US20130071622A1 - Laminates with structured layers - Google Patents
Laminates with structured layers Download PDFInfo
- Publication number
- US20130071622A1 US20130071622A1 US13/665,989 US201213665989A US2013071622A1 US 20130071622 A1 US20130071622 A1 US 20130071622A1 US 201213665989 A US201213665989 A US 201213665989A US 2013071622 A1 US2013071622 A1 US 2013071622A1
- Authority
- US
- United States
- Prior art keywords
- structured
- adhesive
- layer
- major surface
- adhesive layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000000853 adhesive Substances 0.000 claims description 162
- 230000001070 adhesive effect Effects 0.000 claims description 162
- 239000012790 adhesive layer Substances 0.000 claims description 157
- 239000010410 layer Substances 0.000 claims description 129
- 238000000034 method Methods 0.000 claims description 62
- 239000000126 substance Substances 0.000 claims description 30
- 238000000576 coating method Methods 0.000 claims description 12
- 239000011248 coating agent Substances 0.000 claims description 11
- 238000011049 filling Methods 0.000 claims description 10
- 238000010030 laminating Methods 0.000 claims description 8
- 238000005266 casting Methods 0.000 claims description 3
- 238000010276 construction Methods 0.000 description 92
- 239000000463 material Substances 0.000 description 20
- 238000000465 moulding Methods 0.000 description 20
- -1 poly(olefins) Polymers 0.000 description 20
- 239000004820 Pressure-sensitive adhesive Substances 0.000 description 19
- 239000007788 liquid Substances 0.000 description 19
- 238000003475 lamination Methods 0.000 description 14
- 239000011800 void material Substances 0.000 description 14
- 239000000203 mixture Substances 0.000 description 13
- 239000012530 fluid Substances 0.000 description 12
- 239000000523 sample Substances 0.000 description 12
- 239000010408 film Substances 0.000 description 10
- 239000011521 glass Substances 0.000 description 10
- 229920001684 low density polyethylene Polymers 0.000 description 10
- 239000004702 low-density polyethylene Substances 0.000 description 10
- 229920001296 polysiloxane Polymers 0.000 description 10
- 239000000758 substrate Substances 0.000 description 10
- 238000012876 topography Methods 0.000 description 9
- 239000011159 matrix material Substances 0.000 description 8
- 229920000139 polyethylene terephthalate Polymers 0.000 description 8
- 238000004458 analytical method Methods 0.000 description 7
- 238000011068 loading method Methods 0.000 description 7
- 239000007787 solid Substances 0.000 description 7
- 229920000728 polyester Polymers 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- 239000006260 foam Substances 0.000 description 5
- 239000007789 gas Substances 0.000 description 5
- 230000001965 increasing effect Effects 0.000 description 5
- 238000000386 microscopy Methods 0.000 description 5
- 239000005020 polyethylene terephthalate Substances 0.000 description 5
- 230000005855 radiation Effects 0.000 description 5
- 238000004626 scanning electron microscopy Methods 0.000 description 5
- 239000004698 Polyethylene Substances 0.000 description 4
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 239000013068 control sample Substances 0.000 description 4
- 238000009826 distribution Methods 0.000 description 4
- 229920000573 polyethylene Polymers 0.000 description 4
- 238000007789 sealing Methods 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- 229920006397 acrylic thermoplastic Polymers 0.000 description 3
- 238000007598 dipping method Methods 0.000 description 3
- 239000012528 membrane Substances 0.000 description 3
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 238000001878 scanning electron micrograph Methods 0.000 description 3
- ISXSCDLOGDJUNJ-UHFFFAOYSA-N tert-butyl prop-2-enoate Chemical compound CC(C)(C)OC(=O)C=C ISXSCDLOGDJUNJ-UHFFFAOYSA-N 0.000 description 3
- 238000010998 test method Methods 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- 238000013022 venting Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 2
- 239000004971 Cross linker Substances 0.000 description 2
- 229920002633 Kraton (polymer) Polymers 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- 229920000297 Rayon Polymers 0.000 description 2
- 239000002390 adhesive tape Substances 0.000 description 2
- 125000005250 alkyl acrylate group Chemical group 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 229920001400 block copolymer Polymers 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 239000010432 diamond Substances 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 239000000839 emulsion Substances 0.000 description 2
- 239000005038 ethylene vinyl acetate Substances 0.000 description 2
- 239000004744 fabric Substances 0.000 description 2
- 239000000945 filler Substances 0.000 description 2
- 235000002864 food coloring agent Nutrition 0.000 description 2
- 238000009472 formulation Methods 0.000 description 2
- 238000007429 general method Methods 0.000 description 2
- 238000005305 interferometry Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 239000004745 nonwoven fabric Substances 0.000 description 2
- 229920001778 nylon Polymers 0.000 description 2
- KJFMBFZCATUALV-UHFFFAOYSA-N phenolphthalein Chemical compound C1=CC(O)=CC=C1C1(C=2C=CC(O)=CC=2)C2=CC=CC=C2C(=O)O1 KJFMBFZCATUALV-UHFFFAOYSA-N 0.000 description 2
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 239000002964 rayon Substances 0.000 description 2
- 230000003014 reinforcing effect Effects 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- 230000003746 surface roughness Effects 0.000 description 2
- 239000002759 woven fabric Substances 0.000 description 2
- PSGCQDPCAWOCSH-UHFFFAOYSA-N (4,7,7-trimethyl-3-bicyclo[2.2.1]heptanyl) prop-2-enoate Chemical compound C1CC2(C)C(OC(=O)C=C)CC1C2(C)C PSGCQDPCAWOCSH-UHFFFAOYSA-N 0.000 description 1
- JWYVGKFDLWWQJX-UHFFFAOYSA-N 1-ethenylazepan-2-one Chemical compound C=CN1CCCCCC1=O JWYVGKFDLWWQJX-UHFFFAOYSA-N 0.000 description 1
- JAHNSTQSQJOJLO-UHFFFAOYSA-N 2-(3-fluorophenyl)-1h-imidazole Chemical compound FC1=CC=CC(C=2NC=CN=2)=C1 JAHNSTQSQJOJLO-UHFFFAOYSA-N 0.000 description 1
- GOXQRTZXKQZDDN-UHFFFAOYSA-N 2-Ethylhexyl acrylate Chemical compound CCCCC(CC)COC(=O)C=C GOXQRTZXKQZDDN-UHFFFAOYSA-N 0.000 description 1
- DXPPIEDUBFUSEZ-UHFFFAOYSA-N 6-methylheptyl prop-2-enoate Chemical compound CC(C)CCCCCOC(=O)C=C DXPPIEDUBFUSEZ-UHFFFAOYSA-N 0.000 description 1
- CUXGDKOCSSIRKK-UHFFFAOYSA-N 7-methyloctyl prop-2-enoate Chemical compound CC(C)CCCCCCOC(=O)C=C CUXGDKOCSSIRKK-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 1
- 239000004604 Blowing Agent Substances 0.000 description 1
- 229920000742 Cotton Polymers 0.000 description 1
- 229920001875 Ebonite Polymers 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- 239000001856 Ethyl cellulose Substances 0.000 description 1
- ZZSNKZQZMQGXPY-UHFFFAOYSA-N Ethyl cellulose Chemical compound CCOCC1OC(OC)C(OCC)C(OCC)C1OC1C(O)C(O)C(OC)C(CO)O1 ZZSNKZQZMQGXPY-UHFFFAOYSA-N 0.000 description 1
- 239000004831 Hot glue Substances 0.000 description 1
- WHNWPMSKXPGLAX-UHFFFAOYSA-N N-Vinyl-2-pyrrolidone Chemical compound C=CN1CCCC1=O WHNWPMSKXPGLAX-UHFFFAOYSA-N 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 239000002033 PVDF binder Substances 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- QYKIQEUNHZKYBP-UHFFFAOYSA-N Vinyl ether Chemical class C=COC=C QYKIQEUNHZKYBP-UHFFFAOYSA-N 0.000 description 1
- 150000001252 acrylic acid derivatives Chemical class 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 229940088710 antibiotic agent Drugs 0.000 description 1
- 229940121375 antifungal agent Drugs 0.000 description 1
- 239000003429 antifungal agent Substances 0.000 description 1
- 239000004599 antimicrobial Substances 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 239000011127 biaxially oriented polypropylene Substances 0.000 description 1
- 229920006378 biaxially oriented polypropylene Polymers 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- DQXBYHZEEUGOBF-UHFFFAOYSA-N but-3-enoic acid;ethene Chemical compound C=C.OC(=O)CC=C DQXBYHZEEUGOBF-UHFFFAOYSA-N 0.000 description 1
- CQEYYJKEWSMYFG-UHFFFAOYSA-N butyl acrylate Chemical compound CCCCOC(=O)C=C CQEYYJKEWSMYFG-UHFFFAOYSA-N 0.000 description 1
- 229920002301 cellulose acetate Polymers 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 238000003486 chemical etching Methods 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 238000003851 corona treatment Methods 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 238000012377 drug delivery Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000004049 embossing Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 125000003700 epoxy group Chemical group 0.000 description 1
- 238000011067 equilibration Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- QHZOMAXECYYXGP-UHFFFAOYSA-N ethene;prop-2-enoic acid Chemical compound C=C.OC(=O)C=C QHZOMAXECYYXGP-UHFFFAOYSA-N 0.000 description 1
- 229920001249 ethyl cellulose Polymers 0.000 description 1
- 235000019325 ethyl cellulose Nutrition 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000003063 flame retardant Substances 0.000 description 1
- 239000004446 fluoropolymer coating Substances 0.000 description 1
- 239000004088 foaming agent Substances 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 230000009477 glass transition Effects 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 229920001903 high density polyethylene Polymers 0.000 description 1
- 239000004700 high-density polyethylene Substances 0.000 description 1
- 229920001519 homopolymer Polymers 0.000 description 1
- 239000005556 hormone Substances 0.000 description 1
- 229940088597 hormone Drugs 0.000 description 1
- 239000000017 hydrogel Substances 0.000 description 1
- 239000003999 initiator Substances 0.000 description 1
- 239000000976 ink Substances 0.000 description 1
- 238000000608 laser ablation Methods 0.000 description 1
- 239000004816 latex Substances 0.000 description 1
- 229920000126 latex Polymers 0.000 description 1
- 229920000092 linear low density polyethylene Polymers 0.000 description 1
- 239000004707 linear low-density polyethylene Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000006210 lotion Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- LVHBHZANLOWSRM-UHFFFAOYSA-N methylenebutanedioic acid Natural products OC(=O)CC(=C)C(O)=O LVHBHZANLOWSRM-UHFFFAOYSA-N 0.000 description 1
- 238000005459 micromachining Methods 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000005065 mining Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 229940088644 n,n-dimethylacrylamide Drugs 0.000 description 1
- YLGYACDQVQQZSW-UHFFFAOYSA-N n,n-dimethylprop-2-enamide Chemical compound CN(C)C(=O)C=C YLGYACDQVQQZSW-UHFFFAOYSA-N 0.000 description 1
- 229920003052 natural elastomer Polymers 0.000 description 1
- 229920001194 natural rubber Polymers 0.000 description 1
- FSAJWMJJORKPKS-UHFFFAOYSA-N octadecyl prop-2-enoate Chemical compound CCCCCCCCCCCCCCCCCCOC(=O)C=C FSAJWMJJORKPKS-UHFFFAOYSA-N 0.000 description 1
- 239000002674 ointment Substances 0.000 description 1
- 238000000879 optical micrograph Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000006072 paste Substances 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 239000002985 plastic film Substances 0.000 description 1
- 229920006255 plastic film Polymers 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 229920003223 poly(pyromellitimide-1,4-diphenyl ether) Polymers 0.000 description 1
- 229920013639 polyalphaolefin Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920006254 polymer film Polymers 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 1
- 230000002028 premature Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000002203 pretreatment Methods 0.000 description 1
- 230000037452 priming Effects 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 238000004080 punching Methods 0.000 description 1
- 239000012744 reinforcing agent Substances 0.000 description 1
- 230000003362 replicative effect Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000000518 rheometry Methods 0.000 description 1
- 238000007665 sagging Methods 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 229920003051 synthetic elastomer Polymers 0.000 description 1
- 229920002994 synthetic fiber Polymers 0.000 description 1
- 239000012209 synthetic fiber Substances 0.000 description 1
- 239000005061 synthetic rubber Substances 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 238000009281 ultraviolet germicidal irradiation Methods 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J7/00—Adhesives in the form of films or foils
- C09J7/10—Adhesives in the form of films or foils without carriers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B3/00—Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
- B32B3/26—Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
- B32B3/263—Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by a layer having non-uniform thickness
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B3/00—Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
- B32B3/26—Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
- B32B3/30—Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by a layer formed with recesses or projections, e.g. hollows, grooves, protuberances, ribs
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B37/00—Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
- B32B37/12—Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by using adhesives
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B38/00—Ancillary operations in connection with laminating processes
- B32B38/0012—Mechanical treatment, e.g. roughening, deforming, stretching
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B38/00—Ancillary operations in connection with laminating processes
- B32B38/08—Impregnating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B7/00—Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
- B32B7/04—Interconnection of layers
- B32B7/10—Interconnection of layers at least one layer having inter-reactive properties
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J7/00—Adhesives in the form of films or foils
- C09J7/30—Adhesives in the form of films or foils characterised by the adhesive composition
- C09J7/38—Pressure-sensitive adhesives [PSA]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y80/00—Products made by additive manufacturing
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J2301/00—Additional features of adhesives in the form of films or foils
- C09J2301/20—Additional features of adhesives in the form of films or foils characterized by the structural features of the adhesive itself
- C09J2301/204—Additional features of adhesives in the form of films or foils characterized by the structural features of the adhesive itself the adhesive coating being discontinuous
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T156/00—Adhesive bonding and miscellaneous chemical manufacture
- Y10T156/10—Methods of surface bonding and/or assembly therefor
- Y10T156/1002—Methods of surface bonding and/or assembly therefor with permanent bending or reshaping or surface deformation of self sustaining lamina
- Y10T156/1039—Surface deformation only of sandwich or lamina [e.g., embossed panels]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/14—Layer or component removable to expose adhesive
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/24—Structurally defined web or sheet [e.g., overall dimension, etc.]
- Y10T428/24479—Structurally defined web or sheet [e.g., overall dimension, etc.] including variation in thickness
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/24—Structurally defined web or sheet [e.g., overall dimension, etc.]
- Y10T428/24479—Structurally defined web or sheet [e.g., overall dimension, etc.] including variation in thickness
- Y10T428/24562—Interlaminar spaces
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/24—Structurally defined web or sheet [e.g., overall dimension, etc.]
- Y10T428/24479—Structurally defined web or sheet [e.g., overall dimension, etc.] including variation in thickness
- Y10T428/24612—Composite web or sheet
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/24—Structurally defined web or sheet [e.g., overall dimension, etc.]
- Y10T428/24744—Longitudinal or transverse tubular cavity or cell
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/28—Web or sheet containing structurally defined element or component and having an adhesive outermost layer
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/28—Web or sheet containing structurally defined element or component and having an adhesive outermost layer
- Y10T428/2848—Three or more layers
Definitions
- the surface of the liner or molding tool may have applied thereon regions of different adhesives, such as for example, alternating strips of two different adhesive formulations, or may include multiple layers, each with different adhesive formulations.
- FIG. 3 shows two substantially parallel sidewalls 154 of a hexagonal structure 150 of FIG. 2 .
- the sidewalls 154 each make an angle with respect to a plane normal to the surface 156 of the adhesive layer 153 .
- the angle may be selected from an angle greater or equal to 0° and less than 90°, measured with respect to the plane of the surface of adhesive layer 156 .
- the angle is preferably greater than about 0° and less than about 45°, more preferably greater than about 2° and less than about 20°.
- Excess fluid is removed from the surface using, for example, an implement, such as a squeegee or silicone-coated roller.
- an implement such as a squeegee or silicone-coated roller.
- One method that is particularly useful for loading channels includes sealing off the edges of the structured adhesive layer, punching a hole in the layer to form a filling port, applying a vacuum to the adhesive layer, filling the channels with fluid, and then closing the filling port.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Laminated Bodies (AREA)
- Adhesive Tapes (AREA)
- Adhesives Or Adhesive Processes (AREA)
- Application Of Or Painting With Fluid Materials (AREA)
- Materials For Medical Uses (AREA)
Abstract
An article including at least one first layer with a first major surface and a second major surface, wherein at least one of the first and second major surfaces is a structured surface; and a cap layer in contact with a structured surface of the first layer.
Description
- This application is a continuation of U.S. Ser. No. 09/974,710, filed Oct. 9, 2001, now allowed.
- The present invention relates to laminate articles including one or more structured layers and methods for making them.
- Foamed adhesives can be generated by the creation of gas-filled voids in an adhesive matrix (e.g., by means of a blowing agent) and are particularly desirable in applications requiring high peel strength. Foamed adhesives have a variety of additional advantageous properties, such as low consumption of adhesive, and high tack and bond strength. The elasticity and plasticity of the foamed adhesive compositions make articles including foamed adhesive layers highly conformable, even on uneven surfaces.
- However, the placement and size of the gas-filled voids within the adhesive matrix is difficult to control. Due to the imprecise nature of the blowing process, it is not possible to precisely control the total void volume within the adhesive matrix. In addition, the ratio of adhesive matrix relative to the total void volume is relatively low, which renders this foam-based adhesives unsuitable in certain applications requiring very thin constructions.
- U.S. Pat. Nos. 6,197,397 B1 (Sher et al.), 5,897,930 (Calhoun et al.) and 5,650,215 and 6,123,890 (Mazurek et al.) describe articles having adhesive layers with a precisely replicated surface topography. The performance properties of the articles can be tailored by independently varying the rheological properties of the adhesive and the structures formed in the adhesive layer. For example, channels in the adhesive layer may be used to provide fluid egress when the article is adhered to a substrate, while pegs and posts may be used to control the level of adhesion to the substrate.
- In one aspect, the invention resides in the finding that if an overlayer is placed in contact with a surface of a structured layer having a surface topography, certain regions of the structured layer become discrete or discontinuous channels or reservoirs that may be used to advantage to tailor the properties of the laminate construction. For example, if a cap layer is placed in contact with and overlies a structured surface of an adhesive layer, the regions between the structures in the adhesive matrix, or the structures themselves, form an array of partially or fully enclosed channels or reservoirs or channels. This array of channels and reservoirs or channels may be used, alone or in combination with non-structured adhesive layers or additional structured adhesive layers, to provide laminate articles with a wide range of unique properties.
- For example, the reservoirs or channels or channels may be precisely shaped and distributed to provide a high ratio of void volume relative to adhesive matrix as compared to conventional foam-based adhesives. As a result of their lower density, the adhesive laminate constructions can be made thinner than standard foam-based adhesive constructions with comparable void volumes. These thin and highly conformable laminates can be tailored to exhibit a relatively higher or lower peel force relative to non-structured adhesive articles of the same thickness.
- In addition, the reservoirs or channels in the adhesive layers can include controlled quantities of gaseous, liquid, and/or solid substances to further tailor the properties of the laminate article. The design (i.e., pitch, depth, contact area, wall and post width, and shape) of the structured adhesives can be tailored to achieve the desired size, density, and placement of reservoirs or channels within the adhesive without the use of a structured release liner.
- In one aspect, the invention is an article including at least one first layer with a first major surface and a second major surface, wherein at least one of the first and second major surfaces is a structured surface; and a cap layer in contact with a structured surface of the first layer, wherein the cap layer includes an adhesive.
- In a second aspect, the invention is an article including at least one adhesive layer with a first major surface and a second major surface, wherein at least one of the first and second major surfaces is a structured surface; and a cap layer in contact with a structured surface of an adhesive layer.
- In a third aspect, the invention is a tape including: (a) at least one pressure sensitive adhesive layer with a first major surface and a second major surface, wherein the first major surface is a structured surface and the second major surface is a non-structured surface; and (b) a cap layer in contact with the first major surface.
- In a fourth aspect, the invention is a laminate article including (a) a first adhesive layer having a first major surface and a second major surface, wherein at least one of the first and second major surfaces is a structured surface, and (b) a second adhesive layer having a first major surface and a second major surface, wherein at least one of the first and second major surfaces is a structured surface.
- In a fifth aspect, the invention is a method for making a prelaminate, including: (a) applying an adhesive to a structured surface of a tool to form an adhesive layer with a structured surface and a non-structured surface; (b) laminating a backing to the non-structured surface of the adhesive layer to form a prelaminate; and (c) removing the prelaminate from the tool.
- In a sixth aspect, the invention is a method for making a laminate, including: (a) providing a first prelaminate comprising a first adhesive layer with a structured first major surface and a non-structured second major surface, and a cap layer contacting the first major surface of the first prelaminate; and (b) providing a second prelaminate including a second adhesive layer with a structured first major surface and a non-structured second major surface, and a backing contacting the second major surface of the second prelaminate; and (c) contacting the second major surface of the first prelaminate to the first major surface of the second prelaminate.
- The details of one or more embodiments of the invention are set forth in the accompanying drawings and the description below. Other features, objects, and advantages of the invention will be apparent from the description and drawings, and from the claims.
-
FIGS. 1A and 1B are cross-sectional views of embodiments of a laminate article in accordance with the invention. -
FIG. 2 is a scanning electron micrograph of a close-packed hexagonal structured adhesive. -
FIG. 3 is a schematic cross-sectional view of a portion of the structured adhesive ofFIG. 2 . -
FIG. 4 is a schematic overhead view of a portion of the structured adhesive ofFIG. 2 . -
FIG. 5A is a cross-sectional view of a laminate article with a cap layer and backing. -
FIG. 5B is a cross-sectional view of an embodiment of a laminate article. -
FIG. 5C is cross-sectional view of an embodiment of a laminate article with two structured adhesive layers. -
FIG. 5D is a cross-sectional view of an embodiment of a laminate article with two structured adhesive layers. -
FIG. 6A is a cross-sectional view of an embodiment of a laminate article with two structured adhesive layers. -
FIG. 6B is a cross-sectional view of an embodiment of a laminate article with two structured adhesive layers. -
FIG. 7 is a cross-sectional view of an embodiment of a laminate article with two structured adhesive layers. -
FIG. 8 is a scanning electron micrograph of a structured molding tool. -
FIGS. 9A-9C illustrate a method for making a structured adhesive layer. -
FIGS. 10A-10B show a method for making a laminate article. -
FIGS. 11A-11C show a method for making a laminate article. -
FIG. 12A shows a method for fabricating the multi-layer construction depicted inFIG. 6A . -
FIG. 12B shows a method for fabricating the multi-layer construction depicted inFIG. 7 . -
FIG. 12C shows a method for fabricating the multi-layer construction depicted inFIG. 6B . -
FIG. 13 shows WYKO analysis for 3 structured molding tools and 3 structured adhesives. -
FIG. 14 shows a plot of peel vs. displacement for non-structured and structured pressure sensitive adhesive tape. -
FIG. 15 shows a plot of peel force vs. thickness for non-structured and structured pressure sensitive adhesive tape. -
FIG. 16 shows a plot of peel force vs. adhesive thickness for non-structured and structured pressure sensitive adhesive tape. -
FIG. 17 shows a plot of peel force vs. adhesive thickness for non-structured and multi-layer structured pressure sensitive adhesive articles ofFIG. 5A . -
FIG. 18 shows a plot of peel force vs. adhesive thickness for non-structured and multi-layer structured pressure sensitive adhesive articles ofFIG. 5D . -
FIG. 19 shows a bar graph of peel force relative to rate and thickness for three structured adhesive coated articles. - Like reference symbols in the various drawings indicate like elements.
- Referring to
FIG. 1A , in one aspect the invention is alaminate article 10 including alayer 12 having a firstmajor surface 14 and a secondmajor surface 16. The firstmajor surface 14 includes a pattern ofstructures 18 and correspondingland areas 20. The regular arrays of structures described in U.S. Pat. Nos. 6,197,397 B1 (Sher et al.), 5,897,930 (Calhoun et al.) and 5,650,215 and 6,123,890 (Mazurek et al.), incorporated herein by reference, are preferred. Acap layer 22 is placed in contact with the structuredsurface 14 of thelayer 12 forms an array of at least partially encapsulated channels or reservoirs orchannels 24. The size, shape, distribution and contents of the channels and reservoirs orchannels 24 may be selected to tailor the properties of thelaminate article 10. The materials selected for thelayer 12 and thecap layer 22 may vary widely depending on the intended application. For example, in the embodiment illustrated inFIG. 1A , thelayer 12 is a structured polymeric film, and thecap layer 22 is a non-structured adhesive layer. - Referring to
FIG. 1B , a preferred embodiment the invention is alaminate article 102 including anadhesive layer 110 with at least one structuredmajor surface 120. Thesurface 120 includes a plurality ofstructures 114 and an arrangement of correspondingland areas 116. Thestructures 114 and/or theland areas 116 on at least a portion of thestructured surface 120 are in contact with acap layer 100. The regions of thestructured surface 120 overlain by thecap layer 100 include an array of fully or partially encapsulated reservoirs orchannels 140. Theadhesive layer 110 further includes a secondmajor surface 130, which may be structured or non-structured. Surfaces referred to herein as non-structured do not possess a structured topography. - Any adhesive is suitable for the adhesive layers of the present invention. Useful adhesives for the purposes of the present invention include those capable of retaining a structured surface after being embossed with and removed from a structured molding tool. Non-limiting examples of suitable adhesives include pressure sensitive adhesives, epoxies, structural adhesives, bonding adhesives, emulsion adhesives, and hot melt adhesives.
- Pressure sensitive adhesives, including any type of pressure sensitive adhesive described in Satas, et al., Handbook of Pressure Sensitive Adhesives, 2d ed. 1989, are preferred. Classes of pressure sensitive adhesives include, for example, acrylics, natural and synthetic rubbers, ethylene vinyl acetate, poly(alpha-olefins), vinyl ethers, and silicones. The adhesives may be in the form of copolymers, bicontinuous adhesives, hydrogels, latex emulsions, macromers, and block copolymers. Suitable block copolymers are commercially available from Shell Oil Company (Houston, Tex.) under the trade designation KRATON.
- More preferred pressure sensitive adhesives include, for example, acrylics, poly(olefins), KRATON, and silicones, and acrylics are particularly preferred. Suitable acrylic adhesives are disclosed, for example, in U.S. Pat. Nos. 3,239,478, 3,935,338, 5,169,727, RE 24,906, 4,952,650, 4,181,752, 5,986,011, 5,637,646 and 5,753,768. A suitable class of acrylate pressure sensitive adhesives is the reaction product of at least one alkyl acrylate with at least one reinforcing comonomer. Suitable alkyl acrylates are those having a homopolymer glass transition temperature below about −10° C. and include, for example, n-butyl acrylate, 2-ethylhexylacrylate, isoctylacrylate, isononyl acrylate, ethylene monoacrylate, octadecyl acrylate and the like. Suitable reinforcing monomers include, for example, acrylic acid, itaconic acid, isobornyl acrylate, N,N-dimethylacrylamide, N-vinyl caprolactam, N-vinyl pyrrolidone, and the like.
- The pressure sensitive adhesives can be prepared and coated using a variety of standard methods. For example, the pressure sensitive adhesives can be polymers that are dispersed in solvent or water and coated onto a liner or molding tool. If a solvent borne or water borne pressure sensitive adhesive composition is employed, then the adhesive layer may undergo a drying step to remove all or a majority of the carrier liquid. The adhesive may be cured using an energy source (e.g., heat, UV radiation, e-beam, and the like). Alternatively, adhesives may be applied without dispersal in a solvent or water using a variety of methods, such as, for example, melting or extruding the adhesive onto a liner or molding tool. The adhesive can be cross-linked with an energy source such as heat, UV radiation, e-beam radiation, and the like. In yet another alternative, monomeric pre-adhesive compositions can be coated onto a liner or molding tool and polymerized and cross-linked with an energy source, as described above.
- The surface of the liner or molding tool may have applied thereon regions of different adhesives, such as for example, alternating strips of two different adhesive formulations, or may include multiple layers, each with different adhesive formulations.
- The thickness of the
adhesive layer 110 may vary widely depending on the intended application, and typically ranges from about 2 μm to about 800 μm, preferably from about 20 m to about 150 m. - The adhesive can optionally include one or more additives such as, for example, initiators, fillers, plasticizers, cross-linkers, tackifiers, chain transfer agents, fibrous reinforcing agents, woven and non-woven fabrics, foaming agents, antioxidants, stabilizers, fire retardants, viscosity enhancing agents, coloring agents, and mixtures thereof.
- Referring again to
FIG. 1 , at least onemajor surface 120 of theadhesive layer 110 in thearticle 102 includes a structured topography. The structured topography includesstructures 114 with specific shapes that form a plurality of discrete reservoirs orchannels 140 when overlain by thecap layer 100. Preferably, the structures form a substantially regular array or pattern in the adhesive layer and include, for example, rectilinear patterns, polar patterns, geometric patterns, and cross-hatch patterns. The array or pattern of structures may optionally reside on both major, opposingsurfaces FIG. 1 ). The shape, size and distribution of thestructures 114 in theadhesive layer 110 may be precisely controlled to provide an array of reservoirs orchannels 140 with a particular size, while maintaining a known contact area between thecap layer 100 and theadhesive layer 110. - The reservoirs or
channels 140 of the structuredadhesive layer 110 may be at least partially filled with deliverable and/or non-deliverable substances. A deliverable substance is contained within the reservoirs orchannels 140 and can diffuse out of the reservoirs orchannels 140 andadhesive layers 110 when thearticle 102 is in use. Non-deliverable substances remain essentially contained within the reservoirs orchannels 140 andadhesive layers 110 of thearticle 102 during use. Reservoirs orchannels 140 can include one or more types of deliverable and/or non-deliverable substances. Optionally, theadhesive layer 110 can include deliverable or non-deliverable substances, which may be the same or different from the substances present in the reservoirs or channels. - The deliverable and non-deliverable substances can be in a variety of forms, such as, for example, gases (including air), solids, liquids, gels, pastes, foams, powders, agglomerated particles, microencapsulated liquids, suspensions, and the like. Deliverable and non-deliverable substances include, for example, hormones, antimicrobials, antifungal agents, lotions, ointments, indicators (e.g., bacterial, pressure, color, pH, and temperature indicators), proteins, inks, dyes, vibration dampening fluids, and drugs (e.g., pain killers and antibiotics).
- The reservoirs or
channels 140 are at least partially covered by a cap layer 100 (described below) that encapsulates deliverable and non-deliverable substances within the void volume of the reservoirs or channels. This plurality of discrete, encapsulated reservoirs compartmentalizes the encapsulated substances and minimizes communication between the contents of neighboring reservoirs within the same or different adhesive layers. In contrast, channels are substantially continuous voids that provide unrestricted or less restricted movement of the deliverable and non-deliverable substances within the adhesive layer. - Referring to
FIG. 1 , in embodiments of the invention where the reservoirs orchannels 140 contain air and thearticle 102 has a non-structured exposedsurface 130 that can be adhered to a target substrate, the adhesive coated articles exhibit increased peel strength as compared to non-structured adhesive coated articles of the same thickness. Articles of the invention exhibit peel strengths of at least 21-42 oz/0.5 inch for a thickness of about 3.0 to about 7.0 mils using the Peel Adhesion Test Procedure described below. In comparison, standard non-structured adhesives of the same thickness exhibited peel strengths of between about 20-25 oz/0.5 inch. Although peel strength is typically proportional to the amount of adhesive material, these samples require less material to achieve comparable peel strengths relative to non-structured articles of the same thickness. - The shapes of the
structures 114 in theadhesive layer 110 may be varied to achieve specific requirements for a given application. The size, shape and distribution of thestructures 114 depend on, for example, the total volume of deliverable and/or non-deliverable substances to be contained in the reservoirs orchannels 140, the rate of delivery of the substances, and the peel adhesion of theadhesive layer 110 required for a particular application. The height and width of thestructures 114, which may extend above and/or below the plane of the adhesive layer, may be selected to achieve the desired performance. Suitable discrete shapes for thestructures 114 include hemispheres, right pyramids, trigonal pyramids, prisms (such as square prisms, rectangular prisms, cylindrical prisms and other similar polygonal features), square pyramids, quadrangle pyramids, circles, ellipsoids and polygons (e.g., hexagons and diamonds). Suitable substantially continuous and interconnecting shapes for the structures include grooves (e.g., “V” grooves) and ridges (e.g., “Y” shaped ridges). The final dimensions of the structures may vary widely depending on the rheology of the adhesive layer and the application conditions. Although the structures within the adhesive are designed to be of substantially regular shape, irregularities may arise because the adhesive may partially creep over time. - Combinations of the different structure shapes, sizes, and orientations can be utilized in different regions of the
adhesive layer 110, or a particular region of theadhesive layer 110 may include patterns with multiple or overlapping structures. - To provide a substantially large reservoir void volume for a particular area of an adhesive layer, preferred structures include hexagons and diamonds. One suitable structure for this purpose is shown in
FIG. 2 , which includeshexagonal structures 150, each forming areservoir 152 in theadhesive layer 153. Eachreservoir 152 is enclosed by six sidewalls orposts 154, which protrude above the surface of theadhesive layer 156. -
FIG. 3 shows two substantiallyparallel sidewalls 154 of ahexagonal structure 150 ofFIG. 2 . Referring toFIG. 3 , thesidewalls 154 each make an angle with respect to a plane normal to thesurface 156 of theadhesive layer 153. The angle may be selected from an angle greater or equal to 0° and less than 90°, measured with respect to the plane of the surface ofadhesive layer 156. The angle is preferably greater than about 0° and less than about 45°, more preferably greater than about 2° and less than about 20°. The depth of each reservoir orchannel 152, measured from a plane of theadhesive layer 156 to the top 155 of thesidewall 154 is preferably less than 2 mm; more preferably about 10 μm to about 200 μm; most preferably about 70 μm to about 150 μm. The width of thesidewall 154 at its base W1 is preferably between about 5 μm and about 5 mm, more preferably between about 20 μm and about 80 μm. The distance W2 across the top 155 of thesidewall 154 is preferably less than 2 mm, more preferably about 0.05 μm to about 60 μm. The distance W3 between the bases of thesidewalls 154 is preferably less than about 30 mm, more preferably less than about 5 mm, most preferably about 50 μm to about 250 μm, as measured between any twoparallel sidewalls 154 of the reservoir or channel 152 (see alsoFIG. 4 ). The sum of W1 and W3 defines the repeat unit of the pattern and is referred to herein as the pitch. - In the case of
discrete reservoirs 152, each discrete reservoir has a void volume of less than about 100 μl; preferably less than 20 nL; more preferably less than 4 nL. The number ofreservoirs 152 per unit area of theadhesive layer 156 is generally between about 5E+06/cm2 to 1/cm2; preferably about 1.20E+03 to about 1.00E+06/cm2. Preferably, the pattern of structures defines a discrete void volume of above 20 nL to about 80 μL; more preferably between about 20 nL to about 20,000 nL on any 1 cm2 area of theadhesive layer 156. - Discontinuous reservoirs or channels generally have a void volume between 0.1 and 99.9% of the total volume of the adhesive layer, preferably 0.5 to 50%, and more preferably 1 to 20%.
- Referring again to
FIG. 1 , thecap layer 100, which is preferably a substantially continuous layer, can be, for example, a structured or non-structured backing, a structured or non-structured adhesive layer, a membrane, or the like. The contact area between thestructures 114 on the firstmajor surface 120 and thecap layer 100 may vary widely depending on the intended application, and is between about 0.5% and about 99%; preferably between about 5% to about 80%; and more preferably between about 20% to about 40%. For example, for a close-packed hexagonal structure (FIG. 2 ), the theoretical percent -
- where p=pitch and w=width of wall at point of contact (also referred to above as W2).
- In one preferred embodiment of the invention, the
cap layer 100 is a backing. As used herein, the term backing refers to a thin sheet, which, after being placed in intimate contact with the adhesive, cannot be subsequently removed without damaging adhesive coating. The backing protects the adhesive and any components contained in the adhesive layer and/or reservoirs or channels from the environment. The backing can be a stiff, flexible, occlusive, non-occlusive or breathable film as desired. Further, as the backing is in contact with the adhesive and the components contained in the adhesive and/or reservoirs or channels, it is important that the backing be stable and substantially non-reactive to such components in order that the backing retains its structural integrity. It is also important that the backing not absorb the components from the adhesive or the reservoirs or channels. It may also be desirable for the backing to be heat sealable at a relatively low temperature to a variety of other polymeric substrates. - The backing preferably has sufficient structural integrity such that the backing is capable of being coated and handled. Backings can be made of any material conventionally utilized as a tape backing or may be made of other flexible or stiff material. Typical examples of flexible tape backing materials include those made of paper, plastic films such as polypropylene, polyethylene, particularly low density polyethylene, linear low density polyethylene, metallocene polyethylenes, high density polyethylene, polypropylene, polyvinyl chloride, polyester (e.g., polyethylene terephthalate), randomly oriented nylon fibers, ethylene-vinyl acetate copolymer, polyurethane, vinyl, polyvinylidene fluoride, cellulose acetate and ethyl cellulose, and polyamide films such as those commercially available from E.I. DuPont de Nemours & Co. (Wilmington, Del.) under the trade designation KAPTON.
- Backings also can be prepared of fabric such as woven fabric formed of threads of synthetic or natural materials such as cotton, nylon, rayon, glass, polyester, ceramic material, and the like, or nonwoven fabric such as air laid webs of natural or synthetic fibers or blends of these. The backing may also be formed of metal, metalized polymeric films, glass, wood, or ceramic sheet materials. Backings that are layered such as polyethylene terephthalate-aluminum-polyethylene composites are also suitable.
- Suitable backings include poly(ethylene terephthalate) film, non-woven polyester, cloth, silk, rayon, and foam. Backing materials can be pretreated (i.e., primed). Common pretreatments include corona treatment and chemical priming.
- Referring to
FIG. 5A , an adhesivecoated article 202 is shown where thecap layer 200 is an non-structured adhesive layer. The construction includes at least oneadhesive layer 210 having at least one structuredmajor surface 220. The firstmajor surface 220 of theadhesive layer 210 includesstructures 214 andland areas 216. The regions between thestructures 214 in contact with thecap layer 200 creates a plurality of reservoirs orchannels 240. Theconstruction 202 further includes abacking 242, which protects the non-structured secondmajor surface 230 of theadhesive layer 210. - Alternatively, as shown in the
construction 204 inFIG. 5B , the firstmajor surface 220 ofadhesive layer 210 is in contact with thebacking 242, and the secondmajor surface 230 is in contact with the cap layer 200 (as shown inFIG. 5B ). - In another embodiment, the cap layer can be a structured adhesive layer.
FIG. 5C shows anadhesive article 302 that includes anadhesive layer 310, having at least one structuredmajor surface 320.Adhesive layer 310 is in contact with a structuredadhesive cap layer 300, having at least one structuredmajor surface 301.Adhesive layers article 302 shown inFIG. 5C includes a plurality of encapsulated reservoirs orchannels 340 between theadhesive layer 310 and thecap layer 300. -
FIG. 5D shows another embodiment where the cap layer can be a structured adhesive layer. The adhesivecoated article 402 includes anadhesive layer 410, having at least one structuredmajor surface 420 withstructures 414. Theadhesive layer 410 is in contact with a structuredadhesive cap layer 400, having at least one structuredmajor surface 420 includingstructures 415. The structured major surfaces of theadhesive layers interconnected void volume 440. The alignment of the adhesive layers shown inFIG. 5D , for example, forms a substantiallycontinuous reservoir 440 within the adhesive coated article. The array of reservoirs or channels on the created by the alignedstructured layers structures channels 440. - In another aspect, the invention is a multi-layer article including two or more adhesive layers, each having at least one structured surface. The adhesives and structures of the two or more adhesive layers can include the same adhesives and structures or different adhesives and structures. The multi-layer constructions include a plurality of encapsulated reservoirs or channels having dimensions similar to those described above.
- Referring to
FIG. 6A , thearticle 502 includes a first and secondadhesive layer adhesive layer 510 has a structured firstmajor surface 512 withstructures 514 andland areas 516, and a second non-structuredmajor surface 530. The secondadhesive layer 520 has a structured firstmajor surface 522 in contact with thesurface 530 of the firstadhesive layer 510, and includes structures 524 and land areas 526, as well as a second non-structuredmajor surface 532. Thesurface 532 may optionally be a structured surface. Acap layer 500 overlies the firstmajor surface 512 of the firstadhesive layer 510. In the embodiment shown inFIG. 6A , thestructured surface 512 of thelayer 510 is in contact with thecap layer 500. Optionally, one or more additional structured and/or non-structured adhesive and/or non-adhesive layers can be interposed between thecap layer 500 and the firstadhesive layer 510. Thestructures 514, 524 can be vertically registered, as shown inFIG. 6A , or can be out of register with each other. In the construction depicted inFIG. 6A , lamination of the two structuredadhesive layers channels article 502. Each encapsulated reservoir has a void volume of less than about 1 Tl; more preferably between about 0.0001 nl and about 5 nl. - In another aspect, the invention is a multi-layer adhesive coated article including two or more adhesive layers, each having at least one structured surface, with the structured surfaces facing each other. The adhesives and structures of the two or more adhesive layers can include the same adhesives and structures or different adhesives and structures. Referring to
FIG. 6B , anarticle 602 includes a first and secondadhesive layer adhesive layer 610 has a structured firstmajor surface 612 withstructures 614 andland areas 616, as well as a non-structured secondmajor surface 630. Acap layer 600 is in contact with the secondmajor surface 630. Optionally, the secondmajor surface 630 of the firstadhesive layer 610 also can be a structured surface. The secondadhesive layer 620 has a structured firstmajor surface 622 withstructures 624 andland areas 626, as well as a non-structured secondmajor surface 632. Optionally, the secondmajor surface 632 of the secondadhesive layer 620 can also be a structured surface. In the embodiment depicted inFIG. 6B , theadhesive layers major surface 612 of the firstadhesive layer 610 is only partially in contact with the structured firstmajor surface 622 of the secondadhesive layer 620. Lamination ofadhesive layers channels 640 within the adhesive coated article. Each reservoir has a void volume that is essentially the sum of the void volume of the reservoirs or channels within the two layers, typically less than about 1 Tl, preferably less than 200 nl; more preferably between about 0.0002 nl and about 40 nl. - In another embodiment, the invention is a multi-layer adhesive coated article including two or more adhesive layers, each having at least one structured surface. One of the structured adhesive surfaces is an exposed surface suitable for contact with a target substrate. Referring to
FIG. 7 , amulti-layer article 702 is shown having a firstadhesive layer 710 with at least one structured surface. Theadhesive layer 710 has a structured firstmajor surface 712 withstructures 714 andcorresponding land areas 716, as well as a non-structured secondmajor surface 730. The secondmajor surface 730 is in contact with acap layer 700. Alternatively, the secondmajor surface 730 is a structured surface, and/or the firstmajor surface 712 can be in contact with thecap layer 700. The adhesive coated article also includes a secondadhesive layer 720 with at least one exposed, structuredmajor surface 722 havingstructures 724 andland areas 726. Theadhesive layer 720 further includes a secondmajor surface 732 that can be a structured or a non-structured surface (as shown inFIG. 7 ). Lamination ofadhesive layers 710 and 820 in the manner shown inFIG. 7 forms a plurality of encapsulated reservoirs orchannels 740 within the adhesive coated article with dimensions similar to those described above. Upon contact with a target substrate, single and multi-layer adhesive coated articles having exposed structured surfaces (FIG. 7 ) exhibit lower peel strengths compared to standard non-structured adhesive articles of the same thickness. These constructions are particularly suitable for making thin, highly conformable, low peel strength tapes. - In the constructions illustrated in
FIGS. 6A , 6B, and 7, one or more additional structured and/or non-structured adhesive and/or non-adhesive layers can be interposed between the cap layer and the first adhesive layer of the multi-layer constructions or between any two layers of the multi-layer constructions. Additionally, one or more additional structured and/or non-structured adhesive and/or non-adhesive layers can be laminated to the second major surface of the second adhesive layer in the constructions depicted inFIGS. 6A , 6B, and 7. Each additional layer can be structured on one or both sides and can include one or more types of structures and adhesive and non-adhesive materials. - The laminate articles of the present invention can further include an optional release liner (not shown), which protects the adhesive layers and contents included within the adhesive matrix and/or reservoirs or channels from damage and contamination. The liner should be capable of being placed in intimate contact with an adhesive surface and may be subsequently removed without damaging the adhesive layer. Suitable liners include conventional release liners comprising a known sheet material such as coated polyester, polyester web, polyethylene web, polystyrene web, or polymer-coated paper. The liner is typically a polymer-coated paper with a silicone release coating or a fluoropolymer coating containing perfluorinated groups, a polyethylene coated polyethylene terepthalate (PET) film with silicone release coatings, or a cast polyolefin film with a silicone release coating. Non-limiting examples of liners include materials from Minnesota Mining & Manufacturing Company (3M) of St. Paul, Minn., Rexam Corporation of Iowa City, Iowa, Daubert Coated Products of Westchester, Ill., P.S Substrates, Inc., Schoeller Technical Papers, Inc., AssiDoman Inncoat GmbH, and P.W. A. Kunstoff GmbH.
- The constructions of the present invention can be tailored to form encapsulated reservoirs or channels of specific sizes and shapes in specific location within the adhesive coated article. Encapsulated reservoirs or channels, in one or more of the structured layers can contain a controlled amount and distribution of air and/or one or more deliverable and/or non-deliverable substances. The adhesive coated articles can be used for a variety of applications, such as, for example, fluid and air transport, as delivery (e.g., drug delivery) devices, as vibration, sound, and energy dampening materials, as repositionable tapes, as indicator tapes, and as high-bonding and highly conformable thin-film tapes.
- The structures in the adhesive layers may be made as described U.S. Pat. Nos. 6,197,397 B1 (Sher et al.) and 6,123,890 (Mazurek et al.), which are incorporated herein by reference. The topography may be created in the adhesive layer by any known technique, preferably by a contacting technique such as casting, coating, or compressing. The topography of the tool used to create the pattern may be made using any known technique, such as, for example, chemical etching, mechanical etching, laser ablation, photolithography, stereolithography, micromachining, knurling, cutting, or scoring.
- For example, the pattern of structures in the adhesive layer can be made by casting a layer of adhesive on a molding tool having a machined pattern. For example,
FIG. 8 shows a scanning electron micrograph of the molding tool used to generate the structured topography in the adhesive layer ofFIG. 2 . The structured adhesive layer seen inFIG. 2 has a surface essentially replicating the inverse of the topography of the molding tool shown inFIG. 8 . - Generally, the molding tool is pre-treated with a release coating prior to the embossing step. Once the tool is treated with the release coating, the adhesive can be extruded or solvent coated and dried onto the tool and laminated to a backing. The adhesive may be preheated to improve adhesion to the backing layer. In some applications, the adhesive is cured or cross-linked while on the tool to prevent premature cold flow. Alternatively, other adhesives are removed from the tool prior to curing. The exposed surface of the structured adhesive layer may be contacted with another adhesive layer to form a second laminate or multi-layer construction. These lamination steps can be repeated to generate a multi-layer construction of the desired thickness. The adhesive layer(s) can then be cured or cross-linked with an energy source, such as heat, UV radiation, e−beam radiation, and the like. Depending on the type of adhesive, the adhesive may be solidified or physically cross-linked upon cooling the laminate to room temperature. After curing, cross-linking, or solidifying the adhesive, the structures on the surface of the adhesive layer substantially retain their shape over time. The selection of the adhesive plays a role in determining the long-term properties of the structured adhesive layer(s). The process can be scaled up as a continuous process utilizing the methods described in U.S. Pat. No. 6,123,890.
- Additional membrane layers, transfer liners, release liners, adhesive layers (structured and non-structured), polymer films (structured and non-structured), and the like, can be laminated to the adhesive construction using lamination techniques that are well known to those skilled in the art.
- Lamination of the cap layer to the structured surface of the adhesive and/or lamination of multiple structured layers creates a plurality of encapsulated reservoirs or channels within the adhesive coated article. The amount of void volume contained in the encapsulated reservoirs or channels can be tailored based on the adhesive composition and size and shape of the tooling used to generate the structures of each layer.
-
FIGS. 9-11 show two general methods for fabricating articles with encapsulated reservoirs or channels and non-structured surfaces for adhering to a substrate.FIG. 9 illustrates a method for making an adhesive layer for use in the constructions shown inFIGS. 10 and 11 . - Referring to
FIG. 9A , a structuredadhesive layer 910 may be prepared by melting or extruding or solvent-coating an adhesive 901 onto astructured molding tool 997 and then laminating the adhesive 910 to abacking 920. Typically, asolventless adhesive 901 is pressed between themolding tool 997 and the backing 920 (e.g., a non-structured liner) under pressure at elevated temperature such that the adhesive flows. The press is cooled while maintaining pressure, and, as shown inFIG. 9B , the laminate 905 is subsequently removed from themolding tool 997 and cured or cross-linked using UV irradiation (FIG. 9C ). - Referring to
FIG. 10A , theconstruction 905 can be laminated to acap layer 950 or to a non-structured adhesive layer to form an article 960 (FIG. 10B ), which includes a plurality of encapsulated reservoirs orchannels 970. If thecap layer 950 is a single structured adhesive layer, this method can be used to form the constructions illustrated inFIGS. 6 and 7 . - Referring to
FIG. 11A , a method is shown that involves providing aconstruction 905 including abacking 920 having a structuredadhesive layer 910 thereon. The exposedadhesive surface 901 is laminated to acap layer 980, such as, for example, a primed polyester backing. The resultinglaminate 990 is then removed from the original backing layer 920 (FIG. 11B ). The laminate 990 includes a non-structuredadhesive surface 950 suitable for contact with a substrate, a structured surface in contact with a cap layer 900, and a plurality of encapsulated reservoirs or channels 975 (FIG. 11C ). This basic construction can be further laminated to, for example, a single structured adhesive layer to form the construction illustrated inFIG. 6A . - Referring to
FIG. 12A , a method is shown for fabricating the multi-layer construction depicted inFIG. 6A . The method includes laminating the construction 990 (FIG. 11C ) to a construction 905 (FIG. 10A ), both made according to the methods described above. The resulting multi-layer adhesive coated article includes a plurality of reservoirs orchannels 140 within the construction. The reservoirs or channels may be registered with each other, as shown inFIG. 12A . However, other embodiments include adhesive layers in which the structured surfaces are not registered with each other. Each structured surface may have a different pattern of structures. - Referring to
FIG. 12B , a method is shown for fabricating the multi-layer construction depicted inFIG. 7 . The method involves first applying an adhesive 901 to amolding tool 997 as described above (FIG. 9A ). An adhesive layer 905 (FIG. 9C ) is then laminated to a firstmajor surface 912 of the adhesive 901. The multi-layer laminate is subsequently removed from the molding tool to generate theconstruction 800 with reservoirs orchannels 840. The method may further involve laminating a non-structured adhesive onto astructured surface 996 of theconstruction 800. - Referring to
FIG. 12C , a method is shown for fabricating the multi-layer construction depicted inFIG. 6B . The method includes laminating together the exposed structuredmajor surfaces FIG. 9C ), with includedbackings coated article 850 includes a plurality of encapsulated reservoirs orchannels 890 within the construction. Thebacking 920B is subsequently removed to reveal a non-structured, exposedsurface 999 for adhering to a target substrate. - Additional membrane layers, transfer liners, release liners, adhesive layers (structured and non-structured), and the like, can be laminated to one or both sides of the adhesive constructions of the invention using lamination techniques that are well known to those skilled in the art.
- Methods for filling the reservoirs in the constructions of the invention (such as
construction 102 depicted inFIG. 1 ) include dipping, spraying, coating, sonicating, or powdering an intermediate construction 905 (such as depicted inFIG. 9C ) with liquid or solid. Subsequent lamination ofconstruction 905 to a cap layer encapsulates the material within the reservoirs of the construction. Fluid filling of constructions in which acap layer 100 has already been applied to the structured surface, such as depicted inFIG. 1 , can be accomplished by several means. Application of a pressure gradient can be used to load a fluid (such as a liquid containing a desired deliverable or non-deliverable substance) into the channels while displacing the air. This may be accomplished by simple mechanical means using, for example, a syringe/plunger. A particularly advantageous method of applying such a pressure gradient to fill the channels is by application of centrifugal force. If desired, venting may be supplied at the down stream (low pressure) ends of the channels such that air is displaced out of the channels as the fluid is introduced at the high pressure end. Conversely, centrifugal loading may be utilized in the absence of venting, such that the air is displaced countercurrent to the liquid being inserted. In this case the expelled air may be vented out through the same entry port via which the loading fluid is introduced. - Another means of filling channels with liquids in configurations including encapsulated reservoirs is through use of vacuum. Air may be evacuated from the channels until a sufficiently low pressure is reached, after which a liquid at a higher pressure (typically atmospheric) is brought into communication with the channels. Under this pressure differential, the liquid then fills the channels. This approach is especially suitable in cases in which venting is absent; that is, in which the only opening into the device is through the filling (liquid entry) port.
- The reservoirs or channels of a construction, such as, for
example construction 905, can be filled with deliverable and/or non-deliverable substances. Generally, the substance(s) is loaded into the exposed reservoirs or channels of the construction, followed by lamination of another structured or non-structured layer adhesive or non-adhesive layer. Upon lamination, the substance(s) are encapsulated within the reservoirs or channels of the construction. The adhesive composition may be formulated so that the deliverable and/or non-deliverable substance is retained within the reservoir. Specific regions within one or more of the adhesive layers can be filled with the same or different substances, depending on the application, the substances, the adhesive compositions, and/or the reservoir structure. Alternatively, in one layer, different materials can be stripe coated to provide different regions with different materials. - For liquids, substances can be introduced into the reservoirs or channels using a variety of methods, such as, for example, spraying, coating, and dipping. Alternatively, an ink-jet or other type of printer can be used to address specific locations and to load precise amounts of one or more deliverable and/or non-deliverable substances into the reservoirs or channels. One method of loading the reservoirs or channels includes dipping the adhesive coated article into the liquid, sonicating to displace the air bubbles in the fluid, and then drawing the adhesive coated article through, for example, a nip roller to remove excess liquid-filler. Generally, low-surface energy silicone coated film is used to cover the rollers. Excess fluid is removed from the surface using, for example, an implement, such as a squeegee or silicone-coated roller. One method that is particularly useful for loading channels includes sealing off the edges of the structured adhesive layer, punching a hole in the layer to form a filling port, applying a vacuum to the adhesive layer, filling the channels with fluid, and then closing the filling port.
- For solid substances, the solid is first applied onto the surface of the adhesive and then the excess removed by, for example, shaking or drawing the adhesive through a nip roller. Optionally, the adhesive article may be cooled to minimize adhesion of the solid substance(s) to the sidewalls of the adhesive surface.
- Gaseous substances, other than air, can be loaded into the reservoirs or channels by conducting the lamination process in a dry box filled with the gas or gas mixture of choice.
- The wet-out was determined from the wall width of contact, which was measured using light microscopy (Model #301-371.011 microscope from Leica, Germany), and the known pitch. Samples were pressed onto a piece of glass, and the wall width was measured (using the microscope's scale bar). This method was utilized to gain an estimate of the contact area when the wall is under pressure.
- Peel adhesion is the force required to remove a coated flexible sheet material from a test panel measured at a specific angle and rate of removal. Following equilibration of samples at 50% relative humidity and 23.3° C., both immediate and aged (24 hours dwell) peel adhesion measurements were taken following the application of the sample to a glass test surface. The procedure followed was:
-
- 1. A 12.7 mm [0.5 inch] or 25.4 mm [1 inch] wide sample of the coated sheet was applied to the horizontal surface of a clean glass plate with at least 10.0 lineal cm in firm contact. A 2 kg hard rubber roller was used to apply the strip.
- 2. The free end of the coated strip was doubled back nearly touching itself so the angle of removal was 180° degrees. The free end was attached to the adhesion tester scale.
- 3. The glass test plate was clamped in the jaws of a tensile testing machine that was capable of moving the plate away from the scale at a constant rate of 0.3 meters [12 inches] per minute.
- 4. The scale reading was recorded as the tape was peeled from the glass surface and expressed in ounces per half inch (oz/0.5 in) or oz/in, depending on the width of the sample tested.
- Samples were placed onto the edge of an aluminum plate so that only one inch of material is in contact with the plate, and the remaining was hanging off. A weight (200 g) was placed onto the end of the tape sample one inch from the edge of the aluminum plate. The time it took for the sample to shear from the aluminum plate was recorded.
- Adhesive samples were evaluated using interferometry microscopy using a WYKO RST surface profiler (WYKO Corp., Tucson, Ariz.). This technique used light interferometry to evaluate the surface roughness of a sample. Light was reflected from horizontal surfaces, and thus the depth of a microstructure could be determined by evaluating features at both the upper and lower edges of structured materials.
- Scanning Electron Microscopy (SEM) was utilized to observe samples under high magnification and to obtain depth information. SEM analysis was conducted using a Model #1920-D SEM from Amray Incorporated (Bedford, Mass.).
- Thickness measurements were done with a micrometer in contact mode. The total thickness of the structured adhesive included the thickness of the microstructure as well as the thickness of the land (i.e, the continuous layer of that of adhesive that connected the structured features). The ratio of the adhesive thickness between the structure thickness and the land thickness was an important parameter to consider. In the following examples, the thickness of the structured region remained constant, yet the land thickness varied. The land thickness was determined by subtracting the depth (thickness) of the structured region from the total thickness of the adhesive.
- Thickness also was measured using WYKO, as described above. Since WYKO is a non-contact measurement method, compression of the structured surface can be avoided.
- A thermoplastic pressure sensitive adhesive consisting of 90 parts by weight isooctyl acrylate and 10 parts by weight acrylic acid with 0.5% ionic cross-linker was prepared as described in U.S. Pat. No. 5,986,011, U.S. Pat. No. 5,637,646, and U.S. Pat. No. 5,753,768.
- Two samples were prepared having the
general construction 905 depicted inFIG. 9C . Adhesive was applied to three different molding tools and then laminated to a poly(ethylene terephthalate) backing in accordance with the invention. A non-structured adhesive layer of the same thickness was prepared as a control sample. Two samples having different structures were characterized using WYKO to monitor the surface roughness and fidelity of the adhesive structures over time. WYKO analysis indicated that the adhesive had a structured surface with features of regular height and pitch as shown inFIG. 13 . The height of the structures remained consistent at about 67% of tool depth throughout multiple runs. - The degree of wet-out was monitored using light microscopy for two different structured adhesives with the depth and pitch dimensions of Example 1. A non-structured adhesive layer of the same thickness was prepared as a control sample. In this example, the structured adhesive was laminated with a 2 kg roller onto glass prior to analysis. Due to the small pitch, structures with a pitch of 70 m had a higher percentage of wet-out than structures with approximately the same wall width with a pitch of 200 m (Table 1). The structured pattern of these adhesive layers did not wet-out even after 6 months.
-
TABLE 1 Tool (microns) Wet-out Shear time Peel force (PSA of 5 mils) depth × pitch Percentage 200 g oz/0.5 in 70 × 70 55-65% 1 day 13 100 × 200 25-35% 6 hours 5 Non-structured 95-100 >21 days 23 - Peel force data was collected for the three samples of Example 2 using the Peel Adhesion Test and appears in Table 1 and
FIG. 15 . The force to peel the structured adhesive samples was lower than the force required for the non-structured control sample. Table 1 also includes shear characteristics for each of the four samples. Structures with small pitch exhibited higher shear resistance than adhesive structures with larger pitch. - The peel from the structured adhesive was smoother than from the non-structured adhesive sample.
FIG. 14 shows a plot of peel force versus displacement for a structured adhesive tape having a 70 m pitch pulled at 90° at 5 inches per minute from aluminum. As can be seen inFIG. 14 , the peel from the structured adhesive is smoother and more consistent than from the non-structured adhesive. The average peel force of the structured sample was less than the average force required to peel non-structured tape of the same thickness. -
FIG. 15 shows a plot of peel force versus adhesive thickness for the three constructions described above. The structure with the largest pitch (i.e., lowest adhesive contact area) had the lowest peel force. For adhesives having hexagonal patterns, as the pitch decreased, the wet-out and peel force increased. The two structured adhesives of this example had a lower peel force than the non-structured adhesive. - A sample was prepared having the
general construction 990 depicted inFIG. 11C according to the methods described above. Adhesive was applied to the molding tool having structures with a pitch of 70 m and a height of 70 m and then laminated to a poly(ethylene terephthalate) backing. The adhesive layer was then transferred to a primed poly(ethylene terephthalate) backing according to the general method shown inFIG. 11 . The sample was characterized using light microscopy and WYKO to monitor the structures over time. Microscopy and WYKO analysis indicated that the adhesive had highly ordered and well-defined reservoirs or channels within the adhesive matrix. Reservoirs or channels with a height greater than 10 microns were stable longer than 9 months under ambient conditions with no applied pressure. WYKO and SEM were used to verify that the non-structured adhesive layer covering the reservoirs or channels was flat and smooth. Analysis revealed that there were few surface features on the non-structured adhesive surface. - Peel adhesion tests were performed for three constructions prepared as described in Example 4. The comparison of the peel forces for three designs is illustrated in
FIG. 16 . The tests indicated that the constructions including air filled reservoirs had a higher peel force than non-structured constructions of equal thickness, regardless of pitch or height. This is unlike non-structured adhesives, where more adhesive material is needed to increase peel force. - Multi-layer samples were prepared having the
general constructions 502 depicted inFIG. 6A using molding tools with several different pitch and depth dimensions. The multi-layer constructions were prepared according to the methods described above and depicted inFIG. 12A . Multi-layer constructions having a non-structured adhesive layer adjacent to surface 996 of construction 800 (depicted inFIG. 12B ) were also tested. The two different constructions yielded similar results. -
FIG. 17 shows a graph of peel force for the constructions with variable height and pitch. The legend indicates the height for the structures within each layer, starting at the layer adjacent to the backing. Although there was a wide scatter in the data, the plot indicated that the multi-layer adhesive coated articles exhibited a higher peel force relative to non-structured articles of the same thickness. - Multi-layer samples were prepared having the
general constructions 602 depicted inFIG. 6B . The multi-layer constructions were prepared according to the methods described above and depicted inFIG. 12C with thecap layer 100 being a non-structured PET backing. -
FIG. 18 shows a plot of peel force relative to adhesive thickness. The legend indicates that the height for the structures within each layer, starting at the layer (i.e., layer 1) adjacent to the backing. One of the constructions (referred to a (70+35)+35 in the figure legend) was prepared having theconstruction 602 with heights of 70 m and 35 m forlayers - Constructions having one, two, and three structured adhesive layers having the general constructions shown in
FIG. 7 were prepared using the techniques inFIG. 12B . These samples were prepared to monitor the effect of increasing the number of adhesive layers on peel force. A construction having one non-structured adhesive layer served as a control sample. Referring toFIG. 19 , a bar graph is shown illustrating the influence of peel rate on peel force for each of the four constructions. Peel forces were measured using the Peel Adhesion Test Procedure outlined above. The constructions were peeled from glass at 12 in/min and at 90 in/min, and peel forces were measured in ounces per inch. - At a peel rate of 90 in/min, the three adhesive constructions with structured surfaces exhibited a significantly lower peel force (<50%) than the construction having a non-structured exposed surface, regardless of the number of layers. The non-structured construction exhibited a substantial drop in peel force with lower peel rate (12 in/min). In contrast, the peel forces for each of the structured constructions remained more or less constant despite increasing the overall thickness of the constructions (i.e., by increasing the number of adhesive layers), and despite reducing the peel rate from 90 in/min to 12 in/min.
- Phenophthalein powder was spread at room temperature over the exposed structured surface of an adhesive construction 905 (
FIG. 9C ) at room temperature. - A second structured adhesive layer was laminated to the exposed surface to cover the filled reservoirs to provide a construction 800 (
FIG. 12B ). The sample was then subjected to drops of 0.10M KOH. Generally, the phenophthalein did not turn to a magenta color as would be expected if the KOH had mixed with the powder. This indicated that the cross-linked adhesive layer provided a barrier that prevented migration of the KOH into the reservoirs or channels. - Liquid green food color was spread onto the surface of the structured adhesive layer of an adhesive coated article, prepared as described in Example 9, using the edge of a glass slide, and then the excess was removed using a silicone-coated roller. Once the sample was dry, it was laminated to another layer of structured adhesive to form a laminate similar to
construction 800 depicted inFIG. 12B . Light microscopy images (not shown) indicated that the green food color remained encapsulated within the first layer of adhesive wells and did not migrate into the top adhesive layer. - A low density polyethylene (LDPE) sheet was molded into a hexagon post pattern (as depicted in
FIG. 8 ). The construction was prepared according to the method shown inFIGS. 9B and 9C , although no backing was required. The structured LDPE was cut into a one-inch diameter circle for evaluation. The LDPE disk was sandwiched between two non-structured adhesive tapes to form a construction similar to that illustrated inFIG. 1 . The first tape consisted of a silicone pressure sensitive adhesive on BOPP film, and was adhered to the non-structured side of LDPE so that it protruded beyond the structured LDPE. This provided a non-structured sealing region around the perimeter of the structured area. The second tape was an acrylate pressure sensitive adhesive on silicone paper liner, and was adhered to the structured side of the LDPE, such that the adhesive layers came into contact around the perimeter of the disk, thus sealing the device around the edges. A similar construction could be achieved, without the necessity of the bottom adhesive/film layer, if a non-structured sealing area was provided (for example by molding) around the perimeter of the structured area of the LDPE. Alternatively, the microstructure on the perimeter of the LDPE could be collapsed by pressure during lamination, so as to form a sealed edge. - A small hole was punched in the top acrylic/paper layer (prior to lamination) to allow access to the interior channels of the device. A vacuum pump was used to evacuate the air from the channels by means of a filling fixture, which seated against the fill hole of the device. A three-way valve was then operated which established a direct pathway between the fluid to be loaded (colored liquid) and the evacuated channels of the device. The liquid quickly flowed into the device and filled the channels. The amount of liquid was found to be 13 mg, thus establishing that this method can be used to load extremely small quantities of liquid into such devices.
- A number of embodiments of the invention have been described. Nevertheless, it will be understood that various modifications may be made without departing from the spirit and scope of the invention. Other embodiments are within the scope of the following claims.
Claims (20)
1. A method for making a prelaminate, comprising: (a) applying an adhesive to a structured surface of a tool to form an adhesive layer with a structured surface and a non-structured surface; (b) laminating a backing to the non-structured surface of the adhesive layer to form a prelaminate; and (c) removing the prelaminate from the tool.
2. The method of claim 1 , further comprising laminating a cap layer to the structured surface of the prelaminate.
3. The method of claim 1 , wherein the cap layer is an adhesive layer.
4. The method of claim 3 , wherein the adhesive layer is a structured adhesive layer.
5. The method of claim 1 , wherein the cap layer is a backing.
6. The method of claim 5 , wherein the backing is structured.
7. The method of claim 1 , further comprising laminating a cap layer to the structured surface of the prelaminate.
8. The method of claim 7 , further comprising removing the backing from the non-structured surface of the prelaminate.
9. A method for making a laminate, comprising: (a) providing a first prelaminate comprising a first adhesive layer with a structured first major surface and a non-structured second major surface, and a cap layer contacting the first major surface of the first prelaminate; and (b) providing a second prelaminate comprising a second adhesive layer with a structured first major surface and a non-structured second major surface, and a backing contacting the second major surface of the second prelaminate; and (c) contacting the second major surface of the first prelaminate to the first major surface of the second prelaminate.
10. The method of claim 9 , further comprising filling a region between the first adhesive layer and the second adhesive layer with at least one a deliverable and a non-deliverable substance.
11. The method of claim 10 , wherein the region is filled by coating.
12. The method of claim 10 , wherein the region is filled under a vacuum.
13. A method for making a laminate, comprising: (a) providing a first prelaminate comprising a first adhesive layer with a structured first major surface and a non-structured second major surface, and a first backing layer contacting the second major surface of the first prelaminate; (b) providing a second prelaminate comprising a second adhesive layer with a structured first major surface and a non-structured second major surface, and a second backing layer contacting the second major surface of the second prelaminate; and (c) contacting the first major surface of the first prelaminate with the first major surface of the second prelaminate.
14. The method of claim 13 , further comprising filling a region between the first adhesive layer and the second adhesive layer with at least one a deliverable and a non-deliverable substance.
15. The method of claim 14 , wherein the region is filled by coating.
16. The method of claim 15 , wherein the region is filled under a vacuum. A method for making a laminate, comprising: (a) providing a first prelaminate comprising a structured first major surface and a non-structured second major surface; (b) providing a second prelaminate comprising a first structured major surface and a second non-structured major surface, and a backing layer contacting the second major surface of the second prelaminate; and (c) contacting the second major surface of the first prelaminate with the first major surface of the second prelaminate.
17. The method of claim 13 , wherein the first prelaminate is formed by casting an adhesive on a tool.
18. An article comprising at least one first layer with a first major surface and a second major surface, wherein at least one of the first and second major surfaces is a structured surface; and a cap layer in contact with a structured surface of the first layer, wherein the cap layer comprises an adhesive.
19. The article of claim 18 , wherein the cap layer is non-structured.
20. The article of claim 18 , wherein the first layer comprises a polymeric film.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/665,989 US20130071622A1 (en) | 2001-10-09 | 2012-11-01 | Laminates with structured layers |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/974,710 US8323773B2 (en) | 2001-10-09 | 2001-10-09 | Laminates with structured layers |
US13/665,989 US20130071622A1 (en) | 2001-10-09 | 2012-11-01 | Laminates with structured layers |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/974,710 Continuation US8323773B2 (en) | 2001-10-09 | 2001-10-09 | Laminates with structured layers |
Publications (1)
Publication Number | Publication Date |
---|---|
US20130071622A1 true US20130071622A1 (en) | 2013-03-21 |
Family
ID=25522364
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/974,710 Expired - Fee Related US8323773B2 (en) | 2001-10-09 | 2001-10-09 | Laminates with structured layers |
US13/665,989 Abandoned US20130071622A1 (en) | 2001-10-09 | 2012-11-01 | Laminates with structured layers |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/974,710 Expired - Fee Related US8323773B2 (en) | 2001-10-09 | 2001-10-09 | Laminates with structured layers |
Country Status (8)
Country | Link |
---|---|
US (2) | US8323773B2 (en) |
EP (1) | EP1434827B1 (en) |
JP (1) | JP2005504873A (en) |
KR (1) | KR100901348B1 (en) |
CN (1) | CN1330727C (en) |
AT (1) | ATE427343T1 (en) |
DE (1) | DE60231817D1 (en) |
WO (1) | WO2003031529A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016200685A1 (en) * | 2015-06-12 | 2016-12-15 | 3M Innovative Properties Company | Article provided with adhesive layer and release layer |
US20180179419A1 (en) * | 2015-06-12 | 2018-06-28 | 3M Innovative Properties Company | Laminated film with backing layer, and film roll of same |
US20220355564A1 (en) * | 2016-06-30 | 2022-11-10 | 3M Innovative Properties Company | Cushioning structures including interconnected cells |
Families Citing this family (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6872268B2 (en) * | 2002-06-11 | 2005-03-29 | 3M Innovative Properties Company | Method of conforming an adherent film to a substrate by application of vacuum |
JP4540962B2 (en) * | 2003-10-10 | 2010-09-08 | リンテック株式会社 | Adhesive sheet and method for producing the same |
US7674251B2 (en) * | 2004-04-08 | 2010-03-09 | Boston Scientific Scimed, Inc. | Medical devices including aerated adhesive bonds and methods of forming the same |
US20080190877A1 (en) * | 2007-02-13 | 2008-08-14 | Robert Silverman | Novel Surface Coverings |
JP5541847B2 (en) * | 2008-04-30 | 2014-07-09 | 日東電工株式会社 | Adhesive sheet with release liner |
US8309207B2 (en) * | 2009-02-05 | 2012-11-13 | Avery Dennison Corporation | Adhesive articles with improved air egress |
CN101830084B (en) * | 2009-11-10 | 2013-07-03 | 青岛理工大学 | Novel powder impact damping honeycomb sandwich structure |
DE102009058651A1 (en) * | 2009-12-16 | 2011-06-22 | Leibniz-Institut für Neue Materialien gemeinnützige GmbH, 66123 | Device with controllable adhesion |
WO2012097199A2 (en) * | 2011-01-12 | 2012-07-19 | Kenney George B | Methods and system for producing on-demand reduction in coupling strength of pressure-sensitive adhesives |
EP2694610A1 (en) * | 2011-04-04 | 2014-02-12 | 3M Innovative Properties Company | Optical stack comprising adhesive |
KR102135453B1 (en) * | 2013-05-24 | 2020-07-20 | 삼성디스플레이 주식회사 | Adhesive Film and Organic Light Emitting Display Using The Same |
US9873469B2 (en) | 2013-11-22 | 2018-01-23 | Kyle R. Gillin | Flooring apparatus |
US9862124B2 (en) | 2014-07-18 | 2018-01-09 | 3M Innovative Properties Company | Multilayer optical adhesives and methods of making same |
CN106661396A (en) * | 2014-07-25 | 2017-05-10 | 3M创新有限公司 | Method for improving dampening performance of thin films |
USD765389S1 (en) | 2014-12-30 | 2016-09-06 | Medline Industries, Inc. | Dispenser |
US10457336B2 (en) * | 2015-09-10 | 2019-10-29 | Kyle R. Gillin | Flooring apparatus and methods of manufacture |
JP6836876B2 (en) * | 2015-10-14 | 2021-03-03 | 日東電工株式会社 | Adhesive tape with separator and separator |
JP6715669B2 (en) * | 2016-04-22 | 2020-07-01 | 住友化学株式会社 | Separate film with pressure-sensitive adhesive layer, optical member with separate film, and manufacturing method thereof |
US10647099B2 (en) | 2016-05-12 | 2020-05-12 | The Boeing Company | Methods and apparatus to form venting channels on a panel for a decorative layer |
US10525685B2 (en) | 2016-05-12 | 2020-01-07 | The Boeing Company | Methods and apparatus to couple a decorative composite having a reinforcing layer to a panel |
US11130318B2 (en) | 2016-05-12 | 2021-09-28 | The Boeing Company | Panels having barrier layers and related methods |
US10173394B2 (en) * | 2016-05-12 | 2019-01-08 | The Boeing Company | Methods and apparatus to vent gas and vapor from a panel via venting channels for a decorative layer |
US10751982B2 (en) | 2016-05-12 | 2020-08-25 | The Boeing Company | Methods and apparatus to remove gas and vapor from a panel for a decorative layer |
US10661530B2 (en) | 2016-05-12 | 2020-05-26 | The Boeing Company | Methods and apparatus to couple a decorative layer to a panel via a high-bond adhesive layer |
DE102017107468B4 (en) * | 2017-04-06 | 2019-02-21 | Lts Lohmann Therapie-Systeme Ag | PROCESS FOR PREPARING AN IN PARTICULAR ORAL, ACTIVE LAMINATE AND ACTIVE LAMINATE, IN PARTICULAR ORAL ACTIVE LAMINATE |
CA3073941A1 (en) | 2017-08-25 | 2019-02-28 | 3M Innovative Properties Company | Adhesive articles permitting damage free removal |
KR102646045B1 (en) | 2017-08-25 | 2024-03-11 | 쓰리엠 이노베이티브 프로퍼티즈 컴파니 | Adhesive items that can be removed without damage |
KR102371013B1 (en) * | 2017-09-11 | 2022-03-04 | 현대자동차주식회사 | The fabrication method of bubble sheet for vehicle |
EP3959279A4 (en) * | 2019-04-22 | 2022-12-21 | 3M Innovative Properties Company | Film with structured adhesive and structured liner and method of making |
CA3181312A1 (en) * | 2020-06-09 | 2021-12-16 | Ethel BERMEJO | 3d embossed film |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5597618A (en) * | 1993-04-30 | 1997-01-28 | Minnesota Mining And Manufacturing Company | Application member for applying a coating material to a substrate |
US5858510A (en) * | 1996-06-28 | 1999-01-12 | Seal Products, Inc. | Photographic pouch lamination |
US5888650A (en) * | 1996-06-03 | 1999-03-30 | Minnesota Mining And Manufacturing Company | Temperature-responsive adhesive article |
US6168682B1 (en) * | 1998-02-10 | 2001-01-02 | 3M Innovative Properties Company | Method of manufacturing an optical recording medium |
Family Cites Families (76)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2264628A (en) | 1939-08-03 | 1941-12-02 | Poster Products Inc | Advertising material |
US2638430A (en) * | 1950-07-06 | 1953-05-12 | Meyercord Co | Method of making surface-covering articles |
US2667436A (en) | 1950-09-21 | 1954-01-26 | Carborundum Co | Pressure sensitive adhesive coated sheet material |
CA677797A (en) | 1955-11-18 | 1964-01-14 | Minnesota Mining And Manufacturing Company | Sheet material having a pressure-sensitive adhesive coating of acrylate ester copolymer |
US3179552A (en) * | 1959-09-17 | 1965-04-20 | Minnesota Mining & Mfg | Pressure-sensitive adhesive tape |
US3301741A (en) * | 1963-09-11 | 1967-01-31 | Minnesota Mining & Mfg | Adhesive sheet and method of making |
US3239478A (en) | 1963-06-26 | 1966-03-08 | Shell Oil Co | Block copolymer adhesive compositions and articles prepared therefrom |
US3457919A (en) * | 1966-06-22 | 1969-07-29 | Smith & Nephew | Adhesive surgical and other tapes,plasters,bandages,dressings,and the like |
US3935338A (en) | 1973-04-23 | 1976-01-27 | Shell Oil Company | Process for the preparation of pressure-sensitive adhesive articles |
US4181752A (en) | 1974-09-03 | 1980-01-01 | Minnesota Mining And Manufacturing Company | Acrylic-type pressure sensitive adhesives by means of ultraviolet radiation curing |
JPS5145137A (en) | 1974-10-16 | 1976-04-17 | Unitika Ltd | |
US4025159A (en) | 1976-02-17 | 1977-05-24 | Minnesota Mining And Manufacturing Company | Cellular retroreflective sheeting |
JPS5316057U (en) * | 1976-07-23 | 1978-02-10 | ||
US4273827A (en) * | 1978-06-09 | 1981-06-16 | Theodore Sweeney & Company | Adhesive assembly |
US4576850A (en) | 1978-07-20 | 1986-03-18 | Minnesota Mining And Manufacturing Company | Shaped plastic articles having replicated microstructure surfaces |
DE7931547U1 (en) | 1979-11-08 | 1980-02-07 | Hoechst Ag, 6230 Frankfurt | DUCT TAPE |
US4460634A (en) | 1979-12-29 | 1984-07-17 | Masaaki Hasegawa | Adhesive sheet and method for manufacturing the same |
US4554324A (en) | 1982-09-16 | 1985-11-19 | Minnesota Mining And Manufacturing Co. | Acrylate copolymer pressure-sensitive adhesive composition and sheet materials coated therewith |
JPS6011156B2 (en) | 1982-09-17 | 1985-03-23 | 日東電工株式会社 | Pressure sensitive adhesive waterproof sheet |
JPS5978285A (en) | 1982-10-28 | 1984-05-07 | Mitsui Toatsu Chem Inc | Self-adhesive film |
US4599265A (en) | 1982-11-04 | 1986-07-08 | Minnesota Mining And Manufacturing Company | Removable pressure-sensitive adhesive tape |
JPS6096444A (en) | 1983-10-31 | 1985-05-30 | Nitto Electric Ind Co Ltd | Manufacture of grooved waterproof sheet |
DE3346100A1 (en) | 1983-12-21 | 1985-07-04 | Beiersdorf Ag, 2000 Hamburg | RESIDUE-FREE RE-DETACHABLE ADHESIVE SURFACES |
WO1985004602A1 (en) | 1984-04-12 | 1985-10-24 | Avery International Corporation | Removable labels |
DE3417746A1 (en) | 1984-05-12 | 1985-11-14 | Jackstädt GmbH, 5600 Wuppertal | Self-adhesive layer with covering arranged on the side facing away from its carrier |
JPS61293911A (en) * | 1985-06-24 | 1986-12-24 | Teisan Seiyaku Kk | Sustained release preparation |
US4771891A (en) | 1986-06-12 | 1988-09-20 | Avery International Corporation | Patterned adhesive label structures |
JPS63223081A (en) | 1987-03-13 | 1988-09-16 | Bridgestone Corp | Readily bondable tacky sheet |
DE3880341T2 (en) | 1987-02-09 | 1993-07-29 | Bridgestone Corp | IRREGULAR PROFILE ADHESIVE FILMS. |
US4952650A (en) | 1987-07-27 | 1990-08-28 | Minnesota Mining And Manufacturing Company | Suspension polymerization |
JPH02503717A (en) | 1988-03-07 | 1990-11-01 | 富士通株式会社 | X-ray image conversion sheet, method for producing X-ray image conversion sheet, stimulable phosphor, and method for producing stimulable phosphor |
US5158557A (en) * | 1988-04-04 | 1992-10-27 | Minnesota Mining And Manufacturing Company | Refastenable adhesive tape closure |
US5169727A (en) | 1988-08-04 | 1992-12-08 | Minnesota Mining And Manufacturing Company | Silicone-based pressure-sensitive adhesives having high solids content |
US5212011A (en) * | 1988-12-16 | 1993-05-18 | Sumitomo Chemical Co., Ltd. | Adhesive tape |
US4913926A (en) | 1989-03-28 | 1990-04-03 | Avery International Corporation | Curl free ion deposition label printing |
DK340189D0 (en) | 1989-07-10 | 1989-07-10 | Jens Villadsens Fabrikker A S | PROCEDURE FOR PREPARING A COMPLETE COATING ON A SUBSTRATE |
JP2545989B2 (en) | 1989-08-05 | 1996-10-23 | トヨタ自動車株式会社 | Fuel injection amount control device for internal combustion engine |
JPH03115639A (en) | 1989-09-29 | 1991-05-16 | Taisei Corp | Method for constructing wall by using cement material |
US5141790A (en) | 1989-11-20 | 1992-08-25 | Minnesota Mining And Manufacturing Company | Repositionable pressure-sensitive adhesive tape |
JP2994411B2 (en) | 1990-02-20 | 1999-12-27 | 大日本印刷株式会社 | Adhesive sheet |
JPH03115639U (en) * | 1990-03-13 | 1991-11-29 | ||
EP0459059B1 (en) | 1990-05-03 | 1994-07-27 | Minnesota Mining And Manufacturing Company | Tearable, continuous film medical PSA tape |
JP3093304B2 (en) | 1991-03-29 | 2000-10-03 | 大日本印刷株式会社 | Manufacturing method of shadow mask |
US5087494A (en) * | 1991-04-12 | 1992-02-11 | Minnesota Mining And Manufacturing Company | Electrically conductive adhesive tape |
US5273805A (en) | 1991-08-05 | 1993-12-28 | Minnesota Mining And Manufacturing Company | Structured flexible carrier web with recess areas bearing a layer of silicone on predetermined surfaces |
US5213868A (en) | 1991-08-13 | 1993-05-25 | Chomerics, Inc. | Thermally conductive interface materials and methods of using the same |
JP3522750B2 (en) * | 1991-09-12 | 2004-04-26 | ミネソタ マイニング アンド マニュファクチャリング カンパニー | Embossed pressure-sensitive adhesive transfer tape |
US5585178A (en) | 1991-12-31 | 1996-12-17 | Minnesota Mining & Manufacturing Company | Composite adhesive tape |
US5437754A (en) | 1992-01-13 | 1995-08-01 | Minnesota Mining And Manufacturing Company | Abrasive article having precise lateral spacing between abrasive composite members |
US5296277A (en) | 1992-06-26 | 1994-03-22 | Minnesota Mining And Manufacturing Company | Positionable and repositionable adhesive articles |
US5268228A (en) | 1992-09-21 | 1993-12-07 | Norwood Industries, Inc. | Grooved pressure-sensitive adhesive tape |
US5405675A (en) | 1992-12-10 | 1995-04-11 | Minnesota Mining And Manufacturing Company | Embossed multilayer film |
JPH06184502A (en) | 1992-12-18 | 1994-07-05 | Sekisui Chem Co Ltd | Self-adhesive tape or sheet and method for applying self-adhesive |
JPH06212131A (en) | 1993-01-19 | 1994-08-02 | Sekisui Chem Co Ltd | Easy-to-release decorative pressure-sensitive adhesive sheet, its production and its application |
JPH06248243A (en) | 1993-02-26 | 1994-09-06 | Sekisui Chem Co Ltd | Adhesive tape for photolithography |
JPH0790231A (en) | 1993-09-21 | 1995-04-04 | Sekisui Chem Co Ltd | Tacky adhesive sheet |
JP3592715B2 (en) | 1993-10-29 | 2004-11-24 | ミネソタ マイニング アンド マニュファクチャリング カンパニー | Pressure sensitive adhesive with microstructured surface |
JPH07138541A (en) | 1993-11-15 | 1995-05-30 | Nichiei Kako Kk | Protected self-adhesive film |
JPH08100155A (en) | 1994-09-30 | 1996-04-16 | Kuramoto Sangyo:Kk | Double bond tape and production of double bond tape |
US5795636A (en) | 1995-11-15 | 1998-08-18 | Minnesota Mining And Manufacturing Company | Positionable and repositionable adhesive article |
JPH09141812A (en) | 1995-11-17 | 1997-06-03 | Oji Paper Co Ltd | Embossed release paper and production thereof |
US5637646A (en) | 1995-12-14 | 1997-06-10 | Minnesota Mining And Manufacturing Company | Bulk radical polymerization using a batch reactor |
JPH09241589A (en) | 1996-03-13 | 1997-09-16 | Minnesota Mining & Mfg Co <3M> | Cushioning, pressure-sensitive adhesive sheet and cushioning structure |
US5889118A (en) | 1996-06-03 | 1999-03-30 | Minnesota Mining And Manufacturing Company | Thermomorphic "smart" pressure sensitive adhesives |
JPH1033741A (en) | 1996-07-23 | 1998-02-10 | Kineshio:Kk | Body adhesive tape |
US5897930A (en) | 1996-12-31 | 1999-04-27 | Minnesota Mining And Manufacturing Company | Multiple embossed webs |
US6197397B1 (en) | 1996-12-31 | 2001-03-06 | 3M Innovative Properties Company | Adhesives having a microreplicated topography and methods of making and using same |
EP0894644B1 (en) * | 1997-07-31 | 2002-02-06 | Dominique Blanc-Brude | Pressure-activated adhesive sheet |
JPH11181367A (en) * | 1997-11-10 | 1999-07-06 | Minnesota Mining & Mfg Co <3M> | Pressure-sensitive adhesive sheet and window glass structure |
US6171985B1 (en) | 1997-12-01 | 2001-01-09 | 3M Innovative Properties Company | Low trauma adhesive article |
JP4034866B2 (en) | 1998-01-05 | 2008-01-16 | スリーエム カンパニー | Adhesive sheet and method for producing the same |
JP3377439B2 (en) | 1998-05-11 | 2003-02-17 | 日栄化工株式会社 | Release paper and pressure-sensitive adhesive sheet and release treated surface processing method |
JP4065602B2 (en) * | 1998-05-14 | 2008-03-26 | スリーエム カンパニー | Adhesive sheet and adhesive sheet adhesive structure |
US6103152A (en) | 1998-07-31 | 2000-08-15 | 3M Innovative Properties Co. | Articles that include a polymer foam and method for preparing same |
US6623824B1 (en) | 1999-01-29 | 2003-09-23 | 3M Innovative Properties Company | Method for making a microreplicated article using a substrate comprising a syndiotactic vinyl aromatic polymer |
US6524675B1 (en) | 1999-05-13 | 2003-02-25 | 3M Innovative Properties Company | Adhesive-back articles |
-
2001
- 2001-10-09 US US09/974,710 patent/US8323773B2/en not_active Expired - Fee Related
-
2002
- 2002-07-25 EP EP02752575A patent/EP1434827B1/en not_active Expired - Lifetime
- 2002-07-25 KR KR1020047005314A patent/KR100901348B1/en not_active IP Right Cessation
- 2002-07-25 DE DE60231817T patent/DE60231817D1/en not_active Expired - Lifetime
- 2002-07-25 JP JP2003534503A patent/JP2005504873A/en active Pending
- 2002-07-25 CN CNB02819957XA patent/CN1330727C/en not_active Expired - Fee Related
- 2002-07-25 AT AT02752575T patent/ATE427343T1/en not_active IP Right Cessation
- 2002-07-25 WO PCT/US2002/023649 patent/WO2003031529A1/en active Application Filing
-
2012
- 2012-11-01 US US13/665,989 patent/US20130071622A1/en not_active Abandoned
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5597618A (en) * | 1993-04-30 | 1997-01-28 | Minnesota Mining And Manufacturing Company | Application member for applying a coating material to a substrate |
US5888650A (en) * | 1996-06-03 | 1999-03-30 | Minnesota Mining And Manufacturing Company | Temperature-responsive adhesive article |
US5858510A (en) * | 1996-06-28 | 1999-01-12 | Seal Products, Inc. | Photographic pouch lamination |
US6168682B1 (en) * | 1998-02-10 | 2001-01-02 | 3M Innovative Properties Company | Method of manufacturing an optical recording medium |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016200685A1 (en) * | 2015-06-12 | 2016-12-15 | 3M Innovative Properties Company | Article provided with adhesive layer and release layer |
US20180179419A1 (en) * | 2015-06-12 | 2018-06-28 | 3M Innovative Properties Company | Laminated film with backing layer, and film roll of same |
US10968370B2 (en) | 2015-06-12 | 2021-04-06 | 3M Innovative Properties Company | Article provided with adhesive layer and release layer |
US20220355564A1 (en) * | 2016-06-30 | 2022-11-10 | 3M Innovative Properties Company | Cushioning structures including interconnected cells |
Also Published As
Publication number | Publication date |
---|---|
CN1330727C (en) | 2007-08-08 |
CN1568358A (en) | 2005-01-19 |
DE60231817D1 (en) | 2009-05-14 |
KR100901348B1 (en) | 2009-06-05 |
ATE427343T1 (en) | 2009-04-15 |
US8323773B2 (en) | 2012-12-04 |
KR20050012715A (en) | 2005-02-02 |
JP2005504873A (en) | 2005-02-17 |
US20030077423A1 (en) | 2003-04-24 |
EP1434827A1 (en) | 2004-07-07 |
WO2003031529A1 (en) | 2003-04-17 |
EP1434827B1 (en) | 2009-04-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8323773B2 (en) | Laminates with structured layers | |
EP0603208B1 (en) | Patterned pressure sensitive adhesive transfer tape | |
CN1882670B (en) | Structured paper release liner, adhesive-backed article assembly and method of making same | |
EP1373424B1 (en) | Adhesive layers and release liners with pyramidal structures | |
US5738939A (en) | Composite adhesive tape | |
US7332206B2 (en) | Adhesives and release liners with pyramid structures | |
US20200238670A1 (en) | Adhesive article | |
US6838142B2 (en) | Specular laminates | |
JP5763536B2 (en) | Release material | |
EP1309663B1 (en) | Structured release liners with improved adhesion of adhesive articles | |
JP2016074882A (en) | Stretch releasing pressure-sensitive adhesive articles and methods of using the same | |
AU2001227295A1 (en) | Structured release liners with improved adhesion of adhesive articles | |
EP1532220A1 (en) | Curable adhesive articles having topographical features therein | |
WO1997033946A2 (en) | Cushioning adhesive sheet and cushioning structure | |
JPH11323270A (en) | Adhesive sheet and structural body glued with the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: 3M INNOVATIVE PROPERTIES COMPANY, MINNESOTA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:FLANIGAN, PEGGY-JEAN P.;MAZUREK, MIECZYSLAW H.;STARK, PETER A.;AND OTHERS;SIGNING DATES FROM 20130128 TO 20130129;REEL/FRAME:029761/0184 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |