready to undergo the following steps of insert injection molding (i.e. sub-flow S 102 ).
  • a feeding step and an inspection step for a plastic material are performed (step P 01 ), wherein the plastic material may be polycarbonate (PC) resin, acrylonitrile butadiene styrene (ABS) resin or polyphenylene sulfide (PPS) resin, etc.
  • a drying process (step P 02 ) is performed followed by an insert injection molding process to injection-mold the plastic material or plastics on the metal housing treated by sub-flow S 100 (step P 03 ).
  • the plastic is injection-molded directly on the adhesive layer in the bonding area of the metal housing.
  • the metal housing can be a cell phone housing or a battery cover
  • the injection-molded plastic mold members may be input/output jacks, assembly structures and/or reinforcement structures. Since the insert injection molding is a well-known process, the relevant details are omitted herein for simplicity.
  • perform a deburring process (step P 04 ) and a surface finish step may be optionally carried out (step P 05 ), such as sandblast, hair-line surface treatment, physical vapor deposition (PVD) process, anodic treatment or spray treatment, etc.
  • PVD treatment further includes a Ni-plating process which may provide the special effect of rendering concealed characters on the surface of housing.
  • a decorating layer may be formed on the outer surface of the metal housing by printing, coating, or anodized aluminum treatment to render various colors, patterns and texture designs.
  • FIG. 8 is a flowchart of the method for fabricating the composite body with plastic members bonded to metal housing according to another preferred embodiment of the present invention.
  • the method for fabricating a composite body with plastic members bonded to a metal housing comprises also two sub-flows S 200 and S 202 , wherein the sub-flow S 200 is a fabricating flow for the metal housing, while sub-flow S 202 mainly comprises the steps of insert injection molding, surface treatment and quality inspection for the back-end product.
  • the sub-flow S 202 will be described hereinafter.
  • the bonding area may be subjected to a surface roughening treatment by physical processing, such as sandblast. Other physical processes, for example, laser etching, plasma treatment, UV plasma treatment or die molding, may also be utilized to obtain the roughened surface.
  • the bonding area may also be formed by a chemical processing, such as chemical etching and shaping.
  • step M 13 perform a punch-shaping to obtain desired shape for the metal housing (step M 13 ), such as a cell phone housing or a battery cover shape. Then, perform a milling process (step M 14 ) and a deburring process (step M 15 ). Then, perform a cleaning process (step M 16 ).
  • a surface finish step is then performed (step M 17 ), such as sandblast, hair-line surface treatment, PVD process, anodic treatment or spray treatment, etc.
  • the foregoing PVD treatment further includes a Ni-plating process which may provide a special effect of rendering the concealed characters on the surface of housing.
  • a decorating layer may be formed on the outer surface of the metal housing by printing, coating, or anodized aluminum treatment to render various colors, patterns and texture designs.
  • a process for coating adhesive step M 18
  • step M 19 for example, coating the adhesive or adhesive bonding primers on the surface-treated bonding area by a spraying, a dispensing or a printing method to form an adhesive layer on said bonding area.
  • a baking process step M 19
  • the metal housing treated by the sub-flow S 200 is ready to undergo the following insert injection molding (i.e. sub-flow S 202 ).
  • the sub-flow S 202 will be described hereinafter.
  • the plastic material may be polycarbonate (PC) resin, acrylonitrile butadiene styrene (ABS) resin or polyphenylene sulfide (PPS) resin, etc.
  • a drying process step P 12
  • an insert injection molding process step P 13
  • the plastic is inject-molded directly on the adhesive layer in the bonding area of the metal housing.
  • the metal housing maybe a cell phone housing or a battery cover
  • the injection-molded plastic mold members may be input/output jacks, assembly structures and/or reinforcement structures. Since the insert injection molding is a well-known process, the relevant details are omitted herein for simplicity.
  • perform a deburring process step P 14
  • perform a shaping step step P 15
  • a back-end quality control step step P 16

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

A method for bonding a plastic member onto a metal housing is provided. A metal housing having an inner surface and an outer surface is prepared. The inner surface of the metal housing is subjected to physical processing to thereby form a bonding area. An adhesive layer is formed on the bonding area. A plastic mold member is formed on the adhesive layer by plastic injection molding.

Description

    BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • The present invention relates to a method for fabricating a metal-plastic composite body, and more particularly, to a method for bonding plastic mold members onto a metal housing.
  • 2. Description of the Prior Art
  • In recent years, metal housings with lightweight and high rigidity properties have become more and more necessary since the portable electronic products are developed to be more and lighter, shorter and smaller. In order to follow such requirements, the technology of composite material that combines metal housing with plastic mold members has become a main focus in the industry. The conventional method for fabricating the above-mentioned composite article may comprise the steps of molding the metal piece and the plastic piece separately, applying an adhesive on the metal piece, and then stacking and bonding the metal piece and plastic piece together by pressing. However, the metal housing used in 3C product is usually provided with irregular curved surfaces rather than simple plane structures, and the plastic piece may also have corresponding curved surfaces. It is very difficult for two curved surfaces to bond each other, thereby hindering the yield enhancement.
  • In relevant prior art, a method for tightly bonding carbon fiber reinforced plastic (CFRP) pre-preg with a metal alloy is disclosed in Japanese Patent Publication No. 2011-73191. Please refer to FIG. 1, the method comprises: roughening predetermined surfaces of CFRP pre-preg 12 and metal alloy 11 first, and applying respectively a one-pack type epoxy adhesive on the roughened surface. Then, the both surfaces covered with the epoxy adhesive are contacted, cured and bonded with each other, wherein a particular chemical agent is necessary for the roughening of the predetermined surface of metal alloy 11 in order to form a surface with nanopores.
  • A method for fabricating a composite body comprised of metal alloy and thermosetting resin is disclosed in Japanese Patent Publication No. 2010-274600. Please refer to FIG. 2, the method comprises: applying particular chemical agent on a metal alloy body 1 to form a surface with nanopores, and then forming a surface layer made of metal oxide or metal phosphides. Final, forming a plastic member 4 on the surface of metal alloy body 1 by insert injection molding process.
  • A method of fabricating buttons is disclosed in Japanese Patent Publication No. 2007-179952. The method features the following steps: bonding a metal coating of an outer key top piece and a white coating of an inner key top piece via a fusion layer.
  • A method for fabricating push-buttons is disclosed in Japanese Patent Publication No. 2009-81030. In this method, the adhesive used for bonding the cover member and key top is applied in dot array between said cover member and said key top in order to facilitate the degassing process during the fabrication.
  • A metal surface treatment method is disclosed in China Patent Publication No. 1827839. The method comprises: applying a primer first, coating a metal film by vacuum deposition, and then spray a transparent hard film on a metal piece for protection. The purpose of said method is to fabricate the Mg alloy product with a metal texture by surface-treating a raw piece of Mg alloy via vacuum deposition process.
  • A method of fabricating metal-resin composite articles by injection molding is disclosed in Japanese Patent Publication No. 2011-11505. Please refer to FIG. 3, the resin part 30 is molded on the rear of a metal body 20 and the surface of the metal body 20 is decorated by a decorative sheet F simultaneously with the molding of the resin part 30.
  • A method of fabricating composite articles is disclosed in Japanese Patent Publication No. 2011-11505. The method comprises: forming a decorative sheet on one surface of a metal body simultaneously with the injection of a molten resin, thereby forming a composite article comprised of the metal body and injected resin in desired mold shape.
  • Please refer to FIG. 4, a method of fabricating a resin molding equipped with transparent insert material is disclosed in Japanese Patent Publication No. 2011-73314 to provide a resin molding in which strength of a resin part is improved. The method comprises: providing a metallic frame material 4 arranged on the outer periphery of the insert material 3, and sticking an adhesive sheet 5 on the reverse side over the insert material 3 and the frame material 4. A resin part 7 is then formed around the insert material 3 and engaging with at least a part of the periphery 4A of the frame material 4 by injection molding.
  • SUMMARY OF THE INVENTION
  • The main purpose of the present invention is to provide a method for bonding a plastic member onto a metal housing in order to overcome the shortcomings and disadvantages in prior art.
  • According to one preferred embodiment of the present invention, a method for bonding a plastic member onto a metal housing is provided, comprising the steps of: preparing a metal housing having an inner surface and an outer surface; subjecting the metal housing to a physical processing, thereby forming a bonding area on the inner surface; forming an adhesive layer on the bonding area; and subjecting the metal housing to a plastic injection molding, thereby bonding a plastic mold member on the adhesive layer.
  • These and other objectives of the present invention will no doubt become obvious to those of ordinary skill in the art after reading the following detailed description of the preferred embodiment that is illustrated in the various figures and drawings.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The accompanying drawings are included to provide a further understanding of the embodiments, and are incorporated in and constitute a part of this specification. The drawings illustrate some of the embodiments and, together with the description, serve to explain their principles. In the drawings:
  • FIG. 1 is a schematic view of a carbon fiber reinforced plastic pre-preg tightly bonded to a metal alloy disclosed in Japanese Patent Publication No. 2011-73191.
  • FIG. 2 is a schematic view of a composite comprised of metal alloy and thermosetting resin disclosed in Japanese Patent Publication No. 2010-274600.
  • FIG. 3 is a schematic view of a metal-resin composite fabricated by injection molding disclosed in Japanese Patent Publication No. 2011-11505.
  • FIG. 4 is a schematic view of a resin molding method using transparent inserting materials disclosed in Japanese Patent Publication No. 2011-73314.
  • FIG. 5 is a side view of a composite body with plastic members bonded on a metal housing exemplified in the present invention.
  • FIG. 6 is a cross-sectional view of the composite body with plastic members bonded on a metal housing in FIG. 5 taken along the line I-I′.
  • FIG. 6A is an enlarged view of the portion in circle of FIG. 6.
  • FIG. 7 is a flowchart of the method for fabricating a composite body with plastic members bonded onto a metal housing according to one preferred embodiment of the present invention.
  • FIG. 8 is a flowchart of the method for fabricating a composite body with plastic members bonded onto a metal housing according to another preferred embodiment of the present invention.
  • It should be noted that all the figures are diagrammatic. Relative dimensions and proportions of parts of the drawings have been shown exaggerated or reduced in size, for the sake of clarity and convenience in the drawings. The same reference signs are generally used to refer to corresponding or similar features in modified and different embodiments.
  • DETAILED DESCRIPTION
  • In the following detailed description of the invention, reference is made to the accompanying drawings which form a part hereof, and in which is shown, by way of illustration, specific embodiments in which the invention may be practiced. These embodiments are described in sufficient detail to enable those skilled in the art to practice the invention. Other embodiments may be utilized and structural, logical, and electrical changes may be made without departing from the scope of the present invention.
  • Please refer to FIGS. 5, 6 and 6A, wherein FIG. 5 is a side view of a composite body with plastic members bonded on a metal housing, FIG. 6 is a cross-sectional view of the composite body with plastic members bonded on metal housing in FIG. 5 taken along the line I-I′, and FIG. 6A is an enlarged view of the portion in circle in FIG. 6. The composite body with plastic members bonded on a metal housing may be a cell phone housing or a battery cover. As shown in FIGS. 5 and 6, the composite body 1 with plastic members bonded on a metal housing of the present invention includes a metal housing 10 and a plastic mold member 12 formed on the inner surface S1 of the metal housing 10, wherein the plastic mold member 12 is comprised of input/output jacks 12 a, assembly structures 12 b and/or reinforcement structures 12 c.
  • The plastic mold member 12 is injection-molded on a bonding area SB in one inner surface S1 of the metal housing 10. To be more specific, the bonding area SB is formed by physical processing or chemical processing before performing the inject-molding of bonding area SB. The plastic mold member 12 is inject-molded on an adhesive layer 112, thereby establishing a tight bonding with the metal housing 10. A decorating layer 101 may also be coated on an outer surface S0 of the metal housing 10 to render various textures and appearances.
  • The above-mentioned physical processing for forming the bonding surface SB may include roughening treatment by sandblast, laser etching, plasma treatment, UV plasma treatment, or die pressing, while the chemical processing may include chemical etching and shaping.
  • Please refer to FIG. 7, which is a flowchart of the method for fabricating a composite body with plastic members bonded on a metal housing according to one preferred embodiment of the present invention. As shown in FIG. 7, the method for fabricating a composite body with plastic members bonded on a metal housing comprises two sub-flows S100 and S102, wherein the sub-flow S100 is the fabricating flow for the metal housing, while the sub-flow S102 mainly comprises the steps of insert injection molding, surface finishing or treatment, and quality inspection for back-end product. First, a feeding step and an incoming inspection for metal material are performed (step M01), wherein the foregoing metal material may be stainless steel, Mg alloy, Al alloy or Mg—Al alloy. Then, a punch-shaping to obtain the desired shape of metal housing is performed (step M02), wherein the shape can be that of a cell phone housing or a battery cover. Then, a milling process (step M03) and a deburring process (step M04) are performed.
  • After the deburring process, a bonding area is formed on the inner surface of metal housing (step M05). According to one preferred embodiment of the present invention, the bonding area may be subjected to a surface treatment by physical processing, such as sandblast. Of course, other physical processes, like laser etching, plasma treatment, UV plasma treatment or die molding, may also be utilized to obtain roughened surface. Alternatively, the bonding area may also be formed by chemical processing, such as chemical etching and shaping. Then, a cleaning process (step M06) and a process for coating adhesive (step M07) are performed. The adhesive coating or adhesive bonding primers can be formed on the surface-treated bonding area by a spraying, a dispensing or a printing method to form an adhesive layer on said bonding area. A baking process is finally performed (step M08). This way the sub-flow S100 is completed. The metal housing treated by the sub-flow S100 is ready to undergo the following steps of insert injection molding (i.e. sub-flow S102).
  • The sub-flow S102 will be described hereinafter. First, a feeding step and an inspection step for a plastic material are performed (step P01), wherein the plastic material may be polycarbonate (PC) resin, acrylonitrile butadiene styrene (ABS) resin or polyphenylene sulfide (PPS) resin, etc. A drying process (step P02) is performed followed by an insert injection molding process to injection-mold the plastic material or plastics on the metal housing treated by sub-flow S100 (step P03). To be more specific, the plastic is injection-molded directly on the adhesive layer in the bonding area of the metal housing. For example, the metal housing can be a cell phone housing or a battery cover, while the injection-molded plastic mold members may be input/output jacks, assembly structures and/or reinforcement structures. Since the insert injection molding is a well-known process, the relevant details are omitted herein for simplicity. Then, perform a deburring process (step P04) and a surface finish step may be optionally carried out (step P05), such as sandblast, hair-line surface treatment, physical vapor deposition (PVD) process, anodic treatment or spray treatment, etc. Please note that the foregoing PVD treatment further includes a Ni-plating process which may provide the special effect of rendering concealed characters on the surface of housing. In addition, a decorating layer may be formed on the outer surface of the metal housing by printing, coating, or anodized aluminum treatment to render various colors, patterns and texture designs. Finally, perform a shaping step (step P06) and a back-end quality control step (step P07), thereby completing the sub-flow S102.
  • Please refer to FIG. 8, which is a flowchart of the method for fabricating the composite body with plastic members bonded to metal housing according to another preferred embodiment of the present invention. As shown in FIG. 8, the method for fabricating a composite body with plastic members bonded to a metal housing comprises also two sub-flows S200 and S202, wherein the sub-flow S200 is a fabricating flow for the metal housing, while sub-flow S202 mainly comprises the steps of insert injection molding, surface treatment and quality inspection for the back-end product. The sub-flow S202 will be described hereinafter. First, perform a feeding step and an incoming inspection for the metal material (step M11), wherein the metal material may be stainless steel, Mg alloy, Al alloy or Mg—Al alloy, etc. Then, form a bonding area on the inner surface of the metal housing (step M12). According to one preferred embodiment of the present invention, the bonding area may be subjected to a surface roughening treatment by physical processing, such as sandblast. Other physical processes, for example, laser etching, plasma treatment, UV plasma treatment or die molding, may also be utilized to obtain the roughened surface. The bonding area may also be formed by a chemical processing, such as chemical etching and shaping. Then, perform a punch-shaping to obtain desired shape for the metal housing (step M13), such as a cell phone housing or a battery cover shape. Then, perform a milling process (step M14) and a deburring process (step M15). Then, perform a cleaning process (step M16).
  • After the cleaning process, a surface finish step is then performed (step M17), such as sandblast, hair-line surface treatment, PVD process, anodic treatment or spray treatment, etc. Please note that the foregoing PVD treatment further includes a Ni-plating process which may provide a special effect of rendering the concealed characters on the surface of housing. In addition, a decorating layer may be formed on the outer surface of the metal housing by printing, coating, or anodized aluminum treatment to render various colors, patterns and texture designs. Then, perform a process for coating adhesive (step M18), for example, coating the adhesive or adhesive bonding primers on the surface-treated bonding area by a spraying, a dispensing or a printing method to form an adhesive layer on said bonding area. Then, perform a baking process (step M19), thereby completing the sub-flow S200. The metal housing treated by the sub-flow S200 is ready to undergo the following insert injection molding (i.e. sub-flow S202).
  • The sub-flow S202 will be described hereinafter. First, perform a feeding step and an inspection step for a plastic material (step P11), wherein the plastic material may be polycarbonate (PC) resin, acrylonitrile butadiene styrene (ABS) resin or polyphenylene sulfide (PPS) resin, etc. Perform a drying process (step P12) and an insert injection molding process (step P13) to inject-mold the plastic material or plastics on the metal housing previously treated by sub-flow S200. To be more specific, the plastic is inject-molded directly on the adhesive layer in the bonding area of the metal housing. For example, the metal housing maybe a cell phone housing or a battery cover, while the injection-molded plastic mold members may be input/output jacks, assembly structures and/or reinforcement structures. Since the insert injection molding is a well-known process, the relevant details are omitted herein for simplicity. Then, perform a deburring process (step P14). Finally, perform a shaping step (step P15) and a back-end quality control step (step P16), thereby completing the sub-flow S202.
  • Those skilled in the art will readily observe that numerous modifications and alterations of the device and method may be made while retaining the teachings of the invention. Accordingly, the above disclosure should be construed as limited only by the metes and bounds of the appended claims.

Claims (18)

What is claimed is:
1. A method for bonding a plastic member onto a metal housing, comprising the steps of:
preparing a metal housing having an inner surface and an outer surface;
subjecting the metal housing to a physical processing, thereby forming a bonding area at the inner surface;
forming an adhesive layer on the bonding area; and
subjecting the metal housing to a plastic injection molding thereby bonding a plastic mold member on the adhesive layer.
2. The method for bonding a plastic member onto a metal housing according to claim 1, wherein the physical processing comprises a roughening treatment by sandblast, laser etching, plasma treatment, UV Plasma treatment, or die pressing.
3. The method for bonding a plastic member onto a metal housing according to claim 1, wherein the adhesive layer is formed by spraying, dispensing, or printing method.
4. The method for bonding a plastic member onto a metal housing according to claim 1, wherein the adhesive layer comprises an adhesive.
5. The method for bonding a plastic member onto a metal housing according to claim 1, wherein the adhesive layer comprises an adhesive bonding primer.
6. The method for bonding a plastic member onto a metal housing according to claim 1, wherein after forming said adhesive layer on the bonding area, performing a baking process.
7. The method for bonding a plastic member onto a metal housing according to claim 1, further comprising a surface finishing step or a surface treatment step.
8. The method for bonding a plastic member onto a metal housing according to claim 1, further comprising:
forming a decorating layer on the outer surface of the metal housing.
9. The method for bonding a plastic member onto a metal housing according to claim 8, wherein the decorating layer is formed by printing, coating or anodized aluminum treatment, thereby rendering colors, patterns or decorative design on the outer surface of the metal housing.
10. A method for bonding a plastic member onto a metal housing, comprising the steps of:
preparing a metal housing having an inner surface and an outer surface;
subjecting the metal housing to a chemical processing, thereby forming a bonding area at the inner surface;
forming an adhesive layer on the bonding area; and
subjecting the metal housing to a plastic injection molding thereby bonding a plastic mold member on the adhesive layer.
11. The method for bonding a plastic member onto a metal housing according to claim 10, wherein the chemical processing comprises chemical etching and shaping.
12. The method for bonding a plastic member onto a metal housing according to claim 10, wherein adhesive layer is formed by a spraying, a dispensing, or a printing method.
13. The method for bonding a plastic member onto a metal housing according to claim 10, wherein the adhesive layer comprises an adhesive.
14. The method for bonding a plastic member onto a metal housing according to claim 10, wherein the adhesive layer comprises an adhesive bonding primer.
15. The method for bonding a plastic member onto a metal housing according to claim 10, wherein a baking process is performed after forming an adhesive layer on the bonding area.
16. The method for bonding a plastic member onto a metal housing according to claim 10, further comprising a surface finish or a surface treatment.
17. The method for bonding a plastic member onto a metal housing according to claim 10, further comprising:
forming a decorating layer on the outer surface of the metal housing.
18. The method for bonding a plastic member onto a metal housing according to claim 17, wherein the decorating layer is formed by printing, coating or anodized aluminum treatment, thereby rendering colors, patterns or decorative design on the outer surface of the metal housing.
US13/447,280 2011-09-27 2012-04-15 Method for bonding plastic mold member onto metal housing Abandoned US20130075026A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW100134781A TW201313454A (en) 2011-09-27 2011-09-27 Method for bonding plastic mold member onto metal housing
TW100134781 2011-09-27

Publications (1)

Publication Number Publication Date
US20130075026A1 true US20130075026A1 (en) 2013-03-28

Family

ID=47909935

Family Applications (1)

Application Number Title Priority Date Filing Date
US13/447,280 Abandoned US20130075026A1 (en) 2011-09-27 2012-04-15 Method for bonding plastic mold member onto metal housing

Country Status (5)

Country Link
US (1) US20130075026A1 (en)
JP (1) JP2013071452A (en)
KR (1) KR20130033927A (en)
CA (1) CA2763279A1 (en)
TW (1) TW201313454A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015171180A1 (en) * 2014-05-05 2015-11-12 Apple Inc. Methods for forming defect-free anodized parts
US20160213229A1 (en) * 2015-01-26 2016-07-28 Fujifilm Corporation Endoscope
CN105856492A (en) * 2016-05-03 2016-08-17 嘉瑞科技(惠州)有限公司 Process for attaching plastic film layer on metal surface layer
WO2017078697A1 (en) * 2015-11-04 2017-05-11 Hewlett-Packard Development Company, L.P. Forming metal composites
JP2017094708A (en) * 2015-11-13 2017-06-01 三菱エンジニアリングプラスチックス株式会社 Resin metal composite and method for producing the same
US9782961B2 (en) 2014-05-27 2017-10-10 The Boeing Company Methods for bonding metal and thermoplastic components
US10243244B2 (en) 2015-11-04 2019-03-26 Johnson Controls Technology Company Systems and methods for bonding metal parts to the polymer packaging of a battery module
US10486391B2 (en) * 2016-12-26 2019-11-26 Honda Motor Co., Ltd. Bonded structure and method for manufacturing the same
CN112775254A (en) * 2021-01-21 2021-05-11 滁州市汇能鑫新能源科技有限公司 Stamping process based on lithium battery cap
CN113021785A (en) * 2021-03-09 2021-06-25 深圳市汇海达精密组件有限公司 Plastic mobile phone shell machining die and machining method thereof

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201313484A (en) * 2011-09-27 2013-04-01 Ichia Tech Inc Metal housing with plastic member of composite parts
JP6181186B2 (en) * 2013-08-15 2017-08-16 旭化成株式会社 Bonded body and bonding method
KR101950899B1 (en) * 2014-04-04 2019-05-10 알프스 알파인 가부시키가이샤 Method for manufacturing electronic component
US9764383B2 (en) * 2014-10-02 2017-09-19 Continental Automotive Systems, Inc. Laser trimming surface cleaning for adhesion to cast metals
CN105530783B (en) * 2014-12-26 2016-10-12 比亚迪股份有限公司 A kind of communication apparatus metal shell and preparation method thereof
TWI645954B (en) * 2015-09-04 2019-01-01 林暄智 Metal member with bonding structure manufacturing method
KR20230152200A (en) 2022-04-26 2023-11-03 (주)남광포리마 Flame retardant engineering plastic joining product and making method of it

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3052589A (en) * 1958-09-16 1962-09-04 W J Ruscoe Company Method of making a plastic covered sheet and products made therefrom
US20020127370A1 (en) * 2000-03-10 2002-09-12 Shaun Ruck Injection moulding
US20020150776A1 (en) * 1999-02-04 2002-10-17 Yasushi Imai Composite structure and production method thereof
US20050269740A1 (en) * 2002-10-01 2005-12-08 Guns Johannes J Process for making a plastic moulded article with a metallized surface
US20060127684A1 (en) * 2002-11-08 2006-06-15 Masanori Naritomi Composite article of aluminum alloy with resin and method for production thereof
US20100239111A1 (en) * 2007-11-09 2010-09-23 Phonak Ag Hearing instrument housing made of a polymer metal composite
US20120061879A1 (en) * 2010-09-15 2012-03-15 Quanta Computer Inc. Manufacturing method of housing of electronic device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007015337A (en) * 2005-07-11 2007-01-25 Sharp Corp Casing, electronic device and composite molding process
EP1749736A1 (en) * 2005-08-03 2007-02-07 Campagnolo S.R.L. Bicycle component of composite material with inserts and relative manufacturing process

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3052589A (en) * 1958-09-16 1962-09-04 W J Ruscoe Company Method of making a plastic covered sheet and products made therefrom
US20020150776A1 (en) * 1999-02-04 2002-10-17 Yasushi Imai Composite structure and production method thereof
US20020127370A1 (en) * 2000-03-10 2002-09-12 Shaun Ruck Injection moulding
US20050269740A1 (en) * 2002-10-01 2005-12-08 Guns Johannes J Process for making a plastic moulded article with a metallized surface
US20060127684A1 (en) * 2002-11-08 2006-06-15 Masanori Naritomi Composite article of aluminum alloy with resin and method for production thereof
US20100239111A1 (en) * 2007-11-09 2010-09-23 Phonak Ag Hearing instrument housing made of a polymer metal composite
US20120061879A1 (en) * 2010-09-15 2012-03-15 Quanta Computer Inc. Manufacturing method of housing of electronic device

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015171180A1 (en) * 2014-05-05 2015-11-12 Apple Inc. Methods for forming defect-free anodized parts
US9279189B2 (en) 2014-05-05 2016-03-08 Apple Inc. Methods for forming defect-free anodized parts
US10406797B2 (en) 2014-05-27 2019-09-10 The Boeing Company Bonded metal and thermoplastic components
US9782961B2 (en) 2014-05-27 2017-10-10 The Boeing Company Methods for bonding metal and thermoplastic components
US20160213229A1 (en) * 2015-01-26 2016-07-28 Fujifilm Corporation Endoscope
WO2017078697A1 (en) * 2015-11-04 2017-05-11 Hewlett-Packard Development Company, L.P. Forming metal composites
CN108349215A (en) * 2015-11-04 2018-07-31 惠普发展公司,有限责任合伙企业 Form metallic composite
US10243244B2 (en) 2015-11-04 2019-03-26 Johnson Controls Technology Company Systems and methods for bonding metal parts to the polymer packaging of a battery module
US11090909B2 (en) 2015-11-04 2021-08-17 Hewlett-Packard Development Company, L.P. Forming metal composites
JP2017094708A (en) * 2015-11-13 2017-06-01 三菱エンジニアリングプラスチックス株式会社 Resin metal composite and method for producing the same
JP2020078945A (en) * 2015-11-13 2020-05-28 三菱エンジニアリングプラスチックス株式会社 Resin-metal composite and method for producing the same
CN105856492A (en) * 2016-05-03 2016-08-17 嘉瑞科技(惠州)有限公司 Process for attaching plastic film layer on metal surface layer
US10486391B2 (en) * 2016-12-26 2019-11-26 Honda Motor Co., Ltd. Bonded structure and method for manufacturing the same
CN112775254A (en) * 2021-01-21 2021-05-11 滁州市汇能鑫新能源科技有限公司 Stamping process based on lithium battery cap
CN113021785A (en) * 2021-03-09 2021-06-25 深圳市汇海达精密组件有限公司 Plastic mobile phone shell machining die and machining method thereof

Also Published As

Publication number Publication date
TW201313454A (en) 2013-04-01
CA2763279A1 (en) 2013-03-27
KR20130033927A (en) 2013-04-04
JP2013071452A (en) 2013-04-22

Similar Documents

Publication Publication Date Title
US20130075026A1 (en) Method for bonding plastic mold member onto metal housing
US20130075941A1 (en) Method for bonding plastic mold member onto metal housing
US20100297407A1 (en) Plastic housing and manufacturing method thereof
US20110003102A1 (en) Method for making housing and housing thereof
CN106378880A (en) Manufacturing method for mold internal decoration molding of vehicle-mounted center control integrated plastic curved surface panel
CN103072236A (en) Method for securing plastic mechanism on metal shell
JP2011018875A (en) Method for making housing having metallic appearance and housing made by the method
US20060255492A1 (en) In-mold decoration process
US20060244171A1 (en) In-Mold Decoration process
CN110181755B (en) Manufacturing method of imitation glass of rear cover of 3D-effect mobile phone
TW201103740A (en) Method of making composite workpiece with patterned appearance
CN103079367A (en) Composite component with metal shell provided with plastic mechanism
CN112045933A (en) Glass-like composite material and manufacturing process thereof
JP3174641U (en) Composite parts with metal case with plastic parts
CN102431119A (en) Forming decoration technology
US20100182699A1 (en) injection molding plastic sheet with 3d texture and its manufacturing process
KR102547363B1 (en) Non-substrate double pattern film and its manufacturing method
JP5808661B2 (en) Method for forming glitter film and method for producing glitter resin molded product
TWI268843B (en) Method of producing hard coating applied to in-mold decoration injection molding
JP2013071451A (en) Composite parts formed of metal case having plastic member
US20100279075A1 (en) Method for manufacturing patterned microstructure and case
TWI252150B (en) In mold decoration fabrication of injection molding
CN111283959A (en) Method for manufacturing real material product with composite layer by liquid phase reaction curing process
TWI426019B (en) Method for manufacturing fiber reinforced shell
KR102677139B1 (en) Method for surface treatment of glass fiber reinforced plastic

Legal Events

Date Code Title Description
AS Assignment

Owner name: ICHIA TECHNOLOGIES, INC., TAIWAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:CHANG, YU-CHIH;YU, SHIH-PU;LIU, CHANG-LI;REEL/FRAME:028048/0098

Effective date: 20120410

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION