US20130064846A1 - Neisserial antigens - Google Patents

Neisserial antigens Download PDF

Info

Publication number
US20130064846A1
US20130064846A1 US13/593,464 US201213593464A US2013064846A1 US 20130064846 A1 US20130064846 A1 US 20130064846A1 US 201213593464 A US201213593464 A US 201213593464A US 2013064846 A1 US2013064846 A1 US 2013064846A1
Authority
US
United States
Prior art keywords
protein
sequence
expression
gene
sequences
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/593,464
Inventor
Vincenzo Scarlato
Vega Masignani
Rino Rappuoli
Mariagrazia Pizza
Guido Grandi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Novartis AG
Original Assignee
Novartis AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from GBGB9723516.2A external-priority patent/GB9723516D0/en
Priority claimed from GBGB9724190.5A external-priority patent/GB9724190D0/en
Priority claimed from GBGB9724386.9A external-priority patent/GB9724386D0/en
Priority claimed from GBGB9725158.1A external-priority patent/GB9725158D0/en
Priority claimed from GBGB9726147.3A external-priority patent/GB9726147D0/en
Priority claimed from GBGB9800759.4A external-priority patent/GB9800759D0/en
Priority claimed from GBGB9819016.8A external-priority patent/GB9819016D0/en
Priority claimed from PCT/IB1998/001665 external-priority patent/WO1999024578A2/en
Application filed by Novartis AG filed Critical Novartis AG
Priority to US13/593,464 priority Critical patent/US20130064846A1/en
Publication of US20130064846A1 publication Critical patent/US20130064846A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/22Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Neisseriaceae (F)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/04Immunostimulants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies

Definitions

  • This invention relates to antigens from Neisseria bacteria.
  • Neisseria meningitidis and Neisseria gonorrhoeae are non-motile, gram negative diplococci that are pathogenic in humans.
  • N. meningitidis colonises the pharynx and causes meningitis (and, occasionally, septicaemia in the absence of meningitis);
  • N. gonorrhoeae colonises the genital tract and causes gonorrhea. Although colonising different areas of the body and causing completely different diseases, the two pathogens are closely related, although one feature that clearly differentiates meningococcus from gonococcus is the presence of a polysaccharide capsule that is present in all pathogenic meningococci.
  • N. gonorrhoeae caused approximately 800,000 cases per year during the period 1983-1990 in the United States alone (chapter by Meitzner & Cohen, “Vaccines Against Gonococcal Infection”, In: New Generation Vaccines, 2nd edition, ed. Levine, Woodrow, Kaper, & Cobon, Marcel Dekker, New York, 1997, pp. 817-842).
  • the disease causes significant morbidity but limited mortality.
  • Vaccination against N. gonorrhoeae would be highly desirable, but repeated attempts have failed.
  • the main candidate antigens for this vaccine are surface-exposed proteins such as pili, porins, opacity-associated proteins (Opas) and other surface-exposed proteins such as the Lip, Laz, IgA1 protease and transferrin-binding proteins.
  • the lipooligosaccharide (LOS) has also been suggested as vaccine (Meitzner & Cohen, supra).
  • N. meningitidis causes both endemic and epidemic disease.
  • the attack rate is 0.6-1 per 100,000 persons per year, and it can be much greater during outbreaks (see Lieberman et al. (1996) Safety and Immunogenicity of a Serogroups A/C Neisseria meningitidis Oligosaccharide-Protein Conjugate Vaccine in Young Children. JAMA 275(19):1499-1503; Schuchat et al (1997) Bacterial Meningitis in the United States in 1995 . N Engl J Med 337(14):970-976). In developing countries, endemic disease rates are much higher and during epidemics incidence rates can reach 500 cases per 100,000 persons per year.
  • the meningococcal vaccine currently in use is a tetravalent polysaccharide vaccine composed of serogroups A, C, Y and W135. Although efficacious in adolescents and adults, it induces a poor immune response and short duration of protection, and cannot be, used in infants [eg. Morbidity and Mortality weekly report, Vol.
  • Meningococcus B remains a problem, however. This serotype currently is responsible for approximately 50% of total meningitis in the United States, Europe, and South America.
  • the polysaccharide approach cannot be used because the menB capsular polysaccharide is a polymer of ⁇ (2-8)-linked N-acetyl neuraminic acid that is also present in mammalian tissue. This results in tolerance to the antigen; indeed, if an immune response were elicited, it would be anti-self, and therefore undesirable.
  • the capsular polysaccharide has, for instance, been chemically modified substituting the N-acetyl groups with N-propionyl groups, leaving the specific antigenicity unaltered (Romero & Outschoorn (1994) Current status of Meningococcal group B vaccine candidates: capsular or non-capsular? Clin Microbiol Rev 7(4):559-575).
  • OMPs outer membrane proteins
  • the invention provides proteins comprising the Neisserial amino acid sequences disclosed in the examples. These sequences relate to N. meningitidis or N. gonorrhoeae.
  • proteins comprising sequences homologous (ie. having sequence identity) to the Neisserial amino acid sequences disclosed in the examples.
  • the degree of identity is preferably greater than 50% (eg. 65%, 80%, 90%, or more).
  • These homologous proteins include mutants and allelic variants of the sequences disclosed in the examples.
  • 50% identity or more between two proteins is considered to be an indication of functional equivalence.
  • the invention further provides proteins comprising fragments of the Neisserial amino acid sequences disclosed in the examples.
  • the fragments should comprise at least n consecutive amino acids from the sequences and, depending on the particular sequence, n is 7 or more (eg. 8, 10, 12, 14, 16, 18, 20 or more).
  • n is 7 or more (eg. 8, 10, 12, 14, 16, 18, 20 or more).
  • the fragments comprise an epitope from the sequence.
  • the proteins of the invention can, of course, be prepared by various means (eg. recombinant expression, purification from cell culture, chemical synthesis etc.) and in various forms (eg. native, fusions etc.). They are preferably prepared in substantially pure or isolated form (ie. substantially free from other Neisserial or host cell proteins)
  • the invention provides antibodies which bind to these proteins. These may be polyclonal or monoclonal and may be produced by any suitable means.
  • the invention provides nucleic acid comprising the Neisserial nucleotide sequences disclosed in the examples.
  • the invention provides nucleic acid comprising sequences homologous (ie. having sequence identity) to the Neisserial nucleotide sequences disclosed in the examples.
  • the invention provides nucleic acid which can hybridise to the Neisserial nucleic acid disclosed in the examples, preferably under “high stringency” conditions (eg. 65° C. in a 0.1 ⁇ SSC, 0.5% SDS solution).
  • “high stringency” conditions eg. 65° C. in a 0.1 ⁇ SSC, 0.5% SDS solution.
  • Nucleic acid comprising fragments of these sequences are also provided. These should comprise at least n consecutive nucleotides from the Neisserial sequences and, depending on the particular sequence, n is 10 or more (eg 12, 14, 15, 18, 20, 25, 30, 35, 40 or more).
  • the invention provides nucleic acid encoding the proteins and protein fragments of the invention.
  • nucleic acid comprising sequences complementary to those described above (eg. for antisense or probing purposes).
  • Nucleic acid according to the invention can, of course, be prepared in many ways (eg. by chemical synthesis, from genomic or cDNA libraries, from the organism itself etc.) and can take various forms (eg. single stranded, double stranded, vectors, probes etc.).
  • nucleic acid includes DNA and RNA, and also their analogues, such as those containing modified backbones, and also peptide nucleic acids (PNA) etc.
  • PNA peptide nucleic acids
  • the invention provides vectors comprising nucleotide sequences of the invention (eg. expression vectors) and host cells transformed with such vectors.
  • compositions comprising protein, antibody, and/or nucleic acid according to the invention.
  • These compositions may be suitable as vaccines, for instance, or as diagnostic reagents, or as immunogenic compositions.
  • the invention also provides nucleic acid, protein, or antibody according to the invention for use as medicaments (eg. as vaccines) or as diagnostic reagents. It also provides the use of nucleic acid, protein, or antibody according to the invention in the manufacture of: (i) a medicament for treating or preventing infection due to Neisserial bacteria; (ii) a diagnostic reagent for detecting the presence of Neisserial bacteria or of antibodies raised against Neisserial bacteria; and/or (iii) a reagent which can raise antibodies against Neisserial bacteria.
  • Said Neisserial bacteria may be any species or strain (such as N. gonorrhoeae , or any strain of N. meningitidis , such as strain A, strain B or strain C).
  • the invention also provides a method of treating a patient, comprising administering to the patient a therapeutically effective amount of nucleic acid, protein, and/or antibody according to the invention.
  • the invention provides various processes.
  • a process for producing proteins of the invention comprising the step of culturing a host cell according to the invention under conditions which induce protein expression.
  • a process for producing protein or nucleic acid of the invention wherein the protein or nucleic acid is synthesised in part or in whole using chemical means.
  • a process for detecting polynucleotides of the invention comprising the steps of: (a) contacting a nucleic probe according to the invention with a biological sample under hybridizing conditions to form duplexes; and (b) detecting said duplexes.
  • a process for detecting proteins of the invention comprising the steps of: (a) contacting an antibody according to the invention with a biological sample under conditions suitable for the formation of an antibody-antigen complexes; and (b) detecting said complexes.
  • a composition containing X is “substantially free of” Y when at least 85% by weight of the total X+Y in the composition is X.
  • X comprises at least about 90% by weight of the total of X+Y in the composition, more preferably at least about 95% or even 99% by weight.
  • composition “comprising” means “including” as well as “consisting” eg. a composition “comprising” X may consist exclusively of X or may include something additional to X, such as X+Y.
  • heterologous refers to two biological components that are not found together in nature.
  • the components may be host cells, genes, or regulatory regions, such as promoters.
  • heterologous components are not found together in nature, they can function together, as when a promoter heterologous to a gene is operably linked to the gene.
  • Another example is where a Neisserial sequence is heterologous to a mouse host cell.
  • a further examples would be two epitopes from the same or different proteins which have been assembled in a single protein in an arrangement not found in nature.
  • An “origin of replication” is a polynucleotide sequence that initiates and regulates replication of polynucleotides, such as an expression vector.
  • the origin of replication behaves as an autonomous unit of polynucleotide replication within a cell, capable of replication under its own control.
  • An origin of replication may be needed for a vector to replicate in a particular host cell. With certain origins of replication, an expression vector can be reproduced at a high copy number in the presence of the appropriate proteins within the cell. Examples of origins are the autonomously replicating sequences, which are effective in yeast; and the viral T-antigen, effective in COS-7 cells.
  • a “mutant” sequence is defined as DNA, RNA or amino acid sequence differing from but having sequence identity with the native or disclosed sequence. Depending on the particular sequence, the degree of sequence identity between the native or disclosed sequence and the mutant sequence is preferably greater than 50% (eg. 60%, 70%, 80%, 90%, 95%, 99% or more, calculated using the Smith-Waterman algorithm as described above).
  • an “allelic variant” of a nucleic acid molecule, or region, for which nucleic acid sequence is provided herein is a nucleic acid molecule, or region, that occurs essentially at the same locus in the genome of another or second isolate, and that, due to natural variation caused by, for example, mutation or recombination, has a similar but not identical nucleic acid sequence.
  • allelic variant typically encodes a protein having similar activity to that of the protein encoded by the gene to which it is being compared.
  • allelic variant can also comprise an alteration in the 5′ or 3′ untranslated regions of the gene, such as in regulatory control regions (eg. see U.S. Pat. No. 5,753,235).
  • Neisserial nucleotide sequences can be expressed in a variety of different expression systems; for example those used with mammalian cells, baculoviruses, plants, bacteria, and yeast.
  • a mammalian promoter is any DNA sequence capable of binding mammalian RNA polymerase and initiating the downstream (3′) transcription of a coding sequence (eg. structural gene) into mRNA.
  • a promoter will have a transcription initiating region, which is usually placed proximal to the 5′ end of the coding sequence, and a TATA box, usually located 25-30 base pairs (bp) upstream of the transcription initiation site. The TATA box is thought to direct RNA polymerase II to begin RNA synthesis at the correct site.
  • a mammalian promoter will also contain an upstream promoter element, usually located within 100 to 200 bp upstream of the TATA box.
  • An upstream promoter element determines the rate at which transcription is initiated and can act in either orientation [Sambrook et al. (1989) “Expression of Cloned Genes in Mammalian Cells.” In Molecular Cloning: A Laboratory Manual, 2 nd ed.].
  • Mammalian viral genes are often highly expressed and have a broad host range; therefore sequences encoding mammalian viral genes provide particularly useful promoter sequences. Examples include the SV40 early promoter, mouse mammary tumor virus LTR promoter, adenovirus major late promoter (Ad MLP), and herpes simplex virus promoter. In addition, sequences derived from non-viral genes, such as the murine metallotheionein gene, also provide useful promoter sequences. Expression may be either constitutive or regulated (inducible), depending on the promoter can be induced with glucocorticoid in hormone-responsive cells.
  • Enhancer is a regulatory DNA sequence that can stimulate transcription up to 1000-fold when linked to homologous or heterologous promoters, with synthesis beginning at the normal RNA start site. Enhancers are also active when they are placed upstream or downstream from the transcription initiation site, in either normal or flipped orientation, or at a distance of more than 1000 nucleotides from the promoter [Maniatis et al. (1987) Science 236:1237; Alberts et al. (1989) Molecular Biology of the Cell, 2nd ed.]. Enhancer elements derived from viruses may be particularly useful, because they usually have a broader host range.
  • Examples include the SV40 early gene enhancer [Dijkema et al (1985) EMBO J. 4:761] and the enhancer/promoters derived from the long terminal repeat (LTR) of the Rous Sarcoma Virus [Gorman et al. (1982b) Proc. Natl. Acad. Sci. 79:6777] and from human cytomegalovirus [Boshart et al. (1985) Cell 41:521]. Additionally, some enhancers are regulatable and become active only in the presence of an inducer, such as a hormone or metal ion [Sassone-Corsi and Borelli (1986) Trends Genet. 2:215; Maniatis et al. (1987) Science 236:1237].
  • an inducer such as a hormone or metal ion
  • a DNA molecule may be expressed intracellularly in mammalian cells.
  • a promoter sequence may be directly linked with the DNA molecule, in which case the first amino acid at the N-terminus of the recombinant protein will always be a methionine, which is encoded by the ATG start codon. If desired, the N-terminus may be cleaved from the protein by in vitro incubation with cyanogen bromide.
  • foreign proteins can also be secreted from the cell into the growth media by creating chimeric DNA molecules that encode a fusion protein comprised of a leader sequence fragment that provides for secretion of the foreign protein in mammalian cells.
  • a leader sequence fragment that provides for secretion of the foreign protein in mammalian cells.
  • processing sites encoded between the leader fragment and the foreign gene that can be cleaved either in vivo or in vitro.
  • the leader sequence fragment usually encodes a signal peptide comprised of hydrophobic amino acids which direct the secretion of the protein from the cell.
  • the adenovirus triparite leader is an example of a leader sequence that provides for secretion of a foreign protein in mammalian cells.
  • transcription termination and polyadenylation sequences recognized by mammalian cells are regulatory regions located 3′ to the translation stop codon and thus, together with the promoter elements, flank the coding sequence.
  • the 3′ terminus of the mature mRNA is formed by site-specific post-transcriptional cleavage and polyadenylation [Birnstiel et al. (1985) Cell 41:349; Proudfoot and Whitelaw (1988) “Termination and 3′ end processing of eukaryotic RNA. In Transcription and splicing (ed. B. D. Hames and D. M. Glover); Proudfoot (1989) Trends Biochem. Sci. 14:105].
  • transcription terminater/polyadenylation signals include those derived from SV40 [Sambrook et al (1989) “Expression of cloned genes in cultured mammalian cells.” In Molecular Cloning: A Laboratory Manual].
  • the above described components comprising a promoter, polyadenylation signal, and transcription termination sequence are put together into expression constructs.
  • Enhancers, introns with functional splice donor and acceptor sites, and leader sequences may also be included in an expression construct, if desired.
  • Expression constructs are often maintained in a replicon, such as an extrachromosomal element (eg. plasmids) capable of stable maintenance in a host, such as mammalian cells or bacteria.
  • Mammalian replication systems include those derived from animal viruses, which require trans-acting factors to replicate.
  • plasmids containing the replication systems of papovaviruses such as SV40 [Gluzman (1981) Cell 23:175] or polyomavirus, replicate to extremely high copy number in the presence of the appropriate viral T antigen.
  • mammalian replicons include those derived from bovine papillomavirus and Epstein-Barr virus.
  • the replicon may have two replicaton systems, thus allowing it to be maintained, for example, in mammalian cells for expression and in a prokaryotic host for cloning and amplification.
  • mammalian-bacteria shuttle vectors include pMT2 [Kaufman et al. (1989) Mol. Cell. Biol. 9:946] and pHEBO [Shimizu et al. (1986) Mol. Cell. Biol. 6:1074].
  • the transformation procedure used depends upon the host to be transformed.
  • Methods for introduction of heterologous polynucleotides into mammalian cells include dextran-mediated transfection, calcium phosphate precipitation, polybrene mediated transfection, protoplast fusion, electroporation, encapsulation of the polynucleotide(s) in liposomes, and direct microinjection of the DNA into nuclei.
  • Mammalian cell lines available as hosts for expression are known in the art and include many immortalized cell lines available from the American Type Culture Collection (ATCC), including but not limited to, Chinese hamster ovary (CHO) cells, HeLa cells, baby hamster kidney (BHK) cells, monkey kidney cells (COS), human hepatocellular carcinoma cells (eg. Hep G2), and a number of other cell lines.
  • ATCC American Type Culture Collection
  • CHO Chinese hamster ovary
  • HeLa cells HeLa cells
  • BHK baby hamster kidney cells
  • COS monkey kidney cells
  • human hepatocellular carcinoma cells eg. Hep G2
  • the polynucleotide encoding the protein can also be inserted into a suitable insect expression vector, and is operably linked to the control elements within that vector.
  • Vector construction employs techniques which are known in the art.
  • the components of the expression system include a transfer vector, usually a bacterial plasmid, which contains both a fragment of the baculovirus genome, and a convenient restriction site for insertion of the heterologous gene or genes to be expressed; a wild type baculovirus with a sequence homologous to the baculovirus-specific fragment in the transfer vector (this allows for the homologous recombination of the heterologous gene in to the baculovirus genome); and appropriate insect host cells and growth media.
  • the vector and the wild type viral genome are transfected into an insect host cell where the vector and viral genome are allowed to recombine.
  • the packaged recombinant virus is expressed and recombinant plaques are identified and purified.
  • Materials and methods for baculovirus/insect cell expression systems are commercially available in kit form from, inter alia, Invitrogen, San Diego Calif. (“MaxBac” kit). These techniques are generally known to those skilled in the art and fully described in Summers and Smith, Texas Agricultural Experiment Station Bulletin No. 1555 (1987) (hereinafter “Summers and Smith”).
  • an intermediate transplacement construct Prior to inserting the DNA sequence encoding the protein into the baculovirus genome, the above described components, comprising a promoter, leader (if desired), coding sequence of interest, and transcription termination sequence, are usually assembled into an intermediate transplacement construct (transfer vector).
  • This construct may contain a single gene and operably linked regulatory elements; multiple genes, each with its owned set of operably linked regulatory elements; or multiple genes, regulated by the same set of regulatory elements.
  • Intermediate transplacement constructs are often maintained in a replicon, such as an extrachromosomal element (eg. plasmids) capable of stable maintenance in a host, such as a bacterium.
  • the replicon will have a replication system, thus allowing it to be maintained in a suitable host for cloning and amplification.
  • pAc373 the most commonly used transfer vector for introducing foreign genes into AcNPV.
  • Many other vectors known to those of skill in the art, have also been designed. These include, for example, pVL985 (which alters the polyhedrin start codon from ATG to ATT, and which introduces a BamHI cloning site 32 basepairs downstream from the ATT; see Luckow and Summers, Virology (1989) 17:31.
  • the plasmid usually also contains the polyhedrin polyadenylation signal (Miller et al. (1988) Ann. Rev. Microbiol., 42:177) and a prokaryotic ampicillin-resistance (amp) gene and origin of replication for selection and propagation in E. coli.
  • polyhedrin polyadenylation signal iller et al. (1988) Ann. Rev. Microbiol., 42:177
  • amp prokaryotic ampicillin-resistance
  • Baculovirus transfer vectors usually contain a baculovirus promoter.
  • a baculovirus promoter is any DNA sequence capable of binding a baculovirus RNA polymerase and initiating the downstream (5′ to 3′) transcription of a coding sequence (eg. structural gene) into mRNA.
  • a promoter will have a transcription initiation region which is usually placed proximal to the 5′ end of the coding sequence. This transcription initiation region usually includes an RNA polymerase binding site and a transcription initiation site.
  • a baculovirus transfer vector may also have a second domain called an enhancer, which, if present, is usually distal to the structural gene. Expression may be either regulated or constitutive.
  • Structural genes abundantly transcribed at late times in a viral infection cycle, provide particularly useful promoter sequences. Examples include sequences derived from the gene encoding the viral polyhedron protein, Friesen et al., (1986) “The Regulation of Baculovirus Gene Expression,” in: The Molecular Biology of Baculoviruses (ed. Walter Doerfler); EPO Publ. Nos. 127 839 and 155 476; and the gene encoding the p10 protein, Vlak et al., (1988), J. Gen. Virol. 69:765.
  • DNA encoding suitable signal sequences can be derived from genes for secreted insect or baculovirus proteins, such as the baculovirus polyhedrin gene (Carbonell et al. (1988) Gene, 73:409).
  • the signals for mammalian cell posttranslational modifications such as signal peptide cleavage, proteolytic cleavage, and phosphorylation
  • the signals required for secretion and nuclear accumulation also appear to be conserved between the invertebrate cells and vertebrate cells
  • leaders of non-insect origin such as those derived from genes encoding human ⁇ -interferon, Maeda et al., (1985), Nature 315:592; human gastrin-releasing peptide, Lebacq-Verheyden et al., (1988), Molec.
  • a recombinant polypeptide or polyprotein may be expressed intracellularly or, if it is expressed with the proper regulatory sequences, it can be secreted.
  • Good intracellular expression of nonfused foreign proteins usually requires heterologous genes that ideally have a short leader sequence containing suitable translation initiation signals preceding an ATG start signal. If desired, methionine at the N-terminus may be cleaved from the mature protein by in vitro incubation with cyanogen bromide.
  • recombinant polyproteins or proteins which are not naturally secreted can be secreted from the insect cell by creating chimeric DNA molecules that encode a fusion protein comprised of a leader sequence fragment that provides for secretion of the foreign protein in insects.
  • the leader sequence fragment usually encodes a signal peptide comprised of hydrophobic amino acids which direct the translocation of the protein into the endoplasmic reticulum.
  • an insect cell host After insertion of the DNA sequence and/or the gene encoding the expression product precursor of the protein, an insect cell host is co-transformed with the heterologous DNA of the transfer vector and the genomic DNA of wild type baculovirus—usually by co-transfection.
  • the promoter and transcription termination sequence of the construct will usually comprise a 2-5 kb section of the baculovirus genome.
  • Methods for introducing heterologous DNA into the desired site in the baculovirus virus are known in the art. (See Summers and Smith supra; Ju et al. (1987); Smith et al., Mol. Cell. Biol. (1983) 3:2156; and Luckow and Summers (1989)).
  • the insertion can be into a gene such as the polyhedrin gene, by homologous double crossover recombination; insertion can also be into a restriction enzyme site engineered into the desired baculovirus gene. Miller et al., (1989), Bioessays 4:91.
  • the DNA sequence, when cloned in place of the polyhedrin gene in the expression vector, is flanked both 5′ and 3′ by polyhedrin-specific sequences and is positioned downstream of the polyhedrin promoter.
  • the newly formed baculovirus expression vector is subsequently packaged into an infectious recombinant baculovirus. Homologous recombination occurs at low frequency (between about 1% and about 5%); thus, the majority of the virus produced after cotransfection is still wild-type virus. Therefore, a method is necessary to identify recombinant viruses.
  • An advantage of the expression system is a visual screen allowing recombinant viruses to be distinguished.
  • the polyhedrin protein which is produced by the native virus, is produced at very high levels in the nuclei of infected cells at late times after viral infection. Accumulated polyhedrin protein forms occlusion bodies that also contain embedded particles.
  • occlusion bodies up to 15 ⁇ m in size, are highly refractile, giving them a bright shiny appearance that is readily visualized under the light microscope.
  • Cells infected with recombinant viruses lack occlusion bodies.
  • the transfection supernatant is plagued onto a monolayer of insect cells by techniques known to those skilled in the art. Namely, the plaques are screened under the light microscope for the presence (indicative of wild-type virus) or absence (indicative of recombinant virus) of occlusion bodies. “Current Protocols in Microbiology” Vol. 2 (Ausubel et al. eds) at 16.8 (Supp. 10, 1990); Summers and Smith, supra; Miller et al. (1989).
  • Recombinant baculovirus expression vectors have been developed for infection into several insect cells.
  • recombinant baculoviruses have been developed for, inter alis: Aedes aegypti, Autographa californica, Bombyx mori, Drosophila melanogaster, Spodoptera frugiperda , and Trichoplusia ni (WO 89/046699; Carbonell et al., (1985) J. Virol. 56:153; Wright (1986) Nature 321:718; Smith et al., (1983) Mol. Cell. Biol. 3:2156; and see generally, Fraser, et al. (1989) In Vitro Cell. Dev. Biol. 25:225).
  • Cells and cell culture media are commercially available for both direct and fusion expression of heterologous polypeptides in a baculovirus/expression system; cell culture technology is generally known to those skilled in the art. See, eg. Summers and Smith supra.
  • the modified insect cells may then be grown in an appropriate nutrient medium, which allows for stable maintenance of the plasmid(s) present in the modified insect host.
  • the expression product gene is under inducible control, the host may be grown to high density, and expression induced.
  • the product will be continuously expressed into the medium and the nutrient medium must be continuously circulated, while removing the product of interest and augmenting depleted nutrients.
  • the product may be purified by such techniques as chromatography, eg. HPLC, affinity chromatography, ion exchange chromatography, etc.; electrophoresis; density gradient centrifugation; solvent extraction, or the like.
  • the product may be further purified, as required, so as to remove substantially any insect proteins which are also secreted in the medium or result from lysis of insect cells, so as to provide a product which is at least substantially free of host debris, eg. proteins, lipids and polysaccharides.
  • host debris eg. proteins, lipids and polysaccharides.
  • recombinant host cells derived from the transformants are incubated under conditions which allow expression of the recombinant protein encoding sequence. These conditions will vary, dependent upon the host cell selected. However, the conditions are readily ascertainable to those of ordinary skill in the art, based upon what is known in the art.
  • a desired polynucleotide sequence is inserted into an expression cassette comprising genetic regulatory elements designed for operation in plants.
  • the expression cassette is inserted into a desired expression vector with companion sequences upstream and downstream from the expression cassette suitable for expression in a plant host.
  • the companion sequences will be of plasmid or viral origin and provide necessary characteristics to the vector to permit the vectors to move DNA from an original cloning host, such as bacteria, to the desired plant host.
  • the basic bacterial/plant vector construct will preferably provide a broad host range prokaryote replication origin; a prokaryote selectable marker; and, for Agrobacterium transformations, T DNA sequences for Agrobacterium -mediated transfer to plant chromosomes.
  • the construct will preferably also have a selectable marker gene suitable for determining if a plant cell has been transformed.
  • a selectable marker gene suitable for determining if a plant cell has been transformed is found in Wilmink and Dons, 1993 , Plant Mol. Biol. Reptr, 11(2):165-185.
  • Sequences suitable for permitting integration of the heterologous sequence into the plant genome are also recommended. These might include transposon sequences and the like for homologous recombination as well as Ti sequences which permit random insertion of a heterologous expression cassette into a plant genome. Suitable prokaryote selectable markers include resistance toward antibiotics such as ampicillin or tetracycline. Other DNA sequences encoding additional functions may also be present in the vector, as is known in the art.
  • the nucleic acid molecules of the subject invention may be included into an expression cassette for expression of the protein(s) of interest.
  • the recombinant expression cassette will contain in addition to the heterologous protein encoding sequence the following elements, a promoter region, plant 5′ untranslated sequences, initiation codon depending upon whether or not the structural gene comes equipped with one, and a transcription and translation termination sequence.
  • Unique restriction enzyme sites at the 5′ and 3′ ends of the cassette allow for easy insertion into a pre-existing vector.
  • a heterologous coding sequence may be for any protein relating to the present invention.
  • the sequence encoding the protein of interest will encode a signal peptide which allows processing and translocation of the protein, as appropriate, and will usually lack any sequence which might result in the binding of the desired protein of the invention to a membrane. Since, for the most part, the transcriptional initiation region will be for a gene which is expressed and translocated during germination, by employing the signal peptide which provides for translocation, one may also provide for translocation of the protein of interest. In this way, the protein(s) of interest will be translocated from the cells in which they are expressed and may be efficiently harvested.
  • the ultimate expression of the desired gene product will be in a eucaryotic cell it is desirable to determine whether any portion of the cloned gene contains sequences which will be processed out as introns by the host's splicosome machinery. If so, site-directed mutagenesis of the “intron” region may be conducted to prevent losing a portion of the genetic message as a false intron code, Reed and Maniatis, Cell 41:95-105, 1985.
  • the vector can be microinjected directly into plant cells by use of micropipettes to mechanically transfer the recombinant DNA. Crossway, Mol. Gen. Genet, 202:179-185, 1985.
  • the genetic material may also be transferred into the plant cell by using polyethylene glycol, Krens, et al., Nature, 296, 72-74, 1982.
  • Another method of introduction of nucleic acid segments is high velocity ballistic penetration by small particles with the nucleic acid either within the matrix of small beads or particles, or on the surface, Klein, et al., Nature, 327, 70-73, 1987 and Knudsen and Muller, 1991 , Planta, 185:330-336 teaching particle bombardment of barley endosperm to create transgenic barley.
  • Yet another method of introduction would be fusion of protoplasts with other entities, either minicells, cells, lysosomes or other fusible lipid-surfaced bodies, Fraley, et al., Proc. Natl. Acad. Sci. USA, 79, 1859-1863, 1982.
  • the vector may also be introduced into the plant cells by electroporation. (Fromm et al., Proc. Natl. Acad. Sci. USA 82:5824, 1985).
  • plant protoplasts are electroporated in the presence of plasmids containing the gene construct. Electrical impulses of high field strength reversibly permeabilize biomembranes allowing the introduction of the plasmids. Electroporated plant protoplasts reform the cell wall, divide, and form plant callus.
  • All plants from which protoplasts can be isolated and cultured to give whole regenerated plants can be transformed by the present invention so that whole plants are recovered which contain the transferred gene. It is known that practically all plants can be regenerated from cultured cells or tissues, including but not limited to all major species of sugarcane, sugar beet, cotton, fruit and other trees, legumes and vegetables.
  • Some suitable plants include, for example, species from the genera Fragaria, Lotus, Medicago, Onobrychis, Trifolium, Trigonella, Vigna, Citrus, Linum, Geranium, Manihot, Daucus, Arabidopsis, Brassica, Raphanus, Sinapis, Atropa, Capsicum, Datura, Hyoscyamus, Lycopersion, Nicotiana, Solanum, Petunia, Digitalis, Majorana, Cichorium, Helianthus, Lactuca, Bromus, Asparagus, Antirrhinum, Hererocallis, Nemesia, Pelargonium, Panicum, Pennisetum, Ranunculus, Senecio, Salpiglossis, Cucumis, Browaalia, Glycine, Lolium, Zea, Triticum, Sorghum , and Datura.
  • Means for regeneration vary from species to species of plants, but generally a suspension of transformed protoplasts containing copies of the heterologous gene is first provided. Callus tissue is formed and shoots may be induced from callus and subsequently rooted. Alternatively, embryo formation can be induced from the protoplast suspension. These embryos germinate as natural embryos to form plants.
  • the culture media will generally contain various amino acids and hormones, such as auxin and cytokinins. It is also advantageous to add glutamic acid and proline to the medium, especially for such species as corn and alfalfa. Shoots and roots normally develop simultaneously. Efficient regeneration will depend on the medium, on the genotype, and on the history of the culture. If these three variables are controlled, then regeneration is fully reproducible and repeatable.
  • the desired protein of the invention may be excreted or alternatively, the protein may be extracted from the whole plant. Where the desired protein of the invention is secreted into the medium, it may be collected. Alternatively, the embryos and embryoless-half seeds or other plant tissue may be mechanically disrupted to release any secreted protein between cells and tissues. The mixture may be suspended in a buffer solution to retrieve soluble proteins. Conventional protein isolation and purification methods will be then used to purify the recombinant protein. Parameters of time, temperature pH, oxygen, and volumes will be adjusted through routine methods to optimize expression and recovery of heterologous protein.
  • a bacterial promoter is any DNA sequence capable of binding bacterial RNA polymerase and initiating the downstream (3′) transcription of a coding sequence (eg. structural gene) into mRNA.
  • a promoter will have a transcription initiation region which is usually placed proximal to the 5′ end of the coding sequence. This transcription initiation region usually includes an RNA polymerase binding site and a transcription initiation site.
  • a bacterial promoter may also have a second domain called an operator, that may overlap an adjacent RNA polymerase binding site at which RNA synthesis begins. The operator permits negative regulated (inducible) transcription, as a gene repressor protein may bind the operator and thereby inhibit transcription of a specific gene.
  • Constitutive expression may occur in the absence of negative regulatory elements, such as the operator.
  • positive regulation may be achieved by a gene activator protein binding sequence, which, if present is usually proximal (5′) to the RNA polymerase binding sequence.
  • An example of a gene activator protein is the catabolite activator protein (CAP), which helps initiate transcription of the lac operon in Escherichia coli ( E. coli ) [Raibaud et al. (1984) Annu. Rev. Genet. 18:173].
  • Regulated expression may therefore be either positive or negative, thereby either enhancing or reducing transcription.
  • Sequences encoding metabolic pathway enzymes provide particularly useful promoter sequences. Examples include promoter sequences derived from sugar metabolizing enzymes, such as galactose, lactose (lac) [Chang et al. (1977) Nature 198:1056], and maltose. Additional examples include promoter sequences derived from biosynthetic enzymes such as tryptophan (trp) [Goeddel et al. (1980) Nuc. Acids Res. 8:4057; Yelverton et al. (1981) Nucl. Acids Res. 9:731; U.S. Pat. No. 4,738,921; EP-A-0036776 and EP-A-0121775].
  • sugar metabolizing enzymes such as galactose, lactose (lac) [Chang et al. (1977) Nature 198:1056]
  • maltose additional examples include promoter sequences derived from biosynthetic enzymes such as tryptophan (
  • synthetic promoters which do not occur in nature also function as bacterial promoters.
  • transcription activation sequences of one bacterial or bacteriophage promoter may be joined with the operon sequences of another bacterial or bacteriophage promoter, creating a synthetic hybrid promoter [U.S. Pat. No. 4,551,433].
  • the tac promoter is a hybrid trp-lac promoter comprised of both trp promoter and lac operon sequences that is regulated by the lac repressor [Amann et al. (1983) Gene 25:167; de Boer et al. (1983) Proc. Natl. Acad. Sci. 80:21].
  • a bacterial promoter can include naturally occurring promoters of non-bacterial origin that have the ability to bind bacterial RNA polymerase and initiate transcription.
  • a naturally occurring promoter of non-bacterial origin can also be coupled with a compatible RNA polymerase to produce high levels of expression of some genes in prokaryotes.
  • the bacteriophage T7 RNA polymerase/promoter system is an example of a coupled promoter system [Studier et al. (1986) J. Mol. Biol. 189:113; Tabor et al., (1985) Proc Natl. Acad. Sci. 82:1074].
  • a hybrid promoter can also be comprised of a bacteriophage promoter and an E. coli operator region (EPO-A-0 267 851).
  • an efficient ribosome binding site is also useful for the expression of foreign genes in prokaryotes.
  • the ribosome binding site is called the Shine-Dalgarno (SD) sequence and includes an initiation codon (ATG) and a sequence 3-9 nucleotides in length located 3-11 nucleotides upstream of the initiation codon [Shine et al. (1975) Nature 254:34].
  • SD sequence is thought to promote binding of mRNA to the ribosome by the pairing of bases between the SD sequence and the 3′ and of E.
  • a DNA molecule may be expressed intracellularly.
  • a promoter sequence may be directly linked with the DNA molecule, in which case the first amino acid at the N-terminus will always be a methionine, which is encoded by the ATG start codon. If desired, methionine at the N-terminus may be cleaved from the protein by in vitro incubation with cyanogen bromide or by either in vivo on in vitro incubation with a bacterial methionine N-terminal peptidase (EPO-A-0 219 237).
  • Fusion proteins provide an alternative to direct expression. Usually, a DNA sequence encoding the N-terminal portion of an endogenous bacterial protein, or other stable protein, is fused to the 5′ end of heterologous coding sequences. Upon expression, this construct will provide a fusion of the two amino acid sequences.
  • the bacteriophage lambda cell gene can be linked at the 5′ terminus of a foreign gene and expressed in bacteria.
  • the resulting fusion protein preferably retains a site for a processing enzyme (factor Xa) to cleave the bacteriophage protein from the foreign gene [Nagai et al. (1984) Nature 309:810]. Fusion proteins can also be made with sequences from the lacZ [Jia et al.
  • the DNA sequence at the junction of the two amino acid sequences may or may not encode a cleavable site.
  • a ubiquitin fusion protein is made with the ubiquitin region that preferably retains a site for a processing enzyme (eg. ubiquitin specific processing-protease) to cleave the ubiquitin from the foreign protein.
  • a processing enzyme eg. ubiquitin specific processing-protease
  • foreign proteins can also be secreted from the cell by creating chimeric DNA molecules that encode a fusion protein comprised of a signal peptide sequence fragment that provides for secretion of the foreign protein in bacteria [U.S. Pat. No. 4,336,336].
  • the signal sequence fragment usually encodes a signal peptide comprised of hydrophobic amino acids which direct the secretion of the protein from the cell.
  • the protein is either secreted into the growth media (gram-positive bacteria) or into the periplasmic space, located between the inner and outer membrane of the cell (gram-negative bacteria).
  • processing sites which can be cleaved either in vivo or in vitro encoded between the signal peptide fragment and the foreign gene.
  • DNA encoding suitable signal sequences can be derived from genes for secreted bacterial proteins, such as the E. coli outer membrane protein gene (ompA) [Masui et al. (1983), in: Experimental Manipulation of Gene Expression ; Ghrayeb et al. (1984) EMBO J. 3:2437] and the E. coli alkaline phosphatase signal sequence (phoA) [Oka et al. (1985) Proc. Natl. Acad. Sci. 82:7212].
  • the signal sequence of the alpha-amylase gene from various Bacillus strains can be used to secrete heterologous proteins from B. subtilis [Palva et al. (1982) Proc. Natl. Acad. Sci. USA 79:5582; EP-A-0 244 042].
  • transcription termination sequences recognized by bacteria are regulatory regions located 3′ to the translation stop codon, and thus together with the promoter flank the coding sequence. These sequences direct the transcription of an mRNA which can be translated into the polypeptide encoded by the DNA. Transcription termination sequences frequently include DNA sequences of about 50 nucleotides capable of forming stem loop structures that aid in terminating transcription. Examples include transcription termination sequences derived from genes with strong promoters, such as the irp gene in E. coli as well as other biosynthetic genes.
  • expression constructs are often maintained in a replicon, such as an extrachromosomal element (eg. plasmids) capable of stable maintenance in a host, such as bacteria.
  • a replicon will have a replication system, thus allowing it to be maintained in a prokaryotic host either for expression or for cloning and amplification.
  • a replicon may be either a high or low copy number plasmid.
  • a high copy number plasmid will generally have a copy number ranging from about 5 to about 200, and usually about 10 to about 150.
  • a host containing a high copy number plasmid will preferably contain at least about 10, and more preferably at least about 20 plasmids. Either a high or low copy number vector may be selected, depending upon the effect of the vector and the foreign protein on the host.
  • the expression constructs can be integrated into the bacterial genome with an integrating vector.
  • Integrating vectors usually contain at least one sequence homologous to the bacterial chromosome that allows the vector to integrate. Integrations appear to result from recombinations between homologous DNA in the vector and the bacterial chromosome.
  • integrating vectors constructed with DNA from various Bacillus strains integrate into the Bacillus chromosome (EP-A-0 127 328). Integrating vectors may also be comprised of bacteriophage of transposon sequences.
  • extrachromosomal and integrating expression constructs may contain selectable markers to allow for the selection of bacterial strains that have been transformed.
  • Selectable markers can be expressed in the bacterial host and may include genes which render bacteria resistant to drugs such as ampicillin, chloramphenicol, erythromycin, kanamycin (neomycin), and tetracycline [Davies et al. (1978) Annu. Rev. Microbiol. 32:469].
  • Selectable markers may also include biosynthetic genes, such as those in the histidine, tryptophan, and leucine biosynthetic pathways.
  • Transformation vectors are usually comprised of a selectable market that is either maintained in a replicon or developed into an integrating vector, as described above.
  • Expression and transformation vectors have been developed for transformation into many bacteria.
  • expression vectors have been developed for, inter alfa, the following bacteria: Bacillus subtilis [Palva et al. (1982) Proc. Natl. Acad. Sci. USA 79:5582; EP-A-0 036 259 and EP-A-0 063 953; WO 84/04541] , Escherichia coli [Shimatake et al. (1981) Nature 292:128; Amann et al. (1985) Gene 40:183; Studier et al. (1986) J. Mol. Biol.
  • Methods of introducing exogenous DNA into bacterial hosts are well-known in the art, and usually include either the transformation of bacteria treated with CaCl 2 or other agents, such as divalent cations and DMSO.
  • DNA can also be introduced into bacterial cells by electroporation. Transformation procedures usually vary with the bacterial specie to be transformed. See eg. [Masson et al. (1989) FEMS Microbiol. Lett. 60:273; Palva et al. (1982) Proc. Natl. Acad. Sci. USA 79:5582; EP-A-0 036 259 and EP-A-0 063 953; WO 84/04541, Bacillus ], [Miller et al. (1988) Proc. Natl. Acad.
  • a yeast promoter is any DNA sequence capable of binding yeast RNA polymerase and initiating the downstream (3′) transcription of a coding sequence (eg. structural gene) into mRNA.
  • a promoter will have a transcription initiation region which is usually placed proximal to the 5′ end of the coding sequence. This transcription initiation region usually includes an RNA polymerase binding site (the “TATA Box”) and a transcription initiation site.
  • a yeast promoter may also have a second domain called an upstream activator sequence (UAS), which, if present, is usually distal to the structural gene.
  • the UAS permits regulated (inducible) expression. Constitutive expression occurs in the absence of a UAS. Regulated expression may be either positive or negative, thereby either enhancing or reducing transcription.
  • Yeast is a fermenting organism with an active metabolic pathway, therefore sequences encoding enzymes in the metabolic pathway provide particularly useful promoter sequences. Examples include alcohol dehydrogenase (ADH) (EP-A-0 284 044), enolase, glucokinase, glucose-6-phosphate isomerase, glyceraldehyde-3-phosphate-dehydrogenase (GAP or GAPDH), hexokinase, phosphofructokinase, 3-phosphoglycerate mutase, and pyruvate kinase (PyK) (EPO-A-0 329 203).
  • the yeast PHO5 gene encoding acid phosphatase, also provides useful promoter sequences [Myanohara et al. (1983) Proc. Natl. Acad. Sci. USA 80:1).
  • synthetic promoters which do not occur in nature also function as yeast promoters.
  • UAS sequences of one yeast promoter may be joined with the transcription activation region of another yeast promoter, creating a synthetic hybrid promoter.
  • hybrid promoters include the ADH regulatory sequence linked to the GAP transcription activation region (U.S. Pat. Nos. 4,876,197 and 4,880,734).
  • Other examples of hybrid promoters include promoters which consist of the regulatory sequences of either the ADH2, GAL4, GAL10, OR PHO5 genes, combined with the transcriptional activation region of a glycolytic enzyme gene such as GAP or PyK (EP-A-0 164 556).
  • a yeast promoter can include naturally occurring promoters of non-yeast origin that have the ability to bind yeast RNA polymerase and initiate transcription. Examples of such promoters include, inter alia, [Cohen et al. (1980) Proc. Natl. Acad. Sci. USA 77:1078; Henikoff et al. (1981) Nature 283:835; Hollenberg et al. (1981) Curr. Topics Microbiol. Immunol. 96:119; Hollenberg et al. (1979) “The Expression of Bacterial Antibiotic Resistance Genes in the Yeast Saccharomyces cerevisiae ,” in: Plasmids of Medical, Environmental and Commercial Importance (eds. K. N. Timmis and A. Puhler); Mercerau-Puigalon et al. (1980) Gene 11:163; Panthier et al. (1980) Curr. Genet. 2:109;].
  • a DNA molecule may be expressed intracellularly in yeast.
  • a promoter sequence may be directly linked with the DNA molecule, in which case the first amino acid at the N-terminus of the recombinant protein will always be a methionine, which is encoded by the ATG start codon. If desired, methionine at the N-terminus may be cleaved from the protein by in vitro incubation with cyanogen bromide.
  • Fusion proteins provide an alternative for yeast expression systems, as well as in mammalian, baculovirus, and bacterial expression systems.
  • a DNA sequence encoding the N-terminal portion of an endogenous yeast protein, or other stable protein is fused to the 5′ end of heterologous coding sequences.
  • this construct will provide a fusion of the two amino acid sequences.
  • the yeast or human superoxide dismutase (SOD) gene can be linked at the 5′ terminus of a foreign gene and expressed in yeast.
  • the DNA sequence at the junction of the two amino acid sequences may or may not encode a cleavable site. See eg. EP-A-0 196 056.
  • a ubiquitin fusion protein is made with the ubiquitin region that preferably retains a site for a processing enzyme (eg, ubiquitin-specific processing protease) to cleave the ubiquitin from the foreign protein.
  • a processing enzyme eg, ubiquitin-specific processing protease
  • native foreign protein can be isolated (eg. WO88/024066).
  • foreign proteins can also be secreted from the cell into the growth media by creating chimeric DNA molecules that encode a fusion protein comprised of a leader sequence fragment that provide for secretion in yeast of the foreign protein.
  • a leader sequence fragment that provide for secretion in yeast of the foreign protein.
  • processing sites encoded between the leader fragment and the foreign gene that can be cleaved either in vivo or in vitro.
  • the leader sequence fragment usually encodes a signal peptide comprised of hydrophobic amino acids which direct the secretion of the protein from the cell.
  • DNA encoding suitable signal sequences can be derived from genes for secreted yeast proteins, such as the yeast invertase gene (EP-A-0 012 873; JPO. 62,096,086) and the A-factor gene (U.S. Pat. No. 4,588,684).
  • leaders of non-yeast origin such as an interferon leader, exist that also provide for secretion in yeast (EP-A-0 060 057).
  • a preferred class of secretion leaders are those that employ a fragment of the yeast alpha-factor gene, which contains both a “pre” signal sequence, and a “pro” region.
  • the types of alpha-factor fragments that can be employed include the full-length pre-pro alpha factor leader (about 83 amino acid residues) as well as truncated alpha-factor leaders (usually about 25 to about 50 amino acid residues) (U.S. Pat. Nos. 4,546,083 and 4,870,008; EP-A-0 324 274).
  • Additional leaders employing an alpha-factor leader fragment that provides for secretion include hybrid alpha-factor leaders made with a presequence of a first yeast, but a pro-region from a second yeast alphafactor. (eg. see WO 89/02463.)
  • transcription termination sequences recognized by yeast are regulatory regions located 3′ to the translation stop codon, and thus together with the promoter flank the coding sequence. These sequences direct the transcription of an mRNA which can be translated into the polypeptide encoded by the DNA. Examples of transcription terminator sequence and other yeast-recognized termination sequences, such as those coding for glycolytic enzymes.
  • the above described components comprising a promoter, leader (if desired), coding sequence of interest, and transcription termination sequence, are put together into expression constructs.
  • Expression constructs are often maintained in a replicon, such as an extrachromosomal element (eg. plasmids) capable of stable maintenance in a host, such as yeast or bacteria.
  • the repl icon may have two replication systems, thus allowing it to be maintained, for example, in yeast for expression and in a prokaryotic host for cloning and amplification.
  • yeast-bacteria shuttle vectors include YEp24 [Botstein et al. (1979) Gene 8:17-24], pCl/1 [Brake et al. (1984) Proc. Natl. Acad.
  • a replicon may be either a high or low copy number plasmid.
  • a high copy number plasmid will generally have a copy number ranging from about 5 to about 200, and usually about 10 to about 150.
  • a host containing a high copy number plasmid will preferably have at least about 10, and more preferably at least about 20. Enter a high or low copy number vector may be selected, depending upon the effect of the vector and the foreign protein on the host. See eg. Brake et al., supra.
  • the expression constructs can be integrated into the yeast genome with an integrating vector.
  • Integrating vectors usually contain at least one sequence homologous to a yeast chromosome that allows the vector to integrate, and preferably contain two homologous sequences flanking the expression construct. Integrations appear to result from recombinations between homologous DNA in the vector and the yeast chromosome [Orr-Weaver et al. (1983) Methods in Enzymol. 101:228-245].
  • An integrating vector may be directed to a specific locus in yeast by selecting the appropriate homologous sequence for inclusion in the vector. See Orr-Weaver et al., supra.
  • One or more expression construct may integrate, possibly affecting levels of recombinant protein produced [Rine et al.
  • the chromosomal sequences included in the vector can occur either as a single segment in the vector, which results in the integration of the entire vector, or two segments homologous to adjacent segments in the chromosome and flanking the expression construct in the vector, which can result in the stable integration of only the expression construct.
  • extrachromosomal and integrating expression constructs may contain selectable markers to allow for the selection of yeast strains that have been transformed.
  • Selectable markers may include biosynthetic genes that can be expressed in the yeast host, such as ADE2, HIS4, LEU2, TRP1, and ALG7, and the G418 resistance gene, which confer resistance in yeast cells to tunicamycin and G418, respectively.
  • a suitable selectable marker may also provide yeast with the ability to grow in the presence of toxic compounds, such as metal.
  • the presence of CUP1 allows yeast to grow in the presence of copper ions [Butt et al. (1987) Microbiol, Rev. 51:351].
  • Transformation vectors are usually comprised of a selectable marker that is either maintained in a replicon or developed into an integrating vector, as described above.
  • Expression and transformation vectors have been developed for transformation into many yeasts.
  • expression vectors have been developed for, inter alia, the following yeasts: Candida albicans [Kurtz, et al. (1986) Mol. Cell. Biol. 6:142] , Candida maltosa [Kunze, et al. (1985) J. Basic Microbiol. 25:141] . Hansenula polymorpha [Gleeson, et al. (1986) J. Gen. Microbiol. 132:3459; Roggenkamp et al. (1986) Mol. Gen. Genet. 202:302] , Kluyveromyces fragilis [Das, et al.
  • Methods of introducing exogenous DNA into yeast hosts are well-known in the art, and usually include either the transformation of spheroplasts or of intact yeast cells treated with alkali cations. Transformation procedures usually vary with the yeast species to be transformed. See eg. [Kurtz et al. (1986) Mol. Cell. Biol. 6:142; Kunze et al. (1985) J. Basic Microbiol. 25:141 ; Candida ]; [Gleeson et al. (1986) J. Gen. Microbiol. 132:3459; Roggenkamp et al. (1986) Mol. Gen. Genet. 202:302 ; Hansenula ]; [Das et al. (1984) J. Bacteriol.
  • antibody refers to a polypeptide or group of polypeptides composed of at least one antibody combining site.
  • An “antibody combining site” is the three-dimensional binding space with an internal surface shape and charge distribution complementary to the features of an epitope of an antigen, which allows a binding of the antibody with the antigen.
  • Antibody includes, for example, vertebrate antibodies, hybrid antibodies, chimeric antibodies, humanised antibodies, altered antibodies, univalent antibodies, Fab proteins, and single domain antibodies.
  • Antibodies against the proteins of the invention are useful for affinity chromatography, immunoassays, and distinguishing/identifying Neisserial proteins.
  • Antibodies to the proteins of the invention may be prepared by conventional methods.
  • the protein is first used to immunize a suitable animal, preferably a mouse, rat, rabbit or goat. Rabbits and goats are preferred for the preparation of polyclonal sera due to the volume of serum obtainable, and the availability of labeled anti-rabbit and anti-goat antibodies.
  • Immunization is generally performed by mixing or emulsifying the protein in saline, preferably in an adjuvant such as Freund's complete adjuvant, and injecting the mixture or emulsion parenterally (generally subcutaneously or intramuscularly): A dose of 50-200 ⁇ g/injection is typically sufficient.
  • Immunization is generally boosted 2-6 weeks later with one or more injections of the protein in saline, preferably using Freund's incomplete adjuvant.
  • Polyclonal antisera is obtained by bleeding the immunized animal into a glass or plastic container, incubating the blood at 25° C. for one hour, followed by incubating at 4° C. for 2-18 hours. The serum is recovered by centrifugation (eg. 1,000 g for 10 minutes). About 20-50 ml per bleed may be obtained from rabbits.
  • Monoclonal antibodies are prepared using the standard method of Kohler & Milstein [ Nature (1975) 256:495-96], or a modification thereof.
  • a mouse or rat is immunized as described above.
  • the spleen (and optionally several large lymph nodes) is removed and dissociated into single cells.
  • the spleen cells may be screened (after removal of nonspecifically adherent cells) by applying a cell suspension to a plate or well coated with the protein antigen.
  • B-cells expressing membrane-bound immunoglobulin specific for the antigen bind to the plate, and are not rinsed away with the rest of the suspension.
  • Resulting B-cells, or all dissociated spleen cells are then induced to fuse with myeloma cells to form hybridomas, and are cultured in a selective medium (eg. hypoxanthine, aminopterin, thymidine medium, “HAT”).
  • a selective medium eg. hypoxanthine, aminopterin, thymidine medium, “HAT”.
  • the resulting hybridomas are plated by limiting dilution, and are assayed for the production of antibodies which bind specifically to the immunizing antigen (and which do not bind to unrelated antigens).
  • the selected MAb-secreting hybridomas are then cultured either in vitro (eg. in tissue culture bottles or hollow fiber reactors), or in vivo (as ascites in mice).
  • the antibodies may be labeled using conventional techniques. Suitable labels include fluorophores, chromophores, radioactive atoms (particularly 32 P and 125 I), electron-dense reagents, enzymes, and ligands having specific binding partners. Enzymes are typically detected by their activity. For example, horseradish peroxidase is usually detected by its ability to convert 3,3′,5,5′-tetramethylbenzidine (TMB) to a blue pigment, quantifiable with a spectrophotometer. “Specific binding partner” refers to a protein capable of binding a ligand molecule with high specificity, as for example in the case of an antigen and a monoclonal antibody specific therefor.
  • 125 I may serve as a radioactive label or as an electron-dense reagent.
  • HRP may serve as enzyme or as antigen for a MAb.
  • MAbs and avidin also require labels in the practice of this invention: thus, one might label a MAb with biotin, and detect its presence with avidin labeled with 125 I, or with an anti-biotin MAb labeled with HRP.
  • Other permutations and possibilities will be readily apparent to those of ordinary skill in the art, and are considered as equivalents within the scope of the instant invention.
  • compositions can comprise either polypeptides, antibodies, or nucleic acid of the invention.
  • the pharmaceutical compositions will comprise a therapeutically effective amount of either polypeptides, antibodies, or polynucleotides of the claimed invention.
  • therapeutically effective amount refers to an amount of a therapeutic agent to treat, ameliorate, or prevent a desired disease or condition, or to exhibit a detectable therapeutic or preventative effect.
  • the effect can be detected by, for example, chemical markers or antigen levels.
  • Therapeutic effects also include reduction in physical symptoms, such as decreased body temperature.
  • the precise effective amount for a subject will depend upon the subject's size and health, the nature and extent of the condition, and the therapeutics or combination of therapeutics selected for administration. Thus, it is not useful to specify an exact effective amount in advance. However, the effective amount for a given situation can be determined by routine experimentation and is within the judgement of the clinician.
  • an effective dose will be from about 0.01 mg/kg to 50 mg/kg or 0.05 mg/kg to about 10 mg/kg of the DNA constructs in the individual to which it is administered.
  • a pharmaceutical composition can also contain a pharmaceutically acceptable carrier.
  • pharmaceutically acceptable carrier refers to a carrier for administration of a therapeutic agent, such as antibodies or a polypeptide, genes, and other therapeutic agents.
  • the term refers to any pharmaceutical carrier that does not itself induce the production of antibodies harmful to the individual receiving the composition, and which may be administered without undue toxicity.
  • Suitable carriers may be large, slowly metabolized macromolecules such as proteins, polysaccharides, polylactic acids, polyglycolic acids, polymeric amino acids, amino acid copolymers, and inactive virus particles. Such carriers are well known to those of ordinary skill in the art.
  • Pharmaceutically acceptable salts can be used therein, for example, mineral acid salts such as hydrochlorides, hydrobromides, phosphates, sulfates, and the like; and the salts of organic acids such as acetates, propionates, malonates, benzoates, and the like.
  • mineral acid salts such as hydrochlorides, hydrobromides, phosphates, sulfates, and the like
  • organic acids such as acetates, propionates, malonates, benzoates, and the like.
  • compositions may contain liquids such as water, saline, glycerol and ethanol. Additionally, auxiliary substances, such as wetting or emulsifying agents, pH buffering substances, and the like, may be present in such vehicles.
  • the therapeutic compositions are prepared as injectables, either as liquid solutions or suspensions; solid forms suitable for solution in, or suspension in, liquid vehicles prior to injection may also be prepared. Liposomes are included within the definition of a pharmaceutically acceptable carrier.
  • compositions of the invention can be administered directly to the subject.
  • the subjects to be treated can be animals; in particular, human subjects can be treated.
  • Direct delivery of the compositions will generally be accomplished by injection, either subcutaneously, intraperitoneally, intravenously or intramuscularly or delivered to the interstitial space of a tissue.
  • the compositions can also be administered into a lesion.
  • Other modes of administration include oral and pulmonary administration, suppositories, and transdermal or transcutaneous applications (eg. see WO98/20734), needles, and gene guns or hyposprays.
  • Dosage treatment may be a single dose schedule or a multiple dose schedule.
  • Vaccines according to the invention may either be prophylactic (ie. to prevent infection) or therapeutic (ie. to treat disease after infection).
  • Such vaccines comprise immunising antigen(s), immunogen(s), polypeptide(s), protein(s) or nucleic acid, usually in combination with “pharmaceutically acceptable carriers,” which include any carrier that does not itself induce the production of antibodies harmful to the individual receiving the composition.
  • Suitable carriers are typically large, slowly metabolized macromolecules such as proteins, polysaccharides, polylactic acids, polyglycolic acids, polymeric amino acids, amino acid copolymers, lipid aggregates (such as oil droplets or liposomes), and inactive virus particles.
  • Such carriers are well known to those of ordinary skill in the art. Additionally, these carriers may function as immunostimulating agents (“adjuvants”).
  • the antigen or immunogen may be conjugated to a bacterial toxoid, such as a toxoid from diphtheria, tetanus, cholera, H. pylori , etc. pathogens.
  • a bacterial toxoid such as a toxoid from diphtheria, tetanus, cholera, H. pylori , etc. pathogens.
  • Preferred adjuvants to enhance effectiveness of the composition include, but are not limited to: (1) aluminum salts (alum), such as aluminum hydroxide, aluminum phosphate, aluminum sulfate, etc; (2) oil-in-water emulsion formulations (with or without other specific immunostimulating agents such as muramyl peptides (see below) or bacterial cell wall components), such as for example (a) MF59TM (WO 90/14837; Chapter 10 in Vaccine design: the subunit and adjuvant approach , eds.
  • aluminum salts alum
  • oil-in-water emulsion formulations with or without other specific immunostimulating agents such as muramyl peptides (see below) or bacterial cell wall components
  • MF59TM WO 90/14837
  • Span 85 containing various amounts of MTP-PE (see below), although not required) formulated into submicron particles using a microfluidizer such as Model 110Y microfluidizer (Microfluidics, Newton, Mass.), (b) SAF, containing 10% Squalane, 0.4% Tween 80, 5% pluronic-blocked polymer L121, and thr-MDP (see below) either microfluidized into a submicron emulsion or vortexed to generate a larger particle size emulsion, and (c) RibiTM adjuvant system (RAS), (Ribi Immunochem, Hamilton, Mont.) containing 2% Squalene, 0.2% Tween 80, and one or more bacterial cell wall components from the group consisting of monophosphorylipid A (MPL), trehalose dimycolate (TDM), and cell wall skeleton (MPL), trehalose dimycolate (TDM), and cell wall skeleton (MPL), trehalose dimycol
  • interferons eg. gamma interferon
  • M-CSF macrophage colony stimulating factor
  • TNF tumor necrosis factor
  • other substances that act as immunostimulating agents to enhance the effectiveness of the composition.
  • Alum and MF59TM are preferred.
  • muramyl peptides include, but are not limited to, N-acetyl-muramyl-L-threonyl-D-isoglutamine (thr-MDP), N-acetyl-normuramyl-L-alanyl-D-isoglutamine (nor-MDP), N-acetylmuramyl-L-alanyl-D-isoglutaminyl-L-alanine-2-(1′-2′-dipalmitoyl-sn-glycero-3-hydroxyphosphoryloxy)-ethylamine (MTP-PE), etc.
  • thr-MDP N-acetyl-muramyl-L-threonyl-D-isoglutamine
  • nor-MDP N-acetyl-normuramyl-L-alanyl-D-isoglutamine
  • MTP-PE N-acetylmuramyl-L-alanyl-D-
  • the immunogenic compositions typically will contain diluents, such as water, saline, glycerol, ethanol, etc. Additionally, auxiliary substances, such as wetting or emulsifying agents, pH buffering substances, and the like, may be present in such vehicles.
  • the immunogenic compositions are prepared as injectables, either as liquid solutions or suspensions; solid forms suitable for solution in, or suspension in, liquid vehicles prior to injection may also be prepared.
  • the preparation also may be emulsified or encapsulated in liposomes for enhanced adjuvant effect, as discussed above under pharmaceutically acceptable carriers.
  • Immunogenic compositions used as vaccines comprise an immunologically effective amount of the antigenic or immunogenic polypeptides, as well as any other of the above-mentioned components, as needed.
  • immunologically effective amount it is meant that the administration of that amount to an individual, either in a single dose or as part of a series, is effective for treatment or prevention. This amount varies depending upon the health and physical condition of the individual to be treated, the taxonomic group of individual to be treated (eg. nonhuman primate, primate, etc.), the capacity of the individual's immune system to synthesize antibodies, the degree of protection desired, the formulation of the vaccine, the treating doctor's assessment of the medical situation, and other relevant factors. It is expected that the amount will fall in a relatively broad range that can be determined through routine trials.
  • the immunogenic compositions are conventionally administered parenterally, eg. by injection, either subcutaneously, intramuscularly, or transdermally/transcutaneously (eg. WO98/20734). Additional formulations suitable for other modes of administration include oral and pulmonary formulations, suppositories, and transdermal applications. Dosage treatment may be a single dose schedule or a multiple dose schedule.
  • the vaccine may be administered in conjunction with other immunoregulatory agents.
  • DNA vaccination may be employed [eg. Robinson & Torres (1997) Seminars in Immunology 9:271-283; Donnelly et al. (1997) Annu Rev Immunol 15:617-648; see later herein].
  • Gene therapy vehicles for delivery of constructs including a coding sequence of a therapeutic of the invention, to be delivered to the mammal for expression in the mammal can be administered either locally or systemically.
  • constructs can utilize viral or non-viral vector approaches in in vivo or ex vivo modality. Expression of such coding sequence can be induced using endogenous mammalian or heterologous promoters. Expression of the coding sequence in vivo can be either constitutive or regulated.
  • the invention includes gene delivery vehicles capable of expressing the contemplated nucleic acid sequences.
  • the gene delivery vehicle is preferably a viral vector and, more preferably, a retroviral, adenoviral, adeno-associated viral (AAV), herpes viral, or alphavirus vector.
  • the viral vector can also be an astrovirus, coronavirus, orthomyxovirus, papovavirus, paramyxovirus, parvovirus, picornavirus, poxvirus, or togavirus viral vector. See generally, Jolly (1994) Cancer Gene Therapy 1:51-64; Kimura (1994) Human Gene Therapy 5:845-852; Connelly (1995) Human Gene Therapy 6:185-193; and Kaplitt (1994) Nature Genetics 6:148-153.
  • Retroviral vectors are well known in the art and we contemplate that any retroviral gene therapy vector is employable in the invention, including B, C and D type retroviruses, xenotropic retroviruses (for example, NZB-X1, NZB-X2 and NZB9-1 (see O'Neill (1985) J. Virol. 53:160) polytropic retroviruses eg. MCF and MCF-M LV (see Kelly (1983) J. Virol. 45:291), spumaviruses and lentiviruses. See RNA Tumor Viruses, Second Edition, Cold Spring Harbor Laboratory, 1985.
  • xenotropic retroviruses for example, NZB-X1, NZB-X2 and NZB9-1 (see O'Neill (1985) J. Virol. 53:160)
  • polytropic retroviruses eg. MCF and MCF-M LV (see Kelly (1983) J. Virol. 45:291)
  • retroviral gene therapy vector may be derived from different retroviruses.
  • retrovector LTRs may be derived from a Murine Sarcoma Virus, a tRNA binding site from a Rous Sarcoma Virus, a packaging signal from a Murine Leukemia Virus, and an origin of second strand synthesis from an Avian Leukosis Virus.
  • Retroviral vectors may be used to generate transduction competent retroviral vector particles by introducing them into appropriate packaging cell lines (see U.S. Pat. No. 5,591,624).
  • Retrovirus vectors can be constructed for site-specific integration into host cell DNA by incorporation of a chimeric integrase enzyme into the retroviral particle (see WO96/37626). It is preferable that the recombinant viral vector is a replication defective recombinant virus.
  • Packaging cell lines suitable for use with the above-described retrovirus vectors are well known in the art, are readily prepared (see WO95/30763 and WO92/05266), and can be used to create producer cell lines (also termed vector cell lines or “VCLs”) for the production of recombinant vector particles.
  • the packaging cell lines are made from human parent cells (eg. HT1080 cells) or mink parent cell lines, which eliminates inactivation in human serum.
  • Preferred retroviruses for the construction of retroviral gene therapy vectors include Avian Leukosis Virus, Bovine Leukemia, Virus, Murine Leukemia Virus, Mink-Cell Focus-Inducing Virus, Murine Sarcoma Virus, Reticuloendotheliosis Virus and Rous Sarcoma Virus.
  • Particularly preferred Murine Leukemia Viruses include 4070A and 1504A (Hartley and Rowe (1976) J Virol 19:19-25), Abelson (ATCC No. VR-999), Friend (ATCC No. VR-245), Graffi, Gross (ATCC Nol VR-590), Kirsten, Harvey Sarcoma Virus and Rauscher (ATCC No.
  • Retroviruses may be obtained from depositories or collections such as the American Type Culture Collection (“ATCC”) in Rockville, Md. or isolated from known sources using commonly available techniques.
  • ATCC American Type Culture Collection
  • Exemplary known retroviral gene therapy vectors employable in this invention include those described in patent applications GB2200651, EP0415731, EP0345242, EP0334301, WO89/02468; WO89/05349, WO89/09271, WO90/02806, WO90/07936, WO94/03622, WO93/25698, WO93/25234, WO93/11230, WO93/10218, WO91/02805, WO91/02825, WO95/07994, U.S. Pat. No. 5,219,740, U.S. Pat. No. 4,405,712, U.S. Pat. No. 4,861,719, U.S. Pat. No.
  • Human adenoviral gene therapy vectors are also known in the art and employable in this invention. See, for example, Berkner (1988) Biotechniques 6:616 and Rosenfeld (1991) Science 252:431, and WO93/07283, WO93/06223, and WO93/07282.
  • Exemplary known adenoviral gene therapy vectors employable in this invention include those described in the above referenced documents and in WO94/12649, WO93/03769, WO93/19191, WO94/28938, WO95/11984, WO95/00655, WO95/27071, WO95/29993, WO95/34671, WO96/05320, WO94/08026, WO94/11506, WO93/06223, WO94/24299, WO95/14102, WO95/24297, WO95/02697, WO94/28152, WO94/24299, WO95/09241, WO95/25807, WO95/05835, WO94/18922 and WO95/09654.
  • the gene delivery vehicles of the invention also include adenovirus associated virus (AAV) vectors.
  • AAV adenovirus associated virus
  • Leading and preferred examples of such vectors for use in this invention are the AAV-2 based vectors disclosed in Srivastava, WO93/09239.
  • Most preferred AAV vectors comprise the two AAV inverted terminal repeats in which the native D-sequences are modified by substitution of nucleotides, such that at least 5 native nucleotides and up to 18 native nucleotides, preferably at least 10 native nucleotides up to 18 native nucleotides, most preferably 10 native nucleotides are retained and the remaining nucleotides of the D-sequence are deleted or replaced with non-native nucleotides.
  • the native D-sequences of the AAV inverted terminal repeats are sequences of 20 consecutive nucleotides in each AAV inverted terminal repeat (ie. there is one sequence at each end) which are not involved in HP formation.
  • the non-native replacement nucleotide may be any nucleotide other than the nucleotide found in the native D-sequence in the same position.
  • Other employable exemplary AAV vectors are pWP-19, pWN-1, both of which are disclosed in Nahreini (1993) Gene 124:257-262.
  • Another example of such an AAV vector is psub201 (see Samulski (1987) J. Virol. 61:3096).
  • Another exemplary AAV vector is the Double-D ITR vector. Construction of the Double-D ITR vector is disclosed in U.S. Pat. No. 5,478,745. Still other vectors are those disclosed in Carter U.S. Pat. No. 4,797,368 and Muzyczka U.S. Pat. No.
  • AAV vector employable in this invention is SSV9AFABTKneo, which contains the AFP enhancer and albumin promoter and directs expression predominantly in the liver. Its structure and construction are disclosed in Su (1996) Human Gene Therapy 7:463-470. Additional AAV gene therapy vectors are described in U.S. Pat. No. 5,354,678, U.S. Pat. No. 5,173,414, U.S. Pat. No. 5,139,941, and U.S. Pat. No. 5,252,479.
  • the gene therapy vectors of the invention also include herpes vectors.
  • Leading and preferred examples are herpes simplex virus vectors containing a sequence encoding a thymidine kinase polypeptide such as those disclosed in U.S. Pat. No. 5,288,641 and EP0176170 (Roizman).
  • herpes simplex virus vectors include HFEWICP6-LacZ disclosed in WO95/04139 (Wistar Institute), pHSVlac described in Geller (1988) Science 241:1667-1669 and in WO90/09441 and WO92/07945, HSV Us3::pgC-lacZ described in Fink (1992) Human Gene Therapy 3:11-19 and HSV 7134, 2 RH 105 and GAL4 described in EP 0453242 (Breakefield), and those deposited with the ATCC as accession numbers ATCC VR-977 and ATCC VR-260.
  • alpha virus gene therapy vectors that can be employed in this invention.
  • Preferred alpha virus vectors are Sindbis viruses vectors. Togaviruses, Semliki Forest virus (ATCC VR-67; ATCC VR-1247), Middleberg virus (ATCC VR-370), Ross River virus (ATCC VR-373; ATCC VR-1246), Venezuelan equine encephalitis virus (ATCC VR923; ATCC VR-1250; ATCC VR-1249; ATCC VR-532), and those described in U.S. Pat. Nos. 5,091,309, 5,217,879, and WO92/10578. More particularly, those alpha virus vectors described in U.S. Ser. No. 08/405,627, filed Mar.
  • alpha viruses may be obtained from depositories or collections such as the ATCC in Rockville, Md. or isolated from known sources using commonly available techniques. Preferably, alphavirus vectors with reduced cytotoxicity are used (see U.S. Ser. No. 08/679,640).
  • DNA vector systems such as eukarytic layered expression systems are also useful for expressing the nucleic acids of the invention. See WO95/07994 for a detailed description of eukaryotic layered expression systems.
  • the eukaryotic layered expression systems of the invention are derived from alphavirus vectors and most preferably from Sindbis viral vectors.
  • viral vectors suitable for use in the present invention include those derived from poliovirus, for example ATCC VR-58 and those described in Evans, Nature 339 (1989)385 and Sabin (1973) J. Biol. Standardization 1:115; rhinovirus, for example ATCC VR-1110 and those described in Arnold (1990) J Cell Biochem L401; pox viruses such as canary pox virus or vaccinia virus, for example ATCC VR-111 and ATCC VR-2010 and those described in Fisher-Hoch (1989) Proc Nan Acad Sci 86:317; Flexner (1989) Ann NY Acad Sci 569:86, Flexner (1990) Vaccine 8:17; in U.S. Pat. No. 4,603,112 and U.S. Pat. No.
  • SV40 virus for example ATCC VR-305 and those described in Mulligan (1979) Nature 277:108 and Madzak (1992) J Gen Virol 73:1533
  • influenza virus for example ATCC VR-797 and recombinant influenza viruses made employing reverse genetics techniques as described in U.S. Pat. No.
  • measles virus for example ATCC VR-67 and VR-1247 and those described in EP-0440219; Aura virus, for example ATCC VR-368; Bebaru virus, for example ATCC VR-600 and ATCC VR-1240; Cabassou virus, for example ATCC VR-922; Chikungunya virus, for example ATCC VR-64 and ATCC VR-1241; Fort Morgan Virus, for example ATCC VR-924; Getah virus, for example ATCC VR-369 and ATCC VR-1243; Kyzylagach virus, for example ATCC VR-927; Mayaro virus, for example ATCC VR-66; Mucambo virus, for example ATCC VR-580 and ATCC VR-1244; Ndumu virus, for example ATCC VR-371; Pixuna virus, for example ATCC VR-372 and ATCC VR-1245; Tonate virus, for example ATCC VR-925; Triniti virus, for example ATCC VR-469; Una virus, for example ATCC VR-374; Whataroa
  • compositions of this invention into cells is not limited to the above mentioned viral vectors.
  • Other delivery methods and media may be employed such as, for example, nucleic acid expression vectors, polycationic condensed DNA linked or unlinked to killed adenovirus alone, for example see U.S. Ser. No. 08/366,787, filed Dec. 30, 1994 and Curie] (1992) Hum Gene Titer 3:147-154 ligand linked DNA, for example see Wu (1989) J Biol Chem 264:16985-16987, eucaryotic cell delivery vehicles cells, for example see U.S. Ser. No. 08/240,030, filed May 9, 1994, and U.S. Ser. No.
  • Particle mediated gene transfer may be employed, for example see U.S. Ser. No. 60/023,867. Briefly, the sequence can be inserted into conventional vectors that contain conventional control sequences for high level expression, and then incubated with synthetic gene transfer molecules such as polymeric DNA-binding cations like polylysine, protamine, and albumin, linked to cell targeting ligands such as asialoorosomucoid, as described in Wu & Wu (1987) J. Biol. Chem. 262:4429-4432, insulin as described in Hucked (1990) Biochem Pharmacol 40:253-263, galactose as described in Plank (1992) Bioconjugate Chem 3:533-539, lactose or transferrin.
  • synthetic gene transfer molecules such as polymeric DNA-binding cations like polylysine, protamine, and albumin, linked to cell targeting ligands such as asialoorosomucoid, as described in Wu & Wu (1987) J. Biol
  • Naked DNA may also be employed.
  • Exemplary naked DNA introduction methods are described in WO 90/11092 and U.S. Pat. No. 5,580,859. Uptake efficiency may be improved using biodegradable latex beads.
  • DNA coated latex beads are efficiently transported into cells after endocytosis initiation by the beads. The method may be improved further by treatment of the beads to increase hydrophobicity and thereby facilitate disruption of the endosome and release of the DNA into the cytoplasm.
  • Liposomes that can act as gene delivery vehicles are described in U.S. Pat. No. 5,422,120, WO95/13796, WO94/23697, WO91/14445 and EP-524,968.
  • the nucleic acid sequences encoding a polypeptide can be inserted into conventional vectors that contain conventional control sequences for high level expression, and then be incubated with synthetic gene transfer molecules such as polymeric DNA-binding cations like polylysine, protamine, and albumin, linked to cell targeting ligands such as asialoorosomucoid, insulin, galactose, lactose, or transferrin.
  • Non-viral delivery systems include the use of liposomes to encapsulate DNA comprising the gene under the control of a variety of tissue-specific or ubiquitously-active promoters.
  • Further non-viral delivery suitable for use includes mechanical delivery systems such as the approach described in Woffendin et al (1994) Proc. Natl. Acad. Sci. USA 91(24):11581-11585.
  • the coding sequence and the product of expression of such can be delivered through deposition of photopolymerized hydrogel materials.
  • Other conventional methods for gene delivery that can be used for delivery of the coding sequence include, for example, use of hand-held gene transfer particle gun, as described in U.S. Pat. No. 5,149,655; use of ionizing radiation for activating transferred gene, as described in U.S. Pat. No. 5,206,152 and WO92/11033
  • Exemplary liposome and polycationic gene delivery vehicles are those described in U.S. Pat. Nos. 5,422,120 and 4,762,915; in WO 95/13796; WO94/23697; and WO91/14445; in EP-0524968; and in Stryer, Biochemistry, pages 236-240 (1975) W.H. Freeman, San Francisco; Szoka (1980) Biochem Biophys Acta 600:1; Bayer (1979) Biochem Biophys Acta 550:464; Rivnay (1987) Meth Enzymol 149:119; Wang (1987) Proc Natl Acad Sci 84:7851; Plant (1989) Anal Biochem 176:420.
  • a polynucleotide composition can comprises therapeutically effective amount of a gene therapy vehicle, as the term is defined above.
  • an effective dose will be from about 0.01 mg/kg to 50 mg/kg or 0.05 mg/kg to about 10 mg/kg of the DNA constructs in the individual to which it is administered.
  • the polynucleotide compositions of the invention can be administered (1) directly to the subject; (2) delivered ex vivo, to cells derived from the subject; or (3) in vitro for expression of recombinant proteins.
  • the subjects to be treated can be mammals or birds. Also, human subjects can be treated.
  • Direct delivery of the compositions will generally be accomplished by injection, either subcutaneously, intraperitoneally, intravenously or intramuscularly or delivered to the interstitial space of a tissue.
  • the compositions can also be administered into a lesion.
  • Other modes of administration include oral and pulmonary administration, suppositories, and transdermal or transcutaneous applications (eg. see WO98/20734), needles, and gene guns or hyposprays.
  • Dosage treatment may be a single dose schedule or a multiple dose schedule.
  • cells useful in ex vivo applications include, for example, stem cells, particularly hematopoetic, lymph cells, macrophages, dendritic cells, or tumor cells.
  • nucleic acids for both ex vivo and in vitro applications can be accomplished by the following procedures, for example, dextran-mediated transfection, calcium phosphate precipitation, polybrene mediated transfection, protoplast fusion, electroporation, encapsulation of the polynucleotide(s) in liposomes, and direct microinjection of the DNA into nuclei, all well known in the art.
  • polypeptides which include, without limitation: asioloorosomucoid (ASOR); transferrin; asialoglycoproteins; antibodies; antibody fragments; ferritin; interleukins; interferons, granulocyte, macrophage colony stimulating factor (GM-CSF), granulocyte colony stimulating factor (G-CSF), macrophage colony stimulating factor (M-CSF), stem cell factor and erythropoietin.
  • Viral antigens such as envelope proteins, can also be used.
  • proteins from other invasive organisms such as the 17 amino acid peptide from the circumsporozoite protein of plasmodium falciparum known as RH.
  • hormones for example: hormones, steroids, androgens, estrogens, thyroid hormone, or vitamins, folic acid.
  • polyalkylene glycol can be included with the desired polynucleotides/polypeptides.
  • the polyalkylene glycol is polyethlylene glycol.
  • mono-, di-, or polysaccarides can be included.
  • the polysaccharide is dextran or DEAE-dextran.
  • the desired polynucleotide/polypeptide can also be encapsulated in lipids or packaged in liposomes prior to delivery to the subject or to cells derived therefrom.
  • Lipid encapsulation is generally accomplished using liposomes which are able to stably bind or entrap and retain nucleic acid.
  • the ratio of condensed polynucleotide to lipid preparation can vary but will generally be around 1:1 (mg DNA:micromoles lipid), or more of lipid.
  • Liposomal preparations for use in the present invention include cationic (positively charged), anionic (negatively charged) and neutral preparations.
  • Cationic liposomes have been shown to mediate intracellular delivery of plasmid DNA (Feigner (1987) Proc. Natl. Acad. Sci. USA 84:7413-7416); mRNA (Malone (1989) Proc. Natl. Acad. Sci. USA 86:6077-6081); and purified transcription factors (Debs (1990) J. Biol. Chem. 265:10189-10192), in functional form.
  • Cationic liposomes are readily available.
  • N[1-2,3-dioleyloxy)propyl]-N,N,N-triethylammonium (DOTMA) liposomes are available under the trademark Lipofectin, from GIBCO BRL, Grand Island, N.Y. (See, also, Feigner supra).
  • Other commercially available liposomes include transfectace (DDAB/DOPE) and DOTAP/DOPE (Boerhinger).
  • Other cationic liposomes can be prepared from readily available materials using techniques well known in the art. See, eg. Szoka (1978) Proc. Natl. Acad. Sci. USA 75:4194-4198; WO90/11092 fora description of the synthesis of DOTAP (1,2-bis(oleoyloxy)-3-(trimethylammonio)propane) liposomes.
  • anionic and neutral liposomes are readily available, such as from Avanti Polar Lipids (Birmingham, Ala.), or can be easily prepared using readily available materials.
  • Such materials include phosphatidyl choline, cholesterol, phosphatidyl ethanolamine, dioleoylphosphatidyl choline (DOPC), dioleoylphosphatidyl glycerol (DOPG), dioleoylphoshatidyl ethanolamine (DOPE), among others.
  • DOPC dioleoylphosphatidyl choline
  • DOPG dioleoylphosphatidyl glycerol
  • DOPE dioleoylphoshatidyl ethanolamine
  • the liposomes can comprise multilammelar vesicles (MLVs), small unilamellar vesicles (SUVs), or large unilamellar vesicles (LUVs).
  • MLVs multilammelar vesicles
  • SUVs small unilamellar vesicles
  • LUVs large unilamellar vesicles
  • the various liposome-nucleic acid complexes are prepared using methods known in the art. See eg. Straubinger (1983) Meth. Immunol. 101:512-527; Szoka (1978) Proc. Natl. Acad. Sci. USA 75:4194-4198; Papahadjopoulos (1975) Biochim. Biophys. Acta 394:483; Wilson (1979) Cell 17:77); Deamer & Bangham (1976) Biochim. Biophys.
  • lipoproteins can be included with the polynucleotide/polypeptide to be delivered.
  • lipoproteins to be utilized include: chylomicrons, HDL, IDL, LDL, and VLDL. Mutants, fragments, or fusions of these proteins can also be used. Also, modifications of naturally occurring lipoproteins can be used, such as acetylated LDL. These lipoproteins can target the delivery of polynucleotides to cells expressing lipoprotein receptors. Preferably, if lipoproteins are including with the polynucleotide to be delivered, no other targeting ligand is included in the composition.
  • Naturally occurring lipoproteins comprise a lipid and a protein portion.
  • the protein portion are known as apoproteins.
  • apoproteins A, B, C, D, and E have been isolated and identified. At least two of these contain several proteins, designated by Roman numerals, AI, AII, AIV; CI, CII, CIII.
  • a lipoprotein can comprise more than one apoprotein.
  • naturally occurring chylomicrons comprises of A, B, C, and E, over time these lipoproteins lose A and acquire C and E apoproteins.
  • VLDL comprises A, B, C, and E apoproteins
  • LDL comprises apoprotein B; and HDL comprises apoproteins A, C, and E.
  • Lipoproteins contain a variety of lipids including, triglycerides, cholesterol (free and esters), and phopholipids.
  • the composition of the lipids varies in naturally occurring lipoproteins.
  • chylomicrons comprise mainly triglycerides.
  • a more detailed description of the lipid content of naturally occurring lipoproteins can be found, for example, in Meth. Enzymol. 128 (1986).
  • the composition of the lipids are chosen to aid in conformation of the apoprotein for receptor binding activity.
  • the composition of lipids can also be chosen to facilitate hydrophobic interaction and association with the polynucleotide binding molecule.
  • Naturally occurring lipoproteins can be isolated from serum by ultracentrifugation, for instance. Such methods are described in Meth. Enzymol . (supra); Pitas (1980) J. Biochem. 255:5454-5460 and Mahey (1979) J. Clin. Invest 64:743-750. Lipoproteins can also be produced by in vitro or recombinant methods by expression of the apoprotein genes in a desired host cell. See, for example, Atkinson (1986) Annu Rev Biophys Chem 15:403 and Radding (1958) Biochim Biophys Acta 30: 443. Lipoproteins can also be purchased from commercial suppliers, such as Biomedical Techniologies, Inc., Stoughton, Mass., USA. Further description of lipoproteins can be found in Zuckermann et al. PCT/US97/14465.
  • Polycationic agents can be included, with or without lipoprotein, in a composition with the desired polynucleotide/polypeptide to be delivered.
  • Polycationic agents typically, exhibit a net positive charge at physiological relevant pH and are capable of neutralizing the electrical charge of nucleic acids to facilitate delivery to a desired location. These agents have both in vitro, ex vivo, and in vivo applications. Polycationic agents can be used to deliver nucleic acids to a living subject either intramuscularly, subcutaneously, etc.
  • polypeptides as polycationic agents: polylysine, polyarginine, polyornithine, and protamine.
  • Other examples include histones, protamines, human serum albumin, DNA binding proteins, non-histone chromosomal proteins, coat proteins from DNA viruses, such as (X174, transcriptional factors also contain domains that bind DNA and therefore may be useful as nucleic aid condensing agents.
  • transcriptional factors such as C/CEBP, c-jun, c-fos, AP-1, AP-2, AP-3, CPF, Prot-1, Sp-1, Oct-1, Oct-2, CREP, and TFIID contain basic domains that bind DNA sequences.
  • Organic polycationic agents include: spermine, spermidine, and purtrescine.
  • polycationic agent The dimensions and of the physical properties of a polycationic agent can be extrapolated from the list above, to construct other polypeptide polycationic agents or to produce synthetic polycationic agents.
  • Synthetic polycationic agents which are useful include, for example, DEAE-dextran, polybrene.
  • LipofectinTM, and lipofectAMINETM are monomers that form polycationic complexes when combined with polynucleotides/polypeptides.
  • Neisserial antigens of the invention can be used in immunoassays to detect antibody levels (or, conversely, anti-Neisserial antibodies can be used to detect antigen levels). Immunoassays based on well defined, recombinant antigens can be developed to replace invasive diagnostics methods. Antibodies to Neisserial proteins within biological samples, including for example, blood or serum samples, can be detected. Design of the immunoassays is subject to a great deal of variation, and a variety of these are known in the art. Protocols for the immunoassay may be based, for example, upon competition, or direct reaction, or sandwich type assays. Protocols may also, for example, use solid supports, or may be by immunoprecipitation.
  • assays involve the use of labeled antibody or polypeptide; the labels may be, for example, fluorescent, chemiluminescent, radioactive, or dye molecules.
  • Assays which amplify the signals from the probe are also known; examples of which are assays which utilize biotin and avidin, and enzyme-labeled and mediated immunoassays, such as ELISA assays.
  • Kits suitable for immunodiagnosis and containing the appropriate labeled reagents are constructed by packaging the appropriate materials, including the compositions of the invention, in suitable containers, along with the remaining reagents and materials (for example, suitable buffers, salt solutions, etc.) required for the conduct of the assay, as well as suitable set of assay instructions.
  • Hybridization refers to the association of two nucleic acid sequences to one another by hydrogen bonding. Typically, one sequence will be fixed to a solid support and the other will be free in solution. Then, the two sequences will be placed in contact with one another under conditions that favor hydrogen bonding. Factors that affect this bonding include: the type and volume of solvent; reaction temperature; time of hybridization; agitation; agents to block the non-specific attachment of the liquid phase sequence to the solid support (Denhardt's reagent or BLOTTO); concentration of the sequences; use of compounds to increase the rate of association of sequences (dextran sulfate or polyethylene glycol); and the stringency of the washing conditions following hybridization. See Sambrook et al. [supra] Volume 2, chapter 9, pages 9.47 to 9.57.
  • “Stringency” refers to conditions in a hybridization reaction that favor association of very similar sequences over sequences that differ.
  • the combination of temperature and salt concentration should be chosen that is approximately 120 to 200° C. below the calculated Tm of the hybrid under study.
  • the temperature and salt conditions can often be determined empirically in preliminary experiments in which samples of genomic DNA immobilized on filters are hybridized to the sequence of interest and then washed under conditions of different stringencies. See Sambrook et al. at page 9.50.
  • Variables to consider when performing, for example, a Southern blot are (1) the complexity of the DNA being blotted and (2) the homology between the probe and the sequences being detected.
  • the total amount of the fragment(s) to be studied can vary a magnitude of 10, from 0.1 to 1 ⁇ g for a plasmid or phage digest to 10 ⁇ 9 to 10 ⁇ 8 g for a single copy gene in a highly complex eukaryotic genome.
  • substantially shorter blotting, hybridization, and exposure times a smaller amount of starting polynucleotides, and lower specific activity of probes can be used.
  • a single-copy yeast gene can be detected with an exposure time of only 1 hour starting with 1 ⁇ g of yeast DNA, blotting for two hours, and hybridizing for 4-8 hours with a probe of 10 8 cpm/ ⁇ g.
  • a conservative approach would start with 10 ⁇ g of DNA, blot overnight, and hybridize overnight in the presence of 10% dextran sulfate using a probe of greater than 10 8 cpm/ ⁇ g, resulting in an exposure time of ⁇ 24 hours.
  • Tm melting temperature
  • Tm 81+16.6(log 10 Ci)+0.4[%( G+C )] ⁇ 0.6(% formamide) ⁇ 600 /n ⁇ 1.5(% mismatch).
  • Ci is the salt concentration (monovalent ions) and n is the length of the hybrid in base pairs (slightly modified from Meinkoth & Wahl (1984) Anal. Biochem. 138: 267-284).
  • the temperature of the hybridization and washes and the salt concentration during the washes are the simplest to adjust. As the temperature of the hybridization increases (ie. stringency), it becomes less likely for hybridization to occur between strands that are nonhomologous, and as a result, background decreases. If the radiolabeled probe is not completely homologous with the immobilized fragment (as is frequently the case in gene family and interspecies hybridization experiments), the hybridization temperature must be reduced, and background will increase. The temperature of the washes affects the intensity of the hybridizing band and the degree of background in a similar manner. The stringency of the washes is also increased with decreasing salt concentrations.
  • Methods such as PCR, branched DNA probe assays, or blotting techniques utilizing nucleic acid probes according to the invention can determine the presence of cDNA or mRNA.
  • a probe is said to “hybridize” with a sequence of the invention if it can form a duplex or double stranded complex, which is stable enough to be detected.
  • the nucleic acid probes will hybridize to the Neisserial nucleotide sequences of the invention (including both sense and antisense strands). Though many different nucleotide sequences will encode the amino acid sequence, the native Neisserial sequence is preferred because it is the actual sequence present in cells.
  • mRNA represents a coding sequence and so a probe should be complementary to the coding sequence; single-stranded cDNA is complementary to mRNA, and so a cDNA probe should be complementary to the non-coding sequence.
  • the probe sequence need not be identical to the Neisserial sequence (or its complement)—some variation in the sequence and length can lead to increased assay sensitivity if the nucleic acid probe can form a duplex with target nucleotides, which can be detected.
  • the nucleic acid probe can include additional nucleotides to stabilize the formed duplex. Additional Neisserial sequence may also be helpful as a label to detect the formed duplex.
  • a non-complementary nucleotide sequence may be attached to the 5′ end of the probe, with the remainder of the probe sequence being complementary to a Neisserial sequence.
  • non-complementary bases or longer sequences can be interspersed into the probe, provided that the probe sequence has sufficient complementarity with the a Neisserial sequence in order to hybridize therewith and thereby form a duplex which can be detected.
  • the exact length and sequence of the probe will depend on the hybridization conditions, such as temperature, salt condition and the like.
  • the nucleic acid probe typically contains at least 10-20 nucleotides, preferably 15-25, and more preferably at least 30 nucleotides, although it may be shorter than this. Short primers generally require cooler temperatures to form sufficiently stable hybrid complexes with the template.
  • Probes may be produced by synthetic procedures, such as the triester method of Matteucci et al. [ J. Am. Chem. Soc. (1981) 103:3185], or according to Urdea et al. [ Proc. Natl. Acad. Sci. USA (1983) 80: 7461], or using commercially available automated oligonucleotide synthesizers.
  • the chemical nature of the probe can be selected according to preference. For certain applications, DNA or RNA are appropriate. For other applications, modifications may be incorporated eg. backbone modifications, such as phosphorothioates or methylphosphonates, can be used to increase in vivo half-life, alter RNA affinity, increase nuclease resistance etc. [eg. see Agrawal & Iyer (1995) Curr Opin Biotechnol 6:12-19; Agrawal (1996) TIBTECH 14:376-387]; analogues such as peptide nucleic acids may also be used [eg. see Corey (1997) TIBTECH 15:224-229; Buchardt et al. (1993) TIBTECH 11:384-386].
  • backbone modifications such as phosphorothioates or methylphosphonates
  • PCR polymerase chain reaction
  • the assay is described in: Mullis et al. [ Meth. Enzymol. (1987) 155: 335-350]; U.S. Pat. Nos. 4,683,195 and 4,683,202.
  • Two “primer” nucleotides hybridize with the target nucleic acids and are used to prime the reaction.
  • the primers can comprise sequence that does not hybridize to the sequence of the amplification target (or its complement) to aid with duplex stability or, for example, to incorporate a convenient restriction site. Typically, such sequence will flank the desired Neisserial sequence.
  • thermostable polymerase creates copies of target nucleic acids from the primers using the original target nucleic acids as a template. After a threshold amount of target nucleic acids are generated by the polymerase, they can be detected by more traditional methods, such as Southern blots. When using the Southern blot method, the labelled probe will hybridize to the Neisserial sequence (or its complement).
  • mRNA or cDNA can be detected by traditional blotting techniques described in Sambrook et al [supra].
  • mRNA, or cDNA generated from mRNA using a polymerase enzyme can be purified and separated using gel electrophoresis. The nucleic acids on the gel are then blotted onto a solid support, such as nitrocellulose. The solid support is exposed to a labelled probe and then washed to remove any unhybridized probe. Next, the duplexes containing the labeled probe are detected. Typically, the probe is labelled with a radioactive moiety.
  • FIG. 1A-E For ORF37-1, (A) shows the results of affinity purification of the GST-fusion protein, (B) shows the results of expression of the His-fusion in E. coli . Purified GST-fusion protein was used to immunise mice, whose sera were used for ELISA (positive result), (C) shows FACS analysis, and (D) shows a bactericidal assay ( FIG. 1D ), and (E) shows plots of hydrophilicity, antigenic index, and AMPHI regions for ORF37-1.
  • FIG. 2A-B For ORF5-1, (A) shows the results of affinity purification of the GST-fusion protein, and (B) shows the Western blot analysis of sera from mice immunized with purified GST-fusion protein.
  • FIG. 3A-D For ORF2-1, (A) shows the results of affinity purification of the GST-fusion protein, (B) shows the results of expression of the His-fusion in E. coli , (C) shows the Western blot analysis of sera from mice immunized with turified GST-fusion protein, (D) shows the ELISA (positive result), and (D) shows the FACS analysis.
  • FIG. 4A-C For ORF15-1, (A) shows the results of affinity purification of the GST-fusion protein, (B) shows the results of expression of the His-fusion in E. coli , and (C) shows the Western blot analysis of sera from mice immunized with purified GST-fusion protein.
  • FIG. 5A-C For ORF22-1, (A) shows the results of affinity purification of the GST-fusion protein, (B) shows the results of expression of the His-fusion in E. coli , and (C) shows the FACS analysis using sera from mice immunized with the purified GST-fusion protein.
  • FIG. 6A-B For ORF28-1, (A) shows the results of affinity purification of the GST-fusion protein, and (B) shows the results of expression of the His-fusion in E. coli.
  • FIG. 7A-B For ORF32-1, (A) shows the results of affinity purification of the His-fusion protein, and (B) shows the results of expression of the GST-fusion in E. coli.
  • FIG. 8A-F For ORF4-1, (A) shows the results of affinity purification of the His-fusion, (B) shows the results of affinity purification of the GST-fusion proteins, (C) shows the Western blot analysis of sera from mice immunized with the His-fusion protein, (D) shows the FACS analysis, (E) shows a bactericidal assay, and (F) shows plots of hydrophilicity, antigenic index, and AMPHI regions for ORF37-1.
  • FIG. 9 shows plots of hydrophilicity, antigenic index, and AMPHI regions for ORF61-1.
  • FIG. 10A-C For ORF76-1, (A) shows the results of affinity purification of the His-fusion protein, (B) shows the Western blot analysis of sera from mice immunized with the purified His-fusion protein, and (C) shows the FACS analysis.
  • FIG. 11 shows the results of affinity purification of the GST-ORF89-1 fusion protein.
  • FIG. 12A-E For ORF97-1, (A) show the results of affinity purification of the GST-fusion protein, (B) shows the results of affinity purification of the His-fusion protein, (C) shows the Western blot analysis of sera from mice immunized with purified GST-fusion protein, (D) shows the FACS analysis, and (E) shows plots of hydrophilicity, antigenic index, and AMPHI regions for ORF97-1.
  • FIG. 13A-C For ORF106-1, (A) shows the results of affinity purification of the His-fusion protein, (B) shows the results of expression of the GST-fusion in E. coli , (C) shows the FACS analysis of sera from mice immunized with the purified His-fusion protein.
  • FIG. 14A-B For ORF138-1, (A) shows the results of affinity purification of the GST-fusion protein, and (B) shows the FACS analysis of sera from mice immunized with the purified GST-fusion protein.
  • FIG. 15A-C For ORF23-1, (A) shows the results of affinity purification of the His-fusion protein, (B) shows the results of expression of the GST-fusion in E. coli , (C) shows the Western blot analysis of sera from mice immunized with the purified His-fusion protein.
  • FIG. 16A-E For ORF25-1, (A) shows the results of affinity purification of the GST-fusion protein, (B) shows the results of expression of the His-fusion in E. coli , (C) shows the Western blot analysis of sera from mice immunized with purified His-fusion protein, (D) shows the FACS analysis, and (E) shows plots of hydrophilicity, antigenic index, and AMPHI regions for ORF25-1.
  • FIG. 17A-B For ORF27-1, (A) shows the results of affinity purification of the GST-fusion protein, and (B) shows the results of expression of the His-fusion in E. coli.
  • FIG. 18A-B For ORF79-1, (A) shows the results of affinity purification of the His-fusion protein, and (B) shows the FACS analysis of sera from mice immunized with purified His-fusion protein.
  • FIG. 19A-D For ORF85a, (A) shows the results of affinity purification of the GST-fusion protein, (B) shows Western blot analysis of sera from mice immunized with purified GST-fusion protein, (C) shows FACS analysis, and (D) shows plots of hydrophilicity, antigenic index, and AMPHI regions for ORF85a.
  • FIG. 20A-C For ORF132-1, (A) shows the results of affinity purification of the His-fusion protein, (B) shows the results of expression of the GST-fusion in E. coli , (C) shows the FACS analysis of sera from mice immunized with purified His-fusion protein.
  • nucleic acid sequences which have been identified in N. meningitidis , along with their putative translation products, and also those of N. gonorrhoeae . Not all of the nucleic acid sequences are complete i.e. they encode less than the full-length wild-type protein.
  • nucleotide sequences eg. position 495 in SEQ ID 11
  • represent ambiguities which arose during alignment of independent sequencing reactions some of the nucleotide sequences in the examples are derived from combining the results of two or more experiments).
  • Nucleotide sequences were scanned in all six reading frames to predict the presence of hydrophobic domains using an algorithm based on the statistical studies of Esposti et al. [Critical evaluation of the hydropathy of membrane proteins (1990) Eur J Biochem 190:207-219]. These domains represent potential transmembrane regions or hydrophobic leader sequences.
  • Open reading frames were predicted from fragmented nucleotide sequences using the program ORFFINDER (NCBI).
  • the proteins can be expressed recombinantly and used to screen patient sera by immunoblot. A positive reaction between the protein and patient serum indicates that the patient has previously mounted an immune response to the protein in question ie. the protein is an immunogen. This method can also be used to identify immunodominant proteins.
  • the recombinant protein can also be conveniently used to prepare antibodies eg. in a mouse. These can be used for direct confirmation that a protein is located on the cell-surface. Labelled antibody (eg. fluorescent labelling for FACS) can be incubated with intact bacteria and the presence of label on the bacterial surface confirms the location of the protein.
  • Labelled antibody eg. fluorescent labelling for FACS
  • N. meningitidis strain 2996 was grown to exponential phase in 100 ml of GC medium, harvested by centrifugation, and resuspended in 5 ml buffer (20% Sucrose, 50 mM Tris-HCl, 50 mM EDTA, pH8). After 10 minutes incubation on ice, the bacteria were lysed by adding 10 ml lysis solution (50 mM NaCl, 1% Na-Sarkosyl, 50 ⁇ g/ml Proteinase K), and the suspension was incubated at 37° C. for 2 hours. Two phenol extractions (equilibrated to pH 8) and one ChCl 3 /isoamylalcohol (24:1) extraction were performed.
  • DNA was precipitated by addition of 0.3M sodium acetate and 2 volumes ethanol, and was collected by centrifugation. The pellet was washed once with 70% ethanol and redissolved in 4 ml buffer (10 mM Tris-HCl, 1 mM EDTA, pH 8). The DNA concentration was measured by reading the OD at 260 nm.
  • Synthetic oligonucleotide primers were designed on the basis of the coding sequence of each ORF, using (a) the meningococcus B sequence when available, or (b) the gonococcus/meningococcus A sequence, adapted to the codon preference usage of meningococcus as necessary. Any predicted signal peptides were omitted, by deducing the 5′-end amplification primer sequence immediately downstream from the predicted leader sequence.
  • the 5′ primers included two restriction enzyme recognition sites (BamHI-NdeI, BamHI-NheI, or EcoRI-NheI, depending on the gene's own restriction pattern); the 3′ primers included a XhoI restriction site.
  • This procedure was established in order to direct the cloning of each amplification product (corresponding to each ORF) into two different expression systems: pGEX-KG (using either BamHI-XhoI or EcoRI-XhoI), and pET21b+ (using either NdeI-XhoI or NheI-XhoI).
  • 5′-end primer tail CGC GGATCCCATATG (BamHI-NdeI) CGC GGATCCGCTAGC (BamHI-NheI) CCG GAATTC TA GCTAGC (EcoRI-NheI) 3′-end primer tail: CCCG CTCGAG (XhoI)
  • 5′-end primer tail GGAATTC CATATG GCCATGG (NdeI)
  • 5′-end primer tail CG GGATCC (BamHI)
  • ORF 76 was cloned in the pTRC expression vector and expressed as an amino-terminus His-tag fusion. In this particular case, the predicted signal peptide was included in the final product. NheI-BamHI restriction sites were incorporated using primers:
  • 5′-end primer tail GATCA GCTAGC CATATG (NheI)
  • 3′-end primer tail CG GGATCC (BamHI)
  • the primers included nucleotides which hybridized to the sequence to be amplified.
  • the number of hybridizing nucleotides depended on the melting temperature of the whole primer, and was determined for each primer using the formulae:
  • T m 4( G+C )+2( A+T ) (tail excluded)
  • the average melting temperature of the selected oligos were 65-70° C. for the whole oligo and 50-55° C. for the hybridising region alone.
  • Table I shows the forward and reverse primers used for each amplification.
  • the sequence of the primer does not exactly match the sequence in the ORF.
  • the gonococcal sequences could thus be used as the basis for primer design, altered to take account of codon preference.
  • codons were changed: ATA ⁇ ATT; TCG ⁇ TCT; CAG ⁇ CAA; AAG ⁇ AAA; GAG ⁇ GAA; CGA ⁇ CGC; CGG ⁇ CGC; GGG ⁇ GGC. Italicised nucleotides in Table I indicate such a change. It will be appreciated that, once the complete sequence has been identified, this approach is generally no longer necessary.
  • Oligos were synthesized by a Perkin Elmer 394 DNA/RNA Synthesizer, eluted from the columns in 2 ml NH 4 OH, and deprotected by 5 hours incubation at 56° C. The oligos were precipitated by addition of 0.3M Na-Acetate and 2 volumes ethanol. The samples were then centrifuged and the pellets resuspended in either 100 ⁇ l or 1 ml of water. OD 260 was determined using a Perkin Elmer Lambda Bio spectophotometer and the concentration was determined and adjusted to 2-10 pmol/ ⁇ l.
  • the standard PCR protocol was as follows: 50-200 ng of genomic DNA were used as a template in the presence of 20-40 ⁇ M of each oligo, 400-800 ⁇ M dNTPs solution, 1 ⁇ PCR buffer (including 1.5 mM MgCl 2 ), 2.5 units TaqI DNA polymerase (using Perkin-Elmer AmpliTaQ, GIBCO Platinum, Pwo DNA polymerase, or Tahara Shuzo Taq polymerase).
  • PCR was optimsed by the addition of 10 ⁇ l DMSO or 50 ⁇ l 2M betaine.
  • each sample underwent a double-step amplification: the first 5 cycles were performed using as the hybridization temperature the one of the oligos excluding the restriction enzymes tail, followed by 30 cycles performed according to the hybridization temperature of the whole length oligos. The cycles were followed by a final 10 minute extension step at 72° C.
  • the elongation time varied according to the length of the ORF to be amplified.
  • the amplifications were performed using either a 9600 or a 2400 Perkin Elmer GeneAmp PCR System. To check the results, 1/10 of the amplification volume was loaded onto a 1-1.5% agarose gel and the size of each amplified fragment compared with a DNA molecular weight marker.
  • the amplified DNA was either loaded directly on a 1% agarose gel or first precipitated with ethanol and resuspended in a suitable volume to be loaded on a 1% agarose gel.
  • the DNA fragment corresponding to the right size band was then eluted and purified from gel, using the Qiagen Gel Extraction Kit, following the instructions of the manufacturer.
  • the final volume of the DNA fragment was 30 ⁇ l or 50 ⁇ l of either water or 10 mM Tris, pH 8.5.
  • the purified DNA corresponding to the amplified fragment was split into 2 aliquots and double-digested with:
  • Each purified DNA fragment was incubated (37° C. for 3 hours to overnight) with 20 units of each restriction enzyme (New England Biolabs) in a either 30 or 40 ⁇ l final volume in the presence of the appropriate buffer.
  • the digestion product was then purified using the QIAquick PCR purification kit, following the manufacturer's instructions, and eluted in a final volume of 30 or 50 ⁇ l of either water or 10 mM Tris-HCl, pH 8.5.
  • the final DNA concentration was determined by 1% agarose gel electrophoresis in the presence of titrated molecular weight marker.
  • 10 ⁇ g plasmid was double-digested with 50 units of each restriction enzyme in 200 ⁇ l reaction volume in the presence of appropriate buffer by overnight incubation at 37° C. After loading the whole digestion on a 1% agarose gel, the band corresponding to the digested vector was purified from the gel using the Qiagen QIAquick Gel Extraction Kit and the DNA was eluted in 50 ⁇ l of 10 mM Tris-HCl, pH 8.5. The DNA concentration was evaluated by measuring OD 260 of the sample, and adjusted to 50 ⁇ g/ ⁇ l. 1 ⁇ l of plasmid was used for each cloning procedure.
  • the vector pGEX-His is a modified pGEX-2T vector carrying a region encoding six histidine residues upstream to the thrombin cleavage site and containing the multiple cloning site of the vector pTRC99 (Pharmacia).
  • a molar ratio of 3:1 fragment/vector was ligated using 0.5 ⁇ l of NEB T4 DNA ligase (400 units/ ⁇ l), in the presence of the buffer supplied by the manufacturer. The reaction was incubated at room temperature for 3 hours. In some experiments, ligation was performed using the Boheringer “Rapid Ligation Kit”, following the manufacturer's instructions.
  • E. coli DH5 competent cells were incubated with the ligase reaction solution for 40 minutes on ice, then at 37° C. for 3 minutes, then, after adding 800 ⁇ l LB broth, again at 37° C. for 20 minutes. The cells were then centrifuged at maximum speed in an Eppendorf microfuge and resuspended in approximately 200 ⁇ l of the supernatant. The suspension was then plated on LB ampicillin (100 mg/ml).
  • the screening of the recombinant clones was performed by growing 5 randomly-chosen colonies overnight at 37° C. in either 2 ml (pGEX or pTC clones) or 5 ml (pET clones) LB broth+100 ⁇ g/ml ampicillin. The cells were then pelletted and the DNA extracted using the Qiagen QIAprep Spin Miniprep Kit, following the manufacturer's instructions, to a final volume of 30 ⁇ l.
  • each individual miniprep (approximately 1 g) were digested with either NdeI/XhoI or BamHI/XhoI and the whole digestion loaded onto a 1-1.5% agarose gel (depending on the expected insert size), in parallel with the molecular weight marker (1 Kb DNA Ladder, GIBCO). The screening of the positive clones was made on the base of the correct insert size.
  • the double-digested PCR product was ligated into double-digested vector using EcoRI-PstI cloning sites or, for ORFs 115 & 127, EcoRI-SalI or, for ORF 122, SalI-PstI.
  • the recombinant plasmids were introduced in the E. coli host W3110. Individual clones were grown overnight at 37° C. in L-broth with 50 ⁇ l/ml ampicillin.
  • Each ORF cloned into the expression vector was transformed into the strain suitable for expression of the recombinant protein product. 1 ⁇ l of each construct was used to transform 30 ⁇ l of E. coli BL21 (pGEX vector), E. coli TOP 10 (pTRC vector) or E. coli BL21-DE3 (pET vector), as described above. In the case of the pGEX-His vector, the same E. coli strain (W3110) was used for initial cloning and expression. Single recombinant colonies were inoculated into 2 ml LB+Amp (100 ⁇ g/ml), incubated at 37° C.
  • a single colony was grown overnight at 37° C. on LB+Amp agar plate.
  • the bacteria were inoculated into 20 ml of LB+Amp liquid colture in a water bath shaker and grown overnight.
  • Bacteria were diluted 1:30 into 600 ml of fresh medium and allowed to grow at the optimal temperature (20-37° C.) to OD 550 0.8-1.
  • Protein expression was induced with 0.2 mM IPTG followed by three hours incubation.
  • the culture was centrifuged at 8000 rpm at 4° C. The supernatant was discarded and the bacterial pellet was resuspended in 7.5 ml cold PBS.
  • the cells were disrupted by sonication on ice for 30 sec at 40 W using a Branson sonifier B-15, frozen and thawed twice and centrifuged again.
  • the supernatant was collected and mixed with 150 ⁇ l Glutatione-Sepharose 4B resin (Pharmacia) (previously washed with PBS) and incubated at room temperature for 30 minutes.
  • the sample was centrifuged at 700 g for 5 minutes at 4° C.
  • the resin was washed twice with 10 ml cold PBS for 10 minutes, resuspended in 1 ml cold PBS, and loaded on a disposable column.
  • the resin was washed twice with 2 ml cold PBS until the flow-through reached OD 280 of 0.02-0.06.
  • the GST-fusion protein was eluted by addition of 700 ⁇ l cold Glutathione elution buffer (10 mM reduced glutathione, 50 mM Tris-HCl) and fractions collected until the OD 280 was 0.1.21 ⁇ l of each fraction were loaded on a 12% SDS gel using either Biorad SDS-PAGE Molecular weight standard broad range (M1) (200, 116.25, 97.4, 66.2, 45, 31, 21.5, 14.4, 6.5 kDa) or Amersham Rainbow Marker (M2) (220, 66, 46, 30, 21.5, 14.3 kDa) as standards. As the MW of GST is 26 kDa, this value must be added to the MW of each GST-fusion protein.
  • M1 Biorad SDS-PAGE Molecular weight standard broad range
  • M2 Amersham Rainbow Marker
  • pellets of 3 ml cultures were resuspended in buffer M1 [500 ⁇ l PBS pH 7.2]. 25 ⁇ l lysozyme (10 mg/ml) was added and the bacteria were incubated for 15 min at 4° C. The pellets were sonicated for 30 sec at 40 W using a Branson sonifier B-15, frozen and thawed twice and then separated again into pellet and supernatant by a centrifugation step.
  • the supernatant was collected and the pellet was resuspended in buffer M2 [8M urea, 0.5M NaCl, 20 mM imidazole and 0.1 M NaH 2 PO 4 ] and incubated for 3 to 4 hours at 4° C. After centrifugation, the supernatant was collected and the pellet was resuspended in buffer M3 [6M guanidinium-HCl, 0.5M NaCl, 20 mM imidazole and 0.1M NaH 2 PO 4 ] overnight at 4° C. The supernatants from all steps were analysed by SDS-PAGE.
  • ORFs 113, 119 and 120 The proteins expressed from ORFs 113, 119 and 120 were found to be soluble in PBS, whereas ORFs 111, 122, 126 and 129 need urea and ORFs 125 and 127 need guanidium-HCl for their solubilization.
  • a single colony was grown overnight at 37° C. on a LB+Amp agar plate.
  • the bacteria were inoculated into 20 ml of LB+Amp liquid culture and incubated overnight in a water bath shaker. Bacteria were diluted 1:30 into 600 ml fresh medium and allowed to grow at the optimal temperature (20-37° C.) to OD 550 0.6-0.8. Protein expression was induced by addition of 1 mM IPTG and the culture further incubated for three hours.
  • the culture was centrifuged at 8000 rpm at 4° C., the supernatant was discarded and the bacterial pellet was resuspended in 7.5 ml of either (i) cold buffer A (300 mM NaCl, 50 mM phosphate buffer, 10 mM imidazole, pH 8) for soluble proteins or (ii) buffer B (urea 8M, 10 mM Tris-HCl, 100 mM phosphate buffer, pH 8.8) for insoluble proteins.
  • the cells were disrupted by sonication on ice for 30 sec at 40 W using a Branson sonifier B-15, frozen and thawed two times and centrifuged again.
  • the supernatant was stored at ⁇ 20° C., while the pellets were resuspended in 2 ml buffer C (6M guanidine hydrochloride, 100 mM phosphate buffer, 10 mM Tris-HCl, pH 7.5) and treated in a homogenizer for 10 cycles. The product was centrifuged at 13000 rpm for 40 minutes.
  • the resin was washed with either (i) 2 ml cold 20 mM imidazole buffer (300 mM NaCl, 50 mM phosphate buffer, 20 mM imidazole, pH 8) or (ii) buffer D (urea 8M, 10 mM Tris-HCl, 100 mM phosphate buffer, pH 6.3) until the flow-through reached the OD 280 of 0.02-0.06.
  • the His-fusion protein was eluted by addition of 700 ⁇ l of either (i) cold elution buffer A (300 mM NaCl, 50 mM phosphate buffer, 250 mM imidazole, pH 8) or (ii) elution buffer B (urea 8M, 10 mM Tris-HCl, 100 mM phosphate buffer, pH 4.5) and fractions collected until the OD 280 was 0.1. 21 ⁇ l of each fraction were loaded on a 12% SDS gel.
  • cold elution buffer A 300 mM NaCl, 50 mM phosphate buffer, 250 mM imidazole, pH 8
  • elution buffer B urea 8M, 10 mM Tris-HCl, 100 mM phosphate buffer, pH 4.5
  • the acapsulated MenB M7 strain was plated on chocolate agar plates and incubated overnight at 37° C. Bacterial colonies were collected from the agar plates using a sterile dracon swab and inoculated into 7 ml of Mueller-Hinton Broth (Difco) containing 0.25% Glucose. Bacterial growth was monitored every 30 minutes by following OD 620 . The bacteria were let to grow until the OD reached the value of 0.3-0.4. The culture was centrifuged for 10 minutes at 10000 rpm.
  • the acapsulated MenB M7 strain was plated on chocolate agar plates and incubated overnight at 37° C. Bacterial colonies were collected from the agar plates using a sterile dracon swab and inoculated into 4 tubes containing 8 ml each Mueller-Hinton Broth (Difco) containing 0.25% glucose. Bacterial growth was monitored every 30 minutes by following OD 620 . The bacteria were let to grow until the OD reached the value of 0.35-0.5. The culture was centrifuged for 10 minutes at 4000 rpm. The supernatant was discarded and the pellet was resuspended in blocking buffer (1% BSA, 0.4% NaN 3 ) and centrifuged for 5 minutes at 4000 rpm.
  • blocking buffer 1% BSA, 0.4% NaN 3
  • Bacteria were grown overnight on 5 GC plates, harvested with a loop and resuspended in 10 ml 20 mM Tris-HCl. Heat inactivation was performed at 56° C. for 30 minutes and the bacteria disrupted by sonication for 10 minutes on ice (50% duty cycle, 50% output). Unbroken cells were removed by centrifugation at 5000 g for 10 minutes and the total cell envelope fraction recovered by centrifugation at 50000 g at 4° C. for 75 minutes. To extract cytoplasmic membrane proteins from the crude outer membranes, the whole fraction was resuspended in 2% sarkosyl (Sigma) and incubated at room temperature for 20 minutes.
  • 2% sarkosyl Sigma
  • the suspension was centrifuged at 10000 g for 10 minutes to remove aggregates, and the supernatant further ultracentrifuged at 50000 g for 75 minutes to pellet the outer membranes.
  • the outer membranes were resuspended in 10 mM Tris-HCl, pH8 and the protein concentration measured by the Bio-Rad Protein assay, using BSA as a standard.
  • Bacteria were grown overnight on a GC plate, harvested with a loop and resuspended in 1 ml of 20 mM Tris-HCl. Heat inactivation was performed at 56° C. for 30 minutes.
  • Purified proteins 500 ng/lane
  • outer membrane vesicles 5 ⁇ g
  • total cell extracts 25 ⁇ g derived from MenB strain 2996 were loaded on 15% SDS-PAGE and transferred to a nitrocellulose membrane.
  • the transfer was performed for 2 hours at 150 mA at 4° C., in transferring buffer (0.3% Tris base, 1.44% glycine, 20% methanol).
  • the membrane was saturated by overnight incubation at 4° C. in saturation buffer (10% skimmed milk, 0.1% Triton X100 in PBS).
  • the membrane was washed twice with washing buffer (3% skimmed milk, 0.1% Triton X100 in PBS) and incubated for 2 hours at 37° C. with mice sera diluted 1:200 in washing buffer.
  • the membrane was washed twice and incubated for 90 minutes with a 1:2000 dilution of horseradish peroxidase labelled anti-mouse Ig.
  • the membrane was washed twice with 0.1% Triton X100 in PBS and developed with the Opti-4CN Substrate Kit (Bio-Rad). The reaction was stopped by adding water.
  • MC58 strain was grown overnight at 37° C. on chocolate agar plates. 5-7 colonies were collected and used to inoculate 7 ml Mueller-Hinton broth. The suspension was incubated at 37° C. on a nutator and let to grow until OD 620 was 0.5-0.8. The culture was aliquoted into sterile 1.5 ml Eppendorf tubes and centrifuged for 20 minutes at maximum speed in a microfuge. The pellet was washed once in Gey's buffer (Gibco) and resuspended in the same buffer to an OD 620 of 0.5, diluted 1:20000 in Gey's buffer and stored at 25° C.
  • Gey's buffer Gibco
  • mice sera 50 ⁇ l of Gey's buffer/]% BSA was added to each well of a 96-well tissue culture plate.
  • 25 ⁇ l of the previously described bacterial suspension were added to each well.
  • 25 ⁇ l of either heat-inactivated (56° C. waterbath for 30 minutes) or normal baby rabbit complement were added to each well.
  • 22 ⁇ l of each sample/well were plated on Mueller-Hinton agar plates (time 0).
  • the 96-well plate was incubated for 1 hour at 37° C. with rotation and then 22 ⁇ l of each sample/well were plated on Mueller-Hinton agar plates (time 1). After overnight incubation the colonies corresponding to time 0 and time 1 hour were counted.
  • Table II (page 493) gives a summary of the cloning, expression and prurification results.
  • ORF37 The originally-identified partial strain B sequence (ORF37) shows 68.0% identity over a 75aa overlap with ORF37a:
  • ORF37 The originally-identified partial strain B sequence (ORF37) shows 64.9% identity over a 111aa overlap with ORF37ng:
  • ORF37-1 (11 kDa) was cloned in pET and pGex vectors and expressed in E. coli , as described above. The products of protein expression and purification were analyzed by SDS-PAGE.
  • FIG. 1A shows the results of affinity purification of the GST-fusion protein
  • FIG. 1B shows the results of expression of the His-fusion in E. coli .
  • Purified GST-fusion protein was used to immunise mice, whose sera were used for ELISA (positive result), FACS analysis ( FIG. 1C ), and a bactericidal assay ( FIG. 1D ). These experiments confirm that ORF37-1 is a surface-exposed protein, and that it is a useful immunogen.
  • FIG. 1E shows plots of hydrophilicity, antigenic index, and AMPHI regions for ORF37-1.
  • SEQ ID 9 and ybrd.haein show 48.4% aa identity in 122 aa overlap:
  • SEQ ID 9 shows 99.2% identity over a 118aa overlap with a predicted ORF from N. gonorrhoeae :
  • the complete yrbd H. influenzae sequence has a leader sequence and it is expected that the full-length homologous N. meningitidis protein will also have one. This suggests that it is either a membrane protein, a secreted protein, or a surface protein and that the protein, or one of its epitopes, could be a useful antigen for vaccines or diagnostics.
  • ORF3 shows 93.0% identity over a 286aa overlap with an ORF (ORF3a) from strain A of N. meningitidis :
  • ORF3a nucleotide sequence ⁇ SEQ ID 15> is:
  • ORF3-1 shows 94.6% identity in 410 aa overlap with ORF3a:
  • ORF3 and YVFC proteins show 55% aa identity in 170 aa overlap (BLASTp):
  • ORF3 shows 86.3% identity over a 286aa overlap with a predicted ORF (ORF3.ng) from N. gonorrhoeae :
  • ORF3ng shows significant homology with a hypothetical protein from B. subtilis :
  • the hypothetical product of yvfc gene shows similarity to EXOY of R. meliloti , an exopolysaccharide production protein. Based on this and on the two predicted transmembrane regions in the homologous N. gonorrhoeae sequence, it is predicted that these proteins, or their epitopes, could be useful antigens for vaccines or diagnostics, or for raising antibodies.
  • ORF5 The originally-identified partial strain B sequence (ORF5) shows 54.7% identity over a 124aa overlap with ORF5a:
  • ORFS The originally-identified partial strain B sequence (ORFS) shows 83.1% identity over a 135aa overlap with the partial gonococcal sequence (ORF5ng):
  • ORF5 and TlyC proteins show 58% aa identity in 77 aa overlap (BLASTp).
  • ORF5ng-1 also shows significant homology with TlyC:
  • ORF5a shows homology to a hypothetical secreted protein from E. coli :
  • ORF5-1 (30.7 kDa) was cloned in the pGex vector and expressed in E. coli , as described above. The products of protein expression and purification were analyzed by SDS-PAGE.
  • FIG. 2A shows the results of affinity purification of the GST-fusion protein. Purified GST-fusion protein was used to immunise mice, whose sera were used for Western blot analysis ( FIG. 1B ). These experiments confirm that ORFS-1 is a surface-exposed protein, and that it is a useful immunogen.
  • ORF7 and yceg proteins show 44% aa identity in 192 aa overlap:
  • the complete length YCEG protein has sequence:
  • ORF7 shows 95.2% identity over a 187aa overlap with an ORF (ORF7a) from strain A of N. meningitidis :
  • a leader peptide is underlined.
  • ORF7a and ORF7-1 show 98.8% identity in 331 aa overlap:
  • ORF7 shows 94.7% identity over a 187aa overlap with a predicted ORF (ORF7.ng) from N. gonorrhoeae :
  • An ORF7ng nucleotide sequence ⁇ SEQ ID 35> is predicted to encode a protein having amino acid sequence ⁇ SEQ ID 36>:
  • ORF7ng-1 and ORF7-1 show 98.0% identity in 298 aa overlap:
  • ORF7ng-1 shows significant homology with a hypothetical E. coli protein:
  • H. influenzae YCEG protein possesses a possible leader sequence
  • the proteins from N. meningitidis and N. gonorrhoeae could be useful antigens for vaccines or diagnostics, or for raising antibodies.
  • ORF9 shows 89.8% identity over a 166aa overlap with an ORF (ORF9a) from strain A of N. meningitidis :
  • ORF9a and ORF9-1 show 95.3% identity in 614 aa overlap:
  • ORF9 shows 82.8% identity over a 163aa overlap with a predicted ORF (ORF9.ng) from N. gonorrhoeae :
  • the ORF9ng nucleotide sequence ⁇ SEQ ID 45> was predicted to encode a protein having including acid sequence ⁇ SEQ ID 46>:
  • Amino acids 1-28 are a putative leader sequence, and 173-189 are predicted to be a transmembrane domain.
  • ORF9ng and ORF9-1 show 88.1% identity in 614 aa overlap:
  • ORF9ng shows significant homology with a hypothetical protein from P. aeruginosa :
  • N. meningitidis and N. gonorrhoeae could be useful antigens for vaccines or diagnostics, or for raising antibodies.
  • ORF11 and the 60 kDa protein show 58% aa identity in 229 aa overlap (BLASTp).
  • ORF 11 shows 97.9% identity over a 240aa overlap with an ORF (ORF11a) from strain A of N. meningitidis :
  • ORF11a nucleotide sequence ⁇ SEQ ID 53> is:
  • ORF11a and ORF11-1 show 95.2% identity in 544 aa overlap:
  • ORF11 shows 96.3% identity over a 240aa overlap with a predicted ORF (ORF11.ng) from N. gonorrhoeae :
  • ORF11ng-1 and ORF11-1 shown 95.1% identity in 546 aa overlap:
  • ORF11ng-1 shows significant homology with an inner-membrane protein from the database (accession number p25754):
  • ORF13 shows 92.9% identity over a 126aa overlap with an ORF (ORF13a) from strain A of N. meningitidis :
  • ORF13a and ORF13-1 show 94.4% identity in 126 aa overlap
  • ORF13 shows 89.7% identity over a 126aa overlap with a predicted ORF (ORF13.ng) from N. gonorrhoeae :
  • ORF13ng shows 91.3% identity in 126 aa overlap with ORF13-1:
  • ORF13 and ORF13ng are likely to be outer membrane proteins. It is thus predicted that the proteins from N. meningitidis and N. gonorrhoeae , and their epitopes, could be useful antigens for vaccines or diagnostics, or for raising antibodies.
  • ORF2 The originally-identified partial strain B sequence (ORF2) shows 97.5% identity over a 118aa overlap with ORF2a:
  • ORF2 The originally-identified partial strain B sequence (ORF2) shows 87.5% identity over a 136aa overlap with ORF2ng:
  • ORF2a and ORF2ng are likely to be membrane proteins and so the proteins from N. meningitidis and N. gonorrhoeae , and their epitopes, could be useful antigens for vaccines or diagnostics, or for raising antibodies.
  • ORF2-1 (16 kDa) was cloned in pET and pGex vectors and expressed in E. coli , as described above. The products of protein expression and purification were analyzed by SDS-PAGE.
  • FIG. 3A shows the results of affinity purification of the GST-fusion protein
  • FIG. 3B shows the results of expression of the His-fusion in E. coli .
  • Purified GST-fusion protein was used to immunise mice, whose sera were used for Western blots ( FIG. 3C ), ELISA (positive result), and FACS analysis ( FIG. 3D ). These experiments confirm that ORF37-1 is a surface-exposed protein, and that it is a useful immunogen.
  • ORF15 The originally-identified partial strain B sequence (ORF15) shows 98.1% identity over a 213aa overlap with ORF15a:
  • ORF15 The originally-identified partial strain B sequence (ORF15) shows 97.2% identity over a 213aa overlap with ORF15ng:
  • N. meningitidis and N. gonorrhoeae were predicted that the proteins from N. meningitidis and N. gonorrhoeae , and their epitopes, could be useful antigens for vaccines or diagnostics, or for raising antibodies.
  • ORF15-1 (31.7 kDa) was cloned in pET and pGex vectors and expressed in E. coli , as described above. The products of protein expression and purification were analyzed by SDS-PAGE.
  • FIG. 4A shows the results of affinity purification of the GST-fusion protein
  • FIG. 4B shows the results of expression of the His-fusion in E. coli .
  • Purified GST-fusion protein was used to immunise mice, whose sera were used for Western blot ( FIG. 4C ) and ELISA (positive result).
  • ORF17 and HI0902 proteins show 28% aa identity in 192 aa overlap:
  • ORF17 shows 96.9% identity over a 196aa overlap with an ORF (ORF17a) from strain A of N. meningitidis :
  • ORF17a nucleotide sequence ⁇ SEQ ID 89> is:
  • ORF17a and ORF17-1 show 98.9% identity in 268 aa overlap:
  • ORF17 shows 93.9% identity over a 196aa overlap with a predicted ORF (ORF17.ng) from N. gonorrhoeae :
  • An ORF17ng nucleotide sequence ⁇ SEQ ID 91> is predicted to encode a protein having amino acid sequence ⁇ SEQ ID 92>:
  • ORF17ng-1 and ORF17-1 show 96.6% identity in 268 aa overlap:
  • ORF17ng-1 shows significant homology with a hypothetical H. influenzae protein:
  • Y902_HAEIN HYPOTHETICAL PROTEIN HI0902 pir
  • ORF18 shows 98.3% identity over a 116aa overlap with an ORF (ORF18a) from strain A of N. meningitidis :
  • ORF18a and ORF18-1 show 99.0% identity in 201 aa overlap:
  • ORF18 shows 93.1% identity over a 116aa overlap with a predicted ORF (ORF18.ng) from N. gonorrhoeae :
  • ORF18ng protein sequence shows 94.0% identity in 201 aa overlap with ORF18-1:
  • ORF19 and YHFK proteins show 45% aa identity in 97 aa overlap:
  • ORF19 shows 92.2% identity over a 102aa overlap with an ORF (ORF19a) from strain A of N. meningitidis :
  • ORF19a nucleotide sequence ⁇ SEQ ID 107> is:
  • ORF19a and ORF19-1 show 98.3% identity in 716 aa overlap:
  • ORF19 shows 95.1% identity over a 102aa overlap with a predicted ORF (ORF19.ng) from N. gonorrhoeae :
  • An ORF19ng nucleotide sequence ⁇ SEQ ID 109> is predicted to encode a protein having amino acid sequence ⁇ SEQ ID 110>:
  • ORF19ng-1 and ORF19-1 show 95.5% identity in 716 aa overlap:
  • ORF19ng-1 shows significant homology to a hypothetical gonococcal protein previously entered in the databases:
  • ORF20 and MviN proteins show 63% aa identity in 440aa overlap:
  • Orf20 1 MNMLGALAKVGSLTMVSRVLGFVRDTVIARAFGAGMATDAFFVAFKLPNLLRRVFAEGAF 60 MN+L +LA V S+TM SRVLGF RD ++AR FGAGMATDAFFVAFKLPNLLRR+FAEGAF MviN 14 MNLLKSLAAVSSMTMFSRVLGFARDAIVARIFGAGMATDAFFVAFKLPNLLRRIFAEGAF 73
  • Orf20 61 AQAFVPILAEYKETRSKEAXEAFIRHVAGMLSFVLVIVTALGILAAPWVIYVSAPSFAQD 120 +QAFVPILAEYK + +EA F+ +V+G+L+ L +VT G+LAAPWVI V+AP FA MviN 74 SQAFVPILAEYKSKQGEEATRIFVAYVSGLLTLALAVVTVAGMLAAPWVIMVTAPGFADT 133
  • Orf20 121 ADKFQLSIDLLRITFPYILLISLSSFVGSV
  • ORF20 shows 93.5% identity over a 447aa overlap with an ORF (ORF20a) from strain A of N. meningitidis :
  • ORF20a nucleotide sequence ⁇ SEQ ID 117> is:
  • ORF20a and ORF20-1 show 96.5% identity in 512 aa overlap:
  • ORF20 shows 92.1% identity over a 454aa overlap with a predicted ORF (ORF20ng) from N. gonorrhoeae :
  • ORF20ng-1 and ORF20-1 show 95.7% identity in 512 aa overlap:
  • ORF20ng-1 shows significant homology with a virulence factor of S. typhimurium :
  • ORF22 The originally-identified partial strain B sequence (ORF22) shows 94.2% identity over a 158aa overlap with ORF22a:
  • ORF22 The originally-identified partial strain B sequence (ORF22) shows 93.7% identity over a 158aa overlap with ORF22ng:
  • ORF22 and this 48 kDa protein show 72% aa identity in 158aa overlap:
  • ORF22a also shows homology to the 48 kDa Actinobacillus pleuropneumoniae protein:
  • ORF22ng-1 also shows homology with the OMP from A. pleuropneumoniae :
  • ORF22-1 (35.4 kDa) was cloned in pET and pGex vectors and expressed in E. coli , as described above. The products of protein expression and purification were analyzed by SDS-PAGE.
  • FIG. 5A shows the results of affinity purification of the GST-fusion protein
  • FIG. 5B shows the results of expression of the His-fusion in E. coli .
  • Purified GST-fusion protein was used to immunise mice, whose sera were used for ELISA (positive result) and FACS analysis ( FIG. 5C ). These experiments confirm that ORF22-1 is a surface-exposed protein, and that it is a useful immunogen.
  • ORF12 shows 96.3% identity over a 320aa overlap with an ORF (ORF12a) from strain A of N. meningitidis :
  • ORF12a nucleotide sequence ⁇ SEQ ID 137> is:
  • ORF12a and ORF12-1 show 99.0% identity in 522 aa overlap:
  • ORF12 shows 92.5% identity over a 320aa overlap with a predicted ORF (ORF12.ng) from N. gonorrhoeae :
  • ORF12ng nucleotide sequence ⁇ SEQ ID 139> is:
  • ORF12ng shows 97.1% identity in 522 aa overlap with ORF12-1:
  • ORF12ng shows significant homology with a hypothetical protein from E. coli :
  • ORF14 shows 94.0% identity over a 167aa overlap with an ORF (ORF14a) from strain A of N. meningitidis :
  • ORF14a nucleotide sequence ⁇ SEQ ID 143> is:
  • this sequence includes a stop codon at position 118.
  • ORF14 shows 89.8% identity over a 167aa overlap with a predicted ORF (ORF14.ng) from N. gonorrhoeae :
  • ORF14ng nucleotide sequence ⁇ SEQ ID 145> is predicted to encode a protein having amino acid sequence ⁇ SEQ ID 146>:
  • the proteins from N. meningitidis and N. gonorrhoeae could be useful antigens for vaccines or diagnostics, or for raising antibodies.
  • ORF16 shows 96.7% identity over a 181 as overlap with an ORF (ORF16a) from strain A of N. meningitidis :
  • ORF16a nucleotide sequence ⁇ SEQ ID 151> is:
  • ORF16a and ORF16-1 show 99.6% identity in 451 aa overlap:
  • ORF16 shows 93.9% identity over a 181aa overlap with a predicted ORF (ORF16.ng) from N. gonorrhoeae :
  • ORF16ng nucleotide sequence ⁇ SEQ ID 153> is:
  • ORF16ng and ORF16-1 show 89.3% identity in 261 aa overlap:
  • ORF28 shows 79.2% identity over a 120aa overlap with an ORF (ORF28a) from strain A of N. meningitidis :
  • ORF28a nucleotide sequence ⁇ SEQ ID 159> is:
  • ORF28a and ORF28-1 show 86.1% identity in 238 aa overlap:
  • ORF28 shows 84.2% identity over a 120aa overlap with a predicted ORF (ORF28.ng) from N. gonorrhoeae :
  • ORF28ng and ORF28-1 share 90.0% identity in 231 aa overlap:
  • ORF28-1 (24 kDa) was cloned in pET and pGex vectors and expressed in E. coli , as described above. The products of protein expression and purification were analyzed by SDS-PAGE. FIG. 6A shows the results of affinity purification of the GST-fusion protein, and FIG. 6B shows the results of expression of the His-fusion in E. coli . Purified GST-fusion protein was used to immunise mice, whose sera were used for ELISA, which gave a positive result. These experiments confirm that ORF28-1 is a surface-exposed protein, and that it may be a useful immunogen.
  • ORF29 shows 88.0% identity over a 125aa overlap with an ORF (ORF29a) from strain A of N. meningitidis :
  • ORF29a nucleotide sequence ⁇ SEQ ID 167> is:
  • ORF29a and ORF29-1 show 90.1% identity in 385 aa overlap:
  • ORF29 shows 88.8% identity over a 125aa overlap with a predicted ORF (ORF29.ng) from N. gonorrhoeae :
  • ORF29ng nucleotide sequence ⁇ SEQ ID 169> is predicted to encode a protein having amino acid sequence ⁇ SEQ ID 170>:
  • ORF29ng-1 and ORF29-1 show 86.0% identity in 401 aa overlap:

Abstract

The invention provides proteins from Neisseria meningitidis (strains A & B) and from Neisseria gonorrhoeae, including amino acid sequences, the corresponding nucleotide sequences, expression data, and serological data. The proteins are useful antigens for vaccines, immunogenic compositions, and/or diagnostics.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • This application is a Divisional application of U.S. patent application Ser. No. 12/653,954, filed, Dec. 18, 2009, which is a Divisional of U.S. patent application Ser. No. 10/864,684, filed Jun. 8, 2004, now U.S. Pat. No. 7,655,245, which is a continuation application of U.S. patent application Ser. No. 09/303,518, filed Apr. 30, 1999, now U.S. Pat. No. 6,914,131, which is a continuation-in-part of International Patent Application PCT/IB1998/001665, filed Oct. 9, 1998, from which applications priority is claimed pursuant to 35 U.S.C. §120. PCT/IB1998/001665 claims priority to Great Britain Patent Applications No. 9723516.2, filed Nov. 6, 1997; No. 9724190.5, filed Nov. 14, 1997; No. 9724386.9, filed Nov. 18, 1997; No. 9725158.1, filed Nov. 27, 1997; No. 9726147.3, filed Dec. 10, 1997; No. 9800759.4, filed Jan. 14, 1998; No. 9819016.8, filed Sep. 1, 1998. All of the above applications are incorporated herein by reference in their entirety.
  • SUBMISSION OF SEQUENCE LISTING ON ASCII TEXT FILE
  • The content of the following submission on ASCII text file is incorporated herein by reference in its entirety: a computer readable form (CRF) of the Sequence Listing (file name: 223002099611SUBSEQLIST.txt, date recorded: Oct. 1, 2012, size: 2,099 KB).
  • This invention relates to antigens from Neisseria bacteria.
  • BACKGROUND ART
  • Neisseria meningitidis and Neisseria gonorrhoeae are non-motile, gram negative diplococci that are pathogenic in humans. N. meningitidis colonises the pharynx and causes meningitis (and, occasionally, septicaemia in the absence of meningitis); N. gonorrhoeae colonises the genital tract and causes gonorrhea. Although colonising different areas of the body and causing completely different diseases, the two pathogens are closely related, although one feature that clearly differentiates meningococcus from gonococcus is the presence of a polysaccharide capsule that is present in all pathogenic meningococci.
  • N. gonorrhoeae caused approximately 800,000 cases per year during the period 1983-1990 in the United States alone (chapter by Meitzner & Cohen, “Vaccines Against Gonococcal Infection”, In: New Generation Vaccines, 2nd edition, ed. Levine, Woodrow, Kaper, & Cobon, Marcel Dekker, New York, 1997, pp. 817-842). The disease causes significant morbidity but limited mortality. Vaccination against N. gonorrhoeae would be highly desirable, but repeated attempts have failed. The main candidate antigens for this vaccine are surface-exposed proteins such as pili, porins, opacity-associated proteins (Opas) and other surface-exposed proteins such as the Lip, Laz, IgA1 protease and transferrin-binding proteins. The lipooligosaccharide (LOS) has also been suggested as vaccine (Meitzner & Cohen, supra).
  • N. meningitidis causes both endemic and epidemic disease. In the United States the attack rate is 0.6-1 per 100,000 persons per year, and it can be much greater during outbreaks (see Lieberman et al. (1996) Safety and Immunogenicity of a Serogroups A/C Neisseria meningitidis Oligosaccharide-Protein Conjugate Vaccine in Young Children. JAMA 275(19):1499-1503; Schuchat et al (1997) Bacterial Meningitis in the United States in 1995. N Engl J Med 337(14):970-976). In developing countries, endemic disease rates are much higher and during epidemics incidence rates can reach 500 cases per 100,000 persons per year. Mortality is extremely high, at 10-20% in the United States, and much higher in developing countries. Following the introduction of the conjugate vaccine against Haemophilus influenzae, N. meningitidis is the major cause of bacterial meningitis at all ages in the United States (Schuchat et al (1997) supra).
  • Based on the organism's capsular polysaccharide, 12 serogroups of N. meningitidis have been identified. Group A is the pathogen most often implicated in epidemic disease in sub-Saharan Africa. Serogroups B and C are responsible for the vast majority of cases in the United States and in most developed countries. Serogroups W135 and Y are responsible for the rest of the cases in the United States and developed countries. The meningococcal vaccine currently in use is a tetravalent polysaccharide vaccine composed of serogroups A, C, Y and W135. Although efficacious in adolescents and adults, it induces a poor immune response and short duration of protection, and cannot be, used in infants [eg. Morbidity and Mortality weekly report, Vol. 46, No. RR-5 (1997)]. This is because polysaccharides are T-cell independent antigens that induce a weak immune response that cannot be boosted by repeated immunization. Following the success of the vaccination against H. influenzae, conjugate vaccines against serogroups A and C have been developed and are at the final stage of clinical testing (Zollinger W D “New and Improved Vaccines Against Meningococcal Disease” in: New Generation Vaccines, supra, pp. 469-488; Lieberman et al (1996) supra; Costantino et al (1992) Development and phase I clinical testing of a conjugate vaccine against meningococcus A and C. Vaccine 10:691-698).
  • Meningococcus B remains a problem, however. This serotype currently is responsible for approximately 50% of total meningitis in the United States, Europe, and South America. The polysaccharide approach cannot be used because the menB capsular polysaccharide is a polymer of α(2-8)-linked N-acetyl neuraminic acid that is also present in mammalian tissue. This results in tolerance to the antigen; indeed, if an immune response were elicited, it would be anti-self, and therefore undesirable. In order to avoid induction of autoimmunity and to induce a protective immune response, the capsular polysaccharide has, for instance, been chemically modified substituting the N-acetyl groups with N-propionyl groups, leaving the specific antigenicity unaltered (Romero & Outschoorn (1994) Current status of Meningococcal group B vaccine candidates: capsular or non-capsular? Clin Microbiol Rev 7(4):559-575).
  • Alternative approaches to menB vaccines have used complex mixtures of outer membrane proteins (OMPs), containing either the OMPs alone, or OMPs enriched in porins, or deleted of the class 4 OMPs that are believed to induce antibodies that block bactericidal activity. This approach produces vaccines that are not well characterized. They are able to protect against the homologous strain, but are not effective at large where there are many antigenic variants of the outer membrane proteins. To overcome the antigenic variability, multivalent vaccines containing up to nine different porins have been constructed (eg. Poolman J T (1992) Development of a meningococcal vaccine. Infect. Agents Dis. 4:13-28). Additional proteins to be used in outer membrane vaccines have been the opa and opc proteins, but none of these approaches have been able to overcome the antigenic variability (eg. Ala'Aldeen & Borriello (1996) The meningococcal transferrin-binding proteins 1 and 2 are both surface exposed and generate bactericidal antibodies capable of killing homologous and heterologous strains. Vaccine 14(1):49-53).
  • A certain amount of sequence data is available for meningococcal and gonoccocal genes and proteins (eg. EP-A-0467714, WO96/29412), but this is by no means complete. The provision of further sequences could provide an opportunity to identify secreted or surface-exposed proteins that are presumed targets for the immune system and which are not antigenically variable. For instance, some of the identified proteins could be components of efficacious vaccines against meningococcus B, some could be components of vaccines against all meningococcal serotypes, and others could be components of vaccines against all pathogenic Neisseriae.
  • THE INVENTION
  • The invention provides proteins comprising the Neisserial amino acid sequences disclosed in the examples. These sequences relate to N. meningitidis or N. gonorrhoeae.
  • It also provides proteins comprising sequences homologous (ie. having sequence identity) to the Neisserial amino acid sequences disclosed in the examples. Depending on the particular sequence, the degree of identity is preferably greater than 50% (eg. 65%, 80%, 90%, or more). These homologous proteins include mutants and allelic variants of the sequences disclosed in the examples. Typically, 50% identity or more between two proteins is considered to be an indication of functional equivalence. Identity between the proteins is preferably determined by the Smith-Waterman homology search algorithm as implemented in the MPSRCH program (Oxford Molecular), using an affine gap search with parameters gap open penalty=12 and gap extension penalty=1.
  • The invention further provides proteins comprising fragments of the Neisserial amino acid sequences disclosed in the examples. The fragments should comprise at least n consecutive amino acids from the sequences and, depending on the particular sequence, n is 7 or more (eg. 8, 10, 12, 14, 16, 18, 20 or more). Preferably the fragments comprise an epitope from the sequence.
  • The proteins of the invention can, of course, be prepared by various means (eg. recombinant expression, purification from cell culture, chemical synthesis etc.) and in various forms (eg. native, fusions etc.). They are preferably prepared in substantially pure or isolated form (ie. substantially free from other Neisserial or host cell proteins)
  • According to a further aspect, the invention provides antibodies which bind to these proteins. These may be polyclonal or monoclonal and may be produced by any suitable means.
  • According to a further aspect, the invention provides nucleic acid comprising the Neisserial nucleotide sequences disclosed in the examples. In addition, the invention provides nucleic acid comprising sequences homologous (ie. having sequence identity) to the Neisserial nucleotide sequences disclosed in the examples.
  • Furthermore, the invention provides nucleic acid which can hybridise to the Neisserial nucleic acid disclosed in the examples, preferably under “high stringency” conditions (eg. 65° C. in a 0.1×SSC, 0.5% SDS solution).
  • Nucleic acid comprising fragments of these sequences are also provided. These should comprise at least n consecutive nucleotides from the Neisserial sequences and, depending on the particular sequence, n is 10 or more ( eg 12, 14, 15, 18, 20, 25, 30, 35, 40 or more).
  • According to a further aspect, the invention provides nucleic acid encoding the proteins and protein fragments of the invention.
  • It should also be appreciated that the invention provides nucleic acid comprising sequences complementary to those described above (eg. for antisense or probing purposes).
  • Nucleic acid according to the invention can, of course, be prepared in many ways (eg. by chemical synthesis, from genomic or cDNA libraries, from the organism itself etc.) and can take various forms (eg. single stranded, double stranded, vectors, probes etc.).
  • In addition, the term “nucleic acid” includes DNA and RNA, and also their analogues, such as those containing modified backbones, and also peptide nucleic acids (PNA) etc.
  • According to a further aspect, the invention provides vectors comprising nucleotide sequences of the invention (eg. expression vectors) and host cells transformed with such vectors.
  • According to a further aspect, the invention provides compositions comprising protein, antibody, and/or nucleic acid according to the invention. These compositions may be suitable as vaccines, for instance, or as diagnostic reagents, or as immunogenic compositions.
  • The invention also provides nucleic acid, protein, or antibody according to the invention for use as medicaments (eg. as vaccines) or as diagnostic reagents. It also provides the use of nucleic acid, protein, or antibody according to the invention in the manufacture of: (i) a medicament for treating or preventing infection due to Neisserial bacteria; (ii) a diagnostic reagent for detecting the presence of Neisserial bacteria or of antibodies raised against Neisserial bacteria; and/or (iii) a reagent which can raise antibodies against Neisserial bacteria. Said Neisserial bacteria may be any species or strain (such as N. gonorrhoeae, or any strain of N. meningitidis, such as strain A, strain B or strain C).
  • The invention also provides a method of treating a patient, comprising administering to the patient a therapeutically effective amount of nucleic acid, protein, and/or antibody according to the invention.
  • According to further aspects, the invention provides various processes.
  • A process for producing proteins of the invention is provided, comprising the step of culturing a host cell according to the invention under conditions which induce protein expression.
  • A process for producing protein or nucleic acid of the invention is provided, wherein the protein or nucleic acid is synthesised in part or in whole using chemical means.
  • A process for detecting polynucleotides of the invention is provided, comprising the steps of: (a) contacting a nucleic probe according to the invention with a biological sample under hybridizing conditions to form duplexes; and (b) detecting said duplexes.
  • A process for detecting proteins of the invention is provided, comprising the steps of: (a) contacting an antibody according to the invention with a biological sample under conditions suitable for the formation of an antibody-antigen complexes; and (b) detecting said complexes.
  • A summary of standard techniques and procedures which may be employed in order to perform the invention (eg. to utilise the disclosed sequences for vaccination or diagnostic purposes) follows. This summary is not a limitation on the invention but, rather, gives examples that may be used, but are not required.
  • General
  • The practice of the present invention will employ, unless otherwise indicated, conventional techniques of molecular biology, microbiology, recombinant DNA, and immunology, which are within the skill of the art. Such techniques are explained fully in the literature eg. Sambrook Molecular Cloning; A Laboratory Manual, Second Edition (1989); DNA Cloning, Volumes I and ii (D. N Glover ed. 1985); Oligonucleotide Synthesis (M. J. Gait ed, 1984); Nucleic Acid Hybridization (B. D. Hames & S. J. Higgins eds. 1984); Transcription and Translation (B. D. Hames & S. J. Higgins eds. 1984); Animal Cell Culture (R. I. Freshney ed. 1986); Immobilized Cells and Enzymes (IRL Press, 1986); B. Perbal, A Practical Guide to Molecular Cloning (1984); the Methods in Enzymology series (Academic Press, Inc.), especially volumes 154 & 155; Gene Transfer Vectors for Mammalian Cells (J. H. Miller and M. P. Calm eds. 1987, Cold Spring Harbor Laboratory); Mayer and Walker, eds. (1987), Immunochemical Methods in Cell and Molecular Biology (Academic Press, London); Scopes, (1987) Protein Purification: Principles and Practice, Second Edition (Springer-Verlag, N.Y.), and Handbook of Experimental Immunology, Volumes I-IV (D. M. Weir and C. C. Blackwell eds 1986).
  • Standard abbreviations for nucleotides and amino acids are used in this specification.
  • All publications, patents, and patent applications cited herein are incorporated in full by reference. In particular, the contents of UK patent applications 9723516.2, 9724190.5, 9724386.9, 9725158.1, 9726147.3, 9800759.4, and 9819016.8 are incorporated herein.
  • DEFINITIONS
  • A composition containing X is “substantially free of” Y when at least 85% by weight of the total X+Y in the composition is X. Preferably, X comprises at least about 90% by weight of the total of X+Y in the composition, more preferably at least about 95% or even 99% by weight.
  • The term “comprising” means “including” as well as “consisting” eg. a composition “comprising” X may consist exclusively of X or may include something additional to X, such as X+Y.
  • The term “heterologous” refers to two biological components that are not found together in nature. The components may be host cells, genes, or regulatory regions, such as promoters. Although the heterologous components are not found together in nature, they can function together, as when a promoter heterologous to a gene is operably linked to the gene. Another example is where a Neisserial sequence is heterologous to a mouse host cell. A further examples would be two epitopes from the same or different proteins which have been assembled in a single protein in an arrangement not found in nature.
  • An “origin of replication” is a polynucleotide sequence that initiates and regulates replication of polynucleotides, such as an expression vector. The origin of replication behaves as an autonomous unit of polynucleotide replication within a cell, capable of replication under its own control. An origin of replication may be needed for a vector to replicate in a particular host cell. With certain origins of replication, an expression vector can be reproduced at a high copy number in the presence of the appropriate proteins within the cell. Examples of origins are the autonomously replicating sequences, which are effective in yeast; and the viral T-antigen, effective in COS-7 cells.
  • A “mutant” sequence is defined as DNA, RNA or amino acid sequence differing from but having sequence identity with the native or disclosed sequence. Depending on the particular sequence, the degree of sequence identity between the native or disclosed sequence and the mutant sequence is preferably greater than 50% (eg. 60%, 70%, 80%, 90%, 95%, 99% or more, calculated using the Smith-Waterman algorithm as described above). As used herein, an “allelic variant” of a nucleic acid molecule, or region, for which nucleic acid sequence is provided herein is a nucleic acid molecule, or region, that occurs essentially at the same locus in the genome of another or second isolate, and that, due to natural variation caused by, for example, mutation or recombination, has a similar but not identical nucleic acid sequence. A coding region allelic variant typically encodes a protein having similar activity to that of the protein encoded by the gene to which it is being compared. An allelic variant can also comprise an alteration in the 5′ or 3′ untranslated regions of the gene, such as in regulatory control regions (eg. see U.S. Pat. No. 5,753,235).
  • Expression Systems
  • The Neisserial nucleotide sequences can be expressed in a variety of different expression systems; for example those used with mammalian cells, baculoviruses, plants, bacteria, and yeast.
  • i. Mammalian Systems
  • Mammalian expression systems are known in the art. A mammalian promoter is any DNA sequence capable of binding mammalian RNA polymerase and initiating the downstream (3′) transcription of a coding sequence (eg. structural gene) into mRNA. A promoter will have a transcription initiating region, which is usually placed proximal to the 5′ end of the coding sequence, and a TATA box, usually located 25-30 base pairs (bp) upstream of the transcription initiation site. The TATA box is thought to direct RNA polymerase II to begin RNA synthesis at the correct site. A mammalian promoter will also contain an upstream promoter element, usually located within 100 to 200 bp upstream of the TATA box. An upstream promoter element determines the rate at which transcription is initiated and can act in either orientation [Sambrook et al. (1989) “Expression of Cloned Genes in Mammalian Cells.” In Molecular Cloning: A Laboratory Manual, 2nd ed.].
  • Mammalian viral genes are often highly expressed and have a broad host range; therefore sequences encoding mammalian viral genes provide particularly useful promoter sequences. Examples include the SV40 early promoter, mouse mammary tumor virus LTR promoter, adenovirus major late promoter (Ad MLP), and herpes simplex virus promoter. In addition, sequences derived from non-viral genes, such as the murine metallotheionein gene, also provide useful promoter sequences. Expression may be either constitutive or regulated (inducible), depending on the promoter can be induced with glucocorticoid in hormone-responsive cells.
  • The presence of an enhancer element (enhancer), combined with the promoter elements described above, will usually increase expression levels. An enhancer is a regulatory DNA sequence that can stimulate transcription up to 1000-fold when linked to homologous or heterologous promoters, with synthesis beginning at the normal RNA start site. Enhancers are also active when they are placed upstream or downstream from the transcription initiation site, in either normal or flipped orientation, or at a distance of more than 1000 nucleotides from the promoter [Maniatis et al. (1987) Science 236:1237; Alberts et al. (1989) Molecular Biology of the Cell, 2nd ed.]. Enhancer elements derived from viruses may be particularly useful, because they usually have a broader host range. Examples include the SV40 early gene enhancer [Dijkema et al (1985) EMBO J. 4:761] and the enhancer/promoters derived from the long terminal repeat (LTR) of the Rous Sarcoma Virus [Gorman et al. (1982b) Proc. Natl. Acad. Sci. 79:6777] and from human cytomegalovirus [Boshart et al. (1985) Cell 41:521]. Additionally, some enhancers are regulatable and become active only in the presence of an inducer, such as a hormone or metal ion [Sassone-Corsi and Borelli (1986) Trends Genet. 2:215; Maniatis et al. (1987) Science 236:1237].
  • A DNA molecule may be expressed intracellularly in mammalian cells. A promoter sequence may be directly linked with the DNA molecule, in which case the first amino acid at the N-terminus of the recombinant protein will always be a methionine, which is encoded by the ATG start codon. If desired, the N-terminus may be cleaved from the protein by in vitro incubation with cyanogen bromide.
  • Alternatively, foreign proteins can also be secreted from the cell into the growth media by creating chimeric DNA molecules that encode a fusion protein comprised of a leader sequence fragment that provides for secretion of the foreign protein in mammalian cells. Preferably, there are processing sites encoded between the leader fragment and the foreign gene that can be cleaved either in vivo or in vitro. The leader sequence fragment usually encodes a signal peptide comprised of hydrophobic amino acids which direct the secretion of the protein from the cell. The adenovirus triparite leader is an example of a leader sequence that provides for secretion of a foreign protein in mammalian cells.
  • Usually, transcription termination and polyadenylation sequences recognized by mammalian cells are regulatory regions located 3′ to the translation stop codon and thus, together with the promoter elements, flank the coding sequence. The 3′ terminus of the mature mRNA is formed by site-specific post-transcriptional cleavage and polyadenylation [Birnstiel et al. (1985) Cell 41:349; Proudfoot and Whitelaw (1988) “Termination and 3′ end processing of eukaryotic RNA. In Transcription and splicing (ed. B. D. Hames and D. M. Glover); Proudfoot (1989) Trends Biochem. Sci. 14:105]. These sequences direct the transcription of an mRNA which can be translated into the polypeptide encoded by the DNA. Examples of transcription terminater/polyadenylation signals include those derived from SV40 [Sambrook et al (1989) “Expression of cloned genes in cultured mammalian cells.” In Molecular Cloning: A Laboratory Manual].
  • Usually, the above described components, comprising a promoter, polyadenylation signal, and transcription termination sequence are put together into expression constructs. Enhancers, introns with functional splice donor and acceptor sites, and leader sequences may also be included in an expression construct, if desired. Expression constructs are often maintained in a replicon, such as an extrachromosomal element (eg. plasmids) capable of stable maintenance in a host, such as mammalian cells or bacteria. Mammalian replication systems include those derived from animal viruses, which require trans-acting factors to replicate. For example, plasmids containing the replication systems of papovaviruses, such as SV40 [Gluzman (1981) Cell 23:175] or polyomavirus, replicate to extremely high copy number in the presence of the appropriate viral T antigen. Additional examples of mammalian replicons include those derived from bovine papillomavirus and Epstein-Barr virus. Additionally, the replicon may have two replicaton systems, thus allowing it to be maintained, for example, in mammalian cells for expression and in a prokaryotic host for cloning and amplification. Examples of such mammalian-bacteria shuttle vectors include pMT2 [Kaufman et al. (1989) Mol. Cell. Biol. 9:946] and pHEBO [Shimizu et al. (1986) Mol. Cell. Biol. 6:1074].
  • The transformation procedure used depends upon the host to be transformed. Methods for introduction of heterologous polynucleotides into mammalian cells are known in the art and include dextran-mediated transfection, calcium phosphate precipitation, polybrene mediated transfection, protoplast fusion, electroporation, encapsulation of the polynucleotide(s) in liposomes, and direct microinjection of the DNA into nuclei.
  • Mammalian cell lines available as hosts for expression are known in the art and include many immortalized cell lines available from the American Type Culture Collection (ATCC), including but not limited to, Chinese hamster ovary (CHO) cells, HeLa cells, baby hamster kidney (BHK) cells, monkey kidney cells (COS), human hepatocellular carcinoma cells (eg. Hep G2), and a number of other cell lines.
  • ii. Baculovirus Systems
  • The polynucleotide encoding the protein can also be inserted into a suitable insect expression vector, and is operably linked to the control elements within that vector. Vector construction employs techniques which are known in the art. Generally, the components of the expression system include a transfer vector, usually a bacterial plasmid, which contains both a fragment of the baculovirus genome, and a convenient restriction site for insertion of the heterologous gene or genes to be expressed; a wild type baculovirus with a sequence homologous to the baculovirus-specific fragment in the transfer vector (this allows for the homologous recombination of the heterologous gene in to the baculovirus genome); and appropriate insect host cells and growth media.
  • After inserting the DNA sequence encoding the protein into the transfer vector, the vector and the wild type viral genome are transfected into an insect host cell where the vector and viral genome are allowed to recombine. The packaged recombinant virus is expressed and recombinant plaques are identified and purified. Materials and methods for baculovirus/insect cell expression systems are commercially available in kit form from, inter alia, Invitrogen, San Diego Calif. (“MaxBac” kit). These techniques are generally known to those skilled in the art and fully described in Summers and Smith, Texas Agricultural Experiment Station Bulletin No. 1555 (1987) (hereinafter “Summers and Smith”).
  • Prior to inserting the DNA sequence encoding the protein into the baculovirus genome, the above described components, comprising a promoter, leader (if desired), coding sequence of interest, and transcription termination sequence, are usually assembled into an intermediate transplacement construct (transfer vector). This construct may contain a single gene and operably linked regulatory elements; multiple genes, each with its owned set of operably linked regulatory elements; or multiple genes, regulated by the same set of regulatory elements. Intermediate transplacement constructs are often maintained in a replicon, such as an extrachromosomal element (eg. plasmids) capable of stable maintenance in a host, such as a bacterium. The replicon will have a replication system, thus allowing it to be maintained in a suitable host for cloning and amplification.
  • Currently, the most commonly used transfer vector for introducing foreign genes into AcNPV is pAc373. Many other vectors, known to those of skill in the art, have also been designed. These include, for example, pVL985 (which alters the polyhedrin start codon from ATG to ATT, and which introduces a BamHI cloning site 32 basepairs downstream from the ATT; see Luckow and Summers, Virology (1989) 17:31.
  • The plasmid usually also contains the polyhedrin polyadenylation signal (Miller et al. (1988) Ann. Rev. Microbiol., 42:177) and a prokaryotic ampicillin-resistance (amp) gene and origin of replication for selection and propagation in E. coli.
  • Baculovirus transfer vectors usually contain a baculovirus promoter. A baculovirus promoter is any DNA sequence capable of binding a baculovirus RNA polymerase and initiating the downstream (5′ to 3′) transcription of a coding sequence (eg. structural gene) into mRNA. A promoter will have a transcription initiation region which is usually placed proximal to the 5′ end of the coding sequence. This transcription initiation region usually includes an RNA polymerase binding site and a transcription initiation site. A baculovirus transfer vector may also have a second domain called an enhancer, which, if present, is usually distal to the structural gene. Expression may be either regulated or constitutive.
  • Structural genes, abundantly transcribed at late times in a viral infection cycle, provide particularly useful promoter sequences. Examples include sequences derived from the gene encoding the viral polyhedron protein, Friesen et al., (1986) “The Regulation of Baculovirus Gene Expression,” in: The Molecular Biology of Baculoviruses (ed. Walter Doerfler); EPO Publ. Nos. 127 839 and 155 476; and the gene encoding the p10 protein, Vlak et al., (1988), J. Gen. Virol. 69:765.
  • DNA encoding suitable signal sequences can be derived from genes for secreted insect or baculovirus proteins, such as the baculovirus polyhedrin gene (Carbonell et al. (1988) Gene, 73:409). Alternatively, since the signals for mammalian cell posttranslational modifications (such as signal peptide cleavage, proteolytic cleavage, and phosphorylation) appear to be recognized by insect cells, and the signals required for secretion and nuclear accumulation also appear to be conserved between the invertebrate cells and vertebrate cells, leaders of non-insect origin, such as those derived from genes encoding human α-interferon, Maeda et al., (1985), Nature 315:592; human gastrin-releasing peptide, Lebacq-Verheyden et al., (1988), Molec. Cell. Biol. 8:3129; human IL-2, Smith et al., (1985) Proc. Nat'l Acad. Sci. USA, 82:8404; mouse IL-3, (Miyajima et al., (1987) Gene 58:273; and human glucocerebrosidase, Martin et al. (1988) DNA, 7:99, can also be used to provide for secretion in insects.
  • A recombinant polypeptide or polyprotein may be expressed intracellularly or, if it is expressed with the proper regulatory sequences, it can be secreted. Good intracellular expression of nonfused foreign proteins usually requires heterologous genes that ideally have a short leader sequence containing suitable translation initiation signals preceding an ATG start signal. If desired, methionine at the N-terminus may be cleaved from the mature protein by in vitro incubation with cyanogen bromide.
  • Alternatively, recombinant polyproteins or proteins which are not naturally secreted can be secreted from the insect cell by creating chimeric DNA molecules that encode a fusion protein comprised of a leader sequence fragment that provides for secretion of the foreign protein in insects. The leader sequence fragment usually encodes a signal peptide comprised of hydrophobic amino acids which direct the translocation of the protein into the endoplasmic reticulum.
  • After insertion of the DNA sequence and/or the gene encoding the expression product precursor of the protein, an insect cell host is co-transformed with the heterologous DNA of the transfer vector and the genomic DNA of wild type baculovirus—usually by co-transfection. The promoter and transcription termination sequence of the construct will usually comprise a 2-5 kb section of the baculovirus genome. Methods for introducing heterologous DNA into the desired site in the baculovirus virus are known in the art. (See Summers and Smith supra; Ju et al. (1987); Smith et al., Mol. Cell. Biol. (1983) 3:2156; and Luckow and Summers (1989)). For example, the insertion can be into a gene such as the polyhedrin gene, by homologous double crossover recombination; insertion can also be into a restriction enzyme site engineered into the desired baculovirus gene. Miller et al., (1989), Bioessays 4:91. The DNA sequence, when cloned in place of the polyhedrin gene in the expression vector, is flanked both 5′ and 3′ by polyhedrin-specific sequences and is positioned downstream of the polyhedrin promoter.
  • The newly formed baculovirus expression vector is subsequently packaged into an infectious recombinant baculovirus. Homologous recombination occurs at low frequency (between about 1% and about 5%); thus, the majority of the virus produced after cotransfection is still wild-type virus. Therefore, a method is necessary to identify recombinant viruses. An advantage of the expression system is a visual screen allowing recombinant viruses to be distinguished. The polyhedrin protein, which is produced by the native virus, is produced at very high levels in the nuclei of infected cells at late times after viral infection. Accumulated polyhedrin protein forms occlusion bodies that also contain embedded particles. These occlusion bodies, up to 15 μm in size, are highly refractile, giving them a bright shiny appearance that is readily visualized under the light microscope. Cells infected with recombinant viruses lack occlusion bodies. To distinguish recombinant virus from wild-type virus, the transfection supernatant is plagued onto a monolayer of insect cells by techniques known to those skilled in the art. Namely, the plaques are screened under the light microscope for the presence (indicative of wild-type virus) or absence (indicative of recombinant virus) of occlusion bodies. “Current Protocols in Microbiology” Vol. 2 (Ausubel et al. eds) at 16.8 (Supp. 10, 1990); Summers and Smith, supra; Miller et al. (1989).
  • Recombinant baculovirus expression vectors have been developed for infection into several insect cells. For example, recombinant baculoviruses have been developed for, inter alis: Aedes aegypti, Autographa californica, Bombyx mori, Drosophila melanogaster, Spodoptera frugiperda, and Trichoplusia ni (WO 89/046699; Carbonell et al., (1985) J. Virol. 56:153; Wright (1986) Nature 321:718; Smith et al., (1983) Mol. Cell. Biol. 3:2156; and see generally, Fraser, et al. (1989) In Vitro Cell. Dev. Biol. 25:225).
  • Cells and cell culture media are commercially available for both direct and fusion expression of heterologous polypeptides in a baculovirus/expression system; cell culture technology is generally known to those skilled in the art. See, eg. Summers and Smith supra.
  • The modified insect cells may then be grown in an appropriate nutrient medium, which allows for stable maintenance of the plasmid(s) present in the modified insect host. Where the expression product gene is under inducible control, the host may be grown to high density, and expression induced. Alternatively, where expression is constitutive, the product will be continuously expressed into the medium and the nutrient medium must be continuously circulated, while removing the product of interest and augmenting depleted nutrients. The product may be purified by such techniques as chromatography, eg. HPLC, affinity chromatography, ion exchange chromatography, etc.; electrophoresis; density gradient centrifugation; solvent extraction, or the like. As appropriate, the product may be further purified, as required, so as to remove substantially any insect proteins which are also secreted in the medium or result from lysis of insect cells, so as to provide a product which is at least substantially free of host debris, eg. proteins, lipids and polysaccharides.
  • In order to obtain protein expression, recombinant host cells derived from the transformants are incubated under conditions which allow expression of the recombinant protein encoding sequence. These conditions will vary, dependent upon the host cell selected. However, the conditions are readily ascertainable to those of ordinary skill in the art, based upon what is known in the art.
  • iii. Plant Systems
  • There are many plant cell culture and whole plant genetic expression systems known in the art. Exemplary plant cellular genetic expression systems include those described in patents, such as: U.S. Pat. No. 5,693,506; U.S. Pat. No. 5,659,122; and U.S. Pat. No. 5,608,143. Additional examples of genetic expression in plant cell culture has been described by Zenk, Phytochemistry 30:3861-3863 (1991). Descriptions of plant protein signal peptides may be found in addition to the references described above in Vaulcombe et al., Mol. Gen. Genet. 209:33-40 (1987); Chandler et al., Plant Molecular Biology 3:407-418 (1984); Rogers, J. Biol. Chem. 260:3731-3738 (1985); Rothstein et al., Gene 55:353-356 (1987); Whittier et al., Nucleic Acids Research 15:2515-2535 (1987); Wirsel et al., Molecular Microbiology 3:3-14 (1989); Yu et al., Gene 122:247-253 (1992). A description of the regulation of plant gene expression by the phytohormone, gibberellic acid and secreted enzymes induced by gibberellic acid can be found in R. L. Jones and J. MacMillin, Gibberellins: in: Advanced Plant Physiology, Malcolm B. Wilkins, ed., 1984 Pitman Publishing Limited, London, pp. 21-52. References that describe other metabolically-regulated genes: Sheen, Plant Cell, 2:1027-1038 (1990); Maas et al., EMBO J. 9:3447-3452 (1990); Benkel and Hickey, Proc. Natl. Acad. Sci. 84:1337-1339 (1987)
  • Typically, using techniques known in the art, a desired polynucleotide sequence is inserted into an expression cassette comprising genetic regulatory elements designed for operation in plants. The expression cassette is inserted into a desired expression vector with companion sequences upstream and downstream from the expression cassette suitable for expression in a plant host. The companion sequences will be of plasmid or viral origin and provide necessary characteristics to the vector to permit the vectors to move DNA from an original cloning host, such as bacteria, to the desired plant host. The basic bacterial/plant vector construct will preferably provide a broad host range prokaryote replication origin; a prokaryote selectable marker; and, for Agrobacterium transformations, T DNA sequences for Agrobacterium-mediated transfer to plant chromosomes. Where the heterologous gene is not readily amenable to detection, the construct will preferably also have a selectable marker gene suitable for determining if a plant cell has been transformed. A general review of suitable markers, for example for the members of the grass family, is found in Wilmink and Dons, 1993, Plant Mol. Biol. Reptr, 11(2):165-185.
  • Sequences suitable for permitting integration of the heterologous sequence into the plant genome are also recommended. These might include transposon sequences and the like for homologous recombination as well as Ti sequences which permit random insertion of a heterologous expression cassette into a plant genome. Suitable prokaryote selectable markers include resistance toward antibiotics such as ampicillin or tetracycline. Other DNA sequences encoding additional functions may also be present in the vector, as is known in the art.
  • The nucleic acid molecules of the subject invention may be included into an expression cassette for expression of the protein(s) of interest. Usually, there will be only one expression cassette, although two or more are feasible. The recombinant expression cassette will contain in addition to the heterologous protein encoding sequence the following elements, a promoter region, plant 5′ untranslated sequences, initiation codon depending upon whether or not the structural gene comes equipped with one, and a transcription and translation termination sequence. Unique restriction enzyme sites at the 5′ and 3′ ends of the cassette allow for easy insertion into a pre-existing vector.
  • A heterologous coding sequence may be for any protein relating to the present invention. The sequence encoding the protein of interest will encode a signal peptide which allows processing and translocation of the protein, as appropriate, and will usually lack any sequence which might result in the binding of the desired protein of the invention to a membrane. Since, for the most part, the transcriptional initiation region will be for a gene which is expressed and translocated during germination, by employing the signal peptide which provides for translocation, one may also provide for translocation of the protein of interest. In this way, the protein(s) of interest will be translocated from the cells in which they are expressed and may be efficiently harvested. Typically secretion in seeds are across the aleurone or scutellar epithelium layer into the endosperm of the seed. While it is not required that the protein be secreted from the cells in which the protein is produced, this facilitates the isolation and purification of the recombinant protein.
  • Since the ultimate expression of the desired gene product will be in a eucaryotic cell it is desirable to determine whether any portion of the cloned gene contains sequences which will be processed out as introns by the host's splicosome machinery. If so, site-directed mutagenesis of the “intron” region may be conducted to prevent losing a portion of the genetic message as a false intron code, Reed and Maniatis, Cell 41:95-105, 1985.
  • The vector can be microinjected directly into plant cells by use of micropipettes to mechanically transfer the recombinant DNA. Crossway, Mol. Gen. Genet, 202:179-185, 1985. The genetic material may also be transferred into the plant cell by using polyethylene glycol, Krens, et al., Nature, 296, 72-74, 1982. Another method of introduction of nucleic acid segments is high velocity ballistic penetration by small particles with the nucleic acid either within the matrix of small beads or particles, or on the surface, Klein, et al., Nature, 327, 70-73, 1987 and Knudsen and Muller, 1991, Planta, 185:330-336 teaching particle bombardment of barley endosperm to create transgenic barley. Yet another method of introduction would be fusion of protoplasts with other entities, either minicells, cells, lysosomes or other fusible lipid-surfaced bodies, Fraley, et al., Proc. Natl. Acad. Sci. USA, 79, 1859-1863, 1982.
  • The vector may also be introduced into the plant cells by electroporation. (Fromm et al., Proc. Natl. Acad. Sci. USA 82:5824, 1985). In this technique, plant protoplasts are electroporated in the presence of plasmids containing the gene construct. Electrical impulses of high field strength reversibly permeabilize biomembranes allowing the introduction of the plasmids. Electroporated plant protoplasts reform the cell wall, divide, and form plant callus.
  • All plants from which protoplasts can be isolated and cultured to give whole regenerated plants can be transformed by the present invention so that whole plants are recovered which contain the transferred gene. It is known that practically all plants can be regenerated from cultured cells or tissues, including but not limited to all major species of sugarcane, sugar beet, cotton, fruit and other trees, legumes and vegetables. Some suitable plants include, for example, species from the genera Fragaria, Lotus, Medicago, Onobrychis, Trifolium, Trigonella, Vigna, Citrus, Linum, Geranium, Manihot, Daucus, Arabidopsis, Brassica, Raphanus, Sinapis, Atropa, Capsicum, Datura, Hyoscyamus, Lycopersion, Nicotiana, Solanum, Petunia, Digitalis, Majorana, Cichorium, Helianthus, Lactuca, Bromus, Asparagus, Antirrhinum, Hererocallis, Nemesia, Pelargonium, Panicum, Pennisetum, Ranunculus, Senecio, Salpiglossis, Cucumis, Browaalia, Glycine, Lolium, Zea, Triticum, Sorghum, and Datura.
  • Means for regeneration vary from species to species of plants, but generally a suspension of transformed protoplasts containing copies of the heterologous gene is first provided. Callus tissue is formed and shoots may be induced from callus and subsequently rooted. Alternatively, embryo formation can be induced from the protoplast suspension. These embryos germinate as natural embryos to form plants. The culture media will generally contain various amino acids and hormones, such as auxin and cytokinins. It is also advantageous to add glutamic acid and proline to the medium, especially for such species as corn and alfalfa. Shoots and roots normally develop simultaneously. Efficient regeneration will depend on the medium, on the genotype, and on the history of the culture. If these three variables are controlled, then regeneration is fully reproducible and repeatable.
  • In some plant cell culture systems, the desired protein of the invention may be excreted or alternatively, the protein may be extracted from the whole plant. Where the desired protein of the invention is secreted into the medium, it may be collected. Alternatively, the embryos and embryoless-half seeds or other plant tissue may be mechanically disrupted to release any secreted protein between cells and tissues. The mixture may be suspended in a buffer solution to retrieve soluble proteins. Conventional protein isolation and purification methods will be then used to purify the recombinant protein. Parameters of time, temperature pH, oxygen, and volumes will be adjusted through routine methods to optimize expression and recovery of heterologous protein.
  • iv. Bacterial Systems
  • Bacterial expression techniques are known in the art. A bacterial promoter is any DNA sequence capable of binding bacterial RNA polymerase and initiating the downstream (3′) transcription of a coding sequence (eg. structural gene) into mRNA. A promoter will have a transcription initiation region which is usually placed proximal to the 5′ end of the coding sequence. This transcription initiation region usually includes an RNA polymerase binding site and a transcription initiation site. A bacterial promoter may also have a second domain called an operator, that may overlap an adjacent RNA polymerase binding site at which RNA synthesis begins. The operator permits negative regulated (inducible) transcription, as a gene repressor protein may bind the operator and thereby inhibit transcription of a specific gene. Constitutive expression may occur in the absence of negative regulatory elements, such as the operator. In addition, positive regulation may be achieved by a gene activator protein binding sequence, which, if present is usually proximal (5′) to the RNA polymerase binding sequence. An example of a gene activator protein is the catabolite activator protein (CAP), which helps initiate transcription of the lac operon in Escherichia coli (E. coli) [Raibaud et al. (1984) Annu. Rev. Genet. 18:173]. Regulated expression may therefore be either positive or negative, thereby either enhancing or reducing transcription.
  • Sequences encoding metabolic pathway enzymes provide particularly useful promoter sequences. Examples include promoter sequences derived from sugar metabolizing enzymes, such as galactose, lactose (lac) [Chang et al. (1977) Nature 198:1056], and maltose. Additional examples include promoter sequences derived from biosynthetic enzymes such as tryptophan (trp) [Goeddel et al. (1980) Nuc. Acids Res. 8:4057; Yelverton et al. (1981) Nucl. Acids Res. 9:731; U.S. Pat. No. 4,738,921; EP-A-0036776 and EP-A-0121775]. The g-laotamase (bla) promoter system [Weissmann (1981) “The cloning of interferon and other mistakes.” In Interferon 3 (ed. I. Gresser)], bacteriophage lambda PL [Shimatake et al. (1981) Nature 292:128] and T5 [U.S. Pat. No. 4,689,406] promoter systems also provide useful promoter sequences.
  • In addition, synthetic promoters which do not occur in nature also function as bacterial promoters. For example, transcription activation sequences of one bacterial or bacteriophage promoter may be joined with the operon sequences of another bacterial or bacteriophage promoter, creating a synthetic hybrid promoter [U.S. Pat. No. 4,551,433]. For example, the tac promoter is a hybrid trp-lac promoter comprised of both trp promoter and lac operon sequences that is regulated by the lac repressor [Amann et al. (1983) Gene 25:167; de Boer et al. (1983) Proc. Natl. Acad. Sci. 80:21].
  • Furthermore, a bacterial promoter can include naturally occurring promoters of non-bacterial origin that have the ability to bind bacterial RNA polymerase and initiate transcription. A naturally occurring promoter of non-bacterial origin can also be coupled with a compatible RNA polymerase to produce high levels of expression of some genes in prokaryotes. The bacteriophage T7 RNA polymerase/promoter system is an example of a coupled promoter system [Studier et al. (1986) J. Mol. Biol. 189:113; Tabor et al., (1985) Proc Natl. Acad. Sci. 82:1074]. In addition, a hybrid promoter can also be comprised of a bacteriophage promoter and an E. coli operator region (EPO-A-0 267 851).
  • In addition to a functioning promoter sequence, an efficient ribosome binding site is also useful for the expression of foreign genes in prokaryotes. In E. coli, the ribosome binding site is called the Shine-Dalgarno (SD) sequence and includes an initiation codon (ATG) and a sequence 3-9 nucleotides in length located 3-11 nucleotides upstream of the initiation codon [Shine et al. (1975) Nature 254:34]. The SD sequence is thought to promote binding of mRNA to the ribosome by the pairing of bases between the SD sequence and the 3′ and of E. coli 16S rRNA [Steitz et al: (1979) “Genetic signals and nucleotide sequences in messenger RNA.” In Biological Regulation and Development: Gene Expression (ed. R. F. Goldberger)]. To express eukaryotic genes and prokaryotic genes with weak ribosome-binding site [Sambrook et al. (1989) “Expression of cloned genes in Escherichia coli.” In Molecular Cloning: A Laboratory Manual].
  • A DNA molecule may be expressed intracellularly. A promoter sequence may be directly linked with the DNA molecule, in which case the first amino acid at the N-terminus will always be a methionine, which is encoded by the ATG start codon. If desired, methionine at the N-terminus may be cleaved from the protein by in vitro incubation with cyanogen bromide or by either in vivo on in vitro incubation with a bacterial methionine N-terminal peptidase (EPO-A-0 219 237).
  • Fusion proteins provide an alternative to direct expression. Usually, a DNA sequence encoding the N-terminal portion of an endogenous bacterial protein, or other stable protein, is fused to the 5′ end of heterologous coding sequences. Upon expression, this construct will provide a fusion of the two amino acid sequences. For example, the bacteriophage lambda cell gene can be linked at the 5′ terminus of a foreign gene and expressed in bacteria. The resulting fusion protein preferably retains a site for a processing enzyme (factor Xa) to cleave the bacteriophage protein from the foreign gene [Nagai et al. (1984) Nature 309:810]. Fusion proteins can also be made with sequences from the lacZ [Jia et al. (1987) Gene 60:197], trpE [Allen et al. (1987) J. Biotechnol. 5:93; Makoff et al. (1989) J. Gen. Microbiol. 135:11], and Chey [EP-A-0 324 647] genes. The DNA sequence at the junction of the two amino acid sequences may or may not encode a cleavable site. Another example is a ubiquitin fusion protein. Such a fusion protein is made with the ubiquitin region that preferably retains a site for a processing enzyme (eg. ubiquitin specific processing-protease) to cleave the ubiquitin from the foreign protein. Through this method, native foreign protein can be isolated [Miller et al. (1989) Bio/Technology 7:698].
  • Alternatively, foreign proteins can also be secreted from the cell by creating chimeric DNA molecules that encode a fusion protein comprised of a signal peptide sequence fragment that provides for secretion of the foreign protein in bacteria [U.S. Pat. No. 4,336,336]. The signal sequence fragment usually encodes a signal peptide comprised of hydrophobic amino acids which direct the secretion of the protein from the cell. The protein is either secreted into the growth media (gram-positive bacteria) or into the periplasmic space, located between the inner and outer membrane of the cell (gram-negative bacteria). Preferably there are processing sites, which can be cleaved either in vivo or in vitro encoded between the signal peptide fragment and the foreign gene.
  • DNA encoding suitable signal sequences can be derived from genes for secreted bacterial proteins, such as the E. coli outer membrane protein gene (ompA) [Masui et al. (1983), in: Experimental Manipulation of Gene Expression; Ghrayeb et al. (1984) EMBO J. 3:2437] and the E. coli alkaline phosphatase signal sequence (phoA) [Oka et al. (1985) Proc. Natl. Acad. Sci. 82:7212]. As an additional example, the signal sequence of the alpha-amylase gene from various Bacillus strains can be used to secrete heterologous proteins from B. subtilis [Palva et al. (1982) Proc. Natl. Acad. Sci. USA 79:5582; EP-A-0 244 042].
  • Usually, transcription termination sequences recognized by bacteria are regulatory regions located 3′ to the translation stop codon, and thus together with the promoter flank the coding sequence. These sequences direct the transcription of an mRNA which can be translated into the polypeptide encoded by the DNA. Transcription termination sequences frequently include DNA sequences of about 50 nucleotides capable of forming stem loop structures that aid in terminating transcription. Examples include transcription termination sequences derived from genes with strong promoters, such as the irp gene in E. coli as well as other biosynthetic genes.
  • Usually, the above described components, comprising a promoter, signal sequence (if desired), coding sequence of interest, and transcription termination sequence, are put together into expression constructs. Expression constructs are often maintained in a replicon, such as an extrachromosomal element (eg. plasmids) capable of stable maintenance in a host, such as bacteria. The replicon will have a replication system, thus allowing it to be maintained in a prokaryotic host either for expression or for cloning and amplification. In addition, a replicon may be either a high or low copy number plasmid. A high copy number plasmid will generally have a copy number ranging from about 5 to about 200, and usually about 10 to about 150. A host containing a high copy number plasmid will preferably contain at least about 10, and more preferably at least about 20 plasmids. Either a high or low copy number vector may be selected, depending upon the effect of the vector and the foreign protein on the host.
  • Alternatively, the expression constructs can be integrated into the bacterial genome with an integrating vector. Integrating vectors usually contain at least one sequence homologous to the bacterial chromosome that allows the vector to integrate. Integrations appear to result from recombinations between homologous DNA in the vector and the bacterial chromosome. For example, integrating vectors constructed with DNA from various Bacillus strains integrate into the Bacillus chromosome (EP-A-0 127 328). Integrating vectors may also be comprised of bacteriophage of transposon sequences.
  • Usually, extrachromosomal and integrating expression constructs may contain selectable markers to allow for the selection of bacterial strains that have been transformed. Selectable markers can be expressed in the bacterial host and may include genes which render bacteria resistant to drugs such as ampicillin, chloramphenicol, erythromycin, kanamycin (neomycin), and tetracycline [Davies et al. (1978) Annu. Rev. Microbiol. 32:469]. Selectable markers may also include biosynthetic genes, such as those in the histidine, tryptophan, and leucine biosynthetic pathways.
  • Alternatively, some of the above described components can be put together in transformation vectors. Transformation vectors are usually comprised of a selectable market that is either maintained in a replicon or developed into an integrating vector, as described above.
  • Expression and transformation vectors, either extra-chromosomal replicons or integrating vectors, have been developed for transformation into many bacteria. For example, expression vectors have been developed for, inter alfa, the following bacteria: Bacillus subtilis [Palva et al. (1982) Proc. Natl. Acad. Sci. USA 79:5582; EP-A-0 036 259 and EP-A-0 063 953; WO 84/04541], Escherichia coli [Shimatake et al. (1981) Nature 292:128; Amann et al. (1985) Gene 40:183; Studier et al. (1986) J. Mol. Biol. 189:113; EP-A-0 036 776, EP-A-0 136 829 and EP-A-0 136 907], Streptococcus cremoris [Powell et al. (1988) Appl. Environ. Microbiol. 54:655]; Streptococcus lividans [Powell et al. (1988) Appl. Environ. Microbiol. 54:655], Streptomyces lividans [U.S. Pat. No. 4,745,056].
  • Methods of introducing exogenous DNA into bacterial hosts are well-known in the art, and usually include either the transformation of bacteria treated with CaCl2 or other agents, such as divalent cations and DMSO. DNA can also be introduced into bacterial cells by electroporation. Transformation procedures usually vary with the bacterial specie to be transformed. See eg. [Masson et al. (1989) FEMS Microbiol. Lett. 60:273; Palva et al. (1982) Proc. Natl. Acad. Sci. USA 79:5582; EP-A-0 036 259 and EP-A-0 063 953; WO 84/04541, Bacillus], [Miller et al. (1988) Proc. Natl. Acad. Sci. 85:856; Wang et al. (1990) J. Bacteriol. 172:949, Campylobacter], [Cohen et al. (1973) Proc. Natl. Acad. Sci. 69:2110; Dower et al. (1988) Nucleic Acids Res. 16:6127; Kushner (1978) “An improved method for transformation of Escherichia coli with ColE1-derived plasmids. In Genetic Engineering: Proceedings of the International Symposium on Genetic Engineering (eds. H. W. Boyer and S. Nicosia); Mandel et al. (1970) J. Mol. Biol. 53:159; Taketo (1988) Biochim. Biophys. Acta 949:318; Escherichia], [Chassy et al. (1987) FEMS Microbiol. Lett. 44:173 Lactobacillus]; [Fiedler et al. (1988) Anal. Biochem 170:38, Pseudomonas]; [Augustin et al. (1990) FEMS Microbiol. Lett. 66:203, Staphylococcus], [Barany et al. (1980) J. Bacteriol. 144:698; Harlander (1987) “Transformation of Streptococcus lactis by electroporation, in: Streptococcal Genetics (ed. J. Ferretti and R. Curtiss III); Perry et al. (1981) Infect. Immun. 32:1295; Powell et al. (1988) Appl. Environ. Microbiol. 54:655; Somkuti et al. (1987) Proc. 4th Evr. Cong. Biotechnology 1:412, Streptococcus].
  • v. Yeast Expression
  • Yeast expression systems are also known to one of ordinary skill in the art. A yeast promoter is any DNA sequence capable of binding yeast RNA polymerase and initiating the downstream (3′) transcription of a coding sequence (eg. structural gene) into mRNA. A promoter will have a transcription initiation region which is usually placed proximal to the 5′ end of the coding sequence. This transcription initiation region usually includes an RNA polymerase binding site (the “TATA Box”) and a transcription initiation site. A yeast promoter may also have a second domain called an upstream activator sequence (UAS), which, if present, is usually distal to the structural gene. The UAS permits regulated (inducible) expression. Constitutive expression occurs in the absence of a UAS. Regulated expression may be either positive or negative, thereby either enhancing or reducing transcription.
  • Yeast is a fermenting organism with an active metabolic pathway, therefore sequences encoding enzymes in the metabolic pathway provide particularly useful promoter sequences. Examples include alcohol dehydrogenase (ADH) (EP-A-0 284 044), enolase, glucokinase, glucose-6-phosphate isomerase, glyceraldehyde-3-phosphate-dehydrogenase (GAP or GAPDH), hexokinase, phosphofructokinase, 3-phosphoglycerate mutase, and pyruvate kinase (PyK) (EPO-A-0 329 203). The yeast PHO5 gene, encoding acid phosphatase, also provides useful promoter sequences [Myanohara et al. (1983) Proc. Natl. Acad. Sci. USA 80:1).
  • In addition, synthetic promoters which do not occur in nature also function as yeast promoters. For example, UAS sequences of one yeast promoter may be joined with the transcription activation region of another yeast promoter, creating a synthetic hybrid promoter. Examples of such hybrid promoters include the ADH regulatory sequence linked to the GAP transcription activation region (U.S. Pat. Nos. 4,876,197 and 4,880,734). Other examples of hybrid promoters include promoters which consist of the regulatory sequences of either the ADH2, GAL4, GAL10, OR PHO5 genes, combined with the transcriptional activation region of a glycolytic enzyme gene such as GAP or PyK (EP-A-0 164 556). Furthermore, a yeast promoter can include naturally occurring promoters of non-yeast origin that have the ability to bind yeast RNA polymerase and initiate transcription. Examples of such promoters include, inter alia, [Cohen et al. (1980) Proc. Natl. Acad. Sci. USA 77:1078; Henikoff et al. (1981) Nature 283:835; Hollenberg et al. (1981) Curr. Topics Microbiol. Immunol. 96:119; Hollenberg et al. (1979) “The Expression of Bacterial Antibiotic Resistance Genes in the Yeast Saccharomyces cerevisiae,” in: Plasmids of Medical, Environmental and Commercial Importance (eds. K. N. Timmis and A. Puhler); Mercerau-Puigalon et al. (1980) Gene 11:163; Panthier et al. (1980) Curr. Genet. 2:109;].
  • A DNA molecule may be expressed intracellularly in yeast. A promoter sequence may be directly linked with the DNA molecule, in which case the first amino acid at the N-terminus of the recombinant protein will always be a methionine, which is encoded by the ATG start codon. If desired, methionine at the N-terminus may be cleaved from the protein by in vitro incubation with cyanogen bromide.
  • Fusion proteins provide an alternative for yeast expression systems, as well as in mammalian, baculovirus, and bacterial expression systems. Usually, a DNA sequence encoding the N-terminal portion of an endogenous yeast protein, or other stable protein, is fused to the 5′ end of heterologous coding sequences. Upon expression, this construct will provide a fusion of the two amino acid sequences. For example, the yeast or human superoxide dismutase (SOD) gene, can be linked at the 5′ terminus of a foreign gene and expressed in yeast. The DNA sequence at the junction of the two amino acid sequences may or may not encode a cleavable site. See eg. EP-A-0 196 056. Another example is a ubiquitin fusion protein. Such a fusion protein is made with the ubiquitin region that preferably retains a site for a processing enzyme (eg, ubiquitin-specific processing protease) to cleave the ubiquitin from the foreign protein. Through this method, therefore, native foreign protein can be isolated (eg. WO88/024066).
  • Alternatively, foreign proteins can also be secreted from the cell into the growth media by creating chimeric DNA molecules that encode a fusion protein comprised of a leader sequence fragment that provide for secretion in yeast of the foreign protein. Preferably, there are processing sites encoded between the leader fragment and the foreign gene that can be cleaved either in vivo or in vitro. The leader sequence fragment usually encodes a signal peptide comprised of hydrophobic amino acids which direct the secretion of the protein from the cell.
  • DNA encoding suitable signal sequences can be derived from genes for secreted yeast proteins, such as the yeast invertase gene (EP-A-0 012 873; JPO. 62,096,086) and the A-factor gene (U.S. Pat. No. 4,588,684). Alternatively, leaders of non-yeast origin, such as an interferon leader, exist that also provide for secretion in yeast (EP-A-0 060 057).
  • A preferred class of secretion leaders are those that employ a fragment of the yeast alpha-factor gene, which contains both a “pre” signal sequence, and a “pro” region. The types of alpha-factor fragments that can be employed include the full-length pre-pro alpha factor leader (about 83 amino acid residues) as well as truncated alpha-factor leaders (usually about 25 to about 50 amino acid residues) (U.S. Pat. Nos. 4,546,083 and 4,870,008; EP-A-0 324 274). Additional leaders employing an alpha-factor leader fragment that provides for secretion include hybrid alpha-factor leaders made with a presequence of a first yeast, but a pro-region from a second yeast alphafactor. (eg. see WO 89/02463.)
  • Usually, transcription termination sequences recognized by yeast are regulatory regions located 3′ to the translation stop codon, and thus together with the promoter flank the coding sequence. These sequences direct the transcription of an mRNA which can be translated into the polypeptide encoded by the DNA. Examples of transcription terminator sequence and other yeast-recognized termination sequences, such as those coding for glycolytic enzymes.
  • Usually, the above described components, comprising a promoter, leader (if desired), coding sequence of interest, and transcription termination sequence, are put together into expression constructs. Expression constructs are often maintained in a replicon, such as an extrachromosomal element (eg. plasmids) capable of stable maintenance in a host, such as yeast or bacteria. The repl icon may have two replication systems, thus allowing it to be maintained, for example, in yeast for expression and in a prokaryotic host for cloning and amplification. Examples of such yeast-bacteria shuttle vectors include YEp24 [Botstein et al. (1979) Gene 8:17-24], pCl/1 [Brake et al. (1984) Proc. Natl. Acad. Sci. USA 81:4642-4646], and YRp17 [Stinchcomb et al. (1982) J. Mol. Biol. 158:157]. In addition, a replicon may be either a high or low copy number plasmid. A high copy number plasmid will generally have a copy number ranging from about 5 to about 200, and usually about 10 to about 150. A host containing a high copy number plasmid will preferably have at least about 10, and more preferably at least about 20. Enter a high or low copy number vector may be selected, depending upon the effect of the vector and the foreign protein on the host. See eg. Brake et al., supra.
  • Alternatively, the expression constructs can be integrated into the yeast genome with an integrating vector. Integrating vectors usually contain at least one sequence homologous to a yeast chromosome that allows the vector to integrate, and preferably contain two homologous sequences flanking the expression construct. Integrations appear to result from recombinations between homologous DNA in the vector and the yeast chromosome [Orr-Weaver et al. (1983) Methods in Enzymol. 101:228-245]. An integrating vector may be directed to a specific locus in yeast by selecting the appropriate homologous sequence for inclusion in the vector. See Orr-Weaver et al., supra. One or more expression construct may integrate, possibly affecting levels of recombinant protein produced [Rine et al. (1983) Proc. Natl. Acad. Sci. USA 80:6750]. The chromosomal sequences included in the vector can occur either as a single segment in the vector, which results in the integration of the entire vector, or two segments homologous to adjacent segments in the chromosome and flanking the expression construct in the vector, which can result in the stable integration of only the expression construct.
  • Usually, extrachromosomal and integrating expression constructs may contain selectable markers to allow for the selection of yeast strains that have been transformed. Selectable markers may include biosynthetic genes that can be expressed in the yeast host, such as ADE2, HIS4, LEU2, TRP1, and ALG7, and the G418 resistance gene, which confer resistance in yeast cells to tunicamycin and G418, respectively. In addition, a suitable selectable marker may also provide yeast with the ability to grow in the presence of toxic compounds, such as metal. For example, the presence of CUP1 allows yeast to grow in the presence of copper ions [Butt et al. (1987) Microbiol, Rev. 51:351].
  • Alternatively, some of the above described components can be put together into transformation vectors. Transformation vectors are usually comprised of a selectable marker that is either maintained in a replicon or developed into an integrating vector, as described above.
  • Expression and transformation vectors, either extrachromosomal replicons or integrating vectors, have been developed for transformation into many yeasts. For example, expression vectors have been developed for, inter alia, the following yeasts: Candida albicans [Kurtz, et al. (1986) Mol. Cell. Biol. 6:142], Candida maltosa [Kunze, et al. (1985) J. Basic Microbiol. 25:141]. Hansenula polymorpha [Gleeson, et al. (1986) J. Gen. Microbiol. 132:3459; Roggenkamp et al. (1986) Mol. Gen. Genet. 202:302], Kluyveromyces fragilis [Das, et al. (1984) J. Bacteriol. 158:1165], Kluyveromyces lactis [De Louvencourt et al. (1983) J. Bacteriol. 154:737; Van den Berg et al. (1990) Bio/Technology 8:135], Pichia guillerimondii [Kunze et al. (1985) J. Basic Microbiol. 25:141], Pichia pastoris [Cregg, et al. (1985) Mol. Cell. Biol. 5:3376; U.S. Pat. Nos. 4,837,148 and 4,929,555], Saccharomyces cerevisiae [Hinnen et al. (1978) Proc. Natl. Acad. Sci. USA 75:1929; Ito et al. (1983) J. Bacteriol. 153:163], Schizosaccharomyces pombe [Beach and Nurse (1981) Nature 300:706], and Yarrowia lipolytica [Davidow, et al. (1985) Curr. Genet. 10:380471 Gaillardin, et al. (1985) Curr. Genet. 10:49].
  • Methods of introducing exogenous DNA into yeast hosts are well-known in the art, and usually include either the transformation of spheroplasts or of intact yeast cells treated with alkali cations. Transformation procedures usually vary with the yeast species to be transformed. See eg. [Kurtz et al. (1986) Mol. Cell. Biol. 6:142; Kunze et al. (1985) J. Basic Microbiol. 25:141; Candida]; [Gleeson et al. (1986) J. Gen. Microbiol. 132:3459; Roggenkamp et al. (1986) Mol. Gen. Genet. 202:302; Hansenula]; [Das et al. (1984) J. Bacteriol. 158:1165; De Louvencourt et al. (1983) J. Bacteriol. 154:1165; Van den Berg et al. (1990) Bio/Technology 8:135; Kluyveromyces]; [Cregg et al. (1985) Mol. Cell. Biol. 5:3376; Kunze et al. (1985) J. Basic Microbiol. 25:141; U.S. Pat. Nos. 4,837,148 and 4,929,555; Pichia]; [Hinnen et al. (1978) Proc. Natl. Acad. Sci. USA 75; 1929; Ito et al. (1983) J. Bacteriol. 153:163 Saccharomyces]; [Beach and Nurse (1981) Nature 300:706; Schizosaccharomyces]; [Davidow et al. (1985) Curr. Genet. 10:39; Gaillardin et al. (1985) Curr. Genet. 10:49; Yarrowia].
  • Antibodies
  • As used herein, the term “antibody” refers to a polypeptide or group of polypeptides composed of at least one antibody combining site. An “antibody combining site” is the three-dimensional binding space with an internal surface shape and charge distribution complementary to the features of an epitope of an antigen, which allows a binding of the antibody with the antigen. “Antibody” includes, for example, vertebrate antibodies, hybrid antibodies, chimeric antibodies, humanised antibodies, altered antibodies, univalent antibodies, Fab proteins, and single domain antibodies.
  • Antibodies against the proteins of the invention are useful for affinity chromatography, immunoassays, and distinguishing/identifying Neisserial proteins.
  • Antibodies to the proteins of the invention, both polyclonal and monoclonal, may be prepared by conventional methods. In general, the protein is first used to immunize a suitable animal, preferably a mouse, rat, rabbit or goat. Rabbits and goats are preferred for the preparation of polyclonal sera due to the volume of serum obtainable, and the availability of labeled anti-rabbit and anti-goat antibodies. Immunization is generally performed by mixing or emulsifying the protein in saline, preferably in an adjuvant such as Freund's complete adjuvant, and injecting the mixture or emulsion parenterally (generally subcutaneously or intramuscularly): A dose of 50-200 μg/injection is typically sufficient. Immunization is generally boosted 2-6 weeks later with one or more injections of the protein in saline, preferably using Freund's incomplete adjuvant. One may alternatively generate antibodies by in vitro immunization using methods known in the art, which for the purposes of this invention is considered equivalent to in vivo immunization. Polyclonal antisera is obtained by bleeding the immunized animal into a glass or plastic container, incubating the blood at 25° C. for one hour, followed by incubating at 4° C. for 2-18 hours. The serum is recovered by centrifugation (eg. 1,000 g for 10 minutes). About 20-50 ml per bleed may be obtained from rabbits.
  • Monoclonal antibodies are prepared using the standard method of Kohler & Milstein [Nature (1975) 256:495-96], or a modification thereof. Typically, a mouse or rat is immunized as described above. However, rather than bleeding the animal to extract serum, the spleen (and optionally several large lymph nodes) is removed and dissociated into single cells. If desired, the spleen cells may be screened (after removal of nonspecifically adherent cells) by applying a cell suspension to a plate or well coated with the protein antigen. B-cells expressing membrane-bound immunoglobulin specific for the antigen bind to the plate, and are not rinsed away with the rest of the suspension. Resulting B-cells, or all dissociated spleen cells, are then induced to fuse with myeloma cells to form hybridomas, and are cultured in a selective medium (eg. hypoxanthine, aminopterin, thymidine medium, “HAT”). The resulting hybridomas are plated by limiting dilution, and are assayed for the production of antibodies which bind specifically to the immunizing antigen (and which do not bind to unrelated antigens). The selected MAb-secreting hybridomas are then cultured either in vitro (eg. in tissue culture bottles or hollow fiber reactors), or in vivo (as ascites in mice).
  • If desired, the antibodies (whether polyclonal or monoclonal) may be labeled using conventional techniques. Suitable labels include fluorophores, chromophores, radioactive atoms (particularly 32P and 125I), electron-dense reagents, enzymes, and ligands having specific binding partners. Enzymes are typically detected by their activity. For example, horseradish peroxidase is usually detected by its ability to convert 3,3′,5,5′-tetramethylbenzidine (TMB) to a blue pigment, quantifiable with a spectrophotometer. “Specific binding partner” refers to a protein capable of binding a ligand molecule with high specificity, as for example in the case of an antigen and a monoclonal antibody specific therefor. Other specific binding partners include biotin and avidin or streptavidin, IgG and protein A, and the numerous receptor-ligand couples known in the art. It should be understood that the above description is not meant to categorize the various labels into distinct classes, as the same label may serve in several different modes. For example, 125I may serve as a radioactive label or as an electron-dense reagent. HRP may serve as enzyme or as antigen for a MAb. Further, one may combine various labels for desired effect. For example, MAbs and avidin also require labels in the practice of this invention: thus, one might label a MAb with biotin, and detect its presence with avidin labeled with 125I, or with an anti-biotin MAb labeled with HRP. Other permutations and possibilities will be readily apparent to those of ordinary skill in the art, and are considered as equivalents within the scope of the instant invention.
  • Pharmaceutical Compositions
  • Pharmaceutical compositions can comprise either polypeptides, antibodies, or nucleic acid of the invention. The pharmaceutical compositions will comprise a therapeutically effective amount of either polypeptides, antibodies, or polynucleotides of the claimed invention.
  • The term “therapeutically effective amount” as used herein refers to an amount of a therapeutic agent to treat, ameliorate, or prevent a desired disease or condition, or to exhibit a detectable therapeutic or preventative effect. The effect can be detected by, for example, chemical markers or antigen levels. Therapeutic effects also include reduction in physical symptoms, such as decreased body temperature. The precise effective amount for a subject will depend upon the subject's size and health, the nature and extent of the condition, and the therapeutics or combination of therapeutics selected for administration. Thus, it is not useful to specify an exact effective amount in advance. However, the effective amount for a given situation can be determined by routine experimentation and is within the judgement of the clinician.
  • For purposes of the present invention, an effective dose will be from about 0.01 mg/kg to 50 mg/kg or 0.05 mg/kg to about 10 mg/kg of the DNA constructs in the individual to which it is administered.
  • A pharmaceutical composition can also contain a pharmaceutically acceptable carrier. The term “pharmaceutically acceptable carrier” refers to a carrier for administration of a therapeutic agent, such as antibodies or a polypeptide, genes, and other therapeutic agents. The term refers to any pharmaceutical carrier that does not itself induce the production of antibodies harmful to the individual receiving the composition, and which may be administered without undue toxicity. Suitable carriers may be large, slowly metabolized macromolecules such as proteins, polysaccharides, polylactic acids, polyglycolic acids, polymeric amino acids, amino acid copolymers, and inactive virus particles. Such carriers are well known to those of ordinary skill in the art.
  • Pharmaceutically acceptable salts can be used therein, for example, mineral acid salts such as hydrochlorides, hydrobromides, phosphates, sulfates, and the like; and the salts of organic acids such as acetates, propionates, malonates, benzoates, and the like. A thorough discussion of pharmaceutically acceptable excipients is available in Remington's Pharmaceutical Sciences (Mack Pub. Co., N.J. 1991).
  • Pharmaceutically acceptable carriers in therapeutic compositions may contain liquids such as water, saline, glycerol and ethanol. Additionally, auxiliary substances, such as wetting or emulsifying agents, pH buffering substances, and the like, may be present in such vehicles. Typically, the therapeutic compositions are prepared as injectables, either as liquid solutions or suspensions; solid forms suitable for solution in, or suspension in, liquid vehicles prior to injection may also be prepared. Liposomes are included within the definition of a pharmaceutically acceptable carrier.
  • Delivery Methods
  • Once formulated, the compositions of the invention can be administered directly to the subject. The subjects to be treated can be animals; in particular, human subjects can be treated.
  • Direct delivery of the compositions will generally be accomplished by injection, either subcutaneously, intraperitoneally, intravenously or intramuscularly or delivered to the interstitial space of a tissue. The compositions can also be administered into a lesion. Other modes of administration include oral and pulmonary administration, suppositories, and transdermal or transcutaneous applications (eg. see WO98/20734), needles, and gene guns or hyposprays. Dosage treatment may be a single dose schedule or a multiple dose schedule.
  • Vaccines
  • Vaccines according to the invention may either be prophylactic (ie. to prevent infection) or therapeutic (ie. to treat disease after infection).
  • Such vaccines comprise immunising antigen(s), immunogen(s), polypeptide(s), protein(s) or nucleic acid, usually in combination with “pharmaceutically acceptable carriers,” which include any carrier that does not itself induce the production of antibodies harmful to the individual receiving the composition. Suitable carriers are typically large, slowly metabolized macromolecules such as proteins, polysaccharides, polylactic acids, polyglycolic acids, polymeric amino acids, amino acid copolymers, lipid aggregates (such as oil droplets or liposomes), and inactive virus particles. Such carriers are well known to those of ordinary skill in the art. Additionally, these carriers may function as immunostimulating agents (“adjuvants”). Furthermore, the antigen or immunogen may be conjugated to a bacterial toxoid, such as a toxoid from diphtheria, tetanus, cholera, H. pylori, etc. pathogens.
  • Preferred adjuvants to enhance effectiveness of the composition include, but are not limited to: (1) aluminum salts (alum), such as aluminum hydroxide, aluminum phosphate, aluminum sulfate, etc; (2) oil-in-water emulsion formulations (with or without other specific immunostimulating agents such as muramyl peptides (see below) or bacterial cell wall components), such as for example (a) MF59™ (WO 90/14837; Chapter 10 in Vaccine design: the subunit and adjuvant approach, eds. Powell & Newman, Plenum Press 1995), containing 5% Squalene, 0.5% Tween 80, and 0.5% Span 85 (optionally containing various amounts of MTP-PE (see below), although not required) formulated into submicron particles using a microfluidizer such as Model 110Y microfluidizer (Microfluidics, Newton, Mass.), (b) SAF, containing 10% Squalane, 0.4% Tween 80, 5% pluronic-blocked polymer L121, and thr-MDP (see below) either microfluidized into a submicron emulsion or vortexed to generate a larger particle size emulsion, and (c) Ribi™ adjuvant system (RAS), (Ribi Immunochem, Hamilton, Mont.) containing 2% Squalene, 0.2% Tween 80, and one or more bacterial cell wall components from the group consisting of monophosphorylipid A (MPL), trehalose dimycolate (TDM), and cell wall skeleton (CWS), preferably MPL+CWS (Detox™); (3) saponin adjuvants, such as Stimulon™ (Cambridge Bioscience, Worcester, Mass.) may be used or particles generated therefrom such as ISCOMs (immunostimulating complexes); (4) Complete Freund's Adjuvant (CFA) and Incomplete Freund's Adjuvant (IFA); (5) cytokines, such as interleukins (eg. IL-1, IL-2, IL-4, IL-5, IL-6, IL-7, IL-12, etc.), interferons (eg. gamma interferon), macrophage colony stimulating factor (M-CSF), tumor necrosis factor (TNF), etc; and (6) other substances that act as immunostimulating agents to enhance the effectiveness of the composition. Alum and MF59™ are preferred.
  • As mentioned above, muramyl peptides include, but are not limited to, N-acetyl-muramyl-L-threonyl-D-isoglutamine (thr-MDP), N-acetyl-normuramyl-L-alanyl-D-isoglutamine (nor-MDP), N-acetylmuramyl-L-alanyl-D-isoglutaminyl-L-alanine-2-(1′-2′-dipalmitoyl-sn-glycero-3-hydroxyphosphoryloxy)-ethylamine (MTP-PE), etc.
  • The immunogenic compositions (eg. the immunising antigen/immunogen/polypeptide/protein/nucleic acid, pharmaceutically acceptable carrier, and adjuvant) typically will contain diluents, such as water, saline, glycerol, ethanol, etc. Additionally, auxiliary substances, such as wetting or emulsifying agents, pH buffering substances, and the like, may be present in such vehicles.
  • Typically, the immunogenic compositions are prepared as injectables, either as liquid solutions or suspensions; solid forms suitable for solution in, or suspension in, liquid vehicles prior to injection may also be prepared. The preparation also may be emulsified or encapsulated in liposomes for enhanced adjuvant effect, as discussed above under pharmaceutically acceptable carriers.
  • Immunogenic compositions used as vaccines comprise an immunologically effective amount of the antigenic or immunogenic polypeptides, as well as any other of the above-mentioned components, as needed. By “immunologically effective amount”, it is meant that the administration of that amount to an individual, either in a single dose or as part of a series, is effective for treatment or prevention. This amount varies depending upon the health and physical condition of the individual to be treated, the taxonomic group of individual to be treated (eg. nonhuman primate, primate, etc.), the capacity of the individual's immune system to synthesize antibodies, the degree of protection desired, the formulation of the vaccine, the treating doctor's assessment of the medical situation, and other relevant factors. It is expected that the amount will fall in a relatively broad range that can be determined through routine trials.
  • The immunogenic compositions are conventionally administered parenterally, eg. by injection, either subcutaneously, intramuscularly, or transdermally/transcutaneously (eg. WO98/20734). Additional formulations suitable for other modes of administration include oral and pulmonary formulations, suppositories, and transdermal applications. Dosage treatment may be a single dose schedule or a multiple dose schedule. The vaccine may be administered in conjunction with other immunoregulatory agents.
  • As an alternative to protein-based vaccines, DNA vaccination may be employed [eg. Robinson & Torres (1997) Seminars in Immunology 9:271-283; Donnelly et al. (1997) Annu Rev Immunol 15:617-648; see later herein].
  • Gene Delivery Vehicles
  • Gene therapy vehicles for delivery of constructs including a coding sequence of a therapeutic of the invention, to be delivered to the mammal for expression in the mammal, can be administered either locally or systemically. These constructs can utilize viral or non-viral vector approaches in in vivo or ex vivo modality. Expression of such coding sequence can be induced using endogenous mammalian or heterologous promoters. Expression of the coding sequence in vivo can be either constitutive or regulated.
  • The invention includes gene delivery vehicles capable of expressing the contemplated nucleic acid sequences. The gene delivery vehicle is preferably a viral vector and, more preferably, a retroviral, adenoviral, adeno-associated viral (AAV), herpes viral, or alphavirus vector. The viral vector can also be an astrovirus, coronavirus, orthomyxovirus, papovavirus, paramyxovirus, parvovirus, picornavirus, poxvirus, or togavirus viral vector. See generally, Jolly (1994) Cancer Gene Therapy 1:51-64; Kimura (1994) Human Gene Therapy 5:845-852; Connelly (1995) Human Gene Therapy 6:185-193; and Kaplitt (1994) Nature Genetics 6:148-153.
  • Retroviral vectors are well known in the art and we contemplate that any retroviral gene therapy vector is employable in the invention, including B, C and D type retroviruses, xenotropic retroviruses (for example, NZB-X1, NZB-X2 and NZB9-1 (see O'Neill (1985) J. Virol. 53:160) polytropic retroviruses eg. MCF and MCF-M LV (see Kelly (1983) J. Virol. 45:291), spumaviruses and lentiviruses. See RNA Tumor Viruses, Second Edition, Cold Spring Harbor Laboratory, 1985.
  • Portions of the retroviral gene therapy vector may be derived from different retroviruses. For example, retrovector LTRs may be derived from a Murine Sarcoma Virus, a tRNA binding site from a Rous Sarcoma Virus, a packaging signal from a Murine Leukemia Virus, and an origin of second strand synthesis from an Avian Leukosis Virus.
  • These recombinant retroviral vectors may be used to generate transduction competent retroviral vector particles by introducing them into appropriate packaging cell lines (see U.S. Pat. No. 5,591,624). Retrovirus vectors can be constructed for site-specific integration into host cell DNA by incorporation of a chimeric integrase enzyme into the retroviral particle (see WO96/37626). It is preferable that the recombinant viral vector is a replication defective recombinant virus.
  • Packaging cell lines suitable for use with the above-described retrovirus vectors are well known in the art, are readily prepared (see WO95/30763 and WO92/05266), and can be used to create producer cell lines (also termed vector cell lines or “VCLs”) for the production of recombinant vector particles. Preferably, the packaging cell lines are made from human parent cells (eg. HT1080 cells) or mink parent cell lines, which eliminates inactivation in human serum.
  • Preferred retroviruses for the construction of retroviral gene therapy vectors include Avian Leukosis Virus, Bovine Leukemia, Virus, Murine Leukemia Virus, Mink-Cell Focus-Inducing Virus, Murine Sarcoma Virus, Reticuloendotheliosis Virus and Rous Sarcoma Virus. Particularly preferred Murine Leukemia Viruses include 4070A and 1504A (Hartley and Rowe (1976) J Virol 19:19-25), Abelson (ATCC No. VR-999), Friend (ATCC No. VR-245), Graffi, Gross (ATCC Nol VR-590), Kirsten, Harvey Sarcoma Virus and Rauscher (ATCC No. VR-998) and Moloney Murine Leukemia Virus (ATCC No. VR-190). Such retroviruses may be obtained from depositories or collections such as the American Type Culture Collection (“ATCC”) in Rockville, Md. or isolated from known sources using commonly available techniques.
  • Exemplary known retroviral gene therapy vectors employable in this invention include those described in patent applications GB2200651, EP0415731, EP0345242, EP0334301, WO89/02468; WO89/05349, WO89/09271, WO90/02806, WO90/07936, WO94/03622, WO93/25698, WO93/25234, WO93/11230, WO93/10218, WO91/02805, WO91/02825, WO95/07994, U.S. Pat. No. 5,219,740, U.S. Pat. No. 4,405,712, U.S. Pat. No. 4,861,719, U.S. Pat. No. 4,980,289, U.S. Pat. No. 4,777,127, U.S. Pat. No. 5,591,624. See also Vile (1993) Cancer Res 53:3860-3864; Vile (1993) Cancer Res 53:962-967; Ram (1993) Cancer Res 53 (1993) 83-88; Takamiya (1992) J Neurosci Res 33:493-503; Baba (1993) J Neurosurg 79:729-735; Mann (1983) Cell 33:153; Cane (1984) Proc Natl Acad Sci 81:6349; and Miller (1990) Human Gene Therapy 1.
  • Human adenoviral gene therapy vectors are also known in the art and employable in this invention. See, for example, Berkner (1988) Biotechniques 6:616 and Rosenfeld (1991) Science 252:431, and WO93/07283, WO93/06223, and WO93/07282. Exemplary known adenoviral gene therapy vectors employable in this invention include those described in the above referenced documents and in WO94/12649, WO93/03769, WO93/19191, WO94/28938, WO95/11984, WO95/00655, WO95/27071, WO95/29993, WO95/34671, WO96/05320, WO94/08026, WO94/11506, WO93/06223, WO94/24299, WO95/14102, WO95/24297, WO95/02697, WO94/28152, WO94/24299, WO95/09241, WO95/25807, WO95/05835, WO94/18922 and WO95/09654. Alternatively, administration of DNA linked to killed adenovirus as described in Curiel (1992) Hum. Gene Ther. 3:147-154 may be employed. The gene delivery vehicles of the invention also include adenovirus associated virus (AAV) vectors. Leading and preferred examples of such vectors for use in this invention are the AAV-2 based vectors disclosed in Srivastava, WO93/09239. Most preferred AAV vectors comprise the two AAV inverted terminal repeats in which the native D-sequences are modified by substitution of nucleotides, such that at least 5 native nucleotides and up to 18 native nucleotides, preferably at least 10 native nucleotides up to 18 native nucleotides, most preferably 10 native nucleotides are retained and the remaining nucleotides of the D-sequence are deleted or replaced with non-native nucleotides. The native D-sequences of the AAV inverted terminal repeats are sequences of 20 consecutive nucleotides in each AAV inverted terminal repeat (ie. there is one sequence at each end) which are not involved in HP formation. The non-native replacement nucleotide may be any nucleotide other than the nucleotide found in the native D-sequence in the same position. Other employable exemplary AAV vectors are pWP-19, pWN-1, both of which are disclosed in Nahreini (1993) Gene 124:257-262. Another example of such an AAV vector is psub201 (see Samulski (1987) J. Virol. 61:3096). Another exemplary AAV vector is the Double-D ITR vector. Construction of the Double-D ITR vector is disclosed in U.S. Pat. No. 5,478,745. Still other vectors are those disclosed in Carter U.S. Pat. No. 4,797,368 and Muzyczka U.S. Pat. No. 5,139,941, Chartejee U.S. Pat. No. 5,474,935, and Kotin WO94/288157. Yet a further example of an AAV vector employable in this invention is SSV9AFABTKneo, which contains the AFP enhancer and albumin promoter and directs expression predominantly in the liver. Its structure and construction are disclosed in Su (1996) Human Gene Therapy 7:463-470. Additional AAV gene therapy vectors are described in U.S. Pat. No. 5,354,678, U.S. Pat. No. 5,173,414, U.S. Pat. No. 5,139,941, and U.S. Pat. No. 5,252,479.
  • The gene therapy vectors of the invention also include herpes vectors. Leading and preferred examples are herpes simplex virus vectors containing a sequence encoding a thymidine kinase polypeptide such as those disclosed in U.S. Pat. No. 5,288,641 and EP0176170 (Roizman). Additional exemplary herpes simplex virus vectors include HFEWICP6-LacZ disclosed in WO95/04139 (Wistar Institute), pHSVlac described in Geller (1988) Science 241:1667-1669 and in WO90/09441 and WO92/07945, HSV Us3::pgC-lacZ described in Fink (1992) Human Gene Therapy 3:11-19 and HSV 7134, 2 RH 105 and GAL4 described in EP 0453242 (Breakefield), and those deposited with the ATCC as accession numbers ATCC VR-977 and ATCC VR-260.
  • Also contemplated are alpha virus gene therapy vectors that can be employed in this invention. Preferred alpha virus vectors are Sindbis viruses vectors. Togaviruses, Semliki Forest virus (ATCC VR-67; ATCC VR-1247), Middleberg virus (ATCC VR-370), Ross River virus (ATCC VR-373; ATCC VR-1246), Venezuelan equine encephalitis virus (ATCC VR923; ATCC VR-1250; ATCC VR-1249; ATCC VR-532), and those described in U.S. Pat. Nos. 5,091,309, 5,217,879, and WO92/10578. More particularly, those alpha virus vectors described in U.S. Ser. No. 08/405,627, filed Mar. 15, 1995, WO94/21792, WO92/10578, WO95/07994, U.S. Pat. No. 5,091,309 and U.S. Pat. No. 5,217,879 are employable. Such alpha viruses may be obtained from depositories or collections such as the ATCC in Rockville, Md. or isolated from known sources using commonly available techniques. Preferably, alphavirus vectors with reduced cytotoxicity are used (see U.S. Ser. No. 08/679,640).
  • DNA vector systems such as eukarytic layered expression systems are also useful for expressing the nucleic acids of the invention. See WO95/07994 for a detailed description of eukaryotic layered expression systems. Preferably, the eukaryotic layered expression systems of the invention are derived from alphavirus vectors and most preferably from Sindbis viral vectors.
  • Other viral vectors suitable for use in the present invention include those derived from poliovirus, for example ATCC VR-58 and those described in Evans, Nature 339 (1989)385 and Sabin (1973) J. Biol. Standardization 1:115; rhinovirus, for example ATCC VR-1110 and those described in Arnold (1990) J Cell Biochem L401; pox viruses such as canary pox virus or vaccinia virus, for example ATCC VR-111 and ATCC VR-2010 and those described in Fisher-Hoch (1989) Proc Nan Acad Sci 86:317; Flexner (1989) Ann NY Acad Sci 569:86, Flexner (1990) Vaccine 8:17; in U.S. Pat. No. 4,603,112 and U.S. Pat. No. 4,769,330 and WO89/01973; SV40 virus, for example ATCC VR-305 and those described in Mulligan (1979) Nature 277:108 and Madzak (1992) J Gen Virol 73:1533; influenza virus, for example ATCC VR-797 and recombinant influenza viruses made employing reverse genetics techniques as described in U.S. Pat. No. 5,166,057 and in Enami (1990) Proc Nall Acad Sci 87:3802-3805; Enami & Palese (1991) J Virol 65:2711-2713 and Luytjes (1989) Cell 59:110, (see also McMichael (1983) NEJ Med 309:13, and Yap (1978) Nature 273:238 and Nature (1979) 277:108); human immunodeficiency virus as described in EP-0386882 and in Buchschacher (1992) J. Virol. 66:2731; measles virus, for example ATCC VR-67 and VR-1247 and those described in EP-0440219; Aura virus, for example ATCC VR-368; Bebaru virus, for example ATCC VR-600 and ATCC VR-1240; Cabassou virus, for example ATCC VR-922; Chikungunya virus, for example ATCC VR-64 and ATCC VR-1241; Fort Morgan Virus, for example ATCC VR-924; Getah virus, for example ATCC VR-369 and ATCC VR-1243; Kyzylagach virus, for example ATCC VR-927; Mayaro virus, for example ATCC VR-66; Mucambo virus, for example ATCC VR-580 and ATCC VR-1244; Ndumu virus, for example ATCC VR-371; Pixuna virus, for example ATCC VR-372 and ATCC VR-1245; Tonate virus, for example ATCC VR-925; Triniti virus, for example ATCC VR-469; Una virus, for example ATCC VR-374; Whataroa virus, for example ATCC VR-926; Y-62-33 virus, for example ATCC VR-375; O'Nyong virus, Eastern encephalitis virus, for example ATCC VR-65 and ATCC VR-1242; Western encephalitis virus, for example ATCC VR-70, ATCC VR-1251, ATCC VR-622 and ATCC VR-1252; and coronavirus, for example ATCC VR-740 and those described in Hamre (1966) Proc Soc Exp Biol Med 121:190.
  • Delivery of the compositions of this invention into cells is not limited to the above mentioned viral vectors. Other delivery methods and media may be employed such as, for example, nucleic acid expression vectors, polycationic condensed DNA linked or unlinked to killed adenovirus alone, for example see U.S. Ser. No. 08/366,787, filed Dec. 30, 1994 and Curie] (1992) Hum Gene Titer 3:147-154 ligand linked DNA, for example see Wu (1989) J Biol Chem 264:16985-16987, eucaryotic cell delivery vehicles cells, for example see U.S. Ser. No. 08/240,030, filed May 9, 1994, and U.S. Ser. No. 08/404,796, deposition of photopolymerized hydrogel materials, hand-held gene transfer particle gun, as described in U.S. Pat. No. 5,149,655, ionizing radiation as described in U.S. Pat. No. 5,206,152 and in WO92/11033, nucleic charge neutralization or fusion with cell membranes. Additional approaches are described in Philip (1994) Mol Cell Biol 14:2411-2418 and in Woffendin (1994) Proc Natl Acad Sci 91:1581-1585.
  • Particle mediated gene transfer may be employed, for example see U.S. Ser. No. 60/023,867. Briefly, the sequence can be inserted into conventional vectors that contain conventional control sequences for high level expression, and then incubated with synthetic gene transfer molecules such as polymeric DNA-binding cations like polylysine, protamine, and albumin, linked to cell targeting ligands such as asialoorosomucoid, as described in Wu & Wu (1987) J. Biol. Chem. 262:4429-4432, insulin as described in Hucked (1990) Biochem Pharmacol 40:253-263, galactose as described in Plank (1992) Bioconjugate Chem 3:533-539, lactose or transferrin.
  • Naked DNA may also be employed. Exemplary naked DNA introduction methods are described in WO 90/11092 and U.S. Pat. No. 5,580,859. Uptake efficiency may be improved using biodegradable latex beads. DNA coated latex beads are efficiently transported into cells after endocytosis initiation by the beads. The method may be improved further by treatment of the beads to increase hydrophobicity and thereby facilitate disruption of the endosome and release of the DNA into the cytoplasm.
  • Liposomes that can act as gene delivery vehicles are described in U.S. Pat. No. 5,422,120, WO95/13796, WO94/23697, WO91/14445 and EP-524,968. As described in U.S. Ser. No. 60/023,867, on non-viral delivery, the nucleic acid sequences encoding a polypeptide can be inserted into conventional vectors that contain conventional control sequences for high level expression, and then be incubated with synthetic gene transfer molecules such as polymeric DNA-binding cations like polylysine, protamine, and albumin, linked to cell targeting ligands such as asialoorosomucoid, insulin, galactose, lactose, or transferrin. Other delivery systems include the use of liposomes to encapsulate DNA comprising the gene under the control of a variety of tissue-specific or ubiquitously-active promoters. Further non-viral delivery suitable for use includes mechanical delivery systems such as the approach described in Woffendin et al (1994) Proc. Natl. Acad. Sci. USA 91(24):11581-11585. Moreover, the coding sequence and the product of expression of such can be delivered through deposition of photopolymerized hydrogel materials. Other conventional methods for gene delivery that can be used for delivery of the coding sequence include, for example, use of hand-held gene transfer particle gun, as described in U.S. Pat. No. 5,149,655; use of ionizing radiation for activating transferred gene, as described in U.S. Pat. No. 5,206,152 and WO92/11033
  • Exemplary liposome and polycationic gene delivery vehicles are those described in U.S. Pat. Nos. 5,422,120 and 4,762,915; in WO 95/13796; WO94/23697; and WO91/14445; in EP-0524968; and in Stryer, Biochemistry, pages 236-240 (1975) W.H. Freeman, San Francisco; Szoka (1980) Biochem Biophys Acta 600:1; Bayer (1979) Biochem Biophys Acta 550:464; Rivnay (1987) Meth Enzymol 149:119; Wang (1987) Proc Natl Acad Sci 84:7851; Plant (1989) Anal Biochem 176:420.
  • A polynucleotide composition can comprises therapeutically effective amount of a gene therapy vehicle, as the term is defined above. For purposes of the present invention, an effective dose will be from about 0.01 mg/kg to 50 mg/kg or 0.05 mg/kg to about 10 mg/kg of the DNA constructs in the individual to which it is administered.
  • Delivery Methods
  • Once formulated, the polynucleotide compositions of the invention can be administered (1) directly to the subject; (2) delivered ex vivo, to cells derived from the subject; or (3) in vitro for expression of recombinant proteins. The subjects to be treated can be mammals or birds. Also, human subjects can be treated.
  • Direct delivery of the compositions will generally be accomplished by injection, either subcutaneously, intraperitoneally, intravenously or intramuscularly or delivered to the interstitial space of a tissue. The compositions can also be administered into a lesion. Other modes of administration include oral and pulmonary administration, suppositories, and transdermal or transcutaneous applications (eg. see WO98/20734), needles, and gene guns or hyposprays. Dosage treatment may be a single dose schedule or a multiple dose schedule.
  • Methods for the ex vivo delivery and reimplantation of transformed cells into a subject are known in the art and described in eg. WO93/14778. Examples of cells useful in ex vivo applications include, for example, stem cells, particularly hematopoetic, lymph cells, macrophages, dendritic cells, or tumor cells.
  • Generally, delivery of nucleic acids for both ex vivo and in vitro applications can be accomplished by the following procedures, for example, dextran-mediated transfection, calcium phosphate precipitation, polybrene mediated transfection, protoplast fusion, electroporation, encapsulation of the polynucleotide(s) in liposomes, and direct microinjection of the DNA into nuclei, all well known in the art.
  • Polynucleotide and Polypeptide Pharmaceutical Compositions
  • In addition to the pharmaceutically acceptable carriers and salts described above, the following additional agents can be used with polynucleotide and/or polypeptide compositions.
  • A. Polypeptides
  • One example are polypeptides which include, without limitation: asioloorosomucoid (ASOR); transferrin; asialoglycoproteins; antibodies; antibody fragments; ferritin; interleukins; interferons, granulocyte, macrophage colony stimulating factor (GM-CSF), granulocyte colony stimulating factor (G-CSF), macrophage colony stimulating factor (M-CSF), stem cell factor and erythropoietin. Viral antigens, such as envelope proteins, can also be used. Also, proteins from other invasive organisms, such as the 17 amino acid peptide from the circumsporozoite protein of plasmodium falciparum known as RH.
  • B. Hormones, Vitamins, etc.
  • Other groups that can be included are, for example: hormones, steroids, androgens, estrogens, thyroid hormone, or vitamins, folic acid.
  • C. Polyalkylenes, Polysaccharides, etc.
  • Also, polyalkylene glycol can be included with the desired polynucleotides/polypeptides. In a preferred embodiment, the polyalkylene glycol is polyethlylene glycol. Iri addition, mono-, di-, or polysaccarides can be included. In a preferred embodiment of this aspect, the polysaccharide is dextran or DEAE-dextran. Also, chitosan and poly(lactide-co-glycolide)
  • D. Lipids, and Liposomes
  • The desired polynucleotide/polypeptide can also be encapsulated in lipids or packaged in liposomes prior to delivery to the subject or to cells derived therefrom.
  • Lipid encapsulation is generally accomplished using liposomes which are able to stably bind or entrap and retain nucleic acid. The ratio of condensed polynucleotide to lipid preparation can vary but will generally be around 1:1 (mg DNA:micromoles lipid), or more of lipid. For a review of the use of liposomes as carriers for delivery of nucleic acids, see, Hug and Sleight (1991) Biochim. Biophys. Acta. 1097:1-17; Straubinger (1983) Meth. Enzymol. 101:512-527.
  • Liposomal preparations for use in the present invention include cationic (positively charged), anionic (negatively charged) and neutral preparations. Cationic liposomes have been shown to mediate intracellular delivery of plasmid DNA (Feigner (1987) Proc. Natl. Acad. Sci. USA 84:7413-7416); mRNA (Malone (1989) Proc. Natl. Acad. Sci. USA 86:6077-6081); and purified transcription factors (Debs (1990) J. Biol. Chem. 265:10189-10192), in functional form.
  • Cationic liposomes are readily available. For example, N[1-2,3-dioleyloxy)propyl]-N,N,N-triethylammonium (DOTMA) liposomes are available under the trademark Lipofectin, from GIBCO BRL, Grand Island, N.Y. (See, also, Feigner supra). Other commercially available liposomes include transfectace (DDAB/DOPE) and DOTAP/DOPE (Boerhinger). Other cationic liposomes can be prepared from readily available materials using techniques well known in the art. See, eg. Szoka (1978) Proc. Natl. Acad. Sci. USA 75:4194-4198; WO90/11092 fora description of the synthesis of DOTAP (1,2-bis(oleoyloxy)-3-(trimethylammonio)propane) liposomes.
  • Similarly, anionic and neutral liposomes are readily available, such as from Avanti Polar Lipids (Birmingham, Ala.), or can be easily prepared using readily available materials. Such materials include phosphatidyl choline, cholesterol, phosphatidyl ethanolamine, dioleoylphosphatidyl choline (DOPC), dioleoylphosphatidyl glycerol (DOPG), dioleoylphoshatidyl ethanolamine (DOPE), among others. These materials can also be mixed with the DOTMA and DOTAP starting materials in appropriate ratios. Methods for making liposomes using these materials are well known in the art.
  • The liposomes can comprise multilammelar vesicles (MLVs), small unilamellar vesicles (SUVs), or large unilamellar vesicles (LUVs). The various liposome-nucleic acid complexes are prepared using methods known in the art. See eg. Straubinger (1983) Meth. Immunol. 101:512-527; Szoka (1978) Proc. Natl. Acad. Sci. USA 75:4194-4198; Papahadjopoulos (1975) Biochim. Biophys. Acta 394:483; Wilson (1979) Cell 17:77); Deamer & Bangham (1976) Biochim. Biophys. Ada 443:629; Ostro (1977) Biochem. Biophys. Res. Commun. 76:836; Fraley (1979) Proc. Natl. Acad. Sci. USA 76:3348); Enoch & Strittmatter (1979) Proc. Natl. Acad. Sci. USA 76:145; Fraley (1980) J. Biol. Chem. (1980) 255:10431; Szoka & Papahadjopoulos (1978) Proc. Natl. Acad. Sci. USA 75:145; and Schaefer-Ridder (1982) Science 215:166.
  • E. Lipoproteins
  • In addition, lipoproteins can be included with the polynucleotide/polypeptide to be delivered. Examples of lipoproteins to be utilized include: chylomicrons, HDL, IDL, LDL, and VLDL. Mutants, fragments, or fusions of these proteins can also be used. Also, modifications of naturally occurring lipoproteins can be used, such as acetylated LDL. These lipoproteins can target the delivery of polynucleotides to cells expressing lipoprotein receptors. Preferably, if lipoproteins are including with the polynucleotide to be delivered, no other targeting ligand is included in the composition.
  • Naturally occurring lipoproteins comprise a lipid and a protein portion. The protein portion are known as apoproteins. At the present, apoproteins A, B, C, D, and E have been isolated and identified. At least two of these contain several proteins, designated by Roman numerals, AI, AII, AIV; CI, CII, CIII.
  • A lipoprotein can comprise more than one apoprotein. For example, naturally occurring chylomicrons comprises of A, B, C, and E, over time these lipoproteins lose A and acquire C and E apoproteins. VLDL comprises A, B, C, and E apoproteins, LDL comprises apoprotein B; and HDL comprises apoproteins A, C, and E.
  • The amino acid of these apoproteins are known and are described in, for example, Breslow (1985) Annu Rev. Biochem 54:699; Law (1986) Adv. Exp Med. Biol. 151:162; Chen (1986) J Biol Chem 261:12918; Kane (1980) Proc Natl Acad Sci USA 77:2465; and Utermann (1984) Hum Genet 65:232.
  • Lipoproteins contain a variety of lipids including, triglycerides, cholesterol (free and esters), and phopholipids. The composition of the lipids varies in naturally occurring lipoproteins. For example, chylomicrons comprise mainly triglycerides. A more detailed description of the lipid content of naturally occurring lipoproteins can be found, for example, in Meth. Enzymol. 128 (1986). The composition of the lipids are chosen to aid in conformation of the apoprotein for receptor binding activity. The composition of lipids can also be chosen to facilitate hydrophobic interaction and association with the polynucleotide binding molecule.
  • Naturally occurring lipoproteins can be isolated from serum by ultracentrifugation, for instance. Such methods are described in Meth. Enzymol. (supra); Pitas (1980) J. Biochem. 255:5454-5460 and Mahey (1979) J. Clin. Invest 64:743-750. Lipoproteins can also be produced by in vitro or recombinant methods by expression of the apoprotein genes in a desired host cell. See, for example, Atkinson (1986) Annu Rev Biophys Chem 15:403 and Radding (1958) Biochim Biophys Acta 30: 443. Lipoproteins can also be purchased from commercial suppliers, such as Biomedical Techniologies, Inc., Stoughton, Mass., USA. Further description of lipoproteins can be found in Zuckermann et al. PCT/US97/14465.
  • F. Polycationic Agents
  • Polycationic agents can be included, with or without lipoprotein, in a composition with the desired polynucleotide/polypeptide to be delivered.
  • Polycationic agents, typically, exhibit a net positive charge at physiological relevant pH and are capable of neutralizing the electrical charge of nucleic acids to facilitate delivery to a desired location. These agents have both in vitro, ex vivo, and in vivo applications. Polycationic agents can be used to deliver nucleic acids to a living subject either intramuscularly, subcutaneously, etc.
  • The following are examples of useful polypeptides as polycationic agents: polylysine, polyarginine, polyornithine, and protamine. Other examples include histones, protamines, human serum albumin, DNA binding proteins, non-histone chromosomal proteins, coat proteins from DNA viruses, such as (X174, transcriptional factors also contain domains that bind DNA and therefore may be useful as nucleic aid condensing agents. Briefly, transcriptional factors such as C/CEBP, c-jun, c-fos, AP-1, AP-2, AP-3, CPF, Prot-1, Sp-1, Oct-1, Oct-2, CREP, and TFIID contain basic domains that bind DNA sequences.
  • Organic polycationic agents include: spermine, spermidine, and purtrescine.
  • The dimensions and of the physical properties of a polycationic agent can be extrapolated from the list above, to construct other polypeptide polycationic agents or to produce synthetic polycationic agents.
  • Synthetic polycationic agents which are useful include, for example, DEAE-dextran, polybrene. Lipofectin™, and lipofectAMINE™ are monomers that form polycationic complexes when combined with polynucleotides/polypeptides.
  • Immunodiagnostic Assays
  • Neisserial antigens of the invention can be used in immunoassays to detect antibody levels (or, conversely, anti-Neisserial antibodies can be used to detect antigen levels). Immunoassays based on well defined, recombinant antigens can be developed to replace invasive diagnostics methods. Antibodies to Neisserial proteins within biological samples, including for example, blood or serum samples, can be detected. Design of the immunoassays is subject to a great deal of variation, and a variety of these are known in the art. Protocols for the immunoassay may be based, for example, upon competition, or direct reaction, or sandwich type assays. Protocols may also, for example, use solid supports, or may be by immunoprecipitation. Most assays involve the use of labeled antibody or polypeptide; the labels may be, for example, fluorescent, chemiluminescent, radioactive, or dye molecules. Assays which amplify the signals from the probe are also known; examples of which are assays which utilize biotin and avidin, and enzyme-labeled and mediated immunoassays, such as ELISA assays.
  • Kits suitable for immunodiagnosis and containing the appropriate labeled reagents are constructed by packaging the appropriate materials, including the compositions of the invention, in suitable containers, along with the remaining reagents and materials (for example, suitable buffers, salt solutions, etc.) required for the conduct of the assay, as well as suitable set of assay instructions.
  • Nucleic Acid Hybridisation
  • “Hybridization” refers to the association of two nucleic acid sequences to one another by hydrogen bonding. Typically, one sequence will be fixed to a solid support and the other will be free in solution. Then, the two sequences will be placed in contact with one another under conditions that favor hydrogen bonding. Factors that affect this bonding include: the type and volume of solvent; reaction temperature; time of hybridization; agitation; agents to block the non-specific attachment of the liquid phase sequence to the solid support (Denhardt's reagent or BLOTTO); concentration of the sequences; use of compounds to increase the rate of association of sequences (dextran sulfate or polyethylene glycol); and the stringency of the washing conditions following hybridization. See Sambrook et al. [supra] Volume 2, chapter 9, pages 9.47 to 9.57.
  • “Stringency” refers to conditions in a hybridization reaction that favor association of very similar sequences over sequences that differ. For example, the combination of temperature and salt concentration should be chosen that is approximately 120 to 200° C. below the calculated Tm of the hybrid under study. The temperature and salt conditions can often be determined empirically in preliminary experiments in which samples of genomic DNA immobilized on filters are hybridized to the sequence of interest and then washed under conditions of different stringencies. See Sambrook et al. at page 9.50.
  • Variables to consider when performing, for example, a Southern blot are (1) the complexity of the DNA being blotted and (2) the homology between the probe and the sequences being detected. The total amount of the fragment(s) to be studied can vary a magnitude of 10, from 0.1 to 1 μg for a plasmid or phage digest to 10−9 to 10−8 g for a single copy gene in a highly complex eukaryotic genome. For lower complexity polynucleotides, substantially shorter blotting, hybridization, and exposure times, a smaller amount of starting polynucleotides, and lower specific activity of probes can be used. For example, a single-copy yeast gene can be detected with an exposure time of only 1 hour starting with 1 μg of yeast DNA, blotting for two hours, and hybridizing for 4-8 hours with a probe of 108 cpm/μg. For a single-copy mammalian gene a conservative approach would start with 10 μg of DNA, blot overnight, and hybridize overnight in the presence of 10% dextran sulfate using a probe of greater than 108 cpm/μg, resulting in an exposure time of ˜24 hours.
  • Several factors can affect the melting temperature (Tm) of a DNA-DNA hybrid between the probe and the fragment of interest, and consequently, the appropriate conditions for hybridization and washing. In many cases the probe is not 100% homologous to the fragment. Other commonly encountered variables include the length and total G+C content of the hybridizing sequences and the ionic strength and formamide content of the hybridization buffer. The effects of all of these factors can be approximated by a single equation:

  • Tm=81+16.6(log10Ci)+0.4[%(G+C)]−0.6(% formamide)−600/n−1.5(% mismatch).
  • where Ci is the salt concentration (monovalent ions) and n is the length of the hybrid in base pairs (slightly modified from Meinkoth & Wahl (1984) Anal. Biochem. 138: 267-284).
  • In designing a hybridization experiment, some factors affecting nucleic acid hybridization can be conveniently altered. The temperature of the hybridization and washes and the salt concentration during the washes are the simplest to adjust. As the temperature of the hybridization increases (ie. stringency), it becomes less likely for hybridization to occur between strands that are nonhomologous, and as a result, background decreases. If the radiolabeled probe is not completely homologous with the immobilized fragment (as is frequently the case in gene family and interspecies hybridization experiments), the hybridization temperature must be reduced, and background will increase. The temperature of the washes affects the intensity of the hybridizing band and the degree of background in a similar manner. The stringency of the washes is also increased with decreasing salt concentrations.
  • In general, convenient hybridization temperatures in the presence of 50% formamide are 42° C. for a probe with is 95% to 100% homologous to the target fragment, 37° C. for 90% to 95% homology, and 32° C. for 85% to 90% homology. For lower homologies, formamide content should be lowered and temperature adjusted accordingly, using the equation above. If the homology between the probe and the target fragment are not known, the simplest approach is to start with both hybridization and wash conditions which are nonstringent. If non-specific bands or high background are observed after autoradiography, the filter can be washed at high stringency and reexposed. If the time required for exposure makes this approach impractical, several hybridization and/or washing stringencies should be tested in parallel.
  • Nucleic Acid Probe Assays
  • Methods such as PCR, branched DNA probe assays, or blotting techniques utilizing nucleic acid probes according to the invention can determine the presence of cDNA or mRNA. A probe is said to “hybridize” with a sequence of the invention if it can form a duplex or double stranded complex, which is stable enough to be detected.
  • The nucleic acid probes will hybridize to the Neisserial nucleotide sequences of the invention (including both sense and antisense strands). Though many different nucleotide sequences will encode the amino acid sequence, the native Neisserial sequence is preferred because it is the actual sequence present in cells. mRNA represents a coding sequence and so a probe should be complementary to the coding sequence; single-stranded cDNA is complementary to mRNA, and so a cDNA probe should be complementary to the non-coding sequence.
  • The probe sequence need not be identical to the Neisserial sequence (or its complement)—some variation in the sequence and length can lead to increased assay sensitivity if the nucleic acid probe can form a duplex with target nucleotides, which can be detected. Also, the nucleic acid probe can include additional nucleotides to stabilize the formed duplex. Additional Neisserial sequence may also be helpful as a label to detect the formed duplex. For example, a non-complementary nucleotide sequence may be attached to the 5′ end of the probe, with the remainder of the probe sequence being complementary to a Neisserial sequence. Alternatively, non-complementary bases or longer sequences can be interspersed into the probe, provided that the probe sequence has sufficient complementarity with the a Neisserial sequence in order to hybridize therewith and thereby form a duplex which can be detected.
  • The exact length and sequence of the probe will depend on the hybridization conditions, such as temperature, salt condition and the like. For example, for diagnostic applications, depending on the complexity of the analyte sequence, the nucleic acid probe typically contains at least 10-20 nucleotides, preferably 15-25, and more preferably at least 30 nucleotides, although it may be shorter than this. Short primers generally require cooler temperatures to form sufficiently stable hybrid complexes with the template.
  • Probes may be produced by synthetic procedures, such as the triester method of Matteucci et al. [J. Am. Chem. Soc. (1981) 103:3185], or according to Urdea et al. [Proc. Natl. Acad. Sci. USA (1983) 80: 7461], or using commercially available automated oligonucleotide synthesizers.
  • The chemical nature of the probe can be selected according to preference. For certain applications, DNA or RNA are appropriate. For other applications, modifications may be incorporated eg. backbone modifications, such as phosphorothioates or methylphosphonates, can be used to increase in vivo half-life, alter RNA affinity, increase nuclease resistance etc. [eg. see Agrawal & Iyer (1995) Curr Opin Biotechnol 6:12-19; Agrawal (1996) TIBTECH 14:376-387]; analogues such as peptide nucleic acids may also be used [eg. see Corey (1997) TIBTECH 15:224-229; Buchardt et al. (1993) TIBTECH 11:384-386].
  • Alternatively, the polymerase chain reaction (PCR) is another well-known means for detecting small amounts of target nucleic acids. The assay is described in: Mullis et al. [Meth. Enzymol. (1987) 155: 335-350]; U.S. Pat. Nos. 4,683,195 and 4,683,202. Two “primer” nucleotides hybridize with the target nucleic acids and are used to prime the reaction. The primers can comprise sequence that does not hybridize to the sequence of the amplification target (or its complement) to aid with duplex stability or, for example, to incorporate a convenient restriction site. Typically, such sequence will flank the desired Neisserial sequence.
  • A thermostable polymerase creates copies of target nucleic acids from the primers using the original target nucleic acids as a template. After a threshold amount of target nucleic acids are generated by the polymerase, they can be detected by more traditional methods, such as Southern blots. When using the Southern blot method, the labelled probe will hybridize to the Neisserial sequence (or its complement).
  • Also, mRNA or cDNA can be detected by traditional blotting techniques described in Sambrook et al [supra]. mRNA, or cDNA generated from mRNA using a polymerase enzyme, can be purified and separated using gel electrophoresis. The nucleic acids on the gel are then blotted onto a solid support, such as nitrocellulose. The solid support is exposed to a labelled probe and then washed to remove any unhybridized probe. Next, the duplexes containing the labeled probe are detected. Typically, the probe is labelled with a radioactive moiety.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1A-E: For ORF37-1, (A) shows the results of affinity purification of the GST-fusion protein, (B) shows the results of expression of the His-fusion in E. coli. Purified GST-fusion protein was used to immunise mice, whose sera were used for ELISA (positive result), (C) shows FACS analysis, and (D) shows a bactericidal assay (FIG. 1D), and (E) shows plots of hydrophilicity, antigenic index, and AMPHI regions for ORF37-1.
  • FIG. 2A-B: For ORF5-1, (A) shows the results of affinity purification of the GST-fusion protein, and (B) shows the Western blot analysis of sera from mice immunized with purified GST-fusion protein.
  • FIG. 3A-D: For ORF2-1, (A) shows the results of affinity purification of the GST-fusion protein, (B) shows the results of expression of the His-fusion in E. coli, (C) shows the Western blot analysis of sera from mice immunized with turified GST-fusion protein, (D) shows the ELISA (positive result), and (D) shows the FACS analysis.
  • FIG. 4A-C: For ORF15-1, (A) shows the results of affinity purification of the GST-fusion protein, (B) shows the results of expression of the His-fusion in E. coli, and (C) shows the Western blot analysis of sera from mice immunized with purified GST-fusion protein.
  • FIG. 5A-C: For ORF22-1, (A) shows the results of affinity purification of the GST-fusion protein, (B) shows the results of expression of the His-fusion in E. coli, and (C) shows the FACS analysis using sera from mice immunized with the purified GST-fusion protein.
  • FIG. 6A-B: For ORF28-1, (A) shows the results of affinity purification of the GST-fusion protein, and (B) shows the results of expression of the His-fusion in E. coli.
  • FIG. 7A-B: For ORF32-1, (A) shows the results of affinity purification of the His-fusion protein, and (B) shows the results of expression of the GST-fusion in E. coli.
  • FIG. 8A-F: For ORF4-1, (A) shows the results of affinity purification of the His-fusion, (B) shows the results of affinity purification of the GST-fusion proteins, (C) shows the Western blot analysis of sera from mice immunized with the His-fusion protein, (D) shows the FACS analysis, (E) shows a bactericidal assay, and (F) shows plots of hydrophilicity, antigenic index, and AMPHI regions for ORF37-1.
  • FIG. 9 shows plots of hydrophilicity, antigenic index, and AMPHI regions for ORF61-1.
  • FIG. 10A-C: For ORF76-1, (A) shows the results of affinity purification of the His-fusion protein, (B) shows the Western blot analysis of sera from mice immunized with the purified His-fusion protein, and (C) shows the FACS analysis.
  • FIG. 11 shows the results of affinity purification of the GST-ORF89-1 fusion protein.
  • FIG. 12A-E: For ORF97-1, (A) show the results of affinity purification of the GST-fusion protein, (B) shows the results of affinity purification of the His-fusion protein, (C) shows the Western blot analysis of sera from mice immunized with purified GST-fusion protein, (D) shows the FACS analysis, and (E) shows plots of hydrophilicity, antigenic index, and AMPHI regions for ORF97-1.
  • FIG. 13A-C: For ORF106-1, (A) shows the results of affinity purification of the His-fusion protein, (B) shows the results of expression of the GST-fusion in E. coli, (C) shows the FACS analysis of sera from mice immunized with the purified His-fusion protein.
  • FIG. 14A-B: For ORF138-1, (A) shows the results of affinity purification of the GST-fusion protein, and (B) shows the FACS analysis of sera from mice immunized with the purified GST-fusion protein.
  • FIG. 15A-C: For ORF23-1, (A) shows the results of affinity purification of the His-fusion protein, (B) shows the results of expression of the GST-fusion in E. coli, (C) shows the Western blot analysis of sera from mice immunized with the purified His-fusion protein.
  • FIG. 16A-E: For ORF25-1, (A) shows the results of affinity purification of the GST-fusion protein, (B) shows the results of expression of the His-fusion in E. coli, (C) shows the Western blot analysis of sera from mice immunized with purified His-fusion protein, (D) shows the FACS analysis, and (E) shows plots of hydrophilicity, antigenic index, and AMPHI regions for ORF25-1.
  • FIG. 17A-B: For ORF27-1, (A) shows the results of affinity purification of the GST-fusion protein, and (B) shows the results of expression of the His-fusion in E. coli.
  • FIG. 18A-B: For ORF79-1, (A) shows the results of affinity purification of the His-fusion protein, and (B) shows the FACS analysis of sera from mice immunized with purified His-fusion protein.
  • FIG. 19A-D: For ORF85a, (A) shows the results of affinity purification of the GST-fusion protein, (B) shows Western blot analysis of sera from mice immunized with purified GST-fusion protein, (C) shows FACS analysis, and (D) shows plots of hydrophilicity, antigenic index, and AMPHI regions for ORF85a.
  • FIG. 20A-C: For ORF132-1, (A) shows the results of affinity purification of the His-fusion protein, (B) shows the results of expression of the GST-fusion in E. coli, (C) shows the FACS analysis of sera from mice immunized with purified His-fusion protein.
  • EXAMPLES
  • The examples describe nucleic acid sequences which have been identified in N. meningitidis, along with their putative translation products, and also those of N. gonorrhoeae. Not all of the nucleic acid sequences are complete i.e. they encode less than the full-length wild-type protein.
  • The examples are generally in the following format:
      • a nucleotide sequence which has been identified in N. meningitidis (strain B)
      • the putative translation product of this sequence
      • a computer analysis of the translation product based on database comparisons
      • corresponding gene and protein sequences identified in N. meningitidis (strain A) and in N. gonorrhoeae
      • a description of the characteristics of the proteins which indicates that they might be suitably antigenic
      • results of biochemical analysis (expression, purification, ELISA, FACS etc.)
      • The examples typically include details of sequence identity between species and strains. Proteins that are similar in sequence are generally similar in both structure and function, and the sequence identity often indicates a common evolutionary origin. Comparison with sequences of proteins of known function is widely used as a guide for the assignment of putative protein function to a new sequence and has proved particularly useful in whole-genome analyses.
  • Sequence comparisons were performed at NCBI (http://www.ncbi.nlm.nih.gov) using the algorithms BLAST, BLAST2, BLASTn, BLASTp, tBLASTn, BLASTx, & tBLASTx [eg. see also Altschul et al. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research 25:2289-3402]. Searches were performed against the following databases: non-redundant GenBank+EMBL+DDBJ+PDB sequences and non-redundant GenBank CDS translations+PDB+SwissProt+SPupdate+PIR sequences.
  • To compare Meningococcal and Gonococcal sequences, the tBLASTx algorithm was used, as implemented at http://www.genome.ou.edu/gono_blast.html. The FASTA algorithm was also used to compare the ORFs (from GCG Wisconsin Package, version 9.0).
  • Dots within nucleotide sequences (eg. position 495 in SEQ ID 11) represent nucleotides which have been arbitrarily introduced in order to maintain a reading frame. In the same way, double-underlined nucleotides were removed. Lower case letters (eg. position 496 in SEQ ID 11) represent ambiguities which arose during alignment of independent sequencing reactions (some of the nucleotide sequences in the examples are derived from combining the results of two or more experiments).
  • Nucleotide sequences were scanned in all six reading frames to predict the presence of hydrophobic domains using an algorithm based on the statistical studies of Esposti et al. [Critical evaluation of the hydropathy of membrane proteins (1990) Eur J Biochem 190:207-219]. These domains represent potential transmembrane regions or hydrophobic leader sequences.
  • Open reading frames were predicted from fragmented nucleotide sequences using the program ORFFINDER (NCBI).
  • Underlined amino acid sequences indicate possible transmembrane domains or leader sequences in the ORFs, as predicted by the PSORT algorithm (http://www.psort.nibb.ac.jp). Functional domains were also predicted using the MOTIFS program (GCG Wisconsin & PROSITE).
  • Various tests can be used to assess the in vivo immunogencity of the proteins identified in the examples. For example, the proteins can be expressed recombinantly and used to screen patient sera by immunoblot. A positive reaction between the protein and patient serum indicates that the patient has previously mounted an immune response to the protein in question ie. the protein is an immunogen. This method can also be used to identify immunodominant proteins.
  • The recombinant protein can also be conveniently used to prepare antibodies eg. in a mouse. These can be used for direct confirmation that a protein is located on the cell-surface. Labelled antibody (eg. fluorescent labelling for FACS) can be incubated with intact bacteria and the presence of label on the bacterial surface confirms the location of the protein.
  • In particular, the following methods (A) to (S) were used to express, purify and biochemically characterise the proteins of the invention:
  • A) Chromosomal DNA Preparation
  • N. meningitidis strain 2996 was grown to exponential phase in 100 ml of GC medium, harvested by centrifugation, and resuspended in 5 ml buffer (20% Sucrose, 50 mM Tris-HCl, 50 mM EDTA, pH8). After 10 minutes incubation on ice, the bacteria were lysed by adding 10 ml lysis solution (50 mM NaCl, 1% Na-Sarkosyl, 50 μg/ml Proteinase K), and the suspension was incubated at 37° C. for 2 hours. Two phenol extractions (equilibrated to pH 8) and one ChCl3/isoamylalcohol (24:1) extraction were performed. DNA was precipitated by addition of 0.3M sodium acetate and 2 volumes ethanol, and was collected by centrifugation. The pellet was washed once with 70% ethanol and redissolved in 4 ml buffer (10 mM Tris-HCl, 1 mM EDTA, pH 8). The DNA concentration was measured by reading the OD at 260 nm.
  • B) Oligonucleotide Design
  • Synthetic oligonucleotide primers were designed on the basis of the coding sequence of each ORF, using (a) the meningococcus B sequence when available, or (b) the gonococcus/meningococcus A sequence, adapted to the codon preference usage of meningococcus as necessary. Any predicted signal peptides were omitted, by deducing the 5′-end amplification primer sequence immediately downstream from the predicted leader sequence.
  • For most ORFs, the 5′ primers included two restriction enzyme recognition sites (BamHI-NdeI, BamHI-NheI, or EcoRI-NheI, depending on the gene's own restriction pattern); the 3′ primers included a XhoI restriction site. This procedure was established in order to direct the cloning of each amplification product (corresponding to each ORF) into two different expression systems: pGEX-KG (using either BamHI-XhoI or EcoRI-XhoI), and pET21b+ (using either NdeI-XhoI or NheI-XhoI).
  • 5′-end primer tail: CGCGGATCCCATATG (BamHI-NdeI)
    CGCGGATCCGCTAGC (BamHI-NheI)
    CCGGAATTCTAGCTAGC (EcoRI-NheI)
    3′-end primer tail: CCCGCTCGAG (XhoI)
  • For ORFs 5, 15, 17, 19, 20, 22, 27, 28, 65 & 89, two different amplifications were performed to clone each ORF in the two expression systems. Two different 5′ primers were used for each ORF; the same 3′ XhoI primer was used as before:
  • 5′-end primer tail: GGAATTCCATATGGCCATGG (NdeI)
    5′-end primer tail: CGGGATCC (BamHI)
  • ORF 76 was cloned in the pTRC expression vector and expressed as an amino-terminus His-tag fusion. In this particular case, the predicted signal peptide was included in the final product. NheI-BamHI restriction sites were incorporated using primers:
  • 5′-end primer tail: GATCAGCTAGCCATATG (NheI)
    3′-end primer tail: CGGGATCC (BamHI)
  • As well as containing the restriction enzyme recognition sequences, the primers included nucleotides which hybridized to the sequence to be amplified. The number of hybridizing nucleotides depended on the melting temperature of the whole primer, and was determined for each primer using the formulae:

  • T m=4(G+C)+2(A+T) (tail excluded)

  • T m=64.9+0.41(% GC)−600/N (whole primer)
  • The average melting temperature of the selected oligos were 65-70° C. for the whole oligo and 50-55° C. for the hybridising region alone.
  • Table I (page 487) shows the forward and reverse primers used for each amplification. In certain cases, it will be noted that the sequence of the primer does not exactly match the sequence in the ORF. When initial amplifications were performed, the complete 5′ and/or 3′ sequence was not known for some meningococcal ORFs, although the corresponding sequences had been identified in gonococcus. For amplification, the gonococcal sequences could thus be used as the basis for primer design, altered to take account of codon preference. In particular, the following codons were changed: ATA→ATT; TCG→TCT; CAG→CAA; AAG→AAA; GAG→GAA; CGA→CGC; CGG→CGC; GGG→GGC. Italicised nucleotides in Table I indicate such a change. It will be appreciated that, once the complete sequence has been identified, this approach is generally no longer necessary.
  • Oligos were synthesized by a Perkin Elmer 394 DNA/RNA Synthesizer, eluted from the columns in 2 ml NH4OH, and deprotected by 5 hours incubation at 56° C. The oligos were precipitated by addition of 0.3M Na-Acetate and 2 volumes ethanol. The samples were then centrifuged and the pellets resuspended in either 100 μl or 1 ml of water. OD260 was determined using a Perkin Elmer Lambda Bio spectophotometer and the concentration was determined and adjusted to 2-10 pmol/μl.
  • C) Amplification
  • The standard PCR protocol was as follows: 50-200 ng of genomic DNA were used as a template in the presence of 20-40 μM of each oligo, 400-800 μM dNTPs solution, 1×PCR buffer (including 1.5 mM MgCl2), 2.5 units TaqI DNA polymerase (using Perkin-Elmer AmpliTaQ, GIBCO Platinum, Pwo DNA polymerase, or Tahara Shuzo Taq polymerase).
  • In some cases, PCR was optimsed by the addition of 10 μl DMSO or 50 μl 2M betaine.
  • After a hot start (adding the polymerase during a preliminary 3 minute incubation of the whole mix at 95° C.), each sample underwent a double-step amplification: the first 5 cycles were performed using as the hybridization temperature the one of the oligos excluding the restriction enzymes tail, followed by 30 cycles performed according to the hybridization temperature of the whole length oligos. The cycles were followed by a final 10 minute extension step at 72° C.
  • The standard cycles were as follows:
  • Denaturation Hybridisation Elongation
    First 5 cycles 30 seconds 30 seconds 30-60 seconds
    95° C. 50-55° C. 72° C.
    Last 30 cycles 30 seconds 30 seconds 30-60 seconds
    95° C. 65-70° C. 72° C.
  • The elongation time varied according to the length of the ORF to be amplified.
  • The amplifications were performed using either a 9600 or a 2400 Perkin Elmer GeneAmp PCR System. To check the results, 1/10 of the amplification volume was loaded onto a 1-1.5% agarose gel and the size of each amplified fragment compared with a DNA molecular weight marker.
  • The amplified DNA was either loaded directly on a 1% agarose gel or first precipitated with ethanol and resuspended in a suitable volume to be loaded on a 1% agarose gel. The DNA fragment corresponding to the right size band was then eluted and purified from gel, using the Qiagen Gel Extraction Kit, following the instructions of the manufacturer. The final volume of the DNA fragment was 30 μl or 50 μl of either water or 10 mM Tris, pH 8.5.
  • D) Digestion of PCR Fragments
  • The purified DNA corresponding to the amplified fragment was split into 2 aliquots and double-digested with:
      • NdeI/XhoI or NheI/XhoI for cloning into pET-21b+ and further expression of the protein as a C-terminus His-tag fusion
      • BamHI/XhoI or EcoRI/XhoI for cloning into pGEX-KG and further expression of the protein as N-terminus GST fusion.
      • For ORF 76, NheI/BamHI for cloning into pTRC-H isA vector and further expression of the protein as N-terminus His-tag fusion.
      • EcoRI/PstI, EcoRI/SalI, SalI/PstI for cloning into pGex-His and further expression of the protein as N-terminus His-tag fusion
  • Each purified DNA fragment was incubated (37° C. for 3 hours to overnight) with 20 units of each restriction enzyme (New England Biolabs) in a either 30 or 40 μl final volume in the presence of the appropriate buffer. The digestion product was then purified using the QIAquick PCR purification kit, following the manufacturer's instructions, and eluted in a final volume of 30 or 50 μl of either water or 10 mM Tris-HCl, pH 8.5. The final DNA concentration was determined by 1% agarose gel electrophoresis in the presence of titrated molecular weight marker.
  • E) Digestion of the Cloning Vectors (pET22B, pGEX-KG, pTRC-His A, and pGex-His)
  • 10 μg plasmid was double-digested with 50 units of each restriction enzyme in 200 μl reaction volume in the presence of appropriate buffer by overnight incubation at 37° C. After loading the whole digestion on a 1% agarose gel, the band corresponding to the digested vector was purified from the gel using the Qiagen QIAquick Gel Extraction Kit and the DNA was eluted in 50 μl of 10 mM Tris-HCl, pH 8.5. The DNA concentration was evaluated by measuring OD260 of the sample, and adjusted to 50 μg/μl. 1 μl of plasmid was used for each cloning procedure.
  • The vector pGEX-His is a modified pGEX-2T vector carrying a region encoding six histidine residues upstream to the thrombin cleavage site and containing the multiple cloning site of the vector pTRC99 (Pharmacia).
  • F) Cloning
  • The fragments corresponding to each ORF, previously digested and purified, were ligated in both pET22b and pGEX-KG. In a final volume of 20 μl, a molar ratio of 3:1 fragment/vector was ligated using 0.5 μl of NEB T4 DNA ligase (400 units/μl), in the presence of the buffer supplied by the manufacturer. The reaction was incubated at room temperature for 3 hours. In some experiments, ligation was performed using the Boheringer “Rapid Ligation Kit”, following the manufacturer's instructions.
  • In order to introduce the recombinant plasmid in a suitable strain, 100 μl E. coli DH5 competent cells were incubated with the ligase reaction solution for 40 minutes on ice, then at 37° C. for 3 minutes, then, after adding 800 μl LB broth, again at 37° C. for 20 minutes. The cells were then centrifuged at maximum speed in an Eppendorf microfuge and resuspended in approximately 200 μl of the supernatant. The suspension was then plated on LB ampicillin (100 mg/ml).
  • The screening of the recombinant clones was performed by growing 5 randomly-chosen colonies overnight at 37° C. in either 2 ml (pGEX or pTC clones) or 5 ml (pET clones) LB broth+100 μg/ml ampicillin. The cells were then pelletted and the DNA extracted using the Qiagen QIAprep Spin Miniprep Kit, following the manufacturer's instructions, to a final volume of 30 μl. 5 μl of each individual miniprep (approximately 1 g) were digested with either NdeI/XhoI or BamHI/XhoI and the whole digestion loaded onto a 1-1.5% agarose gel (depending on the expected insert size), in parallel with the molecular weight marker (1 Kb DNA Ladder, GIBCO). The screening of the positive clones was made on the base of the correct insert size.
  • For the cloning of ORFs 110, 111, 113, 115, 119, 122, 125 & 130, the double-digested PCR product was ligated into double-digested vector using EcoRI-PstI cloning sites or, for ORFs 115 & 127, EcoRI-SalI or, for ORF 122, SalI-PstI. After cloning, the recombinant plasmids were introduced in the E. coli host W3110. Individual clones were grown overnight at 37° C. in L-broth with 50 μl/ml ampicillin.
  • G) Expression
  • Each ORF cloned into the expression vector was transformed into the strain suitable for expression of the recombinant protein product. 1 μl of each construct was used to transform 30 μl of E. coli BL21 (pGEX vector), E. coli TOP 10 (pTRC vector) or E. coli BL21-DE3 (pET vector), as described above. In the case of the pGEX-His vector, the same E. coli strain (W3110) was used for initial cloning and expression. Single recombinant colonies were inoculated into 2 ml LB+Amp (100 μg/ml), incubated at 37° C. overnight, then diluted 1:30 in 20 ml of LB+Amp (100 μg/ml) in 100 ml flasks, making sure that the OD600 ranged between 0.1 and 0.15. The flasks were incubated at 30° C. into gyratory water bath shakers until OD indicated exponential growth suitable for induction of expression (0.4-0.8 OD for pET and pTRC vectors; 0.8-1 OD for pGEX and pGEX-His vectors). For the pET, pTRC and pGEX-His vectors, the protein expression was induced by addition of 1 mM IPTG, whereas in the case of pGEX system the final concentration of IPTG was 0.2 mM. After 3 hours incubation at 30° C., the final concentration of the sample was checked by OD. In order to check expression, 1 ml of each sample was removed, centrifuged in a microfuge, the pellet resuspended in PBS, and analysed by 12% SDS-PAGE with Coomassie Blue staining. The whole sample was centrifuged at 6000 g and the pellet resuspended in PBS for further use.
  • H) GST-Fusion Proteins Large-Scale Purification.
  • A single colony was grown overnight at 37° C. on LB+Amp agar plate. The bacteria were inoculated into 20 ml of LB+Amp liquid colture in a water bath shaker and grown overnight. Bacteria were diluted 1:30 into 600 ml of fresh medium and allowed to grow at the optimal temperature (20-37° C.) to OD550 0.8-1. Protein expression was induced with 0.2 mM IPTG followed by three hours incubation. The culture was centrifuged at 8000 rpm at 4° C. The supernatant was discarded and the bacterial pellet was resuspended in 7.5 ml cold PBS. The cells were disrupted by sonication on ice for 30 sec at 40 W using a Branson sonifier B-15, frozen and thawed twice and centrifuged again. The supernatant was collected and mixed with 150 μl Glutatione-Sepharose 4B resin (Pharmacia) (previously washed with PBS) and incubated at room temperature for 30 minutes. The sample was centrifuged at 700 g for 5 minutes at 4° C. The resin was washed twice with 10 ml cold PBS for 10 minutes, resuspended in 1 ml cold PBS, and loaded on a disposable column. The resin was washed twice with 2 ml cold PBS until the flow-through reached OD280 of 0.02-0.06. The GST-fusion protein was eluted by addition of 700 μl cold Glutathione elution buffer (10 mM reduced glutathione, 50 mM Tris-HCl) and fractions collected until the OD280 was 0.1.21 μl of each fraction were loaded on a 12% SDS gel using either Biorad SDS-PAGE Molecular weight standard broad range (M1) (200, 116.25, 97.4, 66.2, 45, 31, 21.5, 14.4, 6.5 kDa) or Amersham Rainbow Marker (M2) (220, 66, 46, 30, 21.5, 14.3 kDa) as standards. As the MW of GST is 26 kDa, this value must be added to the MW of each GST-fusion protein.
  • I) His-Fusion Solubility Analysis (ORFs 111-129)
  • To analyse the solubility of the His-fusion expression products, pellets of 3 ml cultures were resuspended in buffer M1 [500 μl PBS pH 7.2]. 25 μl lysozyme (10 mg/ml) was added and the bacteria were incubated for 15 min at 4° C. The pellets were sonicated for 30 sec at 40 W using a Branson sonifier B-15, frozen and thawed twice and then separated again into pellet and supernatant by a centrifugation step. The supernatant was collected and the pellet was resuspended in buffer M2 [8M urea, 0.5M NaCl, 20 mM imidazole and 0.1 M NaH2 PO4] and incubated for 3 to 4 hours at 4° C. After centrifugation, the supernatant was collected and the pellet was resuspended in buffer M3 [6M guanidinium-HCl, 0.5M NaCl, 20 mM imidazole and 0.1M NaH2PO4] overnight at 4° C. The supernatants from all steps were analysed by SDS-PAGE.
  • The proteins expressed from ORFs 113, 119 and 120 were found to be soluble in PBS, whereas ORFs 111, 122, 126 and 129 need urea and ORFs 125 and 127 need guanidium-HCl for their solubilization.
  • J) His-Fusion Large-Scale Purification.
  • A single colony was grown overnight at 37° C. on a LB+Amp agar plate. The bacteria were inoculated into 20 ml of LB+Amp liquid culture and incubated overnight in a water bath shaker. Bacteria were diluted 1:30 into 600 ml fresh medium and allowed to grow at the optimal temperature (20-37° C.) to OD550 0.6-0.8. Protein expression was induced by addition of 1 mM IPTG and the culture further incubated for three hours. The culture was centrifuged at 8000 rpm at 4° C., the supernatant was discarded and the bacterial pellet was resuspended in 7.5 ml of either (i) cold buffer A (300 mM NaCl, 50 mM phosphate buffer, 10 mM imidazole, pH 8) for soluble proteins or (ii) buffer B (urea 8M, 10 mM Tris-HCl, 100 mM phosphate buffer, pH 8.8) for insoluble proteins. The cells were disrupted by sonication on ice for 30 sec at 40 W using a Branson sonifier B-15, frozen and thawed two times and centrifuged again.
  • For insoluble proteins, the supernatant was stored at −20° C., while the pellets were resuspended in 2 ml buffer C (6M guanidine hydrochloride, 100 mM phosphate buffer, 10 mM Tris-HCl, pH 7.5) and treated in a homogenizer for 10 cycles. The product was centrifuged at 13000 rpm for 40 minutes.
  • Supernatants were collected and mixed with 150 μl Ni2+-resin (Pharmacia) (previously washed with either buffer A or buffer B, as appropriate) and incubated at room temperature with gentle agitation for 30 minutes. The sample was centrifuged at 700 g for 5 minutes at 4° C. The resin was washed twice with 10 ml buffer A or B for 10 minutes, resuspended in 1 ml buffer A or B and loaded on a disposable column. The resin was washed at either (i) 4° C. with 2 ml cold buffer A or (ii) room temperature with 2 ml buffer B, until the flow-through reached OD280 of 0.02-0.06.
  • The resin was washed with either (i) 2 ml cold 20 mM imidazole buffer (300 mM NaCl, 50 mM phosphate buffer, 20 mM imidazole, pH 8) or (ii) buffer D (urea 8M, 10 mM Tris-HCl, 100 mM phosphate buffer, pH 6.3) until the flow-through reached the OD280 of 0.02-0.06. The His-fusion protein was eluted by addition of 700 μl of either (i) cold elution buffer A (300 mM NaCl, 50 mM phosphate buffer, 250 mM imidazole, pH 8) or (ii) elution buffer B (urea 8M, 10 mM Tris-HCl, 100 mM phosphate buffer, pH 4.5) and fractions collected until the OD280 was 0.1. 21 μl of each fraction were loaded on a 12% SDS gel.
  • K) His-Fusion Proteins Renaturation
  • 10% glycerol was added to the denatured proteins. The proteins were then diluted to 20 μg/ml using dialysis buffer I (10% glycerol, 0.5M arginine, 50 mM phosphate buffer, 5 mM reduced glutathione, 0.5 mM oxidised glutathione, 2M urea, pH 8.8) and dialysed against the same buffer at 4° C. for 12-14 hours. The protein was further dialysed against dialysis buffer II (10% glycerol, 0.5M arginine, 50 mM phosphate buffer, 5 mM reduced glutathione, 0.5 mM oxidised glutathione, pH 8.8) for 12-14 hours at 4° C. Protein concentration was evaluated using the formula:

  • Protein (mg/ml)=(1.55×OD280)−(0.76×OD260)
  • L) His-Fusion Large-Scale Purification (ORFs 111-129)
  • 500 ml of bacterial cultures were induced and the fusion proteins were obtained soluble in buffer M1, M2 or M3 using the procedure described above. The crude extract of the bacteria was loaded onto a Ni-NTA superflow column (Quiagen) equilibrated with buffer M1, M2 or M3 depending on the solubilization buffer of the fusion proteins. Unbound material was eluted by washing the column with the same buffer. The specific protein was eluted with the corresponding buffer containing 500 mM imidazole and dialysed against the corresponding buffer without imidazole. After each run the columns were sanitized by washing with at least two column volumes of 0.5 M sodium hydroxide and reequilibrated before the next use.
  • M) Mice Immunisations
  • 20 μg of each purified protein were used to immunise mice intraperitoneally. In the case of ORFs 2, 4, 15, 22, 27, 28, 37, 76, 89 and 97, Balb-C mice were immunised with Al(OH)3 as adjuvant on days 1, 21 and 42, and immune response was monitored in samples taken on day 56. For ORFs 44, 106 and 132, CD1 mice were immunised using the same protocol. For ORFs 25 and 40, CD1 mice were immunised using Freund's adjuvant, rather than AL(OH)3, and the same immunisation protocol was used, except that the immune response was measured on day 42, rather than 56. Similarly, for ORFs 23, 32, 38 and 79, CD1 mice were immunised with Freund's adjuvant, but the immune response was measured on day 49.
  • N) ELISA Assay (Sera Analysis)
  • The acapsulated MenB M7 strain was plated on chocolate agar plates and incubated overnight at 37° C. Bacterial colonies were collected from the agar plates using a sterile dracon swab and inoculated into 7 ml of Mueller-Hinton Broth (Difco) containing 0.25% Glucose. Bacterial growth was monitored every 30 minutes by following OD620. The bacteria were let to grow until the OD reached the value of 0.3-0.4. The culture was centrifuged for 10 minutes at 10000 rpm. The supernatant was discarded and bacteria were washed once with PBS, resuspended in PBS containing 0.025% formaldehyde, and incubated for 2 hours at room temperature and then overnight at 4° C. with stirring. 100 μl bacterial cells were added to each well of a 96 well Greiner plate and incubated overnight at 4° C. The wells were then washed three times with PBT washing buffer (0.1% Tween-20 in PBS). 200 μl of saturation buffer (2.7% Polyvinylpyrrolidone 10 in water) was added to each well and the plates incubated for 2 hours at 37° C. Wells were washed three times with PBT. 200 μl of diluted sera (Dilution buffer: 1% BSA, 0.1% Tween-20, 0.1% NaN3 in PBS) were added to each well and the plates incubated for 90 minutes at 37° C. Wells were washed three times with PBT. 100 μl of HRP-conjugated rabbit anti-mouse (Dako) serum diluted 1:2000 in dilution buffer were added to each well and the plates were incubated for 90 minutes at 37° C. Wells were washed three times with PBT buffer. 100 μl of substrate buffer for HRP (25 ml of citrate buffer pH5, 10 mg of O-phenildiamine and 10 μl of H2O) were added to each well and the plates were left at room temperature for 20 minutes. 100 μl H2SO4 was added to each well and OD490 was followed. The ELISA was considered positive when OD490 was 2.5 times the respective pre-immune sera.
  • O) FACScan Bacteria Binding Assay Procedure.
  • The acapsulated MenB M7 strain was plated on chocolate agar plates and incubated overnight at 37° C. Bacterial colonies were collected from the agar plates using a sterile dracon swab and inoculated into 4 tubes containing 8 ml each Mueller-Hinton Broth (Difco) containing 0.25% glucose. Bacterial growth was monitored every 30 minutes by following OD620. The bacteria were let to grow until the OD reached the value of 0.35-0.5. The culture was centrifuged for 10 minutes at 4000 rpm. The supernatant was discarded and the pellet was resuspended in blocking buffer (1% BSA, 0.4% NaN3) and centrifuged for 5 minutes at 4000 rpm. Cells were resuspended in blocking buffer to reach OD620 of 0.07. 100 μl bacterial cells were added to each well of a Costar 96 well plate. 100 μl of diluted (1:200) sera (in blocking buffer) were added to each well and plates incubated for 2 hours at 4° C. Cells were centrifuged for 5 minutes at 4000 rpm, the supernatant aspirated and cells washed by addition of 200 μl/well of blocking buffer in each well. 100 μl of R-Phicoerytrin conjugated F(ab)2 goat anti-mouse, diluted 1:100, was added to each well and plates incubated for 1 hour at 4° C. Cells were spun down by centrifugation at 4000 rpm for 5 minutes and washed by addition of 200 μl/well of blocking buffer. The supernatant was aspirated and cells resuspended in 200 μl/well of PBS, 0.25% formaldehyde. Samples were transferred to FACScan tubes and read. The condition for FACScan setting were: FL1 on, FL2 and FL3 off; FSC-H threshold:92; FSC PMT Voltage: E 02; SSC PMT: 474; Amp. Gains 7.1; FL-2 PMT: 539; compensation values: 0.
  • P) OMV Preparations
  • Bacteria were grown overnight on 5 GC plates, harvested with a loop and resuspended in 10 ml 20 mM Tris-HCl. Heat inactivation was performed at 56° C. for 30 minutes and the bacteria disrupted by sonication for 10 minutes on ice (50% duty cycle, 50% output). Unbroken cells were removed by centrifugation at 5000 g for 10 minutes and the total cell envelope fraction recovered by centrifugation at 50000 g at 4° C. for 75 minutes. To extract cytoplasmic membrane proteins from the crude outer membranes, the whole fraction was resuspended in 2% sarkosyl (Sigma) and incubated at room temperature for 20 minutes. The suspension was centrifuged at 10000 g for 10 minutes to remove aggregates, and the supernatant further ultracentrifuged at 50000 g for 75 minutes to pellet the outer membranes. The outer membranes were resuspended in 10 mM Tris-HCl, pH8 and the protein concentration measured by the Bio-Rad Protein assay, using BSA as a standard.
  • Q) Whole Extracts Preparation
  • Bacteria were grown overnight on a GC plate, harvested with a loop and resuspended in 1 ml of 20 mM Tris-HCl. Heat inactivation was performed at 56° C. for 30 minutes.
  • R) Western Blotting
  • Purified proteins (500 ng/lane), outer membrane vesicles (5 μg) and total cell extracts (25 μg) derived from MenB strain 2996 were loaded on 15% SDS-PAGE and transferred to a nitrocellulose membrane. The transfer was performed for 2 hours at 150 mA at 4° C., in transferring buffer (0.3% Tris base, 1.44% glycine, 20% methanol). The membrane was saturated by overnight incubation at 4° C. in saturation buffer (10% skimmed milk, 0.1% Triton X100 in PBS). The membrane was washed twice with washing buffer (3% skimmed milk, 0.1% Triton X100 in PBS) and incubated for 2 hours at 37° C. with mice sera diluted 1:200 in washing buffer. The membrane was washed twice and incubated for 90 minutes with a 1:2000 dilution of horseradish peroxidase labelled anti-mouse Ig. The membrane was washed twice with 0.1% Triton X100 in PBS and developed with the Opti-4CN Substrate Kit (Bio-Rad). The reaction was stopped by adding water.
  • S) Bactericidal Assay
  • MC58 strain was grown overnight at 37° C. on chocolate agar plates. 5-7 colonies were collected and used to inoculate 7 ml Mueller-Hinton broth. The suspension was incubated at 37° C. on a nutator and let to grow until OD620 was 0.5-0.8. The culture was aliquoted into sterile 1.5 ml Eppendorf tubes and centrifuged for 20 minutes at maximum speed in a microfuge. The pellet was washed once in Gey's buffer (Gibco) and resuspended in the same buffer to an OD620 of 0.5, diluted 1:20000 in Gey's buffer and stored at 25° C.
  • 50 μl of Gey's buffer/]% BSA was added to each well of a 96-well tissue culture plate. 25 μl of diluted mice sera (1:100 in Gey's buffer/0.2% BSA) were added to each well and the plate incubated at 4° C. 25 μl of the previously described bacterial suspension were added to each well. 25 μl of either heat-inactivated (56° C. waterbath for 30 minutes) or normal baby rabbit complement were added to each well. immediately after the addition of the baby rabbit complement, 22 μl of each sample/well were plated on Mueller-Hinton agar plates (time 0). The 96-well plate was incubated for 1 hour at 37° C. with rotation and then 22 μl of each sample/well were plated on Mueller-Hinton agar plates (time 1). After overnight incubation the colonies corresponding to time 0 and time 1 hour were counted.
  • Table II (page 493) gives a summary of the cloning, expression and prurification results.
  • Example 1
  • The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1>:
  • 1 ATGAAACAGA CAGTCAA.AT GCTTGCCGCC GCCCTGATTG
    CCTTGGGCTT
    51 GAACCGACCG GTGTGGNCGG ATGACGTATC GGATTTTCGG
    GAAAACTTGC
    101 A.GCGGCAGC ACAGGGAAAT GCAGCAGCCC AATACAATTT
    GGGCGCAATG
    151 TAT.TACAAA GGACGCGCGT GCGCCGGGAT GATGCTGAAG
    CGGTCAGATG
    201 GTATCGGCAG CCGGCGGAAC AGGGGTTAGC CCAAGCCCAA
    TACAATTTGG
    251 GCTGGATGTA TGCCAACGGG CGCGC.GTGC GCCAAGATGA
    TACCGAAGCG
    301 GTCAGATGGT ATCGGCAGGC GGCAGCGCAG GGGGTTGTCC
    AAGCCCAATA
    351 CAATTTGGGC GTGATATATG CCGAAGGACG TGGAGTGCGC
    CAAGACGATG
    401 TCGAAGCGGT CAGATGGTTT CGGCAGGCGG CAGCGCAGGG
    GGTAGCCCAA
    451 GCCCAAAACA ATTTGGGCGT GATGTATGCC GAAAGANCGC
    GCGTGCGCCA
    501 AGACCG...
  • This corresponds to the amino acid sequence <SEQ ID 2; ORF37>:
  • 1 MKQTVXMLAA ALIALGLNRP VWXDDVSDFR ENLXAAAQGN
    AAAQYNLGAM
    51 YXQRTRVRRD DAEAVRWYRQ PAEQGLAQAQ YNLGWMYANG
    RXVRQDDTEA
    101 VRWYRQAAAQ GVVQAQYNLG VIYAEGRGVR QDDVEAVRWF
    RQAAAQGVAQ
    151 AQNNLGVMYA ERXRVRQD...
  • Further work revealed the complete nucleotide sequence <SEQ ID 3>:
  • 1 ATGAAACAGA CAGTCAAATG GCTTGCCGCC GCCCTGATTG
    CCTTGGGCTT
    51 GAACCGAGCG GTGTGGGCGG ATGACGTATC GGATTTTCGG
    GAAAACTTGC
    101 AGGCGGCAGC ACAGGGAAAT GCAGCAGCCC AATACAATTT
    GGGCGCAATG
    151 TATTACAAAG GACGCGGCGT GCGCCGGGAT GATGCTGAAG
    CGGTCAGATG
    201 GTATCGGCAG GCGGCGGAAC AGGGGTTAGC CCAAGCCCAA
    TACAATTTGG
    251 GCTGGATGTA TGCCAACGGG CGCGGCGTGC GCCAAGATGA
    TACCGAAGCG
    301 GTCAGATGGT ATCGGCAGGC GGCAGCGCAG GGGGTTGTCC
    AAGCCCAATA
    351 CAATTTGGGC GTGATATATG CCGAAGGACG TGGAGTGCGC
    CAAGACGATG
    401 TCGAAGCGGT CAGATGGTTT CGGCAGGCGG CAGCGCAGGG
    GGTAGCCCAA
    451 GCCCAAAACA ATTTGGGCGT GATGTATGCC GAAAGACGCG
    GCGTGCGCCA
    501 AGACCGCGCC CTTGCACAAG AATGGTTTGG CAAGGCTTGT
    CAAAACGGAG
    551 ACCAAGACGG CTGCGACAAT GACCAACGCC TGAAGGCGGG
    TTATTGA
  • This corresponds to the amino acid sequence <SEQ ID 4; ORF37-1>:
  • 1 MKQTVKWLAA ALIALGLNRA VWADDVSDFR ENLQAAAQGN
    AAAQYNLGAM
    51 YYKGRGVRRD DAEAVRWYRQ AAEQGLAQAQ YNLGWMYANG
    RGVRQDDTEA
    101 VRWYRQAAAQ GVVQAQYNLG VIYAEGRGVR QDDVEAVRWF
    RQAAAQGVAQ
    151 AQNNLGVMYA ERRGVRQDRA LAQEWFGKAC QNGDQDGCDN
    DQRLKAGY*
  • Further work identified the corresponding gene in strain A of N. meningitidis <SEQ ID 5>:
  • 1 ATGAAACAGA CAGTCAAATG GCTTGCCGCC GCCCTGATTG
    CCTTGGGCTT
    51 GAACCAAGCG GTGTGGGCGG ATGACGTATC GGATTTTCGG
    GAAAACTTGC
    101 AGGCGGCAGC ACAGGGAAAT GCAGCAGCCC AAAACAATTT
    GGGCGTGATG
    151 TATGCCGAAA GACGCGGCGT GCGCCAAGAC CGCGCCCTTG
    CACAAGAATG
    201 GCTTGGCAAG GCTTGTCAAA ACGGATACCA AGACAGCTGC
    GACAATGACC
    251 AACGCCTGAA AGCGGGTTAT TGA
  • This encodes a protein having amino acid sequence <SEQ ID 6; ORF37a>:
  • 1 MKQTVKWLAA ALIALGLNQA VWADDVSDFR ENLQAAAQGN
    AAAQNNLGVM
    51 YAERRGVRQD RALAQEWLGK ACQNGYQDSC DNDQRLKAGY
    *
  • The originally-identified partial strain B sequence (ORF37) shows 68.0% identity over a 75aa overlap with ORF37a:
  • Figure US20130064846A1-20130314-C00001
  • Further work identified the corresponding gene in N. gonorrhoeae <SEQ ID 7>:
  • 1 ATGAAACAGA CAGTCAAATG GCTTGCCGCC GCCCTGATTG
    CCTTGGGCTT
    51 GAACCAAGCG GTGTGGGCGG GTGACGTATC GGATTTTCGG
    GAAAACTTGC
    101 AGgcggcaGA ACaggGAAAT GCAGCAGCCC AATTCAATTT
    GGGCGTGATG
    151 TATGAAAATG GACAAGGAGT TCGTCAAGAT TATGTACAGG
    CAGTGCAGTG
    201 GTATCGCAAG GCTTCAGAAC AAGGGGATGC CCAAGCCCAA
    TACAATTTGG
    251 GCTTGATGTA TTACGATGGA CGCGGCGTGC GCCAAGACCT
    TGCGCTCGCT
    301 CAACAATGGC TTGGCAAGGC TTGTCAAAAC GGAGACCAAA
    ACAGCTGCGA
    351 CAATGACCAA CGCCTGAAGG CGGGTTATTA A
  • This encodes a protein having amino acid sequence <SEQ ID 8; ORF37ng>:
  • 1 MKQTVKWLAA ALIALGLNQA VWAGDVSDFR ENLQAAEQGN
    AAAQFNLGVM
    51 YENGQGVRQD YVQAVQWYRK ASEQGDAQAQ YNLGLMYYDG
    RGVRQDLALA
    101 QQWLGKACQN GDQNSCDNDQ RLKAGY*
  • The originally-identified partial strain B sequence (ORF37) shows 64.9% identity over a 111aa overlap with ORF37ng:
  • Figure US20130064846A1-20130314-C00002
  • The complete strain B sequence (ORF37-1) and ORF37ng show 51.5% identity in 198 aa overlap:
  • Figure US20130064846A1-20130314-C00003
  • Computer analysis of these amino acid sequences indicates a putative leader sequence, and it was predicted that the proteins from N. meningitidis and N. gonorrhoeae, and their epitopes, could be useful antigens for vaccines or diagnostics, or for raising antibodies.
  • ORF37-1 (11 kDa) was cloned in pET and pGex vectors and expressed in E. coli, as described above. The products of protein expression and purification were analyzed by SDS-PAGE. FIG. 1A shows the results of affinity purification of the GST-fusion protein, and FIG. 1B shows the results of expression of the His-fusion in E. coli. Purified GST-fusion protein was used to immunise mice, whose sera were used for ELISA (positive result), FACS analysis (FIG. 1C), and a bactericidal assay (FIG. 1D). These experiments confirm that ORF37-1 is a surface-exposed protein, and that it is a useful immunogen.
  • FIG. 1E shows plots of hydrophilicity, antigenic index, and AMPHI regions for ORF37-1.
  • Example 2
  • The following partial DNA sequence was identified in N. meningitidis <SEQ ID 9>:
  •   TTCGGCGA CATCGGCGGT TTGAAGGTCA ATGCCCCCGT
    CAAATCCGCA GGCGTATTGG TCGGGCGCGT CGGCGCTATC
    GGACTTGACC CGAAATCCTA TCAGGCGAGG GTGCGCCTCG
    ATTTGGACGG CAAGTATCAG TTCAGCAGCG ACGTTTCCGC
    GCAAATCCTG ACTTCsGGAC TTTTGGGCGA GCAGTACATC
    GGGCTGCAGC AGGGCGGCGA CACGGAAAAC CTTGCTGCCG
    GCGACACCAT CTCCGTAACC AGTTCTGCAA TGGTTCTGGA
    AAACCTTATC GGCAAATTCA TGACGAGTTT TGCCGAGAAA
    AATGCCGACG GCGGCAATGC GGAAAAAGCC GCCGAATAA
  • This corresponds to the amino acid sequence <SEQ ID 10>:
  •   1 FGDIGGLKVN APVKSAGVLV GRVGAIGLDP KSYQARVRLD LDGKYQFSSD
     51 VSAQILTSGL LGEQYIGLQQ GGDTENLAAG DTISVTSSAM VLENLIGKFM
    101 TSFAEKNADG GNAEKAAE*
  • Computer analysis of this amino acid sequence gave the following results:
  • Homology with a Hypothetical H. influenzae Protein (ybrd.haein; Accession Number p45029)
  • SEQ ID 9 and ybrd.haein show 48.4% aa identity in 122 aa overlap:
  • Figure US20130064846A1-20130314-C00004
  • Homology with a Predicted ORF from N. gonorrhoeae
  • SEQ ID 9 shows 99.2% identity over a 118aa overlap with a predicted ORF from N. gonorrhoeae:
  • Figure US20130064846A1-20130314-C00005
  • The complete yrbd H. influenzae sequence has a leader sequence and it is expected that the full-length homologous N. meningitidis protein will also have one. This suggests that it is either a membrane protein, a secreted protein, or a surface protein and that the protein, or one of its epitopes, could be a useful antigen for vaccines or diagnostics.
  • Example 3
  • The following partial DNA sequence was identified in N. meningitidis <SEQ ID 11>:
  • 1 ..ATTTTGATAT ACCTCATCCG CAAGAATCTA GGTTCGCCCG
    TCTTCTTCTT
    51   TCAGGAACGC CCCGGAAAGG ACGGAAAACC TTTTAAAATG
    GTCAAATTCC
    101   GTTCCATGCG CGACGGCTTG TATTCAGACG GCATTCCGCT
    GCCCGACGGA
    151   GAACGCCTGA CACCGTTCGG CAAAAAACTG CGTGCCGcCA
    GTwTGGACGA
    201   ACTGCCTGAA TTATGGAATA TCTTAAAAGG CGAGATGAGC
    CTGGTCGGCC
    251   CCCGCCCGCT GCTGATGCAA TATCTGCCGC TGTACGACAA
    CTTCCAAAAC
    301   CGCCGCCACG AAATGAAACC CGGCATTACC GGCTGGGCGC
    AGGTCAACGG
    351   GCGCAACGCg CTTTCGTGGG ACGAAAAATT CGCCTGCGAT
    GTTTGGTATA
    401   TCGACCACTT CAGCCTGTGC CTCGACATCA AAATCCTACT
    GCTGACGGTT
    451   AAAAAAGTAT TAATCAAGGA AGGGATTTCC GCACAGGGCG
    AACA.aCCAT
    501   GCCCCCTTTC ACAGGAAAAC GCAAACTCGC CGTCGTCGGT
    GCGGGCGGAC
    551   ACGGAAAAGT CGTTGCCGAC CTTGCCGCCG CACTCGGCCG
    GTACAGGGAA
    601   ATCGTTTTTC TGGACGACCG CGCACAAGGC AGCGTCAACG
    GCTTTTCCGT
    651   CATCGGCACG ACGCTGCTGC TTGAAAACAG TTTATCGCCC
    GAACAATACG
    701   ACGTCGCCGT CGCCGTCGGC AACAACCGCA TCCGCCGCCA
    AATCGCCGAA
    751   AAAGCCGCCG CGCTCGGCTT CGCCCTGCCC GTACTGGTTC
    ATCCGGACGC
    801   GACCGTCTCG CCTTCTGCAA CAGTCGGACA AGGCAGCGTC
    GTTATGGCGA
    851   AAGCGGTCG..
  • This corresponds to the amino acid sequence <SEQ ID 12; ORF3>:
  • 1 . . . ILIYLIRKNL GSPVFFFQER PGKDGKPFKM VKFRSMRDGL YSDGIPLPDG
    51       ERLTPFGKKL RAASXDELPE LWNILKGEMS LVGPRPLLMQ YLPLYDNFQN
    101       RRHEMKPGIT GWAQVNGRNA LSWDEKFACD VWYIDHFSLC LDIKILLLTV
    151       KKVLIKEGIS AQGEXTMPPF TGKRKLAVVG AGGHGKVVAD LAAALGRYRE
    201       IVFLDDRAQG SVNGFSVIGT TLLLENSLSP EQYDVAVAVG NNRIRRQIAE
    251       KAAALGFALP VLVHPDATVS PSATVGQGSV VMAKAV . . .
  • Further sequence analysis revealed the complete nucleotide sequence <SEQ ID 13>:
  • 1 ATGAGTAAAT TCTTCAAACG CCTGTTTGAC ATTGTTGCCT
    CCGCCTCGGG
    51 ACTGATTTTC CTCTCGCCAG TATTTTTGAT TTTGATATAC
    CTCATCCGCA
    101 AGAATCTAGG TTCGCCCGTC TTCTTCTTTC AGGAACGCCC
    CGGAAAGGAC
    151 GGAAAACCTT TTAAAATGGT CAAATTCCGT TCCATGCGCG
    ACGCGCTTGA
    201 TTCAGACGGC ATTCCGCTGC CCGACGGAGA ACGCCTGACA
    CCGTTCGGCA
    251 AAAAACTGCG TGCCGCCAGT TTGGACGAAC TGCCTGAATT
    ATGGAATATC
    301 TTAAAAGGCG AGATGAGCCT GGTCGGCCCC CGCCCGCTGC
    TGATGCAATA
    351 TCTGCCGCTG TACGACAACT TCCAAAACCG CCGCCACGAA
    ATGAAACCCG
    401 GCATTACCGG CTGGGCGCAG GTCAACGGGC GCAACGCGCT
    TTCGTGGGAC
    451 GAAAAATTCG CCTGCGATGT TTGGTATATC GACCACTTCA
    GCCTGTGCCT
    501 CGACATCAAA ATCCTACTGC TGACGGTTAA AAAAGTATTA
    ATCAAGGAAG
    551 GGATTTCCGC ACAGGGCGAA GCCACCATGC CCCCTTTCAC
    AGGAAAACGC
    601 AAACTCGCCG TCGTCGGTGC GGGCGGACAC GGAAAAGTCG
    TTGCCGACCT
    651 TGCCGCCGCA CTCGGCCGGT ACAGGGAAAT CGTTTTTCTG
    GACGACCGCG
    701 CACAAGGCAG CGTCAACGGC TTTTCCGTCA TCGGCACGAC
    GCTGCTGCTT
    751 GAAAACAGTT TATCGCCCGA ACAATACGAC GTCGCCGTCG
    CCGTCGGCAA
    801 CAACCGCATC CGCCGCCAAA TCGCCGAAAA AGCCGCCGCG
    CTCGGCTTCG
    851 CCCTGCCCGT TCTGGTTCAT CCGGACGCGA CCGTCTCGCC
    TTCTGCAACA
    901 GTCGGACAAG GCAGCGTCGT TATGGCGAAA GCCGTCGTAC
    AGGCAGGCAG
    951 CGTATTGAAA GACGGCGTGA TTGTGAACAC TGCCGCCACC
    GTCGATCACG
    1001 ACTGCCTGCT TAACGCTTTC GTCCACATCA GCCCAGGCGC
    GCACCTGTCG
    1051 GGCAACACGC ATATCGGCGA AGAAAGCTGG ATAGGCACGG
    GCGCGTGCAG
    1101 CCGCCAGCAG ATCCGTATCG GCAGCCGCGC AACCATTGGA
    GCGGGCGCAG
    1151 TCGTCGTACG CGACGTTTCA GACGGCATGA CCGTCGCGGG
    CAATCCGGCA
    1201 AAGCCGCTGC CGCGCAAAAA CCCCGAGACC TCGACAGCAT
    AA
  • This corresponds to the amino acid sequence <SEQ ID 14; ORF3-1>:
  • 1 MSKFFKRLFD IVASASGLIF LSPVFLILIY LIRKNLGSPV
    FFFQERPGKD
    51 GKPFKMVKFR SMRDALDSDG IPLPDGERLT PFGKKLRAAS
    LDELPELWNI
    101 LKGEMSLVGP RPLLMQYLPL YDNFQNRRHE MKPGITGWAQ
    VNGRNALSWD
    151 EKFACDVWYI DHFSLCLDIK ILLLTVKKVL IKEGISAQGE
    ATMPPFTGKR
    201 KLAVVGAGGH GKVVADLAAA LGRYREIVFL DDRAQGSVNG
    FSVIGTTLLL
    251 ENSLSPEQYD VAVAVGNNRI RRQIAEKAAA LGFALPVLVH
    PDATVSPSAT
    301 VGQGSVVMAK AVVQAGSVLK DGVIVNTAAT VDHDCLLNAF
    VHISPGAHLS
    351 GNTHIGEESW IGTGACSRQQ IRIGSRATIG AGAVVVRDVS
    DGMTVAGNPA
    401 KPLPRKNPET STA*
  • Computer analysis of this amino acid sequence gave the following results:
  • Homology with a Predicted ORF from N. meningitidis (Strain A)
  • ORF3 shows 93.0% identity over a 286aa overlap with an ORF (ORF3a) from strain A of N. meningitidis:
  • Figure US20130064846A1-20130314-C00006
  • The complete length ORF3a nucleotide sequence <SEQ ID 15> is:
  • 1 ATGAGTAAAT TCTTCAAACG CCTGTTTGAC ATTGTTGCCT
    CCGCCTCGGG
    51 ACTGATTTTC CTCTCGCCAG TATTTTTGAT TTTGATATAC
    CTCATCCGCA
    101 AGAATCTGGG TTCGCCCGTC TTCTTCTTTC AGGAACGCCC
    CGGAAAGGAC
    151 GGAAAACCTT TTAAAATGGT CAAATTCCGT TCCATGCACG
    ACGCGCTTGA
    201 TTCAGACGGC ATTCTGCTGC CCGACGGAGA ACGCCTGACA
    CCGTTCGGCA
    251 AAAAACTGCG TGCCGCCAGT TTGGACGAAC TGCCCGAACT
    GTGGAACGTC
    301 CTCAAAGGCG ACATGAGCCT GGTCGGCCCC CGCCCGCTGC
    TGATGCAATA
    351 TCTGCCGCTG TACGACAACT TCCAAAACCG CCGCCACGAA
    ATGAAACCGG
    401 GCATTACCGG CTGGGCGCAG GTCAACGGGC GCAACGCGCT
    TTCGTGGGAC
    451 GAACGCTTCG CATGCGACAT CTGGTATATC GACCACTTCA
    GCCTGTGCCT
    501 CGAGATCAAA ATCCTACTGC TGACGGTTAA AAAAGTATTA
    ATCAAAGAAG
    551 GGATTTCCGC ACAGGGCGAA GCCACCATGC CCCCTTTCAC
    AGGAAAACGC
    601 AAACTTGCCG TCGTCGGTGC GGGCGGACAC GGCAAAGTCG
    TTGCCGAGCT
    651 TGCCGCCGCA CTCGGCACAT ACGGCGAAAT CGTTTTTCTG
    GACGACCGCG
    701 TCCAAGGCAG CGTCAACGGC TTCCCCGTCA TCGGCACGAC
    GCTGCTGCTT
    751 GAAAACAGTT TATCGCCCGA ACAATTCGAC ATCGCCGTCG
    CCGTCGGCAA
    801 CAACCGCATC CGCCGCCAAA TCGCCGAAAA AGCCGCCGCG
    CTCGGCTTCG
    851 CCCTGCCCGT CCTGATTCAT CCGGACTCGA CCGTCTCGCC
    TTCTGCAACA
    901 GTCGGACAAG GCGGCGTCGT TATGGCGAAA GCCGTCGTAC
    AGGCTGACAG
    951 CGTATTGAAA GACGGCGTAA TTGTGAACAC TGCCGCCACC
    GTCGATCACG
    1001 ATTGCCTGCT TGATGCTTTC GTCCACATCA GCCCGGGCGC
    GCACCTGTCG
    1051 GGCAACACGC GTATCGGCGA AGAAAGCTGG ATAGGCACAG
    GCGCGTGCAG
    1101 CCGCCAGCAG ATCCGTATCG GCAGCCGCGC AACCATTGGA
    GCGGGCGCAG
    1151 TCGTCGTGCG CGACGTTTCA GACGGCATGA CCGTCGCGGG
    CAACCCGGCA
    1201 AAACCATTGG CAGGCAAAAA TACCGAGACC CTGCGGTCGT
    AA
  • This is predicted to encode a protein having amino acid sequence <SEQ ID 16>:
  • 1 MSKFFKRLFD IVASASGLIF LSPVFLILIY LIRKNLGSPV
    FFFQERPGKD
    51 GKPFKMVKFR SMHDALDSDG ILLPDGERLT PFGKKLRAAS
    LDELPELWNV
    101 LKGDMSLVGP RPLLMQYLPL YDNFQNRRHE MKPGITGWAQ
    VNGRNALSWD
    151 ERFACDIWYI DHFSLCLDIK ILLLTVKKVL IKEGISAQGE
    ATMPPFTGKR
    201 KLAVVGAGGH GKVVAELAAA LGTYGEIVFL DDRVQGSVNG
    FPVIGTTLLL
    251 ENSLSPEQFD IAVAVGNNRI RRQIAEKAAA LGFALPVLIH
    PDSTVSPSAT
    301 VGQGGVVMAK AVVQADSVLK DGVIVNTAAT VDHDCLLDAF
    VHISPGAHLS
    351 GNTRIGEESW IGTGACSRQQ IRIGSRATIG AGAVVVRDVS
    DGMTVAGNPA
    401 KPLAGKNTET LRS*
  • Two transmembrane domains are underlined.
  • ORF3-1 shows 94.6% identity in 410 aa overlap with ORF3a:
  • Figure US20130064846A1-20130314-C00007
  • Homology with Hypothetical Protein Encoded by yvfc Gene (Accession Z71928) of B. subtilis
  • ORF3 and YVFC proteins show 55% aa identity in 170 aa overlap (BLASTp):
  • ORF3 3 IYLIRKNLGSPVFFFQERPGKDGKPFKMVKFRSMRDGLYSDGIPLPDGERLTPFGKKLRA 62
    I ++R  +GSPVFF Q RPG  GKPF + KFR+M D   S G  LPD  RLT  G+ +R
    yvfc 27 IAVVRLKIGSPVFFKQVRPGLHGKPFTLYKFRTMTDERDSKGNLLPDEVRLTKTGRLIRK 86
    ORF3 63 ASXDELPELWNILKGEMSLVGPRPLLMQYLPLYDNFQNRRHEMKPGITGWAQVNGRNALS 122
     S DELP+L N+LKG++SLVGPRPLLM YLPLY   Q RRHE+KPGITGWAQ+NGRNA+S
    yvfc 87 LSIDELPQLLNVLKGDLSLVGPRPLLMDYLPLYTEKQARRHEVKPGITGWAQINGRNAIS 146
    ORF3 123 WDEKFACDVWYIDHFSLCLDXXXXXXXXXXXXXXEGISAQGEXTMPPFTG 172
    W++KF  DVWY+D++S  LD              EGI      T   FTG
    yvfc 147 WEKKFELDVWYVDNWSFFLDLKILCLTVRKVLVSEGIQQTNHVTAERFTG 196

    Homology with a Predicted ORF from N. gonorrhoeae
  • ORF3 shows 86.3% identity over a 286aa overlap with a predicted ORF (ORF3.ng) from N. gonorrhoeae:
  • Figure US20130064846A1-20130314-C00008
  • The complete length ORF3ng nucleotide sequence <SEQ ID 17> is:
  • 1 ATGAGTAAAG CCGTCAAACG CCTGTTCGAC ATCATCGCAT
    CCGCATCGGG
    51 GCTGATTGTC CTGTCGCCCG TGTTTTTGGT TTTAATATAC
    CTCATCCGCA
    101 AAAACTTAGG TTCGCCCGTC TTCTTCattC GGGAACGCCc
    cgGAAAGGAc
    151 ggaaaacCTT TTAAAATGGT CAAATTCCGT TCCAtgcgcg
    acgcgcttGA
    201 TTCAGACGGC ATTCCGCTGC CCGATAGCGA ACGCCTGACC
    GATTTCGGCA
    251 AAAAATTACG CGCCACCAGT TTGGACGAAC TTCCTGAATT
    ATGGAATGTC
    301 CTCAAAGGCG AGATGAGCCT GGTCGGCCCC CGCCCGCTTT
    TGATGCAGTA
    351 TCTGCCGCTT TACAACAAAT TTCAAAACCG CCGCCACGAA
    ATGAAACCGG
    401 GCATTACCGG CTGGGCGCAG GTCAACGGGC GCAACGCGCT
    TTCGTGGGAC
    451 GAAAAGTTCT CCTGCGATGT TTGGTACACC GACAATTTCA
    GCTTTTGGCT
    501 GGATATGAAA ATCCTGTTTC TGACAGTCAA AAAAGTCTTG
    ATTAAAGAAG
    551 GCATTTCGGC GCAAGGGGAA GCCACCATGC CCCCTTTCGC
    GGGGAATCGC
    601 AAACTCGCCG TTATCGGCGC GGGCGGACAC GGCAAAGTCG
    TTGCCGAGCT
    651 TGCCGCCGCA CTCGGCACAT ACGGCGAAAT CGTTTTTCTG
    GACGACCGCA
    701 CCCAAGGCAG CGTCAACGGC TTCCCCGTCA TCGGCACGAC
    GCTGCTGCTT
    751 GAAAACAGTT TATCGCCCGA ACAATTCGAC ATCACCGTCG
    CCGTCGGCAA
    801 CAACCGCATC CGCCGCCAAA TCACCGAAAA CGCCGCCGCG
    CTCGGCTTCA
    851 AACTGCCCGT TCTGATTCAT CCCGACGCGA CCGTCTCGCC
    TTCTGCAATA
    901 ATCGGACAAG GCAGCGTCGT AATGGCGAAA GCCGTCGTAC
    AGGCCGGCAG
    951 CGTATTGAAA GACGGCGTGA TTGTGAACAC TGCCGCCACC
    GTCGATCACG
    1001 ACTGCCTGCT TGACGCTTTC GtccaCATCA GCCCGGGCGC
    GCACCTGTCG
    1051 GGCAACACGC GTATCGGCGA AGAAAGCCGG ATAGGCACGG
    GCGCGTGCAG
    1101 CCGCCAGCAG ACAACCGTCG GCAGCGGGGT TACCgccgGT
    GCAGGGgcGG
    1151 TTATCGTATG CGACATCCCG GACGGCATGA CCGTCGCGGG
    CAACCCGGCA
    1201 AAGCCCCTTA CGGGCAAAAA CCCCAAGACC GGGACGGCAT
    AA
  • This encodes a protein having amino acid sequence <SEQ ID 18>:
  • 1 MSKAVKRLFD IIASASGLIV LSPVFLVLIY LIRKNLGSPV
    FFIRERPGKD
    51 GKPFKMVKFR SMRDALDSDG IPLPDSERLT DFGKKLRATS
    LDELPELWNV
    101 LKGEMSLVGP RPLLMQYLPL YNKFQNRRHE MKPGITGWAQ
    VNGRNALSWD
    151 EKFSCDVWYT DNFSFWLDMK ILFLTVKKVL IKEGISAQGE
    ATMPPFAGNR
    201 KLAVIGAGGH GKVVAELAAA LGTYGEIVFL DDRTQGSVNG
    FPVIGTTLLL
    251 ENSLSPEQFD ITVAVGNNRI RRQITENAAA LGFKLPVLIH
    PDATVSPSAI
    301 IGQGSVVMAK AVVQAGSVLK DGVIVNTAAT VDHDCLLDAF
    VHISPGAHLS
    351 GNTRIGEESR IGTGACSRQQ TTVGSGVTAG AGAVIVCDIP
    DGMTVAGNPA
    401 KPLTGKNPKT GTA*
  • This protein shows 86.9% identity in 413 aa overlap with ORF3-1:
  • Figure US20130064846A1-20130314-C00009
  • In addition, ORF3ng shows significant homology with a hypothetical protein from B. subtilis:
  • gnl|PID|e238668 (Z71928) hypothetical protein [Bacillus subtilis]
    >gi|1945702|gnl|PID|e313004 (Z94043) hypothetical protein
    [Bacillus subtilis]
    >gi|2635938|gnl|PID|e1186113 (Z99121) similar to capsular polysaccharide
    biosynthesis [Bacillus subtilis] Length = 202
    Score = 235 bits (594), Expect = 3e−61
    Identities = 114/195 (58%), Positives = 142/195 (72%)
    Query: 5 VKRLFDIIASASGLIVLSPVFLVLIYLIRKNLGSPVFFIRERPGKDGKPFKMVKFRSMRD 64
    +KRLFD+ A+   L  S + L  I ++R  +GSPVFF + RPG  GKPF + KFR+M D
    Sbjct: 3 LKRLFDLTAAIFLLCCTSVIILFTIAVVRLKIGSPVFFKQVRPGLHGKPFTLYKFRTMTD 62
    Query: 65 ALDSDGIPLPDSERLTDFGKKLRATSLDELPELWNVLKGEMSLVGPRPLLMQYLPLYNKF 124
      DS G  LPD  RLT  G+ +R  S+DELP+L NVLKG++SLVGPRPLLM YLPLY +
    Sbjct: 63 ERDSKGNLLPDEVRLTKTGRLIRKLSIDELPQLLNVLKGDLSLVGPRPLLMDYLPLYTEK 122
    Query: 125 QNRRHEMKPGITGWAQVNGRNALSWDEKFSCDVWYTDNFSFWLDMKILFLTVKKVLIKEG 184
    Q RRHE+KPGITGWAQ+NGRNA+SW++KF  DVWY DN+SF+LD+KIL LTV+KVL+ EG
    Sbjct: 123 QARRHEVKPGITGWAQINGRNAISWEKKFELDVWYVDNWSFFLDLKILCLTVRKVLVSEG 182
    Query: 185 ISAQGEATMPPFAGN 199
    I      T   F G+
    Sbjct: 183 IQQTNHVTAERFTGS 197
  • The hypothetical product of yvfc gene shows similarity to EXOY of R. meliloti, an exopolysaccharide production protein. Based on this and on the two predicted transmembrane regions in the homologous N. gonorrhoeae sequence, it is predicted that these proteins, or their epitopes, could be useful antigens for vaccines or diagnostics, or for raising antibodies.
  • Example 4
  • The following partial DNA sequence was identified in N. meningitidis <SEQ ID 19>:
  • 1 ..AACCATATGG CGATTGTCAT CGACGAATAC GGCGGCACAT
    CCGGCTTGGT
    51   CACCTTTGAA GACATCATCG AGCAAATCGT CGGCGAAATC
    GAAGACGAGT
    101   TTGACGAAGA CGATAGCGCC GACAATATCC ATGCCGTTTC
    TTCAGACACG
    151   TGGCGCATCC ATGCAGCTAC CGAAATCGAA GACATCAACA
    CCTTCTTCGG
    201   CACGGAATAC AGCATCGAAG AAGCCGACAC CATT.GGCGG
    CCTGGTCATT
    251   CAAGAGTTGG GACATCTGCC CGTGCGCGGC GAAAAAGTCC
    TTATCGGCGG
    301   TTTGCAGTTC ACCGTCGCAC GCGCCGACAA CCGCCGCCTG
    CATACGCTGA
    351   TGGCGACCCG CGTGAAGTAA GC........ .....ACCGC
    CGTTTCTGCA
    401   CAGTTTAG
  • This corresponds to amino acid sequence <SEQ ID 20; ORF5>:
  • 1 ..NHMAIVIDEY GGTSGLVTFE DIIEQIVGEI EDEFDEDDSA
    DNIHAVSSDT
    51   WRIHAATEIE DINTFFGTEY SIEEADTIXR PGHSRVGTSA
    RARRKSPYRR
    101   FAVHRRTRRQ PPPAYADGDP REVS....XR RFCTV*
  • Further sequence analysis revealed the complete DNA sequence to be <SEQ ID 21>:
  • 1 ATGGACGGCG CACAACCGAA AACGAATTTT TTTGAACGCC
    TGATTGCCCG
    51 ACTCGCCCGC GAACCCGATT CCGCCGAAGA CGTATTAAAC
    CTGCTTCGGC
    101 AGGCGCACGA GCAGGAAGTT TTTGATGCGG ATACGCTTTT
    AAGATTGGAA
    151 AAAGTCCTCG ATTTTTCCGA TTTGGAAGTG CGCGACGCGA
    TGATTACGCG
    201 CAGCCGTATG AACGTTTTAA AAGAAAACGA CAGCATCGAG
    CGCATCACCG
    251 CCTACGTTAT CGATACCGCC CATTCGCGCT TCCCCGTCAT
    CGGCGAAGAC
    301 AAAGACGAAG TTTTGGGCAT TTTGCACGCC AAAGACCTGC
    TCAAATATAT
    351 GTTTAACCCC GAGCAGTTCC ACCTCAAATC CATTCTCCGC
    CCCGCCGTCT
    401 TCGTCCCCGA AGGCAAATCG CTGACCGCCC TTTTAAAAGA
    GTTCCGCGAA
    451 CAGCGCAACC ATATGGCGAT TGTCATCGAC GAATACGGCG
    GCACATCCGG
    501 CTTGGTCACC TTTGAAGACA TCATCGAGCA AATCGTCGGC
    GAAATCGAAG
    551 ACGAGTTTGA CGAAGACGAT AGCGCCGACA ATATCCATGC
    CGTTTCTTCC
    601 GAACGCTGGC GCATCCATGC AGCTACCGAA ATCGAAGACA
    TCAACACCTT
    651 CTTCGGCACG GAATACAGCA GCGAAGAAGC CGACACCATT
    CGGCCTGGTC
    701 ATTCAAGAGT TGGGACATCT GCCCGTGCGC GGCGAAAAAG
    TCCTTATCGG
    751 CGGTTTGCAG TTCACCGTCG CACGCGCCGA CAACCGCCGC
    CTGCATACGC
    801 TGATGGCGAC CCGCGTGAAG TAAGCACCGC CGTTTCTGCA
    CAGTTTAGGA
    851 TGACGGTACG GGCGTTTTCT GTTTCAATCC GCCCCATCCG
    CCAAACATAA
  • This corresponds to amino acid sequence <SEQ ID 22; ORF5-1>:
  • 1 MDGAQPKTNF FERLIARLAR EPDSAEDVLN LLRQAHEQEV
    FDADTLLRLE
    51 KVLDFSDLEV RDAMITRSRM NVLKENDSIE RITAYVIDTA
    HSRFPVIGED
    101 KDEVLGILHA KDLLKYMFNP EQFHLKSILR PAVFVPEGKS
    LTALLKEFRE
    151 QRNHMAIVID EYGGTSGLVT FEDIIEQIVG EIEDEFDEDD
    SADNIHAVSS
    201 ERWRIHAATE IEDINTFFGT EYSSEEADTI RPGHSRVGTS
    ARARRKSPYR
    251 RFAVHRRTRR QPPPAYADGD PREVSTAVSA QFRMTVRAFS
    VSIRPIRQT*
  • Further work identified the corresponding gene in strain A of N. meningitidis <SEQ ID 23>:
  • 1 ATGGACGGCG CACAACCGAA AACAAATTTT TTNNAACGCC
    TGATTGCCCG
    51 ACTCGCCCGC GAACCCGATT CCGCCGAAGA CGTATTGACC
    CTGTTGCGCC
    101 AAGCGCACGA ACAGGAAGTA TTTGATGCGG ATACGCTTTT
    AAGATTGGAA
    151 AAAGTCCTCG ATTTTTCTGA TTTGGAAGTG CGCGACGCGA
    TGATTACGCG
    201 CAGCCGTATG AACGTTTTAA AAGAAAACGA CAGCATCGAA
    CGCATCACCG
    251 CCTACGTTAT CGATACCGCC CATTCGCGCT TCCCCGTCAT
    CGGTGAAGAC
    301 AAAGACGAAG TTTTGGGTAT TTTGCACGCC AAAGACCTGC
    TCAAATATAT
    351 GTTCAACCCC GAGCAGTTCC ACCTCAAATC GATATTGCGC
    CCTGCCGTCT
    401 TCGTCCCCGA AGGCAAATCG CTGACCGCCC TTTTAAAAGA
    GTTCCGCGAA
    451 CAGCGCAACC ATATGGCAAT CGTCATCGAC GAATACGGCG
    GCACGTCGGG
    501 TTTGGTAACT TTTGAAGACA TCATCGAGCA AATCGTCGGC
    GACATCGAAG
    551 ATGAGTTTGA CGAAGACGAA AGCGCGGACA ACATCCACGC
    CGTTTCCGCC
    601 GAACGCTGGC GCATCCACGC GGCTACCGAA ATCGAAGACA
    TCAACGCCTT
    651 TTTCGGCACG GAATACAGCA GCGAAGAAGC CGACACCATC
    GGCGGCCNTG
    701 GTCATTCAGG AATTGGNACA CCTGCCCGTG CGCGGCGAAA
    AAGTCNTTAT
    751 CGGCGNNTTG CANTTCACNG TCGCCNGCGC NGACAACCGC
    CGCCTGCATA
    801 CGCTGATGGC GACCCGCGTG AAGTAAGCTC CGCCGTTTCT
    GTACAGTTTA
    851 GGATGACGGT ACGGGCGTTT TCTGTTTCAA TCCGCCCCAT
    CCGCCANACA
    901 TAA
  • This encodes a protein having amino acid sequence <SEQ ID 24; ORF5a>:
  • 1 MDGAQPKTNF XXRLIARLAR EPDSAEDVLT LLRQAHEQEV
    FDADTLLRLE
    51 KVLDFSDLEV RDAMITRSRM NVLKENDSIE RITAYVIDTA
    HSRFPVIGED
    101 KDEVLGILHA KDLLKYMFNP EQFHLKSILR PAVFVPEGKS
    LTALLKEFRE
    151 QRNHMAIVID EYGGTSGLVT FEDIIEQIVG DIEDEFDEDE
    SADNIHAVSA
    201 ERWRIHAATE IEDINAFFGT EYSSEEADTI GGXGHSGIGT
    PARARRKSXY
    251 RRXAXHXRXR XQPPPAYADG DPREVSSAVS VQFRMTVRAF
    SVSIRPIRXT
    301 *
  • The originally-identified partial strain B sequence (ORF5) shows 54.7% identity over a 124aa overlap with ORF5a:
  • Figure US20130064846A1-20130314-C00010
  • The complete strain B sequence (ORF5-1) and ORF5a show 92.7% identity in 300 aa overlap:
  • Figure US20130064846A1-20130314-C00011
  • Further work identified the a partial DNA sequence in N. gonorrhoeae <SEQ ID 25> which encodes a protein having amino acid sequence <SEQ ID 26; ORF5ng>:
  • 1 MDGAQPKTNF FERLIARLAR EPDSAEDVLN LLRQAHEQEV
    FDADTLTRLE
    51 KVLDFAELEV RDAMITRSRM NVLKENDSIE RITAYVIDTA
    HSRFPVIGED
    101 KDEVLGILHA KDLLKYMFNP EQFHLKSVLR PAVFVPEGKS
    LTALLKEFRE
    151 QRNHMAIVID EYGGTSGLVT FEDIIEQIVG DIEDEFDEDE
    SADDIHSVSA
    201 ERWRIHAATE IEDINAFFGT EYGSEEADTI RRLGHSGIGT
    PARARRKSPY
    251 RRFAVHRRPR RQPPPAHADG DPREVSRACP HRRFCTV*
  • Further analysis revealed the complete gonococcal nucleotide sequence <SEQ ID 27> to be:
  • 1 ATGGACGGCG CACAACCGAA AACAAATTTT TTTGAACGCC
    TGATTGCCCG
    51 ACTCGCCCGC GAACCCGATT CCGCCGAAGA CGTATTAAAC
    CTGCTTCGGC
    101 AGGCGCACGA ACAGGAAGTT TTTGATGCCG ACACACTGAC
    CCGGCTGGAA
    151 AAAGTATTGG ACTTTGCCGA GCTGGAAGTG CGCGATGCGA
    TGATTACGCG
    201 CAGCCGCATG AACGTATTGA AAGAAAACGA CAGCATCGAA
    CGCATCACCG
    251 CCTACGTCAT CGATACCGCC CATTCGCGCT TCCCCGTCAT
    CGGCGAAGAC
    301 AAAGACGAAG TTTTGGGCAT TTTGCACGCC AAAGACCTGC
    TCAAATATAT
    351 GTTCAACCCC GAGCAGTTCC ACCTGAAATC CGTCTTGCGC
    CCTGCCGTTT
    401 TCGTGCCCGA AGGCAAATCT TTGACCGCCC TTTTAAAAGA
    GTTCCGCGAA
    451 CAGCGCAACC ATATGGCAAT CGTCATCGAC GAATACGGCG
    GCACGTCGGG
    501 TTTGGTCACC TTTGAAGACA TCATCGAGCA AATCGTCGGT
    GACATCGAAG
    551 ACGAGTTTGA CGAAGACGAA AGCGccgacg acatCCACTC
    cgTTTccgCC
    601 GAACGCTGGC GCATCCacgc ggctaCCGAA ATCGAAGaca
    TCAACGCCTT
    651 TTTCGGTACG GAatacggca gcgaagaagc cgacaccatc
    cggcggctTG
    701 GTCATTCAGG AATTGGGACA CCTGCCCGTG CGCGGCGAAA
    AAGTCCTTAt
    751 cggcgGTTTG Cagttcaccg tCGCCCGCGC CGACAACCGC
    CGCCTGCACA
    801 CGCTGATGGC GACCCGCGTG AAGTAAGCAG AGCCTGCCcg
    AccgccgttT
    851 CTGCacAGTT TAGGatgACG gtaCGGTCGT TTTCTGTTTC
    AATCCGCCCC
    901 ATCCGCCAAA CATAA
  • This encodes a protein having amino acid sequence <SEQ ID 28; ORF5ng-1>:
  • 1 MDGAQPKTNF FERLIARLAR EPDSAEDVLN LLRQAHEQEV
    FDADTLTRLE
    51 KVLDFAELEV RDAMITRSRM NVLKENDSIE RITAYVIDTA
    HSRFPVIGED
    101 KDEVLGILHA KDLLKYMFNP EQFHLKSVLR PAVFVPEGKS
    LTALLKEFRE
    151 QRNHMAIVID EYGGTSGLVT FEDIIEQIVG DIEDEFDEDE
    SADDIHSVSA
    201 ERWRIHAATE IEDINAFFGT EYGSEEADTI RRLGHSGIGT
    PARARRKSPY
    251 RRFAVHRRPR RQPPPAHADG DPREVSRACP TAVSAQFRMT
    VRSFSVSIRP
    301 IRQT*
  • The originally-identified partial strain B sequence (ORFS) shows 83.1% identity over a 135aa overlap with the partial gonococcal sequence (ORF5ng):
  • Figure US20130064846A1-20130314-C00012
  • The complete strain B and gonococcal sequences (ORFS-1 & ORF5ng-1) show 92.4% identity in 304 aa overlap:
  • Figure US20130064846A1-20130314-C00013
  • Computer analysis of these amino acid sequences indicates a putative leader sequence, and identified the following homologies:
  • Homology with Hemolysin Homolog TlyC (Accession U32716) of H. influenzae
  • ORF5 and TlyC proteins show 58% aa identity in 77 aa overlap (BLASTp).
  • ORF5 2 HMAIVIDEYGGTSGLVTFEDIIEQIVGEIEDEFDEDDSADNIHAVSSDTWRIHAATEIED 61
    HMAIV+DE+G  SGLVT EDI+EQIVG+IEDEFDE++ AD I  +S  T+ + A T+I+D
    TlyC 166 HMAIVVDEFGAVSGLVTIEDILEQIVGDIEDEFDEEEIAD-IRQLSRHTYAVRALTDIDD 224
    ORF5 62 INTFFGTEYSIEEADTI 78
     N  F T++  EE DTI
    TlyC
    225 FNAQFNTDFDDEEVDTI 241
  • ORF5ng-1 also shows significant homology with TlyC:
      • SCORES Init1: 301 Initn: 419 Opt: 668
      • Smith-Waterman score: 668; 45.9% identity in 242 aa overlap
  • Figure US20130064846A1-20130314-C00014
  • Homology with a Hypothetical Secreted Protein from E. coli:
  • ORF5a shows homology to a hypothetical secreted protein from E. coli:
  • sp|P77392|YBEX_ECOLI HYPOTHETICAL 33.3 KD PROTEIN IN CUTE-ASNB INTERGENIC
    REGION
    >gi|1778577 (U82598) similar to H. influenzae [Escherichia coli]
    >gi|1786879 (AE000170) f292; This 292 aa ORF is 23% identical (9 gaps)
    to 272 residues of an approx. 440 aa protein YTFL_HAEIN SW: P44717
    [Escherichia coli] Length = 292
    Score = 212 bits (533), Expect = 3e−54
    Identities = 112/230 (48%), Positives = 149/230 (64%), Gaps = 3/230 (1%)
    Query: 2 DGAQPKTNFXXRLIARLAR-EPDSAEDVLTLLRQAHEQEVFDADTLLRLEKVLDFSDLEV 60
    D    K  F   L+++L   EP + +++L L+R + + ++ D DT   LE V+D +D  V
    Sbjct: 10 DTISNKKGFFSLLLSQLFHGEPKNRDELLALIRDSGQNDLIDEDTRDMLEGVMDIADQRV 69
    Query: 61 RDAMITRSRMNVLKENDSIERITAYVIDTAHSRFPVIGEDKDEVLGILHAKDLLKYM-FN 119
    RD MI RS+M  LK N +++     +I++AHSRFPVI EDKD + GIL AKDLL +M  +
    Sbjct: 70 RDIMIPRSQMITLKRNQTLDECLDVIIESAHSRFPVISEDKDHIEGILMAKDLLPFMRSD 129
    Query: 120 PEQFHLKSILRPAVFVPEGKSLTALLKEFREQRNHMAIVIDEYGGTSGLVTFEDIIEQIV 179
     E F +  +LR AV VPE K +  +LKEFR QR HMAIVIDE+GG SGLVT EDI+E IV
    Sbjct: 130 AEAFSMDKVLRQAVVVPESKRVDRMLKEFRSQRYHMAIVIDEFGGVSGLVTIEDILELIV 189
    Query: 180 GDIEDEFDEDESADNIHAVSAERWRIHAATEIEDINAFFGTEYSSEEADT 229
    G+IEDE+DE++  D    +S   W + A   IED N  FGT +S EE DT
    Sbjct: 190 GEIEDEYDEEDDID-FRQLSRHTWTVRALASIEDFNEAFGTHFSDEEVDT 238
  • Based on this analysis, including the amino acid homology to the TlyC hemolysin-homologue from H. influenzae (hemolysins are secreted proteins), it was predicted that the proteins from N. meningitidis and N. gonorrhoeae are secreted and could thus be useful antigens for vaccines or diagnostics.
  • ORF5-1 (30.7 kDa) was cloned in the pGex vector and expressed in E. coli, as described above. The products of protein expression and purification were analyzed by SDS-PAGE. FIG. 2A shows the results of affinity purification of the GST-fusion protein. Purified GST-fusion protein was used to immunise mice, whose sera were used for Western blot analysis (FIG. 1B). These experiments confirm that ORFS-1 is a surface-exposed protein, and that it is a useful immunogen.
  • Example 5
  • The following partial DNA sequence was identified in N. meningitidis <SEQ ID 29>:
  • 1 ATGCGCGGCG GCAGGCCGGA TTCCGTTACC GTGCAGATTA
    TCGAAGGTTC
    51 GCGTTTTTCG CATATGAGGA AAGTCATCGA CGCAACGCCC
    GACATCGGAC
    101 ACGACACCAA AGGCTGGAGC AATGAAAAAC TGATGGCGGA
    AGTTGCGCCC
    151 GATGCCTTCA GCGGCAATCC TGAAgGGCAG TTTTTCCCCG
    ACAGCTACGA
    201 AATCGATGCG GGCGGCAGTG ATTTGCAGAT TTACCAAACC
    GCCTACAAgG
    251 GCGATGCAAC GCCGCCTGAA TGAgGGCATG GGAAAGCAGG
    CAGGACGGGC
    301 TGCCTTATAA AAACCCTTAT GAAATGCTGA TTATGGCGAr
    CCTGGTCGAA
    351 AAGGAAACAG GGCATGAAGC CGAsCsCGAC CATGTcGCTT
    CCGTCTTCGT
    401 CAACCGCCTG AAAATCGGTA TGCGCCTGCA AACCgAssCG
    TCCGTGATTT
    451 ACGGCATGGG TGCGGCATAC AAGGGCAAAA TCCGTAAAGC
    CGACCTGCGC
    501 CGCGACACGC CGTACAACAC CTACACGCGC GGCGGTCTGC
    CGCCAACCCC
    551 GATTGCGCTG CCC..
  • This corresponds to the amino acid sequence <SEQ ID 30; ORF7>:
  • 1 MRGGRPDSVT VQIIEGSRFS HMRKVIDATP DIGHDTKGWS
    NEKLMAEVAP
    51 DAFSGNPEGQ FFPDSYEIDA GGSDLQIYQT AYKAMQRRLN
    EAWESRQDGL
    101 PYKNPYEMLI MAXLVEKETG HEAXXDHVAS VFVNRLKIGM
    RLQTXXSVIY
    151 GMGAAYKGKI RKADLRRDTP YNTYTRGGLP PTPIALP..
  • Further sequence analysis revealed the complete DNA sequence <SEQ ID 31>:
  • 1 ATGTTGAGAA AATTGTTGAA ATGGTCTGCC GTTTTTTTGA
    CCGTGTCGGC
    51 AGCCGTTTTC GCCGCGCTGC TTTTTGTTCC TAAGGATAAC
    GGCAGGGCAT
    101 ACCGAATCAA AATTGCCAAA AACCAGGGTA TTTCGTCGGT
    CGGCAGGAAA
    151 CTTGCCGAAG ACCGCATCGT GTTCAGCAGG CATGTTTTGA
    CGGCGGCGGC
    201 CTACGTTTTG GGTGTGCACA ACAGGCTGCA TACGGGGACG
    TACAGATTGC
    251 CTTCGGAAGT GTCTGCTTGG GATATCTTGC AGAAAATGCG
    CGGCGGCAGG
    301 CCGGATTCCG TTACCGTGCA GATTATCGAA GGTTCGCGTT
    TTTCGCATAT
    351 GAGGAAAGTC ATCGACGCAA CGCCCGACAT CGGACACGAC
    ACCAAAGGCT
    401 GGAGCAATGA AAAACTGATG GCGGAAGTTG CGCCCGATGC
    CTTCAGCGGC
    451 AATCCTGAAG GGCAGTTTTT CCCCGACAGC TACGAAATCG
    ATGCGGGCGG
    501 CAGTGATTTG CAGATTTACC AAACCGCCTA CAAGGCGATG
    CAACGCCGCC
    551 TGAATGAGGC ATGGGAAAGC AGGCAGGACG GGCTGCCTTA
    TAAAAACCCT
    601 TATGAAATGC TGATTATGGC GAGCCTGGTC GAAAAGGAAA
    CAGGGCATGA
    651 AGCCGACCGC GACCATGTCG CTTCCGTCTT CGTCAACCGC
    CTGAAAATCG
    701 GTATGCGCCT GCAAACCGAC CCGTCCGTGA TTTACGGCAT
    GGGTGCGGCA
    751 TACAAGGGCA AAATCCGTAA AGCCGACCTG CGCCGCGACA
    CGCCGTACAA
    801 CACCTACACG CGCGGCGGTC TGCCGCCAAC CCCGATTGCG
    CTGCCCGGCA
    851 AGGCGGCACT CGATGCCGCC GCCCATCCGT CCGGCGAAAA
    ATACCTGTAT
    901 TTCGTGTCCA AAATGGACGG CACGGGCTTG AGCCAGTTCA
    GCCATGATTT
    951 GACCGAACAC AATGCCGCCG TCCGCAAATA TATTTTGAAA
    AAATAA
  • This corresponds to the amino acid sequence <SEQ ID 32; ORF7-1>:
  • 1 MLRKLLKWSA VFLTVSAAVF AALLFVPKDN GRAYRIKIAK
    NQGISSVGRK
    51 LAEDRIVFSR HVLTAAAYVL GVHNRLHTGT YRLPSEVSAW
    DILQKMRGGR
    101 PDSVTVQIIE GSRFSHMRKV IDATPDIGHD TKGWSNEKLM
    AEVAPDAFSG
    151 NPEGQFFPDS YEIDAGGSDL QIYQTAYKAM QRRLNEAWES
    RQDGLPYKNP
    201 YEMLIMASLV EKETGHEADR DHVASVFVNR LKIGMRLQTD
    PSVIYGMGAA
    251 YKGKIRKADL RRDTPYNTYT RGGLPPTPIA LPGKAALDAA
    AHPSGEKYLY
    301 FVSKMDGTGL SQFSHDLTEH NAAVRKYILK K*
  • Computer analysis of this amino acid sequence gave the following results:
  • Homology with Hypothetical Protein Encoded by yceg Gene (Accession P44270) of H. influenzae
  • ORF7 and yceg proteins show 44% aa identity in 192 aa overlap:
  • ORF7   1 MRGGRPDSVTVQIIEGSRFSHMRKVIDATPDIGHDTKGWSNEKLMA-----EVAPDAFSG  55
             +  G+     V+ IEG  F   RK ++  P +    K  SNE++ A      ++  +
    yceg 102 LNSGKEVQFNVKWIEGKTFKDWRKDLENAPHLVQTLKDKSNEEIFALLDLPDIGQNLELK 161
    ORF7  56 NPEGQFFPDSYEIDAGGSDLQIYQTAYKAMQRRLNEAWESRQDGLPYKNPYEMLIMAXLV 115
             N EG  +PD+Y      +DL++ + + + M++ LN+AW  R + LP   NPYEMLI+A +V
    yceg 162 NVEGWLYPDTYNYTPKSTDLELLKRSAERMKKALNKAWNERDEDLPLANPYEMLILASIV 221
    ORF7 116 EKETGHEAXXDHVASVFVNRLKIGMRLQTXXSVIYGMGAAYKGKIRKADLRRDTPYNTYT 175
             EKETG       VASVF+NRLK  M+LQT  +VIYGMG  Y G IRK DL   TPYNTY
    yceg 222 EKETGIANERAKVASVFINRLKAKMKLQTDPTVIYGMGENYNGNIRKKDLETKTPYNTYV 281
    ORF7 176 RGGLPPTPIALP                                                 187
               GLPPTPIA+P
    yceg 282 IDGLPPTPIAMP                                                 293
  • The complete length YCEG protein has sequence:
  • 1 MKKFLIAILL LILILAGVAS FSYYKMTEFV KTPVNVQADE
    LLTIERGTTS
    51 SKLATLFEQE KLIADGKLLP YLLKLKPELN KIKAGTYSLE
    NVKTVQDLLD
    101 LLNSGKEVQF NVKWIEGKTF KDWRKDLENA PHLVQTLKDK
    SNEEIFALLD
    151 LPDIGQNLEL KNVEGWLYPD TYNYTPKSTD LELLKRSAER
    MKKALNKAWN
    201 ERDEDLPLAN PYEMLILASI VEKETGIANE RAKVASVFIN
    RLKAKMKLQT
    251 DPTVIYGMGE NYNGNIRKKD LETKTPYNTY VIDGLPPTPI
    AMPSESSLQA
    301 VANPEKTDFY YFVADGSGGH KFTRNLNEHN KAVQEYLRWY
    RSQKNAK

    Homology with a Predicted ORF from N. meningitidis (Strain A)
  • ORF7 shows 95.2% identity over a 187aa overlap with an ORF (ORF7a) from strain A of N. meningitidis:
  • Figure US20130064846A1-20130314-C00015
  • The complete length ORF7a nucleotide sequence <SEQ ID 33> is:
  • 1 ATGTTGAGAA AATTGTTGAA ATGGTCTGCC GTTTTTTTGA
    CCGTATCGGC
    51 AGCCGTTTTC GCCGCGCTGC TTTTCGTCCC TAAAGACAAC
    GGCAGGGCAT
    101 ACAGGATTAA AATTGCCAAA AACCAGGGTA TTTCGTCGGT
    CGGCAGGAAA
    151 CTTGCCGAAG ACCGCATCGT GTTCAGCAGG CATGTTTTGA
    CGGCGGCGGC
    201 CTACGTTTTG GGTGTGCACA ACAGGCTGCA TACGGGGACG
    TACAGACTGC
    251 CTTCGGAAGT GTCTGCTTGG GATATCTTGC AGAAAATGCG
    CGGCGGCAGG
    301 CCGGATTCCG TTACCGTGCA GATTATCGAA GGTTCGCGTT
    TTTCGCATAT
    351 GAGGAAAGTC ATCGACGCAA CGCCCGACAT CGAACACGAC
    ACCAAAGGCT
    401 GGAGCAATGA AAAACTGATG GCGGAAGTTG CCCCTGATGC
    CTTCAGCGGC
    451 AATCCTGAAG GGCAGTTTTT CCCCGACAGC TACGAAATCG
    ATGCGGGCGG
    501 CAGCGATTTA CGGATTTACC AAATCGCCTA CAAGGCGATG
    CAACGCCGAC
    551 TGAATGAGGC ATGGGAAAGC AGGCAGGACG GGCTGCCTTA
    TAAAAACCCT
    601 TATGAAATGC TGATTATGGC GAGCCTGATC GAAAAGGAAA
    CAGGGCATGA
    651 AGCCGACCGC GACCATGTCG CTTCCGTCTT CGTCAACCGC
    CTGAAAATCG
    701 GTATGCGCCT GCAAACCGAC CCGTCCGTGA TTTACGGCAT
    GGGTGCGGCA
    751 TACAAGGGCA AAATCCGTAA AGCCGACCTG CGCCGCGACA
    CGCCGTACAA
    801 CACCTACACG CGCGGCGGTC TGCCGCCAAC CCCGATCGCG
    CTGCCCGGCA
    851 AGGCGGCACT CGATGCCGCC GCCCATCCGT CCGGTGAAAA
    ATACCTGTAT
    901 TTCGTGTCCA AAATGGACGG TACGGGCTTG AGCCAGTTCA
    GCCATGATTT
    951 GACCGAACAC AACGCCGCCG TTCGCAAATA TATTTTGAAA
    AAATAA
  • This is predicted to encode a protein having amino acid sequence <SEQ ID 34>:
  • 1 MLRKLLKWSA VFLTVSAAVF AALLFVPKDN GRAYRIKIAK
    NQGISSVGRK
    51 LAEDRIVFSR HVLTAAAYVL GVHNRLHTGT YRLPSEVSAW
    DILQKMRGGR
    101 PDSVTVQIIE GSRFSHMRKV IDATPDIEHD TKGWSNEKLM
    AEVAPDAFSG
    151 NPEGQFFPDS YEIDAGGSDL RIYQIAYKAM QRRLNEAWES
    RQDGLPYKNP
    201 YEMLIMASLI EKETGHEADR DHVASVFVNR LKIGMRLQTD
    PSVIYGMGAA
    251 YKGKIRKADL RRDTPYNTYT RGGLPPTPIA LPGKAALDAA
    AHPSGEKYLY
    301 FVSKMDGTGL SQFSHDLTEH NAAVRKYILK K*
  • A leader peptide is underlined.
  • ORF7a and ORF7-1 show 98.8% identity in 331 aa overlap:
  • Figure US20130064846A1-20130314-C00016
  • Homology with a Predicted ORF from N. gonorrhoeae
  • ORF7 shows 94.7% identity over a 187aa overlap with a predicted ORF (ORF7.ng) from N. gonorrhoeae:
  • Figure US20130064846A1-20130314-C00017
  • An ORF7ng nucleotide sequence <SEQ ID 35> is predicted to encode a protein having amino acid sequence <SEQ ID 36>:
  • 1 MRGGRPDSVT VQIIEGSRFS HMRKVIDATP DIGHDTKGWS
    NEKLMAEVAP
    51 DAFSGNPEGQ FFPDSYEIDA GGSDLQIYQT AYKAMQRRLN
    EAWAGRQDGL
    101 PYKNPYEMLI MASLIEKETG HEADRDHVAS VFVNRLKIGM
    RLQTDPSVIY
    151 GMGAAYKGKI RKADLRRDTP YNTYTGGGLP PTRIALPGKA
    AMDAAAHPSG
    201 EKYLYFVSKM DGTGLSQFSH DLTEHNAAVR KYILKK*
  • Further sequence analysis revealed a partial DNA sequence of ORF7ng <SEQ ID 37>:
  • 1 ..taccgaatca AGATTGCCAA AAATCAGGGT ATTTCGTCGG
    TCGGCAGGAA
    51   ACTTGCcgaA GACCGCATCG TGTTCAGCAG GCATGTTTTG
    ACAGCGGCGG
    101   CCTACGTTTT GGGTGTGCAC AACAGGCTGC ATACGGGGAC
    gTACAGATTG
    151   CCTTCGGAAG TGTCTGCTTG GGATATCTTG CAGAAAATGC
    GCGGCGGCAG
    201   GCCGGATTCC GTTACCGTGC AGATTATCGA AGGTTCGCGT
    TTTTCGCATA
    251   TGAGGAAAGT CATCGACGCA ACGCCCGACA TCGGACACGA
    CACCAAAGGC
    301   TGGAGCAATG AAAAACTGAT GGCGGAAGTT GCGCCCGATG
    CCTTCAGCGG
    351   CAATCCTGAA GGGCAGTTTT TTCCCGACAG CTACGAAATC
    GATGCGGGCG
    401   GCAGCGATTT GCAGATTTAC CAAACCGCCT ACAAGGCGAT
    GCAACGCCGC
    451   CTGAACGAGG CATGGGCAGG CAGGCAGGAC GGGCTGCCTT
    ATAAAAACCC
    501   TTATGAAATG CTGATTATGG CGAGCCTGAT CGAAAAGGAA
    ACGGGGCATG
    551   AGGCCGACCG CGACCATGTC GCTTCCGTCT TCGTCAACCG
    CCTGAAAATC
    601   GGTATGCGCC TGCAAACCGA CCCGTCCGTG ATTTACGGCA
    TGGGTGCGGC
    651   ATACAAGGGC AAAATCCGTA AAGCCGACCT GCGCCGCGAC
    ACGCCGTACA
    701   aCAccTAtac gggcgggggc ttgccgccaa cccggattgc
    gctgcccggC
    751   Aaggcggcaa tggatgccgc cgcccacccg tccggcgaAa
    aatacctgTa
    801   tttcgtgtcC AAAATGGACG GCACGGGCTT GAGCCAGTTC
    AGCCATGATT
    851   TGACCGAACA CAACGCCGCc gTcCGCAAAT ATATTTTGAA
    AAAATAA
  • This corresponds to the amino acid sequence <SEQ ID 38; ORF7ng-1>:
  • 1 ..YRIKIAKNQG ISSVGRKLAE DRIVFSRHVL TAAAYVLGVH
    NRLHTGTYRL
    51   PSEVSAWDIL QKMRGGRPDS VTVQIIEGSR FSHMRKVIDA
    TPDIGHDTKG
    101   WSNEKLMAEV APDAFSGNPE GQFFPDSYEI DAGGSDLQIY
    QTAYKAMQRR
    151   LNEAWAGRQD GLPYKNPYEM LIMASLIEKE TGHEADRDHV
    ASVFVNALKI
    201   GMRLQTDPSV IYGMGAAYKG KIRKADLRRD TPYNTYTGGG
    LPPTRIALPG
    251   KAAMDAAAHP SGEKYLYFVS KMDGTGLSQF SHDLTEHNAA
    VRKYILKK*
  • ORF7ng-1 and ORF7-1 show 98.0% identity in 298 aa overlap:
  • Figure US20130064846A1-20130314-C00018
  • In addition, ORF7ng-1 shows significant homology with a hypothetical E. coli protein:
  • sp|P28306|YCEG_ECOLI HYPOTHETICAL 38.2 KD PROTEIN IN PABC-HOLB
    INTERGENIC REGION gi|1787339 (AE000210) o340; 100% identical to fragment
    YCEG_ECOLI SW: P28306 but has 97 additional C-terminal residues
    [Escherichia coli] Length = 340
    Score = 79 (36.2 bits), Expect = 5.0e−57, Sum P(2) = 5.0e−57
    Identities = 20/87 (22%), Positives = 40/87 (45%)
    Query: 10 GISSVGRKLAEDRIVFSRHVLTAAAYVLGVHNRLHTGTYRLPSEVSAWDILQKMRGGRPD 69
    G  ++G +L  D+I+    V      +    +    GTYR   +++  ++L+ +  G+
    Sbjct: 49 GRLALGEQLYADKIINRPRVFQWLLRIEPDLSHFKAGTYRFTPQMTVREMLKLLESGKEA 108
    Query: 70 SVTVQIIEGSRFSHMRKVIDATPDIGH 96
       ++++EG R S   K +   P I H
    Sbjct: 109 QFPLRLVEGMRLSDYLKQLREAPYIKH 135
    Score = 438 (200.7 bits), Expect = 5.0e−57, Sum P(2) = 5.0e−57
    Identities = 84/155 (54%), Positives = 111/155 (71%)
    Query: 120 EGQFFPDSYEIDAGGSDLQIYQTAYKAMQRRLNEAWAGRQDGLPYKNPYEMLIMASLIEK 179
    EG F+PD++   A  +D+ + + A+K M + ++ AW GR DGLPYK+  +++ MAS+IEK
    Sbjct: 158 EGWFWPDTWMYTANTTDVALLKRAHKKMVKAVDSAWEGRADGLPYKDKNQLVTMASIIEK 217
    Query: 180 ETGHEADRDHVASVFVNRLKIGMRLQTDPSVIYGMGAAYKGKIRKADLRRDTPYNTYTGG 239
    ET   ++RD VASVF+NRL+IGMRLQTDP+VIYGMG  Y GK+ +ADL   T YNTYT
    Sbjct: 218 ETAVASERDKVASVFINRLRIGMRLQTDPTVIYGMGERYNGKLSRADLETPTAYNTYTIT 277
    Query: 240 GLPPTRIALPGKAAMDAAAHPSGEKYLYFVSKMDG 274
    GLPP  IA PG  ++ AAAHP+   YLYFV+   G
    Sbjct: 278 GLPPGAIATPGADSLKAAAHPAKTPYLYFVADGKG 312
  • Based on this analysis, including the fact that the H. influenzae YCEG protein possesses a possible leader sequence, it is predicted that the proteins from N. meningitidis and N. gonorrhoeae, and their epitopes, could be useful antigens for vaccines or diagnostics, or for raising antibodies.
  • Example 6
  • The following partial DNA sequence was identified in N. meningitidis <SEQ ID 39>:
  • 1 CGTTTCAAAA TGTTAACTGT GTTGACGGCA ACCTTGATTG
    CCGGACAGGT
    51 ATCTGCCGCC GGAGGCGGTG CGGGGGATAT GAAACAGCCG
    AAGGAAGTCG
    101 GAAAGGTTTT CAGAAAGCAG CAGCGTTACA GCGAGGAAGA
    AATCAAAAAC
    151 GAACGCGCAC GGCTTGCGGC AGTGGGCGAG CGGGTTAATC
    AGATATTTAC
    201 GTTGCTGGGA GGGGAAACCG CCTTGCAAAA GGGGCAGGCG
    GGAACGGCTC
    251 TGGCAACCTA TATGCTGATG TTGGAACGCA CAAAATCCCC
    CGAAGTCGCC
    301 GAACGCGCCT TGGAAATGGC CGTGTCGCTG AACGCGTTTG
    AACAGGCGGA
    351 AATGATTTAT CAGAAATGGC GGCAGATTGA GCCTATACCG
    GGTAAGGCGC
    401 AAAAACGGGC GGGGTGGCTG CGGAACGTGC TGAGGGAAAG
    AGGAAATCAG
    451 CATCTGGACG GACGGGAAGA AGTGCTGGCT CAGGCGGACG
    AAGGACAG
  • This corresponds to the amino acid sequence <SEQ ID 40; ORF9>:
  • 1 ..RFKMLTVLTA TLIAGQVSAA GGGAGDMKQP KEVGKVFRKQ
    QRYSEEEIKN
    51   ERARLAAVGE RVNQIFTLLG GETALQKGQA GTALATYMLM
    LERTKSPEVA
    101   ERALEMAVSL NAFEQAEMIY QKWRQIEPIP GKAQKRAGWL
    RNVLRERGNQ
    151   HLDGREEVLA QADEGQ
  • Further sequence analysis revealed the complete DNA sequence <SEQ ID 41>:
  • 1 ATGTTACCTA ACCGTTTCAA AATGTTAACT GTGTTGACGG
    CAACCTTGAT
    51 TGCCGGACAG GTATCTGCCG CCGGAGGCGG TGCGGGGGAT
    ATGAAACAGC
    101 CGAAGGAAGT CGGAAAGGTT TTCAGAAAGC AGCAGCGTTA
    CAGCGAGGAA
    151 GAAATCAAAA ACGAACGCGC ACGGCTTGCG GCAGTGGGCG
    AGCGGGTTAA
    201 TCAGATATTT ACGTTGCTGG GAGGGGAAAC CGCCTTGCAA
    AAGGGGCAGG
    251 CGGGAACGGC TCTGGCAACC TATATGCTGA TGTTGGAACG
    CACAAAATCC
    301 CCCGAAGTCG CCGAACGCGC CTTGGAAATG GCCGTGTCGC
    TGAACGCGTT
    351 TGAACAGGCG GAAATGATTT ATCAGAAATG GCGGCAGATT
    GAGCCTATAC
    101 CGGGTAAGGC GCAAAAACGG GCGGGGTGGC TGCGGAACGT
    GCTGAGGGAA
    451 AGAGGAAATC AGCATCTGGA CGGACTGGAA GAAGTGCTGG
    CTCAGGCGGA
    501 CGAAGGACAG AACCGCAGGG TGTTTTTATT GTTGGCACAA
    GCCGCCGTGC
    551 AACAGGACGG GTTGGCGCAA AAAGCATCGA AAGCGGTTCG
    CCGCGCGGCG
    601 TTGAAATATG AACATCTGCC CGAAGCGGCG GTTGCCGATG
    TGGTGTTCAG
    651 CGTACAGGGA CGCGAAAAGG AAAAGGCAAT CGGAGCTTTG
    CAGCGTTTGG
    701 CGAAGCTCGA TACGGAAATA TTGCCCCCCA CTTTAATGAC
    GTTGCGTCTG
    751 ACTGCACGCA AATATCCCGA AATACTCGAC GGCTTTTTCG
    AGCAGACAGA
    801 CACCCAAAAC CTTTCGGCCG TCTGGCAGGA AATGGAAATT
    ATGAATCTGG
    851 TTTCCCTGCA CAGGCTGGAT GATGCCTATG CGCGTTTGAA
    CGTGCTGTTG
    901 GAACGCAATC CGAATGCAGA CCTGTATATT CAGGCAGCGA
    TATTGGCGGC
    951 AAACCGAAAA GAAGGTGCTT CCGTTATCGA CGGCTACGCC
    GAAAAGGCAT
    1001 ACGGCAGGGG GACGGAGGAA CAGCGGAGCA GGGCGGCGCT
    AACGGCGGCG
    1051 ATGATGTATG CCGACCGCAG GGATTACGCC AAAGTCAGGC
    AGTGGCTGAA
    1101 AAAAGTATCC GCGCCGGAAT ACCTGTTCGA CAAAGGTGTG
    CTGGCGGCTG
    1151 CGGCGGCTGT CGAGTTGGAC GGCGGCAGGG CGGCTTTGCG
    GCAGATCGGC
    1201 AGGGTGCGGA AACTTCCCGA ACAGCAGGGG CGGTATTTTA
    CGGCAGACAA
    1251 TTTGTCCAAA ATACAGATGC TCGCCCTGTC GAAGCTGCCC
    GATAAACGGG
    1301 AGGCTTTGAG GGGGTTGGAC AAGATTATCG AAAAACCGCC
    TGCCGGCAGT
    1351 AATACAGAGT TACAGGCAGA GGCATTGGTA CAGCGGTCAG
    TTGTTTACGA
    1401 TCGGCTTGGC AAGCGGAAAA AAATGATTTC AGATCTTGAA
    AGGGCGTTCA
    1451 GGCTTGCACC CGATAACGCT CAGATTATGA ATAATCTGGG
    CTACAGCCTG
    1501 CTGACCGATT CCAAACGTTT GGACGAAGGT TTCGCCCTGC
    TTCAGACGGC
    1551 ATACCAAATC AACCCGGACG ATACCGCTGT CAACGACAGC
    ATAGGCTGGG
    1601 CGTATTACCT GAAAGGCGAC GCGGAAAGCG CGCTGCCGTA
    TCTGCGGTAT
    1651 TCGTTTGAAA ACGACCCCGA GCCCGAAGTT GCCGCCCATT
    TGGGCGAAGT
    1701 GTTGTGGGCA TTGGGCGAAC GCGATCAGGC GGTTGACGTA
    TGGACGCAGG
    1751 CGGCACACCT TACGGGAGAC AAGAAAATAT GGCGGGAAAC
    GCTCAAACGT
    1801 CACGGCATCG CATTGCCCCA ACCTTCCCGA AAACCTCGGA
    AATAA
  • This corresponds to the amino acid sequence <SEQ ID 42; ORF9-1>:
  • 1 MLPNRFKMLT VLTATLIAGQ VSAAGGGAGD MKQPKEVGKV
    FRKQQRYSEE
    51 EIKNERARLA AVGERVNQIF TLLGGETALQ KGQAGTALAT
    YMLMLERTKS
    101 PEVAERALEM AVSLNAFEQA EMIYQKWRQI EPIPGKAQKR
    AGWLRNVLRE
    151 RGNQHLDGLE EVLAQADEGQ NRRVFLLLAQ AAVQQDGLAQ
    KASKAVRRAA
    201 LKYEHLPEAA VADVVFSVQG REKEKAIGAL QRLAKLDTEI
    LPPTLMTLRL
    251 TARKYPEILD GFFEQTDTQN LSAVWQEMEI MNLVSLHRLD
    DAYARLNVLL
    301 ERNPNADLYI QAAILAANRK EGASVIDGYA EKAYGRGTEE
    QRSRAALTAA
    351 MMYADRRDYA KVRQWLKKVS APEYLFDKGV LAAAAAVELD
    GGRAALRQIG
    401 RVRKLPEQQG RYFTADNLSK IQMLALSKLP DKREALRGLD
    KIIEKPPAGS
    451 NTELQAEALV QRSVVYDRLG KRKKMISDLE RAFRLAPDNA
    QIMNNLGYSL
    501 LTDSKRLDEG FALLQTAYQI NPDDTAVNDS IGWAYYLKGD
    AESALPYLRY
    551 SFENDPEPEV AAHLGEVLWA LGERDQAVDV WTQAAHLTGD
    KKIWRETLKR
    601 HGIALPQPSR KPRK*
  • Computer analysis of this amino acid sequence gave the following results:
  • Homology with a Predicted ORF from N. meningitidis (Strain A)
  • ORF9 shows 89.8% identity over a 166aa overlap with an ORF (ORF9a) from strain A of N. meningitidis:
  • Figure US20130064846A1-20130314-C00019
  • The complete length ORF9a nucleotide sequence <SEQ ID 43> is:
  • 1 ATGTTACCCG CCCGTTTCAC CATTTTATCT GTGCTCGCGG
    CAGCCCTGCT
    51 TGCCGGGCAG GCGTATGCCG CCGGCGCGGC GGATGCGAAG
    CCGCCGAAGG
    101 AAGTCGGAAA GGTTTTCAGA AAGCAGCAGC GTTACAGCGA
    GGAAGAAATC
    151 AAAAACGAAC GCGCACGGCT TGCGGCAGTG GGCGAGCGGG
    TTAATCAGAT
    201 ATTTACGTTG CTGGGANGGG AAACCGCCTT GCAAAAGGGG
    CAGGCGGGAA
    251 CGGCTCTGGC AACCTATATG CTGATGTTGG AACGCACAAA
    ATCCCCCGAA
    301 GTCGCCGAAC GCGCCTTGGA AATGGCCGTG TCNCTGAACG
    CGTTTGAACA
    351 GGCGGAAATG ATTTATCAGA AATGGCGGCA GATTGAGCCT
    ATACCGGGTA
    401 AGGCGCAAAA ACGGGCGGGG TGGCTGCGGA ACGTGCTGAG
    GGAAAGAGGA
    451 AATCAGCATC TAGACGGACT GGAAGAANTG CTGGCTCAGG
    CGGACGAANG
    501 ACAGAACCGC AGGGTGTTTT TATTGTTGGC ACAAGCCGCC
    GTGCAACAGG
    551 ACGGGTTGGC GCAAAAAGCA TCGAAAGCGG TTCGCCGCGC
    GGCGTTGAGA
    601 TATGAACATC TGCCCGAAGC GGCGGTTGCC GATGTGGTGT
    TCAGCGTACA
    651 GGNACGCGAA AAGGAAAAGG CAATCGGAGC TTTGCAGCGT
    TTGGCGAAGC
    701 TCGATACGGA AATATTGCCC CCCACTTTAA TGACGTTGCG
    TCTGACTGCA
    751 CGCAAATATC CCGAAATACT CGACGGCTTT TTCGAGCAGA
    CAGACACCCA
    801 AAACCTTTCG GCCGTCTGGC AGGAAATGGA AATTATGAAT
    CTGGTTTCCC
    851 TGCACAGGCT GGATGATGCC TATGCGCGTT TGAACGTGCT
    GTTGGAACGC
    901 AATCCGAATG CAGACCTGTA TATTCAGGCA GCGATATTGG
    CGGCAAACCG
    951 AAAAGAANGT GCTTCCGTTA TCGACGGCTA CGCCGAAAAG
    GCATACGGCA
    1001 GGGGGACGGG GGAACAGCGG GGCAGGGCGG CAATGACGGC
    GGCGATGATA
    1051 TATGCCGACC GAAGGGATTA CACCAAAGTC AGGCAGTGGT
    TGAAAAAAGT
    1101 GTCCGCGCCG GAATACCTGT TCGACAAAGG TGTGCTGGCG
    GCTGCGGCGG
    1151 CTGTCGAGTT GGACNGCGGC AGGGCGGCTT TGCGGCAGAT
    CGGCAGGGTG
    1201 CGGAAACTTC CCGAACAGCA GGGGCGGTAT TTTACGGCAG
    ACAATTTGTC
    1251 CAAAATACAG ATGTTCGCCC TGTCGAAGCT GCCCGACAAA
    CGGGAGGCTT
    1301 TGAGGGGGTT GGACAAGATT ATCGAAAAAC CGCCTGCCGG
    CAGTAATACA
    1351 GAGTTACAGG CAGAGGCATT GGTACAGCGG TCAGTTGTTT
    ACGATCGGCT
    1401 TGGCAAGCGG AAAAAAATGA TTTCAGATCT TGAAAGGGCG
    TTCAGGCTTG
    1451 CACCCGATAA CGCTCAGATT ATGAATAATC TGGGCTACAG
    CCTGCTTTCC
    1501 GATTCCAAAC GTTTGGACGA AGGCTTCGCC CTGCTTCAGA
    CGGCATACCA
    1551 AATCAACCCG GACGATACCG CTGTCAACGA CAGCATAGGC
    TGGGCGTATT
    1601 ACCTGAAANG CGACGCGGAA AGCGCGCTGC CGTATCTGCG
    GTATTCGTTT
    1651 GAAAACGACC CCGAGCCCGA AGTTGCCGCC CATTTGGGCG
    AAGTGTTGTG
    1701 GGCATTGGGC GAACGCGATC AGGCGGTTGA CGTATGGACG
    CAGGCGGCAC
    1751 ACCTTACGGG AGACAAGAAA ATATGGCGGG AAACGCTCAA
    ACGTCACGGC
    1801 ATCGCATTGC CCCAACCTTC CCGAAAACCT CGGAAATAA
  • This encodes a protein having amino acid sequence <SEQ ID 44>:
  • 1 MLPARFTILS VLAAALLAGQ AYAAGAADAK PPKEVGKVFR
    KQQRYSEEEI
    51 KNERARLAAV GERVNQIFTL LGXETALQKG QAGTALATYM
    LMLERTKSPE
    101 VAERALEMAV SLNAFEQAEM IYQKWRQIEP IPGKAQKRAG
    WLRNVLRERG
    151 NQHLDGLEEX LAQADEXQNR RVFLLLAQAA VQQDGLAQKA
    SKAVRRAALR
    201 YEHLPEAAVA DVVFSVQXRE KEKAIGALQR LAKLDTEILP
    PTLMTLRLTA
    251 RKYPEILDGF FEQTDTQNLS AVWQEMEIMN LVSLHRLDDA
    YARLNVLLER
    301 NPNADLYIQA AILAANRKEX ASVIDGYAEK AYGRGTGEQR
    GRAAMTAAMI
    351 YADRRDYTKV RQWLKKVSAP EYLFDKGVLA AAAAVELDXG
    RAALRQIGRV
    401 RKLPEQQGRY FTADNLSKIQ MFALSKLPDK REALRGLDKI
    IEKPPAGSNT
    451 ELQAEALVQR SVVYDRLGKR KKMISDLERA FRLAPDNAQI
    MNNLGYSLLS
    501 DSKRLDEGFA LLQTAYQINP DDTAVNDSIG WAYYLKXDAE
    SALPYLRYSF
    551 ENDPEPEVAA HLGEVLWALG ERDQAVDVWT QAAHLTGDKK
    IWRETLKRHG
    601 IALPQPSRKP RK*
  • ORF9a and ORF9-1 show 95.3% identity in 614 aa overlap:
  • Figure US20130064846A1-20130314-C00020
  • Homology with a Predicted ORF from N. gonorrhoeae
  • ORF9 shows 82.8% identity over a 163aa overlap with a predicted ORF (ORF9.ng) from N. gonorrhoeae:
  • Figure US20130064846A1-20130314-C00021
  • The ORF9ng nucleotide sequence <SEQ ID 45> was predicted to encode a protein having including acid sequence <SEQ ID 46>:
  • 1 MIMLPARFTI LSVLAAALLA GQAYAAGAAD VELPKEVGKV
    LRKHRRYSEE
    51 EIKNERARLA AVGERVNRVF TLLGGETALQ KGQAGTALAT
    YMLMLERTKS
    101 PEVAERALEM AVSLNAFEQA EMIYQKWRQI EPIPGEAQKP
    AGWLRNVLKE
    151 GGNPHLDRLE EVPAQSDYVH QPMIFLLLVQ AAVQHGGVAQ
    KPSKAVRPAA
    201 YNYEVLPETA GADAVFCVQG PQYEKAIQSF PPCGRNPQTE
    NIAPPFNELF
    251 RPTARPISPK LLQRFFRTEP NLAKPFRPPG PEMETYQTGF
    PRPLTRNNPT
  • Amino acids 1-28 are a putative leader sequence, and 173-189 are predicted to be a transmembrane domain.
  • Further sequence analysis revealed the complete length ORF9ng DNA sequence <SEQ ID 47>:
  • 1 ATGTTACCCG CCCGTTTCAC TATTTTATCT GTCCTCGCAG
    CAGCCCTGCT
    51 TGCCGGACAG GCGTATGCTG CCGGCGCGGC GGATGTGGAG
    CTGCCGAAGG
    101 AAGTCGGAAA GGTTTTAAGG AAACATCGGC GTTACAGCGA
    GGAAGAAATC
    151 AAAAACGAAC GCGCACGGCT TGCGGCAGTG GGCGAACGGG
    TCAACAGGGT
    201 GTTTACGCTG TTGGGCGGTG AAACGGCTTT GCAGAAAGGG
    CAGGCGGGAA
    251 CGGCTCTGGC AACCTATATG CTGATGTTGG AACGCACAAA
    ATCCCCCGAA
    301 GTCGCCGAAC GCGCCTTGGA AATGGCCGTG TCGCTGAACG
    CGTTTGAACA
    351 GGCGGAAATG ATTTATCAGA AATGgcggca gatcgagcct
    ataCcgggtg
    401 aggcgcaaaa accgGcgggG tggctgcgga acgtattgaa
    ggaagggGGa
    451 aaTCAGCATC TGGAcgggtt gaaagaggTG CtggcgcaAT
    cggacgatGT
    501 GCAAAAAcgc aggaTATTTT TGCTGCTGGT GCAAGCCGCC
    GTGCagcagg
    551 gTGGGGTGGC TCAAAAAGCA TCGAAAGCGG TTCGCcgtgc
    GGcgttgaAG
    601 TATGAACATC TGCCcgaagc ggcggTTGCC GATGcggTGT
    TCGGCGTACA
    651 GGGACGCGAA AAGGAAAagg caaTCGAAGC TTTGCAGCGT
    TTGGCGAAGC
    701 TCGATACGGA AATATTGCCC CCCACTTTAA TGACGTTGCG
    TCTGACTGCA
    751 CGCAAATATC CCGAAATACT CGACGGCTTT TTCGAGCAGA
    CAGACACCCA
    801 AAACCTTTCG GCCGTCTGGC AGGAAATGGA AATTATGAAT
    CTGGTTTCCC
    851 TGCGTAAGCC GGATGATGCC TATGCGCGTT TGAACGTGCT
    GTTGGAACAC
    901 AACCCGAATG CAAACCTGTA TATTCAGGCG GCGATATTGG
    CGGCAAACCG
    951 AAAAGAAGGT GCGTCCGTTA TCGACGGCTA CGCCGAAAAG
    GCATACGGCA
    1001 GGGGGACGGG GGAACAGCGG GGCagggcgg cAATgacggc
    GGCGATGATA
    1051 TATGCCGACC GCAGGGATTA CGCCAAAGTC AGGCAGTGGT
    TGAAAAAAGT
    1101 GTCCGCGCCG GAATACCTGT TCGACAAAGG CGTGCTGGCG
    GCTGCGGCGG
    1151 CTGCCGAATT GGACGGAGGC CGGGCGGCTT TGCGGCAGAT
    CGGCAGGGTG
    1201 CGGAAACTTC CCGAACAGCA GGGGCGGTAT TTTACGGCAG
    ACAATTTGTC
    1251 CAAAATACAG ATGCTCGCCC TGTCGAAGCT GCCCGACAAA
    CGGGAAGCCC
    1301 TGATCGGGCT GAACAACATC ATCGCCAAAC TTTCGGCGGC
    GGGAAGCACG
    1351 GAACCTTTGG CGGAAGCATT GGCACAGCGT TCCATTATTT
    ACGaacAGTT
    1401 cggCAAACGG GGAAAAATGA TTGCCGACCT tgaAACcgcg
    CTCAAACTTA
    1451 CGCCCGATAA TGCACAAATT ATGAATAATC TGGGCTACAG
    CCTGCTTTCC
    1501 GATTCCAAAC GTTTGGACGA GGGTTTCGCC CTGCTTCAGA
    CGGCATACCA
    1551 AATCAACCCG GACGATACCG CCGTTAACGA CAGCATAGGC
    TGGGCGTATT
    1601 ACCTGAAAGG CGACgcggaA AGCGCGCTGC CGTATCTGcg
    gtattcgttt
    1651 gAAAACGACC CCGAGCCCGA AGTTGCCGCC CATTTGGGCG
    AAGTGTTGTG
    1701 GGCATTGGGC GAACGCGATC AGGCGGTTGA CGTATGGACG
    CAGGCGGCAC
    1751 ACCTTAGGGG AGACAAGAAA ATATGGCGGG AGACGCTCAA
    ACGCTACGGA
    1801 ATCGCCTTGC CCGAGCCTTC CCGAAAACCC CGGAAATAA
  • This encodes a protein having amino acid sequence <SEQ ID 48>:
  • 1 MLPARFTILS VLAAALLAGQ AYAAGAADVE LPKEVGKVLR
    KHRRYSEEEI
    51 KNERARLAAV GERVNRVFTL LGGETALQKG QAGTALATYM
    LMLERTKSPE
    101 VAERALEMAV SLNAFEQAEM IYQKWRQIEP IPGEAQKPAG
    WLRNVLKEGG
    151 NQHLDGLKEV LAQSDDVQKR RIFLLLVQAA VQQGGVAQKA
    SKAVRRAALK
    201 YEHLPEAAVA DAVFGVQGRE KEKAIEALQR LAKLDTEILP
    PTLMTLRLTA
    251 RKYPEILDGF FEQTDTQNLS AVWQEMEIMN LVSLRKPDDA
    YARLNVLLEH
    301 NPNANLYIQA AILAANRKEG ASVIDGYAEK AYGRGTGEQR
    GRAAMTAAMI
    351 YADRRDYAKV RQWLKKVSAP EYLFDKGVLA AAAAAELDGG
    RAALRQIGRV
    401 RKLPEQQGRY FTADNLSKIQ MLALSKLPDK REALIGLNNI
    IAKLSAAGST
    451 EPLAEALAQR SIIYEQFGKR GKMIADLETA LKLTPDNAQI
    MNNLGYSLLS
    501 DSKRLDEGFA LLQTAYQINP DDTAVNDSIG WAYYLKGDAE
    SALPYLRYSF
    551 ENDPEPEVAA HLGEVLWALG ERDQAVDVWT QAAHLRGDKK
    IWRETLKRYG
    601 IALPEPSRKP RK*
  • ORF9ng and ORF9-1 show 88.1% identity in 614 aa overlap:
  • Figure US20130064846A1-20130314-C00022
    Figure US20130064846A1-20130314-C00023
  • In addition, ORF9ng shows significant homology with a hypothetical protein from P. aeruginosa:
  • sp|P42810|YHE3_PSEAE HYPOTHETICAL 64.8 KD PROTEIN IN HEMM-HEMA INTERGENIC
    REGION (ORF3)
    >gi|1072999|pir||S49376 hypothetical protein 3 - Pseudomonas aeruginosa
    >gi|557259 (X82071) orf3 [Pseudomonas aeruginosa] Length = 576
    Score = 128 bits (318), Expect = 1e−28
    Identities = 138/587 (23%), Positives = 228/587 (38%), Gaps = 125/587 (21%)
    Query: 67 VFTLLGGETALQKGQAGTALATYMLMLERTKSPEVAERALEMAVSLNAFEQAEMIYQKWR 126
    +++LL  E A Q+ +   AL+ Y++  ++T+ P V+ERA  +A  L A ++A      W
    Sbjct: 53 LYSLLVAELAGQRNRFDIALSNYVVQAQKTRDPGVSERAFRIAEYLGADQEALDTSLLWA 112
    Query: 127 QIEPIPGEAQKPAG--------------WLRNVLKEGGNQHLDGLKEVLAQSDDVQKRRI 172
    +  P   +AQ+ A               ++  VL   G+ H D L    A++D   +  +
    Sbjct: 113 RSAPDNLDAQRAAAIQLARAGRYEESMVYMEKVLNGQGDTHFDFLALSAAETDPDTRAGL 172
    Query: 173 FXXXXXXXXXXXXXXXKASKAVRRAALKYEHLPEAAVADAVFGVQGREKEKAIEALQRLA 232
                       ++      KY +  +     A+   Q    ++A+  L+  +
    Sbjct: 173 L------------------QSFDHLLKKYPNNGQLLFGKALLLQQDGRPDEALTLLEDNS 214
    Query: 233 KLDTEILPPTLMTLRLTARK-----YPEILDGFFEQTDTQNLSAVWQEMEIMNLVSLRKP 287
        E+ P  L +  L + K      P +  G  E  D + +   +  +    LV   +
    Sbjct: 215 ASRHEVAPLLLRSRLLQSMKRSDEALPLLKAGIKEHPDDKRVRLAYARL----LVEQNRL 270
    Query: 288 DDAYARLNVLLEHNPN---------------------ANLYIQAAI-------------- 312
    DDA A    L++  P+                     A +Y++  +
    Sbjct: 271 DDAKAEFAGLVQQFPDDDDDLRFSLALVCLEAQAWDEARIYLEELVERDSHVDAAHFNLG 330
    Query: 313 -LAANRKEGASVIDGYAEKAYGRGTGEQRGRAAMTAAMIYADRRDYAKVRQWLKKVSAPE 371
     LA  +K+ A  +D YA+   G G      +   T  ++ A R D A  R    +   P+
    Sbjct: 331 RLAEEQKDTARALDEYAQ--VGPGNDFLPAQLRQTDVLLKAGRVDEAAQRLDKARSEQPD 388
    Query: 372 YLFDKXXXXXXXXXXXXXXXXXXRQIGRVRKLPEQQGRYFTADNLSKIQMLALSKLPDKR 431
    Y                                        A  L  I+  ALS    +
    Sbjct: 389 Y----------------------------------------AIQLYLIEAEALSNNDQQE 408
    Query: 432 EALIGLNNIIAKLSAAGSTEPLAEALAQRSIIYEQFGKRGKMIADLETALKLTPDNAQIM 491
    +A   +   + +       E L   L  RS++ E+     +M  DL   +   PDNA  +
    Sbjct: 409 KAWQAIQEGLKQYP-----EDL-NLLYTRSMLAEKRNDLAQMEKDLRFVIAREPDNAMAL 462
    Query: 492 NNLGYSLLSDSKRLDEGFALLQTAYQINPDDTAVNDSIGWAYYLKGDAESALPYLRYSFE 551
    N LGY+L   + R  E   L+  A+++NPDD A+ DS+GW  Y +G    A  YLR + +
    Sbjct: 463 NALGYTLADRTTRYGEARELILKAHKLNPDDPAILDSMGWINYRQGKLADAERYLRQALQ 522
    Query: 552 NDPEPEVAAHLGEVLWALGERDQAVDVWTQAAHLRGDKKIWRETLKR 598
      P+ EVAAHLGEVLWA G +  A  +W +    + D  + R T+KR
    Sbjct: 523 RYPDHEVAAHLGEVLWAQGRQGDARAIWREYLDKQPDSDVLRRTIKR 569
    gi|2983399 (AE000710) hypothetical protein [Aquifex aeolicus] Length = 545
    Score = 81.5 bits (198), Expect = 1e−14
    Identities = 61/198 (30%), Positives = 98/198 (48%), Gaps = 19/198 (9%)
    Query: 408 GRYFTADNL-SKIQMLALSKLPDKREALIGLNNIIAKLSAAGSTEPLAEALAQ------- 459
    G Y  A  L  K ++LA    PDK+E L    +  +K         + + L +
    Sbjct: 335 GNYEDAKRLIEKAKVLA----PDKKEILFLEADYYSKTKQYDKALEILKKLEKDYPNDSR 390
    Query: 460 ----RSIIYEQFGKRGKMIADLETALKLTPDNAQIMNNLGYSLLS--DSKRLDEGFALLQ 513
         +I+Y+  G        L  A++L P+N    N LGYSLL     +R++E   L++
    Sbjct: 391 VYFMEAIVYDNLGDIKNAEKALRKAIELDPENPDYYNYLGYSLLLWYGKERVEEAEELIK 450
    Query: 514 TAYQINPDDTAVNDSIGWAYYLKGDAESALPYLRYSF-ENDPEPEVAAHLGEVLWALGER 572
     A + +P++ A  DS+GW YYLKGD E A+ YL  +  E   +P V  H+G+VL  +G +
    Sbjct: 451 KALEKDPENPAYIDSMGWVYYLKGDYERAMQYLLKALREAYDDPVVNEHVGDVLLKMGYK 510
    Query: 573 DQAVDVWTQAAHLRGDKK 590
    ++A + + +A  L  + K
    Sbjct: 511 EEARNYYERALKLLEEGK 528
  • Based on this analysis, it is predicted that the proteins from N. meningitidis and N. gonorrhoeae, and their epitopes, could be useful antigens for vaccines or diagnostics, or for raising antibodies.
  • Example 7
  • The following partial DNA sequence was identified in N. meningitidis <SEQ ID 49>:
  • 1 AACCTCTACG CCGGCCCGCA GACCACATCC GTCATCGCAA
    ACATCGCCGA
    51 CAACCTGCAA CTGGCCAAAG ACTACGGCAA AGTACACTGG
    TTCGCCTCCC
    101 CGCTCTTCTG GCTCCTGAAC CAACTGCACA ACATCATCGG
    CAACTGGGGC
    151 TGGGCGATTA TCGTTTTAAC CATCATCGTC AAAGCCGTAC
    TGTATCCATT
    201 GACCAACGCC TCTTACCGCT CTATGGCGAA AATGCGTGCC
    GCCGCACCCA
    251 AACTGCAAGC CATCAAAGAG AAATACGGCG ACGACCGTAT
    GGCGCAACAA
    301 CAGGCGATGA TGCAGCTTTA CACAGACGAG AAAATCAACC
    CGaCTGGGCG
    351 GCTGCCTGCC TATGCTGTTG CAAATCCCCG TCTTCATCGG
    ATTGTATTGG
    401 GCATTGTTCG CCTCCGTAGA ATTGCGCCAG GCACCTTGGC
    TGGGTTGGAT
    451 TACCGACCTC AGCCGCGCCG ACCCCTACTA CATCCTGCCC
    ATCATTATGG
    501 CGGCAACGAT GTTCGCCCAA ACTTATCTGA ACCCGCCGCC
    GAcCGACCCG
    551 ATGCagGCGA AAATGATGAA AATCATGCCG TTGGTTTTCT
    CsGwCrTGTT
    601 CTTCTTCTTC CCTGCCGGks TGGTATTGTA CTGGGTAGTC
    AACAACCTCC
    651 TGACCATCGC CCAGCAATGG CACATCAACC GCAGCATCGA
    AAAACAACGC
    701 GCCCAAGGCG AAGTCGTTTC CTAA
  • This corresponds to the amino acid sequence <SEQ ID 50; ORF11>:
  • 1 ..NLYAGPQTTS VIANIADNLQ LAKDYGKVHW FASPLFWLLN
    QLHNIIGNWG
    51   WAIIVLTIIV KAVLYPLTNA SYRSMAKMRA AAPKLQAIKE
    KYGDDRMAQQ
    101   QAMMQLYTDE KINPLGGCLP MLLQIPVFIG LYWALFASVE
    LRQAPWLGWI
    151   TDLSRADPYY ILPIIMAATM FAQTYLNPPP TDPMQAKMMK
    IMPLVFSXXF
    201   FFFPAGXVLY WVVNNLLTIA QQWHINRSIE KQRAQGEVVS *
  • Further sequence analysis revealed the complete DNA sequence <SEQ ID 51>:
  • 1 ATGGATTTTA AAAGACTCAC GGCGTTTTTC GCCATCGCGC
    TGGTGATTAT
    51 GATCGGCTGG GAAAAGATGT TCCCCACTCC GAAGCCAGTC
    CCCGCGCCCC
    101 AACAGGCAGC ACAACAACAG GCCGTAACCG CTTCCGCCGA
    AGCCGCGCTC
    151 GCGCCCGCAA CGCCGATTAC CGTAACGACC GACACGGTTC
    AAGCCGTCAT
    201 TGATGAAAAA AGCGGCGACC TGCGCCGGCT GACCCTGCTC
    AAATACAAAG
    251 CAACCGGCGA CGAAAATAAA CCGTTCATCC TGTTTGGCGA
    CGGCAAAGAA
    301 TACACCTACG TCGCCCAATC CGAACTTTTG GACGCGCAGG
    GCAACAACAT
    351 TCTAAAAGGC ATCGGCTTTA GCGCACCGAA AAAACAGTAC
    AGCTTGGAAG
    401 GCGACAAAGT TGAAGTCCGC CTGAGCGCGC CTGAAACACG
    CGGTCTGAAA
    451 ATCGACAAAG TTTATACTTT CACCAAAGGC AGCTATCTGG
    TCAACGTCCG
    501 CTTCGACATC GCCAACGGCA GCGGTCAAAC CGCCAACCTG
    AGCGCGGACT
    551 ACCGCATCGT CCGCGACCAC AGCGAACCCG AGGGTCAAGG
    TTACTTTACC
    601 CACTCTTACG TCGGCCCTGT TGTTTATACC CCTGAAGGCA
    ACTTCCAAAA
    651 AGTCAGCTTT TCCGACTTGG ACGACGATGC CAAATCCGGC
    AAATCCGAGG
    701 CCGAATACAT CCGCAAAACC CCGACCGGCT GGCTCGGCAT
    GATTGAACAC
    751 CACTTCATGT CCACCTGGAT TCTCCAACCT AAAGGCAGAC
    AAAGCGTTTG
    801 CGCCGCAGGC GAGTGCAACA TCGACATCAA ACGCCGCAAC
    GACAAGCTGT
    851 ACAGCACCAG CGTCAGCGTG CCTTTAGCCG CCATCCAAAA
    CGGCGCGAAA
    901 GCCGAAGCCT CCATCAACCT CTACGCCGGC CCGCAGACCA
    CATCCGTCAT
    951 CGCAAACATC GCCGACAACC TGCAACTGGC CAAAGACTAC
    GGCAAAGTAC
    1001 ACTGGTTCGC CTCCCCGCTC TTCTGGCTCC TGAACCAACT
    GCACAACATC
    1051 ATCGGCAACT GGGGCTGGGC GATTATCGTT TTAACCATCA
    TCGTCAAAGC
    1101 CGTACTGTAT CCATTGACCA ACGCCTCTTA CCGCTCTATG
    GCGAAAATGC
    1151 GTGCCGCCGC ACCCAAACTG CAAGCCATCA AAGAGAAATA
    CGGCGACGAC
    1201 CGTATGGCGC AACAACAGGC GATGATGCAG CTTTACACAG
    ACGAGAAAAT
    1251 CAACCCGCTG GGCGGCTGCC TGCCTATGCT GTTGCAAATC
    CCCGTCTTCA
    1301 TCGGATTGTA TTGGGCATTG TTCGCCTCCG TAGAATTGCG
    CCAGGCACCT
    1351 TGGCTGGGTT GGATTACCGA CCTCAGCCGC GCCGACCCCT
    ACTACATCCT
    1401 GCCCATCATT ATGGCGGCAA CGATGTTCGC CCAAACTTAT
    CTGAACCCGC
    1451 CGCCGACCGA CCCGATGCAG GCGAAAATGA TGAAAATCAT
    GCCGTTGGTT
    1501 TTCTCCGTCA TGTTCTTCTT CTTCCCTGCC GGTCTGGTAT
    TGTACTGGGT
    1551 AGTCAACAAC CTCCTGACCA TCGCCCAGCA ATGGCACATC
    AACCGCAGCA
    1601 TCGAAAAACA ACGCGCCCAA GGCGAAGTCG TTTCCTAA
  • This corresponds to the amino acid sequence <SEQ ID 52; ORF11-1>:
  • 1 MDFKRLTAFF AIALVIMIGW EKMFPTPKPV PAPQQAAQQQ
    AVTASAEAAL
    51 APATPITVTT DTVQAVIDEK SGDLRRLTLL KYKATGDENK
    PFILFGDGKE
    101 YTYVAQSELL DAQGNNILKG IGFSAPKKQY SLEGDKVEVR
    LSAPETRGLK
    151 IDKVYTFTKG SYLVNVRFDI ANGSGQTANL SADYRIVRDH
    SEPEGQGYFT
    201 HSYVGPVVYT PEGNFQKVSF SDLDDDAKSG KSEAEYIRKT
    PTGWLGMIEH
    251 HFMSTWILQP KGRQSVCAAG ECNIDIKRRN DKLYSTSVSV
    PLAAIQNGAK
    301 AEASINLYAG PQTTSVIANI ADNLQLAKDY GKVHWFASPL
    FWLLNQLHNI
    351 IGNWGWAIIV LTIIVKAVLY PLTNASYRSM AKMRAAAPKL
    QAIKEKYGDD
    401 RMAQQQAMMQ LYTDEKINPL GGCLPMLLQI PVFIGLYWAL
    FASVELRQAP
    451 WLGWITDLSR ADPYYILPII MAATMFAQTY LNPPPTDPMQ
    AKMMKIMPLV
    501 FSVMFFFFPA GLVLYWVVNN LLTIAQQWHI NRSIEKQRAQ
    GEVVS*
  • Computer analysis of this amino acid sequence gave the following results:
  • Homology with a 60 kDa Inner-Membrane Protein (Accession P25754) of Pseudomonas putida
  • ORF11 and the 60 kDa protein show 58% aa identity in 229 aa overlap (BLASTp).
  • ORF11 2 LYAGPQTTSVIANIADNLQLAKDYGKVHWFASPLFWLLNQLHNIIGNWGWAIIVLTIIVK 61
    LYAGP+  S +  ++  L+L  DYG + + A P+FWLL  +H+++GNWGW+IIVLT+++K
    60K 324 LYAGPKIQSKLKELSPGLELTVDYGFLWFIAQPIFWLLQHIHSLLGNWGWSIIVLTMLIK 383
    ORF11 62 AVLYPLTNASYRSMAKMRAAAPKLQAIKEKYGDDRXXXXXXXXXLYTDEKINPLGGCLPM 121
     + +PL+ ASYRSMA+MRA APKL A+KE++GDDR         LY  EKINPLGGCLP+
    60K 384 GLFFPLSAASYRSMARMRAVAPKLAALKERFGDDRQKMSQAMMELYKKEKINPLGGCLPI 443
    ORF11 122 LLQIPVFIGLYWALFASVELRQAPWLGWITDLSRADPYYILPIIMAATMFAQTYLNPPPT 181
    L+Q+PVF+ LYW L  SVE+RQAPW+ WITDLS  DP++ILPIIM ATMF Q  LNP P
    60K 444 LVQMPVFLALYWVLLESVEMRQAPWILWITDLSIKDPFFILPIIMGATMFIQQRLNPTPP 503
    ORF11 182 DPMQAKMMKIMPLVXXXXXXXXPAGXVLYWVVNNLLTIAQQWHINRSIE 230
    DPMQAK+MK+MP++        PAG VLYWVVNN L+I+QQW+I R IE
    60K 504 DPMQAKVMKMMPIIFTFFFLWFPAGLVLYWVVNNCLSISQQWYITRRIE 552

    Homology with a Predicted ORF from N. meningitidis (Strain A)
  • ORF 11 shows 97.9% identity over a 240aa overlap with an ORF (ORF11a) from strain A of N. meningitidis:
  • Figure US20130064846A1-20130314-C00024
  • The complete length ORF11a nucleotide sequence <SEQ ID 53> is:
  • ANGGATTTTA AAAGACTCAC NGNGTTTTTC GCCATCGCAC
    TGGTGATTAT
    51 GATCGGATNG NAAANGATGT TCCCCACTCC GAAGCCCGTC
    CCCGCGCCCC
    101 AACAGACGGC ACAACAACAG GCCGTAANCG CTTCCGCCGA
    AGCCGCGCTC
    151 GCGCCCGNAN CGCCGATTAC CGTAACGACC GACACGGTTC
    AAGCCGTCAT
    201 TGATGAAAAA AGCGGCGACC TGCGCCGGCT GACCCTGCTC
    AAATACAAAG
    251 CAACCGGCGA CNAAAATAAA CCGTTCATCC TGTTTGGCGA
    CGGCAAANAA
    301 TACACCTACN TCGCCCANTC CGAACTTTTG GACGCGCAGG
    GCAACAACAT
    351 TCTAAAAGGC ATCGGCTTTA GCGCACCGAA AAAACAGTAC
    AGCTTGGAAG
    401 GCGACAAAGT TGAAGTCCGC CTGAGCGCAC CTGAAACACG
    CGGTCTGAAA
    451 ATCGACAAAG TTTATACTTT CACCAAAGGC AGCTATCTGG
    TCAACGTCCG
    501 CTTCGACATC GCCAACGGCA GCGGTCAAAC CGCCAACCTG
    AGCGCGGACT
    551 ACCGCATCGT CCGCGACCAC AGCGAACCCG AGGGTCAAGG
    CTACTTTACC
    601 CACTCTTACG TCGGCCCTGT TGTTTATACC CCTGAAGGCA
    ACTTCCAAAA
    651 AGTCAGCTTC TCCGACTTGG ACGACGATGC CAANTCCGGN
    AAATCCGAGG
    701 CCGAATACAT CCGCAAAACC CNGACCGGCT GGCTCGGCAT
    GATTGAACAC
    751 CACTTCATGT CCACCTGGAT CCTCCAACCC AAAGGCGGAC
    AAAGCGTTTG
    801 CGCCGCTGGC GACTGCNGTA TNGACATCAA ACGCCGCAAC
    GACAAGCTGT
    851 ACAGCACCAG CGTCAGCGTG CCTTTAGCCG CTATCCAAAA
    CGGTGCGAAA
    901 TCCNAAGCCT CCATCAACCT CTACGCCGGC CCACAGACCA
    CATCNGTTAT
    951 CGCAAACATC GCCGACAACC TGCAACTGGN CAAAGACTAC
    GGCAAAGTAC
    1001 ACTGGTTCGC CTCCCCCCTC TTTTGGCTTT TGAACCAACT
    GCACAACATC
    1051 ATCGGCAACT GGGGCTGGGC GATTATCGTT TTAACCATCA
    TCGTCAAAGC
    1101 CGTACTGTAT CCATTGACCA ACGCCTCTTA CCGTTCGATG
    GCGAAAATGC
    1151 GTGCCGCCGC GCCCAAACTG CAAGCCATCA AAGAGAAATA
    CGGCGACGAC
    1201 CGTATGGCGC AGCAACAAGC CATGATGCAG CTTTACACAG
    ACGAGAAAAT
    1251 CAACCCGCTG GGCGGCTGCC TGCCTATGCT GTTGCAAATC
    CCCGTCTTCA
    1301 TCGGATTGTA TTGGGCATTG TTCGCCTCCG TAGAATTGCG
    CCAGGCACCT
    1351 TGGCTGGGTT GGATTACCGA CCTCAGCCGC GCCGACCCNT
    ACTACATCCT
    1401 GCCCATCATT ATGGCGGCAA CGATGTTCGC CCAAACCTAT
    CTGAACCCGC
    1451 CGCCGACCGA CCCGATGCAG GCGAAAATGA TGAAAATCAT
    GCCTTTGGTT
    1501 NTNTCNNNNA NGTTCTTCNN CTTCCCTGCC GGTCTGGTAT
    TGTACTGGGT
    1551 GATCAACAAC CTCCTGACCA TCGCCCAGCA ATGGCACATC
    AACCGCAGCA
    1601 TCGAAAAACA ACGCGCCCAA GGCGAAGTCG TTTCCTAA
  • This encodes a protein having amino acid sequence <SEQ ID 54>:
  • 1 XDFKRLTXFF AIALVIMIGX XXMFPTPKPV PAPQQTAQQQ
    AVXASAEAAL
    51 APXXPITVTT DTVQAVIDEK SGDLRRLTLL KYKATGDXNK
    PFILFGDGKX
    101 YTYXAXSELL DAQGNNILKG IGFSAPKKQY SLEGDKVEVR
    LSAPETRGLK
    151 IDKVYTFTKG SYLVNVRFDI ANGSGQTANL SADYRIVRDH
    SEPEGQGYFT
    201 HSYVGPVVYT PEGNFQKVSF SDLDDDAXSG KSEAEYIRKT
    XTGWLGMIEH
    251 HFMSTWILQP KGGQSVCAAG DCXXDIKRRN DKLYSTSVSV
    PLAAIQNGAK
    301 SXASINLYAG PQTTSVIANI ADNLQLXKDY GKVHWFASPL
    FWLLNQLHNI
    351 IGNWGWAIIV LTIIVKAVLY PLTNASYRSM AKMRAAAPKL
    QAIKEKYGDD
    401 RMAQQQAMMQ LYTDEKINPL GGCLPMLLQI PVFIGLYWAL
    FASVELRQAP
    451 WLGWITDLSR ADPYYILPII MAATMFAQTY LNPPPTDPMQ
    AKMMKIMPLV
    501 XSXXFFXFPA GLVLYWVINN LLTIAQQWHI NRSIEKQRAQ
    GEVVS*
  • ORF11a and ORF11-1 show 95.2% identity in 544 aa overlap:
  • Figure US20130064846A1-20130314-C00025
  • Homology with a Predicted ORF from N. gonorrhoeae
  • ORF11 shows 96.3% identity over a 240aa overlap with a predicted ORF (ORF11.ng) from N. gonorrhoeae:
  • Figure US20130064846A1-20130314-C00026
  • An ORF11ng nucleotide sequence <SEQ ID 55> was predicted to encode a protein having amino acid sequence <SEQ ID 56>:
  • 1 MAVNLYAGPQ TTSVIANIAD NLQLAKDYGK VHWFASPLFW
    LLNQLHNIIG
    51 NWGWAIVVLT IIVKAVLYPL T NASYRSMAK MRAAAPELQT
    IKEKYGDDRM
    101 AQQQAMMQLF EDEEINPLGG CLPMLLQIPV FIGLYWALFA
    SVELRQAPWL
    151 GWITDLSRAD PYYILPIIMA ATMFAQTYLN PPPTDPMQAK
    MMKIMPLVFS
    201 VMFFFFPAGL VLYWVVNNLL TIAQQWHINR SIEKQRAQGE
    VVS*
  • Further sequence analysis revealed the complete gonococcal DNA sequence <SEQ ID 57> to be:
  • 1 ATGGATTTTA AAAGACTCAC GGCGTTTTTC GCCATCGCGC
    TGGTGATTAT
    51 GATCGGCTGG GAAAAAATGT TCCCCACCCC GAAACCCGTC
    CCCGCGCCCC
    101 AACAGGCGGC ACAAAAACAG GCAGCAACCG CTTCCGCCGA
    AGCCGCGCTC
    151 GCGCCCGCAA CGCCGATTAC CGTAACGACC GACACGGTTC
    AAGCCGTTAT
    201 TGATGAAAAA AGTGGCGACC TGCGCCGGCT GACCCTGCTC
    AAATACAAAG
    251 CAACCGGCGA CGAAAACAAA CCGTTCGTCC TGTTTGGCGA
    CGGCAAAGAA
    301 TACACCTACG TCGCCCAATC CGAACTTTTG GACGCGCAGG
    GCAACAACAT
    351 TCTGAAAGGC ATCGGCTTTA GCGCACCGAA AAAACAGTAC
    ACCCTCAACG
    401 GCGACACAGT CGAAGTCCGC CTGAGCGCGC CCGAAACCAA
    CGGACTGAAA
    451 ATCGACAAAG TCTATACCTT TACCAAAGAC AGCTATCTGG
    TCAACGTCCG
    501 CTTCGACATC GCCAACGGCA GCGGTCAAAC CGCCAACCTG
    AGCGCGGACT
    551 ACCGCATCGT CCGCGACCAC AGCGAACCCG AGGGTCAAGG
    CTACTTTACC
    601 CACTCTTACG TCGGCCCTGT TGTTTATACC CCTGAAGGCA
    ACTTCCAAAA
    651 AGTCAGCTTC TCCgacTTgg acgACGATGC gaaaTccggc
    aaATccgagg
    701 ccgaatacaT CCGCAAAACC ccgaccggtt ggctcggcat
    gattgaacac
    751 cacttcatgt ccacctggat cctccAAcct aaaggcggcc
    aaaacgtttg
    801 cgcccaggga gactgccgta tcgacattaa aCgccgcaac
    gacaagctgt
    851 acagcgcaag cgtcagcgtg cctttaaccg ctatcccaac
    ccgggggcca
    901 aaaccgaaaa tggcggTCAA CCTGTATGCC GGTCCGCAAA
    CCACATCCGT
    951 TATCGCAAAC ATCGCcgacA ACCTGCAACT GGCAAAAGAC
    TACGGTAAAG
    1001 TACACTGGTT CGCATCGCCG CTCTTCTGGC TCCTGAACCA
    ACTGCACAAC
    1051 ATTATCGGCA ACTGGGGCTG GGCAATCGTC GTTTTGACCA
    TCATCGTCAA
    1101 AGCCGTACTG TATCCATTGA CCAACGcctc ctACCGTTCG
    ATGGCGAAAA
    1151 TGCGTGccgc cgcacCcaaA CTGCAGACCA TCAAAGAAAA
    ATAcgGCGAC
    1201 GACCGTATGG CGCAACAGCA AGCGATGATG CAGCTTTACA
    AAgacgAGAA
    1251 AATCAACCCG CTGGGCGGCT GTctgcctat gctgttgCAA
    ATCCCCGTCT
    1301 TCATCGGCTT GTACTGGGCA TTGTTCGCCT CCGTAGAATT
    GCGCCAGGCA
    1351 CCTTGGCTGG GCTGGATTAC CGACCTCAGC CGCGCCGACC
    CCTACTACAT
    1401 CCTGCCCATC ATTATGGCGG CAACGATGTT CGCCCAAACC
    TATCTGAACC
    1451 CGCCGCCGAC CGACCCGATG CAGGCGAAAA TGATGAAAAT
    CATGCCGTTG
    1501 GTTTTCTCCG TCATGTTCTT CTTCTTCCCT GCCGGTTTGG
    TTCTCTACTG
    1551 GGTGGTCAAC AACCTCCTGA CCATCGCCCA GCAGTGGCAC
    ATCAACCGCA
    1601 GCATCGAAAA ACAACGCGCC CAAGGCGAAG TCGTTTCCTA
    A
  • This encodes a protein having amino acid sequence <SEQ ID 58; ORF11ng-1>:
  • 1 MDFKRLTAFF AIALVIMIGW EKMFPTPKPV PAPQQAAQKQ
    AATASAEAAL
    51 APATPITVTT DTVQAVIDEK SGDLRRLTLL KYKATGDENK
    PFVLFGDGKE
    101 YTYVAQSELL DAQGNNILKG IGFSAPKKQY TLNGDTVEVR
    LSAPETNGLK
    151 IDKVYTFTKD SYLVNVRFDI ANGSGQTANL SADYRIVRDH
    SEPEGQGYFT
    201 HSYVGPVVYT PEGNFQKVSF SDLDDDAKSG KSEAEYIRKT
    PTGWLGMIEH
    251 HFMSTWILQP KGGQNVCAQG DCRIDIKRRN DKLYSASVSV
    PLTAIPTRGP
    301 KPKMAVNLYA GPQTTSVIAN IADNLQLAKD YGKVHWFASP
    LFWLLNQLHN
    351 IIGNWGWAIV VLTIIVKAVL YPLTNASYRS MAKMRAAAPK
    LQTIKEKYGD
    401 DRMAQQQAMM QLYKDEKINP LGGCLPMLLQ IPVFIGLYWA
    LFASVELRQA
    451 PWLGWITDLS RADPYYILPI IMAATMFAQT YLNPPPTDPM
    QAKMMKIMPL
    501 VFSVMFFFFP AGLVLYWVVN NLLTIAQQWH INRSIEKQRA
    QGEVVS*
  • ORF11ng-1 and ORF11-1 shown 95.1% identity in 546 aa overlap:
  • Figure US20130064846A1-20130314-C00027
  • In addition, ORF11ng-1 shows significant homology with an inner-membrane protein from the database (accession number p25754):
  • Figure US20130064846A1-20130314-C00028
  • Based on this analysis, including the homology to an inner-membrane protein from P. putida and the predicted transmembrane domains (seen in both the meningococcal and gonoccal proteins), it is predicted that the proteins from N. meningitidis and N. gonorrhoeae, and their epitopes, could be useful antigens for vaccines or diagnostics, or for raising antibodies.
  • Example 8
  • The following partial DNA sequence was identified in N. meningitidis <SEQ ID 59>:
  • 1 ..GCCGTCTTAA TCATCGAATT ATTGACGGGA ACGGTTTATC
    TTTTGGTTGT
    51   NAGCGCGGCT TTGGCGGGTT CGGGCATTGC TTACGGGCTG
    ACCGGCAGTA
    101   CGCCTGCCGC CGTCTTGACC GNCGCTCTGC TTTCCGCGCT
    GGGTATTTNG
    151   TTCGTACACG CCAAAACCGC CGTTAGAAAA GTTGAAACGG
    ATTCATATCA
    201   GGATTTGGAT GCCGGACAAT ATGTCGAAAT CCTCCGNCAC
    ACAGGCGGCA
    251   ACCGTTACGA AGTT.TTTAT CGCGGTACG. ACTGGCAGGC
    TCAAAATACG
    301   GGGCAAGAAG AGCTTGAACC AGGAACTCGC GCCCTCATTG
    TCCGCAAGGA
    351   AGGCAACCTT CTTATTATCA CACACCCTTA A
  • This corresponds to the amino acid sequence <SEQ ID 60; ORF13>:
  • 1 ..AVLIIELLTG TVYLLVVSAA LAGSGIAYGL TGSTPAAVLT
    XALLSALGIX
    51   FVHAKTAVRK VETDSYQDLD AGQYVEILRH TGGNRYEVXY
    RGTXWQAQNT
    101   GQEELEPGTR ALIVRKEGNL LIITHP*
  • Further sequence analysis elaborated the DNA sequence slightly <SEQ ID 61>:
  • 1 ..GCCGTCTTAA TCATCGAATT ATTGACGGGA ACGGTTTATC
    TTTTGGTTGT
    51   nAGCGCGGCT TTGGCGGGTT CGGGCATTGC TTACGGGCTG
    ACCGGCAGTA
    101   CGCCTGCCGC CGTCTTGACC GnCGCTCTGC TTTCCGCGCT
    GGGTATTTnG
    151   TTCGTACACG CCAAAACCGC CGTTAGAAAA GTTGAAACGG
    ATTCATATCA
    201   GGATTTGGAT GCCGGACAAT ATGTCGAAAT CCTCCGACAC
    ACAGGCGGCA
    251   ACCGTTACGA AGTTTTtTAT CGCGGTACGc ACTGGCAGGC
    TCAAAATACG
    301   GGGCAAGAAG AGCTTGAACC AGGAACTCGC GCCCTCATTG
    TCCGCAAGGA
    351   AGGCAACCTT CTTATTATCA CACACCCTTA A
  • This corresponds to the amino acid sequence <SEQ ID 62; ORF13-1>:
  • 1 ..AVLIIELLTG TVYLLVVSAA LAGSGIAYGL TGSTPAAVLT
    XALLSALGIX
    51   FVHAKTAVRK VETDSYQDLD AGQYVEILRH TGGNRYEVFY
    RGTHWQAQNT
    101   GQEELEPGTR ALIVRKEGNL LIITHP*
  • Computer analysis of this amino acid sequence gave the following results:
  • Homology with a Predicted ORF from N. meningitidis (Strain A)
  • ORF13 shows 92.9% identity over a 126aa overlap with an ORF (ORF13a) from strain A of N. meningitidis:
  • Figure US20130064846A1-20130314-C00029
  • The complete length ORF13a nucleotide sequence <SEQ ID 63> is:
  • 1 ATGACTGTAT GGTTTGTTGC CGCTGTTGCC GTCTTAATCA
    TCGAATTATT
    51 GACGGGAACG GTTTATCTTT TGGTTGTCAG CGCGGCTTTG
    GCGGGTTCGG
    101 GCATTGCTTA CGGGCTGACC GGCAGCACGC CTGCCGCCGT
    CTTGACCGCC
    151 GCTCTGCTTT CCGCGCTGGG TATTTGGTTC GTACACGCCA
    AAACCGCCGT
    201 GGGAAAAGTT GAAACGGATT CATATCAGGA TTTGGATGCC
    GGGCAATATG
    251 CCGAAATCCT CCGGCACGCA GGCGGCAACC GTTACGAAGT
    TTTTTATCGC
    301 GGTACGCACT GGCAGGCTCA AAATACGGGG CAAGAAGAGC
    TTGAACCAGG
    351 AACGCGCGCC CTAATCGTCC GCAAGGAAGG CAACCTTCTT
    ATCATCGCAA
    401 AACCTTAA
  • This encodes a protein having amino acid sequence <SEQ ID 64>:
  • 1 MTVWFVAAVA VLIIELLTGT VYLLVVSAAL AGSGIAYGLT
    GSTPAAVLTA
    51 ALLSALGIWF VHAKTAVGKV ETDSYQDLDA GQYAEILRHA
    GGNRYEVFYR
    101 GTHWQAQNTG QEELEPGTRA LIVRKEGNLL IIAKP*
  • ORF13a and ORF13-1 show 94.4% identity in 126 aa overlap
  • Figure US20130064846A1-20130314-C00030
  • Homology with a Predicted ORF from N. gonorrhoeae
  • ORF13 shows 89.7% identity over a 126aa overlap with a predicted ORF (ORF13.ng) from N. gonorrhoeae:
  • Figure US20130064846A1-20130314-C00031
  • The complete length ORF13ng nucleotide sequence <SEQ ID 65> is:
  • 1 ATGACTGTAT GGTTTGTTGC CGCTGTTGCC GTCTTAATCA
    TCGAATTATT
    51 GACGGGAACG GTTTATCTTT TGGTTGTCAG CGCGGCTTTG
    GCGGGTTCGG
    101 GCATTGCCTA CGGGCTGACT GGCAGCACGC CTGCCGCCGT
    CTTGACCGCC
    151 GCACTGCTTT CCGCGCTGGG CATTTGGTTC GTACATGCCA
    AAACCGCCGT
    201 GGGAAAAGTT GAAACGGATT CATATCAGGA TTTGGATACC
    GGAAAATATG
    251 CCGAAATCCT CCGATACACA GGCGGCAACC GTTACGAAGT
    TTTTTATCGC
    301 GGTACGCACT GGCAGGCGCA AAATACGGGG CAGGAAGTGT
    TTGAACCGGG
    351 AACGCGCGCC CTCATCGTCC GCAAAGAAGG TAACCTTCTT
    ATCATCGCAA
    401 ACCCTTAA
  • This encodes a protein having amino acid sequence <SEQ ID 66>:
  • 1 MTVWFVAAVA VLIIELLTGT VYLLVVSAAL AGSGIAYGLT
    GSTPAAVLTA
    51 ALLSALGIWF VHAKTAVGKV ETDSYQDLDT GKYAEILRYT
    GGNRYEVFYR
    101 GTHWQAQNTG QEVFEPGTRA LIVRKEGNLL IIANP*
  • ORF13ng shows 91.3% identity in 126 aa overlap with ORF13-1:
  • Figure US20130064846A1-20130314-C00032
  • Based on this analysis, including the extensive leader sequence in this protein, it is predicted that ORF13 and ORF13ng are likely to be outer membrane proteins. It is thus predicted that the proteins from N. meningitidis and N. gonorrhoeae, and their epitopes, could be useful antigens for vaccines or diagnostics, or for raising antibodies.
  • Example 9
  • The following DNA sequence was identified in N. meningitidis <SEQ ID 67>:
  • 1 ATGTwTGATT TCGGTTTrGG CGArCTGGTT TTTGTCGGCA
    TTATCGCCCT
    51 GATwGtCCTC GGCCCCGAAC GCsTGCCCGA GGCCGCCCGC
    AyCGCCGGAC
    101 GGcTCATCGG CAGGCTGCAA CGCTTTGTCG GcAGCGTCAA
    ACAGGAATTT
    151 GACACTCAAA TCGAACTGGA AGAACTGAGG AAGGCAAAGC
    AGGAATTTGA
    201 AGCTGCCGcC GCTCAGGTTC GAGACAGCCT CAAAGAAACC
    GGTACGGATA
    251 TGGAAGGCAA TCTGCACGAC ATTTCCGACG GTCTGAAGCC
    TTGGGAAAAA
    301 CTGCCCGAAC AGCGGACACC TGCCGATTTC GGTGTCGATG
    AAAACGGCAA
    351 TCCGCT.TCC CGATGCGGCA AACACCCTAT CAGACGGCAT
    TTCCGACGTT
    401 ATGCCGTC..
  • This corresponds to the amino acid sequence <SEQ ID 68; ORF2>:
  • 1 MXDFGLGELV FVGIIALIVL GPERXPEAAR XAGRLIGRLQ
    RFVGSVKQEF
    51 DTQIELEELR KAKQEFEAAA AQVRDSLKET GTDMEGNLHD
    ISDGLKPWEK
    101 LPEQRTPADF GVDENGNPXS RCGKHPIRRH FRRYAV..
  • Further work revealed the complete nucleotide sequence <SEQ ID 69>:
  • 1 ATGTTTGATT TCGGTTTGGG CGAGCTGGTT TTTGTCGGCA
    TTATCGCCCT
    51 GATTGTCCTC GGCCCCGAAC GCCTGCCCGA GGCCGCCCGC
    ACCGCCGGAC
    101 GGCTCATCGG CAGGCTGCAA CGCTTTGTCG GCAGCGTCAA
    ACAGGAATTT
    151 GACACTCAAA TCGAACTGGA AGAACTGAGG AAGGCAAAGC
    AGGAATTTGA
    201 AGCTGCCGCC GCTCAGGTTC GAGACAGCCT CAAAGAAACC
    GGTACGGATA
    251 TGGAAGGCAA TCTGCACGAC ATTTCCGACG GTCTGAAGCC
    TTGGGAAAAA
    301 CTGCCCGAAC AGCGGACACC TGCCGATTTC GGTGTCGATG
    AAAACGGCAA
    351 TCCGCTTCCC GATGCGGCAA ACACCCTATC AGACGGCATT
    TCCGACGTTA
    401 TGCCGTCCGA ACGTTCCTAC GCTTCCGCCG AAACCCTTGG
    GGACAGCGGG
    451 CAAACCGGCA GTACAGCCGA ACCCGCGGAA ACCGACCAAG
    ACCGCGCATG
    501 GCGGGAATAC CTGACTGCTT CTGCCGCCGC ACCCGTCGTA
    CAGACCGTCG
    551 AAGTCAGCTA TATCGATACT GCTGTTGAAA CGCCTGTTCC
    GCACACCACT
    601 TCCCTGCGCA AACAGGCAAT AAGCCGCAAA CGCGATTTTC
    GTCCGAAACA
    651 CCGCGCCAAA CCTAAATTGC GCGTCCGTAA ATCATAA
  • This corresponds to the amino acid sequence <SEQ ID 70; ORF2-1>:
  • 1 MFDFGLGELV FVGIIALIVL GPERLPEAAR TAGRLIGRLQ
    RFVGSVKQEF
    51 DTQIELEELR KAKQEFEAAA AQVRDSLKET GTDMEGNLHD
    ISDGLKPWEK
    101 LPEQRTPADF GVDENGNPLP DAANTLSDGI SDVMPSERSY
    ASAETLGDSG
    151 QTGSTAEPAE TDQDRAWREY LTASAAAPVV QTVEVSYIDT
    AVETPVPHTT
    201 SLRKQAISRK RDFRPKHRAK PKLRVRKS*
  • Further work identified the corresponding gene in strain A of N. meningitidis <SEQ ID 71>:
  • 1 ATGTTTGATT TCGGTTTGGG CGAGCTGGTT TTTGTCGGCA
    TTATCGCCCT
    51 GATTGTCCTC GGCCCCGAAC GCCTGCCCGA GGCCGCCCGC
    ACCGCCGGAC
    101 GGCTCATCGG CAGGCTGCAA CGCTTTGTCG GCAGCGTCAA
    ACAGGAATTT
    151 GACACGCAAA TCGAACTGGA AGAACTAAGG AAGGCAAAGC
    AGGAATTTGA
    201 AGCTGCCGCT GCTCAGGTTC GAGACAGCCT CAAAGAAACC
    GGTACGGATA
    251 TGGAGGGTAA TCTGCACGAC ATTTCCGACG GTCTGAAGCC
    TTGGGAAAAA
    301 CTGCCCGAAC AGCGCACGCC TGCTGATTTC GGTGTCGATG
    AAAACGGCAA
    351 TCCCTTTCCC GATGCGGCAA ACACCCTATT AGACGGCATT
    TCCGACGTTA
    401 TGCCGTCCGA ACGTTCCTAC GCTTCCGCCG AAACCCTTGG
    GGACAGCGGG
    451 CAAACCGGCA GTACAGCCGA ACCCGCGGAA ACCGACCAAG
    ACCGTGCATG
    501 GCGGGAATAC CTGACTGCTT CTGCCGCCGC ACCCGTCGTA
    CAGACCGTCG
    551 AAGTCAGCTA TATCGATACC GCTGTTGAAA CCCCTGTTCC
    GCATACCACT
    601 TCGCTGCGTA AACAGGCAAT AAGCCGCAAA CGCGATTTGC
    GTCCTAAATC
    651 CCGCGCCAAA CCTAAATTGC GCGTCCGTAA ATCATAA
  • This encodes a protein having amino acid sequence <SEQ ID 72; ORF2a>:
  • 1 MFDFGLGELV FVGIIALIVL GPERLPEAAR TAGRLIGRLQ
    RFVGSVKQEF
    51 DTQIELEELR KAKQEFEAAA AQVRDSLKET GTDMEGNLHD
    ISDGLKPWEK
    101 LPEQRTPADF GVDENGNPFP DAANTLLDGI SDVMPSERSY
    ASAETLGDSG
    151 QTGSTAEPAE TDQDRAWREY LTASAAAPVV QTVEVSYIDT
    AVETPVPHTT
    201 SLRKQAISRK RDLRPKSRAK PKLRVRKS*
  • The originally-identified partial strain B sequence (ORF2) shows 97.5% identity over a 118aa overlap with ORF2a:
  • Figure US20130064846A1-20130314-C00033
  • The complete strain B sequence (ORF2-1) and ORF2a show 98.2% identity in 228 aa overlap:
  • Figure US20130064846A1-20130314-C00034
  • Further work identified a partial DNA sequence <SEQ ID 73> in N. gonorrhoeae encoding the following amino acid sequence <SEQ ID 74; ORF2ng>:
  • 1 MFDFGLGELI FVGIIALIVL GPERLPEAAR TAGRLIGRLQ
    RFVGSVKQEL
    51 DTQIELEELR KVKQAFEAAA AQVRDSLKET DTDMQNSLHD
    ISDGLKPWEK
    101 LPEQRTPADF GVDEKGNSLS RYGKHRIRRH FRRYAV*
  • Further work identified the complete gonococcal gene sequence <SEQ ID 75>:
  • 1 ATGTTTGATT TCGGTTTGGG CGAGCTGATT TTTGTCGGCA
    TTATCGCCCT
    51 GATTGTCCTT GGTCCAGAAC GCCTGCCCGA AGCCGCCCGC
    ACTGCCGGAC
    101 GGCTTATCGG CAGGCTGCAA CGCTTTGTAG GAAGCGTCAA
    ACAAGAACTT
    151 GACACTCAAA TCGAACTGGA AGAGCTGAGG AAGGTCAAGC
    AGGCATTCGA
    201 AGCTGCCGCC GCTCAGGTTC GAGACAGCCT CAAAGAAACC
    GATACGGATA
    251 TGCAGAACAG TCTGCACGAC ATTTCCGACG GTCTGAAGCC
    TTGGGAAAAA
    301 CTGCCCGAAC AGCGCACGCc tgccgatttc gGTGTCGATg
    AAAacggcaa
    351 tccccttccc gATACGGCAA ACACCGTATC AGACGGCATT
    TCCGACGTTA
    401 TGCCGTCTGA ACGTTCCGAT ACTtccgcCG AAACCCTTGG
    GGACGACAGG
    451 CAAACCGGCA GTACAGCCGA ACCTGCGGAA ACCGACAAAG
    ACCGCGCATG
    501 GCGGGAATAC CTGactgctt ctgccgccgc acctgtcgta
    Cagagggccg
    551 tcgaagtcag ctaTATCGAT ACTGCTGTTG AAacgcctgT
    tccgcaCacc
    601 acttccctgc gcaAACAGGC AATAAACCGC AAACGCGATT
    TttgtccgaA
    651 ACACCGCGCc aAACCGAAat tgcgcgtcCG TAAATCATAA
  • This encodes a protein having the amino acid sequence <SEQ ID 76; ORF2ng-1>:
  • 1 MFDFGLGELI FVGIIALIVL GPERLPEAAR TAGRLIGRLQ
    RFVGSVKQEL
    51 DTQIELEELR KVKQAFEAAA AQVRDSLKET DTDMQNSLHD
    ISDGLKPWEK
    101 LPEQRTPADF GVDENGNPLP DTANTVSDGI SDVMPSERSD
    TSAETLGDDR
    151 QTGSTAEPAE TDKDRAWREY LTASAAAPVV QRAVEVSYID
    TAVETPVPHT
    201 TSLRKQAINR KRDFCPKHRA KPKLRVRKS*
  • The originally-identified partial strain B sequence (ORF2) shows 87.5% identity over a 136aa overlap with ORF2ng:
  • Figure US20130064846A1-20130314-C00035
  • The complete strain B and gonococcal sequences (ORF2-1 & ORF2ng-1) show 91.7% identity in 229 aa overlap:
  • Figure US20130064846A1-20130314-C00036
  • Computer analysis of these amino acid sequences indicates a transmembrane region (underlined), and also revealed homology (59% identity) between the gonococcal sequence and the TatB protein of E. coli:
  • gnl|PID|e1292181 (AJ005830) TatB protein [Escherichia coli] Length = 171
    Score = 56.6 bits (134), Expect = 1e−07
    Identities = 30/88 (34%), Positives = 52/88 (59%), Gaps = 1/88 (1%)
    Query:  1 MFDFGLGELIFVGIIALIVLGPERLPEAARTAGRLIGRLQRFVGSVKQELDTQIELEELR 60
              MFD G  EL+ V II L+VLGP+RLP A +T    I  L+     +V+ EL +++L+E  +
    Sbjct:  1 MFDIGFSELLLVFIIGLVVLGPQRLPVAVKTVAGWIRALRSLATTVQNELTQELKLQEFQ 60
    Query: 61 -KVKQAFEAAAAQVRDSLKETDTDMQNS 87
                 +K+  +A+   +   LK +  +++ +
    Sbjct: 61 DSLKKVEKASLTNLTPELKASMDELRQA 88
  • Based on this analysis, it was predicted that ORF2, ORF2a and ORF2ng are likely to be membrane proteins and so the proteins from N. meningitidis and N. gonorrhoeae, and their epitopes, could be useful antigens for vaccines or diagnostics, or for raising antibodies.
  • ORF2-1 (16 kDa) was cloned in pET and pGex vectors and expressed in E. coli, as described above. The products of protein expression and purification were analyzed by SDS-PAGE. FIG. 3A shows the results of affinity purification of the GST-fusion protein, and FIG. 3B shows the results of expression of the His-fusion in E. coli. Purified GST-fusion protein was used to immunise mice, whose sera were used for Western blots (FIG. 3C), ELISA (positive result), and FACS analysis (FIG. 3D). These experiments confirm that ORF37-1 is a surface-exposed protein, and that it is a useful immunogen.
  • Example 10
  • The following partial DNA sequence was identified in N. meningitidis <SEQ ID 77>:
  • 1 ATGCAAGCAC GGCTGCTGAT ACCTATTCTT TTTTCAGTTT
    TTATTTTATC
    51 CGC.TGCGGG ACACTGACAG GTATTCCATC GCATGGCGgA
    GkTAAACgCT
    101 TTgCGGTCGA ACAAGAACTT GTGGCCGCTT CTGCCAGAGC
    TGCCGTTAAA
    151 GACATGGATT TACAGGCATT ACACGGACGA AAAGTTGCAT
    TGTACATTGC
    201 CACTATGGGC GACCAAGGTT CAGGcAGTTT GACAGGGGGG
    TCGCTACTCC
    251 ATTGATGCAC kGrTwCsTGG CGAATACATA AACAGCCCTG
    CCGTCCGTAC
    301 CGATTACACC TATCCACGTT ACGAAACCAC CGCTGAAACA
    ACATCAGGCG
    351 GTTTGACAGG TTTAACCACT TCTTTATCTA CACTTAATGC
    CCCTGCACTC
    401 TCTCGCACCC AATCAGACGG TAGCGGAAGT AAAAGCAGTC
    TGGGCTTAAA
    451 TATTGGCGGG ATGGGGGATT ATCGAAATGA AACCTTGACG
    ACTAACCCGC
    501 GCGACACTGC CTTTCTTTCC CACTTGGTAC AGACCGTATT
    TTTCCTGCGC
    551 GGCATAGACG TTGTTTCTCC TGCCAATGCC GATACAGATG
    TGTTTATTAA
    601 CATCGACGTA TTCGGAACGA TACGCAACAG AACCGAAATG..
  • This corresponds to the amino acid sequence <SEQ ID 78; ORF15>:
  • 1 MQARLLIPIL FSVFILSACG TLTGIPSHGG XKRFAVEQEL
    VAASARAAVK
    51 DMDLQALHGR KVALYIATMG DQGSGSLTGG RYSIDAXXXG
    EYINSPAVRT
    101 DYTYPRYETT AETTSGGLTG LTTSLSTLNA PALSRTQSDG
    SGSKSSLGLN
    151 IGGMGDYRNE TLTTNPRDTA FLSHLVQTVF FLRGIDVVSP
    ANADTDVFIN
    201 IDVFGTIRNR TEM..
  • Further work revealed the complete nucleotide sequence <SEQ ID 79>:
  • 1 ATGCAAGCAC GGCTGCTGAT ACCTATTCTT TTTTCAGTTT
    TTATTTTATC
    51 CGCCTGCGGG ACACTGACAG GTATTCCATC GCATGGCGGA
    GGTAAACGCT
    101 TTGCGGTCGA ACAAGAACTT GTGGCCGCTT CTGCCAGAGC
    TGCCGTTAAA
    151 GACATGGATT TACAGGCATT ACACGGACGA AAAGTTGCAT
    TGTACATTGC
    201 CACTATGGGC GACCAAGGTT CAGGCAGTTT GACAGGGGGT
    CGCTACTCCA
    251 TTGATGCACT GATTCGTGGC GAATACATAA ACAGCCCTGC
    CGTCCGTACC
    301 GATTACACCT ATCCACGTTA CGAAACCACC GCTGAAACAA
    CATCAGGCGG
    351 TTTGACAGGT TTAACCACTT CTTTATCTAC ACTTAATGCC
    CCTGCACTCT
    401 CTCGCACCCA ATCAGACGGT AGCGGAAGTA AAAGCAGTCT
    GGGCTTAAAT
    451 ATTGGCGGGA TGGGGGATTA TCGAAATGAA ACCTTGACGA
    CTAACCCGCG
    501 CGACACTGCC TTTCTTTCCC ACTTGGTACA GACCGTATTT
    TTCCTGCGCG
    551 GCATAGACGT TGTTTCTCCT GCCAATGCCG ATACAGATGT
    GTTTATTAAC
    601 ATCGACGTAT TCGGAACGAT ACGCAACAGA ACCGAAATGC
    ACCTATACAA
    651 TGCCGAAACA CTGAAAGCCC AAACAAAACT GGAATATTTC
    GCAGTAGACA
    701 GAACCAATAA AAAATTGCTC ATCAAACCAA AAACCAATGC
    GTTTGAAGCT
    751 GCCTATAAAG AAAATTACGC ATTGTGGATG GGGCCGTATA
    AAGTAAGCAA
    801 AGGAATTAAA CCGACGGAAG GATTAATGGT CGATTTCTCC
    GATATCCGAC
    851 CATACGGCAA TCATACGGGT AACTCCGCCC CATCCGTAGA
    GGCTGATAAC
    901 AGTCATGAGG GGTATGGATA CAGCGATGAA GTAGTGCGAC
    AACATAGACA
    951 AGGACAACCT TGA
  • This corresponds to the amino acid sequence <SEQ ID 80; ORF15-1>:
  • 1 MQARLLIPIL FSVFILSACG TLTGIPSHGG GKRFAVEQEL
    VAASARAAVK
    51 DMDLQALHGR KVALYIATMG DQGSGSLTGG RYSIDALIRG
    EYINSPAVRT
    101 DYTYPRYETT AETTSGGLTG LTTSLSTLNA PALSRTQSDG
    SGSKSSLGLN
    151 IGGMGDYRNE TLTTNPRDTA FLSHLVQTVF FLRGIDVVSP
    ANADTDVFIN
    201 IDVFGTIRNR TEMHLYNAET LKAQTKLEYF AVDRTNKKLL
    IKPKTNAFEA
    251 AYKENYALWM GPYKVSKGIK PTEGLMVDFS DIRPYGNHTG
    NSAPSVEADN
    301 SHEGYGYSDE VVRQHRQGQP *
  • Further work identified the corresponding gene in strain A of N. meningitidis <SEQ ID 81>:
  • 1 ATGCAAGCAC GGCTGCTGAT ACCTATTCTT TTTTCAGTTT
    TTATTTTATC
    51 CGCCTGCGGG ACACTGACAG GTATTCCATC GCATGGCGGA
    GGTAAACGCT
    101 TTGCGGTCGA ACAAGAACTT GTGGCCGCTT CTGCCAGAGC
    TGCCGTTAAA
    151 GACATGGATT TACAGGCATT ACACGGACGA AAAGTTGCAT
    TGTACATTGC
    201 AACTATGGGC GACCAAGGTT CAGGCAGTTT GACAGGGGGT
    CGCTACTCCA
    251 TTGATGCACT GATTCGTGGC GAATACATAA ACAGCCCTGC
    CGTCCGTACC
    301 GATTACACCT ATCCACGTTA CGAAACCACC GCTGAAACAA
    CATCAGGCGG
    351 TTTGACAGGT TTAACCACTT CTTTATCTAC ACTTAATGCC
    CCTGCACTCT
    401 CGCGCACCCA ATCAGACGGT AGCGGAAGTA AAAGCAGTCT
    GGGCTTAAAT
    451 ATTGGCGGGA TGGGGGATTA TCGAAATGAA ACCTTGACGA
    CTAACCCGCG
    501 CGACACTGCC TTTCTTTCCC ACTTGGTACA GACCGTATTT
    TTCCTGCGCG
    551 GCATAGACGT TGTTTCTCCT GCCAATGCCG ATACGGATGT
    GTTTATTAAC
    601 ATCGACGTAT TCGGAACGAT ACGCAACAGA ACCGAAATGC
    ACCTATACAA
    651 TGCCGAAACA CTGAAAGCCC AAACAAAACT GGAATATTTC
    GCAGTAGACA
    701 GAACCAATAA AAAATTGCTC ATCAAACCAA AAACCAATGC
    GTTTGAAGCT
    751 GCCTATAAAG AAAATTACGC ATTGTGGATG GGACCGTATA
    AAGTAAGCAA
    801 AGGAATTAAA CCGACAGAAG GATTAATGGT CGATTTCTCC
    GATATCCAAC
    851 CATACGGCAA TCATATGGGT AACTCTGCCC CATCCGTAGA
    GGCTGATAAC
    901 AGTCATGAGG GGTATGGATA CAGCGATGAA GCAGTGCGAC
    GACATAGACA
    951 AGGGCAACCT TGA
  • This encodes a protein having amino acid sequence <SEQ ID 82; ORF15a>:
  • 1 MQARLLIPIL FSVFILSACG TLTGIPSHGG GKRFAVEQEL
    VAASARAAVK
    51 DMDLQALHGR KVALYIATMG DQGSGSLTGG RYSIDALIRG
    EYINSPAVRT
    101 DYTYPRYETT AETTSGGLTG LTTSLSTLNA PALSRTQSDG
    SGSKSSLGLN
    151 IGGMGDYRNE TLTTNPRDTA FLSHLVQTVF FLRGIDVVSP
    ANADTDVFIN
    201 IDVFGTIRNR TEMHLYNAET LKAQTKLEYF AVDRTNKKLL
    IKPKTNAFEA
    251 AYKENYALWM GPYKVSKGIK PTEGLMVDFS DIQPYGNHMG
    NSAPSVEADN
    301 SHEGYGYSDE AVRRHRQGQP *
  • The originally-identified partial strain B sequence (ORF15) shows 98.1% identity over a 213aa overlap with ORF15a:
  • Figure US20130064846A1-20130314-C00037
  • The complete strain B sequence (ORF15-1) and ORF15a show 98.8% identity in 320 aa overlap:
  • Figure US20130064846A1-20130314-C00038
  • Further work identified the corresponding gene in N. gonorrhoeae <SEQ ID 83>:
  • 1 ATGCGGGCAC GGCTGCTGAT ACCTATTCTT TTTTCAGTTT
    TTATTTTATC
    51 CGCCTGCGGG ACACTGACAG GTATTCCATC GCATGGCGGA
    GGCAAACGCT
    101 TCGCGGTCGA ACAAGAACTT GTGGCCGCTT CTGCCAGAGC
    TGCCGTTAAA
    151 GACATGGATT TACAGGCATT ACACGGACGA AAAGTTGCAT
    TGTACATTGC
    201 AACTATGGGC GACCAAGGTT CAGGCAGTTT GACAGGGGGT
    CGCTACTCCA
    251 TTGATGCACT GATTCGCGGC GAATACATAA ACAGCCCTGC
    CGTCCGCACC
    301 GATTACACCT ATCCGCGTTA CGAAACCACC GCTGAAACAA
    CATCAGGCGG
    351 TTTGACGGGT TTAACCACTT CTTTATCTAC ACTTAATGCC
    CCTGCACTCT
    401 CGCGCACCCA ATCAGACGGT AGCGGAAGTA GGAGCAGTCT
    GGGCTTAAAT
    451 ATTGGCGGGA TGGGGGATTA TCGAAATGAA ACCTTGACGA
    CCAACCCGCG
    501 CGACACTGCC TTTCTTTCCC ACTTGGTGCA GACCGTATTT
    TTCCTGCGCG
    551 GCATAGACGT TGTTTCTCCT GCCAATGCCG ATACAGATGT
    GTTTATTAAC
    601 ATCGACGTAT TCGGAACGAT ACGCAACAGA ACCGAAATGC
    ACCTATACAA
    651 TGCCGAAACA CTGAAAGCCC AAACAAAACT GGAATATTTC
    GCAGTAGACA
    701 GAACCAATAA AAAATTGCTC ATCAAACCCA AAACCAATGC
    GTTTGAAGCT
    751 GCCTATAAAG AAAATTACGC ATTGTGGATG GGGCCGTATA
    AAGTAAGCAA
    801 AGGAATCAAA CCGACGGAAG GATTGATGGT CGATTTCTCC
    GATATCCAAC
    851 CATACGGCAA TCATACGGGT AACTCCGCCC CATCCGTAGA
    GGCTGATAAC
    901 AGTCATGAGG GGTATGGATA CAGCGATGAA GCAGTGCGAC
    AACATAGACA
    951 AGGGCAACCT TGA
  • This encodes a protein having amino acid sequence <SEQ ID 84; ORF15ng>:
  • 1 MRARLLIPIL FSVFILSACG TLTGIPSHGG GKRFAVEQEL
    VAASARAAVK
    51 DMDLQALHGR KVALYIATMG DQGSGSLTGG RYSIDALIRG
    EYINSPAVRT
    101 DYTYPRYETT AETTSGGLTG LTTSLSTLNA PALSRTQSDG
    SGSRSSLGLN
    151 IGGMGDYRNE TLTTNPRDTA FLSHLVQTVF FLRGIDVVSP
    ANADTDVFIN
    201 IDVFGTIRNR TEMHLYNAET LKAQTKLEYF AVDRTNKKLL
    IKPKTNAFEA
    251 AYKENYALWM GPYKVSKGIK PTEGLMVDFS DIQPYGNHTG
    NSAPSVEADN
    301 SHEGYGYSDE AVRQHRQGQP *
  • The originally-identified partial strain B sequence (ORF15) shows 97.2% identity over a 213aa overlap with ORF15ng:
  • Figure US20130064846A1-20130314-C00039
  • The complete strain B sequence (ORF15-1) and ORF15ng show 98.8% identity in 320 aa overlap:
  • Figure US20130064846A1-20130314-C00040
  • Computer analysis of these amino acid sequences reveals an ILSAC motif (putative membrane lipoprotein lipid attachment site, as predicted by the MOTIFS program).
  • Indicates a putative leader sequence, and it was predicted that the proteins from N. meningitidis and N. gonorrhoeae, and their epitopes, could be useful antigens for vaccines or diagnostics, or for raising antibodies.
  • ORF15-1 (31.7 kDa) was cloned in pET and pGex vectors and expressed in E. coli, as described above. The products of protein expression and purification were analyzed by SDS-PAGE. FIG. 4A shows the results of affinity purification of the GST-fusion protein, and FIG. 4B shows the results of expression of the His-fusion in E. coli. Purified GST-fusion protein was used to immunise mice, whose sera were used for Western blot (FIG. 4C) and ELISA (positive result). These experiments confirm that ORFX-1 is a surface-exposed protein, and that it is a useful immunogen.
  • Example 11
  • The following partial DNA sequence was identified in N. meningitidis <SEQ ID 85>:
  • 1 ..GG.CAGCACA AAAAACAGGC GGTTGAACGG AAAAACCGTA
    TTTACGATGA
    51   TGCCGGGTAT GATATTCGGC GTATTCACGG GCGCATTCTC
    CGCAAAATAT
    101   ATCCCCGCGT TCGGGCTTCA AATTTTCTTC ATCCTGTTTT
    TAACCGCCGT
    151   CGCATTCAAA ACACTGCATA CCGACCCTCA GACGGCATCC
    CGCCCGCTGC
    201   CCGGACTGCC CrGACTGACT GCGGTTTCCA CACTGTTCGG
    CACAATGTCG
    251   AGCTGGGTCG GCATAGGCGG CGGTTCACTT TCCGTCCCCT
    TCTTAATCCA
    301   CTGCGGCTTC CCCGCCCATA AAGCCATCGG CACATCATCC
    GGCCTTGCCT
    351   GGCCGATTGC ACTCTCCGGC GCAATATCGT ATCTGCTCAA
    CGGCCTGAAT
    401   ATTGCAGGAT TGCCCGAAGG GTCACTGGGC TTCCTTTACC
    TGCCCGCCGT
    451   CGCCGTCCTC AGCGCGGCAA CCATTGCCTT TGCCCCGCTC
    GGTGTCAAAA
    501   CCGCCCACAA ACTTTCTTCT GCCAAACTCA AAAAATC.TT
    CGGCATTATG
    551   TTGCTTTTGA TTGCCGGAAA AATGCTGTAC AACCTGCTTT
    AA
  • This corresponds to the amino acid sequence <SEQ ID 86; ORF17>:
  • 1 ..GQHKKQAVNG KTVFTMMPGM IFGVFTGAFS AKYIPAFGLQ
    IFFILFLTAV
    51   AFKTLHTDPQ TASRPLPGLP XLTAVSTLFG TMSSWVGIGG
    GSLSVPFLIH
    101   CGFPAHKAIG TSSGLAWPIA LSGAISYLLN GLNIAGLPEG
    SLGFLYLPAV
    151   AVLSAATIAF APLGVKTAHK LSSAKLKKSF GIMLLLIAGK
    MLYNLL*
  • Further work revealed the complete nucleotide sequence <SEQ ID 87>:
  • 1 ATGTGGCATT GGGACATTAT CTTAATCCTG CTTGCCGTAG
    GCAGTGCGGC
    51 AGGTTTTATT GCCGGCCTGT TCGGCGTAGG CGGCGGCACG
    CTGATTGTCC
    101 CTGTCGTTTT ATGGGTGCTT GATTTGCAGG GTTTGGCACA
    ACATCCTTAC
    151 GCGCAACACC TCGCCGTCGG CACATCCTTC GCCGTCATGG
    TCTTCACCGC
    201 CTTTTCCAGT ATGCTGGGGC AGCACAAAAA ACAGGCGGTC
    GACTGGAAAA
    251 CCGTATTTAC GATGATGCCG GGTATGATAT TCGGCGTATT
    CACGGGCGCA
    301 CTCTCCGCAA AATATATCCC CGCGTTCGGG CTTCAAATTT
    TCTTCATCCT
    351 GTTTTTAACC GCCGTCGCAT TCAAAACACT GCATACCGAC
    CCTCAGACGG
    401 CATCCCGCCC GCTGCCCGGA CTGCCCGGAC TGACTGCGGT
    TTCCACACTG
    451 TTCGGCACAA TGTCGAGCTG GGTCGGCATA GGCGGCGGTT
    CACTTTCCGT
    501 CCCCTTCTTA ATCCACTGCG GCTTCCCCGC CCATAAAGCC
    ATCGGCACAT
    551 CATCCGGCCT TGCCTGGCCG ATTGCACTCT CCGGCGCAAT
    ATCGTATCTG
    601 CTCAACGGCC TGAATATTGC AGGATTGCCC GAAGGGTCAC
    TGGGCTTCCT
    651 TTACCTGCCC GCCGTCGCCG TCCTCAGCGC GGCAACCATT
    GCCTTTGCCC
    701 CGCTCGGTGT CAAAACCGCC CACAAACTTT CTTCTGCCAA
    ACTCAAAAAA
    751 Tc.TTCGGCA TTATGTTGCT TTTGATTGCC GGAAAAATGC
    TGTACAACCT
    801 GCTTTAA
  • This corresponds to the amino acid sequence <SEQ ID 88; ORF17-1>:
  • 1 MWHWDIILIL LAVGSAAGFI AGLFGVGGGT LIVPVVLWVL
    DLQGLAQHPY
    51 AQHLAVGTSF AVMVFTAFSS ML GQHKKQAV DWKTVFTMMP
    GMIFGVFTGA
    101 LSAKYIPAFG LQIFFILFLT AVAFKTLHTD PQTASRPLPG
    LPGLTAVSTL
    151 FGTMSSWVGI GGGSLSVPFL IHCGFPAHKA IGTSSGLAWP
    IALSGAISYL
    201 LNGLNIAGLP EGSLGFLYLP  AVAVLSAATI AFAPLGV KTA
    HKLSSAKLKK
    251 XFGIMLLLIA GKMLYNLL*
  • Computer analysis of this amino acid sequence gave the following results:
  • Homology with Hypothetical H. influenzae Transmembrane Protein H10902 (Accession number P44070)
  • ORF17 and HI0902 proteins show 28% aa identity in 192 aa overlap:
  • ORF17 3 HKKQAVNGKTVFTMMPGMIFGVFT-GAFSAKYIPAFGLQIF--FILFLTAVAFKTLHTDP 59
    HK   +  + V  + P ++  VF  G F  +       +IF   +++L      ++  D
    HI0902 72 HKLGNIVWQAVRILAPVIMLSVFICGLFIGRLDREISAKIFACLVVYLATKMVLSIKKD- 130
    ORF17 60 QTASRPLPGLPXLTAVSTLFGTMSSWVGIGGGSLSVPFLIHCGFPAHKAIGTSSGLAWPI 119
    Q  ++ L  L  +     L G  SS  GIGGG   VPFL   G    +AIG+S+     +
    HI0902 131 QVTTKSLTPLSSVIG-GILIGMASSAAGIGGGGFIVPFLTARGINIKQAIGSSAFCGMLL 189
    ORF17
    120 ALSGAISYLLNGLNIAGLPEGSLGFLYLPAVAVLSAATIAFAPLGVXXXXXXXXXXXXXX 179
     +SG  S++++G     +PE SLG++YLPAV  ++A +   + LG
    HI0902 190 GISGMFSFIVSGWGNPLMPEYSLGYIYLPAVLGITATSFFTSKLGASATAKLPVSTLKKG 249
    ORF17 180 FGIMLLLIAGKM 191
    F + L+++A  M
    HI0902
    250 FALFLIVVAINM 261

    Homology with a Predicted ORF from N. meningitidis (Strain A)
  • ORF17 shows 96.9% identity over a 196aa overlap with an ORF (ORF17a) from strain A of N. meningitidis:
  • Figure US20130064846A1-20130314-C00041
  • The complete length ORF17a nucleotide sequence <SEQ ID 89> is:
  • 1 ATGTGGCATT GGGACATTAT CTTAATCCTG CTTGCCGTAG
    GCAGTGCGGC
    51 AGGTTTTATT GCCGGCCTGT TCGGCGTAGG CGGCGGCACG
    CTGATTGTCC
    101 CTGTCGTTTT ATGGGTGCTT GATTTGCAGG GTTTGGCACA
    ACATCCTTAC
    151 GCGCAACACC TCGCCGTCGG CACATCCTTC GCCGTCATGG
    TCTTCACCGC
    201 CTTTTCCAGT ATGCTGGGGC AGCACAAAAA ACAGGCGGTC
    GACTGGAAAA
    251 CCGTATTTAC GATGATGCCG GGTATGGTAT TCGGCGTATT
    CGCTGGCGCA
    301 CTCTCCGCAA AATATATCCC AGCGTTCGGG CTTCAAATTT
    TCTTCATCCT
    351 GTTTTTAACC GCCGTCGCAT TCAAAACACT GCATACCGAC
    CCTCAGACGG
    401 CATCCCGCCC GCTGCCCGGA CTGCCCGGAC TGACTGCGGT
    TTCCACACTG
    451 TTCGGCACAA TGTCGAGCTG GGTCGGCATA GGCGGCGGTT
    CACTTTCCGT
    501 CCCCTTCTTA ATCCACTGCG GCTTCCCCGC CCATAAAGCC
    ATCGGCACAT
    551 CATCCGGCCT TGCCTGGCCG ATTGCACTCT CCGGCGCAAT
    ATCGTATCTG
    601 CTCAACGGCC TGAATATTGC AGGATTGCCC GAAGGGTCAC
    TGGGCTTCCT
    651 TTACCTGCCC GCCGTCGCCG TCCTCAGCGC GGCAACCATT
    GCCTTTGCCC
    701 CGCTCGGTGT CAAAACCGCC CACAAACTTT CTTCTGCCAA
    ACTCAAAAAA
    751 TCCTTCGGCA TTATGTTGCT TTTGATTGCC GGAAAAATGC
    TGTACAACCT
    801 GCTTTAA
  • This encodes a protein having amino acid sequence <SEQ ID 90>:
  • 1 MWHWDIILIL LAVGSAAGFI AGLFGVGGGT LIVPVVLWVL
    DLQGLAQHPY
    51 AQHLAVGTSF AVMVFTAFSS ML GQHKKQAV DWKTVFTMMP
    GMVFGVFAGA
    101 LSAKYIPAFG LQIFFILFLT AVAFKTLHTD PQTASRPLPG
    LPGLTAVSTL
    151 FGTMSSWVGI GGGSLSVPFL IHCGFPAHKA IGTSSGLAWP
    IALSGAISYL
    201 LNGLNIAGLP EGSLGFLYLP  AVAVLSAATI AFAPLGV KTA
    HKLSSAKLKK
    251 SFGIMLLLIA GKMLYNLL*
  • ORF17a and ORF17-1 show 98.9% identity in 268 aa overlap:
  • Figure US20130064846A1-20130314-C00042
  • Homology with a Predicted ORF from N. gonorrhoeae
  • ORF17 shows 93.9% identity over a 196aa overlap with a predicted ORF (ORF17.ng) from N. gonorrhoeae:
  • Figure US20130064846A1-20130314-C00043
  • An ORF17ng nucleotide sequence <SEQ ID 91> is predicted to encode a protein having amino acid sequence <SEQ ID 92>:
  • 1 MWHWDIILIL LAVGSAAGFI AGLFGVGGGT LIVPVVLWVL
    DLQGLAQHPY
    51 AQHLAVGTSF AVMVFTAFSS MLGQHKKQAV DWKTIFAMMP
    GMIFGVFAGA
    101 LSAKYIPAFG LQIFFILFLT AVAFKTLHTG RQTASRPLPG
    LPGLTAVSTL
    151 FGAMSSWVGI GGGSLSVPFL IHCGFPAHKA IGTSSGLAWP
    IALSGAISYL
    201 VNGLNIAGLP EGSLGFLYLP AVAVLSAATI AFAPLGVKTA
    HKLSSAKLKE
    251 SFGIMLLLIA GKMLYNLL*
  • Further work revealed the complete gonococcal DNA sequence <SEQ ID 93>:
  • 1 ATGTGGCATT GGGACATTAT CTTAATCCTG CTTGCcgtag
    gcAGTGCGGC
    51 AGGTTTTATT GCCGGCCTGT Tcggtgtagg cggcgGTACG
    CTGATTGTCC
    101 CTGTCGTTTT ATGGGTGCTT GATTTGCAGG GTTTGGCACA
    ACATCCTTAC
    151 GCGCAACACC TCGCCGTCGG CAcaTccttc gcCGTCATGG
    TCTTCACCGC
    201 CTTTTCCAGT ATGTTGGGGC AGCACAAAAA ACAGGCGGTC
    GACTGGAAAA
    251 CCATATTTGC GATGATGCCG GGTATGATAT TCGGCGTATT
    CGCTGGCGCA
    301 CTCTCCGCAA AATATATCCC CGCGTTCGGG CTTCAAATTT
    TCTTCATCCT
    351 GTTTTTAACC GCCGTCGCAT TCAAAACACT GCATACCGGT
    CGTCAGACGG
    401 CATCCCGCCC GCTGCCCGGG CTGCCCGGAC TGACTGCGGT
    TTCCACACTG
    451 TTCGGCGCAA TGTCGAGCTG GGTCGGCATA GGCGGCGGTT
    CACTTTCCGT
    501 CCCCTTCTTA ATCCACTGCG GCTTCCCCGC CCATAAAGCC
    ATCGGCACAT
    551 CATCCGGCCT TGCCTGGCCG ATTGCACTCT CCGGCGCAAT
    ATCGTATCTG
    601 GTCAACGGTC TGAATATTGC AGGATTGCCC GAAGGGTCGC
    TGGGCTTCCT
    651 TTACCTGCCC GCCGTCGCCG TCCTCAGCGC GGCAACCATT
    GCCTTTGCCC
    701 CGCTCGGTGT CAAAACCGCC CACAAACTTT CTTCTGCCAA
    ACTCAAAGAA
    751 TCCTTCGGCA TTATGTTGCT TTTGATTGCC GGAAAAATGC
    TGTACAACCT
    801 GCTTTAA
  • This corresponds to the amino acid sequence <SEQ ID 94; ORF17ng-1>:
  • 1 MWHWDIILIL LAVGSAAGFI AGLFGVGGGT LIVPVVLWVL
    DLQGLAQHPY
    51 AQHLAVGTSF AVMVFTAFSS ML GQHKKQAV DWKTIFAMMP
    GMIFGVFAGA
    101 LSAKYIPAFG LQIFFILFLT AVAFKTLHTG RQTASRPLPG
    LPGLTAVSTL
    151 FGAMSSWVGI GGGSLSVPFL IHCGFPAHKA IGTSSGLAWP
    IALSGAISYL
    201 VNGLNIAGLP EGSLGFLYLP  AVAVLSAATI AFAPLGV KTA
    HKLSSAKLKE
    251 SFGIMLLLIA GKMLYNLL*
  • ORF17ng-1 and ORF17-1 show 96.6% identity in 268 aa overlap:
  • Figure US20130064846A1-20130314-C00044
  • In addition, ORF17ng-1 shows significant homology with a hypothetical H. influenzae protein:
  • sp|P44070|Y902_HAEIN HYPOTHETICAL PROTEIN HI0902 pir||G64015
    hypothetical protein HI0902 - Haemophilus influenzae (strain Rd KW20)
    gi|1573922 (U32772) H. influenzae
    predicted coding region HI0902 [Haemophilus influenzae]Length = 264
    Score = 74 (34.9 bits), Expect = 1.6e−23, Sum P(2) = 1.6e−23
    Identities = 15/43 (34%), Positives = 23/43 (53%)
    Query: 55 AVGTSFAVMVFTAFSSMLGQHKKQAVDWKTIFAMMPGMIFGVF 97
    A+GTSFA +V T   S    HK   + W+ +  + P ++  VF
    Sbjct: 52 ALGTSFATIVITGIGSAQRHHKLGNIVWQAVRILAPVIMLSVF 94
    Score = 195 (91.9 bits), Expect = 1.6e−23, Sum P(2) = 1.6e−23
    Identities = 44/114 (38%), Positives = 65/114 (57%)
    Query: 150 LFGAMSSWVGIGGGSLSVPFLIHCGFPAHKAIGTSSGLAWPIALSGAISYLVNGLNIAGL 209
    L G  SS  GIGGG   VPFL   G    +AIG+S+     + +SG  S++V+G     +
    Sbjct: 148 LIGMASSAAGIGGGGFIVPFLTARGINIKQAIGSSAFCGMLLGISGMFSFIVSGWGNPLM 207
    Query: 210 PEGSLGFLYLPAVAVLSAATIAFAPLGVKTAFIKLSSAKLKESFGIMLLLIAGKM 263
    PE SLG++YLPAV  ++A +   + LG     KL  + LK+ F + L+++A  M
    Sbjct: 208 PEYSLGYIYLPAVLGITATSFFTSKLGASATAKLPVSTLKKGFALFLIVVAINM 261
  • This analysis, including the homology with the hypothetical H. influenzae transmembrane protein, suggests that the proteins from N. meningitidis and N. gonorrhoeae, and their epitopes, could be useful antigens for vaccines or diagnostics, or for raising antibodies.
  • Example 12
  • The following partial DNA sequence was identified in N. meningitidis <SEQ ID 95>:
  • 1 ..GGAAACGGAT GGCAGGCAGA CCCCGAACAT CCGCTGCTCG
    GGCTTTTTGC
    51   CGTCAGTAAT GTATCGATGA CGCTTGCTTT TGTCGGAATA
    TGTGCGTTGG
    101   TGCATTATTG CTTTTCGGGA ACGGTTCAAG TGTTTGTGTT
    TGCGGCACTG
    151   CTCAAACTTT ATGCGCTGAA GCCGGTTTAT TGGTTCGTGT
    TGCAGTTTGT
    201   GCTGATGGCG GTTGCCTATG TCCACCGCTG CGGTATAGAC
    CGGCAGCCGC
    251   CGTCAACGTT CGGCGGCTCG CAGCTGCGAC TCGGCGGGTT
    GACGGCAGCG
    301   TTGATGCAGG TCTCGGTACT GGTGCTGCTG CTTTCAGAAA
    TTGGAAGATA
    351   A
  • This corresponds to the amino acid sequence <SEQ ID 96; ORF18>:
  • 1 ..GNGWQADPEH PLLGLFAVSN VSMTLAFVGI CALVHYCFSG
    TVQVFVFAAL
    51   LKLYALKPVY WFVLQFVLMA VAYVHRCGID RQPPSTFGGS
    QLRLGGLTAA
    101   LMQVSVLVLL LSEIGR*
  • Further work revealed the complete nucleotide sequence <SEQ ID 97>:
  • 1 ATGATTTTGC TGCATTTGGA TTTTTTGTCT GCCTTACTGT
    ATGCGGCGGT
    51 TTTTCTGTTT CTGATATTCC GCGCAGGAAT GTTGCAATGG
    TTTTGGGCGA
    101 GTATTATGCT GTGGCTGGGC ATATCGGTTT TGGGGGCAAA
    GCTGATGCCC
    151 GGCATATGGG GAATGACCCG CGCCGCGCCC TTGTTCATCC
    CCCATTTTTA
    201 CCTGACTTTG GGCAGCATAT TTTTTTTCAT CGGGCATTGG
    AACCGGAAAA
    251 CAGATGGAAA CGGATGGCAG GCAGACCCCG AACATCCGCT
    GCTCGGGCTT
    301 TTTGCCGTCA GTAATGTATC GATGACGCTT GCTTTTGTCG
    GAATATGTGC
    351 GTTGGTGCAT TATTGCTTTT CGGGAACGGT TCAAGTGTTT
    GTGTTTGCGG
    401 CACTGCTCAA ACTTTATGCG CTGAAGCCGG TTTATTGGTT
    CGTGTTGCAG
    451 TTTGTGCTGA TGGCGGTTGC CTATGTCCAC CGCTGCGGTA
    TAGACCGGCA
    501 GCCGCCGTCA ACGTTCGGCG GCTCGCAGCT GCGACTCGGC
    GGGTTGACGG
    551 CAGCGTTGAT GCAGGTCTCG GTACTGGTGC TGCTGCTTTC
    AGAAATTGGA
    601 AGATAA
  • This corresponds to the amino acid sequence <SEQ ID 98; ORF18-1>:
  • 1 MILLHLDFLS ALLYAAVFLF LIFRAGMLQW FWASIMLWLG
    ISVLGAKLMP
    51 GIWGMTRAAP LFIPHFYLTL GSIFFFI GHW NRKTDGNGWQ
    ADPEHPLLGL
    101 FAVSNVSMTL AFVGICALVH YCFSGTVQVF VFAALLKLYA
    LKPVYWFVLQ
    151 FVLMAVAYVH RCGIDRQPPS TFGGSQLRLG GLTAALMQVS
    VLVLLLSEIG
    201 R*
  • Computer analysis of this amino acid sequence gave the following results:
  • Homology with a Predicted ORF from N. meningitidis (Strain A)
  • ORF18 shows 98.3% identity over a 116aa overlap with an ORF (ORF18a) from strain A of N. meningitidis:
  • Figure US20130064846A1-20130314-C00045
  • The complete length ORF18a nucleotide sequence <SEQ ID 99> is:
  • 1 ATGATTTTGC TGCATTTGGA TTTTTTGTCT GCCTTACTGT
    ATGCGGCGGT
    51 TTTTCTGTTT CTGATATTCC GCGCAGGAAT GTTGCAATGG
    TTTTGGGCGA
    101 GTATTATGCT GTGGCTGGGC ATATCGGTTT TGGGGGCAAA
    GCTGATGCCC
    151 GGCATATGGG GAATGACCCG CGCCGCGCCC TTGTTCATCC
    CCCATTTTTA
    201 CCTGACTTTG GGCAGCATAT TTTTTTTCAT CGGGCATTGG
    AACCGGAAAA
    251 CGGATGGAAA CGGATGGCAG GCAGACCCCG AACATCCTCT
    GCTCGGGCTG
    301 TTTGCCGTCA GTAATGTATC GATGACGCTT GCTTTTGTCG
    GAATATGTGC
    351 GTTGGTGCAT TATTGCTTTT CGNGAACGGT TCAAGTGTTT
    GTGTTTGCGG
    401 CACTGCTCAA ACTTTATGCG CTGAAGCCGG TTTATTGGTT
    CGTGTTGCAG
    451 TTTGTGCTGA TGGCGGTTGC CTATGTCCAC CGCTGCGGTA
    TAGACCGGCA
    501 GCCGCCGTCA ACGTTCGGCG GNTCGCAGCT GCGACTCGGC
    GGGTTGACGG
    551 CAGCGTTGAT GCAGNTCTCG GTACTGGTGC TGCTGCTTTC
    AGAAATTGGA
    601 AGATAA
  • This encodes a protein having amino acid sequence <SEQ ID 100>:
  • 1 MILLHLDFLS ALLYAAVFLF LIFRAGMLQW FWASIMLWLG
    ISVLGAKLMP
    51 GIWGMTRAAP LFIPHFYLTL GSIFFFI GHW NRKTDGNGWQ
    ADPEHPLLGL
    101 FAVSNVSMTL AFVGICALVH YCFSXTVQVF VFAALLKLYA
    LKPVYWFVLQ
    151 FVLMAVAYVH RCGIDRQPPS TFGGSQLRLG GLTAALMQXS
    VLVLLLSEIG
    201 R*
  • ORF18a and ORF18-1 show 99.0% identity in 201 aa overlap:
  • Figure US20130064846A1-20130314-C00046
  • Homology with a Predicted ORF from N. gonorrhoeae
  • ORF18 shows 93.1% identity over a 116aa overlap with a predicted ORF (ORF18.ng) from N. gonorrhoeae:
  • Figure US20130064846A1-20130314-C00047
  • The complete length ORF18ng nucleotide sequence is <SEQ ID 101>:
  • 1 ATGATTTTGC TGCATTTGGA TTTTTTGTCT GCCTTACTGt
    aTGCGGcggt
    51 tttTctgTTT CTGATATTCC GCGCAGGAAT GTTGCAATGG
    TTTTGGGCGA
    101 GTATTGCGTT GTGGCTCGGC ATCTCGGTTT TAGGGGTAAA
    GCTGATGCCG
    151 GGGATGTGGG GAATGACCCG CGCCGCGCCT TTGTTCATCC
    CCCATTTTTA
    201 CCTGACTTTG GGCAGCATAT TTTTTTTCAT CGGGTATTGG
    AACCGGAAAA
    251 CAGATGGAAA CGGATGGCAG GCAGACCCCG AACATCCGCT
    GCTCGGGCTT
    301 TTTGCCGTCA GTAATGTATC GATGACGCTT GCTTTTGTCG
    GAATATGTGC
    351 GTTGGTGCAT TATTGCTTTT CGGGAACGGT TCAAGTGTTT
    GTGTTTGCGG
    401 CATTGCTCAA ACTTTATGCG CTGAAGCCGG TTTATTGGTT
    CGTGTTGCAG
    451 TTTGTATTGA TGGCGGttgC CTATGTCCAC CGCTGCGGTA
    TAGACCGGCA
    501 GCCGCCGTCA ACGTTCGGCG GTTCGCAGCT GCGACTCGGC
    GTGTTGGCGG
    551 CGATGTTGAT GCAGGTTGCG GTAACGGCGA TGCTGCTTGC
    CGAAATCGGC
    601 AGATGA
  • This encodes a protein having amino acid sequence <SEQ ID 102>:
  • 1 MILLHLDFLS ALLYAAVFLF LIFRAGMLQW FWASIALWLG
    ISVLGVKLMP
    51 GMWGMTRAAP LFIPHFYLTL GSIFFFI GYW NRKTDGNGWQ
    ADPEHPLLGL
    101 FAVSNVSMTL AFVGICALVH YCFSGTVQVF VFAALLKLYA
    LKPVYWFVLQ
    151 FVLMAVAYVH RCGIDRQPPS TFGGSQLRLG VLAAMLMQVA
    VTAMLLAEIG
    201 R*
  • This ORF18ng protein sequence shows 94.0% identity in 201 aa overlap with ORF18-1:
  • Figure US20130064846A1-20130314-C00048
  • Based on this analysis, including the presence of several putative transmembrane domains in the gonococcal protein, it is predicted that the proteins from N. meningitidis and N. gonorrhoeae, and their epitopes, could be useful antigens for vaccines or diagnostics, or for raising antibodies.
  • Example 13
  • The following partial DNA sequence was identified in N. meningitidis <SEQ ID 103>:
  • 1 ATGAAAACCC CACTCCTCAA GCCTCTGCTN ATTACCTCGC
    TTCCCGTTTT
    51 CGCCAGTGTT TTTACCGCCG CCTCCATCGT CTGGCAGCTA
    GGCGAACCCA
    101 AGCTCGCCAT GCCCTTCGTA CTCGGCATCA TCGCCGGCGG
    CCTTGTCGAT
    151 TTGGACAACC NCNTGACCGG ACGGCTNAAA AACATCATCA
    CCACCGTCGC
    201 CCTGTTCACC CTCTCCTCGC TCACGGCACA AAGCACCCTC
    GGCACAGGGC
    251 TGCCCTTCAT CCTCGCCATG ACCCTGATGA CTT.CG.CTT
    CACCATTTTA
    301 GGCGCGGNCG ...
  • This corresponds to the amino acid sequence <SEQ ID 104; ORF 19>:
  • 1 MKTPLLKPLL ITSLPVFASV FTAASIVWQL GEPKLAMPFV
    LGIIAGGLVD
    51 LDNXXTGRLK NIITTVALFT LSSLTAQSTL GTGLPFILAM
    TLMTXXFTIL
    101 GAX...
  • Further work revealed the complete nucleotide sequence <SEQ ID 105>:
  • 1 ATGAAAACCC CACTCCTCAA GCCTCTGCTC ATTACCTCGC
    TTCCCGTTTT
    51 CGCCAGTGTT TTTACCGCCG CCTCCATCGT CTGGCAGCTA
    GGCGAACCCA
    101 AGCTCGCCAT GCCCTTCGTA CTCGGCATCA TCGCCGGCGG
    CCTTGTCGAT
    151 TTGGACAACC GCCTGACCGG ACGGCTGAAA AACATCATCA
    CCACCGTCGC
    201 CCTGTTCACC CTCTCCTCGC TCACGGCACA AAGCACCCTC
    GGCACAGGGC
    251 TGCCCTTCAT CCTCGCCATG ACCCTGATGA CCTTCGGCTT
    CACCATTTTA
    301 GGCGCGGTCG GGCTCAAATA CCGCACCTTC GCCTTCGGTG
    CACTCGCCGT
    351 CGCCACCTAC ACCACACTTA CCTACACCCC CGAAACCTAC
    TGGCTGACCA
    401 ACCCCTTCAT GATTTTATGC GGCACCGTAC TGTACAGCAC
    CGCCATCCTC
    451 CTGTTCCAAA TCGTCCTGCC CCACCGCCCC GTCCAAGAAA
    GCGTCGCCAA
    501 CGCCTACGAC GCACTCGGCG GCTACCTCGA AGCCAAAGCC
    GACTTCTTCG
    551 ACCCCGATGA GGCAGCCTGG ATAGGCAACC GCCACATCGA
    CCTCGCCATG
    601 AGCAACACCG GCGTCATCAC CGCCTTCAAC CAATGCCGTT
    CCGCCCTGTT
    651 TTACCGCCTT CGCGGCAAAC ACCGCCACCC GCGCACCGCC
    AAAATGCTGC
    701 GTTACTACTT TGCCGCCCAA GACATACACG AACGCATCAG
    CTCCGCCCAC
    751 GTCGATTATC AGGAAATGTC CGAAAAATTC AAAAACACCG
    ACATCATCTT
    801 CCGCATCCAC CGCCTGCTCG AAATGCAGGG ACAAGCCTGC
    CGCAACACCG
    851 CCCAAGCCCT GCGCGCAAGC AAAGACTACG TTTACAGCAA
    ACGCCTCGGC
    901 CGCGCCATCG AAGGCTGCCG CCAATCGCTG CGCCTCCTTT
    CAGACAGCAA
    951 CGACAGTCCC GACATCCGCC ACCTGCGCCG CCTTCTCGAC
    AACCTCGGCA
    1001 GCGTCGACCA GCAGTTCCGC CAACTCCAGC ACAACGGCCT
    GCAGGCAGAA
    1051 AACGACCGCA TGGGCGACAC CCGCATCGCC GCCCTCGAAA
    CCAGCAGCCT
    1101 CAAAAACACC TGGCAGGCAA TCCGTCCGCA GCTAAACCTC
    GAATCAGGCG
    1151 TATTCCGCCA TGCCGTCCGC CTGTCCCTCG TCGTTGCCGC
    CGCCTGCACC
    1201 ATCGTCGAAG CCCTCAACCT CAACCTCGGC TACTGGATAC
    TACTGACCGC
    1251 CCTTTTCGTC TGCCAACCCA ACTACACCGC CACCAAAAGC
    CGCGTCCGCC
    1301 AGCGCATCGC CGGCACCGTA CTCGGCGTAA TCGTCGGCTC
    GCTCGTCCCC
    1351 TACTTCACCC CGTCTGTCGA AACCAAACTC TGGATTGTCA
    TCGCCAGTAC
    1401 CACCCTCTTT TTCATGACCC GCACCTACAA ATACAGTTTC
    TCCACCTTCT
    1451 TCATTACCAT TCAAGCCCTG ACCAGCCTCT CCCTCGCAGG
    TTTGGACGTA
    1501 TACGCCGCCA TGCCCGTACG CATCATCGAC ACCATTATCG
    GCGCATCCCT
    1551 TGCCTGGGCG GCAGTCAGCT ACCTGTGGCC AGACTGGAAA
    TACCTCACGC
    1601 TCGAACGCAC CGCCGCCCTT GCCGTATGCA GCAACGGTGC
    CTATCTCGAA
    1651 AAAATCACCG AACGCCTCAA AAGCGGCGAA ACCGGCGACG
    ACGTCGAATA
    1701 CCGCGCCACC CGCCGCCGCG CCCACGAACA CACCGCCGCC
    CTCAGCAGCA
    1751 CCCTTTCCGA CATGAGCAGC GAACCCGCAA AATTCGCCGA
    CAGCCTGCAA
    1801 CCCGGCTTTA CCCTGCTCAA AACCGGCTAC GCCCTGACCG
    GCTACATCTC
    1851 CGCCCTCGGC GCATACCGCA GCGAAATGCA CGAAGAATGC
    AGCCCCGACT
    1901 TTACCGCACA GTTCCACCTC GCCGCCGAAC ACACCGCCCA
    CATCTTCCAA
    1951 CACCTGCCCG AAACCGAACC CGACGACTTT CAGACAGCAC
    TGGATACACT
    2001 GCGCGGCGAA CTCGACACCC TCCGCACCCA CAGCAGCGGA
    ACACAAAGCC
    2051 ACATCCTCCT CCAACAGCTC CAACTCATCG CCCGACAGCT
    CGAACCCTAC
    2101 TACCGCGCCT ACCGCCAAAT TCCGCACAGG CAGCCCCAAA
    ATGCAGCCTG
    2151 A
  • This corresponds to the amino acid sequence <SEQ ID 106; ORF19-1>:
  • 1 MKTPLLKPLL ITSLPVFASV FTAASIVWQL GEPKLAMPFV
    LGIIAGGLVD
    51 LDNRLTGRLK NIITTVALFT LSSLTAQSTL GTGLPFILAM
    TLMTFGFTIL
    101 GAVGLKYRTF AFGALAVATY TTLTYTPETY WLTNPFMILC
    GTVLYSTAIL
    151 LFQIVLPHRP VQESVANAYD ALGGYLEAKA DFFDPDEAAW
    IGNRHIDLAM
    201 SNTGVITAFN QCRSALFYRL RGKHRHPRTA KMLRYYFAAQ
    DIHERISSAH
    251 VDYQEMSEKF KNTDIIFRIH RLLEMQGQAC RNTAQALRAS
    KDYVYSKRLG
    301 RAIEGCRQSL RLLSDSNDSP DIRHLRRLLD NLGSVDQQFR
    QLQHNGLQAE
    351 NDRMGDTRIA ALETSSLKNT WQAIRPQLNL ESGVFRHAVR
    LSLVVAAACT
    401 IVEALNLNLG YWILLTALFV CQPNYTATKS RVRQRIAGTV
    LGVIVGSLVP
    451 YFTPSVETKL WIVIASTTLF FMTRTYKYSF STFFITIQAL
    TSLSLAGLDV
    501 YAAMPVRIID TIIGASLAWA AVSYLWPDWK YLTLERTAAL
    AVCSNGAYLE
    551 KITERLKSGE TGDDVEYRAT RRRAHEHTAA LSSTLSDMSS
    EPAKFADSLQ
    601 PGFTLLKTGY ALTGYISALG AYRSEMHEEC SPDFTAQFHL
    AAEHTAHIFQ
    651 HLPETEPDDF QTALDTLRGE LDTLRTHSSG TQSHILLQQL
    QLIARQLEPY
    701 YRAYRQIPHR QPQNAA*
  • Computer analysis of this amino acid sequence gave the following results:
  • Homology with Predicted Transmenbrane protein YHFK of H. influenzae (Accession Number P44289)
  • ORF19 and YHFK proteins show 45% aa identity in 97 aa overlap:
  • orf19 6 LKPLLITSLPVFASVFTAASIVWQLGEPKLAMPFVLGIIAGGLVDLDNXXTGRLKNIITT 65
    L   +I+++PVF +V  AA  +W       +MP +LGIIAGGLVDLDN  TGRLKN+  T
    YHFK 5 LNAKVISTIPVFIAVNIAAVGIWFFDISSQSMPLILGIIAGGLVDLDNRLTGRLKNVFFT 64
    orf19 66 VALFTLSSLTAQSTLGTGLPFILAMTLMTXXFTILGA 102
    +  F++SS   Q  +G  + +I+ MT++T  FT++GA
    YHFK 65 LIAFSISSFIVQLHIGKPIQYIVLMTVLTFIFTMIGA 101

    Homology with a Predicted ORF from N. meningitidis (Strain A)
  • ORF19 shows 92.2% identity over a 102aa overlap with an ORF (ORF19a) from strain A of N. meningitidis:
  • Figure US20130064846A1-20130314-C00049
  • The complete length ORF19a nucleotide sequence <SEQ ID 107> is:
  • 1 ATGAAAACCC CACCCCTCAA GCCTCTGCTC ATTACCTCGC
    TTCCCGTTTT
    51 CGCCAGTGTC TTTACCGCCG CCTCCATCGT CTGGCAGCTG
    GGCGAACCCA
    101 AGCTCGCCAT GCCCTTCGTA CTCGGCATCA TCGCTGGCGG
    CCTGGTCGAT
    151 TTGGACAACC GCCTGACCGG ACGGCTGAAA AACATCATCG
    CCACCGTCGC
    201 CCTGTTCACC CTCTCCTCAC TTGTCGCGCA AAGCACCCTC
    GGCACAGGTT
    251 TGCCATTCAT CCTCGCCATG ACCCTGATGA CTTTCGGCTT
    TACCATCATG
    301 GGCGCGGTCG GGCTGAAATA CCGCACCTTC GCCTTCGGCG
    CACTCGCCGT
    351 CGCCACCTAC ACCACACTTA CCTACACCCC CGAAACCTAC
    TGGCTGACCA
    401 ACCCCTTTAT GATTCTGTGC GGAACCGTAC TGTACAGCAC
    CGCCATCATC
    451 CTGTTCCAAA TCATCCTGCC CCACCGCCCC GTTCAAGAAA
    ACGTCGCCAA
    501 CGCCTACGAA GCACTCGGCA GCTACCTCGA AGCCAAAGCC
    GACTTTTTCG
    551 ATCCCGACGA AGCCGAATGG ATAGGCAACC GCCACATCGA
    CCTCGCCATG
    601 AGCAACACCG GCGTCATCAC CGCCTTCAAC CAATGCCGTT
    CCGCCCTGTT
    651 TTACCGCCTT CGCGGCAAAC ACCGCCACCC GCGCACCGCC
    AAAATGCTGC
    701 GCTACTACTT CGCCGCCCAA GACATACACG AACGCATCAG
    CTCCGCCCAC
    751 GTCGACTACC AAGAGATGTC CGAAAAATTC AAAAACACCG
    ACATCATCTT
    801 CCGCATCCAC CGCCTGCTCG AAATGCAGGG ACAAGCCTGC
    CGCAACACCG
    851 CCCAAGCCCT GCGCGCAAGC AAAGACTACG TTTACAGCAA
    ACGCCTCGGC
    901 CGCGCCATCG AAGGCTGCCG CCAATCGCTG CGCCTCCTTT
    CAGACAGCAA
    951 CGACAATCCC GACATCCGCC ACCTGCGCCG CCTTCTCGAC
    AACCTCGGCA
    1001 GCGTCGACCA GCAGTTCCGC CAACTCCAGC ACAACGGCCT
    GCAGGCAGAA
    1051 AACGACCGCA TGGGCGACAC CCGCATCGCC GCCCTCGAAA
    CCGGCAGCCT
    1101 CAAAAACACC TGGCAGGCAA TCCGTCCGCA GCTAAACCTC
    GAATCAGGCG
    1151 TATTCCGCCA TGCCGTCCGC CTGTCCCTTG TCGTTGCCGC
    CGCCTGCACC
    1201 ATCGTCGAAG CCCTCAACCT CAACCTCGGC TACTGGATAC
    TACTGACCGC
    1251 CCTTTTCGTC TGCCAACCCA ACTACACCGC CACCAAAAGC
    CGCGTCCGCC
    1301 AGCGCATCGC CGGCACCGTA CTCGGCGTAA TCGTCGGCTC
    GCTCGTCCCC
    1351 TACTTTACCC CCTCCGTCGA AACCAAACTC TGGATCGTCA
    TCGCCAGTAC
    1401 CACCCTCTTT TTCATGACCC GCACCTACAA ATACAGCTTC
    TCGACATTTT
    1451 TCATCACCAT TCAAGCCCTG ACCAGCCTCT CCCTCGCAGG
    GTTGGACGTA
    1501 TACGCCGCCA TGCCCGTACG CATCATCGAC ACCATTATCG
    GCGCATCCCT
    1551 TGCCTGGGCG GCAGTCAGCT ACCTGTGGCC AGACTGGAAA
    TACCTCACGC
    1601 TCGAACGCAC CGCCGCCCTT GCCGTATGCA GCAACGGCGC
    CTATCTCGAA
    1651 AAAATCACCG AACGCCTCAA AAGCGGCGAA ACCGGCGACG
    ACGTCGAATA
    1701 CCGCGCCACC CGCCGCCGCG CCCACGAACA CACCGCCGCC
    CTCAGCAGCA
    1751 CCCTTTCCGA CATGAGCAGC GAACCCGCAA AATTCGCCGA
    CAGCCTGCAA
    1801 CCCGGCTTTA CCCTGCTCAA AACCGGCTAC GCCCTGACCG
    GCTACATCTC
    1851 CGCCCTCGGC GCATACCGCA GCGAAATGCA CGAAGAATGC
    AGCCCCGACT
    1901 TTACCGCACA GTTCCACCTC GCCGCCGAAC ACACCGCCCA
    CATCTTCCAA
    1951 CACCTGCCCG AAACCGAACC CGACGACTTT CAGACAGCAC
    TGGATACACT
    2001 GCGCGGCGAA CTCGACACCC TCCGCACCCA CAGCAGCGGA
    ACACAAAGCC
    2051 ACATCCTCCT CCAACAGCTC CAACTCATCG CCCGGCAGCT
    CGAACCCTAC
    2101 TACCGCGCCT ACCGACAAAT TCCGCACAGG CAGCCCCAAA
    ACGCAGCCTG
    2151 A
  • This encodes a protein having amino acid sequence <SEQ ID 108>:
  • 1 MKTPPLKPLL ITSLPVFASV FTAASIVWQL GEPKLAMPFV
    LGIIAGGLVD
    51 LDNRLTGRLK NIIATVALFT LSSLVAQSTL GTGLPFILAM
    TLMTFGFTIM
    101 GAVGLKYRTF AFGALAVATY TTLTYTPETY WLTNPFMILC
    GTVLYSTAII
    151 LFQIILPHRP VQENVANAYE ALGSYLEAKA DFFDPDEAEW
    IGNRHIDLAM
    201 SNTGVITAFN QCRSALFYRL RGKHRHPRTA KMLRYYFAAQ
    DIHERISSAH
    251 VDYQEMSEKF KNTDIIFRIH RLLEMQGQAC RNTAQALRAS
    KDYVYSKRLG
    301 RAIEGCRQSL RLLSDSNDNP DIRHLRRLLD NLGSVDQQFR
    QLQHNGLQAE
    351 NDRMGDTRIA ALETGSLKNT WQAIRPQLNL ESGVFRHAVR
    LSLVVAAACT
    401 IVEALNLNLG YWILLTALFV CQPNYTATKS RVRQRIAGTV
    LGVIVGSLVP
    451 YFTPSVETKL WIVIASTTLF FMTRTYKYSF STFFITIQAL
    TSLSLAGLDV
    501 YAAMPVRIID TIIGASLAWA AVSYLWPDWK YLTLERTAAL
    AVCSNGAYLE
    551 KITERLKSGE TGDDVEYRAT RRRAHEHTAA LSSTLSDMSS
    EPAKFADSLQ
    601 PGFTLLKTGY ALTGYISALG AYRSEMHEEC SPDFTAQFHL
    AAEHTAHIFQ
    651 HLPETEPDDF QTALDTLRGE LDTLRTHSSG TQSHILLQQL
    QLIARQLEPY
    701 YRAYRQIPHR QPQNAA*
  • ORF19a and ORF19-1 show 98.3% identity in 716 aa overlap:
  • Figure US20130064846A1-20130314-C00050
  • Homology with a Predicted ORF from N. gonorrhoeae
  • ORF19 shows 95.1% identity over a 102aa overlap with a predicted ORF (ORF19.ng) from N. gonorrhoeae:
  • Figure US20130064846A1-20130314-C00051
  • An ORF19ng nucleotide sequence <SEQ ID 109> is predicted to encode a protein having amino acid sequence <SEQ ID 110>:
  • 1 MKTPLLKPLL ITSLPVFASV FTAASIVWQL GEPKLAMPFV
    LGIIAGGLVD
    51 LDNRLTGRLK NIIATVALFT LSSLTAQSTL  GTGLPFILAM
    TLMTFGFTIL
    101 GAVGLKYRTF AFGALAVATY TTLTYTPETY WLTNPFMILC
    GTVLYSTAII
    151 LFQIILPHRP VQESVANAYE ALGGYLEAKA DFFDPDEAAW
    IGNRHIDLAM
    201 SNTGVITAFN QCRSALFYRL RGKHRHPRTA KMLRYYFAAQ
    DIHERISSAH
    251 VDYQEMSEKF KNTDIIFRIR RLLEMQGQAC RNTAQAIRSG
    KDYVYSKRLG
    301 RAIEGCRQSL RLLSDGNDSP DIRHLSRLLD NLGSVDQQFR
    QLRHSDSPAE
    351 NDRMGDTRIA ALETGSFKNT *
  • Further work revealed the complete nucleotide sequence <SEQ ID 111>:
  • 1 ATGAAAACCC CACTCCTCAA GCCTCTGCTC ATTACCTCGC
    TTCCCGTTTT
    51 CGCCAGTGTC TTTACCGCCG CCTCCATCGT CTGGCAGCTA
    GGCGAACCCA
    101 AGCTCGCCAT GCCCTTCGTA CTCGGCATCA TCGCCGGCGG
    CCTGGTCGAT
    151 TTGGACAACC GCCTGACCGG ACGGCTGAAA AACATCATCG
    CCACCGTCGC
    201 CCTGTTTACC CTCTCCTCGC TCACGGCGCA AAGCACCCTC
    GGCACAGGGC
    251 TGCCCTTCAT CCTCGCCATG ACCCTGATGA CCTTCGGCTT
    TACCATTTTA
    301 GGCGCGGTCG GGCTGAAATA CCGCACCTTC GCCTTCGGCG
    CACTCGCCGT
    351 CGCCACCTAC ACCACGCTTA CCTACACCCC CGAAACCTAC
    TGGCTGACCA
    401 ACCCCTTCAT GATTTTATGC GGCACCGTAC TGTACAGCAC
    CGCCATCATC
    451 CTGTTCCAAA TCATCCTGCC CCACCGCCCC GTCCAAGAAA
    GCGTCGCCAA
    501 TGCCTACGAA GCACTCGGCG GCTACCTCGA AGCCAAAGCC
    GACTTCTTCG
    551 ACCCCGATGA GGCAGCCTGG ATAGGCAACC GCCACATCGA
    CCTCGCCATG
    601 AGCAACACCG GCGTCATCAC CGCCTTCAAC CAATGCCGTT
    CCGCCCTGTT
    651 TTACCGTTTG CGCGGCAAAC ACCGCCACCC GCGCACCGCC
    AAAATGCTGC
    701 GCTACTACTT CGCCGCCCAA GACATCCACG AACGCATCAG
    CTCCGCCCAC
    751 GTCGACTACC AAGAGATGTC CGAAAAATTC AAAAACACCG
    ACATCATCTT
    801 CCGCATCCGC CGCCTGCTCG AAATGCAGGG GCAGGCGTGC
    CGCAACACCG
    851 CCCAAGCCAT CCGGTCGGGC AAAGACTAcg tTTACAGCAA
    ACGCCTCGGA
    901 CGCGCCATcg aaggctgCCG CCAGTCGCtg cgcctCCTTt
    cagacggcaA
    951 CGACAGTCCC GACATCCGCC ACCTGAGccg CCTTCTCGAC
    AACCTCGgca
    1001 GCGTcgacca gcagtTCcgc caactCCGAC ACAgcgactC
    CCCCGCcgaa
    1051 Aacgaccgca tgggcgacaC CCGCATCGCC GCCCtcgaaa
    ccggcagctT
    1101 caaaaaCAcc tggcaggCAA TCCGTCCGCa gctgaaCCTC
    GAATCatgCG
    1151 TATTCCGCCA TGCCGTCCGC CTGTCCCTCG TCGTTGCCGC
    CGCCTGCACC
    1201 ATCGTCgaag cCCTCAACCT CAACCTCGGC TACTGGATAC
    TGCTGACCGC
    1251 CCTTTTCGTC TGCCAACCCA ACTACACCGC CACCAAAAGC
    CGCGTGTACC
    1301 AACGCATCGC CGGCACCGTA CTCGGCGTAA TCGTCGGCTC
    GCTCGTCCCC
    1351 TACTTCACCC CCTCCGTCGA AACCAAACTC TGGATTGTCA
    TCGCCGGTAC
    1401 CACCCTGTTC TTCATGACCC GCACCTACAA ATACAGTTTC
    TCCACCTTCT
    1451 TCATCACCAT TCAGGCACTG ACCAGCCTCT CCCTCGCAGG
    TTTGGACGTA
    1501 TACGCCGCCA TGCCCGTGCG CATCATcgaC ACCATTATCG
    GCGCATCCCT
    1551 TGCCTGGGCG GCGGTCAGCT ACCTGTGGCC AGACTGGAAA
    TACCTCACGC
    1601 TCGAACGCAC CGCCGCCCTT GCCGTATGCA GCAGCGGCAC
    ATACCTCCAA
    1651 AAAATTGCCG AACGCCTCAA AACCGGCGAA ACCGGCGACG
    ACATAGAATA
    1701 CCGCATCACC CGCCGCCGCG CCCACGAACA CACCGCCGCC
    CTCAGCAGCA
    1751 CCCTTTCCGA CATGAGCAGC GAACCCGCAA AATTCGCCGA
    CAGCCTGCAA
    1801 CCCGGCTTTA CCCTGCTCAA AACCGGCTAC GCCCTGACCG
    GCTACATCTC
    1851 CGCCCTCGGC GCATACCGCA GCGAAATGCA CGAAGAATGC
    AGCCCCGACT
    1901 TTACCGCACA GTTCCACCTT GCCGCCGAAC ACACCGCCCA
    CATCTTCCAA
    1951 CACCTGCCCG ACATGGGACC CGACGACTTT CAGACGGCAT
    TGGATACACT
    2001 GCGCGGCGAA CTCGGCACCC TCCGCACCCG CAGCAGCGGA
    ACACAAAGCC
    2051 ACATCCTCCT CCAACAGCTC CAACTCATCG CccgGCAACT
    CGAACCCTAC
    2101 TACCGCGCCT ACCGACAAAT TCCGCACAGG CAGCCCCAAA
    ACGCAGCCTG
    2151 A
  • This corresponds to the amino acid sequence <SEQ ID 112; ORF19ng-1>:
  • 1 MKTPLLKPLL ITSLPVFASV FTAASIVWQL GEPKLAMPFV
    LGIIAGGLVD
    51 LDNRLTGRLK NIIATVALFT LSSLTAQSTL GTGLPFILAM
    TLMTFGFTIL
    101 GAVGLKYRTF AFGALAVATY TTLTYTPETY WLTNPFMILC
    GTVLYSTAII
    151 LFQIILPHRP VQESVANAYE ALGGYLEAKA DFFDPDEAAW
    IGNRHIDLAM
    201 SNTGVITAFN QCRSALFYRL RGKHRHPRTA KMLRYYFAAQ
    DIHERISSAH
    251 VDYQEMSEKF KNTDIIFRIR RLLEMQGQAC RNTAQAIRSG
    KDYVYSKRLG
    301 RAIEGCRQSL RLLSDGNDSP DIRHLSRLLD NLGSVDQQFR
    QLRHSDSPAE
    351 NDRMGDTRIA ALETGSFKNT WQAIRPQLNL ESCVFRHAVR
    LSLVVAAACT
    401 IVEALNLNLG YWILLTALFV CQPNYTATKS RVYQRIAGTV
    LGVIVGSLVP
    451 YFTPSVETKL WIVIAGTTLF FMTRTYKYSF STFFITIQAL
    TSLSLAGLDV
    501 YAAMPVRIID TIIGASLAWA AVSYLWPDWK YLTLERTAAL
    AVCSSGTYLQ
    551 KIAERLKTGE TGDDIEYRIT RRRAHEHTAA LSSTLSDMSS
    EPAKFADSLQ
    601 PGFTLLKTGY ALTGYISALG AYRSEMHEEC SPDFTAQFHL
    AAEHTAHIFQ
    651 HLPDMGPDDF QTALDTLRGE LGTLRTRSSG TQSHILLQQL
    QLIARQLEPY
    701 YRAYRQIPHR QPQNAA*
  • ORF19ng-1 and ORF19-1 show 95.5% identity in 716 aa overlap:
  • Figure US20130064846A1-20130314-C00052
  • In addition, ORF19ng-1 shows significant homology to a hypothetical gonococcal protein previously entered in the databases:
  • sp|O33369|YOR2_NEIGO HYPOTHETICAL 45.5 KD PROTEIN (ORF2) gnl|PID|e1154438
    (AJ002423) hypothetical protein [Neisseria gonorrh] Length = 417
    Score = 1512 (705.6 bits), Expect = 5.3e−203, P = 5.3e−203
    Identities = 301/326 (92%), Positives = 306/326 (93%)
    Query: 307 RQSLRLLSDGNDSPDIRHLSRLLDNLGSVDQQFRQLRHSDSPAENDRMGDTRIAALETGS 366
    RQSLRLLSDGNDS DIRHLSRLLDNLGSVDQQFRQLRHSDSPAENDRMGDTRIAALETGS
    Sbjct: 1 RQSLRLLSDGNDSXDIRHLSRLLDNLGSVDQQFRQLRHSDSPAENDRMGDTRIAALETGS 60
    Query: 367 FKNTWQAIRPQLNLESCVFRHAVRLSLVVAAACTIVEALNLNLGYWILLTALFVCQPNYT 426
    FKNTWQAIRPQLNLES VFRHAVRLSLVVAAACTIVEALNLNLGYWILLT LFVCQPNYT
    Sbjct: 61 FKNTWQAIRPQLNLESGVFRHAVRLSLVVAAACTIVEALNLNLGYWILLTRLFVCQPNYT 120
    Query: 427 ATKSRVYQRIAGTVLGVIVGSLVPYFTPSVETKLWIVIAGTTLFFMTRTYKYSFSTFFIT 486
    ATKSRVYQRIAGTVLGVIVGSLVPYFTPSVETKLWIVIAGTTLFFMTRTYKYSFSTFFIT
    Sbjct: 121 ATKSRVYQRIAGTVLGVIVGSLVPYFTPSVETKLWIVIAGTTLFFMTRTYKYSFSTFFIT 180
    Query: 487 IQALTSLSLAGLDVYAAMPVRIIDTIIGASLAWAAVSYLWPDWKYLTLERTAALAVCSSG 546
    IQALTSLSLAGLDVYAAMPVRIIDTIIGASLAWAAVSYLWPDWKYLTLERTAALAVCSSG
    Sbjct: 181 IQALTSLSLAGLDVYAAMPVRIIDTIIGASLAWAAVSYLWPDWKYLTLERTAALAVCSSG 240
    Query: 547 TYLQKIAERLKTGETGDDIEYRITRRRAHEHTAALSSTLSDMSSEPAKFADSLQPGFTLL 606
    TYLQKIAERLKTGETGDDIEYRITRRRAHEHTAALSSTLSDMSSEPAKFAD+  P
    Sbjct: 241 TYLQKIAERLKTGETGDDIEYRITRRRAHEHTAALSSTLSDMSSEPAKFADTCNPALPCS 300
    Query: 607 KTGYALTGYISALGAYRSEMHEECSP 632
    K   ALTGYISALG   ++  +  +P
    Sbjct: 301 KPATALTGYISALGHTAAKCTKNAAP 326
  • Based on this analysis, including the presence of several putative transmembrane domains in the gonococcal protein (the first of which is also seen in the meningococcal protein), and on homology with the YHFK protein, it is predicted that the proteins from N. meningitidis and N. gonorrhoeae, and their epitopes, could be useful antigens for vaccines or diagnostics, or for raising antibodies.
  • Example 14
  • The following DNA sequence, believed to be complete, was identified in N. meningitidis <SEQ ID 113>:
  • 1 ATGAATATGC TGGGAGCTTT GGCAAAAGTC GGCAGCCTGA
    CGATGGTGTC
    51 GCGCGTTTTG GGATTTGTGC GCGATACGGT CATTGCGCGG
    GCATTCGGCG
    101 CGGGTATGGC GACGGATGCG TTTTTTGTCG CGTTCAAACT
    GCCCAACCTG
    151 CTTCGCCGCG TGTTTGCGGA GGGGGCGTTT GCCCAAGCGT
    TTGTGCCGAT
    201 TTTGGCGGAA TACAAGGAAA CGCGTTCAAA AGAGGCGG.C
    GAAGCCTTTA
    251 TCCGCCATGT GGCGGGGATG CTGTCGTTTG TACTGGTTAT
    CGTTACCGCG
    301 CTGGGCATAC TTGCCGCGCC TTGGGTGATT TATGTTTCCG
    CACCCGAGTT
    351 TTGCCCAAGA TGCCGACAAA TTTCAGCTCT CCATCGATTT
    GCTGCGGATT
    401 ACGTTTCCTT ATATATTATT GATTTCCCTG TCTTCATTTG
    TCGGCTCGGT
    451 ACTCAATTCT TATCATAAGT TCGGCATTCC GGCGTTTACG
    CCAC.GTTTC
    501 TGAACGTGTC GTTTATCGTA TTCGCGCTGT TTTTCGTGCC
    GTATTTCGAT
    551 CCGCCCGTTA CCGCGCyGGC GTGGGCGGTC TTTGTCGGCG
    GCATTTTGCA
    601 ACTCGrmTTC CAACTGCCCT GGCTGGCGAA ACTGGGCTTT
    TTGAAACTGC
    651 CCAAACtGAG TTTCAAAGAT GCGGCGGTCA ACCGCGTGAT
    GAAACAGATG
    701 GCGCCTGCgA TTTTgGGCGT GAgCGTGGCG CAGGTTTCTT
    TGGTGATCAA
    751 CACGATTTTc GCGTCTTATC TGCAATCGGG CAGCGTTTCA
    TGGATGTATT
    801 ACGCCGACCG CATGATGGAG CTGCCCAGCG GCGTGCTGGG
    GGCGGCACTC
    851 GGTACGATTT TGCTGCCGAC TTTGTCCAAA CACTCGGCAA
    ACCaAGATAC
    901 GGaACAGTTT TCCGCCCTGC TCGACTGGGG TTTGCGCCTG
    TGCATGCtgc
    951 TGACGCTGCC GGCGgcGGTC GGACTGGCGG TGTTGTCGTT
    cCCgCtGGTG
    1001 GCGACGCTGT TTATGTACCG CGwATTTACG CTGTTTGACG
    CGCAGATGAC
    1051 GCAACACGCG CTGATTGCCT ATTCTTTCGG TTTAATCGGC
    TTAATCATGA
    1101 TTAAAGTGTT GGCACCCGGC TTCTATGCGC GGCAAAACAT
    CAAwAmGCCC
    1151 GTCAAAATCG CCATCTTCAC GCTCATCTGC mCGCAGTTGA
    TGAACCTTGs
    1201 CTTTAyCGGC CCACTrrAAC rCasTCGGAC TTTCGCTTGC
    CATCGGTCTG
    1251 GGCGCGTGTA TCAATGCCGG ATTGTTGTTT TACCTGTTGC
    GCAGACACGG
    1301 TATTTACCAA CCTGG.CAAG GGTTGGGCAG CGTTCTT.AG
    CAAAAATGCT
    1351 GcTCTCGCTC GCCGTGA
  • This corresponds to the amino acid sequence <SEQ ID 114; ORF20>:
  • 1 MNMLGALAKV GSLTMVSRVL GFVRDTVIAR AFGAGMATDA
    FFVAFKLPNL
    51 LRRVFAEGAF AQAFVPILAE YKETRSKEAX EAFIRHVAGM
    LSFVLVIVTA
    101 LGILAAPWVI YVSAPSFAQD ADKFQLSIDL LRITFPYILL
    ISLSSFVGSV
    151 LNSYHKFGIP AFTPXFLNVS FIVFALFFVP YFDPPVTAXA
    WAVFVGGILQ
    201 LXFQLPWLAK LGFLKLPKLS FKDAAVNRVM KQMAPAILGV
    SVAQVSLVIN
    251 TIFASYLQSG SVSWMYYADR MMELPSGVLG AALGTILLPT
    LSKHSANQDT
    301 EQFSALLDWG LRLCMLLTLP AAVGLAVLSF PLVATLFMYR
    XFTLFDAQMT
    351 QHALIAYSFG LIGLIMIKVL APGFYARQNI XXPVKIAIFT
    LICXQLMNLX
    401 FXGPLXXIGL SLAIGLGACI NAGLLFYLLR RHGIYQPXQG
    LGSVLXQKCC
    451 SRSP*
  • These sequences were elaborated, and the complete DNA sequence <SEQ ID 115> is:
  • 1 ATGAATATGC TGGGAGCTTT GGCAAAAGTC GGCAGCCTGA
    CGATGGTGTC
    51 GCGCGTTTTG GGATTTGTGC GCGATACGGT CATTGCGCGG
    GCATTCGGCG
    101 CGGGTATGGC GACGGATGCG TTTTTTGTCG CGTTCAAACT
    GCCCAACCTG
    151 CTTCGCCGCG TGTTTGCGGA GGGGGCGTTT GCCCAAGCGT
    TTGTGCCGAT
    201 TTTGGCGGAA TACAAGGAAA CGCGTTCAAA AGAGGCGGCG
    GAGGCTTTTA
    251 TCCGCCATGT GGCGGGGATG CTGTCGTTTG TACTGGTTAT
    CGTTACCGCG
    301 CTGGGCATAC TTGCCGCGCC TTGGGTGATT TATGTTTCCG
    CACCCGGTTT
    351 TGCCCAAGAT GCCGACAAAT TTCAGCTCTC CATCGATTTG
    CTGCGGATTA
    401 CGTTTCCTTA TATATTATTG ATTTCCCTGT CTTCATTTGT
    CGGCTCGGTA
    451 CTCAATTCTT ATCATAAGTT CGGCATTCCG GCGTTTACGC
    CCACGTTTCT
    501 GAACGTGTCG TTTATCGTAT TCGCGCTGTT TTTCGTGCCG
    TATTTCGATC
    551 CGCCCGTTAC CGCGCTGGCG TGGGCGGTCT TTGTCGGCGG
    CATTTTGCAA
    601 CTCGGCTTCC AACTGCCCTG GCTGGCGAAA CTGGGCTTTT
    TGAAACTGCC
    651 CAAACTGAGT TTCAAAGATG CGGCGGTCAA CCGCGTGATG
    AAACAGATGG
    701 CGCCTGCGAT TTTGGGCGTG AGCGTGGCGC AGGTTTCTTT
    GGTGATCAAC
    751 ACGATTTTCG CGTCTTATCT GCAATCGGGC AGCGTTTCAT
    GGATGTATTA
    801 CGCCGACCGC ATGATGGAGC TGCCCAGCGG CGTGCTGGGG
    GCGGCACTCG
    851 GTACGATTTT GCTGCCGACT TTGTCCAAAC ACTCGGCAAA
    CCAAGATACG
    901 GAACAGTTTT CCGCCCTGCT CGACTGGGGT TTGCGCCTGT
    GCATGCTGCT
    951 GACGCTGCCG GCGGCGGTCG GACTGGCGGT GTTGTCGTTC
    CCGCTGGTGG
    1001 CGACGCTGTT TATGTACCGC GAATTTACGC TGTTTGACGC
    GCAGATGACG
    1051 CAACACGCGC TGATTGCCTA TTCTTTCGGT TTAATCGGCT
    TAATCATGAT
    1101 TAAAGTGTTG GCACCCGGCT TCTATGCGCG GCAAAACATC
    AAAACGCCCG
    1151 TCAAAATCGC CATCTTCACG CTCATCTGCA CGCAGTTGAT
    GAACCTTGCC
    1201 TTTATCGGCC CACTGAAACA CGTCGGACTT TCGCTTGCCA
    TCGGTCTGGG
    1251 CGCGTGTATC AATGCCGGAT TGTTGTTTTA CCTGTTGCGC
    AGACACGGTA
    1301 TTTACCAACC TGGCAAGGGT TGGGCAGCGT TCTTAGCAAA
    AATGCTGCTC
    1351 TCGCTCGCCG TGATGTGCGG CGGACTGTGG GCAGCGCAGG
    CTTACCTGCC
    1401 GTTTGAATGG GCGCACGCCG GCGGAATGCG GAAAGCGGGG
    CAGCTCTGCA
    1451 TCCTGATTGC CGTCGGCGGC GGACTGTATT TCGCATCACT
    GGCGGCTTTG
    1501 GGCTTCCGTC CGCGCCATTT CAAACGCGTG GAAAACTGA
  • This corresponds to the amino acid sequence <SEQ ID 116; ORF20-1>:
  • 1 MNMLGALAKV GSLTMVSRVL GFVRDTVIAR AFGAGMATDA
    FFVAFKLPNL
    51 LRRVFAEGAF AQAFVPILAE YKETRSKEAA EAFIRHVAGM
    LSFVLVIVTA
    101 LGILAAPWVI YVSAPGFAQD ADKFQLSIDL LRITFPYILL
    ISLSSFVGSV
    151 LNSYHKFGIP AFTPTFLNVS FIVFALFFVP YFDPPVTALA
    WAVFVGGILQ
    201 LGFQLPWLAK LGFLKLPKLS FKDAAVNRVM KQMAPAILGV
    SVAQVSLVIN
    251 TIFASYLQSG SVSWMYYADR MMELPSGVLG AALGTILLPT
    LSKHSANQDT
    301 EQFSALLDWG LRLCMLLTLP AAVGLAVLSF PLVATLFMYR
    EFTLFDAQMT
    351 QHALIAYSFG LIGLIMIKVL APGFYARQNI KTPVKIAIFT
    LICTQLMNLA
    401 FIGPLKHVGL SLAIGLGACI NAGLLFYLLR RHGIYQPGKG
    WAAFLAKMLL
    451 SLAVMCGGLW AAQAYLPFEW AHAGGMRKAG QLCILIAVGG
    GLYFASLAAL
    501 GFRPRHFKRV EN*
  • Computer analysis of this amino acid sequence gave the following results:
  • Homology with the MviN Virulence Factor of S. typhimurium (Accession Number P37169)
  • ORF20 and MviN proteins show 63% aa identity in 440aa overlap:
  • Orf20 1 MNMLGALAKVGSLTMVSRVLGFVRDTVIARAFGAGMATDAFFVAFKLPNLLRRVFAEGAF 60
    MN+L +LA V S+TM SRVLGF RD ++AR FGAGMATDAFFVAFKLPNLLRR+FAEGAF
    MviN 14 MNLLKSLAAVSSMTMFSRVLGFARDAIVARIFGAGMATDAFFVAFKLPNLLRRIFAEGAF 73
    Orf20 61 AQAFVPILAEYKETRSKEAXEAFIRHVAGMLSFVLVIVTALGILAAPWVIYVSAPSFAQD 120
    +QAFVPILAEYK  + +EA   F+ +V+G+L+  L +VT  G+LAAPWVI V+AP FA
    MviN 74 SQAFVPILAEYKSKQGEEATRIFVAYVSGLLTLALAVVTVAGMLAAPWVIMVTAPGFADT 133
    Orf20 121 ADKFQLSIDLLRITFPYILLISLSSFVGSVLNSYHKFGIPAFTPXFLNVSFIVFALFFVP 180
    ADKF L+  LLRITFPYILLISL+S VG++LN++++F IPAF P FLN+S I FALF  P
    MviN 134 ADKFALTTQLLRITFPYILLISLASLVGAILNTWNRFSIPAFAPTFLNISMIGFALFAAP 193
    Orf20 181 YFDPPVTAXAWAVFVGGILQLXFQLPWLAKLGFLKLPKLSFKDAAVNRVMKQMAPAILGV 240
    YF+PPV A AWAV VGG+LQL +QLP+L K+G L LP+++F+D    RV+KQM PAILGV
    MviN 194 YFNPPVLALAWAVTVGGVLQLVYQLPYLKKIGMLVLPRINFRDTGAMRVVKQMGPAILGV 253
    Orf20 241 SVAQVSLVINTIFASYLQSGSVSWMYYADRMMELPSGVLGAALGTILLPTLSKHSANQDT 300
    SV+Q+SL+INTIFAS+L SGSVSWMYYADR+ME PSGVLG ALGTILLP+LSK  A+ +
    MviN 254 SVSQISLIINTIFASFLASGSVSWMYYADRLMEFPSGVLGVALGTILLPSLSKSFASGNH 313
    Orf20 301 EQFSALLDWGLRLCMLLTLPAAVGLAVLSFPLVATLFMYRXFTLFDAQMTQHALIAYSFG 360
    +++  L+DWGLRLC LL LP+AV L +L+ PL  +LF Y  FT FDA MTQ ALIAYS G
    MviN 314 DEYCRLMDWGLRLCFLLALPSAVALGILAKPLTVSLFQYGKFTAFDAAMTQRALIAYSVG 373
    Orf20 361 LIGLIMIKVLAPGFYARQNIXXPVKIAIFTLICXQLMNLXFXXXXXXXXXXXXXXXXXCI 420
    LIGLI++KVLAPGFY+RQ+I  PVKIAI TLI  QLMNL F                 C+
    MviN 374 LIGLIVVKVLAPGFYSRQDIKTPVKIAIVTLIMTQLMNLAFIGPLKHAGLSLSIGLAACL 433
    Orf20 421 NAGLLFYLLRRHGIYQPXQG 440
    NA LL++ LR+  I+ P  G
    MviN 434 NASLLYWQLRKQNIFTPQPG 453

    Homology with a Predicted ORF from N. meningitidis (Strain A)
  • ORF20 shows 93.5% identity over a 447aa overlap with an ORF (ORF20a) from strain A of N. meningitidis:
  • Figure US20130064846A1-20130314-C00053
  • The complete length ORF20a nucleotide sequence <SEQ ID 117> is:
  • 1 ATGAATATGC TGGGAGCTTT GGTAAAAGTC GGCAGCCTGA
    CGATGGTGTC
    51 GCGCGTTTTG GGATTTGTGC GCGATACGGT CATTGCGCGC
    GCATTCGGCG
    101 CAGGCATGGC GACGGATGCG TTCTTTGTCG CGTTCAAACT
    GCCCAACCTG
    151 CTTCGCCGCG TGTTTGCGGA GGGGGCGTTT GCCCAAGCGT
    TTGTGCCGAT
    201 TTTGGCGGAA TATAAGGAAA CGCGTTCTAA AGAGGCGACG
    GAGGCTTTTA
    251 TCCGCCATGT GGCGGGGATG CTGTCGTTTG TACTGGTCAT
    CGTTACCGCG
    301 CTGGGCATAC TTGCCGCGCC TTGGGTGATT TATGTTTCCG
    CACCCGGTTT
    351 TGCCAAAGAT GCCGACAAAT TTCAGCTCTC TATCGATTTG
    CTGCGGATTA
    401 CGTTTCCTTA TATCTTATTG ATTTCACTTT CCTCTTTTGT
    CGGCTCGGTA
    451 CTCAATTCCT ATCATAAATT CAGCATTCCT GCGTTTACGC
    CCACGTTCCT
    501 GAACGTGTCG TTTATCGTAT TCGCGCTGTT TTTCGTGCCG
    TATTTCGATC
    551 CTCCCGTTAC CGCGCTGGCT TGGGCGGTTT TTGTCGGCGG
    CATTTTGCAA
    601 CTCGGCTTCC AACTGCCCTG GCTGGCGAAA CTGGGTTTTT
    TGAAACTGCC
    651 CAAACTGAGT TTCAAAGATG CGGCGGTCAA CCGCGTGATG
    AAACAGATGG
    701 CGCCTGCGAT TTTGGGCGTG AGCGTGGCGC AGATTTCTTT
    GGTGATCAAC
    751 ACGATTTTCG CGTCTTATCT GCAATCGGGC AGCGTTTCAT
    GGATGTATTA
    801 CGCCGACCGC ATGATGGAAC TGCCCGGCGG CGTGCTGGGG
    GCGGCACTCG
    851 GTACGATTTT GCTGCCGACT TTGTCCAAAC ACTCGGCAAA
    CCAAGATACG
    901 GAACAGTTTT CCGCCCTGCT CGACTGGGGT TTGCGCNTGT
    GCATGCTGCT
    951 GACGCTGCCG GCGGCGGTCG GAATGGCGGT GTTGTCGTTC
    CCGCTGGTGG
    1001 CAACCTTGTT TATGTACCGA GAATTCACGC TGTTTGACGC
    GCAGATGACG
    1051 CAACACGCGC TGATTGCCTA TTCTTTCGGT TTAATCGGTT
    TAATCATGAT
    1101 TAAAGTGTTG GCGCCCGGCT TTTATGCGCG GCAAAACATC
    AAAACGCCCG
    1151 TCAAAATCGC CATCTTCACG CTCATTTGCA CGCAGTTGAT
    GAACCTTGCC
    1201 TTTATCGGCC CACTGAAACA CGTCGGACTT TCGCTTGCCA
    TCGGTCTGGG
    1251 CGCGTGTATC AATGCCGGAT TGTTGTTTTA CCTGTTGCGC
    AGACACGGTA
    1301 TTTACCAACC TGGCAAGGGT TGGGCAGCGT TCTTGGCAAA
    AATGCTGCTC
    1351 TCGCTCGCCG TGATGGGAGG CGGCCTGTAT GCCGCCCAAA
    TCTGGCTGCC
    1401 GTTCGACTGG GCACACGCCG GCGGAATGCA AAAGGCCGCC
    CGGCTCTTCA
    1451 TCCTGATTGC CGTCGGCGGC GGACTGTATT TCGCATCACT
    GGCGGCTTTG
    1501 GGCTTCCGTC CGCGCCATTT CAAACGCGTG GAAAGCTGA
  • This encodes a protein having amino acid sequence <SEQ ID 118>:
  • 1 MNMLGALVKV GSLTMVSRVL GFVRDTVIAR AFGAGMATDA
    FFVAFKLPNL
    51 LRRVFAEGAF AQAFVPILAE YKETRSKEAT EAFIRHVAGM
    LSFVLVIVTA
    101 LGILAAPWVI YVSAPGFAKD ADKFQLSIDL LRITFPYILL
    ISLSSFVGSV
    151 LNSYHKFSIP AFTPTFLNVS FIVFALFFVP YFDPPVTALA
    WAVFVGGILQ
    201 LGFQLPWLAK LGFLKLPKLS FKDAAVNRVM KQMAPAILGV
    SVAQISLVIN
    251 TIFASYLQSG SVSWMYYADR MMELPGGVLG AALGTILLPT
    LSKHSANQDT
    301 EQFSALLDWG LRXCMLLTLP AAVGMAVLSF PLVATLFMYR
    EFTLFDAQMT
    351 QHALIAYSFG LIGLIMIKVL APGFYARQNI KTPVKIAIFT
    LICTQLMNLA
    401 FIGPLKHVGL SLAIGLGACI NAGLLFYLLR RHGIYQPGKG
    WAAFLAKMLL
    451 SLAVMGGGLY AAQIWLPFDW AHAGGMQKAA RLFILIAVGG
    GLYFASLAAL
    501 GFRPRHFKRV ES*
  • ORF20a and ORF20-1 show 96.5% identity in 512 aa overlap:
  • Figure US20130064846A1-20130314-C00054
  • Homology with a Predicted ORF from N. gonorrhoeae
  • ORF20 shows 92.1% identity over a 454aa overlap with a predicted ORF (ORF20ng) from N. gonorrhoeae:
  • Figure US20130064846A1-20130314-C00055
  • An ORF20ng nucleotide sequence <SEQ ID 119> was predicted to encode a protein having amino acid sequence <SEQ ID 120>:
  • 1 MNMLGALAKV GSLTMVSRVL GFVRDTVIAR AFGAGMATDA
    FFVAFKLPNL
    51 LRRVFAEGAF AQAFVPILAE YKETRSKEAT EAFIRHVAGM
    LSFVLIVVTA
    101 LGILAAPWVI YVSAPGFTKD ADKFQLSISL LRITFPYILL
    ISLSSFVGSI
    151 LNSYHKFGIP AFTPTFLNIS FIVFALFFVP YFDPPVTALA
    WAVFVGGILQ
    201 LGFQLPWLAK LGFLKLPKLN FKDAAVNRVM KQMAPAILGV
    SVAQISLVIN
    251 TIFASYLQSG SVSWMYYADR MMELPGGVLG AALGTILLPT
    LSKHSANQDT
    301 EQFSALLDWG LRLCMLLTLP AAAGLAVLSF PLVATLFMYR
    EFTLFDAQMT
    351 QHALIAYSFG LIGLIMIKVL ASGFYARQNI KTPVKIAIFT
    LICTQLMNLA
    401 FIGPLKHAGL SLAIGLGACI NAGLLFFLFR KHGIYRPGQG
    LGQPSWRKCC
    451 SRSP*
  • Further DNA sequence analysis revealed the following DNA sequence <SEQ ID 121>:
  • 1 ATGAATATGC TTGGAGCTTT GGCAAAAGTC GGCAGCCTGA
    CGATGGTGTC
    51 GCGCGTTTTG GGATTTGTGC GCGATACGGT CATTGCGCGG
    GCATTCGGCG
    101 CGGGTATGGC GACGGATGCG TTTTTTGTCG CGTTCAAACT
    GCCCAACCTG
    151 CTTCGCCGCG TGTTTGCGGA GGGGGCGTTT GCCCAAGCGT
    TTGTGCCGAT
    201 TTTGGCGGAA TATAAGGAAA CGCGTTCTAA AGAGGCGAcg
    gAGGCTTTTA
    251 TCCGCCACGt tgcgggAatg CTGTCGTTTG TGCTGATcgt
    cGttacCGCG
    301 CTGGGCATAC TTGCCGCgcc tTGGGTGATT TATGTTtccg
    CgcccGGCTT
    351 TACCAAAGAC GCGGACAAGT TCCAACTTTC CATCAGCCTG
    CTGCGGATTA
    401 CGTTTCCTTA TATATTATTG ATTTCTTTGT CTTCTTTTGT
    CGGCTCGATA
    451 CTCAATTCCT ACCATAAGTT CGGCATTCCC GCGTTTACGC
    CCACGTTTTT
    501 AAACATCTCT TTTATCGTAT TCGCACTGTT TTTCGTGCCG
    TATTTCGATC
    551 CGCCCGTTAC CGCGCTGGCG TGGGCGGTTT TTGTCGGCGG
    TATTTTGCAG
    601 CTCGGTTTCC AACTGCCGTG GCTGGCGAAA CTGGGCTTTT
    TGAAACTGCC
    651 CAAACTGAAT TTCAAAGATG CGGCGGTCAA CCGCGTCATG
    AAACAGATGG
    701 CGCCTGCGAT TTTGGGCGTG agcgTGGCGC AAATTTCTTT
    GgttATCAAC
    751 ACGATTTTCG CGTCTTATCT GCAATCGGGC AGCGTTTCAT
    GGATGTatta
    801 cgCCGACCGC ATGATGGAGc tgcgccGGGG CGTGCTGGGG
    GCTGCACTCG
    851 GTACAATTTT GCTGCCGACT TTGTCCAAAC ACTCGGCAAA
    CCAAGATACG
    901 GAACAGTTTT CCGCCCTGCT CGACTGGGGT TTGCGCCTGT
    GCATGCTGCT
    951 GACGCTGCCG GCGGCGGccg GACTGGCGGT ATTGTCGTTC
    CCGCTGGTGG
    1001 CGACGCTGTT TATGTACCGA GAATTCACGC TGTTTGACGC
    ACAAATGACG
    1051 CAACACGCGC TGATTGCCTA TTCTTTCGGT TTAATCGGTT
    TAATTATGAT
    1101 TAAAGTGTTG GCATCCGGCT TTTATGCGCG GCAAAACATC
    AAAACGCCCG
    1151 TCAAAATCGC CATCTTCACG CTCATCTGCA CGCAGTTGAT
    GAACCTCGCC
    1201 TTTATCGGTC CGTTGAAACA CGCCGGGCTT TCGCTCGCCA
    TCGGCCTGGG
    1251 CGCGTGCATC AACGCCGGAT TGTTGTTCTT CCTGTTGCGC
    AAACACGGTA
    1301 TTTACCGGCC cggcaggggt tgggcggcgt TCTTGGCGAA
    AATGCTGCTC
    1351 GCGCTCGCCG TGATGTGCGG CGGACTGTGG GCGGCGCAGG
    CTTGCCTGCC
    1401 GTTCGAATGG GCGCACGCCG GCGGAATGCG GAAAGCGGGG
    CAGCTCTGCA
    1451 TCCTGATTGC CGTCGGCGGC GGACTGTATT TCGCATCTCT
    GGCGGCTTTG
    1501 GGCTTCCGTC CGCGCCATTT CAAACGCGTG GAAAGCTGA
  • This encodes the following amino acid sequence <SEQ ID 122; ORF20ng-1>:
  • 1 MNMLGALAKV GSLTMVSRVL GFVRDTVIAR AFGAGMATDA
    FFVAFKLPNL
    51 LRRVFAEGAF AQAFVPILAE YKETRSKEAT EAFIRHVAGM
    LSFVLIVVTA
    101 LGILAAPWVI YVSAPGFTKD ADKFQLSISL LRITFPYILL
    ISLSSFVGSI
    151 LNSYHKFGIP AFTPTFLNIS FIVFALFFVP YFDPPVTALA
    WAVFVGGILQ
    201 LGFQLPWLAK LGFLKLPKLN FKDAAVNRVM KQMAPAILGV
    SVAQISLVIN
    251 TIFASYLQSG SVSWMYYADR MMELRRGVLG AALGTILLPT
    LSKHSANQDT
    301 EQFSALLDWG LRLCMLLTLP AAAGLAVLSF PLVATLFMYR
    EFTLFDAQMT
    351 QHALIAYSFG LIGLIMIKVL ASGFYARQNI KTPVKIAIFT
    LICTQLMNLA
    401 FIGPLKHAGL SLAIGLGACI NAGLLFFLLR KHGIYRPGRG
    WAAFLAKMLL
    451 ALAVMCGGLW AAQACLPFEW AHAGGMRKAG QLCILIAVGG
    GLYFASLAAL
    501 GFRPRHFKRV ES*
  • ORF20ng-1 and ORF20-1 show 95.7% identity in 512 aa overlap:
  • Figure US20130064846A1-20130314-C00056
  • In addition, ORF20ng-1 shows significant homology with a virulence factor of S. typhimurium:
  • sp|P37169|MVIN_SALTY VIRULENCE FACTOR MVIN pir||S40271 mviN protein -
    Salmonella typhimurium gi|438252 (Z26133) mviB gene product
    [Salmonella typhimurium] gnl|PID|d1005521 (D25292) ORF2 
    [Salmonella typhimurium] Length = 524
    Score = 1573 (750.1 bits), Expect = 1.1e−220, Sum P(2) = 1.1e−220
    Identities = 309/467 (66%), Positives = 368/467 (78%)
    Query: 1 MNMLGALAKVGSLTMVSRVLGFVRDTVIARAFGAGMATDAFFVAFKLPNLLRRVFAEGAF 60
    MN+L +LA V S+TM SRVLGF RD ++AR FGAGMATDAFFVAFKLPNLLRR+FAEGAF
    Sbjct: 14 MNLLKSLAAVSSMTMFSRVLGFARDAIVARIFGAGMATDAFFVAFKLPNLLRRIFAEGAF 73
    Query: 61 AQAFVPILAEYKETRSKEATEAFIRHVAGMLSFVLIVVTALGILAAPWVIYVSAPGFTKD 120
    +QAFVPILAEYK  + +EAT  F+ +V+G+L+  L VVT  G+LAAPWVI V+APGF
    Sbjct: 74 SQAFVPILAEYKSKQGEEATRIFVAYVSGLLTLALAVVTVAGMLAAPWVIMVTAPGFADT 133
    Query: 121 ADKFQLSISLLRITFPYILLISLSSFVGSILNSYHKFGIPAFTPTFLNISFIVFALFFVP 180
    ADKF L+  LLRITFPYILLISL+S VG+ILN++++F IPAF PTFLNIS I FALF  P
    Sbjct: 134 ADKFALTTQLLRITFPYILLISLASLVGAILNTWNRFSIPAFAPTFLNISMIGFALFAAP 193
    Query: 181 YFDPPVTALAWAVFVGGILQLGFQLPWLAKLGFLKLPKLNFKDAAVNRVMKQMAPAILGV 240
    YF+PPV ALAWAV VGG+LQL +QLP+L K+G L LP++NF+D    RV+KQM PAILGV
    Sbjct: 194 YFNPPVLALAWAVTVGGVLQLVYQLPYLKKIGMLVLPRINFRDTGAMRVVKQMGPAILGV 253
    Query: 241 SVAQISLVINTIFASYLQSGSVSWMYYADRMMELRRGVLGAALGTILLPTLSKHSANQDT 300
    SV+QISL+INTIFAS+L SGSVSWMYYADR+ME   GVLG ALGTILLP+LSK  A+ +
    Sbjct: 254 SVSQISLIINTIFASFLASGSVSWMYYADRLMEFFSGVLGVALGTILLPSLSKSFASGNH 313
    Query: 301 EQFSALLDWGLRLCMLLTLPAAAGLAVLSFPLVATLFMYREFTLFDAQMTQHALIAYSFG 360
    +++  L+DWGLRLC LL LP+A  L +L+ PL  +LF Y +FT FDA MTQ ALIAYS G
    Sbjct: 314 DEYCRLMDWGLRLCFLLALPSAVALGILAKPLTVSLFQYGKFTAFDAAMTQRALIAYSVG 373
    Query: 361 LIGLIMIKVLASGFYARQNIKTPVKIAIFTLICTQLMNLAFIGPLKHAGLSLAIGLGACI 420
    LIGLI++KVLA GFY+RQ+IKTPVKIAI TLI TQLMNLAFIGPLKHAGLSL+IGL AC+
    Sbjct: 374 LIGLIVVKVLAPGFYSRQDIKTPVKIAIVTLIMTQLMNLAFIGPLKHAGLSLSIGLAACL 433
    Query: 421 NAGLLFFLLRKHGIYRPGRGWXXXXXXXXXXXXVMCGGLWAAQACLP 467
    NA LL++ LRK  I+ P  GW            VM   L+     +P
    Sbjct: 434 NASLLYWQLRKQNIFTPQPGWMWFLMRLIISVLVMAAVLFGVLHIMP 480
    Score = 70 (33.4 bits), Expect = 1.1e−220, Sum P(2) = 1.1e−220
    Identities = 14/41 (34%), Positives = 23/41 (56%)
    Query: 469 EWAHAGGMRKAGQLCILIAVGGGLYFASLAALGFRPRHFKR 509
    EW+    + +  +L  ++  G   YFA+LA LGF+ + F R
    Sbjct: 481 EWSQGSMLWRLLRLMAVVIAGIAAYFAALAVLGFKVKEFVR 521
  • Based on this analysis, including the homology with a virulence factor from S. typhimurium, it is predicted that these proteins from N. meningitidis and N. gonorrhoeae, and their epitopes, could be useful antigens for vaccines or diagnostics, or for raising antibodies.
  • Example 15
  • The following partial DNA sequence was identified in N. meningitidis <SEQ ID 123>:
  • 1 atGATTAAAA TCAAAAAAGG TCTAAACCTG CCCATCGCGG
    GCAGACCGGA
    51 GCAAGCCGTT tACGACGGCC CGGCCaTTAC CGAAGtCGCG
    TTGCTTGGCG
    101 AAGAATATGC CGGTATGCGC CCCTCGATGA AAGTCAAGGA
    AGGCGATGCC
    151 GTcAAAAAAG GCCAAGTGCT GTTTGAAGAC AAAAAGAATC
    CGGGCGTGGT
    201 GTTTACTGCG CCGGCTTCAG GcAAAATCGC CGCGATTCAC
    CGTGGCGAAA
    251 AGCGCGTACT TCAGTCAGTC GTGATTGCCG TTGAArGCAA
    CGACGAAATC
    301 GAGTTTGAAC GCTACGCACC TGAAGCGCTG GCAAACTTAA
    GCGGCGAAGA
    351 AGTGCGCCGC AACCTGATCC AATCCGGTTT GTGGACTGCG
    CTGCGCACCC
    401 GTCCGTTCAG CAAAATTCCT GCCGTCGATG CCGAGCCGTT
    CGCCATCTTC
    451 GTCAATGCGA tGGACACCAA TCCG..
  • This corresponds to the amino acid sequence <SEQ ID 124; ORF22>:
  • 1 MIKIKKGLNL PIAGRPEQAV YDGPAITEVA LLGEEYAGMR
    PSMKVKEGDA
    51 VKKGQVLFED KKNPGVVFTA PASGKIAAIH RGEKRVLQSV
    VIAVEXNDEI
    101 EFERYAPEAL ANLSGEEVRR NLIQSGLWTA LRTRPFSKIP
    AVDAEPFAIF
    151 VNAMDTNP..
  • Further work revealed the complete nucleotide sequence <SEQ ID 125>:
  • 1 ATGATTAAAA TCAAAAAAGG TCTAAACCTG CCCATCGCGG
    GCAGACCGGA
    51 GCAAGCCGTT TACGACGGCC CGGCCATTAC CGAAGTCGCG
    TTGCTTGGCG
    101 AAGAATATGC CGGTATGCGC CCCTCGATGA AAGTCAAGGA
    AGGCGATGCC
    151 GTCAAAAAAG GCCAAGTGCT GTTTGAAGAC AAAAAGAATC
    CGGGCGTGGT
    201 GTTTACTGCG CCGGCTTCAG GCAAAATCGC CGCGATTCAC
    CGTGGCGAAA
    251 AGCGCGTACT TCAGTCAGTC GTGATTGCCG TTGAAGGCAA
    CGACGAAATC
    301 GAGTTTGAAC GCTACGCACC TGAAGCGCTG GCAAACTTAA
    GCGGCGAAGA
    351 AGTGCGCCGC AACCTGATCC AATCCGGTTT GTGGACTGCG
    CTGCGCACCC
    401 GTCCGTTCAG CAAAATTCCT GCCGTCGATG CCGAGCCGTT
    CGCCATCTTC
    451 GTCAATGCGA TGGACACCAA TCCGCTGGCT GCCGACCCTA
    CGGTCATTAT
    501 CAAAGAAGCC GCCGAGGATT TCAAACGCGG CCTGTTGGTA
    TTGAGCCGTT
    551 TGACCGAACG CAAAATCCAT GTTTGTAAGG CAGCTGGCGC
    AGACGTGCCG
    601 TCTGAAAATG CTGCCAACAT CGAAACACAT GAATTCGGCG
    GCCCGCATCC
    651 TGCCGGTTTG AGTGGCACGC ACATTCATTT CATCGAGCCG
    GTCGGCGCGA
    701 ATAAAACCGT GTGGACCATC AATTATCAAG ATGTAATTAC
    CATTGGCCGT
    751 TTGTTTGCAA CAGGCCGTCT GAACACCGAG CGCGTGATTG
    CCCTAGGTGG
    801 TTCTCAAGTC AACAAACCGC GCCTCTTGCG TACCGTTTTG
    GGTGCGAAAG
    851 TATCGCAAAT TACTGCGGGC GAATTGGTTG ACACAGACAA
    CCGCGTGATT
    901 TCCGGTTCGG TATTGAACGG CGCGATTACA CAAGGCGCGC
    ACGATTATTT
    951 GGGACGCTAC CACAATCAGA TTTCCGTTAT CGAAGAAGGC
    CGCAGCAAAG
    1001 AGCTGTTCGG CTGGGTTGCG CCGCAGCCGG ACAAATACTC
    CATCACGCGT
    1051 ACAACCCTCG GCCATTTCCT GAAAAACAAA CTCTTCAAGT
    TCAACACAGC
    1101 CGTCAACGGC GGCGACCGCG CCATGGTGCC GATTGGTACT
    TACGAGCGCG
    1151 TGATGCCCTT GGATATCCTG CCCACCCTGC TTTTGCGCGA
    TTTAATCGTC
    1201 GGCGATACCG ACAGCGCGCA GGCATTGGGT TGCTTGGAAT
    TGGACGAAGA
    1251 AGACCTCGCT TTGTGCAGCT TCGTCTGCCC GGGCAAATAC
    GAATACGGCC
    1301 CGCTGTTGCG CAAAGTGCTG GAAACCATTG AGAAGGAAGG
    CTGA
  • This corresponds to the amino acid sequence <SEQ ID 126; ORF22-1>:
  • 1 MIKIKKGLNL PIAGRPEQAV YDGPAITEVA LLGEEYAGMR
    PSMKVKEGDA
    51 VKKGQVLFED KKNPGVVFTA PASGKIAAIH RGEKRVLQSV
    VIAVEGNDEI
    101 EFERYAPEAL ANLSGEEVRR NLIQSGLWTA LRTRPFSKIP
    AVDAEPFAIF
    151 VNAMDTNPLA ADPTVIIKEA AEDFKRGLLV LSRLTERKIH
    VCKAAGADVP
    201 SENAANIETH EFGGPHPAGL SGTHIHFIEP VGANKTVWTI
    NYQDVITIGR
    251 LFATGRLNTE RVIALGGSQV NKPRLLRTVL GAKVSQITAG
    ELVDTDNRVI
    301 SGSVLNGAIT QGAHDYLGRY HNQISVIEEG RSKELFGWVA
    PQPDKYSITR
    351 TTLGHFLKNK LFKFNTAVNG GDRAMVPIGT YERVMPLDIL
    PTLLLRDLIV
    401 GDTDSAQALG CLELDEEDLA LCSFVCPGKY EYGPLLRKVL
    ETIEKEG*
  • Further work identified the corresponding gene in strain A of N. meningitidis <SEQ ID 127>:
  • 1 ATGATTAAAA TCAAAAAAGG TCTAAACCTG CCCATCGCGG
    GCAGACCGGA
    51 GCAAGTCATT TATGACGGGC CCGTCATTAC CGAAGTCGCG
    TTGCTTGGCG
    101 AAGAATATGC CGGTATGCGC CCCTNGATGA AAGTCAAGGA
    AGGCGATGCC
    151 GTCAAAAAAG GCCAAGTGCT GTTTGAAGAC AAAAAGNATC
    CGGGCGTGGT
    201 GTTTACCGCG CCNGTTTCAG GCAAAATCGC CGCCATCCAT
    CGCGGCGAAA
    251 AGCGCGTACT TCAGTCGGTC GTGATTGCCG TTGAAGGCAA
    CGACGAAATC
    301 GAGTTCGAAC GCTACGCGCC CGAAGCGTTG GCAAACTTAA
    GCGGCGANGA
    351 ANTNNGNNGC AATCTGATCC AATCCGGTTT GTGGACTGCG
    CTGCGTANCC
    401 GTCCGTTCAG CAAAATCCCT GCCGTCGATG CCGAGCCGTT
    CGCCATCTTC
    451 GTCAATGCGA TGGACACCAA TCCGCTNGCG GCAGACCCTG
    TGGTTGTGAT
    501 CAAAGAAGCC GNCGANGATT TCAGACGANG TNTGCTGGTA
    TTGAGCCGTT
    551 TGACCGAGCG TAAAATCCAT GTGTGTAAGG CAGCTGGCGC
    AGACGTGCCG
    601 TCTGAAAATG CTGCCAACAT CGAAACACAT GAATTCGGCG
    GCCCGCATCC
    651 GGCCGGTTTG AGTGGCACGC ACATTCATTT CATTGAGCCG
    GTCGGTGCAA
    701 ACAAAACCGT TTGGACCATC AATTATCAAG ATGTAATTGC
    CATCGGACGT
    751 TTGTTTGCAA CAGGCCGTCT GAACACCGAG CGCGTGATTG
    CTTTGGGTGG
    801 TTCTCAAGTC AACAAACCAC GCCTCTTGCG TACCGTTTTG
    GGTGCGAAAG
    851 TATCGCAAAT TACTGCGGGC GAATTGGTTG ACGCAGACAA
    CCGCGTGATT
    901 TCCGGTTCGG TATTGAACGG CGCGATTACA CAAGGCGCGC
    ACGATTATTT
    951 GGGACGCTAC CACAATCAGA TTTCCGTTAT CGAAGAAGGC
    CGCAGCAAAG
    1001 AGCTGTTCGG CTGGGTTGCG CCGCAGCCGG ACAAATACTC
    CATCACGCGT
    1051 ACGACCCTCG GCCATTTCCT GAAAAACAAA CTCTTCAAGT
    TCACGACAGC
    1101 CGTCAACGGT GGCGACCGCG CCATGGTGCC GATTGGTACT
    TACGAGCGCG
    1151 TAATGCCGCT AGACATCCTG CCTACCCTGC TTTTGCGCGA
    TTTAATCGTC
    1201 GGCGATACCG ACAGCGCGCA AGCATTGGGT TGCTTGGAAT
    TGGACGAAGA
    1251 AGACCTCGCT TTGTGCAGCT TCGTCTGCCC GGGCAAATAC
    GAATANGGCC
    1301 CGCTGTTGCG TAAGGTGCTG GAAACCNTTG AGAAGGAAGG
    CTGA
  • This encodes a protein having amino acid sequence <SEQ ID 128; ORF22a>:
  • 1 MIKIKKGLNL PIAGRPEQVI YDGPVITEVA LLGEEYAGMR
    PXMKVKEGDA
    51 VKKGQVLFED KKXPGVVFTA PVSGKIAAIH RGEKRVLQSV
    VIAVEGNDEI
    101 EFERYAPEAL ANLSGXEXXX NLIQSGLWTA LRXRPFSKIP
    AVDAEPFAIF
    151 VNAMDTNPLA ADPVVVIKEA XXDFRRXXLV LSRLTERKIH
    VCKAAGADVP
    201 SENAANIETH EFGGPHPAGL SGTHIHFIEP VGANKTVWTI
    NYQDVIAIGR
    251 LFATGRLNTE RVIALGGSQV NKPRLLRTVL GAKVSQITAG
    ELVDADNRVI
    301 SGSVLNGAIT QGAHDYLGRY HNQISVIEEG RSKELFGWVA
    PQPDKYSITR
    351 TTLGHFLKNK LFKFTTAVNG GDRAMVPIGT YERVMPLDIL
    PTLLLRDLIV
    401 GDTDSAQALG CLELDEEDLA LCSFVCPGKY EXGPLLRKVL
    ETXEKEG*
  • The originally-identified partial strain B sequence (ORF22) shows 94.2% identity over a 158aa overlap with ORF22a:
  • Figure US20130064846A1-20130314-C00057
  • The complete strain B sequence (ORF22-1) and ORF22a show 94.9% identity in 447 aa overlap:
  • Figure US20130064846A1-20130314-C00058
  • Further work identified a partial gene sequence <SEQ ID 129> from N. gonorrhoeae, which encodes the following amino acid sequence <SEQ ID 130; ORF22ng>:
  • 1 MIKIKKGLNL PIAGRPEQVI YDGPAITEVA LLGEEYVGMR
    PSMKIKEGEA
    51 VKKGQVLFED KKNPGVVFTA PASGKIAAIH RGEKRVLQSV
    VIAVEGNDEI
    101 EFERYVPEAL AKLSSEKVRR NLIQSGLWTA LRTRPFSKIP
    AVDAEPFAIF
    151 VNAMDTNPLA ADPTVIIKEA AEDFKRGLLV LSRLTERKIH
    VCKAAGADVP
    201 SENAANIETH EFGGPHPAGL SGTHIHFIEP VGANKTVWTI
    NYQDVIAIGR
    251 LFVTGRLNTE RVVALGGLQV NKPRLLRTVL GAKVSQLTAG
    ELVDADNRVI
    301 SGSVLNGAIA QGAHDYLGRY HN*
  • Further work identified complete gonococcal gene <SEQ ID 131>:
  • 1 ATGATTAAAA TCAAAAAAGG TCTAAATCTG CCCATCGCGG
    GCAGACCGGA
    51 GCAAGTCATT TATGACGGCC CGGCCATTAC CGAAGTCGCG
    TTGCTTGGCG
    101 AAGAATATGT CGGCATGCGC CCCTCGATGA AAATCAAGGA
    AGGTGAAGCC
    151 GTCAAAAAAG GCCAAGTGCT GTTTGAAGAC AAAAAGAATC
    CGGGCGTAGT
    201 ATTTACTGCG CCGGCTTCAG GCAAAATCGC CGCTATTCAC
    CGTGGCGAAA
    251 AGCGCGTACT TCAGTCAGTC GTGATTGCCG TTGAAGGCAA
    CGACGAAATC
    301 GAGTTCGAAC GCTACGTACC TGAAGCGCTG GCAAAATTGA
    GCAGCGAAAA
    351 AGTGCGCCGC AACCTGATTC AATCAGGCTT ATGGACTGCG
    CTTCGCACCC
    401 GTCCGTTCAG CAAAATCCCT GCCGTAGATG CCGAGCCGTT
    CGCCATCTTC
    451 GTCAATGCGA TGGACACCAA TCCGCTGGCT GCCGACCCTA
    CGGTCATCAT
    501 CAAAGAAGCC GCCGAAGACT TCAAACGCGG CCTGTTGGTA
    TTGAGCCGCC
    551 TGACCGAACG TAAAATCCAT GTGTGTAAAG CAGCAGGCGC
    AGACGTGCCG
    601 TCTGAAAATG CTGCCAATAT CGAAACACAT GAATTTGGCG
    GCCCGCATCC
    651 TGCCGGCTTG AGTGGCACGC ACATTCATTT CATCGAGCCA
    GTCGGCGCGA
    701 ATAAAACCGT GTGGACCATC AATTATCAAG ACGTGATTGC
    TATCGGACGT
    751 TTGTTCGTAA CAGGCCGTCT GAATACCGAG CGCGTGGTTG
    CCTTGGGCGG
    801 CCTGCAAGTC AACAAACCGC GCCTCTTGCG TACCGTTTTG
    GGTGCGAAGG
    851 TGTCTCAACT TACCGCCGGC GAATTGGTTG ACGCGGACAA
    CCGCGTGATT
    901 TCCGGTTCGG TATTGAACGG TGCGATTGCA CAAGGCGCGC
    ATGATTATTT
    951 GGGACGCTAC CACAATCAGA TTTCCGTTAT CGAAGAAGGC
    CGCAGCAAAG
    1001 AGCTGTTCGG CTGGGTTGCG CCGCAGCCGG ACAAATACTC
    CATCACGCGC
    1051 ACCACTCTCG GCCATTTCCT AAAAAACAAA CTCTTCAAGT
    TCACGACAGC
    1101 CGTCAACGGC GGCGACCGCG CCATGGTACC GATCGGCACT
    TATGAGCGCG
    1151 TAATGCCGTT GGACATCCTG CCTACCTTGC TTTTGCGCGA
    TTTAATCGTC
    1201 GGCGATACCG ACAGCGCGCA GGCTTTGGGT TGCTTGGAAT
    TGGACGAAGA
    1251 AGACCTCGCT TTGTGCAGCT TCGTCTGCCC GGGCAAATAC
    GAATACGGCC
    1301 CGCTGTTGCG CAAAGTGCTG GAAACCATTG AGAAGGAAGG
    CTGA
  • This encodes a protein having amino acid sequence <SEQ ID 132; ORF22ng-1>:
  • 1 MIKIKKGLNL PIAGRPEQVI YDGPAITEVA LLGEEYVGMR
    PSMKIKEGEA
    51 VKKGQVLFED KKNPGVVFTA PASGKIAAIH RGEKRVLQSV
    VIAVEGNDEI
    101 EFERYVPEAL AKLSSEKVRR NLIQSGLWTA LRTRPFSKIP
    AVDAEPFAIF
    151 VNAMDTNPLA ADPTVIIKEA AEDFKRGLLV LSRLTERKIH
    VCKAAGADVP
    201 SENAANIETH EFGGPHPAGL SGTHIHFIEP VGANKTVWTI
    NYQDVIAIGR
    251 LFVTGRLNTE RVVALGGLQV NKPRLLRTVL GAKVSQLTAG
    ELVDADNRVI
    301 SGSVLNGAIA QGAHDYLGRY HNQISVIEEG RSKELFGWVA
    PQPDKYSITR
    351 TTLGHFLKNK LFKFTTAVNG GDRAMVPIGT YERVMPLDIL
    PTLLLRDLIV
    401 GDTDSAQALG CLELDEEDLA LCSFVCPGKY EYGPLLRKVL
    ETIEKEG*
  • The originally-identified partial strain B sequence (ORF22) shows 93.7% identity over a 158aa overlap with ORF22ng:
  • Figure US20130064846A1-20130314-C00059
  • The complete sequences from strain B (ORF22-1) and gonococcus (ORF22ng) show 96.2% identity in 447 aa overlap:
  • Figure US20130064846A1-20130314-C00060
  • Computer analysis of these sequences gave the following results:
  • Homology with 48 kDa Outer Membrane Protein of Actinobacillus pleuropneumoniae (Accession Number U24492).
  • ORF22 and this 48 kDa protein show 72% aa identity in 158aa overlap:
  • Orf22 1 MIKIKKGLNLPIAGRPEQAVYDGPAITEVALLGEEYAGMRPSMKVKEGDAVKKGQVLFED 60
    MI IKKGL+LPIAG P Q +++G  + EVA+LGEEY GMRPSMKV+EGD VKKGQVLFED
    48kDa 1 MITIKKGLDLPIAGTPAQVIHNGNTVNEVAMLGEEYVGMRPSMKVREGDVVKKGQVLFED 60
    orf22 61 KKNPGVVFTAPASGKIAAIHRGEKRVLQSVVIAVEXNDEIEFERYAPEALANLSGEEVRR 120
    KKNPGVVFTAPASG +  I+RGEKRVLQSVVI VE +++I F RY    LA+LS E+V++
    48kDa 61 KKNPGVVFTAPASGTVVTINRGEKRVLQSVVIKVEGDEQITFTRYEAAQLASLSAEQVKQ 120
    orf22 121 NLIQSGLWTALRTRPFSKIPAVDAEPFAIFVNAMDTNP 158
    NLI+SGLWTA RTRPFSK+PA+DA P +IFVNAMDTNP
    48kDa 121 NLIESGLWTAFRTRPFSKVPALDAIPSSIFVNAMDTNP 158
  • ORF22a also shows homology to the 48 kDa Actinobacillus pleuropneumoniae protein:
  • gi|1185395 (U24492) 48 kDa outer membrane protein [Actinobacillus
    pleuropneumoniae]
    Length = 449
    Score = 530 bits (1351), Expect = e−150
    Identities = 274/450 (60%), Positives = 323/450 (70%), Gaps = 4/450 (0%)
    Query: 1 MIKIKKGLNLPIAGRPEQVIYDGPVITEVALLGEEYAGMRPXMKVKEGDAVKKGQVLFED 60
    MI IKKGL+LPIAG P QVI++G  + EVA+LGEEY GMRP MKV+EGD VKKGQVLFED
    Sbjct: 1 MITIKKGLDLPIAGTPAQVIHNGNTVNEVAMLGEEYVGMRPSMKVREGDVVKKGQVLFED 60
    Query: 61 KKXPGVVFTAPVSGKIAAIHRGEKRVLQSVVIAVEGNDEIEFERYAPEALANLSGXEXXX 120
    KK PGVVFTAP SG +  I+RGEKRVLQSVVI VEG+++I F RY    LA+LS  +
    Sbjct: 61 KKNPGVVFTAPASGTVVTINRGEKRVLQSVVIKVEGDEQITFTRYEAAQLASLSAEQVKQ 120
    Query: 121 NLIQSGLWTALRXRPFSKIPAVDAEPFAIFVNAMDTNPLAADPVVVIKEAXXDFRRXXLV 180
    NLI+SGLWTA R RPFSK+PA+DA P +IFVNAMDTNPLAADP VV+KE   DF+    V
    Sbjct: 121 NLIESGLWTAFRTRPFSKVPALDAIPSSIFVNAMDTNPLAADPEVVLKEYETDFKDGLTV 180
    Query: 181 LSRL--TERKIHVCKAAGADVP-SENAANIETHEFGGPHPAGLSGTHIHFIEPVGANKTV 237
    L+RL   ++ +++CK A +++P S     I    F G HPAGL GTHIHF++PVGA K V
    Sbjct: 181 LTRLFNGQKPVYLCKDADSNIPLSPAIEGITIKSFSGVHPAGLVGTHIHFVDPVGATKQV 240
    Query: 238 WTINYQDVIAIGRLFATGRLNTERVIALGGSQVNKPRLLRTVLGAKVSQITAGELVDADN 297
    W +NYQDVIAIG+LF TG L T+R+I+L G QV  PRL+RT LGA +SQ+TA EL   +N
    Sbjct: 241 WHLNYQDVIAIGKLFTTGELFTDRIISLAGPQVKNPRLVRTRLGANLSQLTANELNAGEN 300
    Query: 298 RVISGSVLNGAITQGAHDYLGRYHNQISVIEEGRSKELFGWVAPQPDKYSITRTTLGHFL 357
    RVISGSVL+GA   G  DYLGRY  Q+SV+ EGR KELFGW+ P  DK+SITRT LGHF
    Sbjct: 301 RVISGSVLSGATAAGPVDYLGRYALQVSVLAEGREKELFGWIMPGSDKFSITRTVLGHFG 360
    Query: 358 KNKLFKFTTAVNGGDRAMVPIGTYERVMXXXXXXXXXXXXXXVGDTDSAQXXXXXXXXXX 417
    K KLF FTTAV+GG+RAMVPIG YERVM               GDTDSAQ
    Sbjct: 361 K-KLFNFTTAVHGGERAMVPIGAYERVMPLDIIPTLLLRDLAAGDTDSAQNLGCLELDEE 419
    Query: 418 XXXXXSFVCPGKYEXGPLLRKVLETXEKEG 447
         ++VCPGK   GP+LR  LE  EKEG
  • ORF22ng-1 also shows homology with the OMP from A. pleuropneumoniae:
  • gi|1185395 (U24492) 48 kDa outer membrane protein [Actinobacillus
    pleuropneumoniae] Length = 449
    Score = 555 bits (1414), Expect = e−157
    Identities = 284/450 (63%), Positives = 337/450 (74%), Gaps = 4/450 (0%)
    Query: 27 MIKIKKGLNLPIAGRPEQVIYDGPAITEVALLGEEYVGMRPSMKIKEGEAVKKGQVLFED 86
    MI IKKGL+LPIAG P QVI++G  + EVA+LGEEYVGMRPSMK++EG+ VKKGQVLFED
    Sbjct: 1 MITIKKGLDLPIAGTPAQVIHNGNTVNEVAMLGEEYVGMRPSMKVREGDVVKKGQVLFED 60
    Query: 87 KKNPGVVFTAPASGKIAAIHRGEKRVLQSVVIAVEGNDEIEFERYVPEALAKLSSEKVRR 146
    KKNPGVVFTAPASG +  I+RGEKRVLQSVVI VEG+++I F RY    LA LS+E+V++
    Sbjct: 61 KKNPGVVFTAPASGTVVTINRGEKRVLQSVVIKVEGDEQITFTRYEAAQLASLSAEQVKQ 120
    Query: 147 NLIQSGLWTALRTRPFSKIPAVDAEPFAIFVNAMDTNPLAADPTVIIKEAAEDFKRGLLV 206
    NLI+SGLWTA RTRPFSK+PA+DA P +IFVNAMDTNPLAADP V++KE   DFK GL V
    Sbjct: 121 NLIESGLWTAFRTRPFSKVPALDAIPSSIFVNAMDTNPLAADPEVVLKEYETDFKDGLTV 180
    Query: 207 LSRL--TERKIHVCKAAGADVP-SENAANIETHEFGGPHPAGLSGTHIHFIEPVGANKTV 263
    L+RL   ++ +++CK A +++P S     I    F G HPAGL GTHIHF++PVGA K V
    Sbjct: 181 LTRLFNGQKPVYLCKDADSNIPLSPAIEGITIKSFSGVHPAGLVGTHIHFVDPVGATKQV 240
    Query: 264 WTINYQDVIAIGRLFVTGRLNTERVVALGGLQVNKPRLLRTVLGAKVSQLTAGELVDADN 323
    W +NYQDVIAIG+LF TG L T+R+++L G QV  PRL+RT LGA +SQLTA EL   +N
    Sbjct: 241 WHLNYQDVIAIGKLFTTGELFTDRIISLAGPQVKNPRLVRTRLGANLSQLTANELNAGEN 300
    Query: 324 RVISGSVLNGAIAQGAHDYLGRYHNQISVIEEGRSKELFGWVAPQPDKYSITRTTLGHFL 383
    RVISGSVL+GA A G  DYLGRY  Q+SV+ EGR KELFGW+ P  DK+SITRT LGHF
    Sbjct: 301 RVISGSVLSGATAAGPVDYLGRYALQVSVLAEGREKELFGWIMPGSDKFSITRTVLGHFG 360
    Query: 384 KNKLFKFTTAVNGGDRAMVPIGTYERVMXXXXXXXXXXXXXXVGDTDSAQXXXXXXXXXX 443
    K KLF FTTAV+GG+RAMVPIG YERVM               GDTDSAQ
    Sbjct: 361 K-KLFNFTTAVHGGERAMVPIGAYERVMPLDIIPTLLLRDLAAGDTDSAQNLGCLELDEE 419
    Query: 444 XXXXXSFVCPGKYEYGPLLRKVLETIEKEG 473
         ++VCPGK  YGP+LR  LE IEKEG
    Sbjct: 420 DLALCTYVCPGKNNYGPMLRAALEKIEKEG 449
  • Based on this analysis, including the homology with the outer membrane protein of Actinobacillus pleuropneumoniae, it was predicted that these proteins from N. meningitidis and N. gonorrhoeae, and their epitopes, could be useful antigens for vaccines or diagnostics, or for raising antibodies.
  • ORF22-1 (35.4 kDa) was cloned in pET and pGex vectors and expressed in E. coli, as described above. The products of protein expression and purification were analyzed by SDS-PAGE. FIG. 5A shows the results of affinity purification of the GST-fusion protein, and FIG. 5B shows the results of expression of the His-fusion in E. coli. Purified GST-fusion protein was used to immunise mice, whose sera were used for ELISA (positive result) and FACS analysis (FIG. 5C). These experiments confirm that ORF22-1 is a surface-exposed protein, and that it is a useful immunogen.
  • Example 16
  • The following partial DNA sequence was identified in N. meningitidis <SEQ ID 133>:
  • 1 ..GCGnCGnAAA TCATCCATCC CC..nACGTC GTAGGCCCTG
    AAGCCAACTG
    51   GTTTTTTATG GTAGCCAGTA CGTTTGTGAT TGCTTTGATT
    GGTTATTTTG
    101   TTACTGAAAA AATCGTCGAA CCGCAATTGG GCCCTTATCA
    ATCAGATTTG
    151   TCACAAGAAG AAAAAGACAT TCGGCATTCC AATGAAATCA
    CGCCTTTGGA
    201   ATATAAAGGA TTAATTTGGG CTGGCGTGGT GTTTGTTGCC
    TTATCCGCCC
    251   TATTGGCTTG GAGCATCGTC CCTGCCGACG GTATTTTGCG
    TCATCCTGAA
    301   ACAGGATTGG TTTCCGGTTC GCCGTTTTTA AAATCGATTG
    TTGTTTTTAT
    351   TTTCTTGTTG TTTGCACTGC CGGGCATTGT TTATGGCCGG
    GTAACCCGAA
    401   GTTTGCGCGG CGAACAGGAA GTCGTTAATG CGmyGGCCGA
    ATCGATGAGT
    451   ACTCTGGsGC TTTmTTTGsw CAkcATCTTT TTTGCCGCAC
    AGTTTGTCGC
    501   ATTTTTTAAT TGGACGAATA TTGGGCAATA TATTGCCGTT
    AAAGGGGCGA
    551   CGTTCTTAAA AGAAGTCGGC TTGGGCGGCA GCGTGTTGTT
    TATCGGTTTT
    601   ATTTTAATTT GTGCTTTTAT CAATCTGATG ATAGGCTCCG
    CCTCCGCGCA
    651   ATGGGCGGTA ACTGCGCCGA TTTTCGTCCC TATGCTGATG
    TTGGCCGGCT
    701   ACGCGCCCGA AGTCATTCAA GCCGCTTACC GCATCGGTGA
    TTCCGTTACC
    751   AATATTATTA CGCCGATGAT GAGTTATTTC GGGCTGATTA
    TGGCGACGGT
    801   GrkCmmmTAC AAAAAAGATG CGGGCGTGGG TaCGcTGATT
    wCTATGATGT
    851   TGCCGTATTC CGCTTTCTTC TTGATTGCgT GGATTGCCTT
    ATTCTGCATT
    901   TGGGTATTTg TTTTGGGCCT GCCCGTCGGT CCCGGCGCGC
    CCACATTCTA
    951   TCCCGCACCT TAA
  • This corresponds to the amino acid sequence <SEQ ID 134; ORF12>:
  • 1 ..AXXIIHPXXV VGPEANWFFM VASTFVIALI GYFVTEKIVE
    PQLGPYQSDL
    51   SQEEKDIRHS NEITPLEYKG LIWAGVVFVA LSALLAWSIV
    PADGILRHPE
    101   TGLVSGSPFL KSIVVFIFLL FALPGIVYGR VTRSLRGEQE
    VVNAXAESMS
    151   TLXLXLXXIF FAAQFVAFFN WTNIGQYIAV KGATFLKEVG
    LGGSVLFIGF
    201   ILICAFINLM IGSASAQWAV TAPIFVPMLM LAGYAPEVIQ
    AAYRIGDSVT
    251   NIITPMMSYF GLIMATVXXY KKDAGVGTLI XMMLPYSAFF
    LIAWIALFCI
    301   WVFVLGLPVG PGAPTFYPAP *
  • Further sequence analysis revealed the complete DNA sequence <SEQ ID 135> to be:
  • 1 ATGAGTCAAA CCGATACGCA ACGGGACGGA CGATTTTTAC
    GCACAGTCGA
    51 ATGGCTGGGC AATATGTTGC CGCATCCGGT TACGCTTTTT
    ATTATTTTCA
    101 TTGTGTTATT GCTGATTGCC TCTGCCGTCG GTGCGTATTT
    CGGACTATCC
    151 GTCCCCGATC CGCGCCCTGT TGGTGCGAAA GGACGTGCCG
    ATGACGGTTT
    201 GATTTACATT GTCAGCCTGC TCAATGCCGA CGGTTTTATC
    AAAATCCTGA
    251 CGCATACCGT TAAAAATTTC ACCGGTTTCG CGCCGTTGGG
    AACGGTGTTG
    301 GTTTCTTTAT TGGGCGTGGG GATTGCGGAA AAATCGGGCT
    TGATTTCCGC
    351 ATTAATGCGC TTATTGCTCA CAAAATCGCC ACGCAAACTC
    ACTACTTTTA
    401 TGGTTGTTTT TACAGGGATT TTATCTAATA CCGCTTCTGA
    ATTGGGCTAT
    451 GTCGTCCTAA TCCCTTTGTC CGCCATCATC TTTCATTCCC
    TCGGCCGCCA
    501 TCCGCTTGCC GGTCTGGCTG CGGCTTTCGC CGGCGTTTCG
    GGCGGTTATT
    551 CGGCCAATCT GTTCTTAGGC ACAATCGATC CGCTCTTGGC
    AGGCATCACC
    601 CAACAGGCGG CGCAAATCAT CCATCCCGAC TACGTCGTAG
    GCCCTGAAGC
    651 CAACTGGTTT TTTATGGTAG CCAGTACGTT TGTGATTGCT
    TTGATTGGTT
    701 ATTTTGTTAC TGAAAAAATC GTCGAACCGC AATTGGGCCC
    TTATCAATCA
    751 GATTTGTCAC AAGAAGAAAA AGACATTCGG CATTCCAATG
    AAATCACGCC
    801 TTTGGAATAT AAAGGATTAA TTTGGGCTGG CGTGGTGTTT
    GTTGCCTTAT
    851 CCGCCCTATT GGCTTGGAGC ATCGTCCCTG CCGACGGTAT
    TTTGCGTCAT
    901 CCTGAAACAG GATTGGTTTC CGGTTCGCCG TTTTTAAAAT
    CGATTGTTGT
    951 TTTTATTTTC TTGTTGTTTG CACTGCCGGG CATTGTTTAT
    GGCCGGGTAA
    1001 CCCGAAGTTT GCGCGGCGAA CAGGAAGTCG TTAATGCGAT
    GGCCGAATCG
    1051 ATGAGTACTC TGGGGCTTTA TTTGGTCATC ATCTTTTTTG
    CCGCACAGTT
    1101 TGTCGCATTT TTTAATTGGA CGAATATTGG GCAATATATT
    GCCGTTAAAG
    1151 GGGCGACGTT CTTAAAAGAA GTCGGCTTGG GCGGCAGCGT
    GTTGTTTATC
    1201 GGTTTTATTT TAATTTGTGC TTTTATCAAT CTGATGATAG
    GCTCCGCCTC
    1251 CGCGCAATGG GCGGTAACTG CGCCGATTTT CGTCCCTATG
    CTGATGTTGG
    1301 CCGGCTACGC GCCCGAAGTC ATTCAAGCCG CTTACCGCAT
    CGGTGATTCC
    1351 GTTACCAATA TTATTACGCC GATGATGAGT TATTTCGGGC
    TGATTATGGC
    1401 GACGGTGATC AAATACAAAA AAGATGCGGG CGTGGGTACG
    CTGATTTCTA
    1451 TGATGTTGCC GTATTCCGCT TTCTTCTTGA TTGCGTGGAT
    TGCCTTATTC
    1501 TGCATTTGGG TATTTGTTTT GGGCCTGCCC GTCGGTCCCG
    GCGCGCCCAC
    1551 ATTCTATCCC GCACCTTAA
  • This corresponds to the amino acid sequence <SEQ ID 136; ORF12-1>:
  • 1 MSQTDTQRDG RFLRTVEWLG NMLPHPVTLF IIFIVLLLIA
    SAVGAYFGLS
    51 VPDPRPVGAK GRADDGLIYI VSLLNADGFI KIL THTVKNF
    TGFAPLGTVL
    101 VSLLGVGIAE KSGLISALMR LLLTKSPRKL TTFMVVFTGI
    LSNTASELGY
    151 VVLIPLSAII FHSLGRHPLA GLAAAFAGVS GGYSANLFLG
    TIDPLLAGIT
    201 QQAAQIIHPD YVVGPEANWF FMVASTFVIA LIGYFV TEKI
    VEPQLGPYQS
    251 DLSQEEKDIR HSNEITPLEY KGLIWAGVVF VALSALLAWS
    IVPADGILRH
    301 PETGLVSGSP FLKSIVVFIF LLFALPGIVY GRVTRSLRGE
    QEVVNAMAES
    351 MSTLGLYLVI IFFAAQFVAF FNWTNIGQYI AVKGATFLKE
    VGLGGSVLFI
    401 GFILICAFIN LMIGSASAQW AVTAPIFVPM LMLAGYAPEV
    IQAAYRIGDS
    451 VTNIITPMMS YFGLIMATVI KYKKDAGVGT LISMMLPYSA
    FFLIAWIALF
    501 CIWVFVLGLP VGPGAPTFYP AP*
  • Computer analysis of this amino acid sequence gave the following results:
  • Homology with a Predicted ORF from N. meningitidis (Strain A)
  • ORF12 shows 96.3% identity over a 320aa overlap with an ORF (ORF12a) from strain A of N. meningitidis:
  • Figure US20130064846A1-20130314-C00061
  • The complete length ORF12a nucleotide sequence <SEQ ID 137> is:
  • 1 ATGAGTCAAA CCGATACGCA ACGGGACGGA CGATTTTTAC
    GCACAGTCGA
    51 ATGGCTGGGC AATATGTTGC CGCACCCGGT TACGCTTTTT
    ATTATTTTCA
    101 TTGTGTTATT GCTGATTGCC TCTGCCGCCG GTGCGTATTT
    CGGACTATCC
    151 GTCCCCGATC CGCGCCCTGT TGGTGCGAAA GGACGTGCCG
    ATGACGGTTT
    201 GATTCACGTT GTCAGCCTGC TCGATGCTGA CGGTTTGATC
    AAAATCCTGA
    251 CGCATACCGT TAAAAATTTC ACCGGTTTCG CGCCGTTGGG
    AACGGTGTTG
    301 GTTTCTTTAT TGGGCGTGGG GATTGCGGAA AAATCGGGCT
    TGATTTCCGC
    351 ATTAATGCGC TTATTGCTCA CAAAATCTCC ACGCAAACTC
    ACTACTTTTA
    401 TGGTTGTTTT TACAGGGATT TTATCTAATA CCGCTTCTGA
    ATTGGGCTAT
    451 GTCGTCCTAA TCCCTTTGTC CGCCATCATC TTTCATTCCC
    TCGGCCGCCA
    501 TCCGCTTGCC GGTCTGGCTG CGGCTTTCGC CGGCGTTTCG
    GGCGGTTATT
    551 CGGCCAATCT GTTCTTAGGC ACAATCGATC CGCTCTTGGC
    AGGCATCACC
    601 CAACAGGCGG CGCAAATCAT CCATCCCGAC TACGTCGTAG
    GCCCTGAAGC
    651 CAACTGGTTT TTTATGGTAG CCAGTACGTT TGTGATTGCT
    TTGATTGGTT
    701 ATTTTGTTAC TGAAAAAATC GTCGAACCGC AATTGGGCCC
    TTATCAATCA
    751 GATTTGTCAC AAGAAGAAAA AGACATTCGA CATTCCAATG
    AAATCACGCC
    801 TTTGGAATAT AAAGGATTAA TTTGGGCTGG CGTGGTGTTT
    GTTGCCTTAT
    851 CCGCCCTATT GGCTTGGAGC ATCGTCCCTG CCGACGGTAT
    TTTGCGTCAT
    901 CCTGAAACAG GATTGGTTTC CGGTTCGCCG TTTTTAAAAT
    CAATTGTTGT
    951 TTTTATTTTC TTGTTGTTTG CACTGCCGGG CATTGTTTAT
    GGCCGGGTAA
    1001 CCCGAAGTTT GCGCGGCGAA CAGGAAGTCG TTAATGCGAT
    GGCCGAATCG
    1051 ATGAGTACTC TGGGGCTTTA TTTGGTCATC ATCTTTTTTG
    CCGCACAGTT
    1101 TGTCGCATTT TTTAATTGGA CGAATATTGG GCAATATATT
    GCCGTTAAAG
    1151 GGGCGACGTT CTTAAAAGAA GTCGGCTTGG GCGGCAGCGT
    GTTGTTTATC
    1201 GGTTTTATTT TAATTTGTGC TTTTATCAAT CTGATGATAG
    GCTCCGCCTC
    1251 CGCGCAATGG GCGGTAACTG CGCCGATTTT CGTCCCTATG
    CTGATGTTGG
    1301 CCGGCTACGC GCCCGAAGTC ATTCAAGCCG CTTACCGCAT
    CGGTGATTCC
    1351 GTTACCAATA TTATTACGCC GATGATGAGT TATTTCGGGC
    TGATTATGGC
    1401 GACGGTGATC AAATACAAAA AAGATGCGGG CGTGGGTACG
    CTGATTTCTA
    1451 TGATGTTGCC GTATTCCGCT TTCTTCTTGA TTGCGTGGAT
    TGCCTTATTC
    1501 TGCATTTGGG TATTTGTTTT GGGCCTGCCC GTCGGTCCCG
    GCGCGCCCAC
    1551 ATTCTATCCC GCACCTTAA
  • This encodes a protein having amino acid sequence <SEQ ID 138>:
  • 1 MSQTDTQRDG RFLRTVEWLG NMLPHPVTLF IIFIVLLLIA
    SAAGAYFGLS
    51 VPDPRPVGAK GRADDGLIHV VSLLDADGLI KIL THTVKNF
    TGFAPLGTVL
    101 VSLLGVGIAE KSGLISALMR LLLTKSPRKL TTFMVVFTGI
    LSNTASELGY
    151 VVLIPLSAII FHSLGRHPLA GLAAAFAGVS GGYSANLFLG
    TIDPLLAGIT
    201 QQAAQIIHPD YVVGPEANWF FMVASTFVIA LIGYFV TEKI
    VEPQLGPYQS
    251 DLSQEEKDIR HSNEITPLEY KGLIWAGVVF VALSALLAWS
    IVPADGILRH
    301 PETGLVSGSP FLKSIVVFIF LLFALPGIVY GRVTRSLRGE
    QEVVNAMAES
    351 MSTLGLYLVI IFFAAQFVAF FNWTNIGQYI AVKGATFLKE
    VGLGGSVLFI
    401 GFILICAFIN LMIGSASAQW AVTAPIFVPM LMLAGYAPEV
    IQAAYRIGDS
    451 VTNIITPMMS YFGLIMATVI KYKKDAGVGT LISMMLPYSA
    FFLIAWIALF
    501 CIWVFVLGLP VGPGAPTFYP AP*
  • ORF12a and ORF12-1 show 99.0% identity in 522 aa overlap:
  • Figure US20130064846A1-20130314-C00062
  • Homology with a Predicted ORF from N. gonorrhoeae
  • ORF12 shows 92.5% identity over a 320aa overlap with a predicted ORF (ORF12.ng) from N. gonorrhoeae:
  • Figure US20130064846A1-20130314-C00063
  • The complete length ORF12ng nucleotide sequence <SEQ ID 139> is:
  • 1 ATGAGTCAAA CCGACGCGCG TCGTAGCGGA CGATTTTTAC
    GCACAGTCGA
    51 ATGGCTGGGC AATATGTTGC CGCACCCGGT TACGCTTTTT
    ATTATTTTCA
    101 TTGTGTTATT GCTGATTGcc tctgCCGTCG GTGCGTATTT
    CGGACTATCC
    151 GTCCCCGATC CGCGTCCTGT TGGGGCGAAA GGACGTGCCG
    ATGACGGTTT
    201 GATTCACGTT GTCAGCCTGC TCGATGCCGA CGGTTTGATC
    AAAATCCTGA
    251 CGCATACCGT TAAAAATTTC ACCGGTTTCG CGCCGTTGGG
    AACGGTGTTG
    301 GTTTCTTTAT TGGGCGTGGG GATTGCGGAA AAATCGGGCT
    TGATTTCCGC
    351 ATTAATGCGC TTATTGCTCA CAAAATCCCC ACGCAAACTC
    ACTACTTTTA
    401 TGGTTGTTTT TACAGGGATT TTATCCAATA CGGCTTCTGA
    ATTGGGCTAT
    451 GTCGTCCTAA TCCCTTTGTC CGCCGTCATC TTTCATTCGC
    TCGGCCGCCA
    501 TCCGCTTGCC GGTTTGGCTG CGGCTTTCGC CGGCGTTTCG
    GGCGGTTATT
    551 CGGCCAATCT GTTCTTAGGC ACAATCGATC CGCTCTTGGC
    AGGCATCACC
    601 CAACAGGCGG CGCAAATCAT CCATCCCGAC TACGTCGTAG
    GCCCTGAAGC
    651 CAACTGGTTT TTTATGGCAG CCAGTACGTT TGTGATTGCT
    TTGATTGGTT
    701 ATTTTGTTAC TGAAAAAATC GTCGAACCGC AATTGGGCCC
    TTATCAATCA
    751 GATTTGTCAC AAGAAGAAAA AGACATTCGG CATTCCAATG
    AAATCACGCC
    801 TTTGGAATAT AAAGGATTAA TTTGGGCAGG CGTGGTGTTT
    GTTGCCTTAT
    851 CCGCCCTATT GGCTTGGAGC ATCGTCCCTG CCGACGGTAT
    TTTGCGTCAT
    901 CCTGAAACAG GATTGGTTGC CGGTTCGCCG TTTTTAAAAT
    CGATTGTTGT
    951 TTTTATTTTC TTGTTGTTTG CGCTGCCGGG CATTGTTTAT
    GGCCGGATAA
    1001 CCCGAAGTTT GCGCGGCGAA CGGGAAGTCG TTAATGCGAT
    GGCCGAATCG
    1051 ATGAGTACTT TGGGACTTTA TTTGGTCATC ATCTTTTTTG
    CCGCACAGTT
    1101 TGTCGCATTT TTTAATTGGA CGAATATTGG GCAATATATT
    GCCGTTAAAG
    1151 GGGCGGTGTT CTTAAAAGAA GTCGGCTTGG GCGGCAGTGT
    GTTGTTTATC
    1201 GGTTTTATTT TAATTTGTGC TTTTATCAAT CTGATGATAG
    GCTCCGCCTC
    1251 CGCGCAATGG GCGGTAACTG CGCCGATTTT CGTCCCTATG
    CTGATGTTGG
    1301 CCGGCTACGC GCCCGAAGTC ATTCAAGCCG CTTACCGCAT
    CGGTGATTCC
    1351 GTTACCAATA TTATTACGCC GATGATGAGT TATTTCGGGC
    TGATTATGGC
    1401 GACGGTAATC AAATACAAAA AAGATGCGGG CGTAGGCACG
    CTGATTTCTA
    1451 TGATGTTGCC GTATTCCGCT TTCTTCTTAA TTGCATGGAT
    CGCCTTATTC
    1501 TGCATTTGGG TATTTGTTTT GGGTCTGCCC GTCGGTCCCG
    GCACACCCAC
    1551 ATTCTATCCG GTGCCTTAA
  • This encodes a protein having amino acid sequence <SEQ ID 140>:
  • 1 MSQTDARRSG RFLRTVEWLG NMLPHPVTLF IIFIVLLLIA
    SAVGAYFGLS
    51 VPDPRPVGAK GRADDGLIHV VSLLDADGLI KIL THTVKNF
    TGFAPLGTVL
    101 VSLLGVGIAE KSGLISALMR LLLTKSPRKL TTFMVVFTGI
    LSNTASELGY
    151 VVLIPLSAVI FHSLGRHPLA GLAAAFAGVS GGYSANLFLG
    TIDPLLAGIT
    201 QQAAQIIHPD YVVGPEANWF FMAASTFVIA LIGYFV TEKI
    VEPQLGPYQS
    251 DLSQEEKDIR HSNEITPLEY KGLIWAGVVF VALSALLAWS
    IVPADGILRH
    301 PETGLVAGSP FLKSIVVFIF LLFALPGIVY GRITRSLRGE
    REVVNAMAES
    351 MSTLGLYLVI IFFAAQFVAF FNWTNIGQYI AVKGAVFLKK
    FRLGGSVLFI
    401 GFILICAFIN LMIGSASAQW AVTAPIFVPM LMLAGNAPQV
    IQAAYRIGDS
    451 VTNIITPMMS YFGLIMATVI KYKKDAGVGT LISMMLPYSA
    FFLIAWIALF
    501 CIWVFVLGLP VGPGTPTFYP VP*
  • ORF12ng shows 97.1% identity in 522 aa overlap with ORF12-1:
  • Figure US20130064846A1-20130314-C00064
  • In addition, ORF12ng shows significant homology with a hypothetical protein from E. coli:
  • sp|P46133|YDAH_ECOLI HYPOTHETICAL 55.1 KD PROTEIN IN OGT-DBPA
    INTERGENIC REGION
    >gi|1787597 (AE000231) hypothetical protein in ogt 5′region
    [Escherichia coli]
    Length = 510
    Score = 329 bits (835), Expect = 2e−89
    Identities = 178/507 (35%), Positives = 281/507 (55%), Gaps = 15/507 (2%)
    Query: 8 RSGRFLRTVEWLGNMLPHPVTXXXXXXXXXXXASAVGAYFGLSVPDPRPVGAKGRADDGL 67
    +SG+    VE +GN +PHP              +A+ + FG+S  +P         D
    Sbjct: 13 QSGKLYGWVERIGNKVPHPFLLFIYLIIVLMVTTAILSAFGVSAKNP--------TDGTP 64
    Query: 68 IHVVSLLDADGLIKILTHTVKNFTGFAPXXXXXXXXXXXXIAEKSGLISALMRLLLTKSP 127
    + V +LL  +GL   L + +KNF+GFAP            +AE+ GL+ ALM  + +
    Sbjct: 65 VVVKNLLSVEGLHWFLPNVIKNFSGFAPLGAILALVLGAGLAERVGLLPALMVKMASHVN 124
    Query: 128 RKLTTFMVVFTGILSNTASELGYVVLIPLSAVIFHSLGRHPLAGLAAAFAGVSGGYSANL 187
     +  ++MV+F    S+ +S+   V++ P+ A+IF ++GRHP+AGL AA AGV  G++ANL
    Sbjct: 125 ARYASYMVLFIAFFSHISSDAALVIMPPMGALIFLAVGRHPVAGLLAAIAGVGCGFTANL 184
    Query: 188 FLGTIDPLLAGITQQAAQIIHPDYVVGPEANWFFMAASTFVIALIGYFVTEKIVEPQLGP 247
     + T D LL+GI+ +AA   +P   V    NW+FMA+S  V+ ++G  +T+KI+EP+LG
    Sbjct: 185 LIVTTDVLLSGISTEAAAAFNPQMHVSVIDNWYFMASSVVVLTIVGGLITDKIIEPRLGQ 244
    Query: 248 YQSDLSQEEKDIRHSNEITPLEYKGLIWAGVVFVALSALLAWSIVPADGILRHPETGLVA 307
    +Q +  ++ + +  S         GL  AGVV +   A +A  ++P +GILR P    V
    Sbjct: 245 WQGNSDEKLQTLTESQRF------GLRIAGVVSLLFIAAIALMVIPQNGILRDPINHTVM 298
    Query: 308 GSPFLKSIVVFIFLLFALPGIVYGRITRSLRGEREVVNAMAESMSTLGLYLXXXXXXXXX 367
     SPF+K IV  I L F +  + YG  TR++R + ++ + M E M  +  ++
    Sbjct: 299 PSPFIKGIVPLIILFFFVVSLAYGIATRTIRRQADLPHLMIEPMKEMAGFIVMVFPLAQF 358
    Query: 368 XXXXNWTNIGQYIAVKGAVFLKEVGLGGSVLFIGFILICAFINLMIGSASAQWAVTAPIF 427
        NW+N+G++IAV     L+  GL G   F+G  L+ +F+ +I S SA W++ APIF
    Sbjct: 359 VAMFNWSNMGKFIAVGLTDILESSGLSGIPAFVGLALLSSFLCMFIASGSAIWSILAPIF 418
    Query: 428 VPMLMLAGYAPEVIQAAYRIGDSVTNIITPMMSYFGLIMATVIKYKKDAGVGTLISMMLP 487
    VPM ML G+ P   Q  +RI DS    + P+  +  L +  + +YK DA +GT  S++LP
    Sbjct: 419 VPMFMLLGFHPAFAQILFRIADSSVLPLAPVSPFVPLFLGFLQRYKPDAKLGTYYSLVLP 478
    Query: 488 YSAFFLIAWIALFCIWVFVLGLPVGPG 514
    Y   FL+ W+ +   W +++GLP+GPG
    Sbjct: 479 YPLIFLVVWLLMLLAW-YLVGLPIGPG 504
  • Based on this analysis, including the presence of several putative transmembrane domains and the predicted actinin-type actin-binding domain signature (shown in bold) in the gonococcal protein, it is predicted that the proteins from N. meningitidis and N. gonorrhoeae, and their epitopes, could be useful antigens for vaccines or diagnostics, or for raising antibodies.
  • Example 17
  • The following partial DNA sequence was identified in N. meningitidis <SEQ ID 141>:
  • 1 ..ACAGCCGGCG CAGCAGGTTn CnCGGTCTTC GTTTTCGTAA
    CGGACAGTCA
    51   GGTGGAGGTG TTCGGGAACA TCCAGACCGC AGTGGAAACA
    GGTTTTTTTC
    101   ATGGCATTTC GGTTTCGTCT GTGTTTGGTG CGGCGGCACA
    AGACTCGGCA
    151   ATgGCTTCGC GCAGTGCGTC TATACCGGTA TTTTCAGCAA
    CGGAAATGCG
    201   GACGGcGgCA ATTTTTCCCG CAGCGTCGCG CCATATGCCC
    GTGTTTTgTT
    251   CTTCAGACGG CAGCAGGTCG GTTTTGTTGT ACACCTTgAT
    GCACGGAaTA
    301   TCGCCGGCAT GGATTTCTTG CAGTACGTTT TCCACGTCTT
    CAATCTGCTG
    351   TCCGCTGTTC GGAGCGGCGG CATCGACGAC GTGCAGCAGC
    ACATCgGcTT
    401   gCGCGGTTTC TTCCAGCGTG GCgGAAAAGG CGGAAATCAG
    TTTgTGCGGC
    451   agATyGCTnA CGAATCCGAC GGTATCGGTC AGGATAATGC
    TGCATTCGGG
    501   ACT..
  • This corresponds to the amino acid sequence <SEQ ID 142; ORF14>:
  • 1 ..TAGAAGXXVF VFVTDSQVEV FGNIQTAVET GFFHGISVSS
    VFGAAAQDSA
    51   MASRSASIPV FSATEMRTAA IFPAASRHMP VFCSSDGSRS
    VLLYTLMHGI
    101   SPAWISCSTF STSSICCPLF GAAASTTCSS TSACAVSSSV
    AEKAEISLCG
    151   RXLTNPTVSV RIMLHSG..
  • Computer analysis of this amino acid sequence gave the following results:
  • Homology with a Predicted ORF From N. meningitidis (Strain A)
  • ORF14 shows 94.0% identity over a 167aa overlap with an ORF (ORF14a) from strain A of N. meningitidis:
  • Figure US20130064846A1-20130314-C00065
  • The complete length ORF14a nucleotide sequence <SEQ ID 143> is:
  • 1 ATGGAGGATT TGCAGGAAAT CGGGTTCGAT GTCGCCGCCG
    TAAAGGTAGG
    51 TCGGCAGCGC GAACATCATC GTCTGCATCA TCCCCAGCCC
    GGCAACGGCG
    101 AGGCGGACGA TGTATTGTTT GCGTTCTTTT TGGTTGGCGG
    CTTCGATTTT
    151 TTGCGCGTCA TAGGGTGCGG CGGTGTAGCC TATCTGCCTG
    ATTTTCAACA
    201 GAATGTCGGA AAGGCGGATT TTGCCGTCGT CCCAGACGAC
    GCGGCAGCGG
    251 TGCGTGCTGT AATTGAGGTC GATGCGGACG ATGCCGTCTG
    TACGCAAAAG
    301 CTGCTGTTCG ATCAGCCAGA CGCAGGCGGC GCAGGTGATG
    CCGCCGAGCA
    351 TTAAAACCGC CTCGCGCGTG CCGCCGTGGG TTTCCACAAA
    GTCGGACTGG
    401 ACTTCGGGCA GGTCGTACAG GCGGATTTGG TCGAGGATTT
    CTTGGGGCGG
    451 CAGCTCGGTT TTTTGCGCGT CGGCGGTGCG TTGTTTGTAA
    TAACTGCCCA
    501 AGCCCGCGTC AATAATGCTT TGTGCGACTG CCTGACAACC
    GGCGCAGCAG
    551 GTTTCGCGGT CTTCGTTTTC GTAACGGACG GTCAGATGCA
    GGTTTTCGGG
    601 AACGTCCAGC CCGCAGTGGA AACAGGTTTT TTTCATGGCA
    TTTCGGTTTC
    651 GTCTGTGTTT GGTGCGGCGG CACAATACTC GGCAATGGCT
    TCGCGCAGTG
    701 CGTCTATACC GGTATTTTCA GCAACGGAAA TGCGGACGGC
    GGCAATTTTT
    751 CCCGCAGCGT CGCGCCATAT GCCCGTGTTT TGTTCTTCAG
    ACGGCAGCAG
    801 GTCGGTTTTG TTGTACACCT TGATGCACGG AATATCGCCG
    GCATGGATTT
    851 CTTGCAGTAC GTTTTCCACG TCTTCAATCT GCTGTCCGCT
    GTTCGGAGCG
    901 GCGGCATCGA CGACGTGCAG CAGCACATCG GCTTGCGCGG
    TTTCTTCCAG
    951 CGTGGCGGAA AAGGCGGAAA TCAGTTTGTG CGGCAGATCG
    CTGACGAATC
    1001 CGACGGTATC GGTCAGGATA ATGCTGCATT CGGGACTGAT
    GTACAGCCGC
    1051 CGCGCCGTCG TGTCGAGTGT GGCGAAAAGC TGGTCTTTCG
    CATATATGCC
    1101 CGACTTGGTC AGCCGGTTGA ACAGACTGGA TTTGCCGACA
    TTGGTATAG
  • This encodes a protein having amino acid sequence <SEQ ID 144>:
  • 1 MEDLQEIGFD VAAVKVGRQR EHHRLHHPQP GNGEADDVLF
    AFFLVGGFDF
    51 LRVIGCGGVA YLPDFQQNVG KADFAVVPDD AAAVRAVIEV
    DADDAVCTQK
    101 LLFDQPDAGG AGDAAEH*NR LARAAVGFHK VGLDFGQVVQ
    ADLVEDFLGR
    151 QLGFLRVGGA LFVITAQARV NNALCDCLTT GAAGFAVFVF
    VTDGQMQVFG
    201 NVQPAVETGF FHGISVSSVF GAAAQYSAMA SRSASIPVFS
    ATEMRTAAIF
    251 PAASRHMPVF CSSDGSRSVL LYTLMHGISP AWISCSTFST
    SSICCPLFGA
    301 AASTTCSSTS ACAVSSSVAE KAEISLCGRS LTNPTVSVRI
    MLHSGLMYSR
    351 RAVVSSVAKS WSFAYMPDLV SRLNRLDLPT LV*
  • It should be noted that this sequence includes a stop codon at position 118.
  • Homology with a Predicted ORF from N. gonorrhoeae
  • ORF14 shows 89.8% identity over a 167aa overlap with a predicted ORF (ORF14.ng) from N. gonorrhoeae:
  • Figure US20130064846A1-20130314-C00066
  • The complete length ORF14ng nucleotide sequence <SEQ ID 145> is predicted to encode a protein having amino acid sequence <SEQ ID 146>:
  • 1 MEDLQEIGFD VAAVKVGRQR EHHRLHHTQS GNGKADDVLF
    AFFLVGGFDF
    51 LRVIGCGGVA CLPDFQQNVG EADFAVVPDD AAAVRAVIEV
    DADDAVCAQK
    101 LLFDQPDAGG AGNAAEHQHC FVRAIMGFHK VGLDFGQVVQ
    ADLVEDFLGR
    151 QFGFFRVGGA SFVITAQAGI DDALCDCLTA DAAGFAVFAF
    VADGQMQVFG
    201 NVQPAVETGF FHGISVSSVF GAAAQYSAMA SRSASIPVFS
    ATEMRTAAIF
    251 PAASRHMPVF CSSDGSRSVL LYTLMHGISW AWISCSTFST
    SSICCPLFRA
    301 AASTTCSSTS ACTVSSKVAE KAEISLCGRS LTNPTVSVRI
    MLHAGLMYSR
    351 RAVVSRVAKS WSFAYMPDLV SRLNRLDLPT LV*
  • Based on the putative transmembrane domain in the gonococcal protein, it is predicted that the proteins from N. meningitidis and N. gonorrhoeae, and their epitopes, could be useful antigens for vaccines or diagnostics, or for raising antibodies.
  • Example 18
  • The following partial DNA sequence was identified in N. meningitidis <SEQ ID 147>:
  • 1 ..GGCCATTACT CCGACCGCAC TTGGAAGCCG CGTTTGGNCG
    GCCGCCGTCT
    51   GCCGTATCTG CTTTATGGCA CGCTGATTGC GGTTATTGTG
    ATGATTTTGA
    101   TGCCGAACTC GGGCAGCTTC GGTTTCGGCT ATGCGTCGCT
    GGCGGCTTTG
    151   TCGTTCGGCG CGCTGATGAT TGCGCTGTTA GACGTGTCGT
    CAAATATGGC
    201   GATGCAGCCG TTTAAGATGA TGGTCGGCGA CATGGTCAAC
    GAGGAGCAGA
    251   AAA.NTACGC CTACGGGATT CAAAGTTTCT TAGCAAATAC
    GGGCGCGGTC
    301   GTGGCGGCGA TTCTGCCGTT TGTGTTTGCG TATATCGGTT
    TGGCGAACAC
    351   CGCCGANAAA GGCGTTGTGC CGCAGACCGT GGTCGTGGCG
    TTTTATGTGG
    401   GTGCGGCGTT GCTGGTGATT ACCAGCGCGT TCACGATTTT
    CAAAGTGAAG
    451   GAATACGANC CGGAAACCTA CGCCCGTTAC CACGGCATCG
    ATGTCGCCGC
    501   GAATCAGGAA AAAGCCAACT GGATCGCACT CTTAAAA.CC
    GCGC..
  • This corresponds to the amino acid sequence <SEQ ID 148; ORF16>:
  • 1 ..GHYSDRTWKP RLXGRRLPYL LYGTLIAVIV MILMPNSGSF
    GFGYASLAAL
    51   SFGALMIALL DVSSNMAMQP FKMMVGDMVN EEQKXYAYGI
    QSFLANTGAV
    101   VAAILPFVFA YIGLANTAXK GVVPQTVVVA FYVGAALLVI
    TSAFTIFKVK
    151   EYXPETYARY HGIDVAANQE KANWIALLKX A..
  • Further work revealed the complete nucleotide sequence <SEQ ID 149>:
  • 1 ATGTCGGAAT ATACGCCTCA AACAGCAAAA CAAGGTTTGC
    CCGCGCTGGC
    51 AAAAAGCACG ATTTGGATGC TCAGTTTCGG CTTTCTCGGC
    GTTCAGACGG
    101 CCTTTACCCT GCAAAGCTCG CAAATGAGCC GCATTTTTCA
    AACGCTAGGC
    151 GCAGACCCGC ACAATTTGGG CTGGTTTTTC ATCCTGCCGC
    CGCTGGCGGG
    201 GATGCTGGTG CAGCCGATTG TCGGCCATTA CTCCGACCGC
    ACTTGGAAGC
    251 CGCGTTTGGG CGGCCGCCGT CTGCCGTATC TGCTTTATGG
    CACGCTGATT
    301 GCGGTTATTG TGATGATTTT GATGCCGAAC TCGGGCAGCT
    TCGGTTTCGG
    351 CTATGCGTCG CTGGCGGCTT TGTCGTTCGG CGCGCTGATG
    ATTGCGCTGT
    401 TAGACGTGTC GTCAAATATG GCGATGCAGC CGTTTAAGAT
    GATGGTCGGC
    451 GACATGGTCA ACGAGGAGCA GAAAGGCTAC GCCTACGGGA
    TTCAAAGTTT
    501 CTTAGCAAAT ACGGGCGCGG TCGTGGCGGC GATTCTGCCG
    TTTGTGTTTG
    551 CGTATATCGG TTTGGCGAAC ACCGCCGAGA AAGGCGTTGT
    GCCGCAGACC
    601 GTGGTCGTGG CGTTTTATGT GGGTGCGGCG TTGCTGGTGA
    TTACCAGCGC
    651 GTTCACGATT TTCAAAGTGA AGGAATACGA TCCGGAAACC
    TACGCCCGTT
    701 ACCACGGCAT CGATGTCGCC GCGAATCAGG AAAAAGCCAA
    CTGGATCGAA
    751 CTCTTGAAAA CCGCGCCTAA GGCGTTTTGG ACGGTTACTT
    TGGTGCAATT
    801 CTTCTGCTGG TTCGCCTTCC AATATATGTG GACTTACTCG
    GCAGGCGCGA
    851 TTGCGGAAAA CGTCTGGCAC ACCACCGATG CGTCTTCCGT
    AGGTTATCAG
    901 GAGGCGGGTA ACTGGTACGG CGTTTTGGCG GCGGTGCAGT
    CGGTTGCGGC
    951 GGTGATTTGT TCGTTTGTAT TGGCGAAAGT GCCGAATAAA
    TACCATAAGG
    1001 CGGGTTATTT CGGCTGTTTG GCTTTGGGCG CGCTCGGCTT
    TTTCTCCGTT
    1051 TTCTTCATCG GCAACCAATA CGCGCTGGTG TTGTCTTATA
    CCTTAATCGG
    1101 CATCGCTTGG GCGGGCATTA TCACTTATCC GCTGACGATT
    GTGACCAACG
    1151 CCTTGTCGGG CAAGCATATG GGCACTTACT TGGGCTTGTT
    TAACGGCTCT
    1201 ATCTGTATGC CTCAAATCGT CGCTTCGCTG TTGAGTTTCG
    TGCTTTTCCC
    1251 TATGCTGGGC GGCTTGCAGG CCACTATGTT CTTGGTAGGG
    GGCGTCGTCC
    1301 TGCTGCTGGG CGCGTTTTCC GTGTTCCTGA TTAAAGAAAC
    ACACGGCGGG
    1351 GTTTGA
  • This corresponds to the amino acid sequence <SEQ ID 150; ORF16-1>:
  • 1 MSEYTPQTAK QGLPALAKST IWMLSFGFLG VQTAFTLQSS
    QMSRIFQTLG
    51 ADPHNLGWFF ILPPLAGMLV QPIVGHYSDR TWKPRLGGRR
    LPYLLYGTLI
    101 AVIVMILMPN SGSFGFGYAS LAALSFGALM IALLDVSSNM
    AMQPFKMMVG
    151 DMVNEEQKGY AYGIQSFLAN TGAVVAAILP FVFAYIGLAN
    TAEKGVVPQT
    201 VVVAFYVGAA LLVITSAFTI FKVKEYDPET YARYHGIDVA
    ANQEKANWIE
    251 LLKTAPKAFW TVTLVQFFCW FAFQYMWTYS AGAIAENVWH
    TTDASSVGYQ
    301 EAGNWYGVLA AVQSVAAVIC SFVLAKVPNK YHKAGYFGCL
    ALGALGFFSV
    351 FFIGNQYALV LSYTLIGIAW AGIITYPLTI VTNALSGKHM
    GTYLGLFNGS
    401 ICMPQIVASL LSFVLFPMLG GLQATMFLVG GVVLLLGAFS
    VFLIKETHGG
    451 V*
  • Computer analysis of this amino acid sequence gave the following results:
  • Homology with a Predicted ORF from N. Meningitidis (Strain A)
  • ORF16 shows 96.7% identity over a 181 as overlap with an ORF (ORF16a) from strain A of N. meningitidis:
  • Figure US20130064846A1-20130314-C00067
  • The complete length ORF16a nucleotide sequence <SEQ ID 151> is:
  • 1 ATGTCGGAAT ATACGCCTCA AACAGCAAAA CAAGGTTTGC
    CCGCGCTGGC
    51 AAAAAGCACG ATTTGGATGC TCAGTTTCGG CTTTCTCGGC
    GTTCAGACGG
    101 CCTTTACCCT GCAAAGCTCG CAGATGAGCC GCATCTTCCA
    GACGCTCGGT
    151 GCCGATCCGC ACAGCCTCGG CTGGTTCTTT ATCCTGCCGC
    CGCTGGCGGG
    201 GATGCTGGTG CAGCCGATTG TCGGCCATTA CTCCGACCGC
    ACTTGGAAGC
    251 CGCGTTTGGG CGGCCGCCGT CTGCCGTATC TGCTTTATGG
    CACGCTGATT
    301 GCGGTTATTG TGATGATTTT GATGCCGAAC TCGGGCAGCT
    TCGGTTTCGG
    351 CTATGCGTCG CTGGCGGCTT TGTCGTTCGG CGCGCTGATG
    ATTGCGCTGT
    401 TAGACGTGTC GTCAAATATG GCGATGCAGC CGTTTAAGAT
    GATGGTCGGC
    451 GACATGGTCA ACGAGGAGCA GAAAGGCTAC GCCTACGGGA
    TTCAAAGTTT
    501 CTTAGCGAAT ACGGGCGCGG TCGTGGCGGC GATTCTGCCG
    TTTGTGTTTG
    551 CGTATATCGG TTTGGCGAAC ACCGCCGAGA AAGGCGTTGT
    GCCGCAGACC
    601 GTGGTCGTGG CGTTTTATGT GGGTGCGGCG TTGCTGGTGA
    TTACCAGCGC
    651 GTTCACGATT TTCAAAGTGA AGGAATACAA TCCGGAAACC
    TACGCCCGTT
    701 ACCACGGCAT CGATGTCGCC GCGAATCAGG AAAAAGCCAA
    CTGGATCGAA
    751 CTCTTGAAAA CCGCGCCTAA GGCGTTTTGG ACGGTTACTT
    TGGTGCAATT
    801 CTTCTGCTGG TTCGCCTTCC AATATATGTG GACTTACTCG
    GCAGGCGCGA
    851 TTGCGGAAAA CGTCTGGCAC ACCACCGATG CGTCTTCCGT
    AGGTTATCAG
    901 GAGGCGGGTA ACTGGTACGG CGTTTTGGCG GCGGTGCAGT
    CGGTTGCGGC
    951 GGTGATTTGT TCGTTTGTAT TGGCGAAAGT GCCGAATAAA
    TACCATAAGG
    1001 CGGGTTATTT CGGCTGTTTG GCTTTGGGCG CGCTCGGCTT
    TTTCTCCGTT
    1051 TTCTTCATCG GCAACCAATA CGCGCTGGTG TTGTCTTATA
    CCTTAATCGG
    1101 CATCGCTTGG GCGGGCATTA TCACTTATCC GCTGACGATT
    GTGACCAACG
    1151 CCTTGTCGGG CAAGCATATG GGCACTTACT TGGGCCTGTT
    TAACGGCTCT
    1201 ATCTGTATGC CGCAAATCGT CGCTTCGCTG TTGAGTTTCG
    TGCTTTTCCC
    1251 TATGCTGGGC GGCTTGCAGG CCACTATGTT CTTGGTAGGG
    GGCGTCGTCC
    1301 TGCTGCTGGG CGCGTTTTCC GTGTTCCTGA TTAAAGAAAC
    ACACGGCGGG
    1351 GTTTGA
  • This encodes a protein having amino acid sequence <SEQ ID 152>:
  • 1 MSEYTPQTAK QGLPALAKST IWMLSFGFLG VQTAFTLQSS
    QMSRIFQTLG
    51 ADPHSLGWFF ILPPLAGMLV QPIVGHYSDR TWKPRLGGRR
    LPYLLYGTLI
    101 AVIVMILMPN SGSFGFGYAS LAALSFGALM IALLDVSSNM
    AMQPFKMMVG
    151 DMVNEEQKGY AYGIQSFLAN TGAVVAAILP FVFAYIGLAN
    TAEKGVVPQT
    201 VVVAFYVGAA LLVITSAFTI FKVKEYNPET YARYHGIDVA
    ANQEKANWIE
    251 LLKTAPKAFW TVTLVQFFCW FAFQYMWTYS AGAIAENVWH
    TTDASSVGYQ
    301 EAGNWYGVLA AVQSVAAVIC SFVLAKVPNK YHKAGYFGCL
    ALGALGFFSV
    351 FFIGNQYALV LSYTLIGIAW AGIITYPLTI VTNALSGKHM
    GTYLGLFNGS
    401 ICMPQIVASL LSFVLFPMLG GLQATMFLVG GVVLLLGAFS
    VFLIKETHGG
    451 V*
  • ORF16a and ORF16-1 show 99.6% identity in 451 aa overlap:
  • Figure US20130064846A1-20130314-C00068
  • Homology with a Predicted ORF from N. gonorrhoeae
  • ORF16 shows 93.9% identity over a 181aa overlap with a predicted ORF (ORF16.ng) from N. gonorrhoeae:
  • Figure US20130064846A1-20130314-C00069
  • The complete length ORF16ng nucleotide sequence <SEQ ID 153> is:
  • 1 ATGATAGGGG ATCGCCGCGC CGGCAACCAT TTCGGATTTT
    CCAAAGCAAA
    51 TACTTTTCAA ATCAAAAAAA AGGATTTACT TTATGTCGGA
    ATATACGCCT
    101 CAAACAGCAA AACAAGGTTT GCCCGCGCCG GCAAAAAGCA
    CGATTTGGAT
    151 GTTGAGCTTC GGCTATCTCG GCGTTCAGAC GGCCTTTACC
    CTGCAAAGCT
    201 CGCAGATGAG CCGCATTTTT CAAACGCTAG GCGCAGACCC
    GCACAATTTG
    251 GGCTGGTTTT TCATCCTGCC GCCGCTGGCG GGGATGCTGG
    TTCAGCCGAT
    301 AGTGGCTACT ACTCAGACCG CACTTGGAAG CCGCGCTTGG
    GCGGCCGCCG
    351 CCTGCCGTAT CTGCTTTACG GCACGCTGAT TGCGGTCATC
    GTGATGATTT
    401 TGATGCCGAA CTCGGGCAGC TTCGGTTTCG GCTATGCGTC
    GCTGGCGGCC
    451 TTGTCGTTCG GCGCGCTGAT GATTGCGCTG TTGGACGTGT
    CGTCGAATAT
    501 GGCGATGCAG CCGTTTAAGA TGATGGTCGG CGATATGGTC
    AACGAGGAGC
    551 AGAAAAGCTA CGCCTACGGG ATTCAAAGTT TCTTAGCGAA
    TACGGACGCG
    601 GTTGTGGCAG CGATTCTGCC GTTTGTGTTC GCGTATATCG
    GTTTGGCGAA
    651 CACTGCCGAG AAAGGCGTTG TGCCACAAAC CGTGGTCGTA
    GCATTCTATG
    701 TGGGTGCGGC GTTACTGATT ATTACCAGTG CGTTCACAAT
    CTCCAAAGTC
    751 AAAGAATACG ACCCGGAAAC CTACGCCCGT TACCACGGCA
    TCGATGTCGC
    801 CGCGAATCAG GAAAAAGCCA ACTGGTTCGA ACTCTTAAAA
    ACCGCGCCTA
    851 AAGTGTTTTG GACGGTTACT CCGGTACAGT TTTTCTGCTG
    GTTCGCCTTC
    901 CGGTATATGT GGACTTACTC GGCAGGCGCG ATTGCAGAAA
    ACGTCTGGCA
    951 CACTACCGAT GCGTCTTCCG TAGGCCATCA GGAGGCGGGC
    AACCGGTACG
    1001 GCGTTTTGGC GGCGGTGTAG
  • This encodes a protein having amino acid sequence <SEQ ID 154>:
  • 1 MIGDRRAGNH FGFSKANTFQ IKKKDLLYVG IYASNSKTRF
    ARAGKKHDLD
    51 VELRLSRRSD GLYPAKLADE PHFSNARRRP AQFGLVFHPA
    AAGGDAGSAD
    101 SGYYSDRTWK PRLGGRRLPY LLYGTLIAVI VMILMPNSGS
    FGFGYASLAA
    151 LSFGALMIAL LDVSSNMAMQ PFKMMVGDMV NEEQKSYAYG
    IQSFLANTDA
    201 VVAAILPFVF AYIGLANTAE KGVVPQTVVV AFYVGAALLI
    ITSAFTISKV
    251 KEYDPETYAR YHGIDVAANQ EKANWFELLK TAPKVFWTVT
    PVQFFCWFAF
    301 RYMWTYSAGA IAENVWHTTD ASSVGHQEAG NRYGVLAAV*
  • ORF16ng and ORF16-1 show 89.3% identity in 261 aa overlap:
  • Figure US20130064846A1-20130314-C00070
  • Based on this analysis, including the presence of several putative transmembrane domains in the gonococcal protein, it is predicted that the proteins from N. meningitidis and N. gonorrhoeae, and their epitopes, could be useful antigens for vaccines or diagnostics, or for raising antibodies.
  • Example 19
  • The following partial DNA sequence was identified in N. meningitidis <SEQ ID 155>:
  • 1 ATGTTGTTCC GTAAAACGAC CGCCGCCGTT TTGGCGCATA
    CCTTGATGCT
    51 GAACGGCTGT ACGTTGATGT TGTGGGGAAT GAACAACCCG
    GTCAGCGAAA
    101 CAATCACCCG NAAACACGTT GNCAAAGACC AAATCCGNGN
    CTTCGGTGTG
    151 GTTGCCGAAG ACAATGCCCA ATTGGAAAAG GGCAGCCTGG
    TGATGATGGG
    201 CGGAAAATAC TGGTTCGTCG TCAATCCCGA AGATTCGGCG
    AA.NTGACGG
    251 GNATTTTGAN GGCAGGGCTG GACAAACCCT TCCAAATAGT
    TNAGGATACC
    301 CCGAGCTATG C.TGCCACCA AGCCCTGCCG GTCAAACTCG
    GATCGNCTGG
    351 CAGCCAGAAT...
  • This corresponds to the amino acid sequence <SEQ ID 156; ORF28>:
  • 1 MLFRKTTAAV LAHTLMLNGC TLMLWGMNNP VSETITRKHV
    XKDQIRXFGV
    51 VAEDNAQLEK GSLVMMGGKY WFVVNPEDSA XXTGILXAGL
    DKPFQIVXDT
    101 PSYXCHQALP VKLGSXGSQN...
  • Further work revealed the complete nucleotide sequence <SEQ ID 157>:
  • 1 ATGTTGTTCC GTAAAACGAC CGCCGCCGTT TTGGCGGCAA
    CCTTGATGCT
    51 GAACGGCTGT ACGTTGATGT TGTGGGGAAT GAACAACCCG
    GTCAGCGAAA
    101 CAATCACCCG CAAACACGTT GACAAAGACC AAATCCGCGC
    CTTCGGTGTG
    151 GTTGCCGAAG ACAATGCCCA ATTGGAAAAG GGCAGCCTGG
    TGATGATGGG
    201 CGGAAAATAC TGGTTCGTCG TCAATCCCGA AGATTCGGCG
    AAGCTGACGG
    251 GCATTTTGAA GGCAGGGCTG GACAAACCCT TCCAAATAGT
    TGAGGATACC
    301 CCGAGCTATG CTCGCCACCA AGCCCTGCCG GTCAAACTCG
    AATCGCCTGG
    351 CAGCCAGAAT TTCAGTACCG AAGGCCTTTG CCTGCGCTAC
    GATACCGACA
    401 AGCCTGCCGA CATCGCCAAG CTGAAACAGC TCGGGTTTGA
    AGCGGTCAAA
    451 CTCGACAATC GGACCATTTA CACGCGCTGC GTATCCGCCA
    AAGGCAAATA
    501 CTACGCCACA CCGCAAAAAC TGAACGCCGA TTACCATTTT
    GAGCAAAGTG
    551 TGCCTGCCGA TATTTATTAC ACGGTTACTG AAGAACATAC
    CGACAAATCC
    601 AAGCTGTTTG CAAATATCTT ATATACGCCC CCCTTTTTGA
    TACTGGATGC
    651 GGCGGGCGCG GTACTGGCCT TGCCTGCGGC GGCTCTGGGT
    GCGGTCGTGG
    701 ATGCCGCCCG CAAATGA
  • This corresponds to the amino acid sequence <SEQ ID 158; ORF28-1>:
  • 1 MLFRKTTAAV LAATLMLNGC TLMLWGMNNP VSETITRKHV
    DKDQIRAFGV
    51 VAEDNAQLEK GSLVMMGGKY WFVVNPEDSA KLTGILKAGL
    DKPFQIVEDT
    101 PSYARHQALP VKLESPGSQN FSTEGLCLRY DTDKPADIAK
    LKQLGFEAVK
    151 LDNRTIYTRC VSAKGKYYAT PQKLNADYHF EQSVPADIYY
    TVTEEHTDKS
    201 KLFANILYTP PFLILDAAGA VLALPAAALG AVVDAARK*
  • Computer analysis of this amino acid sequence gave the following results:
  • Homology with a Predicted ORF from N. meningitidis (Strain A)
  • ORF28 shows 79.2% identity over a 120aa overlap with an ORF (ORF28a) from strain A of N. meningitidis:
  • Figure US20130064846A1-20130314-C00071
  • The complete length ORF28a nucleotide sequence <SEQ ID 159> is:
  • 1 ATGTTGTTCC GTAAAACGAC CGCCGCCGTT TTGGCGGCAA
    CCTTGATGTT
    51 GAACGGCTGT ACGGTAATGA TGTGGGGTAT GAACAGCCCG
    TTCAGCGAAA
    101 CGACCGCCCG CAAACACGTT GACAAGGACC AAATCCGCGC
    CTTCGGTGTG
    151 GTTGCCGAAG ACAATGCCCA ATTGGAAAAG GGCAGCCTGG
    TGATGATGGG
    201 CGGGAAATAC TGGTTCGTCG TCAATCCTGA AGATTCGGCG
    AAGCTGACGG
    251 GCATTTTGAA GGCCGGGTTG GACAAGCAGT TTCAAATGGT
    TGAGCCCAAC
    301 CCGCGCTTTG CCTACCAAGC CCTGCCGGTC AAACTCGAAT
    CGCCCGCCAG
    351 CCAGAATTTC AGTACCGAAG GCCTTTGCCT GCGCTACGAT
    ACCGACAGAC
    401 CTGCCGACAT CGCCAAGCTG AAACAGCTTG AGTTTGAAGC
    GGTCGAACTC
    451 GACAATCGGA CCATTTACAC GCGCTGCGTC TCCGCCAAAG
    GCAAATACTA
    501 CGCCACACCG CAAAAACTGA ACGCCGATTA TCATTTTGAG
    CAAAGTGTGC
    551 CTGCCGATAT TTATTACACG GTTACGAAAA AACATACCGA
    CAAATCCAAG
    601 TTGTTTGAAA ATATTGCATA TACGCCCACC ACGTTGATAC
    TGGATGCGGT
    651 GGGCGCGGTG CTGGCCTTGC CTGTCGCGGC GTTGATTGCA
    GCCACGAATT
    701 CCTCAGACAA ATGA
  • This encodes a protein having amino acid sequence <SEQ ID 160>:
  • 1 MLFRKTTAAV LAATLMLNGC TVMMWGMNSP FSETTARKHV
    DKDQIRAFGV
    51 VAEDNAQLEK GSLVMMGGKY WFVVNPEDSA KLTGILKAGL
    DKQFQMVEPN
    101 PRFAYQALPV KLESPASQNF STEGLCLRYD TDRPADIAKL
    KQLEFEAVEL
    151 DNRTIYTRCV SAKGKYYATP QKLNADYHFE QSVPADIYYT
    VTKKHTDKSK
    201 LFENIAYTPT TLILDAVGAV LALPVAALIA ATNSSDK*
  • ORF28a and ORF28-1 show 86.1% identity in 238 aa overlap:
  • Figure US20130064846A1-20130314-C00072
  • Homology with a Predicted ORF from N. gonorrhoeae
  • ORF28 shows 84.2% identity over a 120aa overlap with a predicted ORF (ORF28.ng) from N. gonorrhoeae:
  • Figure US20130064846A1-20130314-C00073
  • The complete length ORF28ng nucleotide sequence <SEQ ID 161> is
  • 1 ATGTTGTTCC GTAAAACGAC CGCCGCCGTT TTGGCGGCAA
    CCTTGATACT
    51 GAACGGCTGT ACGATGATGT TGCGGGGGAT GAACAACCCG
    GTCAGCCAAA
    101 CAATCACCCG CAAACACGTT GACAAAGACC AAATCCGCGC
    CTTCGGTGTG
    151 GTTGCCGAAG ACAATGCCCA ATTGGAAAAG GGCAGCCTGG
    TGATGATGGG
    201 CGGGAAATAC TGGTTCGCCG TCAATCCCGA AGATTCGGCG
    AAGCTGACGG
    251 GCCTTTTGAA GGCCGGGTTG GACAAGCCCT TCCAAATAGT
    TGAGGATACC
    301 CCGAGCTATG CCCGCCACCA AGCCCTGCCG GTCAAATTCG
    AAGCGCCCGG
    351 CAGCCAGAAT TTCAGTACCG GAGGTCTTTG CCTGCGCTAT
    GATACCGGCA
    401 GACCTGACGA CATCGCCAAG CTGAAACAGC TTGAGTTTAA
    AGCGGTCAAA
    451 CTCGACAATC GGACCATTTA CACGCGCTGC GTATCCGCCA
    AAGGCAAATA
    501 CTACGCCACG CCGCAAAAAC TGAACGCCGA TTATCATTTT
    GAGCAAAGTG
    551 TGCCCGCCGA TATTTATTAT ACGGTTACTG AAAAACATAC
    CGACAAATCC
    601 AAGCTGTTTG GAAATATCTT ATATACGCCC CCCTTGTTGA
    TATTGGATGC
    651 GGCGGCCGCG GTGCTGGTCT TGCCTATGGC TCTGATTGCA
    GCCGCGAATT
    701 CCTCAGACAA ATGA
  • This encodes a protein having amino acid sequence <SEQ ID 162>:
  • 1 MLFRKTTAAV LAATLILNGC TMMLRGMNNP VSQTITRKHV
    DKDQIRAFGV
    51 VAEDNAQLEK GSLVMMGGKY WFAVNPEDSA KLTGLLKAGL
    DKPFQIVEDT
    101 PSYARHQALP VKFEAPGSQN FSTGGLCLRY DTGRPDDIAK
    LKQLEFKAVK
    151 LDNRTIYTRC VSAKGKYYAT PQKLNADYHF EQSVPADIYY
    TVTEKHTDKS
    201 KLFGNILYTP PLLILDAAAA VLVLPMALIA AANSSDK*
  • ORF28ng and ORF28-1 share 90.0% identity in 231 aa overlap:
  • Figure US20130064846A1-20130314-C00074
  • Based on this analysis, including the presence of a putative transmembrane domain in the gonococcal protein, it was predicted that the proteins from N. meningitidis and N. gonorrhoeae, and their epitopes, could be useful antigens for vaccines or diagnostics, or for raising antibodies.
  • ORF28-1 (24 kDa) was cloned in pET and pGex vectors and expressed in E. coli, as described above. The products of protein expression and purification were analyzed by SDS-PAGE. FIG. 6A shows the results of affinity purification of the GST-fusion protein, and FIG. 6B shows the results of expression of the His-fusion in E. coli. Purified GST-fusion protein was used to immunise mice, whose sera were used for ELISA, which gave a positive result. These experiments confirm that ORF28-1 is a surface-exposed protein, and that it may be a useful immunogen.
  • Example 20
  • The following partial DNA sequence was identified in N. meningitidis <SEQ ID 163>:
  • 1 ..GTCAGTCCTG TACTGCCTAT TACACACGAA CGGACAGGGT
    TTGAAGGTGT
    51   TATCGGTTAT GAAACCCATT TTTCAGGGCA CGGACATGAA
    GTACACAGTC
    101   CGTTCGATCA TCATGATTCA AAAAGCACTT CTGATTTCAG
    CGGCGGTGTA
    151   GACGGCGGTT TTACTGTTTA CCAACTTCAT CGAACATGGT
    CGGAAATCCA
    201   TCCGGAGGAT GAATATGACG GGCCGCAAGC AGCG.ATTAT
    CCGCCCCCCG
    251   GAGGAGCAAG GGATATATAC AGCTATTATG TCAAAGGAAC
    TTCAACAAAA
    301   ACAAAGACTA GTATTGTCCC TCAAGCCCCA TTTTCAGACC
    GTTGGCTAGA
    351   AGAAAATGCC GGTGCCGCCT CTGGT..
  • This corresponds to the amino acid sequence <SEQ ID 164; ORF29>:
  • 1 ..VSPVLPITHE RTGFEGVIGY ETHFSGHGHE VHSPFDHHDS
    KSTSDFSGGV
    51   DGGFTVYQLH RTWSEIHPED EYDGPQAAXY PPPGGARDIY
    SYYVKGTSTK
    101   TKTSIVPQAP FSDRWLEENA GAASG..
  • Further work revealed the complete nucleotide sequence <SEQ ID 165>:
  • 1 ATGAATTTGC CTATTCAAAA ATTCATGATG CTGTTTGCAG
    CAGCAATATC
    51 GTTGCTGCAA ATCCCCATTA GTCATGCGAA CGGTTTGGAT
    GCCCGTTTGC
    101 GCGATGATAT GCAGGCAAAA CACTACGAAC CGGGTGGTAA
    ATACCATCTG
    151 TTTGGTAATG CTCGCGGCAG TGTTAAAAAG CGGGTTTACG
    CCGTCCAGAC
    201 ATTTGATGCA ACTGCGGTCA GTCCTGTACT GCCTATTACA
    CACGAACGGA
    251 CAGGGTTTGA AGGTGTTATC GGTTATGAAA CCCATTTTTC
    AGGGCACGGA
    301 CATGAAGTAC ACAGTCCGTT CGATCATCAT GATTCAAAAA
    GCACTTCTGA
    351 TTTCAGCGGC GGTGTAGACG GCGGTTTTAC TGTTTACCAA
    CTTCATCGAA
    401 CAGGGTCGGA AATCCATCCG GAGGATGGAT ATGACGGGCC
    GCAAGGCAGC
    451 GATTATCCGC CCCCCGGAGG AGCAAGGGAT ATATACAGCT
    ATTATGTCAA
    501 AGGAACTTCA ACAAAAACAA AGACTAATAT TGTCCCTCAA
    GCCCCATTTT
    551 CAGACCGTTG GCTAAAAGAA AATGCCGGTG CCGCCTCTGG
    TTTTTTCAGC
    601 CGTGCGGATG AAGCAGGAAA ACTGATATGG GAAAGCGACC
    CCAATAAAAA
    651 TTGGTGGGCT AACCGTATGG ATGATGTTCG CGGCATCGTC
    CAAGGTGCGG
    701 TTAATCCTTT TTTAATGGGT TTTCAAGGAG TAGGGATTGG
    GGCAATTACA
    751 GACAGTGCAG TAAGCCCGGT CACAGATACA GCCGCGCAGC
    AGACTCTACA
    801 AGGTATTAAT GATTTAGGAA AATTAAGTCC GGAAGCACAA
    CTTGCTGCCG
    851 CGAGCCTATT ACAGGACAGT GCTTTTGCGG TAAAAGACGG
    TATCAACTCT
    901 GCCAAACAAT GGGCTGATGC CCATCCAAAT ATAACAGCTA
    CTGCCCAAAC
    951 TGCCCTTTCC GCAGCAGAGG CCGCAGGTAC GGTTTGGAGA
    GGTAAAAAAG
    1001 TAGAACTTAA CCCGACTAAA TGGGATTGGG TTAAAAATAC
    CGGTTATAAA
    1051 AAACCTGCTG CCCGCCATAT GCAGACTTTA GATGGGGAGA
    TGGCAGGTGG
    1101 GAATAAACCT ATTAAATCTT TACCAAACAG TGCCGCTGAA
    AAAAGAAAAC
    1151 AAAATTTTGA GAAGTTTAAT AGTAACTGGA GTTCAGCAAG
    TTTTGATTCA
    1201 GTGCACAAAA CACTAACTCC CAATGCACCT GGTATTTTAA
    GTCCTGATAA
    1251 AGTTAAAACT CGATACACTA GTTTAGATGG AAAAATTACA
    ATTATAAAAG
    1301 ATAACGAAAA CAACTATTTT AGAATCCATG ATAATTCACG
    AAAACAGTAT
    1351 CTTGATTCAA ATGGTAATGC TGTGAAAACC GGTAATTTAC
    AAGGTAAGCA
    1401 AGCAAAAGAT TATTTACAAC AACAAACTCA TATCAGGAAC
    TTAGACAAAT
    1451 GA
  • This corresponds to the amino acid sequence <SEQ ID 166; ORF29-1>:
  • 1 MNLPIQKFMM LFAAAISLLQ IPISHANGLD ARLRDDMQAK
    HYEPGGKYHL
    51 FGNARGSVKK RVYAVQTFDA TAVSPVLPIT HERTGFEGVI
    GYETHFSGHG
    101 HEVHSPFDHH DSKSTSDFSG GVDGGFTVYQ LHRTGSEIHP
    EDGYDGPQGS
    151 DYPPPGGARD IYSYYVKGTS TKTKTNIVPQ APFSDRWLKE
    NAGAASGFFS
    201 RADEAGKLIW ESDPNKNWWA NRMDDVRGIV QGAVNPFLMG
    FQGVGIGAIT
    251 DSAVSPVTDT AAQQTLQGIN DLGKLSPEAQ LAAASLLQDS
    AFAVKDGINS
    301 AKQWADAHPN ITATAQTALS AAEAAGTVWR GKKVELNPTK
    WDWVKNTGYK
    351 KPAARHMQTL DGEMAGGNKP IKSLPNSAAE KRKQNFEKFN
    SNWSSASFDS
    401 VHKTLTPNAP GILSPDKVKT RYTSLDGKIT IIKDNENNYF
    RIHDNSRKQY
    451 LDSNGNAVKT GNLQGKQAKD YLQQQTHIRN LDK*
  • Computer analysis of this amino acid sequence gave the following results:
  • Homology with a Predicted ORF from N. meningitidis (Strain A)
  • ORF29 shows 88.0% identity over a 125aa overlap with an ORF (ORF29a) from strain A of N. meningitidis:
  • Figure US20130064846A1-20130314-C00075
  • The complete length ORF29a nucleotide sequence <SEQ ID 167> is:
  • 1 ATGAATTNGC CTATTCAAAA ATTCATGATG CTGTTTGCAG
    CAGCAATATC
    51 GTNGCTGCAA ATCCCNATTA GTCATGCGAA CGGTTTGGAT
    GCCCGTTTGC
    101 GCGATGATAT GCAGGCAAAA CACTACGAAC CGGGTGGTAA
    ATACCATCTG
    151 TTTGGTAATG CTCGCGGCAG TGTTAAAAAT CGGGTTTACG
    CCGTCCAAAC
    201 ATTTGATGCA ACTGCGGTCG GCCCCATACT GCCTATTACA
    CACGAACGGA
    251 CAGGATTTGA AGGCATTATC GGTTATGAAA CCCATTTTTC
    AGGACATGGA
    301 CATGAAGTAC ACAGTCCGTT CGATAATCAT GATTCAAAAA
    GCACTTCTGA
    351 TTTCAGCGGC GGCGTAGACG GTGGTTTTAC CGTTTACCAA
    CTTCATCGGA
    401 CAGGGTCGGA AATCCATCCG GAGGATGGAT ATGACGGGCC
    GCAAGGCAGC
    451 GATTATCCGC CCCCCGGAGG AGCAAGGGAT ATATACANNT
    ANTATGTCAA
    501 AGGAACTTCA ACAAAAACAA AGAGTAATAT TGTTCCCCGA
    GCCCCATTTT
    551 CAGACCGCTG GCTAAAAGAA AATGCCGGTG CCGCCTCTGG
    TTTTTTCAGC
    601 CGTGCTGATG AAGCAGGAAA ACTGATATGG GAAAGCGACC
    CCAATAAAAA
    651 TTGGTGGGCT AACCGTATGG ATGATATTCG CGGCATCGTC
    CAAGGTGCGG
    701 TTAATCCTTT TTTAATGGGT TTTCAAGGAG TAGGGATTGG
    GGCAATTACA
    751 GACAGTGCAG TAAGCCCGGT CACAGATACA GCCGCGCAGC
    AGACTCTACA
    801 AGGTATNAAT CATTTAGGAA ANTTAAGTCC CGAAGCACAA
    CTTGCGGCTG
    851 CAACCGCATT ACAAGACAGT GCTTTTGCGG TAAAAGACGG
    TATCAATTCC
    901 GCCAGACAAT GGGCTGATGC CCATCCGAAT ATAACTGCAA
    CAGCCCAAAC
    951 TGCCCTTGCC GTAGCAGANG CCGCAACTAC GGTTTGGGGC
    GGTAAAAAAG
    1001 TAGAACTTAA CCCGACCAAA TGGGATTGGG TTAAAAATAC
    NGGCTATAAN
    1051 ACACCTGCTG TTCGCACCAT GCATACTTTG GATGGGGAAA
    TGGCCGGTGG
    1101 GAATAGACCG CCTAAATCTA TAACGTCCAA CAGCAAAGCA
    GATGCTTCCA
    1151 CACAACCGTC TTTACAAGCG CAACTAATTG GAGAACAAAT
    TANNNNNGGG
    1201 CATGCTTATA ACAAGCATGT CATAAGACAA CAAGAATTTA
    CGGATTTAAA
    1251 TATCAATTCA CCAGCAGATT TTGCTCGGCA TATTGAAAAT
    ATTGTTAGCC
    1301 ATCCANCAAA TATGAAAGAG TTACCTCGCG GTAGAACTGC
    GTATTGGGAT
    1351 NATAAAACAG GGACNATAGT TATCCGAGAT AAAAATTCTG
    ACGATGGAGG
    1401 TACAGCATTT AGACCAACAT CAGGTAAAAA ATATTATGAT
    GATTTATAG
  • This encodes a protein having amino acid sequence <SEQ ID 168>:
  • 1 MNXPIQKFMM LFAAAISXLQ IPISHANGLD ARLRDDMQAK
    HYEPGGKYHL
    51 FGNARGSVKN RVYAVQTFDA TAVGPILPIT HERTGFEGII
    GYETHFSGHG
    101 HEVHSPFDNH DSKSTSDFSG GVDGGFTVYQ LHRTGSEIHP
    EDGYDGPQGS
    151 DYPPPGGARD IYXXYVKGTS TKTKSNIVPR APFSDRWLKE
    NAGAASGFFS
    201 RADEAGKLIW ESDPNKNWWA NRMDDIRGIV QGAVNPFLMG
    FQGVGIGAIT
    251 DSAVSPVTDT AAQQTLQGXN HLGXLSPEAQ LAAATALQDS
    AFAVKDGINS
    301 ARQWADAHPN ITATAQTALA VAXAATTVWG GKKVELNPTK
    WDWVKNTGYX
    351 TPAVRTMHTL DGEMAGGNRP PKSITSNSKA DASTQPSLQA
    QLIGEQIXXG
    401 HAYNKHVIRQ QEFTDLNINS PADFARHIEN IVSHPXNMKE
    LPRGRTAYWD
    451 XKTGTIVIRD KNSDDGGTAF RPTSGKKYYD DL*
  • ORF29a and ORF29-1 show 90.1% identity in 385 aa overlap:
  • Figure US20130064846A1-20130314-C00076
  • Homology with a Predicted ORF from N. gonorrhoeae
  • ORF29 shows 88.8% identity over a 125aa overlap with a predicted ORF (ORF29.ng) from N. gonorrhoeae:
  • Figure US20130064846A1-20130314-C00077
  • The complete length ORF29ng nucleotide sequence <SEQ ID 169> is predicted to encode a protein having amino acid sequence <SEQ ID 170>:
  •   1 MNLPIQKFMM LFAAAISLLQ IPISHANGLD ARLRDDMQAK HYEPGGKYHL
     51 FGNARGSVKN RVCAVQTFDA TAVGPILPIT HERTGFEGVI GYETHFSGHG
    101 HEVHSPFDNH DSKSTSDFSG GVDGGFTVYQ LHRTGSEIHP EDGYDGPQGG
    151 GYPPPGGARD IYSYHIKGTS TKTKINTVPQ APFSDRWLKE NAGAASGFLS
    201 RADEAGKLIW ENDPDKNWRA NRMDDIRGIV QGAVNPFLTG FQGLGVGAIT
    251 DSAVSPVTYA AARKTLQGIH NLGNLSPEAQ LAAATALQDS AFAVKDSINS
    301 ARQWADAHPN ITATAQTALA VTEAATTVWG GKKVELNPAK WDWVKNTGYK
    351 KPAARHMQTV DGEMAGGNKP LESKNTVTTN NFFENTGYTE KVLRQASNGD
    401 YHGFPQSVDA FSENGTVIQI VGGDNIVRHK LYIPGSYKGK DGNFEYIREA
    451 DGKINHRLFV PNQQLPEK*
  • In a second experiment, the following DNA sequence <SEQ ID 171> was identified:
  •    1 atgAATTTGC CTATTCAAAA ATTCATGATG ctgttggcAg cggcaatatc
      51 gatgctGCat ATCCCCATTA GTCATGCGAA CGGTTTGGAT GCCCGTTTGC
     101 GCGATGATAT GCAGGCAAAA CACTACGAAC CGGGTGGCAA ATACCATCTG
     151 TTTGGTAATG CTCGCGGCAG TGTTAAAAAT CGGGTTTGCG CCGTCCAAAC
     201 ATTTGATGCA ACTGCGGTCG GCCCCATACT GCCTATTACA CACGAACGGA
     251 CAGGATTTGA AGGTGTTATC GGCTATGAAA CCCATTTTTC AGGACACGGA
     301 CACGAAGTAC ACAGTCCGTT CGATAATCAT GATTCAAAAA GCACTTCTGA
     351 TTTCAGCGGC GGCGTAGACG GCGGTTTTAC CGTTTACCAA CTTCATCGGA
     401 CAGGGTCGGA AATACATCCC GCAGACGGAT ATGACGGGCC TCAAGGCGGC
     451 GGTTATCCGG AACCACAAGG GGCAAGGGAT ATATACAGCT ACCATATCAA
     501 AGGAACTTCA ACCAAAACAA AGATAAACAC TGTTCCGCAA GCCCCTTTTT
     551 CAGACCGCTG GCTAAAAGAA AATGCCGGTG CCGCTTCCGG TTTTCTCAGC
     601 CGTGCGGATG AAGCAGGAAA ACTGATATGG GAAAACGACC CCGATAAAAA
     651 TTGGCGGGCT AACCGTATGG ATGATATTCG CGGCATCGTC CAAGGTGCGG
     701 TTAATCCTTT TTTAACGGGT TTTCAAGGGG TAGGGATTGG GGCAATTACA
     751 GACAGTGCGG TAAGCCCGGT CACAGATACA GCCGCTCAGC AGACTCTACA
     801 AGGTATTAAT GATTTAGGAA ATTTAAGTCC GGAAGCACAA CTTGCCGCCG
     851 CGAGCCTATT ACAGGACAGT GCCTTTGCGG TAAAAGACGG CATCAATTCC
     901 GCCAGACAAT GGGCTGATGC CCATCCGAAT ATAACAGCAA CAGCCCAAAC
     951 TGCCCTTGCC GTAGCAGAGG CCGCAGGTAC GGTTTGGCGC GGTAAAAAAG
    1001 TAGAACTTAA CCCGACCAAA TGGGATTGGG TTAAAAATAC CGGCTATAAA
    1051 AAACCTGCTG CCCGCCATAT GCAGACTGTA GATGGGGAGA TGGCAGGGGG
    1101 GAATAGACCG CCTAAATCTA TAACGTCGGA AGGAAAAGCT AATGCTGCAA
    1151 CCTATCCTAA GTTGGTTAAT CAGCTAAATG AGCAAAACTT AAATAACATT
    1201 GCGGCTCAAG ATCCAAGATT GAGTCTAGCT ATTCATGAGG GTAAAAAAAA
    1251 TTTTCCAATA GGAACTGCAA CTTATGAAGA GGCAGATAGA CTAGGTAAAA
    1301 TTTGGGTTGG TGAGGGTGCA AGACAAACTA GTGGAGGCGG ATGGTTAAGT
    1351 AGAGATGGCA CTCGACAATA TCGGCCACCA ACAGAAAAAA AATCACAATT
    1401 TGCAACTACA GGTATTCAAG CAAATTTTGA AACTTATACT ATTGATTCAA
    1451 ATGAAAAAAG AAATAAAATT AAAAATGGAC ATTTAAATAT TAGGTAA
  • This encodes a protein having amino acid sequence <SEQ ID 172; ORF29ng-1>:
  •   1 MNLPIQKFMM LLAAAISMLH IPISHANGLD ARLRDDMQAK HYEPGGKYHL
     51 FGNARGSVKN RVCAVQTFDA TAVGPILPIT HERTGFEGVI GYETHFSGHG
    101 HEVHSPFDNH DSKSTSDFSG GVDGGFTVYQ LHRTGSEIHP ADGYDGPQGG
    151 GYPEPQGARD IYSYHIKGTS TKTKINTVPQ APFSDRWLKE NAGAASGFLS
    201 RADEAGKLIW ENDPDKNWRA NRMDDIRGIV QGAVNPFLTG FQGVGIGAIT
    251 DSAVSPVTDT AAQQTLQGIN DLGNLSPEAQ LAAASLLQDS AFAVKDGINS
    301 ARQWADAHPN ITATAQTALA VAEAAGTVWR GKKVELNPTK WDWVKNTGYK
    351 KPAARHMQTV DGEMAGGNRP PKSITSEGKA NAATYPKLVN QLNEQNLNNI
    401 AAQDPRLSLA IHEGKKNFPI GTATYEEADR LGKIWVGEGA RQTSGGGWLS
    451 RDGTRQYRPP TEKKSQFATT GIQANFETYT IDSNEKRNKI KNGHLNIR*
  • ORF29ng-1 and ORF29-1 show 86.0% identity in 401 aa overlap:
  • Figure US20130064846A1-20130314-C00078
  • Based on this analysis, including the presence of a putative leader sequence in the gonococcal protein, it is predicted that the proteins from N. meningitidis and N. gonorrhoeae, and their epitopes, could be useful antigens for vaccines or diagnostics, or for raising antibodies.
  • Example 21
  • The following partial DNA sequence was identified in N. meningitidis <SEQ ID 173>:
  •   1 ATGAAAAAAC AAATCACCGC AGCCGTAATG ATGCTGTCTA TGATTGCCCC
     51 CGCAATGGCA AACGGCTTGG ACAATCAGGC ATTTGAAGAC CAAATGTTCC
    101 ACACGCGGGC AGATGCACCG ATGCAG...
  • This corresponds to the amino acid sequence <SEQ ID 174; ORF30>:
  • 1 MKKQITAAVM MLSMIAPAMA NGLDNQAFED QMFHTRADAP MQ..
  • Further work revealed the complete nucleotide sequence <SEQ ID 175>:
  •   1 ATGAAAAAAC AAATCACCGC AGCCGTAATG ATGCTGTCTA TGATTGCCCC
     51 CGCAATGGCA AACGGCTTGG ACAATCAGGC ATTTGAAGAC CAAGTGTTCC
    101 ACACGCGGGC AGATGCACCG ATGCAGTTGG CGGAGCTTTC TCAAAAGGAG
    151 ATGAAGGAGA CAGAGGGGGC GTTTCTTCCA TTGGCTATCT TGGGTGGTGC
    201 TGCCATTGGT ATGTGGACAC AGCATGGTTT TAGTTATGCA ACGACAGGCA
    251 GACCAGCTTC TGTTAGAGAT GTTGCTATTG CTGGCGGATT AGGCGCAATT
    301 CCTGGTGGTG TAGGCGCCGC AGGAAAGGTT GTTTCCTTTG CTAAATATGG
    351 ACGTGAGATT AAAATCGGCA ATAATATGCG GATAGCCCCT TTCGGTAATA
    401 GAACAGGTCA TCCTATTGGA AAATTTCCCC ATTATCATCG TCGAGTTACG
    451 GATAATACGG GCAAGACTTT GCCTGGACAG GGAATTGGTC GTCATCGCCC
    501 TTGGGAATCA AAATCTACGG ACAGATCATG GAAAAACCGC TTCTAA
  • This corresponds to the amino acid sequence <SEQ ID 176; ORF30-1>:
  •   1 MKKQITAAVM MLSMIAPAMA NGLDNQAFED QVFHTRADAP MQLAELSQKE
     51 MKETEGAFLP LAILGGAAIG MW TQHGFSYA TTGRPASVRD VAIAGGLGAI
    101 PGGVGAAGKV VSFAKYGREI KIGNNMRIAP FGNRTGHPIG KFPHYHRRVT
    151 DNTGKTLPGQ GIGRHRPWES KSTDRSWKNR F*
  • Computer analysis of this amino acid sequence gave the following results:
  • Homology with a Predicted ORF from N. meningitidis (Strain A)
  • ORF30 shows 97.6% identity over a 42aa overlap with an ORF (ORF30a) from strain A of N. meningitidis:
  • Figure US20130064846A1-20130314-C00079
  • The complete length ORF30a nucleotide sequence <SEQ ID 177> is:
  •   1 ATGAAAAAAC AAATCACCGC AGCCGTAATG ATGCTGTCTA TGATTGCCCC
     51 CGCAATGGCA AACGGCTTGG ACAATCAGGC ATTTGAAGAC CAAGTGTTCC
    101 ACACGCGGGC AGATGCACCG ATGCAGTTGG CGGAGCTTTC TCAAAAGGAG
    151 ATGAAGGANA CAGNGGGGGC GTTTCTTCCA TTGGNTATCT TGGGTGGTGC
    201 TGCCATTGGT ATGTGGACAC AGCATGGTTT TAGTTATGCA ACGACAGGCA
    251 GACCAGCTTC TGTTAGAGAT GTTGCTATTG CTGGCGGATT AGGCGCAATT
    301 CCTGGTGNTG TAGGCGCCGC AGGAAAGGTT GTTTCCTTTG CTAAATATGG
    351 ACGTGAGATT AAAATCGGCA ATAATATGCG GATAGCCCCT TTCGGTAATA
    401 GAACAGGTCA TCCTATTGGN AAATTTCCCC ATTATCATCG TCGAGTTACG
    451 GATAATACGG GCAAGACTTT GCCTGGACAG GGAATTGGTC GTCATCGCCC
    501 TTGGGAATCA AAATCTACGG ACAGATCATG GAAAAACCGC TTCTAA
  • This encodes a protein having amino acid sequence <SEQ ID 178>:
  •   1 MKKQITAAVM MLSMIAPAMA NGLDNQAFED QVFHTRADAP MQLAELSQKE
     51 MKXTXGAFLP LXILGGAAIG MW TQHGFSYA TTGRPASVRD VAIAGGLGAI
    101 PGXVGAAGKV VSFAKYGREI KIGNNMRIAP FGNRTGHPIG KFPHYHRRVT
    151 DNTGKTLPGQ GIGRHRPWES KSTDRSWKNR F*
  • ORF30a and ORF30-1 show 97.8% identity in 181 aa overlap:
  • Figure US20130064846A1-20130314-C00080
  • Homology with a Predicted ORF from N. gonorrhoeae
  • ORF30 shows 97.6% identity over a 42aa overlap with a predicted ORF (ORF30.ng) from N. gonorrhoeae:
  • Figure US20130064846A1-20130314-C00081
  • The complete length ORF30ng nucleotide sequence <SEQ ID 179> is
  •   1 ATGAAAAAAC AAATCACCGC AGCCGTAATG ATGCTGTCTA TGATCGCCCC
     51 CGCAATGGCA AACGGATTGG ACAATCAGGC ATTTGAAGAC CAAGTGTTCC
    101 ACACGCGGGC AGATGCGCCG ATGCAGTTGG CGGAGCTTTC TCAGAAGGAG
    151 ATGAAGGAGA CTGAAGGGGC TTTTCTTCCA TTGGCTATCT TGGGTGGTGC
    201 TGCCATTGGT ATGTGGACAC AGCATGGTTT TAGTTATGCA ACGACAGGCA
    251 GACCAGCTTC TGTTAGAGAT GTTGCTGGCG GATTAGGCGC AATTCCTGGT
    301 GATGTAGGTG CTGCAGGAAA GGTTGTTTCC TTTGCTAAAT ATGGACGTGA
    351 GATTAAAATC GGCAATAATA TGCGGATAGC CCCTTTCGGT AATAGAACAG
    401 GTCATCCTAT TGGAAAATTT CCCCATTATC ATCGTCGAGT TACGGATAAT
    451 ACGGGCAAGA CTTTGCCTGG ACAGGGAATT GGTCGTCATC GCCCTTGGGA
    501 ATCAAAATCT ACGGACAGAT CATGGAAAAA CCGCTTCTAA
  • This encodes a protein having amino acid sequence <SEQ ID 180>:
  •   1 MKKQITAAVM MLSMIAPAMA NGLDNQAFED QVFHTRADAP MQLAELSQKE
     51 MKETEGAFLP LAILGGAAIG MWTQHGFSYA TTGRPASVRD VAGGLGAIPG
    101 DVGAAGKVVS FAKYGREIKI GNNMRIAPFG NRTGHPIGKF PHYHRRVTDN
    151 TGKTLPGQGI GRHRPWESKS TDRSWKNRF*
  • ORF30ng and ORF30-1 show 98.3% identity in 181 aa overlap:
  • Figure US20130064846A1-20130314-C00082
  • Based on this analysis, including the presence of a putative leader sequence in the gonococcal protein, it is predicted that the proteins from N. meningitidis and N. gonorrhoeae, and their epitopes, could be useful antigens for vaccines or diagnostics, or for raising antibodies.
  • Example 22
  • The following partial DNA sequence was identified in N. meningitidis <SEQ ID 181>:
  •   1 ATGAATAAAA CTCTCTATCG TGTAATTTTC AACCGCAAAC GTGGGGCTGT
     51 GrTAGCCGTT GCTGAAACTA CCAAGCGCGA AGGTAAAAGC TGTGCCGATA
    101 GTGATTCAGG CAGCGCTCAT GTGAAATCTG TTCCTTTTGG TACTACTCAT
    151 GCACCTGTTT GTg.CGTTaC AAATATCTTT TCTTTTTCTT TATTGGGCTT
    201 TTCTTTATGT TTGGCTGTAG GtacGGyCAA TATTGCTTTT GCTGATGGCA
    251 TT..
  • This corresponds to the amino acid sequence <SEQ ID 182; ORF31>:
  •  1 MNKTLYRVIF NRKRGAVXAV AETTKREGKS CADSDSGSAH VKSVPFGTTH
    51 APVCXVTNIF SFSLLGFSLC LAVGTXNIAF ADGI..
  • Further work revealed a further partial nucleotide sequence <SEQ ID 183>:
  •   1 ATGAATAAAA CTCTCTATCG TGTAATTTTC AACCGCAAAC GTGGGGCTGT
     51 GGTAGCCGTT GCTGAAACTA CCAAGCGCGA AGGTAAAAGC TGTGCCGATA
    101 GTGATTCAGG CAGCGCTCAT GTGAAATCTG TTCCTTTTGG TACTACTCAT
    151 GCACCTGTTT GTCGTTCAAA TATCTTTTCT TTTTCTTTAT TGGGCTTTTC
    201 TTTATGTTTG GCTGTAGGTA CGGCCAATAT TGCTTTTGCT GATGGCATT..
  • This corresponds to the amino acid sequence <SEQ ID 184; ORF31-1>:
      • 1 MNKTLYRVIF NRKRGAVVAV AETTKREGKS CADSDSGSAH VKSVPFGTTH
      • 51 APVCRSNIFS FSLLGFSLCL AVGTANIAFA DGI . . . .
  • Computer analysis of this amino acid sequence gave the following results:
  • Homology with a Predicted ORF from N. gonorrhoeae
  • ORF31 shows 76.2% identity over a 84aa overlap with a predicted ORF (ORF31.ng) from N. gonorrhoeae:
  • Figure US20130064846A1-20130314-C00083
  • The complete length ORF31ng nucleotide sequence <SEQ ID 185> is:
  •   1 ATGAACAAAA CCCTCTATCG TGTGATTTTC AACCGCAAAC GCGGTGCTGT
     51 GGTAGCTGTT GCCGAAACCA CCAAGCGCGA AGGTAAAAGC TGTGCCGATA
    101 GTGGTTCGGG CAGCGTTTAT GTGAAATCCG TTTCTTTCAT TCCTACTCAT
    151 TCCAAAGCCT TTTGTTTTTC TGCATTAGGC TTTTCTTTAT GTTTGGCTTT
    201 GGGTACGGTC AATATTGCTT TTGCTGACGG CATTATTACT GATAAAGCTG
    251 CTCCTAAAAC CCAACAAGCC ACGATTCTGC AAACAGGTaa cGGCATACCG
    301 CAAGTCAATA TTCAAACCCC TACTTCGGCA GGGGTTTCTG TTAATCAATA
    351 TGCCCAGTTT GATGTGGGTA ATCGCGGGGC GATTTTAAAC AACAGTCGCA
    401 GCAACACCCA AACACAGCTA GGCGGTTGGA TTCAAGGCAA TCCTTGGTTG
    451 ACAAGGGGCG AAGCACGTGT GGTTGTAAAC CAAATCAACA GCAGCCATCC
    501 TTCACAACTG AATGGCTATA TTGAAGTGGG TGGACGACGT GCAGAAGTCG
    551 TTATTGCCAA TCCGGCAGGG ATTGCAGTCA ATGGTGGTGG TTTTATCAAT
    601 GCTTCCCGTG CCACTTTGAC GACAGGCCAA CCGCAATATC AAGCAGGAGA
    651 CTTTAGCGGC TTTAAGATAA GGCAAGGCAA TGCTGTAATC GCCGGACACG
    701 GTTTGGATGC CCGTGATACC GATTTCACAC GTATTCTTGT ATGCCAACAA
    751 AATCACCTTG ATCAGTACGG CCGAACAAGC AGGCATTCGT AA
  • This encodes a protein having amino acid sequence <SEQ ID 186>:
  • 1 MNKTLYRVIF NRKRGAVVAV AETTKREGKS CADSGSGSVY
    VKSVSFIPTH
    51 SKAFCFSALG FSLCLALGTV NIAFADGIIT DKAAPKTQQA
    TILQTGNGIP
    101 QVNIQTPTSA GVSVNQYAQF DVGNRGAILN NSRSNTQTQL
    GGWIQGNPWL
    151 TRGEARVVVN QINSSHPSQL NGYIEVGGRR AEVVIANPAG
    IAVNGGGFIN
    201 ASRATLTTGQ PQYQAGDFSG FKIRQGNAVI AGHGLDARDT
    DFTRILVCQQ
    251 NHLDQYGRTS RHS*
  • This gonococcal protein shares 50% identity over a 149aa overlap with the pore-forming hemolysins-like HecA protein from Erwinia chrysanthemi (accession number L39897):
  • orf31ng 96 GNGIPQVNIQTPTSAGVSVNQYAQFDVGNRGAILNNSRSN-TQTQLGGWIQGNPWLTRGE 154
    GNG+P VNI TP ++G+S N+Y  F+V NRG ILNN  +  T +QLGG IQ NP L
    HecA 45 GNGVPVVNIATPDASGLSHNRYHDFNVDNRGLILNNGTARLTPSQLGGLIQNNPNLNGRA 104
    Orf31ng 155 ARVVVNQINSSHPSQLNGYIEVGGRRAEVVIANPAGIAVNGGGFINASRATLTTGQPQYQ 214
    A  ++N++ S + S+L GY+EV G+ A VV+ANP GI  +G GF+N  R TLTTG PQ+
    HecA 105 AAAILNEVVSPNRSRLAGYLEVAGQAANVVVANPYGITCSGCGFLNTPRLTLTTGTPQFD 164
    Orf31ng 215 -AGDFSGFKIRQGNAVIAGHGLDARDTDF 242
     AG  SG  +R G+ +I G GLDA  +D+
    HecA 165 AAGGLSGLDVRGGDILIDGAGLDASRSDY 193
  • Furthermore, ORF31ng and ORF31-1 show 79.5% identity in 83 aa overlap:
  • Figure US20130064846A1-20130314-C00084
  • On this basis, including the homology with hemolysins, and also with adhesins, it is predicted that the proteins from N. meningitidis and N. gonorrhoeae, and their epitopes, could be useful antigens for vaccines or diagnostics, or for raising antibodies.
  • Example 23
  • The following partial DNA sequence was identified in N. meningitidis <SEQ ID 187>:
  • 1 ATGAATACTC CTCCTTTTGT CTGTTGGATT TTTTGCAAGG
    TCATCGACAA
    51 TTTCGGCGAC ATCGGCGTTT CGTGGCGGCT CGCCCGTGTT
    TTGCACCGCG
    101 AACTCGGTTG GCAGGTGCAT TTGTGGACGG ACGATGTGTC
    CGCCTTGCGT
    151 GCGCTTTGCC CTGATTTGCC CGATGTTCCC TGCGTTCATC
    AGGATATTCA
    201 TGTCCGCACT TGGCATTCCG ATGCGGCAGA TATTGATACC
    GCG..
  • This corresponds to the amino acid sequence <SEQ ID 188; ORF32>:
  • 1 MNTPPFVCWI FCKVIDNFGD IGVSWRLARV LHRELGWQVH
    LWTDDVSALR
    51 ALCPDLPDVP CVHQDIHVRT WHSDAADIDT A..
  • Further work revealed the complete nucleotide sequence <SEQ ID 189>:
  • 1 ATGAATACTC CTCCTTTTGT CTGTTGGATT TTTTGCAAGG
    TCATCGACAA
    51 TTTCGGCGAC ATCGGCGTTT CGTGGCGGCT CGCCCGTGTT
    TTGCACCGCG
    101 AACTCGGTTG GCAGGTGCAT TTGTGGACGG ACGATGTGTC
    CGCCTTGCGT
    151 GCGCTTTGCC CTGATTTGCC CGATGTTCCC TGCGTTCATC
    AGGATATTCA
    201 TGTCCGCACT TGGCATTCCG ATGCGGCAGA TATTGATACC
    GCGCCTGTTC
    251 CCGATGTCGT CATCGAAACT TTTGCCTGCG ACCTGCCCGA
    AAATGTGCTG
    301 CACATTATCC GCCGACACAA GCCGCTTTGG CTGAATTGGG
    AATATTTGAG
    351 CGCGGAGGAA AGCAATGAAA GGCTGCATCT GATGCCTTCG
    CCGCAGGAGG
    401 GTGTTCAAAA ATATTTTTGG TTTATGGGTT TCAGCGAAAA
    AAGCGGCGGG
    451 TTGATACGCG AACGTGATTA CTGCGAAGCC GTCCGTTTCG
    ATACTGAAGC
    501 CCTGCGAGAG CGGCTGATGC TGCCCGAAAA AAACGCCTCC
    GAATGGCTGC
    551 TTTTCGGCTA TCGGAGCGAT GTTTGGGCAA AGTGGCTGGA
    AATGTGGCGA
    601 CAGGCAGGCA GCCCGATGAC ACTGTTGCTG GCGGGGACGC
    AAATCATCGA
    651 CAGCCTCAAA CAAAGCGGCG TTATTCCGCA AGATGCCCTG
    CAAAACGACG
    701 GCGATGTTTT TCAGACGGCA TCCGTCCGCC TCGTCAAAAT
    CCCTTTCGTG
    751 CCGCAACAGG ACTTCGACCA ACTGCTGCAC CTTGCCGACT
    GCGCCGTCAT
    801 CCGCGGCGAA GACAGTTTCG TGCGCGCCCA GCTTGCGGGC
    AAACCCTTCT
    851 TTTGGCACAT CTACCCGCAA GACGAGAATG TCCATCTCGA
    CAAACTCCAC
    901 GCCTTTTGGG ATAAGGCACA CGGTTTCTAC ACGCCCGAAA
    CCGTGTCGGC
    951 ACACCGCCGT CTTTCGGACG ACCTCAACGG CGGAGAGGCT
    TTATCCGCAA
    1001 CACAACGCCT CGAATGTTGG CAAACCCTGC AACAACATCA
    AAACGGCTGG
    1051 CGGCAAGGCG CGGAGGATTG GAGCCGTTAT CTTTTCGGGC
    AGCCGTCAGC
    1101 TCCTGAAAAA CTCGCTGCCT TTGTTTCAAA GCATCAAAAA
    ATACGCTAG
  • This corresponds to the amino acid sequence <SEQ ID 190; ORF32-1>:
  • 1 MNTPPFVCWI FCKVIDNFGD IGVSWRLARV LHRELGWQVH
    LWTDDVSALR
    51 ALCPDLPDVP CVHQDIHVRT WHSDAADIDT APVPDVVIET
    FACDLPENVL
    101 HIIRRHKPLW LNWEYLSAEE SNERLHLMPS PQEGVQKYFW
    FMGFSEKSGG
    151 LIRERDYCEA VRFDTEALRE RLMLPEKNAS EWLLFGYRSD
    VWAKWLEMWR
    201 QAGSPMTLLL AGTQIIDSLK QSGVIPQDAL QNDGDVFQTA
    SVRLVKIPFV
    251 PQQDFDQLLH LADCAVIRGE DSFVRAQLAG KPFFWHIYPQ
    DENVHLDKLH
    301 AFWDKAHGFY TPETVSAHRR LSDDLNGGEA LSATQRLECW
    QTLQQHQNGW
    351 RQGAEDWSRY LFGQPSAPEK LAAFVSKHQK IR*w
  • Computer analysis of this amino acid sequence gave the following results:
  • Homology with a Predicted ORF from N. meningitidis (Strain A)
  • ORF32 shows 93.8% identity over a 81 as overlap with an ORF (ORF32a) from strain A of N. meningitidis:
  • Figure US20130064846A1-20130314-C00085
  • The complete length ORF32a nucleotide sequence <SEQ ID 191> is:
  • 1 ATGAATACTC CTCCTTTTTC TGCTGGANTT TTTTGCAAGG
    TCATCGACAA
    51 TTTCGGCGAC ATCGGCGTTT CGTGGCGGCT TGCCCGTGTT
    TTGCACCGCG
    101 AACTCGGTTG GCAGGTGCAT TTGTGGACGG ACGATGTGTC
    CGCCTTGCGT
    151 GCGCTTTGCC CTGATTTGCC CGATGTTCNC TGCGTTCATC
    AGGATATTCA
    201 TGTCCGCACT TGGCATTCCG ATGCGGCAGA TATTGATACC
    GCGCCTGTTC
    251 NCGATGTCGT CATCGAAACT TTTGCCTGCG ACCTGCCCGA
    AAATGTGCTG
    301 CACATCATCC GCCGACACAA GCCGCTTTGG CTGAANTGGG
    AATATTTGAG
    351 CGCGGAGGAN AGCAATGAAA GGCTGCACNT GATGCCTTCG
    CCGCAGGAGA
    401 GTGTTCNAAA ATANTTTTGG TTTATGGGTT TCAGCGAANN
    NAGCGGCGGA
    451 CTGATACGCG AACGCGATTA CTGCGAAGCC GTCCGTTTCG
    ATAGCGGAGC
    501 CTTGCGCAAG AGGCTGATGC TTCCCGAAAA AAACGNCCCC
    GAATGGCTGC
    551 TTTTCGGCTA TCGGAGCGAT GTTTGGGCAA AGTGGCTGGA
    AATGTGGCGA
    601 CAGGCAGGCA GTCCGTTGAC ACTTTTGCTG GCNGGGGCGC
    ANATTATCGA
    651 CAGCCTCAAA CAAAACGGCG TTATTCCGCA AGATGCCCTG
    CAAAACGACG
    701 GCGATGTTTT TCAGACGGCA TCCGTCCGCC TCGTCAAAAT
    CCCTTTCGTG
    751 CCGCAACAGG ACTTCGACAA ACTGCTGCAC CTTGCCGACT
    GCGCCGTCAT
    801 CCGCGGCGAA GACAGTTTCG TGCGCGCCCA GCTTGCGGGC
    AAACCCTTCT
    851 TTTGGCACAT CTACCCGCAA GATGAGAATG TCCATCTCGA
    CAAACTCCAC
    901 GCCTTTTGGG ATAAGGCACA CGGTTTCTAC ACGCCCGAAA
    CCGCATCGGC
    951 ACACCGCCGC CTTTCAGACG ACCTCAACGG CGGAGAGGCT
    TTATCCGCAA
    1001 CACAACGCCT CGAATGTTGG CAAATCCTGC AACAACATCA
    AAACGGCTGG
    1051 CGGCAAGGCG CGGAGGATTG GAGCCGTTAT CTTTTTGGGC
    AGCCTTCCGC
    1101 ATCCGAAAAA CTCGCCGCCT TTGTTTCAAA GCATCAAAAA
    ATACGCTAG
  • This encodes a protein having amino acid sequence <SEQ ID 192>:
  • 1 MNTPPFSAGX FCKVIDNFGD IGVSWRLARV LHRELGWQVH
    LWTDDVSALR
    51 ALCPDLPDVX CVHQDIHVRT WHSDAADIDT APVXDVVIET
    FACDLPENVL
    101 HIIRRHKPLW LXWEYLSAEX SNERLHXMPS PQESVXKXFW
    FMGFSEXSGG
    151 LIRERDYCEA VRFDSGALRK RLMLPEKNXP EWLLFGYRSD
    VWAKWLEMWR
    201 QAGSPLTLLL AGAXIIDSLK QNGVIPQDAL QNDGDVFQTA
    SVRLVKIPFV
    251 PQQDFDKLLH LADCAVIRGE DSFVRAQLAG KPFFWHIYPQ
    DENVHLDKLH
    301 AFWDKAHGFY TPETASAHRR LSDDLNGGEA LSATQRLECW
    QILQQHQNGW
    351 RQGAEDWSRY LFGQPSASEK LAAFVSKHQK IR*
  • ORF32a and ORF32-1 show 93.2% identity in 382 aa overlap:
  • Figure US20130064846A1-20130314-C00086
  • Homology with a Predicted ORF from N. gonorrhoeae
  • ORF32 shows 95.1% identity over a 82aa overlap with a predicted ORF (ORF32.ng) from N. gonorrhoeae:
  • Figure US20130064846A1-20130314-C00087
  • An ORF32ng nucleotide sequence <SEQ ID 193> was predicted to encode a protein having amino acid sequence <SEQ ID 194>:
  • 1 MVMNTYAFPV CWIFCKVIDN FGDIGVSWRL ARVLHRELGW
    QVHLWTDDVS
    51 ALRALCPDLP DVPFVHQDIH VRTWHSDAAD IDTAPVPDAV
    IETFACDLPE
    101 NVLNIIRRHK PLWLNWEYLS AEESNERLHL MPSPQEGVQK
    YFWFMGFSEK
    151 SGGLIRERDY REAVRFDTEA LRRRLVLPEK NAPEWLLFGY
    RGDVWAKWLD
    201 MWQQAGSLMT LLLAGAQIID SLKQSGVIPQ NALQNEGGVF
    QTASVRLVKI
    251 PFVPQQDFDK LLHLADCAVI RGEDSFVRTQ LAGKPFFWHI
    YPQDENVHLD
    301 KLHAFWDKAY GFYTPETASV HRLLSDDLNG GEALSATQRL
    ECGVL*
  • Further sequencing revealed the following DNA sequence <SEQ ID 195>:
  • 1 ATGAATACAT ACGCTTTTCC TGTCTGTTGG ATTTTTTGCA
    AGGTCATCGA
    51 CAATTTCGGC GACATCGGCG TTTCGTGGCG GCTCGCCCGT
    GTTTTGCACC
    101 GCGAACTCGG TTGGCAGGTG CATTTGTGGA CGGACGACGT
    GTCCGCCTTG
    151 CGCGCGCTTT GTCCCGATTT GCCCGATGTT CCCTTCGTTC
    ATCAGGATAT
    201 TCATGTCCGC ACTTGGCATT CCGATGCGGC AGACATTGAT
    ACCGCGCCCG
    251 TTCCCGATGC CGTTATCGAA ACTTTTGCCT GCGACCTGCC
    CGAAAATGTG
    301 CTGAACATCA TCCGCCGACA CAAACCGCTT TGGCTGAATT
    GGGAATATTT
    351 GAGCGCGGAG GAAAGCAATG AAAGGCTGCA CCTGATGCCT
    TCGCCGCAGG
    401 AGGGCGTTCA AAAATATTTT TGGTTTATGG GTTTCAGCGA
    AAAAAGCGGC
    451 GGGTTGATAC GCGAACGCGA TTACCGCGAA GCCGTCCGTT
    TCGATACCGA
    501 AGCCCTGCGC CGGCGGCTGG TGCTGCCCGA AAAAAACGCC
    CCCGAATGGC
    551 TGCTTTTCGG CTATCGGGGC GATGTTTGGG CAAAGTGGCT
    GGACATGTGG
    601 CAACAGGCAG GCAGCCTGAT GACCCTACTG CTGGCGGGGG
    CGCAAATTAT
    651 CGACAGCCTC AAACAAAGCG GCGTTATTCC GCAAAACGCC
    CTGCAAAAtg
    701 aaggcgGTGT CTTTCagacG gcatccgTcC gccttGTCAA
    AAtcCCGTTC
    751 GTGCcGCAAC AGGAcTTCGA CAAATTGCTG CAcctcgcCG
    ACTGCGCCGT
    801 GATACGCGGC GAAGACAGTT TCGTGCGTAC CCAGCTTGCC
    GGAAAACCCT
    851 TTTTTTGGCA CATCTACCCG CAAGACGAGA ATGTCCATCT
    CGACAAACTC
    901 CACGCCTTTT GGGATAAGGC ATACGGCTTC TACACGCCCG
    AAACCGCATC
    951 GGTGCACCGC CTCCTTTCGG ACGACCTCAA CGGCGGAGAG
    GCTTTATCCG
    1001 CAACACAACG CCTCGAATGT TGGCAAACCC TGCAACAACA
    TCAAAACGGC
    1051 TGGCGGCAAG GCGCGGAGGA TTGGAGCCGT TATCTTTTCG
    GGCAGCCTTC
    1101 CGCATCCGAA AAACTCGCCG CCTTTGTTTC AAAGCATCAA
    AAAATACGCT
    1151 AG
  • This encodes a protein having amino acid sequence <SEQ ID 196; ORF32ng-1>:
  • 1 MNTYAFPVCW IFCKVIDNFG DIGVSWRLAR VLHRELGWQV
    HLWTDDVSAL
    51 RALCPDLPDV PFVHQDIHVR TWHSDAADID TAPVPDAVIE
    TFACDLPENV
    101 LNIIRRHKPL WLNWEYLSAE ESNERLHLMP SPQEGVQKYF
    WFMGFSEKSG
    151 GLIRERDYRE AVRFDTEALR RRLVLPEKNA PEWLLFGYRG
    DVWAKWLDMW
    201 QQAGSLMTLL LAGAQIIDSL KQSGVIPQNA LQNEGGVFQT
    ASVRLVKIPF
    251 VPQQDFDKLL HLADCAVIRG EDSFVRTQLA GKPFFWHIYP
    QDENVHLDKL
    301 HAFWDKAYGF YTPETASVHR LLSDDLNGGE ALSATQRLEC
    WQTLQQHQNG
    351 WRQGAEDWSR YLFGQPSASE KLAAFVSKHQ KIR*
  • ORF32ng-1 and ORF32-1 show 93.5% identity in 383 aa overlap:
  • Figure US20130064846A1-20130314-C00088
  • On this basis, including the RGD sequence in the gonococcal protein, characteristic of adhesins, it is predicted that the proteins from N. meningitidis and N. gonorrhoeae, and their epitopes, could be useful antigens for vaccines or diagnostics, or for raising antibodies.
  • ORF32-1 (42 kDa) was cloned in pET and pGex vectors and expressed in E. coli, as described above. The products of protein expression and purification were analyzed by SDS-PAGE. FIG. 7A shows the results of affinity purification of the His-fusion protein, and FIG. 7B shows the results of expression of the GST-fusion in E. coli. Purified His-fusion protein was used to immunise mice, whose sera were used for ELISA, giving a positive result. These experiments confirm that ORF32-1 is a surface-exposed protein, and that it is a useful immunogen.
  • Example 24
  • The following partial DNA sequence was identified in N. meningitidis <SEQ ID 197>:
  • 1 ..TTGTTCCTGC GTGTNAAAGT GGGGCGTTTT TTCAGCAGTC
    CGGCGACGTG
    51   GTTTCGGGNC AAAGACCCTG TAAATCAGGC GGTGTTGCGG
    CTGTATNCGG
    101   ACGAGTGGCG GCA.ACTTCG GTACGTTGGA AAATAGNCGC
    AACGTCGCAC
    151   AGCCTGTGGC TCTGCACGCT GCTCGGAATG CTGGTGTCGG
    TATTGTTGCT
    201   GCTTTTGGTG CGGCAATATA CGTTCAACTG GGAAAGCACG
    CTGTTGAGCA
    251   ATGCCGCTTC GGTACGCGCG GTGGAAATGT TGGCATGGCT
    GCCGTCGAAA
    301   CTCGGTTTCC CTGTCCCCGA TGCGCGGTCG GTCATCGAAG
    GCCGTCTGAA
    351   CGGCAATATT GCCGATGCGC GGGCTTGGTC GGGGCTGCTG
    GTCGNCAGTA
    401   TCGCCTGCTA NGGCATCCTG CCGCGCCTG..
  • This corresponds to the amino acid sequence <SEQ ID 198; ORF33>:
  • 1 ..LFLRVKVGRF FSSPATWFRX KDPVNQAVLR LYXDEWRXTS
    VRWKIXATSH
    51   SLWLCTLLGM LVSVLLLLLV RQYTFNWEST LLSNAASVRA
    VEMLAWLPSK
    101   LGFPVPDARS VIEGRLNGNI ADARAWSGLL VXSIACXGIL
    PRL..
  • Further work revealed the complete nucleotide sequence <SEQ ID 199>:
  • 1 ATGTTGAATC CATCCCGAAA ACTGGTTGAG CTGGTCCGTA
    TTTTGGACGA
    51 AGGCGGTTTT ATTTTCAGCG GCGATCCCGT ACAGGCGACG
    GAGGCTTTGC
    101 GCCGCGTGGA CGGCAGTACG GAGGAAAAAA TCATCCGTCG
    GGCGGAGATG
    151 ATTGACAGGA ACCGTATGCT GCGGGAGACG TTGGAACGTG
    TGCGTGCGGG
    201 GTCGTTCTGG TTGTGGGTGG TGGCGGCGAC GTTTGCATTT
    TTTACCGGTT
    251 TTTCAGTCAC TTATCTTCTA ATGGACAATC AGGGTCTGAA
    TTTCTTTTTG
    301 GTTTTGGCGG GCGTGTTGGG CATGAATACG CTGATGCTGG
    CAGTATGGTT
    351 GGCAATGTTG TTCCTGCGTG TGAAAGTGGG GCGTTTTTTC
    AGCAGTCCGG
    401 CGACGTGGTT TCGGGGCAAA GACCCTGTAA ATCAGGCGGT
    GTTGCGGCTG
    451 TATGCGGACG AGTGGCGGCA ACCTTCGGTA CGTTGGAAAA
    TAGGCGCAAC
    501 GTCGCACAGC CTGTGGCTCT GCACGCTGCT CGGAATGCTG
    GTGTCGGTAT
    551 TGTTGCTGCT TTTGGTGCGG CAATATACGT TCAACTGGGA
    AAGCACGCTG
    601 TTGAGCAATG CCGCTTCGGT ACGCGCGGTG GAAATGTTGG
    CATGGCTGCC
    651 GTCGAAACTC GGTTTCCCTG TCCCCGATGC GCGGGCGGTC
    ATCGAAGGCC
    701 GTCTGAACGG CAATATTGCC GATGCGCGGG CTTGGTCGGG
    GCTGCTGGTC
    751 GGCAGTATCG CCTGCTACGG CATCCTGCCG CGCCTGCTGG
    CTTGGGTAGT
    801 GTGTAAAATC CTTTTGAAAA CAAGCGAAAA CGGATTGGAT
    TTGGAAAAGC
    851 CCTATTATCA GGCGGTCATC CGCCGCTGGC AGAACAAAAT
    CACCGATGCG
    901 GATACGCGTC GGGAAACCGT GTCCGCCGTT TCACCGAAAA
    TCATCTTGAA
    951 CGATGCGCCG AAATGGGCGG TCATGCTGGA GACCGAGTGG
    CAGGACGGCG
    1001 AATGGTTCGA GGGCAGGCTG GCGCAGGAAT GGCTGGATAA
    GGGCGTTGCC
    1051 ACCAATCGGG AACAGGTTGC CGCGCTGGAG ACAGAGCTGA
    AGCAGAAACC
    1101 GGCGCAACTG CTTATCGGCG TGCGCGCCCA AACTGTGCCG
    GACCGCGGCG
    1151 TGTTGCGGCA GATTGTCCGA CTCTCGGAAG CGGCGCAGGG
    CGGCGCGGTG
    1201 GTGCAGCTTT TGGCGGAACA GGGGCTTTCA GACGACCTTT
    CGGAAAAGCT
    1251 GGAACATTGG CGTAACGCGC TGGCCGAATG CGGCGCGGCG
    TGGCTTGAGC
    1301 CTGACAGGGC GGCGCAGGAA GGGCGTTTGA AAGACCAATA
    A
  • This corresponds to the amino acid sequence <SEQ ID 200; ORF33-1>:
  • 1 MLNPSRKLVE LVRILDEGGF IFSGDPVQAT EALRRVDGST
    EEKIIRRAEM
    51 IDRNRMLRET LERVRAGSFW LWVVAATFAF FTGFS VTYLL
    MDNQGLNFFL
    101 VLAGVLGMNT LMLAVWLAML FLRVKVGRFF SSPATWFRGK
    DPVNQAVLRL
    151 YADEWRQPSV RWKIGATSHS LWLCTLLGML VSVLLLLLVR
    QYTFNWESTL
    201 LSNAASVRAV EMLAWLPSKL GFPVPDARAV IEGRLNGNIA
    DARAWSGLLV
    251 GSIACYGILP RLLAWVVCKI LLKTSENGLD LEKPYYQAVI
    RRWQNKITDA
    301 DTRRETVSAV SPKIILNDAP KWAVMLETEW QDGEWFEGRL
    AQEWLDKGVA
    351 TNREQVAALE TELKQKPAQL LIGVRAQTVP DRGVLRQIVR
    LSEAAQGGAV
    401 VQLLAEQGLS DDLSEKLEHW RNALAECGAA WLEPDRAAQE
    GRLKDQ*
  • Computer analysis of this amino acid sequence gave the following results:
  • Homology with a Predicted ORF from N. meningitidis (Strain A)
  • ORF33 shows 90.9% identity over a 143aa overlap with an ORF (ORF33a) from strain A of N. meningitidis:
  • Figure US20130064846A1-20130314-C00089
  • The complete length ORF33a nucleotide sequence <SEQ ID 201> is:
  • 1 ATGTTGAATC CATCCCGAAA ACTGGTTGAG CTGGTCCGTA
    TTTTGGAAGA
    51 AGGCGGCTTT ATTTTCAGCG GCGATCCCGT GCAGGCGACG
    GAGGCTTTGC
    101 GCCGCGTGGA CGGCAGTACG GAGGAAAAAA TCATCCGTCG
    GGCGAAGATG
    151 ATCGACAGGA ACCGTATGCT GCGGGAGACG TTGGAACGTG
    TGCGTGCGGG
    201 GTCGTTCTGG TTGTGGGTGG CGGCGGCGAC GTTTGCGTTT
    NTTACCGNTT
    251 TTTCAGTTAC TTATCTTCTA ATGGACAATC AGGGTCTGAA
    TTTCTTTTTG
    301 GTTTTGGCGG GCGTGNTGGG CATGAATACG CTGATGCTGG
    CAGTATGGTT
    351 GGCAATGTTG TTCCTGCGCG TGAAAGTGGG GCGTTTTTTC
    AGCAGTCCGG
    401 CGACGTGGTT TCGGGGCAAA GACCCTGTCA ATCAGGCGGT
    GTTGCGGCTG
    451 TATGCGGACG AGTGGCGGCN ACCTTCGGTA CGTTGGAAAA
    TAGGCGCAAC
    501 GTCGCACAGC CTGTGGCTCT GCACGCTGCT CGGAATGCTG
    GTGTCGGTAT
    551 TGTTGCTGCT TTTGGTGCGG CAATATACGT TCAACTGGGA
    AAGCACGCTG
    601 TTGGGCGATT CGTCTTCGGT ACGGCTGGTG GAAATGTTGG
    CATGGCTGCC
    651 TGCGAAACTG GGTTTTCCCG TGCCTGATGC GCGGGCGGTC
    ATCGAAGGTC
    701 GTCTGAACGG CAATATTGCC GATGCGCGGG CTTGGTCGGG
    GCTGCTGGTC
    751 GGCAGTATCG CCTGCTACGG CATCCTGCCG CGCCTCTTGG
    CTTGGGCGGT
    801 ATGCAAAATC CTTNTGNAAA CAAGCGAAAA CGGCTTGGAT
    TTGGAAAAGC
    851 NCNNNNNTCN NNCGNTCATC CGCCGCTGGC AGAACAAAAT
    CACCGATGCG
    901 GATACGCGTC GGGAAACCGT GTCCGCCGTT TCGCCGAAAA
    TCGTCTTGAA
    951 CGATGCGCCG AAATGGGCGG TCATGCTGGA GACCGAATGG
    CAGGACGGCG
    1001 AATGGTTCGA GGGCAGGCTG GCGCAGGAAT GGCTGGATAA
    GGGCGTTGCC
    1051 GCCAATCGGG AACAGGTTGC CGCGCTGGAG ACAGAGCTGA
    AGCAGAAACC
    1101 GGCGCAACTG CTTATCGGCG TGCGCGCCCA AACTGTGCCC
    GACCGCGGCG
    1151 TGTTGCGGCA GATCGTCCGA CTTTCGGAAG CGGCGCAGGG
    CGGCGCGGTG
    1201 GTGCANCTTT TGGCGGAACA GGGGCTTTCA GACGACCTTT
    CGGAAAAGCT
    1251 GGAACATTGG CGTAACGCGC TGACCGAATG CGGCGCGGCG
    TGGCTGGAAC
    1301 CCGACAGAGC GGCGCAGGAA GGCCGTCTGA AAACCAACGA
    CCGCACTTGA
  • This encodes a protein having amino acid sequence <SEQ ID 202>:
  • 1 MLNPSRKLVE LVRILEEGGF IFSGDPVQAT EALRRVDGST
    EEKIIRRAKM
    51 IDRNRMLRET LERVRAGSFW LWVAAATFAF XTXFS VTYLL
    MDNQGLNFFL
    101 VLAGVXGMNT LMLAVWLAML FLRVKVGRFF SSPATWFRGK
    DPVNQAVLRL
    151 YADEWRXPSV RWKIGATSHS LWLCTLLGML VSVLLLLLVR
    QYTFNWESTL
    201 LGDSSSVRLV EMLAWLPAKL GFPVPDARAV IEGRLNGNIA
    DARAWSGLLV
    251 GSIACYGILP RLLAWAVCKI LXXTSENGLD LEKXXXXXXI
    RRWQNKITDA
    301 DTRRETVSAV SPKIVLNDAP KWAVMLETEW QDGEWFEGRL
    AQEWLDKGVA
    351 ANREQVAALE TELKQKPAQL LIGVRAQTVP DRGVLRQIVR
    LSEAAQGGAV
    401 VXLLAEQGLS DDLSEKLEHW RNALTECGAA WLEPDRAAQE
    GRLKTNDRT*
  • ORF33a and ORF33-1 show 94.1% identity in 444 aa overlap:
  • Figure US20130064846A1-20130314-C00090
  • Homology with a Predicted ORF from N. gonorrhoeae
  • ORF33 shows 91.6% identity over a 143aa overlap with a predicted ORF (ORF33.ng) from N. gonorrhoeae:
  • Figure US20130064846A1-20130314-C00091
  • An ORF33ng nucleotide sequence <SEQ ID 203> was predicted to encode a protein having amino acid sequence <SEQ ID 204>:
  • 1 MIDRDRMLRD TLERVRAGSF WLWVVVASMM FTAGFSGTYL
    LMDNQGLNFF
    51 LVLAGVLGMN TLMLAVWLAT LFLRVKVGRF FSSPATWFRG
    KGPVNQAVLR
    101 LYADQWRQPS VRWKIGATAH SLWLCTLLGM LVSVLLLLLV
    RQYTFNWEST
    151 LLSNAASVRA VEMLAWLPSK LGFPVPDARA VIEGRLNGNI
    ADARAWSGLL
    201 VGSIVCYGIL PRLLAWVVCK ILLKTSENGL DLEKTYYQAV
    IRRWQNKITD
    251 ADTRRETVSA VSPKIVLNDA PKWALMLETE WQDGQWFEGR
    LAQEWLDKGV
    301 AANREQVAAL ETELKQKPAQ LLIGVRAQTV PDRGVLRQIV
    RLSEAAQGGA
    351 VVQLLAEQGL SDDLSEKLEH WRNALTECGA AWLEPDRVAQ
    EGRLKDQ*
  • Further sequence analysis revealed the following DNA sequence <SEQ ID 205>:
  • 1 ATGTTGaatC CATCCCgaAA ACTGgttgag ctGgTCCgtA
    Ttttgaataa
    51 agggggtTTT attttcagcg gcgatcctgt gcaggcgacg
    gaggctttgc
    101 gccgcgtgga cggcAGTACG GAggAaaaaa tcttccgtcg
    GGCGGAGAtg
    151 atcgACAGGg accgtatgtt gcgggACaCg TtggaacGTG
    TGCGTGCggg
    201 gtcgtTctgG TTATGGGTGG TggtggCAtC gATGATGTtt
    aCCGCCGGAT
    251 TTTCAGgcac ttatCttCTG ATGGACaatC AGGGGCtGAA
    TtTCTTTTTA
    301 GTTTTggcgG GAGTGTtggG CATGaatacG ctgATGCTGG
    CAGTATGGtt
    351 gGCAACGTTG TTCCTGCGCG TGAAAGTGGG ACGGTTTTTC
    AGCAGTCCGG
    401 CGACGTGGTT TCGGGGCAAA GGCCCTGTAA ATCAGGCGGT
    GTTGCGGCTG
    451 TATGCGGACC AGTGGCGGCA ACCTTCGGTA CGATGGAAAA
    TAGGCGCAAC
    501 GGCGCACAGC TTGTGGCTCT GCACGCTGCT CGGAATGCTG
    GTGTCGGTAT
    551 TGCTGCTGCT TTTGGTGCGG CAATATACGT TCAACTGGGA
    AAGCACGCTG
    601 TTGAGCAATG CCGCTTCGGT ACGCGCGGTG GAAATGTTGG
    CATGGCTGCC
    651 GTCGAAACTC GGTTTCCCTG TCCCCGATGC GCGGGCGGTC
    ATCGAAGGTC
    701 GTCTGAACGG CAATATTGCC GATGCGCGGG CTTGGTCGGG
    GCTGCTGGTC
    751 GGCAGTATCG TCTGCTACGG CATCCTGCCG CGCCTCTTGG
    CTTGGGTAGT
    801 GTGTAAAATC CTTTTGAAAA CAAGCGAAAA CGGattgGAT
    TTGGAAAAAA
    851 CCTATTATCA GGCGGTCATC CGCCGCTGGC AGAACAAAAT
    CACCGATGCG
    901 GATACGCGTC GGGAAACCGT GTCCGCCGTT TCGCcgaAAA
    TCGTCTTGAA
    951 CGATGCGCCG AAATGGGCGC TCATGCTGGA GACCGAGTGG
    CAGGACGGCC
    1001 AATGGTTCGA GGGCAGGCTG GCGCAGGAAT GGCTGGATAA
    GGGCGTTGCC
    1051 GCCAATCGGG AACAGGTTGC CGCGCTGGAG ACAGAGCTGA
    AGCAGAAACC
    1101 GGCGCAACTG CTTATCGGCG TACGCGCCCA AACTGTGCCG
    GACCGGGGCG
    1151 TGCTGCGGCA GATTGTGCGG CTTTCGGAAG CGGCGCAGGG
    CGGCGCGGTG
    1201 GTGCAGCTTT TGGCGGAACA GGGGCTTTCA GACGACCTTT
    CGGAAAAGCT
    1251 GGAACATTGG CGTAACGCGC TGACCGAATG CGGCGCGGCG
    TGGCTTGAGC
    1301 CTGACAGGGT GGCGCAGGAA GGCCGTTTGA AAGACCAATA
    A
  • This encodes a protein having amino acid sequence <SEQ ID 206; ORF33ng-1>:
  • 1 MLNPSRKLVE LVRILNKGGF IFSGDPVQAT EALRRVDGST
    EEKIFRRAEM
    51 IDRDRMLRDT LERVRAGSFW LWVVVASMMF TAGFS GTYLL
    MDNQGLNFFL
    101 VLAGVLGMNT LMLAVWLATL FLRVKVGRFF SSPATWFRGK
    GPVNQAVLRL
    151 YADQWRQPSV RWKIGATAHS LWLCTLLGML VSVLLLLLVR
    QYTFNWESTL
    201 LSNAASVRAV EMLAWLPSKL GFPVPDARAV IEGRLNGNIA
    DARAWSGLLV
    251 GSIVCYGILP RLLAWVVCKI LLKTSENGLD LEKTYYQAVI
    RRWQNKITDA
    301 DTRRETVSAV SPKIVLNDAP KWALMLETEW QDGQWFEGRL
    AQEWLDKGVA
    351 ANREQVAALE TELKQKPAQL LIGVRAQTVP DRGVLRQIVR
    LSEAAQGGAV
    401 VQLLAEQGLS DDLSEKLEHW RNALTECGAA WLEPDRVAQE
    GRLKDQ*
  • ORF33ng-1 and ORF33-1 show 94.6% identity in 446 aa overlap:
  • Figure US20130064846A1-20130314-C00092
  • Based on the presence of several putative transmembrane domains in the gonococcal protein, it is predicted that the proteins from N. meningitidis and N. gonorrhoeae, and their epitopes, could be useful antigens for vaccines or diagnostics, or for raising antibodies.
  • Example 25
  • The following partial DNA sequence was identified in N. meningitidis <SEQ ID 207>:
  • 1 ..CAGAAGAGTT TGTCGAGAAT TTCTTTATGG GGTTTGGGCG
    GCGTGTTTTT
    51   CGGGGTGTCC GGTCTGGTAT GGTTTTCTTT GGGCGTTTCT
    TT.GAGTGCG
    101   CCTGTTTTTC GGGTGTTTCT TTTCGGGGTT CGGGACGGGG
    GACGTTTGTG
    151   GGCAGTACGG GGGTTTCTTT GAGTGTGTTT TCAGCTTGTG
    TTCC.GGCGT
    201   CGTCCGGCTG CCTGTCGGTT TGAGCTGTGT CGGCAGGTTG
    CG..GTTTGA
    251   CCCGGTTTTT CTTGGGTGCG GCAGGGGACG TCATTCTCCT
    GCCGCTTTCG
    301   TCTGTGCCGT CCGGCTGTGC GGGTTCGGAT GAGGCGGCGT
    GGTGGTGTTC
    351   GGGTTGGGCG GCATCTTGTT CCGACTACGC CGTTTGGCAG
    CCAGAATTCG
    401   GTTTCGCGGG GGCTGTCGGT GTGTTGCGGT TCGGCTTGAA
    GGGTTTTGTC
    451   GTCC..
  • This corresponds to the amino acid sequence <SEQ ID 208; ORF34>:
  • 1 ..QKSLSRISLW GLGGVFFGVS GLVWFSLGVS XECACFSGVS
    FRGSGRGTFV
    51   GSTGVSLSVF SACVXGVVRL PVGLSCVGRL XXLTRFFLGA
    AGDVILLPLS
    101   SVPSGCAGSD EAAWWCSGWA ASCPTTPFGS QNSVSRGLSV
    CCGSA*RVLS
    151   S..
  • Further work revealed the complete nucleotide sequence <SEQ ID 209>:
  • 1 ATGATGATGC CGTTCATAAT GCTTCCTTGG ATTGCkGGTG
    TGCCTGCCGT
    51 GCCGGGTCAG AATAGGTTGT CCAGAATTTC TTTATGGGGT
    TTGGGCGGCG
    101 TGTTTTTCGG GGTGTCCGGT TTGGTATGGT TTTCTTTGGG
    CGTTTCTTTG
    151 GGCTGCGCCT GTTTTTCGGG TGTTTCTTTT CGGGGTTCGG
    GACGGGGGAC
    201 GTTTGTGGGC AGTACGGGGG TTTCTTTGAG TGTGTTTTCA
    GCTTGTGTTC
    251 CGGCGTCGTC CGGCTGCCTG TCGGTTTGAG CTGTGTCGGC
    AGGTTGCGGT
    301 TTGACCCGGT TTTTCTTGGG TGCGGCAGGG GACGGCAGTC
    CGCTGCCGCT
    351 TTCGTCTGTG CCGTCCGGCT GTGCGGGTTC GGATGAGGCG
    GCGTGGTGGT
    401 GTTCGGGTTG GGCGGCATCT TGTCCGACTA CGCCGTTTGG
    CAGCCAGAAT
    451 TCGGTTTCGC GGGGGCTGTC GGTGTGTTGC GGTTCGGCTT
    GAAGGGTTTT
    501 GTCGCCGTTC GGGTTGAATG TGCTGACGAT GCCTATTGCC
    AATGCGCCGA
    551 TGGCGGCGAT ACAGATGAGC AATACGGCGC GTATCAGGAG
    TTTGGGGGTC
    601 AGCCTGAAGG GTTTGTTCGG TTTTTTTGCC ATTTTGATTG
    TGCTTTTGGG
    651 GTGTCGGGCA ATGCCGTCTG AAGGCGGTTC AGACGGCATT
    GCCGAGTCAG
    701 CGTTGGACGT AGTTTTGGTA GAGGGTGATG ACTTTTTGTA
    CGCCGACGGT
    751 GGTGCTGACT TTTTGGGTAA TCTGCGCCTG TTCTTCGGGG
    GTGAGGATGC
    801 CCATAACGTA GGTTACGTTG CCGTAGGTAA CGATTTTGAC
    GCGCGCCTGT
    851 GTGGCGGGGC TGATGCCCAA CAGCGTGGCG CGGACTTTGG
    ATGTGTTCCA
    901 AGTGTCGCCG GCGATGTCGC CGGCAGTGCG CGGCAGGGAG
    GCGACGGTAA
    951 TATAGTTGTA CACGCCTTCG GCGGCCTGTT CGGAACGTGC
    AATCTGACCG
    1001 ACGAACTGTT TTTCGCCTTC GGTGGCGACT TGTCCGAGCA
    GCAGCAGGTG
    1051 GCGGTTGTAG CCGACGACGG AGATTTGGGG CGTGTAGCCT
    TTGGTTTGGT
    1101 TGTTTTGGCG CAGATAGGAA CGGGCGGTGG TTTCGATACG
    CAACGCCATA
    1151 ACGTTGTCGT CGGTTTGCGC GCCGGTGGTT CGGCGGTCGA
    CGGCGGATTT
    1201 CGCGCCGACG GCGGCGCTTC CGATTACTGC GCTGACGCAG
    CCGCTAAGGG
    1251 CAAGGCTGAA AATGGCGGCA ATCAGGGTGC GGACGGTGTG
    CGGTTTGGGT
    1301 TTCATCGGGT GCTTCCTTTC TTGGGCGTTT CAGACGGCAT
    TGCTTTGCGC
    1351 CATGCCGTCT GA
  • This corresponds to the amino acid sequence <SEQ ID 210; ORF34-1>:
  • 1 MMMPFIMLPW IAGVPAVPGQ NRLSRISLWG LGGVFFGVSG
    LVWFSLGVSL
    51 GCACFSGVSF RGSGRGTFVG STGVSLSVFS ACVPASSGCL
    SV*AVSAGCG
    101 LTRFFLGAAG DGSPLPLSSV PSGCAGSDEA AWWCSGWAAS
    CPTTPFGSQN
    151 SVSRGLSVCC GSA*RVLSPF GLNVLTMPIA NAPMAAIQMS
    NTARIRSLGV
    201 SLKGLFGFFA ILIVLLGCRA MPSEGGSDGI AESALDVVLV
    EGDDFLYADG
    251 GADFLGNLRL FFGGEDAHNV GYVAVGNDFD ARLCGGADAQ
    QRGADFGCVP
    301 SVAGDVAGSA RQGGDGNIVV HAFGGLFGTC NLTDELFFAF
    GGDLSEQQQV
    351 AVVADDGDLG RVAFGLVVLA QIGTGGGFDT QRHNVVVGLR
    AGGSAVDGGF
    401 RADGGASDYC ADAAAKGKAE NGGNQGADGV RFGFHRVLPF
    LGVSDGIALR
    451 HAV*
  • Computer analysis of this amino acid sequence gave the following results:
  • Homology with a Predicted ORF from N. meningitidis (Strain A)
  • ORF34 shows 73.3% identity over a 161aa overlap with an ORF (ORF34a) from strain A of N. meningitidis:
  • Figure US20130064846A1-20130314-C00093
  • The complete length ORF34a nucleotide sequence <SEQ ID 211> is:
  • 1 ATGATGATNC CGTTNATAAT GCTTCCTTGG ATTGCGGGTG
    TGCCTGCCGT
    51 GCCGGGTCAG AAGAGGTTGT CGAGAANTTC TTTATGGGGT
    TTAGGCGGCN
    101 TGTTTTTCGG GGTGTCCGGT TTGGTATGGT TTTCTTTGGG
    CGTTTCTNTT
    151 TCTTTGGGTG TTTCTNTGGG CTGTGCCTGT TTTTCGGGTG
    TTTCTTTTCG
    201 GGGTTCGGGA CGGGGGACGT TTGTGGGCAG TACNGGGGTT
    TCTTTGAGTG
    251 TGTTTTCAGC TTGTGCTCCG GCGTCGTCCG GCTGCCTGTC
    GGTTTNAGCT
    301 GTGTCGGCAG GTTGCGGTTT GACCCGGNTT TTCTTNGGTG
    CGGCAGGGGA
    351 CGGCAGTCCG CTGCCGCTTT CGTCTGTGCC GTCCGGCTGT
    GCGGGTGCGG
    401 ATGAGGAGGC GTNGTNGTGT TCGGGTTGGG CGGCATCTTG
    TCCGACTACG
    451 CCGTTTGGCA GCCAGAATTC GGTTTCGCGG GGGCTGTCGG
    TGTGTTGCGG
    501 TTCGGTNTGG AGGGTTTTGT CNCCGTTCGG GTNGAATGTG
    CTGACGATGC
    551 CTATTGCCAA TGCGCCGATG GCGGTGATAC AGATGAGCAA
    TACGGCGCGT
    601 ATCAGGAGTT TGGGGGTCAG CCTGAAGGGT TTGTTCNGTT
    TTTTTGCCAT
    651 TTTGATTGTG CTTTTGGGGT GTCGGGCAAT GCCGTCTGAA
    GGCGGTTCAG
    701 ACGGCATTGC CGAGTCAGCG TTGGACGTAG TTTNGGTAGA
    GGGTGATGAC
    751 TTTTTGTACG CCGACGGTGG TGCTGACTTT TTGGGTAATC
    TGCGCCTGTT
    801 CTTCGGGGGT GAGGATGCCC ATAACGTAGG TTACGTTGCC
    GTAGGTAACG
    851 ATTTTGACGC GCGCCTGTGT GGCGGGGCTG ATGCCCAACA
    GCGTGGCGCG
    901 GACTTTGGAT GTGTTCCAAG TGTCGCCGGC GATGTCGCCG
    GCAGTGCGCG
    951 GCAGGGAGGC GACGGTAATG TANTTGTACA CGCCTTCGGC
    GGCCTGTTCG
    1001 GAACGTGCAA TCTGACCGAC GAACTGTTTC TCGCCTTCGG
    TGGCGACTTG
    1051 TCCGAGCAGC AGCAGGTGGC GGTTGTAGCC GACAACGGAG
    ATTTGGGGCG
    1101 TGTANCCTTT GGTTTGGTTG TTTTGGCGCA GATAGGAGCG
    GGCGGTGGTT
    1151 TCGATACGCA GCGCCATTAC GTTGTCGTCG GTTNGCGCGC
    CGGTGGTTCG
    1201 GCGGTCGACG GCGGATTTCG CGCCGACCGC CGCGCCGCCG
    ACGACTGCGC
    1251 TGACGCAGCC GCCGAGGGCA AGGCTGAGGA CGGCGGCAGT
    CAGGGTGCGG
    1301 ACGGTGTGCG GTTTGGGTTT CATCGGGTGC TTCCTTTCTT
    GGGCGTTTCA
    1351 GACGGCATTG CTTTGCGCCA TGCCGTCTGA
  • This encodes a protein having amino acid sequence <SEQ ID 212>:
  • 1 MMXPXIMLPW IAGVPAVPGQ KRLSRXSLWG LGGXFFGVSG
    LVWFSLGVSX
    51 SLGVSXGCAC FSGVSFRGSG RGTFVGSTGV SLSVFSACAP
    ASSGCLSVXA
    101 VSAGCGLTRX FXGAAGDGSP LPLSSVPSGC AGADEEAXXC
    SGWAASCPTT
    151 PFGSQNSVSR GLSVCCGSVW RVLSPFGXNV LTMPIANAPM
    AVIQMSNTAR
    201 IRSLGVSLKG LFXFFAILIV LL GCRAMPSE GGSDGIAESA
    LDVVXVEGDD
    251 FLYADGGADF LGNLRLFFGG EDAHNVGYVA VGNDFDARLC
    GGADAQQRGA
    301 DFGCVPSVAG DVAGSARQGG DGNVXVHAFG GLFGTCNLTD
    ELFLAFGGDL
    351 SEQQQVAVVA DNGDLGRVXF GLVVLAQIGA GGGFDTQRHY
    VVVGXRAGGS
    401 AVDGGFRADR RAADDCADAA AEGKAEDGGS QGADGVRFGF
    HRVLPFLGVS
    451 DGIALRHAV*
  • ORF34a and ORF34-1 show 91.3% identity in 459 aa overlap:
  • Figure US20130064846A1-20130314-C00094
  • Homology with a Predicted ORF from N. gonorrhoeae
  • ORF34 shows 77.6% identity over a 161 as overlap with a predicted ORF (ORF34.ng) from N. gonorrhoeae:
  • Figure US20130064846A1-20130314-C00095
  • The complete length ORF34ng nucleotide sequence <SEQ ID 213> is:
  • 1 ATGATGATGC CGTTCATAAT GCTTCCTTGG ATTGCGGGTG
    TGCCTGCCGT
    51 GCCGGGTCAA AAGAGGTTGT CGAGAATCTC TTTATGGGGT
    TTGGCCGGCG
    101 TGTTTTTCGG GGTGTCCGGT TTGGTATGGT TTTCTTTGGG
    CGTTTCTTTT
    151 TCTTTGGGTG TTTCTTTGGG CTGCGCCTGT TTTTCGGGTG
    TTTCTTTTCG
    201 GGGTTCGGGA TGGGGGGCGT TTGTGGGCAG TACGGGGGTT
    TCTTTGAGTG
    251 TGTTTTCAGC TTGTGTTCCG GTGCCGGTTA ACGAATCGGC
    TGCCCGGGCC
    301 GCATCCGAAG GGCGCGGTTT gACCCGGTTT TTCTTGGGTG
    CGGCAGGGGA
    351 CGGCAGTCCG CTGCCGCTTT CTTCTGTGCC GTCCGGCTGT
    GCGGGTTCGG
    401 ATGAGGCGGC GTGGTGGTGT TCGGGTTGGG CGGCATCTTG
    TCCGACGGCG
    451 CCGTTTGGCA GCCAGAATTC GGTTTCGCGG GGGCTGTCGG
    TGTGTTGCGG
    501 TTCGGTTTGG AGGGTTTTGT CGCCGTTCGG GTTGAATGTG
    CTGACGATGC
    551 CTACTGCCAA TGCGCCGATG GCGGTGATAC AGATGAGCAA
    TACGGCGCGT
    601 ATCAGGAGTT TGGGGGTCAG CCTGAAGGGT TTGTTCGGTT
    TTTTTGCCAT
    651 TTTGATTGTG CTTTTGGGGT GTCGGGCAAT GCCGTCTGAA
    GGCGGTTCAG
    701 ACGGCATTGC CGAGTCAGCG TTGGACGTAG TTTTGGTAGA
    GGGTAATGAC
    751 TTTTTGTACG CCGAcggTGG TGCTGACTTT TTGGGTAATC
    TGCGCCTGTT
    801 CTTCGGGGGT GAGGATGCCC ATAACGTAGG TTACATTGCC
    GTAGGTAATG
    851 ATTTTGACGC GCGCCTGTGT AGCGGGGCTG ATGCCCAGCA
    GcgtgGCGCG
    901 GACTTTGGAC GTGTTCCAAG TGTCGCCGGC GATGTCGCCC
    GCAGTGCGCG
    951 GCAGGGAGGC GACGGTAATG TAGTTGTATA CGCCTTCGGC
    GGCCTGTTCG
    1001 GAACGTGCAA TCTGACCGAC GAACTGTTTT TCGCCTTCGG
    TGGCGACTTG
    1051 TCCGAGCAGC AGCAGGTGGC GGTTGTAGCC GACGACGGAG
    ATTTGGGGCG
    1101 TGTAGCCTTT GGTTTGGTTG TTTTGGCGCA GGTAGGAACG
    GGCGGTGGTT
    1151 TCGATACGCA ACGCCATAAC GTtgtCATCG GTTtgcgcgc
    CGGTGGTTcg
    1201 gCGGTCGATG ACGGATTTTG CGCCGACGGC GGCCCCGCCG
    ACGACTGCGC
    1251 TGAAGCAGCC GCCGAGGGCA AGGCTGAGGA CGGCGGCAAT
    CAGGGTGCGG
    1301 ACGGTGTGTG GTTTGGGTTT CATCGGGGAC TTCCTTTCTT
    GGGCGTTTCA
    1351 GACGGCATTG CTTTGCGCCA TGCCGTCTGA
  • This encodes a protein having amino acid sequence <SEQ ID 214>:
  • 1 MMMPFIMLPW IAGVPAVPGQ KRLSRISLWG LAGVFFGVSG
    LVWFSLGVSF
    51 SLGVSLGCAC FSGVSFRGSG WGAFVGSTGV SLSVFSACVP
    VPVNESAARA
    101 ASEGRGLTRF FLGAAGDGSP LPLSSVPSGC AGSDEAAWWC
    SGWAASCPTA
    151 PFGSQNSVSR GLSVCCGSVW RVLSPFGLNV LTMPTANAPM
    AVIQMSNTAR
    201 IRSLGVSLKG LFGFFAILIV LL GCRAMPSE GGSDGIAESA
    LDVVLVEGND
    251 FLYADGGADF LGNLRLFFGG EDAHNVGYIA VGNDFDARLC
    SGADAQQRGA
    301 DFGRVPSVAG DVARSARQGG DGNVVVYAFG GLFGTCNLTD
    ELFFAFGGDL
    351 SEQQQVAVVA DDGDLGRVAF GLVVLAQVGT GGGFDTQRHN
    VVIGLRAGGS
    401 AVDDGFCADG GPADDCAEAA AEGKAEDGGN QGADGVWFGF
    HRGLPFLGVS
    451 DGIALRHAV*
  • ORF34ng and ORF34-1 show 90.0% identity in 459 aa overlap:
  • Figure US20130064846A1-20130314-C00096
  • Based on this analysis, including the presence of a putative leader sequence (double-underlined) and several putative transmembrane domains (single-underlined) in the gonococcal protein, it is predicted that the proteins from N. meningitidis and N. gonorrhoeae, and their epitopes, could be useful antigens for vaccines or diagnostics, or for raising antibodies.
  • Example 26
  • The following partial DNA sequence was identified in N. meningitidis <SEQ ID 215>:
  • 1 ATGAAAACCT TCTTCAAAAC CCTTTCCGCC GCCGCACTCG
    CGCTCATCCT
    51 CGCCGCCTGC GGATT.CAAA AAGACAGCGC GCCCGCCGCA
    TCCGCTTCTG
    101 CCGCCGCCGA CAACGGCGCG GCGTAAAAAA GAAATCGTCT
    TCGGCACGAC
    151 CGTCGGCGAC TTCGGCGATA TGGTCAAAGA ACAAATCCAA
    GCCGAGCTGG
    201 AGAAAAAAGG CTACACCGTC AAACTGGTCG AGTTTACCGA
    CTATGTACGC
    251 CCGAATCTGG CATTGGCTGA GGGCGAGTTG
  • This corresponds to the amino acid sequence <SEQ ID 216; ORF4>:
  • 1 MKTFFKTLSA AALALILAAC G.QKDSAPAA SASAAADNGA
    AKKEIVFGTT
    51 VGDFGDMVKE QIQAELEKKG YTVKLVEFTD YVRPNLALAE
    GEL
  • Further sequence analysis revealed the complete nucleotide sequence <SEQ ID 217>:
  • 1 ATGAAAACCT TCTTCAAAAC CCTTTCCGCC GCCGCACTCG
    CGCTCATCCT
    51 CGCCGCCTGC GGCGGTCAAA AAGACAGCGC GCCCGCCGCA
    TCCGCTTCTG
    101 CCGCCGCCGA CAACGGCGCG GCGAAAAAAG AAATCGTCTT
    CGGCACGACC
    151 GTCGGCGACT TCGGCGATAT GGTCAAAGAA CAAATCCAAG
    CCGAGCTGGA
    201 GAAAAAAGGC TACACCGTCA AACTGGTCGA GTTTACCGAC
    TATGTACGCC
    251 CGAATCTGGC ATTGGCTGAG GGCGAGTTGG ACATCAACGT
    CTTCCAACAC
    301 AAACCCTATC TTGACGACTT CAAAAAAGAA CACAATCTGG
    ACATCACCGA
    351 AGTCTTCCAA GTGCCGACCG CGCCTTTGGG ACTGTACCCG
    GGCAAGCTGA
    401 AATCGCTGGA AGAAGTCAAA GACGGCAGCA CCGTATCCGC
    GCCCAACGAC
    451 CCGTCCAACT TCGCCCGCGT CTTGGTGATG CTCGACGAAC
    TGGGTTGGAT
    501 CAAACTCAAA GACGGCATCA ATCCGTTGAC CGCATCCAAA
    GCGGACATCG
    551 CCGAGAACCT GAAAAACATC AAAATCGTCG AGCTTGAAGC
    CGCGCAACTG
    601 CCGCGTAGCC GCGCCGACGT GGATTTTGCC GTCGTCAACG
    GCAACTACGC
    651 CATAAGCAGC GGCATGAAGC TGACCGAAGC CCTGTTCCAA
    GAACCGAGCT
    701 TTGCCTATGT CAACTGGTCT GCCGTCAAAA CCGCCGACAA
    AGACAGCCAA
    751 TGGCTTAAAG ACGTAACCGA GGCCTATAAC TCCGACGCGT
    TCAAAGCCTA
    801 CGCGCACAAA CGCTTCGAGG GCTACAAATC CCCTGCCGCA
    TGGAATGAAG
    851 GCGCAGCCAA ATAA
  • This corresponds to the amino acid sequence <SEQ ID 218; ORF4-1>:
  • 1 MKTFFKTLSA AALALILAAC GGQKDSAPAA SASAAADNGA
    AKKEIVFGTT
    51 VGDFGDMVKE QIQAELEKKG YTVKLVEFTD YVRPNLALAE
    GELDINVFQH
    101 KPYLDDFKKE HNLDITEVFQ VPTAPLGLYP GKLKSLEEVK
    DGSTVSAPND
    151 PSNFARVLVM LDELGWIKLK DGINPLTASK ADIAENLKNI
    KIVELEAAQL
    201 PRSRADVDFA VVNGNYAISS GMKLTEALFQ EPSFAYVNWS
    AVKTADKDSQ
    251 WLKDVTEAYN SDAFKAYAHK RFEGYKSPAA WNEGAAK*
  • Computer analysis of this amino acid sequence gave the following results:
  • Homology with a Predicted ORF from N. meningitidis (Strain A)
  • ORF4 shows 93.5% identity over a 93aa overlap with an ORF (ORF4a) from strain A of N. meningitidis:
  • Figure US20130064846A1-20130314-C00097
  • The complete length ORF4a nucleotide sequence <SEQ ID 219> is:
  • 1 ATGAAAACCT TCTTCAAAAC CCTTTCCGCC GCCGCACTCG
    CGCTCATCCT
    51 CGCCGCCTGC GGCGGTCAAA AAGATAGCGC GCCCGCCGCA
    TCCGCTTCTG
    101 CCGCCGCCGA CAACGGCGCG GCGAANAAAG AAATCGTCTT
    CGGCACGACC
    151 GTCGGCGACT TCGGCGATAT GGTCAAAGAA CANATCCAAC
    CCGAGCTGGA
    201 GAAAAAAGGC TACACCGTCA AACTGGTCGA GTNTACCGAC
    TATGTGCGCN
    251 CGAATCTGGC ATTGGCTGAG GGCGAGTTGG ACATCAACGT
    CTTNCAACAC
    301 ANACNCTATC TTGACGACTN CAAAAAANAA CACAATCTGG
    ACATCACCNN
    351 AGTCTTNCAA GTGCCGACCG CGCCTTTGGG ACTGTACCCG
    GGCAAGCTGA
    401 AATCGCTGGA NNAAGTCAAA GANGGCAGCA CCGTATCCGC
    GCCCAACGAC
    451 CCGTNNNACT TCGNCCGCGT CTTGGTGATG CTCGACGAAC
    TGGGTTNGAT
    501 CAAACTCAAA GACNGCATCA NNNNGNNGNN NNNANCNANA
    NNNGANANNN
    551 NNNNANNNNT NNNNNNNNNN NNNNNCNNCG NNNNNNNANN
    NNNNNNNNNN
    601 NCGNNTNNNN NNGCNNNNNT NNANNNTNNN NNCNNCNNNN
    NNNNNTNNNN
    651 NANNANNAGC GGCATGAAGC TGACCGAAGC CCTGTTCCAA
    GAACCGAGCT
    701 TTGCCTATGT CAACTGGTCT GCCGTCAAAA CCGCCGACAA
    AGACAGCCAA
    751 TGGCTTAAAG ACGTAACCGA GGCCTATAAC TCCGACGCGT
    TCAAAGCCTA
    801 CGCGCACAAA CGCTTCGAGG GCTACAAATC CCCTGCCGCA
    TGGAATGAAG
    851 GCGCAGCCAA ATAA
  • This is predicted to encode a protein having amino acid sequence <SEQ ID 220>:
  • 1 MKTFFKTLSA AALALILAAC GGQKDSAPAA SASAAADNGA
    AXKEIVFGTT
    51 VGDFGDMVKE XIQPELEKKG YTVKLVEXTD YVRXNLALAE
    GELDINVXQH
    101 XXYLDDXKKX HNLDITXVXQ VPTAPLGLYP GKLKSLXXVK
    XGSTVSAPND
    151 PXXFXRVLVM LDELGXIKLK DXIXXXXXXX XXXXXXXXXX
    XXXXXXXXXX
    201 XXXXAXXXXX XXXXXXXXXS GMKLTEALFQ EPSFAYVNWS
    AVKTADKDSQ
    251 WLKDVTEAYN SDAFKAYAHK RFEGYKSPAA WNEGAAK*
  • A leader peptide is underlined.
  • Further analysis of these strain A sequences revealed the complete DNA sequence <SEQ ID 221>:
  • 1 ATGAAAACCT TCTTCAAAAC CCTTTCCGCC GCCGCACTCG
    CGCTCATCCT
    51 CGCCGCCTGC GGCGGTCAAA AAGATAGCGC GCCCGCCGCA
    TCCGCTTCTG
    101 CCGCCGCCGA CAACGGCGCG GCGAAAAAAG AAATCGTCTT
    CGGCACGACC
    151 GTCGGCGACT TCGGCGATAT GGTCAAAGAA CAAATCCAAC
    CCGAGCTGGA
    201 GAAAAAAGGC TACACCGTCA AACTGGTCGA GTTTACCGAC
    TATGTGCGCC
    251 CGAATCTGGC ATTGGCTGAG GGCGAGTTGG ACATCAACGT
    CTTCCAACAC
    301 AAACCCTATC TTGACGACTT CAAAAAAGAA CACAATCTGG
    ACATCACCGA
    351 AGTCTTCCAA GTGCCGACCG CGCCTTTGGG ACTGTACCCG
    GGCAAGCTGA
    401 AATCGCTGGA AGAAGTCAAA GACGGCAGCA CCGTATCCGC
    GCCCAACGAC
    451 CCGTCCAACT TCGCCCGCGT CTTGGTGATG CTCGACGAAC
    TGGGTTGGAT
    501 CAAACTCAAA GACGGCATCA ATCCGCTGAC CGCATCCAAA
    GCGGACATTG
    551 CCGAAAACCT GAAAAACATC AAAATCGTCG AGCTTGAAGC
    CGCGCAACTG
    601 CCGCGTAGCC GCGCCGACGT GGATTTTGCC GTCGTCAACG
    GCAACTACGC
    651 CATAAGCAGC GGCATGAAGC TGACCGAAGC CCTGTTCCAA
    GAACCGAGCT
    701 TTGCCTATGT CAACTGGTCT GCCGTCAAAA CCGCCGACAA
    AGACAGCCAA
    751 TGGCTTAAAG ACGTAACCGA GGCCTATAAC TCCGACGCGT
    TCAAAGCCTA
    801 CGCGCACAAA CGCTTCGAGG GCTACAAATC CCCTGCCGCA
    TGGAATGAAG
    851 GCGCAGCCAA ATAA
  • This encodes a protein having amino acid sequence <SEQ ID 222; ORF4a-1>:
  • 1 MKTFFKTLSA AALALILAAC GGQKDSAPAA SASAAADNGA
    AKKEIVFGTT
    51 VGDFGDMVKE QIQPELEKKG YTVKLVEFTD YVRPNLALAE
    GELDINVFQH
    101 KPYLDDFKKE HNLDITEVFQ VPTAPLGLYP GKLKSLEEVK
    DGSTVSAPND
    151 PSNFARVLVM LDELGWIKLK DGINPLTASK ADIAENLKNI
    KIVELEAAQL
    201 PRSRADVDFA VVNGNYAISS GMKLTEALFQ EPSFAYVNWS
    AVKTADKDSQ
    251 WLKDVTEAYN SDAFKAYAHK RFEGYKSPAA WNEGAAK*
  • ORF4a-1 and ORF4-1 show 99.7% identity in 287 aa overlap:
  • Figure US20130064846A1-20130314-C00098
  • Homology with an Outer Membrane Protein of Pasteurella haemolitica (Accession q08869).
  • ORF4 and this outer membrane protein show 33% aa identity in 91aa overlap:
  • Figure US20130064846A1-20130314-C00099
  • Homology with a Predicted ORF from N. gonorrhoeae
  • ORF4 shows 93.6% identity over a 94aa overlap with a predicted ORF (ORF4.ng) from N. gonorrhoeae:
  • Figure US20130064846A1-20130314-C00100
  • The complete length ORF4ng nucleotide sequence <SEQ ID 223> was predicted to encode a protein having amino acid sequence <SEQ ID 224>:
  • 1 MKTFFKTLST ASLALILAAC GGQKDSAPAA SAAAPSADNG
    AAKKEIVFGT
    51 TVGDFGDMVK EQIQAELEKK GYTVKLVEFT DYVRPNLALA
    EGELDINVFQ
    101 HKPYLDDFKK EHNLDITEAF QVPTAPLGLY PGKLKSLEEV
    KDGSTVSAPN
    151 DPSNFARALV MLNELGWIKL KDGINPLTAS KADIAENLKN
    IKIVELEAAQ
    201 LPRSRADVDF AVVNGNYAIS SGMKLTEALF QEPSFAYVNW
    SAVKTADKDS
    251 QWLKDVTEAY NSDAFKAYAH KRFEGYKYPA AWNEGAAK*
  • Further analysis revealed the complete length ORF4ng DNA sequence <SEQ ID 225> to be:
  • 1 atgAAAACCT TCTTCAAAAC cctttccgcc gccgcaCTCG
    CGCTCATCCT
    51 CGCAGCCTGc ggCggtcaAA AAGACAGCGC GCCCgcagcc
    tctgcCGCCG
    101 CCCCTTCTGC CGATAACGgc gCgGCGAAAA AAGAAAtcgt
    ctTCGGCACG
    151 Accgtgggcg acttcggcgA TAtggTCAAA GAACAAATCC
    AagcCGAgct
    201 gGAGAAAAAA GgctACACcg tcAAattggt cgaatttacc
    gactatgtGC
    251 gCCCGAATCT GGCATTGGCG GAGGGCGAGT TGGACATCAA
    CGTCTTCCAA
    301 CACAAACCCT ATCTTGACGA TTTCAAAAAA GAACACAACC
    TGGACATCAC
    351 CGAAGCCTTC CAAGTGCCGA CCGCGCCTTT GGGACTGTAT
    CCGGGCAAAC
    401 TGAAATCGCT GGAAGAAGTC AAAGACGGCA GCACCGTATC
    CGCGCCCAac
    451 gACccgTCCA ACTTCGCACG CGCCTTGGTG ATGCTGAACG
    AACTGGGTTG
    501 GATCAAACTC AAAGACGGCA TCAATCCGCT GACCGCATCC
    AAAGCCGACA
    551 TCGCGGAAAA CCTGAAAAAC ATCAAAATCG TCGAGCTTGA
    AGCCGCACAA
    601 CTGCCGCGCA GCCGCGCCGA CGTGGATTTT GCCGTCGTCA
    ACGGCAACTA
    651 CGCCATAAGC AGCGGCATGA AGCTGACCGA AGCCCTGTTC
    CAAGAGCCGA
    701 GCTTTGCCTA TGTCAACTGG TCTGCCgtcA AAACCGCCGA
    CAAAGACAGC
    751 CAATGGCTTA AAGACGTAAC CGAGGCCTAT AACTCCGACG
    CGTTCAAAGC
    801 CTACGCGCAC AAACGCTTCG AGGGCTACAA ATACCCTGCC
    GCATGGAATG
    851 AAGGCGCAGC CAAATAA
  • This encodes a protein having amino acid sequence <SEQ ID 226; ORF4ng-1>:
  • 1 MKTFFKTLSA AALALILAAC GGQKDSAPAA SAAAPSADNG
    AAKKEIVFGT
    51 TVGDFGDMVK EQIQAELEKK GYTVKLVEFT DYVRPNLALA
    EGELDINVFQ
    101 HKPYLDDFKK EHNLDITEAF QVPTAPLGLY PGKLKSLEEV
    KDGSTVSAPN
    151 DPSNFARALV MLNELGWIKL KDGINPLTAS KADIAENLKN
    IKIVELEAAQ
    201 LPRSRADVDF AVVNGNYAIS SGMKLTEALF QEPSFAYVNW
    SAVKTADKDS
    251 QWLKDVTEAY NSDAFKAYAH KRFEGYKYPA AWNEGAAK*
  • This shows 97.6% identity in 288 aa overlap with ORF4-1:
  • Figure US20130064846A1-20130314-C00101
  • In addition, ORF4ng-1 shows significant homology with an outer membrane protein from the database:
  • Figure US20130064846A1-20130314-C00102
  • Based on this analysis, including the homology with the outer membrane protein of Pasteurella haemolitica, and on the presence of a putative prokaryotic membrane lipoprotein lipid attachment site in the gonococcal protein, it was predicted that these proteins from N. meningitidis and N. gonorrhoeae, and their epitopes, could be useful antigens for vaccines or diagnostics, or for raising antibodies.
  • ORF4-1 (30 kDa) was cloned in pET and pGex vectors and expressed in E. coli, as described above. The products of protein expression and purification were analyzed by SDS-PAGE. FIGS. 8A and 8B show, respectively, the results of affinity purification of the His-fusion and GST-fusion proteins. Purified His-fusion protein was used to immunise mice, whose sera were used for ELISA (positive result), Western blot (FIG. 8C), FACS analysis (FIG. 8D), and a bactericidal assay (FIG. 8E). These experiments confirm that ORF4-1 is a surface-exposed protein, and that it is a useful immunogen.
  • FIG. 8F shows plots of hydrophilicity, antigenic index, and AMPHI regions for ORF4-1.
  • Example 27
  • The following partial DNA sequence was identified in N. meningitidis <SEQ ID 227>:
  • 1 CCTCGTCGTC CTCGGCATGC TCCAGTTTCA AGGGGCGATT
    TACTCCAAGG
    51 CGGTGGAACG TATGCTCGGC ACGGTCATCG GGCTGGGCGC
    GGGTTTGGGC
    101 GTTTTATGGC TGAACCAGCA TTATTTCCAC GGCAACCTCC
    TCTTCTACCT
    151 CACCGTCGGC ACGGCAAGCG CACTGGCCGG CTGGGCGGCG
    GTCGGCAAAA
    201 ACGGCTACGT CCCTmTGCTG GCAGGGCTGA CGATGTGTAT
    GCTCATCGGC
    251 GACAACGGCA GCGAATGGCT CGACAGCGGA CTCATGCGCG
    CCATGAACGT
    301 CCTCATCGGC GyGGCCATCG CCATCGCCGC CGCCAAACTG
    CTGCCGCTGA
    351 AATCCACACT GATGTGGCGT TTCATGCTTG CCGACAACCT
    GGCCGACTGC
    401 AGCAAAATGA TTGCCGAAAT CAGCAACGGC AGGCGCATGA
    CCCGCGAACG
    451 CCTCGAGGAG AACATGGCGA AAATGCGCCA AATCAACGCA
    CGCATGGTCA
    501 AAAGCCGCAG CCATCTCGCC GCCACATCGG GCGAAAGCTG
    CATCAGCCCC
    551 GCCATGATGG AAGCCATGCA GCACGCCCAC CGTAAAATCG
    TCAACACCAC
    601 CGAGCTGCTC CTGACCACCG CCGCCAAGCT GCAATCTCCC
    AAACTCAACG
    651 GCAGCGAAAT CCGGCTGCTT GACCGCCACT TCACACTGCT
    CCAAAC....
    701 ............................. GC AGACACGCCC
    GCCGCATCCG
    751 CATCGACACC GCCATCAACC CCGAACTGGA AGCCCTCGCC
    GAACACCTCC
    801 ACTACCAATG GCAGGGCTTC CTCTGGCTCA GCACCGATAT
    GCGTCAGGAA
    851 ATTTCCGCCC TCGTCATCCT GCTGCAACGC ACCCGCCGCA
    AATGGCTGGA
    901 TGCCCACGAA CGCCAACACC TGCGCCAAAG CCTGCTTGA
  • This corresponds to the amino acid sequence <SEQ ID 228; ORF8>:
  • 1 ......PRRP RHAPVSRGDL LQGGGTYARH GHRAGRGFGR
    FMAEPALFPR
    51 QPPLLPHRRH GKRTGRLGGG RQKRLRPXAG RADDVYAHRR
    QRQRMARQRT
    101 HARHERPHRR GHRHRRRQTA AAEIHTDVAF HACRQPGRLQ
    QNDCRNQQRQ
    151 AHDPRTPRGE HGENAPNQRT HGQKPQPSRR HIGRKLHQPR
    HDGSHAARPP
    201 XNRQHHRAAP DHRRQAAISQ TQRQRNPAAX PPLHTAPN..
    .........Q
    251 TRPPHPHRHR HQPRTGSPRR TPPLPMAGLP LAQHRYASGN
    FRPRHPAATH
    301 PPQMAGCPRT PTPAPKPA*
  • Computer analysis of this amino acid sequence gave the following results:
  • Sequence Motifs
  • ORF8 is proline-rich and has a distribution of proline residues consistent with a surface localization. Furthermore the presence of an RGD motif may indicate a possible role in bacterial adhesion events.
  • Homology with a Predicted ORF from N. gonorrhoeae
  • ORF8 shows 86.5% identity over a 312aa overlap with a predicted ORF (ORF8.ng) from N. gonorrhoeae:
  • Figure US20130064846A1-20130314-C00103
  • The complete length ORF8ng nucleotide sequence <SEQ ID 229> is predicted to encode a protein having amino acid sequence <SEQ ID 230>:
  • 1 MDRDDRLRRP RHAPVPRRDL LQRGGTYARY GHRAGRGFGR
    FMAEPALFPR
    51 QPPLLPDHRH GKRTGRLGGG RQKRLRPYVG GADDVHAHRR
    QRQRMARQRP
    101 DARDERPHRR RHRHCRRQTA AAEIHTDVAF HACRQPGRLQ
    QNDCRNQQRQ
    151 AYDARTFGAE YGQNAPNQRT HGQKPQPPRR HIGRKPHQPL
    HDGSHAARPP
    201 QNRQHHRAAP DHRRQAAISQ TQRQRNPAAR PPLHTAPNRP
    ATNRRPHQRQ
    251 TRPPHPHRHR HQPRTGSPRR TPPLPMAGFP LAQHQYASGN
    FRPRHPPATH
    301 PPQMAGCPRT PTPAPKPA*
  • Based on the sequence motifs in these proteins, it is predicted that the proteins from N. meningitidis and N. gonorrhoeae, and their epitopes, could be useful antigens for vaccines or diagnostics, or for raising antibodies.
  • Example 28
  • The following partial DNA sequence was identified in N. meningitidis <SEQ ID 231>:
  • 1 ..GAAATCAGCC TGCGGTCCGA CNACAGGCCG GTTTCCGTGN
    CGAAGCGGCG
    51   GGATTCGGAA CGTTTTCTGC TGTTGGACGG CGGCAACAGC
    CGGCTCAAGT
    101   GGGCGTGGGT GGAAAACGGC ACGTTCGCAA CCGTCGGTAG
    CGCGCCGTAC
    151   CGCGATTTGT CGCCTTTGGG CGCGGAGTGG GCGGAAAAGG
    CGGATGGAAA
    201   TGTCCGCATC GTCGGTTGCG CTGTGTGCGG AGAATTCAAA
    AAGGCACAAG
    251   TGCAGGAACA GCTCGCCCGA AAAATCGAGT GGCTGCCGTC
    TTCCGCACAG
    301   GCTTT.GGCA TACGCAACCA CTACCGCCAC CCCGAAGAAC
    ACGGTTCCGA
    351   CCGCTGGTTC AACGCCTTGG GCAGCCGCCG CTTCAGCCGC
    AACGCCTGCG
    401   TCGTCGTCAG TTGCGGCACG GCGGTAACGG TTGACGCGCT
    CACCGATGAC
    451   GGACATTATC TCGGAGA.GG AACCATCATG CCCGGTTTCC
    ACCTGATGAA
    501   AGAATCGCTC GCCGTCCGAA CCGCCAACCT CAACCGGCAC
    GCCGGTAAGC
    551   GTTATCCTTT CCCGACCGG..
  • This corresponds to the amino acid sequence <SEQ ID 232; ORF61>:
  • 1 ..EISLRSDXRP VSVXKRRDSE RFLLLDGGNS RLKWAWVENG
    TFATVGSAPY
    51   RDLSPLGAEW AEKADGNVRI VGCAVCGEFK KAQVQEQLAR
    KIEWLPSSAQ
    101   AXGIRNHYRH PEEHGSDRWF NALGSRRFSR NACVVVSCGT
    AVTVDALTDD
    151   GHYLGXGTIM PGFHLMKESL AVRTANLNRH AGKRYPFPT..
  • Further work revealed the complete nucleotide sequence <SEQ ID 233>:
  • 1 ATGACGGTTT TGAAGCTTTC GCACTGGCGG GTGTTGGCGG
    AGCTTGCCGA
    51 CGGTTTGCCG CAACACGTCT CGCAACTGGC GCGTATGGCG
    GATATGAAGC
    101 CGCAGCAGCT CAACGGTTTT TGGCAGCAGA TGCCGGCGCA
    CATACGCGGG
    151 CTGTTGCGCC AACACGACGG CTATTGGCGG CTGGTGCGCC
    CATTGGCGGT
    201 TTTCGATGCC GAAGGTTTGC GCGAGCTGGG GGAAAGGTCG
    GGTTTTCAGA
    251 CGGCATTGAA GCACGAGTGC GCGTCCAGCA ACGACGAGAT
    ACTGGAATTG
    301 GCGCGGATTG CGCCGGACAA GGCGCACAAA ACCATATGCG
    TGACCCACCT
    351 GCAAAGTAAG GGCAGGGGGC GGCAGGGGCG GAAGTGGTCG
    CACCGTTTGG
    401 GCGAGTGTCT GATGTTCAGT TTTGGCTGGG TGTTTGACCG
    GCCGCAGTAT
    451 GAGTTGGGTT CGCTGTCGCC TGTTGCGGCA GTGGCGTGTC
    GGCGCGCCTT
    501 GTCGCGTTTA GGTTTGGATG TGCAGATTAA GTGGCCCAAT
    GATTTGGTTG
    551 TCGGACGCGA CAAATTGGGC GGCATTCTGA TTGAAACGGT
    CAGGACGGGC
    601 GGCAAAACGG TTGCCGTGGT CGGTATCGGC ATCAATTTTG
    TCCTGCCCAA
    651 GGAAGTAGAA AATGCCGCTT CCGTGCAATC GCTGTTTCAG
    ACGGCATCGC
    701 GGCGGGGCAA TGCCGATGCC GCCGTGCTGC TGGAAACGCT
    GTTGGTGGAA
    751 CTGGACGCGG TGTTGTTGCA ATATGCGCGG GACGGATTTG
    CGCCTTTTGT
    801 GGCGGAATAT CAGGCTGCCA ACCGCGACCA CGGCAAGGCG
    GTATTGCTGT
    851 TGCGCGACGG CGAAACCGTG TTCGAAGGCA CGGTTAAAGG
    CGTGGACGGA
    901 CAAGGCGTTT TGCACTTGGA AACGGCAGAG GGCAAACAGA
    CGGTCGTCAG
    951 CGGCGAAATC AGCCTGCGGT CCGACGACAG GCCGGTTTCC
    GTGCCGAAGC
    1001 GGCGGGATTC GGAACGTTTT CTGCTGTTGG ACGGCGGCAA
    CAGCCGGCTC
    1051 AAGTGGGCGT GGGTGGAAAA CGGCACGTTC GCAACCGTCG
    GTAGCGCGCC
    1101 GTACCGCGAT TTGTCGCCTT TGGGCGCGGA GTGGGCGGAA
    AAGGCGGATG
    1151 GAAATGTCCG CATCGTCGGT TGCGCTGTGT GCGGAGAATT
    CAAAAAGGCA
    1201 CAAGTGCAGG AACAGCTCGC CCGAAAAATC GAGTGGCTGC
    CGTCTTCCGC
    1251 ACAGGCTTTG GGCATACGCA ACCACTACCG CCACCCCGAA
    GAACACGGTT
    1301 CCGACCGCTG GTTCAACGCC TTGGGCAGCC GCCGCTTCAG
    CCGCAACGCC
    1351 TGCGTCGTCG TCAGTTGCGG CACGGCGGTA ACGGTTGACG
    CGCTCACCGA
    1401 TGACGGACAT TATCTCGGGG GAACCATCAT GCCCGGTTTC
    CACCTGATGA
    1451 AAGAATCGCT CGCCGTCCGA ACCGCCAACC TCAACCGGCA
    CGCCGGTAAG
    1501 CGTTATCCTT TCCCGACCAC AACGGGCAAT GCCGTCGCCA
    GCGGCATGAT
    1551 GGATGCGGTT TGCGGCTCGG TTATGATGAT GCACGGGCGT
    TTGAAAGAAA
    1601 AAACCGGGGC GGGCAAGCCT GTCGATGTCA TCATTACCGG
    CGGCGGCGCG
    1651 GCAAAAGTTG CCGAAGCCCT GCCGCCTGCA TTTTTGGCGG
    AAAATACCGT
    1701 GCGCGTGGCG GACAACCTCG TCATTTACGG GTTGTTGAAC
    ATGATTGCCG
    1751 CCGAAGGCAG GGAATATGAA CATATTTAA
  • This corresponds to the amino acid sequence <SEQ ID 234; ORF61-1>:
  • 1 MTVLKLSHWR VLAELADGLP QHVSQLARMA DMKPQQLNGF
    WQQMPAHIRG
    51 LLRQHDGYWR LVRPLAVFDA EGLRELGERS GFQTALKHEC
    ASSNDEILEL
    101 ARIAPDKAHK TICVTHLQSK GRGRQGRKWS HRLGECLMFS
    FGWVFDRPQY
    151 ELGSLSPVAA VACRRALSRL GLDVQIKWPN DLVVGRDKLG
    GILIETVRTG
    201 GKTVAVVGIG INFVLPKEVE NAASVQSLFQ TASRRGNADA
    AVLLETLLVE
    251 LDAVLLQYAR DGFAPFVAEY QAANRDHGKA VLLLRDGETV
    FEGTVKGVDG
    301 QGVLHLETAE GKQTVVSGEI SLRSDDRPVS VPKRRDSERF
    LLLDGGNSRL
    351 KWAWVENGTF ATVGSAPYRD LSPLGAEWAE KADGNVRIVG
    CAVCGEFKKA
    401 QVQEQLARKI EWLPSSAQAL GIRNHYRHPE EHGSDRWFNA
    LGSRRFSRNA
    451 CVVVSCGTAV TVDALTDDGH YLGGTIMPGF HLMKESLAVR
    TANLNRHAGK
    501 RYPFPTTTGN AVASGMMDAV CGSVMMMHGR LKEKTGAGKP
    VDVIITGGGA
    551 AKVAEALPPA FLAENTVRVA DNLVIYGLLN MIAAEGREYE
    HI*
  • FIG. 9 shows plots of hydrophilicity, antigenic index, and AMPHI regions for ORF61-1. Further computer analysis of this amino acid sequence gave the following results:
  • Homology with the Baf Protein of B. pertussis (Accession Number U12020).
  • ORF61 and baf protein show 33% aa identity in 166aa overlap:
  • orf61  23 LLLDGGNSRLKWAWVE-NGTFATVGSAPYR----DLSPLGAEWAEKADGNVRIVGCAVCG  77
              +L+D GNSRLK  W + +   A    AP      DL  LG   A      R +G V   G
    baf     3 ILIDSGNSRLKVGWFDPDAPQAAREPAPVAFDNLDLDALGRWLATLPRRPQRALGVNVAG  62
    orf61  78 EFKKAQVQEQLAR---KIEWLPSSAQAXGIRNHYRHPEEHGSDRW---FNALGSRRFSRN 131
                 +   +   L      I WL +   A G+RN YR+P++ G+DRW      L  +
    baf    63 LARGEAIAATLRAGGCDIRWLRAQPLAMGLRNGYRNPDQLGADRWACMVGVLARQPSVHP 122
    orf61 132 ACVVVSCGTAVTVDALTDDGHYLGXGTIMPGFHLMKESLAVRTANL               177
                 +V S GTA T+D + D   + G G I+PG  +M+ +LA  TA+L
    baf   123 PLLVASFGTATTLDTIGPDNVFPG-GLILPGPAMMRGALAYGTAHL               167

    Homology with a Predicted ORF from N. meningitidis (Strain A)
  • ORF61 shows 97.4% identity over a 189aa overlap with an ORF (ORF61a) from strain A of N. meningitidis:
  • Figure US20130064846A1-20130314-C00104
  • The complete length ORF61a nucleotide sequence <SEQ ID 235> is:
  • 1 ATGACGGTTT TGAAGCCTTC GCACTGGCGG GTGTTGGCGG
    AGCTTGCCGA
    51 CGGTTTGCCG CAACACGTCT CGCAACTGGC GCGTATGGCG
    GATATGAAGC
    101 CGCAGCAGCT CAACGGTTTT TGGCAGCAGA TGCCGGCGCA
    CATACGCGGG
    151 CTGTTGCGCC AACACGACGG CTATTGGCGG CTGGTGCGCC
    CATTGGCGGT
    201 TTTCGATGCC GAAGGTTTGC GCGAGCTGGG GGAAAGGTCG
    GGTTTTCAGA
    251 CGGCATTGAA GCACGAGTGC GCGTCCAGCA ACGACGAGAT
    ACTGGAATTG
    301 GCGCGGATTG CGCCGGACAA GGCGCACAAA ACCATATGTG
    TGACCCACCT
    351 GCAAAGTAAG GGCAGGGGGC GGCAGGGGCG GAAGTGGTCG
    CACCGTTTGG
    401 GCGAGTGTCT GATGTTCAGT TTTGGCTGGG TGTTTGACCG
    GCCGCAGTAT
    451 GAGTTGGGTT CGCTGTCGCC TGTTGCGGCA GTGGCGTGCC
    GGCGCGCCTT
    501 GTCGCGTTTG GGTTTGAAAA CGCAAATCAA GTGGCCAAAC
    GATTTGGTCG
    551 TCGGACGCGA CAAATTGGGC GGCATTCTGA TTGAAACGGT
    CAGGACGGGC
    601 GGCAAAACGG TTGCCGTGGT CGGTATCGGC ATCAATTTCG
    TGCTGCCCAA
    651 GGAAGTGGAA AACGCCGCTT CCGTGCAATC GCTGTTTCAG
    ACGGCATCGC
    701 GGCGGGGAAA TGCCGATGCC GCCGTGTTGC TGGAAACGCT
    GTTGGCGGAA
    751 CTTGATGCGG TGTTGTTGCA ATATGCGCGG GACGGATTTG
    CGCCTTTTGT
    801 GGCGGAATAT CAGGCTGCCA ACCGCGACCA CGGCAAGGCG
    GTATTGCTGT
    851 TGCGCGACGG CGAAACCGTG TTCGAAGGCA CGGTTAAAGG
    CGTGGACGGA
    901 CAAGGCGTTC TGCACTTGGA AACGGCAGAG GGCAAACAGA
    CGGTCGTCAG
    951 CGGCGAAATC AGCCTGCGGT CCGACGACAG GCCGGTTTCC
    GTGCCGAAGC
    1001 GGCGGGATTC GGAACGTTTT CTGCTGTTGG ACGGCGGCAA
    CAGCCGGCTC
    1051 AAGTGGGCGT GGGTGGAAAA CGGCACGTTC GCAACCGTCG
    GTAGCGCGCC
    1101 GTACCGCGAT TTGTCGCCTT TGGGCGCGGA GTGGGCGGAA
    AAGGTGGATG
    1151 GAAATGTCCG CATCGTCGGT TGCGCCGTGT GCGGAGAATT
    CAAAAAGGCA
    1201 CAAGTGCAGG AACAGCTCGC CCGAAAAATC GAGTGGCTGC
    CGTCTTCCGC
    1251 ACAGGCTTTG GGCATACGCA ACCACTACCG CCACCCCGAA
    GAACACGGTT
    1301 CCGACCGCTG GTTCAACGCC TTGGGCAGCC GCCGCTTCAG
    CCGCAACGCC
    1351 TGCGTCGTCG TCAGTTGCGG CACGGCGGTA ACGGTTGACG
    CGCTCACCGA
    1401 TGACGGACAT TATCTCGGGG GAACCATCAT GCCCGGTTTC
    CACCTGATGA
    1451 AAGAATCGCT CGCCGTCCGA ACCGCCAACC TCAACCGGCA
    CGCCGGTAAG
    1501 CGTTATCCTT TCCCGACCAC AACGGGCAAT GCCGTCGCCA
    GCGGCATGAT
    1551 GGATGCGGTT TGCGGCTCGG TTATGATGAT GCACGGGCGT
    TTGAAAGAAA
    1601 AAACCGGGGC GGGCAAGCCT GTCGATGTCA TCATTACCGG
    CGGCGGCGCG
    1651 GCAAAAGTTG CCGAAGCCCT GCCGCCTGCA TTTTTGGCGG
    AAAATACCGT
    1701 GCGCGTGGCG GACAACCTCG TCATTCACGG GCTGCTGAAC
    CTGATTGCCG
    1751 CCGAAGGCGG GGAATCGGAA CATACTTAA
  • This encodes a protein having amino acid sequence <SEQ ID 236>:
  • 1 MTVLKPSHWR VLAELADGLP QHVSQLARMA DMKPQQLNGF
    WQQMPAHIRG
    51 LLRQHDGYWR LVRPLAVFDA EGLRELGERS GFQTALKHEC
    ASSNDEILEL
    101 ARIAPDKAHK TICVTHLQSK GRGRQGRKWS HRLGECLMFS
    FGWVFDRPQY
    151 ELGSLSPVAA VACRRALSRL GLKTQIKWPN DLVVGRDKLG
    GILIETVRTG
    201 GKTVAVVGIG INFVLPKEVE NAASVQSLFQ TASRRGNADA
    AVLLETLLAE
    251 LDAVLLQYAR DGFAPFVAEY QAANRDHGKA VLLLRDGETV
    FEGTVKGVDG
    301 QGVLHLETAE GKQTVVSGEI SLRSDDRPVS VPKRRDSERF
    LLLDGGNSRL
    351 KWAWVENGTF ATVGSAPYRD LSPLGAEWAE KVDGNVRIVG
    CAVCGEFKKA
    401 QVQEQLARKI EWLPSSAQAL GIRNHYRHPE EHGSDRWFNA
    LGSRRFSRNA
    451 CVVVSCGTAV TVDALTDDGH YLGGTIMPGF HLMKESLAVR
    TANLNRHAGK
    501 RYPFPTTTGN AVASGMMDAV CGSVMMMHGR LKEKTGAGKP
    VDVIITGGGA
    551 AKVAEALPPA FLAENTVRVA DNLVIHGLLN LIAAEGGESE
    HT*
  • ORF61a and ORF61-1 show 98.5% identity in 591 aa overlap:
  • Figure US20130064846A1-20130314-C00105
  • Homology with a Predicted ORF from N. gonorrhoeae
  • ORF61 shows 94.2% identity over a 189aa overlap with a predicted ORF (ORF61.ng) from N. gonorrhoeae:
  • Figure US20130064846A1-20130314-C00106
  • An ORF61ng nucleotide sequence <SEQ ID 237> was predicted to encode a protein having amino acid sequence <SEQ ID 238>:
  • 1 MFSFGWAFDR PQYELGSLSP VAALACRRAL GCLGLETQIK
    WPNDLVVGRD
    51 KLGGILIETV RAGGKTVAVV GIGINFVLPK EVENAASVQS
    LFQTASRRGN
    101 ADAAVLLETL LAELGAVLEQ YAEEGFAPFL NEYETANRDH
    GKAVLLLRDG
    151 ETVCEGTVKG VDGRGVLHLE TAEGEQTVVS GEISLRPDNR
    SVSVPKRPDS
    201 ERFLLLEGGN SRLKWAWVEN GTFATVGSAP YRDLSPLGAE
    WAEKADGNVR
    251 IVGCAVCGES KKAQVKEQLA RKIEWLPSSA QALGIRNHYR
    HPEEHGSDRW
    301 FNALGSRRFS RNACVVVSCG TAVTVDALTD DGHYLGGTIM
    PGFHLMKESL
    351 AVRTANLNRP AGKRYPFPTT TGNAVASGMM DAVCGSIMMM
    HGRLKEKNGA
    401 GKPVDVIITG GGAAKVAEAL PPAFLAENTV RVADNLVIHG
    LLNLIAAEGG
    451 ESEHA*
  • Further analysis revealed the complete gonococcal DNA sequence <SEQ ID 239> to be:
  • 1 ATGACGGTTT TGAAGCCTTC GCATTGGCGG GTGTTGGCGG
    AGCTTGCCGA
    51 CGGTTTGCCG CAACACGTAT CGCAATTGGC GCGTGAGGCG
    GACATGAAGC
    101 CGCAGCAGCT CAACGGTTTT TGGCAGCAGA TGCCGGCGCA
    TATACGCGGG
    151 CTGTTGCGCC AACACGACGG CTATTGGCGG CTGGTGCGCC
    CCTTGGCGGT
    201 TTTCGATGCC GAAGGTTTGC GCGATCTGGG GGAAAGGTCG
    GGTTTTCAGA
    251 CGGCATTGAA GCACGAGTGC GCGTCCAGCA ACGACGAGAT
    ACTGGAATTG
    301 GCGCGGATTG CGCCGGACAA GGCGCACAAA ACCATATGCG
    TGACCCACCT
    351 GCAAAGTAAG GGCAGGGGGC GGCAGGGGCG GAAGTGGTCG
    CACCGTTTGG
    401 GCGAGTGCCT GATGTTCAGT TTCGGCTGGG CGTTTGACCG
    GCCGCAGTAT
    451 GAGTTGGGTT CGCTGTCGCC TGTTGCGGCA CTTGCGTGCC
    GGCGCGCTTT
    501 GGGGTGTTTG GGTTTGGAAA CGCAAATCAA GTGGCCAAAC
    GATTTGGTCG
    551 TCGGACGCGA CAAATTGGGC GGCATTCTGA TTGAAACAGT
    CAGGGCGGGC
    601 GGTAAAACGG TTGCCGTGGT CGGTATCGGC ATCAATTTCG
    TGCTGCCCAA
    651 GGAAGTGGAA AACGCCGCTT CCGTGCAGTC GCTGTTTCAG
    ACGGCATCGC
    701 GGCGGGGCAA TGCCGATGCC GCCGTATTGC TGGAAACATT
    GCTTGCGGAA
    751 CTGGGCGCGG TGTTGGAACA ATATGCGGAA GAAGGGTTCG
    CGCCATTTTT
    801 AAATGAGTAT GAAACGGCCA ACCGCGACCA CGGCAAGGCG
    GTATTGCTGT
    851 TGCGCGACGG CGAAACCGTG TGCGAAGGCA CGGTTAAAGG
    CGTGGACGGA
    901 CGAGGCGTTC TGCACTTGGA AACGGCAgaa ggcgaACAGa
    cggtcgtcag
    951 cggcgaaaTC AGcctGCggc ccgacaacaG GTCGGtttcc
    gtgccgaagc
    1001 ggccggatTC GgaacgtTTT tTGCtgttgg aaggcgggaa
    cagccgGCTC
    1051 AAGTGGGCGT GggtggAAAa cggcacgttc gcaaccgtgg
    gcagcgcgCc
    1101 gtaCCGCGAT TTGTCGCCTT TGGGCGCGGA GTGGGCGGAA
    AAGGCGGATG
    1151 GAAATGTCCG CATCGTCGGT TGCGCCGTGT GCGGAGAATC
    CAAAAAGGCA
    1201 CAAGTGAAGG AACAGCTCGC CCGAAAAATC GAGTGGCTGC
    CGTCTTCCGC
    1251 ACAGGCTTTG GGCATACGCA ACCACTACCG CCACCCCGAA
    GAACACGGTT
    1301 CCGACCGTTG GTTCAACGCC TTGGGCAGCC GCCGCTTCAG
    CCGCAACGCC
    1351 TGCGTCGTCG TCAGTTGCGG CACGGCGGTA ACGGTTGACG
    CGCTCACCGA
    1401 TGACGGACAT TATCTCGGCG GAACCATCAT GCCCGGCTTC
    CACCTGATGA
    1451 AAGAATCGCT CGCCGTCCGA ACCGCCAACC TCAACCGCCC
    CGCCGGCAAA
    1501 CGTTACCCTT TCCCGACCAC AACGGGCAAC GCCGTCGCAA
    GCGGCATGAT
    1551 GGACGCGGTT TGCGGCTCGA TAATGATGAT GCACGGCCGT
    TTGAAAGAAA
    1601 AAAACGGCGC GGGCAAGCCT GTCGATGTCA TCATTACCGG
    CGGCGGCGCG
    1651 GCGAAAGTCG CCGAAGCCCT GCCGCCTGCA TTTTTGGCGG
    AAAATACCGT
    1701 GCGCGTGGCG GACAACCTCG TCATCCACGG GCTGCTGAAC
    CTGATTGCCG
    1751 CCGAAGGCGG GGAATCGGAA CACGCTTAA
  • This corresponds to the amino acid sequence <SEQ ID 240; ORF61ng-1>:
  • 1 MTVLKPSHWR VLAELADGLP QHVSQLAREA DMKPQQLNGF
    WQQMPAHIRG
    51 LLRQHDGYWR LVRPLAVFDA EGLRDLGERS GFQTALKHEC
    ASSNDEILEL
    101 ARIAPDKAHK TICVTHLQSK GRGRQGRKWS HRLGECLMFS
    FGWAFDRPQY
    151 ELGSLSPVAA LACRRALGCL GLETQIKWPN DLVVGRDKLG
    GILIETVRAG
    201 GKTVAVVGIG INFVLPKEVE NAASVQSLFQ TASRRGNADA
    AVLLETLLAE
    251 LGAVLEQYAE EGFAPFLNEY ETANRDHGKA VLLLRDGETV
    CEGTVKGVDG
    301 RGVLHLETAE GEQTVVSGEI SLRPDNRSVS VPKRPDSERF
    LLLEGGNSRL
    351 KWAWVENGTF ATVGSAPYRD LSPLGAEWAE KADGNVRIVG
    CAVCGESKKA
    401 QVKEQLARKI EWLPSSAQAL GIRNHYRHPE EHGSDRWFNA
    LGSRRFSRNA
    451 CVVVSCGTAV TVDALTDDGH YLGGTIMPGF HLMKESLAVR
    TANLNRPAGK
    501 RYPFPTTTGN AVASGMMDAV CGSIMMMHGR LKEKNGAGKP
    VDVIITGGGA
    551 AKVAEALPPA FLAENTVRVA DNLVIHGLLN LIAAEGGESE
    HA*
  • ORF61ng-1 and ORF61-1 show 93.9% identity in 591 aa overlap:
  • Figure US20130064846A1-20130314-C00107
  • Based on this analysis, including the homology with the baf protein of B. pertussis and the presence of a putative prokaryotic membrane lipoprotein lipid attachment site, it is predicted that these proteins from N. meningitidis and N. gonorrhoeae, and their epitopes, could be useful antigens for vaccines or diagnostics, or for raising antibodies.
  • Example 29
  • The following partial DNA sequence was identified in N. meningitidis <SEQ ID 241>:
  • 1 ATGTTTTACC AAATCCTTGC CCTGATTATC TGGAGCAGCT
    CGTTTATTGC
    51 CGCCAAATAT GTCTATGGCG GCATCGATCC CGCATTGATG
    GTCGGCGTGC
    101 GCCTGCTAAT TGCCGCGCTG CCTGCACTGC CCGCCTGCCG
    CCGTCATGTC
    151 GGCAAGATTC CGCGTGAGGA ATGGAAGCCG TTGCTGATTG
    TGTCGTTCGT
    201 CAACTATGTG CTGACCCTGC TGCTTCAGTT TGTCGGGTTG
    AAATACACTT
    251 CCGCCGCCAG CGCATCGGTC ATTGTCGGAC TCGAGCCGCT
    GCTGATGGTG
    301 TTTGTCGGAC ACTTTTTCTT CAACGACAAA GCGCGTGCCT
    ACCACTGGAT
    351 ATGCGGCGCG GCGGCATTTG CCGGTGTCGC GCTGCTGATG
    GCGGGCGGTG
    401 CGGaAGAGGG CGGCGaAGTC GGCTGGTTCG GCTGCCTGCT
    GGTGTTGTTG
    451 GCGGGCGCGG GCTTTTGTGC CGCTATGCGT CCGACGCAAA
    GGCTGATTGC
    501 ACGCATCGGC GCACCGGCAT TCACATCTGT TTCCATTGCC
    GCCGCATCGT
    551 TGATGTGCCT GCCGTTTTCG CTTGCTTTGG CGCAAAGTTA
    TACCGTGGAC
    601 TGGAGCGTCG GGATGGTATT GTCGCTGCTG TATTTGGGTT
    TGGGGTGC..
  • This corresponds to the amino acid sequence <SEQ ID 242; ORF62>:
  • 1 MFYQILALII WSSSFIAAKY VYGGIDPALM VGVRLLIAAL
    PALPACRRHV
    51 GKIPREEWKP LLIVSFVNYV LTLLLQFVGL KYTSAASASV
    IVGLEPLLMV
    101 FVGHFFFNDK ARAYHWICGA AAFAGVALLM AGGAEEGGEV
    GWFGCLLVLL
    151 AGAGFCAAMR PTQRLIARIG APAFTSVSIA AASLMCLPFS
    LALAQSYTVD
    201 WSVGMVLSLL YLGLGC..
  • Further work revealed the complete nucleotide sequence <SEQ ID 243>:
  • 1 ATGTTTTACC AAATCCTTGC CCTGATTATC TGGAGCAGCT
    CGTTTATTGC
    51 CGCCAAATAT GTCTATGGCG GCATCGATCC CGCATTGATG
    GTCGGCGTGC
    101 GCCTGCTAAT TGCCGCGCTG CCTGCACTGC CCGCCTGCCG
    CCGTCATGTC
    151 GGCAAGATTC CGCGTGAGGA ATGGAAGCCG TTGCTGATTG
    TGTCGTTCGT
    201 CAACTATGTG CTGACCCTGC TGCTTCAGTT TGTCGGGTTG
    AAATACACTT
    251 CCGCCGCCAG CGCATCGGTC ATTGTCGGAC TCGAGCCGCT
    GCTGATGGTG
    301 TTTGTCGGAC ACTTTTTCTT CAACGACAAA GCGCGTGCCT
    ACCACTGGAT
    351 ATGCGGCGCG GCGGCATTTG CCGGTGTCGC GCTGCTGATG
    GCGGGCGGTG
    401 CGGAAGAGGG CGGCGAAGTC GGCTGGTTCG GCTGCCTGCT
    GGTGTTGTTG
    451 GCGGGCGCGG GCTTTTGTGC CGCTATGCGT CCGACGCAAA
    GGCTGATTGC
    501 ACGCATCGGC GCACCGGCAT TCACATCTGT TTCCATTGCC
    GCCGCATCGT
    551 TGATGTGCCT GCCGTTTTCG CTTGCTTTGG CGCAAAGTTA
    TACCGTGGAC
    601 TGGAGCGTCG GGATGGTATT GTCGCTGCTG TATTTGGGTT
    TGGGGTGCGG
    651 CTGGTACGCC TATTGGCTGT GGAACAAGGG GATGAGCCGT
    GTTCCTGCCA
    701 ATGTTTCGGG ACTGTTGATT TCGCTCGAAC CCGTCGTCGG
    CGTGCTGCTG
    751 GCGGTTTTGA TTTTGGGCGA ACACCTGTCG CCCGTGTCCG
    CCTTGGGCGT
    801 GTTTGTCGTC ATCGCCGCCA CCTTGGTTGC CGGCCGGCTG
    TCGCATCAAA
    851 AATAA
  • This corresponds to the amino acid sequence <SEQ ID 244; ORF62-1>:
  • 1 MFYQILALII WSSSFIAAKY VYGGIDPALM VGVRLLIAAL
    PALPACRRHV
    51 GKIPREEWKP LLIVSFVNYV LTLLLQFV GL KYTSAASASV
    IVGLEPLLMV
    101 FVGHFFFNDK ARAYHWICGA AAFAGVALLM AGGAEEGGEV
    GWFGCLLVLL
    151 AGAGFCAAMR PTQRLIARIG APAFTSVSIA AASLMCLPFS
    LALAQSYTVD
    201 WSVGMVLSLL YLGLGCGWYA YWLWNKGMSR VPANVSGLLI
    SLEPVVGVLL
    251 AVLILGEHLS PVSALGVFVV IAATLVAGRL SHQK*
  • Computer analysis of this amino acid sequence gave the following results:
  • Homology with Hypothetical Transmembrane Protein H10976 of H. influenzae (Accession Number Q57147)
  • ORF62 and HI0976 show 50% aa identity in 114aa overlap:
  • Orf62 1 MFYQILALIIWSSSFIAAKYVYGGIDPALMVGVRXXXXXXXXXXXCRRHVGKIPREEWKP 60
    M YQILAL+IWSSS I  K  Y  +DP L+V VR             R   KI +   K
    HI0976 1 MLYQILALLIWSSSLIVGKLTYSMMDPVLVVQVRLIIAMIIVMPLFLRRWKKIDKPMRKQ 60
    Orf62 61 LLIVSFVNYVLTLLLQFVGLKYTSAASASVIVGLEPLLMVFVGHFFFNDKARAY 114
    L  ++F NY    LLQF+GLKYTSA+SA  ++GLEPLL+VFVGHFFF  K   +
    HI0976 61 LWWLAFFNYTAVFLLQFIGLKYTSASSAVTMIGLEPLLVVFVGHFFFKTKQNGF 114

    Homology with a Predicted ORF from N. meningitidis (Strain A)
  • ORF62 shows 99.5% identity over a 216aa overlap with an ORF (ORF62a) from strain A of N. meningitidis:
  • Figure US20130064846A1-20130314-C00108
  • The complete length ORF62a nucleotide sequence <SEQ ID 245> is:
  • 1 ATGTTTTACC AAATCCTTGC CCTGATTATC TGGAGCAGCT
    CGTTTATTGC
    51 CGCCAAATAT GTCTATGGCG GCATCGATCC CGCATTGATG
    GTCGGCGTGC
    101 GCCTGCTGAT TGCTGCGCTG CCTGCACTGC CCGCCTGCCG
    CCGTCATGTC
    151 GGCAAGATTC CGCGTGAGGA ATGGAAGCCG TTGCTGATTG
    TGTCGTTCGT
    201 CAACTATGTG CTGACCCTGC TACTTCAGTT TGTCGGGTTG
    AAATACACTT
    251 CCGCCGCCAG CGCATCGGTC ATTGTCGGAC TCGAGCCACT
    GCTGATGGTG
    301 TTTGTCGGAC ACTTTTTCTT CAACGACAAA GCGCGTGCCT
    ACCACTGGAT
    351 ATGCGGCGCG GCGGCATTTG CCGGTGTCGC GCTGCTGATG
    GCGGGCGGTG
    401 CGGAAGAGGG CGGCGAAGTC GGCTGGTTCG GCTGCCTGCT
    GGTGTTGTTG
    451 GCGGGCGCGG GCTTTTGTGC CGCTATGCGT CCGACGCAAA
    GGCTGATTGC
    501 ACGCATCGGC GCACCGGCAT TCACATCTGT TTCCATTGCC
    GCCGCATCGT
    551 TGATGTGCCT GCCGTTTTCG CTTGCTTTGG CGCAAAGTTA
    TACCGTGGAC
    601 TGGAGCGTCG GAATGGTATT GTCGCTGCTG TATTTGGGCG
    TGGGGTGCAG
    651 CTGGTACGCC TATTGGCTGT GGAACAAGGG GATGAGCCGT
    GTTCCTGCCA
    701 ACGTTTCGGG ACTGTTGATT TCGCTCGAAC CCGTCGTCGG
    CGTGCTGCTG
    751 GCGGTTTTGA TTTTGGGCGA ACACCTGTCG CCCGTGTCCG
    TCTTGGGCGT
    801 GTTTGTCGTC ATCGCCGCCA CCTTGGTTGC CGGCCGGCTG
    TCGCATCAAA
    851 AATAA
  • This encodes a protein having amino acid sequence <SEQ ID 246>:
  • 1 MFYQILALII WSSSFIAAKY VYGGIDPALM VGVRLLIAAL
    PALPACRRHV
    51 GKIPREEWKP LLIVSFVNYV LTLLLQFV GL KYTSAASASV
    IVGLEPLLMV
    101 FVGHFFFNDK ARAYHWICGA AAFAGVALLM AGGAEEGGEV
    GWFGCLLVLL
    151 AGAGFCAAMR PTQRLIARIG APAFTSVSIA AASLMCLPFS
    LALAQSYTVD
    201 WSVGMVLSLL YLGVGCSWYA YWLWNKGMSR VPANVSGLLI
    SLEPVVGVLL
    251 AVLILGEHLS PVSVLGVFVV IAATLVAGRL SHQK*
  • ORF62a and ORF62-1 show 98.9% identity in 284 aa overlap:
  • Figure US20130064846A1-20130314-C00109
  • Homology with a Predicted ORF from N. gonorrhoeae
  • ORF62 shows 99.5% identity over a 216aa overlap with a predicted ORF (ORF62.ng) from N. gonorrhoeae:
  • Figure US20130064846A1-20130314-C00110
  • The complete length ORF62ng nucleotide sequence <SEQ ID 247> is:
  • 1 ATGTTTTACC AAATCCTTGC CCTGATTATC TGGGGCAGCT
    CGTTTATTGC
    51 CGCCAAATAT GTCTATGGCG GCATCGATCC CGCATTGATG
    GTCGGCGTGC
    101 GCCTGCTGAT TGCCGCGCTG CCTGCACTGC CCGCCTGCCG
    CCGTCATGTC
    151 GGCAAGATTC CGCGTGAGGA ATGGAAGCCG TTGCTGATTG
    TGTCGTTCGT
    201 CAACTATGTG CTGACCCTGC TGCTTCAGTT TGTCGGGTTG
    AAATACACTT
    251 CCGCCGCCAG CGCATCGGTC ATTGTCGGAC TCGAGCCGCT
    GCTGATGGTG
    301 TTTGTCGGAC ACTTTTTCTT CAACGACAAA GCGCGTGCCT
    ACCACTGGAT
    351 ATGCGGCGCG GCGGCATTTG CCGGTGTCGC GCTGCTGATG
    GCGGGCGGTG
    401 CGGAAGAGGG CGGCGAAGTC GGCTGGTTCG GCTGCCTGCT
    GGTGTTGTTG
    451 GCGGGCGCGG GCTTTTGTGC CGCTATGCGT CCGACGCAAA
    GGCTGATTGC
    501 CCGCATCGGC GCACCGGCAT TCACATCTGT TTCCATTGCC
    GCCGCATCGT
    551 TGATGTGCCT GCCGTTTTCG CTTGCTTTGG CGCAAAGTTA
    TACCGTGGAC
    601 TGGAGCGTCG GGATGGTATT GTCGCTGTTG TATTTGGGTT
    TGGGGTGCGG
    651 CTGGTACGCC TATTGGCTGT GGAACAAGGG GATGAGCCGT
    GTTCCTGCCA
    701 ACGCGTCGGG ACTGTTGATT TCGCTCGAAC CCGTCGTCGG
    CGTGCTGTTG
    751 GCGGTTTTGA TTTTGGGCGA ACATTTATCG CCCGTGTCCG
    CCTTGGGCGT
    801 GTTTGTCGTC ATCGCCGCCA CTTTCGCCGC CGGCCGGCTG
    TCGCGCAGGG
    851 ACGCGCAAAA CGGCAATGCC GTCTGA
  • This encodes a protein having amino acid sequence <SEQ ID 248>:
  • 1 MFYQILALII WGSSFIAAKY VYGGIDPALM VGVRLLIAAL
    PALPACRRHV
    51 GKIPREEWKP LLIVSFVNYV LTLLLQFV GL KYTSAASASV
    IVGLEPLLMV
    101 FVGHFFFNDK ARAYHWICGA AAFAGVALLM AGGAEEGGEV
    GWFGCLLVLL
    151 AGAGFCAAMR PTQRLIARIG APAFTSVSIA AASLMCLPFS
    LALAQSYTVD
    201 WSVGMVLSLL YLGLGCGWYA YWLWNKGMSR VPANASGLLI
    SLEPVVGVLL
    251 AVLILGEHLS PVSALGVFVV IAATFAAGRL SRRDAQNGNA
    V*
  • ORF62ng and ORF62-1 show 97.9% identity in 283 aa overlap:
  • Figure US20130064846A1-20130314-C00111
  • Furthermore, ORF62ng shows significant homology to a hypothetical H. influenzae protein:
  • sp|Q57147|Y976_HAEIN HYPOTHETICAL PROTEIN HI0976 >gi|1074589|pir||B64163
    hypothetical protein HI0976 - Haemophilus influenzae (strain Rd KW20)
    >gi|1574004 (U32778) hypothetical [Haemophilus influenzae] Length = 128
    Score = 106 bits (262), Expect = 2e−22
    Identities = 56/114 (49%), Positives = 68/114 (59%)
    Query: 1 MFYQILALIIWGSSFIAAKYVYGGIDPALMVGVRXXXXXXXXXXXCRRHVGKIPREEWKP 60
    M YQILAL+IW SS I  K  Y  +DP L+V VR             R   KI +   K
    Sbjct: 1 MLYQILALLIWSSSLIVGKLTYSMMDPVLVVQVRLIIAMIIVMPLFLRRWKKIDKPMRKQ 60
    Query: 61 LLIVSFVNYVLTLLLQFVGLKYTSAASASVIVGLEPLLMVFVGHFFFNDKARAY 114
    L  ++F NY    LLQF+GLKYTSA+SA  ++GLEPLL+VFVGHFFF  K   +
    Sbjct: 61 LWWLAFFNYTAVFLLQFIGLKYTSASSAVTMIGLEPLLVVFVGHFFFKTKQNGF 114
  • Based on this analysis, including the homology with the transmembrane protein of H. influenzae and the putative leader sequence and several transmembrane domains in the gonococcal protein, it is predicted that these proteins from N. meningitidis and N. gonorrhoeae, and their epitopes, could be useful antigens for vaccines or diagnostics, or for raising antibodies.
  • Example 30
  • The following partial DNA sequence was identified in N. meningitidis <SEQ ID 249>:
  • 1 ATGCGCCGTT TTCTACCGAT CGCAGCCATA TGCGCmGwms
    TCCTGkkGTA
    51 sGGACTGACG GCGGCAACCG GCAGCACCAG TTCGCTGGCG
    GATTATTTCT
    101 GGTGGATTGT TGCGTTCAGC GCAATGCTGC TGCTGGTGTT
    GTCCGCCGTT
    151 TTGGCACGTT ATGTCATATT GCTGTTGAAA GACAGGCGCG
    ACGGCGTATT
    201 CGGTTCGCtA srTyGCCAAA gsGCCTgkks TGGG.ATGTT
    TACGCTGGTT
    251 GCCGkACTGC CCGGCGTGTT TCTGTTCGGC TTTCCCGCAC
    AGTTCATCAA
    301 CGGCACGATT AATTCGTGGT TCGGCAACGA TACCCACGAG
    GCGCTTGAAC
    351 GCAGCCTCAA TTTGAGCAAG TCCGCATTGA ATTTGGCGGC
    AGACAACGCC
    401 CTCGGCAACG CCGTCCCCGT GCAGATAGAC CTCATCGGCG
    CGGCTTCCCT
    451 GCCCGGGGAT ATGGGCAGGG TGCTGGAACA TTACGCCGGC
    AGCGGTTTTG
    501 CCCAGCTTGC CCTGTACAAy ksCGCAAGCG GCAAAATCGA
    AAAAAGCATC
    551 AACCCGCACA AGCTCGATCA GCCGTTTCCA GGTAAGGCGC
    GTTGGGAaAa
    601 AATCCaACGG GCGGGTTCGG TCAGGGATTT GGAAAGCATA
    GGCGGCGTAT
    651 TGTaCGCGCA GGGCTGGCTG TCGGCGGGTA CGCACwACGG
    GCGCGATTAC
    701 GCCTTGTTTT TCCGTCAGCC GGTTCCCAAA GGCGTGGCAG
    AGGATGCCGT
    751 yTTAATCGAA AAGGCAAGGG CGAAATATGC TGAGTTGAGT
    TACAGCAAAA
    801 AAGGTTTGCA GACCTTTTTC CTGGCAACCC TGCTGATTGC
    CTCGCTGCTG
    851 TCGATTTTTC TTGCACTGGT CATGGCACTG TATTTCGCCC
    GCCGTTTCGT
    901 CGAACCCGTC CTATCGCTTG CCGAGGGGGC GAAGGCGGTG
    GCGCAAGGCG
    951 ATTTCAGCCA GACGCGCCCC GTGTTGCGCA ACGACGAGTT
    CGGACGCTTG
    1001 ACCArGTTGT TCAACCACAT GACCGAGCAG CTTTCCATCG
    CCAAAGATGC
    1051 AGACGAGCGC AACCGCCGGC GCGAGGAAGC CGCCAGGCAT
    TATCTTGAAT
    1101 GCGTGTTGGA GGGGCTGACC ACGGGCGTGG TGGTGTTTGA
    CGAACAAGGC
    1151 TGTCTGAAAA CCTTCAACAA AGCGGCGGGT ACC..
  • This corresponds to the amino acid sequence <SEQ ID 250; ORF64>:
  • 1 MRRFLPIAAI CAXXLXXGLT AATGSTSSLA DYFWWIVAFS
    AMLLLVLSAV
    51 LARYVILLLK DRRDGVFGSX XAKXPXXXMF TLVAXLPGVF
    LFGFPAQFIN
    101 GTINSWFGND THEALERSLN LSKSALNLAA DNALGNAVPV
    QIDLIGAASL
    151 PGDMGRVLEH YAGSGFAQLA LYNXASGKIE KSINPHKLDQ
    PFPGKARWEK
    201 IQRAGSVRDL ESIGGVLYAQ GWLSAGTHXG RDYALFFRQP
    VPKGVAEDAV
    251 LIEKARAKYA ELSYSKKGLQ TFFLATLLIA SLLSIFLALV
    MALYFARRFV
    301 EPVLSLAEGA KAVAQGDFSQ TRPVLRNDEF GRLTXLFNHM
    TEQLSIAKDA
    351 DERNRRREEA ARHYLECVLE GLTTGVVVFD EQGCLKTFNK
    AAGT..
  • Further work revealed the complete nucleotide sequence <SEQ ID 251>:
  • 1 ATGCGCCGTT TTCTACCGAT CGCAGCCATA TGCGCCGTCG
    TCCTGTTGTA
    51 CGGACTGACG GCGGCAACCG GCAGCACCAG TTCGCTGGCG
    GATTATTTCT
    101 GGTGGATTGT TGCGTTCAGC GCAATGCTGC TGCTGGTGTT
    GTCCGCCGTT
    151 TTGGCACGTT ATGTCATATT GCTGTTGAAA GACAGGCGCG
    ACGGCGTATT
    201 CGGTTCGCAG ATTGCCAAAC GCCTTTCTGG GATGTTTACG
    CTGGTTGCCG
    251 TACTGCCCGG CGTGTTTCTG TTCGGCGTTT CCGCACAGTT
    CATCAACGGC
    301 ACGATTAATT CGTGGTTCGG CAACGATACC CACGAGGCGC
    TTGAACGCAG
    351 CCTCAATTTG AGCAAGTCCG CATTGAATTT GGCGGCAGAC
    AACGCCCTCG
    401 GCAACGCCGT CCCCGTGCAG ATAGACCTCA TCGGCGCGGC
    TTCCCTGCCC
    451 GGGGATATGG GCAGGGTGCT GGAACATTAC GCCGGCAGCG
    GTTTTGCCCA
    501 GCTTGCCCTG TACAATGCCG CAAGCGGCAA AATCGAAAAA
    AGCATCAACC
    551 CGCACAAGCT CGATCAGCCG TTTCCAGGTA AGGCGCGTTG
    GGAAAAAATC
    601 CAACGGGCGG GTTCGGTCAG GGATTTGGAA AGCATAGGCG
    GCGTATTGTA
    651 CGCGCAGGGC TGGCTGTCGG CGGGTACGCA CAACGGGCGC
    GATTACGCCT
    701 TGTTTTTCCG TCAGCCGGTT CCCAAAGGCG TGGCAGAGGA
    TGCCGTCTTA
    751 ATCGAAAAGG CAAGGGCGAA ATATGCTGAG TTGAGTTACA
    GCAAAAAAGG
    801 TTTGCAGACC TTTTTCCTGG CAACCCTGCT GATTGCCTCG
    CTGCTGTCGA
    851 TTTTTCTTGC ACTGGTCATG GCACTGTATT TCGCCCGCCG
    TTTCGTCGAA
    901 CCCGTCCTAT CGCTTGCCGA GGGGGCGAAG GCGGTGGCGC
    AAGGCGATTT
    951 CAGCCAGACG CGCCCCGTGT TGCGCAACGA CGAGTTCGGA
    CGCTTGACCA
    1001 AGTTGTTCAA CCACATGACC GAGCAGCTTT CCATCGCCAA
    AGAAGCAGAC
    1051 GAGCGCAACC GCCGGCGCGA GGAAGCCGCC AGGCATTATC
    TTGAATGCGT
    1101 GTTGGAGGGG CTGACCACGG GCGTGGTGGT GTTTGACGAA
    CAAGGCTGTC
    1151 TGAAAACCTT CAACAAAGCG GCGGAACAGA TTTTGGGGAT
    GCCGCTTACC
    1201 CCCCTGTGGG GCAGCAGCCG GCACGGTTGG CACGGCGTTT
    CGGCGCAGCA
    1251 GTCCCTGCTT GCCGAAGTGT TTGCCGCCAT CGGCGCGGCG
    GCAGGTACGG
    1301 ACAAACCGGT CCATGTGAAA TATGCCGCGC CGGACGATGC
    CAAAATCCTG
    1351 CTGGGCAAGG CAACCGTCCT GCCCGAAGAC AACGGCAACG
    GCGTGGTAAT
    1401 GGTGATTGAC GACATCACCG TTTTGATACA CGCGCAAAAA
    GAAGCCGCGT
    1451 GGGGCGAAGT GGCGAAGCGG CTGGCACACG AAATCCGCAA
    TCCGCTCACG
    1501 CCCATCCAGC TTTCCGCCGA ACGGCTGGCG TGGAAATTGG
    GCGGGAAGCT
    1551 GGATGAGCAG GATGCGCAAA TCCTGACGCG TTCGACCGAC
    ACCATCGTCA
    1601 AACAGGTGGC GGCATTGAAG GAAATGGTCG AAGCATTCCG
    CAATTATGCG
    1651 CGTTCCCCTT CGCTCAAATT GGAAAATCAG GATTTGAACG
    CCTTAATCGG
    1701 CGATGTGTTG GCATTGTATG AAGCCGGTCC GTGCCGGTTT
    GCGGCGGAGC
    1751 TTGCCGGCGA ACCGCTGACG GTGGCGGCGG ATACGACCGC
    CATGCGGCAG
    1801 GTGCTGCACA ATATTTTCAA AAATGCCGCC GAAGCGGCGG
    AAGAAGCCGA
    1851 TGTGCCCGAA GTCAGGGTAA AATCGGAAAC AGGGCAGGAC
    GGTCGGATTG
    1901 TCCTGACGGT TTGCGACAAC GGCAAAGGGT TCGGCAGGGA
    AATGCTGCAC
    1951 AACGCCTTCG AGCCGTATGT AACGGACAAA CCGGCGGGAA
    CGGGATTGGG
    2001 TCTGCCTGTG GTGAAAAAAA TCATTGAAGA ACACGGCGGC
    CGCATCAGCC
    2051 TGAGCAATCA GGATGCGGGT GGCGCGTGTG TCAGAATCAT
    CTTGCCAAAA
    2101 ACGGTAAAAA CTTATGCGTA G
  • This corresponds to the amino acid sequence <SEQ ID 252; ORF64-1>:
  • 1 MRRFLPIAAI CAVVLLYGLT AATGSTSSLA DYFWWIVAFS
    AMLLLVLSAV
    51 LARYVILLLK DRRDGVFGSQ IAKRLSGMFT LVAVLPGVFL
    FGVSAQFING
    101 TINSWFGNDT HEALERSLNL SKSALNLAAD NALGNAVPVQ
    IDLIGAASLP
    151 GDMGRVLEHY AGSGFAQLAL YNAASGKIEK SINPHKLDQP
    FPGKARWEKI
    201 QRAGSVRDLE SIGGVLYAQG WLSAGTHNGR DYALFFRQPV
    PKGVAEDAVL
    251 IEKARAKYAE LSYSKKGLQT FFLATLLIAS LLSIFLALVM
    ALYFARRFVE
    301 PVLSLAEGAK AVAQGDFSQT RPVLRNDEFG RLTKLFNHMT
    EQLSIAKEAD
    351 ERNRRREEAA RHYLECVLEG LTTGVVVFDE QGCLKTFNKA
    AEQILGMPLT
    401 PLWGSSRHGW HGVSAQQSLL AEVFAAIGAA AGTDKPVHVK
    YAAPDDAKIL
    451 LGKATVLPED NGNGVVMVID DITVLIHAQK EAAWGEVAKR
    LAHEIRNPLT
    501 PIQLSAERLA WKLGGKLDEQ DAQILTRSTD TIVKQVAALK
    EMVEAFRNYA
    551 RSPSLKLENQ DLNALIGDVL ALYEAGPCRF AAELAGEPLT
    VAADTTAMRQ
    601 VLHNIFKNAA EAAEEADVPE VRVKSETGQD GRIVLTVCDN
    GKGFGREMLH
    651 NAFEPYVTDK PAGTGLGLPV VKKIIEEHGG RISLSNQDAG
    GACVRIILPK
    701 TVKTYA*
  • Computer analysis of this amino acid sequence gave the following results:
  • Homology with a Predicted ORF from N. meningitidis (Strain A)
  • ORF64 shows 92.6% identity over a 392aa overlap with an ORF (ORF64a) from strain A of N. meningitidis:
  • Figure US20130064846A1-20130314-C00112
  • The complete length ORF64a nucleotide sequence <SEQ ID 253> is:
  • 1 ATGCGCCGTT TTCTACCGAT CGCAGCCATA TGCGCCGTCG
    TCCTGTTGTA
    51 CGGACTGACG GCGGCAACCG GCAGCACCAG TTCGCTGGCG
    GATTATTTCT
    101 GGTGGATTGT TGCGTTCAGC GCAATGCTGC TGCTGGTGTT
    GTCCGCCGTT
    151 TTGGCACGTT ATGTCATATT GCTGTTGAAA GACAGGCGCG
    ACGGCGTATT
    201 CGGTTCGCAG ATTGCCAAAC GCCTTTCCGG GATGTTTACG
    CTGGTTGCCG
    251 TACTGCCCGG CGTGTTTCTG TTCGGCGTTT CCGCACAGTT
    TATCAACGGC
    301 ACGATTAATT CGTGGTTCGG CAACGATACC CACGAGGCGC
    TTGAACGCAG
    351 CCTCAATTTG AGCAAGTCCG CATTGAATCT GGCGGCAGAC
    AACGCCCTTG
    401 GCAACGCCAT CCCCGTGCAG ATAGACNTCA TCGGCGCGGC
    TTCCCTGCCC
    451 NGGGATATGG GCAGGGTGCT GGAACATTAC GCCGGCAGCG
    GTTTTGCCCA
    501 GCTTGCCCTG TACAATGCCG CAAGCGGCAA AATCGAAAAA
    AGCATCAACC
    551 CGCACAAGCT CGATCAGCCG TTTCCAGGTA AGGCGCGTTG
    GGAAAAAATC
    601 CAACAGGCGG GTTCGGTCAG GGATNNGGAA AGCATAGGCG
    GCGTATTGTA
    651 CGCGCANGGC TGGCTGTCGG CAGNNACGCA CAACGGGCGC
    GATTACGCCT
    701 TGTTTTTCCG TCAGCCGGTT CCCAAAGGCG TGGCAGAGGA
    TGCCGTCTTA
    751 ATCGAAAAGG CAAGGGCGNA ANANNNTNAG TTGAGTTACA
    GCAAAAAAGG
    801 TTTGCAGACC TTTTTCCTNG CAACCCTGCT GATTGCCTCN
    CTGCTGTCGA
    851 TTTTTCTTGC ACTGGTCATG GCACTGTATT TCGCCCGCCG
    TTTCGTCGAA
    901 CCCGTCCTAT CGCTTGCCGA GGGGGCGAAG GCGGTGGCGC
    AAGGCGATTT
    951 CAGCCAGACG CGCCCCGTGT TGCGCAACGA CGAGTTCGGA
    CGCTTGACCA
    1001 AGTTGTTCAA CCACATGACC GAGCAGCTTT CCATCGCCAA
    AGAAGCAGAC
    1051 GAGCGCAACC GCCGGCGCGA GGAAGCCGCC AGACATTATC
    TCGAATGCGT
    1101 GTTGGAGGGG CTGACCACGG GCGTGGTGGT GTTTGACGAA
    CAAGGCTGTC
    1151 TGAAAACCTT CAACAAAGCG GCGGAACAGA TTTTGGGGAT
    GCCGCTTACC
    1201 CCCCTGTGGG GCAGCAGCCG GCACGGTTGG CACGGCGTTT
    CGGCGCAGCA
    1251 GTCCCTGCTT GCCGAAGTGT TTGCCGCCAT CGGCGCGGCG
    GCAGGTACGG
    1301 ACAAACCGGT CCATGTGAAA TATGCCGCGC CGGACGATGC
    CAAAATCCTG
    1351 CTGGGCAAGG CAACCGTCCT GCCCGAAGAC AACNGCAACG
    GCGTGGTAAT
    1401 GGTGATTGAC GACATCACCG TTTTGATACA CGCGCAAAAA
    GAAGCCGCGT
    1451 GGGGCGAAGT GGCAAAACGG CTGGCACACG AAATCCGCAA
    TCCGCTCACG
    1501 CCCATCCAGC TTTCTGCCGA ACGGCTGGCG TGGAAATTGG
    GCGGGAAGCT
    1551 GGACGAGCAN GACGCGCAAA TCCTGACACG TTCGACCGAC
    ACCATCATCA
    1601 AACAAGTGGC GGCATTAAAA GAAATGGTCG AGGCATTCCG
    CAATTACNCG
    1651 CGTTCCCCTT CGNCTCAATT GGAAAATCAG GATTTGAACG
    CCTTAATCGG
    1701 CGATGTGTTG GCATTGTACG AAGCTGGTCC GTGCCGGTTT
    GCGGCGGAAC
    1751 TTGCCGGCGA ACCGCTGATG ATGGCGGCGG ATACGACCGC
    CATGCGGCAG
    1801 GTGCTGCACA ATATTTTCAA AAATGCCGCC GAAGCGGCGG
    AAGAAGCCGA
    1851 TGTGCCCGAA GTCAGGGTAA AATCGGAAGC GGGGCAGGAC
    GGACGGATTG
    1901 TCCTGACAGT TTGCGACAAC GGCAAGGGGT TCGGCAGGGA
    AATGCTGCAC
    1951 AATGCCTTCG AGCCGTATGT AACGGACAAA CCGGCTGGAA
    CGGGATTGNG
    2001 ACTGCCCGTG GTGAAAAAAA TCATTGAAGA ACACGGCGGC
    CNCATCAGCC
    2051 TGAGCAATCA GGATGCGGGC GGCGCGTNTG TCAGAATCAT
    CTTGCCAAAA
    2101 ACGGTAGAAA CTTATGCGTA G
  • This encodes a protein having amino acid sequence <SEQ ID 254>:
  • 1 MRRFLPIAAI CAVVLLYGLT AATGSTSSLA DYFWWIVAFS
    AMLLLVLSAV
    51 LARYVILLLK DRRDGVFGSQ IAKRLSGMFT LVAVLPGVFL
    FGVSAQFING
    101 TINSWFGNDT HEALERSLNL SKSALNLAAD NALGNAIPVQ
    IDXIGAASLP
    151 XDMGRVLEHY AGSGFAQLAL YNAASGKIEK SINPHKLDQP
    FPGKARWEKI
    201 QQAGSVRDXE SIGGVLYAXG WLSAXTHNGR DYALFFRQPV
    PKGVAEDAVL
    251 IEKARAXXXX LSYSKKGLQT FFLATLLIAS LLSIFLALVM
    ALYFARRFVE
    301 PVLSLAEGAK AVAQGDFSQT RPVLRNDEFG RLTKLFNHMT
    EQLSIAKEAD
    351 ERNRRREEAA RHYLECVLEG LTTGVVVFDE QGCLKTFNKA
    AEQILGMPLT
    401 PLWGSSRHGW HGVSAQQSLL AEVFAAIGAA AGTDKPVHVK
    YAAPDDAKIL
    451 LGKATVLPED NXNGVVMVID DITVLIHAQK EAAWGEVAKR
    LAHEIRNPLT
    501 PIQLSAERLA WKLGGKLDEX DAQILTRSTD TIIKQVAALK
    EMVEAFRNYX
    551 RSPSXQLENQ DLNALIGDVL ALYEAGPCRF AAELAGEPLM
    MAADTTAMRQ
    601 VLHNIFKNAA EAAEEADVPE VRVKSEAGQD GRIVLTVCDN
    GKGFGREMLH
    651 NAFEPYVTDK PAGTGLXLPV VKKIIEEHGG XISLSNQDAG
    GAXVRIILPK
    701 TVETYA*
  • ORF64a and ORF64-1 show 96.6% identity in 706 aa overlap:
  • Figure US20130064846A1-20130314-C00113
  • Homology with a Predicted ORF from N. gonorrhoeae
  • ORF64 shows 86.6% identity over a 387aa overlap with a predicted ORF (ORF64.ng) from N. gonorrhoeae:
  • Figure US20130064846A1-20130314-C00114
  • An ORF64ng nucleotide sequence <SEQ ID 255> was predicted to encode a protein having amino acid sequence <SEQ ID 256>:
  • 1 MRRFLPIAAI CAVVLLYGLT AATGSTSSLA DYFWWIVSFS
    AMLLLVLSAV
    51 LARYVILLLK DRRNGVFGSQ IAKRLSGMFT LVAVLPGLFL
    FGISAQFING
    101 TINSWFGNDT HEALERSLNL SKSALDLAAD NAVSNAVPVQ
    IDLIGTASLS
    151 GNMGSVLEHY AGSGFAQLAL YNAASGKIEK SINPHQFDQP
    LPDKEHWEQI
    201 QQTGSVRSLE SIGGVLYAQG WLSAGTHNGR DYALFFRQPI
    PENVAQDAVL
    251 IEKARAKYAE LSYSKKGLQT FFLVTLLIAS LLSIFLALVM
    ALYFARRFVE
    301 PILSLAEGAK AVAQGDFSQT RPVLRNDEFG RLTKLFNHMT
    EQLSIAKEAD
    351 ERNRRREEAA RHYLECVLDG LTTGVVVSYP LSCCRTAVFS
    TCHSSPLSYF*
  • Further work revealed the complete gonococcal DNA sequence <SEQ ID 257>:
  • 1 ATGCGCCGCT TCCTACCGAT CGCAGCCATA TGCGCCGTCG
    TCCTGCTGTA
    51 CGGATTGACG GCGGCGACCG GCAGCACCAG TTCGCTGGCG
    GATTATTTCT
    101 GGTGGATAGT CTCGTTCAGC GCAATGCTGC TGCTGGTGTT
    GTCCGCCGTT
    151 TTGGCACGTT ATGTCATATT GCTGTTGAAA GACAGGCGCA
    ACGGCGTGTT
    201 CGGTTCGCAG ATTGCCAAAC GCCTTTCCGG GATGTTCACG
    CTGGTCGCCG
    251 TACTGCCCGG CTTGTTCCTG TTCGGCATTT CCGCGCAGTT
    TATCAACGGC
    301 ACGATTAATT CGTGGTTCGG CAACGACACC CACGAAGCCC
    TCGAACGCAG
    351 CCTTAATTTG AGCAAGTCCG CACTGGATTT GGCGGCAGAC
    AATGCCGTCA
    401 GCAACGCCGT TCCCGTACAG ATAGACCTCA TCGGCACCGC
    CTCCCTGTCG
    451 GGCAATATGG GCAGTGTGCT GGAACACTAC GCCGGCAGCG
    GTTTTGCCCA
    501 GCTTGCCCTG TACAATGCCG CAAGCGGGAA AATCGAAAAA
    AGCATCAATC
    551 CGCACCAATT CGACCAGCCG CTTCCCGACA AAGAACATTG
    GGAACAGATT
    601 CAGCAGACCG GTTCGGTTCG GAGTTTGGAA AGCATAGGCG
    GCGTATTGTA
    651 CGCGCAGGGA TGGTTGTCGG CAGGTACGCA CAACGGGCGC
    GATTACGCGC
    701 TGTTCTTCCG CCAGCCGATT CCCGAAAATG TGGCACAGGA
    TGCCGTTCTG
    751 ATTGAAAAGG CGCGGGCGAA ATATGCCGAA TTGAGTTACA
    GCAAAAAAGG
    801 TTTGCAGACC TTTTTTCTGG TAACCCTGCT GATTGCCTCG
    CTGCTGTCGA
    851 TTTTTCTTGC GCTGGTAATG GCACTGTATT TTGCCCGCCG
    TTTCGTCGAA
    901 CCCATTCTGT CGCTTGCCGA GGGCGCAAAG GCGGTGGCGC
    AGGGTGATTT
    951 CAGCCAGACG CGCCCCGTAT TGCGCAACGA CGAGTTCGGA
    CGTTTGACCA
    1001 AGCTGTTCAA CCATATGACC GAGCAGCTTT CCATCGCCAA
    AGAAGCAGAC
    1051 GAACGCAACC GCCGGCGCGA GGAAGCCGCC CGTCACTACC
    TCGAGTGCGT
    1101 GTTGGATGGG TTGACTACCG GTGTGGTGGT GTTTGACGAA
    AAAGGCCGTT
    1151 TGAAAACCTT CAACAAGGCG GCGGAACAGA TTTTGGGGAT
    GCCGCTCGCC
    1201 CCCCTGTGGG GCAGCAGCCG GCACGGTTGG CACGGCGTTT
    CGGCGCAGCA
    1251 GTCCCTGCTT GCCGAAGTGT TtgccgccAT CGGTGCGGCG
    GCAGGTACGG
    1301 ACAAACCGGT CCAGGTGGAA TATGCCGCGC CGGACGATGC
    CAAAATCCTG
    1351 CTGGGCAAGG CGACGGTATT GCCCGAAGAC AACGGCAACG
    GCGTGGTGAT
    1401 GGTGATTGAC GACATCACCG TGCTGATACG CGCGCAAAAA
    GAAGCCGCGT
    1451 GGGGTGAAGT GGCGAAGCGG CTGGCACACG AAATCCGCAA
    TCCGCTCACG
    1501 CCCATCCAGC TTTCCGCCGA ACGGCTGGCG TGGAAATTGG
    GCGGGAAGCT
    1551 GGACGATCAG GACGCGCAAA TCCTGACGCG TtcgACCGAC
    ACCATCATCA
    1601 AACAGgtggc gGCGTTAAAA GAAATGGTCG AGGCATTCCG
    CAATTACGCG
    1651 CGCGCCCCTT CGCTCAAACT GGAAAATCAG GATTTGAACG
    CCTTAATCGG
    1701 CGATGTTTTG GCCCTGTACG AAGCCGGCCC GTGCCGGTTT
    GAGGCGGAAC
    1751 TTGCCGGCGA ACCGCTGATG ATGGCGGCGG ATACGACCGC
    CATGCGGCAG
    1801 GTGCTGCACA ATATTTTCAA AAATGCCGCC GAAGCGGCGG
    AAGAAGCCGA
    1851 TATGCCCGAA GTCAGGGTAA AATCGGAAAC GGGGCAGGAC
    GGACGGATTG
    1901 TCCTGACGGT TTGCGACAAC GGCAAGGGAT TCGGCAAGGA
    AATGCTGCAC
    1951 AATGCTTTCG AGCCGTATGT GACGGATAAG CCGGCGGGAA
    CGGGACTGGG
    2001 TCTGCCTGTA GTGAAAAAAA TCATTGGAGA ACACGGCGGC
    CGCATCAGCC
    2051 TGAGCAATCA GGATGCGGGT GGGGCGTGTG TCAGAATCAT
    CTTGCCAAAA
    2101 ACGGTAGAAA CTTATGCGTA G
  • This corresponds to the amino acid sequence <SEQ ID 258; ORF64ng-1>:
  • 1 MRRFLPIAAI CAVVLLYGLT AATGSTSSLA DYFWWIVSFS
    AMLLLVLSAV
    51 LARYVILLLK DRRNGVFGSQ IAKRLSGMFT LVAVLPGLFL
    FGISAQFING
    101 TINSWFGNDT HEALERSLNL SKSALDLAAD NAVSNAVPVQ
    IDLIGTASLS
    151 GNMGSVLEHY AGSGFAQLAL YNAASGKIEK SINPHQFDQP
    LPDKEHWEQI
    201 QQTGSVRSLE SIGGVLYAQG WLSAGTHNGR DYALFFRQPI
    PENVAQDAVL
    251 IEKARAKYAE LSYSKKGLQT FFLVTLLIAS LLSIFLALVM
    ALYFARRFVE
    301 PILSLAEGAK AVAQGDFSQT RPVLRNDEFG RLTKLFNHMT
    EQLSIAKEAD
    351 ERNRRREEAA RHYLECVLDG LTTGVVVFDE KGRLKTFNKA
    AEQILGMPLA
    401 PLWGSSRHGW HGVSAQQSLL AEVFAAIGAA AGTDKPVQVE
    YAAPDDAKIL
    451 LGKATVLPED NGNGVVMVID DITVLIRAQK EAAWGEVAKR
    LAHEIRNPLT
    501 PIQLSAERLA WKLGGKLDDQ DAQILTRSTD TIIKQVAALK
    EMVEAFRNYA
    551 RAPSLKLENQ DLNALIGDVL ALYEAGPCRF EAELAGEPLM
    MAADTTAMRQ
    601 VLHNIFKNAA EAAEEADMPE VRVKSETGQD GRIVLTVCDN
    GKGFGKEMLH
    651 NAFEPYVTDK PAGTGLGLPV VKKIIGEHGG RISLSNQDAG
    GACVRIILPK
    701 TVETYA*
  • ORF64ng-1 and ORF64-1 show 93.8% identity in 706 aa overlap:
  • Figure US20130064846A1-20130314-C00115
  • Furthermore, ORF64ng-1 shows significant homology to a protein from A. caulinodans:
  • sp|Q04850|NTRY_AZOCA NITROGEN REGULATION PROTEIN NTRY
    >gi|77479|pir||S18624 ntrY protein - Azorhizobium caulinodans >gi|38737
    (X63841) NtrY gene product [Azorhizobium caulinodans] Length = 771
    Score = 218 bits (550), Expect = 7e−56
    Identities = 195/720 (27%), Positives = 320/720 (44%), Gaps = 58/720 (8%)
    Query: 7 IAAICAVVLLYGLTAATGSTSSLADYFWWIXXXXXXXXXXXXXXXXRYVILLLKDRRNGV 66
    I+A+   ++L GLT    +   +      +                R +  + K R  G
    Sbjct: 35 ISALATFLILMGLTPVVPTHQVVIS----VLLVNAAAVLILSAMVGREIWRIAKARARGR 90
    Query: 67 FGSQIAKRLSGMFTLVAVLPGLFLFGISAQFINGTINSWFGNDTHEALERSLNLSKSALD 126
      +++  R+ G+F +V+V+P + +  +++  ++  ++ WF   T E +  S++++++ +
    Sbjct: 91 AAARLHIRIVGLFAVVSVVPAILVAVVASLTLDRGLDRWFSMRTQEIVASSVSVAQTYVR 150
    Query: 127 LAADNAVSNAVPVQIDLIGTASLSGNMGSVLEHYAG--SGFAQLALYNAASGKIEKSINP 184
      A N   + + +  DL    S+          Y G  S F Q+    AA   +  ++
    Sbjct: 151 EHALNIRGDILAMSADLTRLKSV----------YEGDRSRFNQILTAQAALRNLPGAMLI 200
    Query: 185 HQFDQPLPDKEHWEQIQQTGSVRSLESIGGVLYAQGWLSAGTHNGRDYA----------- 233
     + D  + ++ +   I +   V +  +IG     Q  +     N  DY
    Sbjct: 201 RR-DLSVVERAN-VNIGREFIVPANLAIGDATPDQPVIYLP--NDADYVAAVVPLKDYDD 256
    Query: 234 --LFFRQPIPENVAQDAVLIEKARAKYAELSYSKKGLQTFFLVTXXXXXXXXXXXXXVMA 291
      L+  + I   V       ++  A Y  L   + G+Q  F +               +
    Sbjct: 257 LYLYVARLIDPRVIGYLKTTQETLADYRSLEERRFGVQVAFALMYAVITLIVLLSAVWLG 316
    Query: 292 LYFARRFVEPILSLAEGAKAVAQGDFSQTRPVLRND-EFGRLTKLFNHMTEQLSIXXXXX 350
    L F++  V PI  L   A  VA+G+     P+ R + +   L + FN MT +L
    Sbjct: 317 LNFSKWLVAPIRRLMSAADHVAEGNLDVRVPIYRAEGDLASLAETFNKMTHELRSQREAI 376
    Query: 351 XXXXXXXXXXXHYLECVLDGLTTGVVVFDEKGRLKTFNKAAEQILGMPLAPLWGSSRHGW 410
                + E VL G+  GV+  D + R+   N++AE++LG  L+ +    RH
    Sbjct: 377 LTARDQIDSRRRFTEAVLSGVGAGVIGLDSQERITILNRSAERLLG--LSEVEALHRHLA 434
    Query: 411 HGVSAQQSLLAEVFXXXXXXXXTDKPVQVEYAAPDDAKILLGKATVLPEDNG---NGVVM 467
      V     LL E            + VQ       D +  +    V  E +    +G V+
    Sbjct: 435 EVVPETAGLLEEA------EHARQRSVQGNITLTRDGRERVFAVRVTTEQSPEAEHGWVV 488
    Query: 468 VIDDITVLIRAQKEAAWGEVAKRLAHEIRNPLTPIQLSAERLAWKLGGKLDDQDAQILTR 527
     +DDIT LI AQ+ +AW +VA+R+AHEI+NPLTPIQLSAERL  K G  +  QD +I  +
    Sbjct: 489 TLDDITELISAQRTSAWADVARRIAHEIKNPLTPIQLSAERLKRKFGRHV-TQDREIFDQ 547
    Query: 528 STDTIIKQVAALKEMVEAFRNYARAPSLKLENQDLNALIGDVLALYEAGPCRFEAELAGE 587
     TDTII+QV  +  MV+ F ++AR P   +++QD++ +I   + L   G      +
    Sbjct: 548 CTDTIIRQVGDIGRMVDEFSSFARMPKPVVDSQDMSEIIRQTVFLMRVGHPEVVFDSEVP 607
    Query: 588 PLMMAA-DTTAMRQVLHNIFKNXXXXXXXXDMPEVRVK-------SETGQDGRIVLTVCD 639
    P M A  D   + Q L NI KN          P+VR +       +  G+D  +V+ + D
    Sbjct: 608 PAMPARFDRRLVSQALTNILKNAAEAIEAVP-PDVRGQGRIRVSANRVGED--LVIDIID 664
    Query: 640 NGKGFGKEMLHNAFEPYVTDKPAGTGLGLPVVKKIIGEHGGRISLSNQDAG-GACVRIIL 698
    NG G  +E  +   EPYVT +  GTGLGL +V KI+ EHGG I L++   G GA +R+ L
    Sbjct: 665 NGTGLPQESRNRLLEPYVTTREKGTGLGLAIVGKIMEEHGGGIELNDAPEGRGAWIRLTL 724
  • Based on this analysis, including the presence of a putative leader sequence (double-underlined) and several putative transmembrane domains (single-underlined) in the gonococcal protein, it is predicted that the proteins from N. meningitidis and N. gonorrhoeae, and their epitopes, could be useful antigens for vaccines or diagnostics, or for raising antibodies.
  • Example 31
  • The following partial DNA sequence was identified in N. meningitidis <SEQ ID 259>:
  • 1 ATGTACGCAT TTACCGCCGC ACAGCAACAG AAGGCACTCT
    TCCGGCTGGT
    51 GCTTTTTCAT ATCCTCATCA TCGCCGCCAG CAACTATCTG
    GTGCAGTTCC
    101 CTTTCCAAAT TTTCGGCATC CACACCACTT GGGGCGCATT
    TTCCTTTCCC
    151 TTCATCTTCC TTGCCACCGA CCTGACCGTC CGCATTTTCG
    GTTCTCACTT
    201 GGCACGGCGG ATTATCTTTT GGGTGATGTT CCCCGCCCTT
    TTGCTTTCCT
    251 ACGTCTTTTC CGTTTTGTTC CACAACGGCA GTTGGACAGG
    CTTGGGCGCG
    301 CTGTCCGAAT TCAACACCTT TGTCGGACGC ATCGCCTTAG
    CCAGCTTTGC
    351 CGCCTACGCG ATCGGACAAA TCCTTGATAT TTTTGTATTC
    AACAAATTAC
    401 GCCGTCTGAA AGCGTGGTGG ATTGCACCGA ACGCATCAAC
    CGTCATCGGG
    451 CACGCGTTGG ATACG...
  • This corresponds to the amino acid sequence <SEQ ID 260; ORF66>:
  • 1 MYAFTAAQQQ KALFRLVLFH ILIIAASNYL VQFPFQIFGI
    HTTWGAFSFP
    51 FIFLATDLTV RIFGSHLARR IIFWVMFPAL LLSYVFSVLF
    HNGSWTGLGA
    101 LSEFNTFVGR IALASFAAYA IGQILDIFVF NKLRRLKAWW
    IAPNASTVIG
    151 HALDT...
  • Further work revealed the complete nucleotide sequence <SEQ ID 261>:
  • 1 ATGTACGCAT TTACCGCCGC ACAGCAACAG AAGGCACTCT
    TCCGGCTGGT
    51 GCTTTTTCAT ATCCTCATCA TCGCCGCCAG CAACTATCTG
    GTGCAGTTCC
    101 CTTTCCAAAT TTTCGGCATC CACACCACTT GGGGCGCATT
    TTCCTTTCCC
    151 TTCATCTTCC TTGCCACCGA CCTGACCGTC CGCATTTTCG
    GTTCTCACTT
    201 GGCACGGCGG ATTATCTTTT GGGTGATGTT CCCCGCCCTT
    TTGCTTTCCT
    251 ACGTCTTTTC CGTTTTGTTC CACAACGGCA GTTGGACAGG
    CTTGGGCGCG
    301 CTGTCCGAAT TCAACACCTT TGTCGGACGC ATCGCCTTAG
    CCAGCTTTGC
    351 CGCCTACGCG ATCGGACAAA TCCTTGATAT TTTTGTATTC
    AACAAATTAC
    401 GCCGTCTGAA AGCGTGGTGG ATTGCACCGA CCGCATCAAC
    CGTCATCGGC
    451 AACGCCTTGG ATACGCTGGT ATTTTTCGCC GTTGCCTTCT
    ACGCAAGCAG
    501 CGATGGATTT ATGGCGGCAA ACTGGCAGGG CATCGCTTTT
    GTCGATTACC
    551 TGTTCAAACT TACCGTCTGC ACCCTCTTCT TCCTGCCCGC
    CTACGGCGTG
    601 ATACTGAATC TGCTGACGAA AAAACTGACA ACCCTGCAAA
    CCAAACAGGC
    651 GCAAGACCGC CCCGCGCCCT CGCTGCAAAA TCCGTAA
  • This corresponds to the amino acid sequence <SEQ ID 262; ORF66-1>:
  • 1 MYAFTAAQQQ KALFRLVLFH ILIIAASNYL VQFPFQIFGI
    HTTWGAFSFP
    51 FIFLATDLTV RIFGSHLARR IIFWVMFPAL LLSYVFSVLF
    HNGSWTGLGA
    101 LSEFNTFVGR IALASFAAYA IGQILDIFVF NKLRRLKAWW
    IAPTASTVIG
    151 NALDTLVFFA VAFYASSDGF MAANWQGIAF VDYLFKLTVC
    TLFFLPAYGV
    201 ILNLLTKKLT TLQTKQAQDR PAPSLQNP*
  • Computer analysis of this amino acid sequence gave the following results:
  • Homology with the Hypothetical Protein o221 of E. coli (Accession Number P37619)
  • ORF66 and o221 protein show 67% aa identity in 155aa overlap:
  • orf66 1 MYAFTAAQQQKALFRLVLFHILIIAASNYLVQFPFQIFGIHTTWGAFSFPFIFLATDLTV 60
    M  F+  Q+ KALF L LFH+L+I +SNYLVQ P  I G HTTWGAFSFPFIFLATDLTV
    o221 1 MNVFSQTQRYKALFWLSLFHLLVITSSNYLVQLPVSILGFHTTWGAFSFPFIFLATDLTV 60
    orf66 61 RIFGSHLARRIIFWVMFPALLLSYVFSVLFHNGSWTGLGALSEFNTFVGRIALASFAAYA 120
    RIFG+ LARRIIF VM PALL+SYV S LF+ GSW G GAL+ FN FV RIA ASF AYA
    o221 61 RIFGAPLARRIIFAVMIPALLISYVISSLFYMGSWQGFGALAHFNLFVARIATASFMAYA 120
    orf66 121 IGQILDIFVFNKLRRLKAWWIAPNASTVIGHALDT 155
    +GQILD+ VFN+LR+ + WW+AP AST+ G+  DT
    o221 121 LGQILDVHVFNRLRQSRRWWLAPTASTLFGNVSDT 155

    Homology with a Predicted ORF from N. meningitidis (Strain A)
  • ORF66 shows 96.1% identity over a 155aa overlap with an ORF (ORF66a) from strain A of N. meningitidis:
  • Figure US20130064846A1-20130314-C00116
  • The complete length ORF66a nucleotide sequence <SEQ ID 263> is:
  • 1 ATGTACGCAT TTACCGCCGC ACAGCAACAG AAGGCACTCT
    TCTGGCTGGT
    51 GCTTTTTCAT ATCCTCATCA TCGCCGCCAG CAACTATCTG
    GTGCAGTTCC
    101 CCTTCCAAAT TTCCGGCATC CACACCACTT GGGGCGCGTT
    TTCCTTTCCC
    151 TTCATCTTCC TCGCCACCGA CCTGACCGTC CGCATTTTCG
    GTTCGCACTT
    201 GGCACGGCGG ATTATCTTTT GGGTCATGTT CCCCGCCCTT
    TTGCTTTCCT
    251 ACGTCTTTTC CGTTTTGTTC CACAACGGCA GTTGGACGGG
    CTTGGGCGCG
    301 CTGTCCGAAT TCAACACCTT TGTCGGACGC ATCGCGCTGG
    CAAGTTTTGC
    351 CGCCTACGCG CTCGGACAAA TCCTTGATAT TTTTGTGTTC
    AACAAATTAC
    401 GCCGTCTGAA AGCGTGGTGG GTTGCCCCGA CTGCATCAAC
    CGTCATCGGC
    451 AACGCCTTAG ATACGTTGGT ATTTTTCGCC GTTGCCTTCT
    ACGCAAGCAG
    501 CGATGGATTT ATGGCGGCAA ACTGGCAGGG CATCGCTTTT
    GTCGATTACC
    551 TGTTCAAACT CACCGTCTGC GGTCTGTTTT TCCTGCCCGC
    CTACGGCGTG
    601 ATTCTGAATC TGCTGACGAA AAAACTGACG ACCCTGCAAA
    CCAAACAGGC
    651 GCAAGACCGC CCCGCGCCCT CGCTGCAAAA TCCGTAA
  • This encodes a protein having amino acid sequence <SEQ ID 264>:
  • 1 MYAFTAAQQQ KALFWLVLFH ILIIAASNYL VQFPFQISGI
    HTTWGAFSFP
    51 FIFLATDLTV RIFGSHLARR IIFWVMFPAL LLSYVFSVLF
    HNGSWTGLGA
    101 LSEFNTFVGR IALASFAAYA LGQILDIFVF NKLRRLKAWW
    VAPTASTVIG
    151 NALDTLVFFA VAFYASSDGF MAANWQGIAF VDYLFKLTVC
    GLFFLPAYGV
    201 ILNLLTKKLT TLQTKQAQDR PAPSLQNP*
  • ORF66a and ORF66-1 show 97.8% identity in 228 aa overlap:
  • Figure US20130064846A1-20130314-C00117
  • Homology with a Predicted ORF from N. gonorrhoeae
  • ORF66 shows 94.2% identity over a 155aa overlap with a predicted ORF (ORF66.ng) from N. gonorrhoeae:
  • Figure US20130064846A1-20130314-C00118
  • The complete length ORF66ng nucleotide sequence <SEQ ID 265> is:
  • 1 ATGTACGCAT TGACCGCCGC ACAGCAACAG AAGGCACTCT
    TCCGGCTGGT
    51 GCTTTTCCAT ATCCTCATCA TCGCCGCCAG CAACTATCTG
    GTGCAGTTCC
    101 CCTTCCGGAT TTTCGGCATC CACACCACTT GGGGCGCGTT
    TTCCTTTCCC
    151 TTCATCTTCC TCGCCACCGA CCTGACCGTC CGCATTTTCG
    GTTCGCACTT
    201 GGCGCGGCGG ATTATCTTTT GGGTGATGTT CCCCGCCCTT
    ttgCTTTcat
    251 aCGTCTTTTC CGTTTTGTTC CACAACGGCA GTTGGACGGG
    CTTGGGCGCG
    301 ctgTCCCAAT TCAACACCTT TGTCGGACGC ATCGCGCTGG
    CAAGTTTTGC
    351 CGCCTACGCG CTCGGACAAA TCCTTGATAT TTTCGTATTC
    GACAAATTAC
    401 GCCGTCTGAA AGCGTGGTGG ATTGCCCCGG CCGCATCAAC
    CGTCATCGGC
    451 AATGCACTGG ACACGTTAGT ATTTTTTGCC GTTGCCTTTT
    ACGCAAGCAG
    501 CGATGAATTT ATGGCGGCAA ACTGGCAGGG CATCGCTTTT
    GTCGATTACC
    551 TGTTCAAACT TACCGTCTGC ACCCTCTTCT TCCTGCCCGC
    CTACGGCGTG
    601 ATACTGAATC TGCTGACGAA AAAACTGACG GCCCTGCAAA
    CCAAACAGGC
    651 GCAAGACCGC CCCGTGCCCT CGCTGCAAAA TCCGTAA
  • This encodes a protein having amino acid sequence <SEQ ID 266>:
  • 1 MYALTAAQQQ KALFRLVLFH ILIIAASNYL VQFPFRIFGI
    HTTWGAFSFP
    51 FIFLATDLTV RIFGSHLARR IIFWVMFPAL SLSYVFSVLF
    HNGSWTGLGA
    101 PSQFNTFVGR IALASFAAYA LGQILDIFVF DKLRRLKAWW
    IAPAASTVIG
    151 NALDTLVFFA VAFYASSDEF MAANWQGIAF VDYLFKLTVC
    TLFFLPAYGV
    201 ILNLLTKKLT ALQTKQAQDR PVPSLQNP*
  • An alternative annotated sequence is:
  • 1 MYALTAAQQQ KALFRLVLFH ILIIAASNYL VQFPFRIFGI
    HTTWGAFSFP
    51 FIFLATDLTV RIFGSHLARR  IIFWVMFPAL LLSYVFS VLF
    HNGSWTGLGA
    101 LSQFNTFVGR IALASFAAYA LGQILDIFVF DKLRRLKAWW
    IAPAASTVIG
    151 NALDTLVFFA VAFYASSDEF MAANWQGIAF VDYLFKLTVC
    TLFFLPAYGV
    201 ILNLLTKKLT ALQTKQAQDR PVPSLQNP*
  • ORF66ng and ORF66-1 show 96.1% identity in 228 aa overlap:
  • Figure US20130064846A1-20130314-C00119
  • Furthermore, ORF66ng shows significant homology with an E. coli ORF:
  • sp|P37619|YHHQ_ECOLI HYPOTHETICAL 25.3 KD PROTEIN IN FTSY-NIKA INTERGENIC
    REGION (O221)
    >gi|1073495|pir||S47690 hypothetical protein o221 - Escherichia coli
    >gi|466607 (U00039) No definition line found [Escherichia coli]
    >gi|1789882 (AE000423) hypothetical 25.3 kD protein in ftsY-nikA
    intergenic region [Escherichia coli]
    Length = 221
    Score = 273 bits (692), Expect = 5e−73
    Identities = 132/203 (65%), Positives = 155/203 (76%)
    Query: 1 MYALTAAQQQKALFRLVLFHILIIAASNYLVQFPFRIFGIHTTWGAFSFPFIFLATDLTV 60
    M   +  Q+ KALF L LFH+L+I +SNYLVQ P  I G HTTWGAFSFPFIFLATDLTV
    Sbjct: 1 MNVFSQTQRYKALFWLSLFHLLVITSSNYLVQLPVSILGFHTTWGAFSFPFIFLATDLTV 60
    Query: 61 RIFGSHLARRIIFWVMFPALLLSYVFSVLFHNGSWTGLGALSQFNTFVGRIALASFAAYA 120
    RIFG+ LARRIIF VM PALL+SYV S LF+ GSW G GAL+ FN FV RIA ASF AYA
    Sbjct: 61 RIFGAPLARRIIFAVMIPALLISYVISSLFYMGSWQGFGALAHFNLFVARIATASFMAYA 120
    Query: 121 LGQILDIFVFDKLRRLKAWWIAPAASTVIGNALDTLVFFAVAFYASSDEFMAANWQGIAF 180
    LGQILD+ VF++LR+ + WW+AP AST+ GN  DTL FF +AF+ S D FMA +W  IA
    Sbjct: 121 LGQILDVHVFNRLRQSRRWWLAPTASTLFGNVSDTLAFFFIAFWRSPDAFMAEHWMEIAL 180
    Query: 181 VDYLFKLTVCTLFFLPAYGVILN 203
    VDY FK+ +  +FFLP YGV+LN
    Sbjct: 181 VDYCFKVLISIVFFLPMYGVLLN 203
  • Based on this analysis, including the homology with the E. coli protein and the presence of several putative transmembrane domains in the gonococcal protein, it is predicted that these proteins from N. meningitidis and N. gonorrhoeae, and their epitopes, could be useful antigens for vaccines or diagnostics, or for raising antibodies.
  • Example 32
  • The following partial DNA sequence was identified in N. meningitidis <SEQ ID 267>:
  • 1 ATGGTCATAA AATATACAAA TTTGAATTTT GCGAAATTGT
    CGATAATTGC
    51 AATTTTGATG ATGTATTCGT TTGAAGCGAA TGCAAAyGCA
    GTmwrAATAT
    101 CTGAAACTGT TTCAGTTGAT ACCGGACAAG GTGCGAAAAT
    TCATAAGTTT
    151 GTACCTAAAA ATAGTAAAAC TTATTCATCT GATTTAATAA
    AAACGGTAGA
    201 TTTAACACAC AyyCCTACGG GCGCAAAAGC CCGAATCAAC
    GCCAAAATAA
    251 CCGCCAGCGT ATCCCGCGCC GGCGTATTGG CGGGGGTCGG
    CAAACTTGCC
    301 CGCTTAGgCG CGAAATTCAG CACAAGGGCG GTtCCCTATG
    TCGGAACAGC
    351 CcTTTTAGCC CACGACGTAT ACGAAAcTTT CAAAGAAGAC
    ATACAGGCAC
    401 GAGGCTACCA ATACGACCCC GAAACCGACA AATTTGTAAA
    AGGCTACGAA
    451 TATAGTAATT GCCTTTGGTA CGAAGACAAA AGACGTATTA
    ATAGAACCTA
    501 TGGCTGCTAC GGCGTTGAT..
  • This corresponds to the amino acid sequence <SEQ ID 268; ORF72>:
  • 1 MVIKYTNLNF AKLSIIAILM MYSFEANANA VXISETVSVD
    TGQGAKIHKF
    51 VPKNSKTYSS DLIKTVDLTH XPTGAKARIN AKITASVSRA
    GVLAGVGKLA
    101 RLGAKFSTRA VPYVGTALLA HDVYETFKED IQARGYQYDP
    ETDKFVKGYE
    151 YSNCLWYEDK RRINRTYGCY GVD..
  • Further work revealed the complete nucleotide sequence <SEQ ID 269>:
  • 1 ATGGTCATAA AATATACAAA TTTGAATTTT GCGAAATTGT
    CGATAATTGC
    51 AATTTTGATG ATGTATTCGT TTGAAGCGAA TGCAAATGCA
    GTAAAAATAT
    101 CTGAAACTGT TTCAGTTGAT ACCGGACAAG GTGCGAAAAT
    TCATAAGTTT
    151 GTACCTAAAA ATAGTAAAAC TTATTCATCT GATTTAATAA
    AAACGGTAGA
    201 TTTAACACAC ATCCCTACGG GCGCAAAAGC CCGAATCAAC
    GCCAAAATAA
    251 CCGCCAGCGT ATCCCGCGCC GGCGTATTGG CGGGGGTCGG
    CAAACTTGCC
    301 CGCTTAGGCG CGAAATTCAG CACAAGGGCG GTTCCCTATG
    TCGGAACAGC
    351 CCTTTTAGCC CACGACGTAT ACGAAACTTT CAAAGAAGAC
    ATACAGGCAC
    401 GAGGCTACCA ATACGACCCC GAAACCGACA AATTTGCAAA
    GGTCTCAGGC
    451 TAA
  • This corresponds to the amino acid sequence <SEQ ID 270; ORF72-1>:
  • 1 MVIKYTNLNF AKLSIIAILM MYSFEANANA VKISETVSVD
    TGQGAKIHKF
    51 VPKNSKTYSS DLIKTVDLTH IPTGAKARIN AKITASVSRA
    GVLAGVGKLA
    101 RLGAKFSTRA VPYVGTALLA HDVYETFKED IQARGYQYDP
    ETDKFAKVSG
    151 *
  • Computer analysis of this amino acid sequence gave the following results:
  • Homology with a Predicted ORF from N. meningitidis (Strain A)
  • ORF72 shows 98.0% identity over a 147aa overlap with an ORF (ORF72a) from strain A of N. meningitidis:
  • Figure US20130064846A1-20130314-C00120
  • The complete length ORF72a nucleotide sequence <SEQ ID 271> is:
  • 1 ATGGTCATAA AATATACAAA TTTGAATTTT GCGAAATTGT
    CGATAATTGC
    51 AATTTTGATG ATGTATTCGT TTGAAGCGAA TGCAAATGCA
    GTAAAAATAT
    101 CTGAAACTGT TTCAGTTGAT ACCGGACAAG GTGCGAAAAT
    TCATAAGTTT
    151 GTACCTAAAA ATAGTAAAAC TTATTCATCT GATTTAATAA
    AAACGGTAGA
    201 TTTAACACAC ATCCCTACGG GCGCAAAAGC CCGAATCAAC
    GCCAAAATAA
    251 CCGCCAGCGT ATCCCGCGCC GGCGTATTGG CGGGGGTCGG
    CAAACTTGCC
    301 CGCTTAGGCG CGAAATTCAG CACAAGGGCG GTTCCCTATG
    TCGGAACAGC
    351 CCTTTTAGCC CACGACGTAT ACGAAACTTT CAAAGAAGAC
    ATACAGGCAC
    401 GAGGCTACCA ATACGACCCC GAAACCGACA AATTTGCAAA
    GGTCTCAGGC
    451 TAA
  • This encodes a protein having amino acid sequence <SEQ ID 272>:
  • 1 MVIKYTNLNF AKLSIIAILM MYSFEANANA VKISETVSVD
    TGQGAKIHKF
    51 VPKNSKTYSS DLIKTVDLTH IPTGAKARIN AKITASVSRA
    GVLAGVGKLA
    101 RLGAKFSTRA VPYVGTALLA HDVYETFKED IQARGYQYDP
    ETDKFAKVSG
    151 *
  • ORF72a and ORF72-1 show 100.0% identity in 150 aa overlap:
  • Figure US20130064846A1-20130314-C00121
  • Homology with a Predicted ORF from N. gonorrhoeae
  • ORF72 shows 89% identity over a 173aa overlap with a predicted ORF (ORF72.ng) from N. gonorrhoeae:
  • Figure US20130064846A1-20130314-C00122
  • An ORF72ng nucleotide sequence <SEQ ID 273> was predicted to encode a protein having amino acid sequence <SEQ ID 274>:
  • 1 MVTKHTNLNF AKLSIIAILM MYSFEANANA VKISETLSVD
    TGQGAKVHKF
    51 VPKSSNIYSS DLTKAVDLTH IPTGAKARIN AKITASVSRA
    GVLSGVGKLV
    101 RQGAKFGTRA VPYVGTALLA HDVYETFKED IQARGCRYDP
    ETDKFVKGYE
    151 YANCLWYEDE RRINRTYGCY GVDSSIMRLM PDRSRFPEVK
    QLMESQMYRL
    201 ARPFWNWRKE ELNKLSSLDW NNFVLNRCTF DWNGGGCAVN
    KGDDFRAGAS
    251 FSLGRNPKYK EEMDAKKPEE ILSLKVDADP DKYIEATGYP
    GYSEKVEVAP
    301 GTKVNMGPVT DRNGNPVQVA ATFGRDAQGN TTADVQVIPR
    PDLTPASAEA
    351 PHAQPLPEVS PAENPANNPD PDENPGTRPN PEPDPDLNPD
    ANPDTDGQPG
    401 TSPDSPAVPD RPNGRHRKER KEGEDGGLSC DYFPEILACQ
    EMGKPSDRMF
    451 HDISIPQVTD DKTWSSHNFL PSNGVCPQPK TFHVFGRQYR
    ASYEPLCVFA
    501 EKIRFAVLLA FIIMSAFVVF GSLGGE*
  • After further analysis, the following gonococcal DNA sequence <SEQ ID 275> was identified:
  • 1 ATGGTCACAA AACATACAAA TTTGAATTTT GCGAAATTGT
    CGATAATTGC
    51 AATTTTGATG ATGTATTCGT TTGAAGCGAA TGCAAATGCA
    GTAAAAATAT
    101 CTGAAACTCT TTCGGTTGAT ACCGGACAAG GCGCGAAAGT
    TCATAAGTTC
    151 GTTCCTAAAT CAAGTAATAT TTATTCATCT GATTTAACAA
    AAGCGGTAGA
    201 TTTAACGCAT ATCCCCACGG GCGCAAAAGC CCGAATCAAC
    GCCAAAATAA
    251 CCGCCAGCGT ATCCCGCGCC GGCGTATTGT CGGGGGTCGG
    CAAACTTGTC
    301 CGCCAAGGCG CGAAATTCGG CACAAGGGCG GTTCCCTATG
    TCGGAACAGC
    351 CCTTTTAGCC CACGACGTAT ACGAAACTTT CAAAGAAGAC
    ATACAGGCAC
    401 GAGGCTGCCG ATACGATCCC GAAACCGACA AATTT
  • This corresponds to the amino acid sequence <SEQ ID 276; ORF72ng-1>:
  • 1 MVTKHTNLNF AKLSIIAILM MYSFEANANA VKISETLSVD
    TGQGAKVHKF
    51 VPKSSNIYSS DLTKAVDLTH IPTGAKARIN AKITASVSRA
    GVLSGVGKLV
    101 RQGAKFGTRA VPYVGTALLA HDVYETFKED IQARGCRYDP
    ETDKF
  • ORF72ng-1 and ORF721-1 show 89.7% identity in 145 aa overlap:
  • Figure US20130064846A1-20130314-C00123
  • Based on this analysis, including the presence of a putative leader sequence and transmembrane domains in the gonococcal protein, it is predicted that the proteins from N. meningitidis and N. gonorrhoeae, and their epitopes, could be useful antigens for vaccines or diagnostics, or for raising antibodies.
  • Example 33
  • The following partial DNA sequence was identified in N. meningitidis <SEQ ID 277>:
  • 1 ATGAGATTTT TCGGTATCGG TTTTTTGGTG CTGCTGTTTT
    TGGAGATTAT
    51 GTCGATTGTG TGGGTTGCCG ATTGGCTGGG CGGCGGCTGG
    ACGTTGTTTT
    101 TGATGGCGGC AGGTTTTGCC GCCGGCGTGC TGATGCTCAG
    GCAAACCGGG
    151 GCTGACCGGT CTTTTATTGG CGGGCGCGGC AATGAGAAGC
    GGCGGGAAGG
    201 TATCCGTTTA TCAGATGTTG TGGCCTATC..
  • This corresponds to the amino acid sequence <SEQ ID 278; ORF73>:
  • 1 MRFFGIGFLV LLFLEIMSIV WVADWLGGGW TLFLMAAGFA
    AGVLMLRQTG
    51 LTGLLLAGAA MRSGGKVSVY QMLWPI..
  • Further work revealed the complete nucleotide sequence <SEQ ID 279>:
  • 1 ATGAGATTTT TCGGTATCGG TTTTTTGGTG CTGCTGTTTT
    TGGAGATTAT
    51 GTCGATTGTG TGGGTTGCCG ATTGGCTGGG CGGCGGCTGG
    ACGTTGTTTT
    101 TGATGGCGGC AGGTTTTGCC GCCGGCGTGC TGATGCTCAG
    GCATACGGGG
    151 CTGTCCGGTC TTTTATTGGC GGGCGCGGCA ATGAGAAGCG
    GCGGGAGGGT
    201 ATCCGTTTAT CAGATGTTGT GGCCTATCCG TTATACGGTG
    GCGGCTGTGT
    251 GTCTGATGAG TCCGGGATTC GTATCCTCGG TGTTGGCGGT
    ATTGCTGCTG
    301 CTGCCGTTTA AGGGAGGGGC AGTGTTGCAG GCAGGAGGTG
    CGGAAAATTT
    351 TTTCAACATG AACCAATCGG GCAGAAAAGA GGGCTTTTCC
    CGCGATGACG
    401 ATATTATCGA GGGAGAATAT ACGGTTGAAG AGCCTTACGG
    CGGCAATCGT
    451 TCCCGAAACG CCATCGAACA CAAAAAAGAC GAATAA
  • This corresponds to the amino acid sequence <SEQ ID 280; ORF73-1>:
  • 1 MRFFGIGFLV LLFLEIMSIV WVADWLGGGW TLFLMAAGFA
    AGVLMLRHTG
    51 LSGLLLAGAA MRSGGRVSVY QMLWPIRYTV AAVCLMSPGF
    VSSVLAVLLL
    101 LPFKGGAVLQ AGGAENFFNM NQSGRKEGFS RDDDIIEGEY
    TVEEPYGGNR
    151 SRNAIEHKKD E*
  • Computer analysis of this amino acid sequence gave the following results:
  • Homology with a Predicted ORF from N. meningitidis (Strain A)
  • ORF73 shows 90.8% identity over a 76aa overlap with an ORF (ORF73a) from strain A of N. meningitidis:
  • Figure US20130064846A1-20130314-C00124
  • The complete length ORF73a nucleotide sequence <SEQ ID 281> is:
  • 1 ATGAGATTTT TCGGTATCGG TTTTTTGGTG CTGCTGTTTT
    TGGAGATTAT
    51 GTCGATTGTG TGGGTTGCCG ATTGGTTGGG CGGCGGTTGG
    ACGCTGTTTC
    101 TAATGGCGGC AACCTTTGCC GCCGGCGTGG TGATGCTCAG
    GCATACGGGG
    151 CTGTCCGGTC TTTTATTGGC GGGCGCGGCA ATGAGAAGCG
    GCGGGAGGGT
    201 ATCCGTTTAT CANATGTTGT GGCNTATCCG TTATACGGTG
    GCGGCGGTGT
    251 GTCNGATGAG TCCGGGATTC GTATCCTCGG TGTNGGCGGT
    ATTGCTGNTG
    301 CTNCCGTTTA AGGGAGGTGC AGTGTTGCAG GCAGGAGGTG
    CGGAAAATTT
    351 TTTCAACATG AACCANTCGG GCAGAAAAGA NGGCNTTTCC
    CGCGATGACG
    401 ATATTATCGA GGGGGAATAT ACGGTTGAAG ANCCTTACGG
    CGGCANTCGT
    451 TTCCGAAACG CCNTNGAACA CAAAAAAGAC GAATAA
  • This encodes a protein having amino acid sequence <SEQ ID 282>:
  • 1 MRFFGIGFLV LLFLEIMSIV WVADWLGGGW TLFLMAATFA
    AGVVMLRHTG
    51 LSGLLLAGAA MRSGGRVSVY XMLWXIRYTV AAVCXMSPGF
    VSSVXAVLLX
    101 LPFKGGAVLQ AGGAENFFNM NXSGRKXGXS RDDDIIEGEY
    TVEXPYGGXR
    151 FRNAXEHKKD E*
  • ORF73a and ORF73-1 show 91.3% identity in 161 aa overlap
  • Figure US20130064846A1-20130314-C00125
  • Homology with a Predicted ORF from N. gonorrhoeae
  • ORF73 shows 92.1% identity over a 76aa overlap with a predicted ORF (ORF73.ng) from N. gonorrhoeae:
  • Figure US20130064846A1-20130314-C00126
  • The complete length ORF73ng nucleotide sequence <SEQ ID 283> is:
  • 1 ATGAGATTTT TCGGTATCGG TTTTTTGGTG CTGCTGTTTT
    TGGAAATTAT
    51 GTCGATTGTG TGGGTTGCCG ATTGGCTGGG CGGCGGTTGG
    AcgcTGTTTC
    101 TAATGGCGGC AACCTTTGCC GCCGGTGTGC TGATGCTCAG
    GCATAcggGG
    151 CTGTCCGGTC TTTTATTGGC TGGCGCGGCG GTAAAAagta
    gtgGGAAGGT
    201 ATCTGTTTAT CagatgtTGT GGCCTATCCG TTATAcggtg
    gcggcggtgT
    251 GTCTGatgag tCcggGATTC GTATCCTccg tgttggCGGT
    ATTGCTGCTG
    301 CTGCcgttta aggGaggGgc agtgttgcag gcaggaggtg
    cggaaaATTT
    351 TTTCAACATg aaCcaatcgg gcagaaAaga gggatttttc
    cacgatgacg
    401 atattatcga gggagaatat acggttgaaa aacctgacgg
    cggcaatcgt
    451 tcccgaAAcg ccatcgaaca cgaaaAagac gaataA
  • This encodes a protein having amino acid sequence <SEQ ID 284>:
  • 1 MRFFGIGFLV LLFLEIMSIV WVADWLGGGW TLFLMAATFA
    AGVLMLRHTG
    51 LSGLLLAGAA VKSSGKVSVY QMLWPIRYTV AAVCLMSPGF
    VSSVLAVLLL
    101 LPFKGGAVLQ AGGAENFFNM NQSGRKEGFF HDDDIIEGEY
    TVEKPDGGNR
    151 SRNAIEHEKD E*
  • ORF73ng and ORG73-1 show 93.8% identity in 161 aa overlap
  • Figure US20130064846A1-20130314-C00127
  • Based on this analysis, including the presence of a putative leader sequence and putative transmembrane domain in the gonococcal protein, it is predicted that the proteins from N. meningitidis and N. gonorrhoeae, and their epitopes, could be useful antigens for vaccines or diagnostics, or for raising antibodies.
  • Example 34
  • The following partial DNA sequence was identified in N. meningitidis <SEQ ID 285>:
  • 1 ATGTTTGTTT TTCAGACGGC ATTCTT.ATG TTTCAGAAAC
    ATTTGCAGAA
    51 AGCCTCCGAC AGCGTCGTCG GAGGGACATT ATACGTGGTT
    GCCACGCCCA
    101 TCGGCAATTT GGCGGACATT ACCCTGCGCG CTTTGGCGGT
    ATTGCAAAAG
    151 GCG....... .....GCCGA AGACACGCGC GTTACCGCAC
    AGCTTTTGAG
    201 CGCGTACGGC ATTCAGGGCA AACTCGTCAG TGTGCGCGAA
    CACAACGAAC
    251 GGCAGATGGC GGACAAGATT GTCGGCTATC TTTCAGACGG
    CATGGTTGTG
    301 GCACAGGTTT CCGATGCGGG TACGCCGGCC GTGTGCGACC
    CGGGCGCGAA
    351 ACTCGCCCGC CGCGTGCGTG AGGCCGGGTT TAAAGTCGTT
    CCCGTCGTGG
    401 GCGCAAC.GC GGTGATGGCG GCTTTGAGCG TGGCCGGTGT
    GGAAGGATCC
    451 GATTTTTATT TCAACGGTTT TGTACCGCCG AAATCGGGAG
    AACGCAGGAA
    501 ACTGTTTGCC AAATGGGTGC GGGCGGCGTT TCCTATCGTC
    ATGTTTGAAA
    551 CGCCGCACCG CATCGGTGCA GCGCTTGCCG ATATGGCGGA
    ACTGTTCCCC
    601 GAACGCCGAT TAATGCTGGC GCGCGAAATT ACGAAAACGT
    TTGAAACGTT
    651 CTTAAGCGGC ACGGTTGGGG AAATTCAGAC GGCATTGTCT
    GCCGACGGCG
    701 ACCAATCGCG CGGCGAGATG GTGTTGGTGC TTTATCCGGC
    GCAGGATGAA
    751 AAACACGAAG GCTTGTCCGA GTCCGCGCAA AACATCATGA
    AAATCCTCAC
    801 AGCCGAGCTG CCGACCAAAC AGGCGGCGGA GCTTGCTGCC
    AAAATCACGG
    851 GCGAGGGAAA GAAAGCTTTG TACGAT..
  • This corresponds to the amino acid sequence <SEQ ID 286; ORF75>:
  • 1 MFVFQTAFXM FQKHLQKASD SVVGGTLYVV ATPIGNLADI
    TLRALAVLQK
    51 A....AEDTR VTAQLLSAYG IQGKLVSVRE HNERQMADKI
    VGYLSDGMVV
    101 AQVSDAGTPA VCDPGAKLAR RVREAGFKVV PVVGAXAVMA
    ALSVAGVEGS
    151 DFYFNGFVPP KSGERRKLFA KWVRAAFPIV MFETPHRIGA
    ALADMAELFP
    201 ERRLMLAREI TKTFETFLSG TVGEIQTALS ADGDQSRGEM
    VLVLYPAQDE
    251 KHEGLSESAQ NIMKILTAEL PTKQAAELAA KITGEGKKAL
    YD..
  • Further work revealed the complete nucleotide sequence <SEQ ID 287>:
  • 1 ATGTTTCAGA AACATTTGCA GAAAGCCTCC GACAGCGTCG
    TCGGAGGGAC
    51 ATTATACGTG GTTGCCACGC CCATCGGCAA TTTGGCGGAC
    ATTACCCTGC
    101 GCGCTTTGGC GGTATTGCAA AAGGCGGACA TCATCTGTGC
    CGAAGACACG
    151 CGCGTTACCG CACAGCTTTT GAGCGCGTAC GGCATTCAGG
    GCAAACTCGT
    201 CAGTGTGCGC GAACACAACG AACGGCAGAT GGCGGACAAG
    ATTGTCGGCT
    251 ATCTTTCAGA CGGCATGGTT GTGGCACAGG TTTCCGATGC
    GGGTACGCCG
    301 GCCGTGTGCG ACCCGGGCGC GAAACTCGCC CGCCGCGTGC
    GTGAGGCCGG
    351 GTTTAAAGTC GTTCCCGTCG TGGGCGCAAG CGCGGTGATG
    GCGGCTTTGA
    401 GCGTGGCCGG TGTGGAAGGA TCCGATTTTT ATTTCAACGG
    TTTTGTACCG
    451 CCGAAATCGG GAGAACGCAG GAAACTGTTT GCCAAATGGG
    TGCGGGCGGC
    501 GTTTCCTATC GTCATGTTTG AAACGCCGCA CCGCATCGGT
    GCGACGCTTG
    551 CCGATATGGC GGAACTGTTC CCCGAACGCC GATTAATGCT
    GGCGCGCGAA
    601 ATTACGAAAA CGTTTGAAAC GTTCTTAAGC GGCACGGTTG
    GGGAAATTCA
    651 GACGGCATTG TCTGCCGACG GCAACCAATC GCGCGGCGAG
    ATGGTGTTGG
    701 TGCTTTATCC GGCGCAGGAT GAAAAACACG AAGGCTTGTC
    CGAGTCCGCG
    751 CAAAACATCA TGAAAATCCT CACAGCCGAG CTGCCGACCA
    AACAGGCGGC
    801 GGAGCTTGCT GCCAAAATCA CGGGCGAGGG AAAGAAAGCT
    TTGTACGATC
    851 TGGCTCTGTC TTGGAAAAAC AAATAG
  • This corresponds to the amino acid sequence <SEQ ID 288; ORF75-1>:
  • 1 MFQKHLQKAS DSVVGGTLYV VATPIGNLAD ITLRALAVLQ
    KADIICAEDT
    51 RVTAQLLSAY GIQGKLVSVR EHNERQMADK IVGYLSDGMV
    VAQVSDAGTP
    101 AVCDPGAKLA RRVREAGFKV VPVVGASAVM AALSVAGVEG
    SDFYFNGFVP
    151 PKSGERRKLF AKWVRAAFPI VMFETPHRIG ATLADMAELF
    PERRLMLARE
    201 ITKTFETFLS GTVGEIQTAL SADGNQSRGE MVLVLYPAQD
    EKHEGLSESA
    251 QNIMKILTAE LPTKQAAELA AKITGEGKKA LYDLALSWKN
    K*
  • Computer analysis of this amino acid sequence gave the following results:
  • Homology with a Predicted ORF from N. meningitidis (Strain A)
  • ORF75 shows 95.8% identity over a 283aa overlap with an ORF (ORF75a) from strain A of N. meningitidis:
  • Figure US20130064846A1-20130314-C00128
  • The complete length ORF75a nucleotide sequence <SEQ ID 289> is:
  • 1 ATGTTTCAGA AACATTTGCA GAAAGCCTCC GACAGCGTCG
    TCGGAGGGAC
    51 ATTATACGTG GTTGCCACGC CCATCGGCAA TTTGGCGGAC
    ATTACCCTGC
    101 GCGCTTTGGC GGTATTGCAA AAGGCGGACA TCATCTGTGC
    CGAAGACACG
    151 CGCGTTACCG CGCAGCTTTT GAGCGCGTAC GGCATTCAGG
    GCAAACTCGT
    201 CAGCGTGCGC GAACACAACG AACGGCAGAT GGCGGACAAG
    ATTGTCGGCT
    251 ATCTTTCAGA CGGCATGGTT GTGGCACAGG TTTCCGATGC
    GGGTACGCCG
    301 GCCGTGTGCG ACCCGGGCGC GAAACTCGCC CGCCGCGTGC
    GTGAGGTCGG
    351 GTTTAAAGTT GTCCCTGTTG TCGGCGCAAG CGCGGTGATG
    GCGGCTTTGA
    401 GTGTGGCTGG TGTGGCGGGA TCCGATTTTT ATTTCAACGG
    TTTTGTACCG
    451 CCGAAATCGG GCGAACGTAG GAAATTGTTT GCCAAATGGG
    TGCGGGTGGC
    501 GTTTCCCGTC GTGATGTTTG AAACGCCGCA CCGCATCGGG
    GCGACGCTTG
    551 CCGATATGGC GGAACTGTTC CCCGAACGCC GATTAATGCT
    GGCGCGCGAA
    601 ATCACGAAAA CGTTTGAAAC GTTCTTAAGC GGCACGGTTG
    GGGAAATTCA
    651 GACGGCATTG GCGGCGGACG GCAACCAATC GCGCGGCGAG
    ATGGTGTTGG
    701 TGCTTTATCC GGCGCAGGAT GAAAAACACG AAGGCTTGTC
    CGAGTCCGCG
    751 CAAAACATCA TGAAAATCCT CACAGCCGAG CTGCCGACCA
    AACAGGCGGC
    801 GGAGCTTGCC GCCAAAATCA CGGGCGAGGG AAAAAAAGCT
    TTGTACGATC
    851 TGGCACTGTC TTGGAAAAAC AAATGA
  • This encodes a protein having amino acid sequence <SEQ ID 290>:
  • 1 MFQKHLQKAS DSVVGGTLYV VATPIGNLAD ITLRALAVLQ
    KADIICAEDT
    51 RVTAQLLSAY GIQGKLVSVR EHNERQMADK IVGYLSDGMV
    VAQVSDAGTP
    101 AVCDPGAKLA RRVREVGFKV VPVVGASAVM AALSVAGVAG
    SDFYFNGFVP
    151 PKSGERRKLF AKWVRVAFPV VMFETPHRIG ATLADMAELF
    PERRLMLARE
    201 ITKTFETFLS GTVGEIQTAL AADGNQSRGE MVLVLYPAQD
    EKHEGLSESA
    251 QNIMKILTAE LPTKQAAELA AKITGEGKKA LYDLALSWKN
    K*
  • ORF75a and ORF75-1 show 98.3% identity in 291 aa overlap:
  • Figure US20130064846A1-20130314-C00129
  • Homology with a Predicted ORF from N. gonorrhoeae
  • ORF75 shows 93.2% identity over a 292aa overlap with a predicted ORF (ORF75.ng) from N. gonorrhoeae:
  • Figure US20130064846A1-20130314-C00130
  • An ORF75ng nucleotide sequence <SEQ ID 291> was predicted to encode a protein having amino acid sequence <SEQ ID 292>:
  • 1 MSVFQTAFFM FQKHLQKASD SVVGGTLYVV ATPIGNLADI
    TLRALAVLQK
    51 ADIICAEDTR VTAQLLSAYG IQGRLVSVRE HNERQMADKV
    IGFLSDGLVV
    101 AQVSDAGTPA VCDPGAKLAR RVREAGFKVV PVVGASAVMA
    ALSVAGVAES
    151 DFYFNGFVPP KSGERRKLFA KWVRAAFPVV MFETPHRIGA
    TLADMAELFP
    201 ERRLMLAREI TKTFETFLSG TVGEIQTALA ADGNQSRGEM
    VLVLYPAQDE
    251 KHEGLSESAQ NAMKILAAEL PTKQAAELAA KITGEGKKAL
    YDLALSWKNK
    301 *
  • After further analysis, the following gonococcal DNA sequence <SEQ ID 293> was identified:
  • 1 ATGTTTCAGA AACACTTGCA GAAAGCCTCC GACAGCGTCG
    TCGGAGGGAC
    51 ATTATACGTG GTTGCCACGC CCATCGGCAA TTTGGCAGAC
    ATTACCCTGC
    101 GCGCTTTGGC GGTATTGCAA AAGGCGGACA TCATTTGTGC
    CGAAGACACG
    151 CGCGTTACTG CGCAGCTTTT GAGCGCGTAC GGCATTCAGG
    GCAGGTTGGT
    201 CAGTGTGCGC GAACACAACG AGCGGCAGAT GGCGGACAAG
    GTAATCGGTT
    251 TCCTTTCAGA CGGCCTGGTT GTGGCGCAGG TTTCCGATGC
    GGGTACGCCG
    301 GCCGTGTGCG ACCCGGGCGC GAAACTCGCC CGCCGCGTGC
    GCGAAGCAGG
    351 GTTCAAAGTC GTTCCCGTCG TGGGCGCAAG CGCGGTAATG
    GCGGCGTTGA
    401 GTGTGGCCGG TGTGGCGGAA TCCGATTTTT ATTTCAACGG
    TTTTGTACCG
    451 CCGAAATCGG GCGAACGTAG GAAATTGTTT GCCAAATGGG
    TGCGGGCGGC
    501 ATTTCCTGTC GTCATGTTTG AAACGCCGCA CCGAATCGGG
    GCAACGCTTG
    551 CCGATATGGC GGAATTGTTC CCCGAACGCC GTCTGATGCT
    GGCGCGCGAA
    601 ATCACGAAAA CGTTTGAAAC GTTCTTAAGC GGCACGGTTG
    GGGAAATTCA
    651 GACGGCATTG GCGGCGGACG GCAACCAATC GCGCGGCGAG
    ATGGTGTTGG
    701 TGCTTTATCC GGCGCAGGAT GAAAAACACG AAGGCTTGTC
    CGAGTCTGCG
    751 CAAAATGCGA TGAAAATCCT TGCGGCCGAG CTGCCGACCA
    AGCAGGCGGC
    801 GGAGCTTGCC GCCAAGATTA CAGGTGAGGG CAAAAAGGCT
    TTGTACGATT
    851 TGGCACTGTC GTGGAAAAAC AAATGA
  • This corresponds to the amino acid sequence <SEQ ID 294; ORF75ng-1>:
  • 1 MFQKHLQKAS DSVVGGTLYV VATPIGNLAD ITLRALAVLQ
    KADIICAEDT
    51 RVTAQLLSAY GIQGRLVSVR EHNERQMADK VIGFLSDGLV
    VAQVSDAGTP
    101 AVCDPGAKLA RRVREAGFKV VPVVGASAVM AALSVAGVAE
    SDFYFNGFVP
    151 PKSGERRKLF AKWVRAAFPV VMFETPHRIG ATLADMAELF
    PERRLMLARE
    201 ITKTFETFLS GTVGEIQTAL AADGNQSRGE MVLVLYPAQD
    EKHEGLSESA
    251 QNAMKILAAE LPTKQAAELA AKITGEGKKA LYDLALSWKN
    K*
  • ORF75ng-1 and ORF75-1 show 96.2% identity in 291 aa overlap:
  • Figure US20130064846A1-20130314-C00131
  • Furthermore, ORG75ng-1 shows significant homology to a hypothetical E. coli protein:
  • sp|P45528|YRAL_ECOLI HYPOTHETICAL 31.3 KD PROTEIN IN AGAI-MTR INTERGENIC
    REGION (F286)
    >gi|606086 (U18997) ORF_f286 [Escherichia coli]
    >gi|1789535 (AE000395) hypothetical 31.3 kD protein in agai-mtr
    intergenic region [Escherichia coli] Length = 286
    Score = 218 bits (550), Expect = 3e−56
    Identities = 128/284 (45%), Positives = 171/284 (60%), Gaps = 4/284 (1%)
    Query: 4 KHLQKASDSVVGGTLYVVATPIGNLADITLRALAVLQKADIICAEDTRVTAQLLSAYGIQ 63
    K  Q A +S   G LY+V TPIGNLADIT RAL VLQ  D+I AEDTR T  LL  +GI
    Sbjct: 2 KQHQSADNSQ--GQLYIVPTPIGNLADITQRALEVLQAVDLIAAEDTRHTGLLLQHFGIN 59
    Query: 64 GRLVSVREHNERQMADKVIGFLSDGLVVAQVSDAGTPAVCDPGAKLARRVREAGFKVVPV 123
     RL ++ +HNE+Q A+ ++  L +G  +A VSDAGTP + DPG  L R  REAG +VVP+
    Sbjct: 60 ARLFALHDHNEQQKAETLLAKLQEGQNIALVSDAGTPLINDPGYHLVRTCREAGIRVVPL 119
    Query: 124 VGASAVMAALSVAGVAESDFYFNGFVPPKSGERRKLFAKWVRAAFPVVMFETPHRIGATL 183
     G  A + ALS AG+    F + GF+P KS  RR            ++ +E+ HR+  +L
    Sbjct: 120 PGPCAAITALSAAGLPSDRFCYEGFLPAKSKGRRDALKAIEAEPRTLIFYESTHRLLDSL 179
    Query: 184 ADMAELFPERR-LMLAREITKTFETFLSGTVGEIQTALAADGNQSRGEMVLVLYPAQDEK 242
     D+  +  E R ++LARE+TKT+ET     VGE+   +  D N+ +GEMVL++      +
    Sbjct: 180 EDIVAVLGESRYVVLARELTKTWETIHGAPVGELLAWVKEDENRRKGEMVLIV-EGHKAQ 238
    Query: 243 HEGLSESAQNAMKILAAELPTKQAAELAAKITGEGKKALYDLAL 286
     E L   A   + +L AELP K+AA LAA+I G  K ALY  AL
    Sbjct: 239 EEDLPADALRTLALLQAELPLKKAAALAAEIHGVKKNALYKYAL 282
  • Based on this analysis, including the presence of a putative transmembrane domain in the gonococcal protein, it is predicted that the proteins from N. meningitidis and N. gonorrhoeae, and their epitopes, could be useful antigens for vaccines or diagnostics, or for raising antibodies.
  • Example 35
  • The following partial DNA sequence was identified in N. meningitidis <SEQ ID 295>:
  • Figure US20130064846A1-20130314-C00132
  • This corresponds to the amino acid sequence <SEQ ID 296; ORF76>:
  • Figure US20130064846A1-20130314-C00133
  • Further work revealed the complete nucleotide sequence <SEQ ID 297>:
  • 1 ATGAAACAGA AAAAAACCGC TGCCGCAGTT ATTGCTGCAA
    TGTTGGCAGG
    51 TTTTGCGGCA GCCAAAGCAC CCGAAATCGA CCCGGCTTTG
    GTGGATACGC
    101 TGGTGGCGCA GATCATGCAG CAGGCAGACC GGCATGCGGA
    GCAGTCCCAA
    151 AAACCGGACG GGCAGGCAAT CCGAAACGAT GCCGTCCGCC
    GGCTACAAAC
    201 TTTGGAAGTT TTGAAAAACA GGGCATTGAA GGAAGGTTTG
    GATAAGGATA
    251 AGGATGTCCA AAACCGCTTT AAAATCGCCG AAGCGTCTTT
    TTATGCCGAG
    301 GAGTACGTCC GTTTTCTGGA ACGTTCGGAA ACGGTTTCCG
    AAGACGAGCT
    351 GCACAAGTTT TACGAACAGC AAATCCGCAT GATCAAATTG
    CAGCAGGTCA
    401 GCTTCGCAAC CGAAGAGGAG GCGCGTCAGG CGCAGCAGCT
    CCTGCTCAAA
    451 GGGCTGTCTT TTGAAGGGCT GATGAAGCGT TATCCGAACG
    ACGAGCAGGC
    501 TTTTGACGGT TTCATTATGG CGCAGCAGCT TCCCGAGCCG
    CTGGCTTCGC
    551 AGTTTGCCGC GATGAATCGG GGCGACGTTA CCCGCGATCC
    GGTCAAATTG
    601 GGCGAACGCT ATTATCTGTT CAAACTCAGC GAGGTCGGGA
    AAAACCCCGA
    651 CGCGCAGCCT TTCGAGTTGG TCAGAAACCA GTTGGAGCAG
    GGTTTGAGAC
    701 AGGAAAAAGC CCGCTTGAAA ATCGATGCCC TTTTGGAAGA
    AAACGGTGTC
    751 AAACCGTAA
  • This corresponds to the amino acid sequence <SEQ ID 298; ORF76-1>:
  • 1 MKQKKTAAAV IAAMLAGFAA AKAPEIDPAL VDTLVAQIMQ
    QADRHAEQSQ
    51 KPDGQAIRND AVRRLQTLEV LKNRALKEGL DKDKDVQNRF
    KIAEASFYAE
    101 EYVRFLERSE TVSEDELHKF YEQQIRMIKL QQVSFATEEE
    ARQAQQLLLK
    151 GLSFEGLMKR YPNDEQAFDG FIMAQQLPEP LASQFAAMNR
    GDVTRDPVKL
    201 GERYYLFKLS EVGKNPDAQP FELVRNQLEQ GLRQEKARLK
    IDALLEENGV
    251 KP*
  • Computer analysis of this amino acid sequence gave the following results:
  • Homology with a Predicted ORF from N. meningitidis (Strain A)
  • ORF76 shows 96.7% identity over a 30aa overlap and 96.8% identity over a 31aa overlap with an ORF (ORF76a) from strain A of N. meningitidis:
  • Figure US20130064846A1-20130314-C00134
  • The complete length ORF76a nucleotide sequence <SEQ ID 299> is:
  • 1 ATGAAACAGA AAAAAACCGC TGCCGCAGTT ATTGCTGCAA
    TGTTGGCAGG
    51 TTTTGCGGCA GCCAAAGCAC CCGAAATCGA CCCGGCTTTG
    GTGGATACGC
    101 TGGTGGCGCA GATCATGCAG CAGGCAGACC GGCATGCGGA
    GCAGTCCCAA
    151 AAACCGGACG GGCAGGCAAT CCGAAACGAT GCCGTCCGTC
    GGCTGCAAAC
    201 TTTGGAAGTT TTGAAAAACA GGGCATTGAA GGAAGGTTTG
    GATAAGGATA
    251 AGGATGTCCA AAACCGCTTT AAAATCGCCG AAGCGTCTTT
    TTATGCCGAG
    301 GAGTACGTCC GTTTTCTGGA ACGTTCGGAA ACGGTTTCCG
    AAAGCGCACT
    351 GCGTCAGTTT TATGAGCGGC AAATCCGCAT GATCAAATTG
    CAGCAGGTCA
    401 GCTTCGCAAC CGAAGAGGAG GCGCGTCAGG CGCAGCAGCT
    CCTGCTCAAA
    451 GGGCTGTCTT TTGAAGGGCT GATGAAGCGT TATCCGAACG
    ACGAGCAGGC
    501 TTTTGACGGT TTCATTATGG CGCAGCAGCT TCCCGAGCCG
    CTGGCTTCGC
    551 AGTTTGCAGC GATGAATCGG GGCGACGTTA CCCGCGATCC
    GGTCAAATTG
    601 GGCGAACGCT ATTATCTGTT CAAACTCAGC GAGGTCGGGA
    AAAACCCCGA
    651 CGCGCAGCCT TTCGAGTTGG TCAGAAACCA GTTGGAACAA
    GGTTTGAGAC
    701 AGGAAAAAGC CCGCTTGAAA ATCGATGCCA TTTTGGAAGA
    AAACGGTGTC
    751 AAACCGTAA
  • This encodes a protein having amino acid sequence <SEQ ID 300>:
  • 1 MKQKKTAAAV IAAMLAGFAA AKAPEIDPAL VDTLVAQIMQ
    QADRHAEQSQ
    51 KPDGQAIRND AVRRLQTLEV LKNRALKEGL DKDKDVQNRF
    KIAEASFYAE
    101 EYVRFLERSE TVSESALRQF YERQIRMIKL QQVSFATEEE
    ARQAQQLLLK
    151 GLSFEGLMKR YPNDEQAFDG FIMAQQLPEP LASQFAAMNR
    GDVTRDPVKL
    201 GERYYLFKLS EVGKNPDAQP FELVRNQLEQ GLRQEKARLK
    IDAILEENGV
    251 KP*
  • ORF76a and ORF76-1 show 97.6% identity in 252 aa overlap:
  • Figure US20130064846A1-20130314-C00135
  • Homology with a Predicted ORF from N. gonorrhoeae
  • The aligned aa sequences of ORF76 and a predicted ORF (ORF76.ng) from N. gonorrhoeae of the N- and C-termini show 96.7% and 100% identity in 30 and 31 overlap, respectively:
  • Figure US20130064846A1-20130314-C00136
  • The complete length ORF76ng nucleotide sequence <SEQ ID 301> is:
  • 1 ATGAAACAGA AAAAGACCGC TGCCGCAGTT ATTGCTGCAA
    TGTTGGCAGG
    51 TTTTGCGGCA GCCAAAGCAC CCGAAATCGA CCCGGCTTTG
    GTGGATACGC
    101 TGGTGGCGCA GATCATGCAG CAGGCAGACC GGCATGCGGA
    GCAGTCCCAA
    151 AGACCGGACG GGCAGGCAAT CCGAAACGAT GCCGTCCGCC
    GGCTGCAAAC
    201 TTTGGAAGTT TTGAAAAACA GGGCATTGAA GGAAGGTTTG
    GATAAGGATA
    251 AGGATGTCCA AAACCGCTTT AAAATCGCCG AAGCGTCTTT
    TTATGCCGAG
    301 GAGTACGTCC GTTTTCTGGA ACGTTCGGAA ACGGTTTCCG
    AAAGCGCACT
    351 GCGTCAGTTT TATGAGCGGC AAATCCGCAT GATCAAATTG
    CAGCAGGTCA
    401 GCTTCGCAAC CGAAGAGGAG GCGCGTCAGG CGCAGCAGCT
    CCTGCTCAAA
    451 GGGCTGTCTT TTGAAGGGCT GATGAAGCGT TATCCGAACG
    ACGAGCAGGC
    501 GTTCGACGGT TTCATTATGG CGCAGCAGCT TCCCGAGCCG
    CTGGCTTcgc
    551 agtttgCCGG TATGAACCGT GGCGACGTTA CCCGCAATCC
    GGTCAAATTG
    601 GGCGAACGCT ATTACCTGTT CAAACTCGGC GCGGTCGGGA
    AAAACCCCGA
    651 CGCGCAGCCT TTCGAGTTGG TCAGAAACCA GTTGGAACAA
    GGTTTGAGGC
    701 AGGAAAAAGC CCGCTTGAAA ATCGATGCCC TTTTGGAaga
    Aaacggtgtc
    751 AaacCGTAA
  • This encodes a protein having amino acid sequence <SEQ ID 302>:
  • 1 MKQKKTAAAV IAAMLAGFAA AKAPEIDPAL VDTLVAQIMQ
    QADRHAEQSQ
    51 RPDGQAIRND AVRRLQTLEV LKNRALKEGL DKDKDVQNRF
    KIAEASFYAE
    101 EYVRFLERSE TVSESALRQF YERQIRMIKL QQVSFATEEE
    ARQAQQLLLK
    151 GLSFEGLMKR YPNDEQAFDG FIMAQQLPEP LASQFAGMNR
    GDVTRNPVKL
    201 GERYYLFKLG AVGKNPDAQP FELVRNQLEQ GLRQEKARLK
    IDALLEENGV
    251 KP*
  • ORF76ng and ORF76-1 show 96.0% identity in 252 aa overlap
  • Figure US20130064846A1-20130314-C00137
  • Furthermore, ORF76ng shows significant homology to a B. subtilis export protein precursor:
  • sp|P24327|PRSA_BACSU PROTEIN EXPORT PROTEIN PRSA
    PRECURSOR >gi|98227|pir||S15269 33K lipoprotein - Bacillus subtilis
    >gi|39782 (X57271) 33 kDa lipoprotein [Bacillus subtilis]
    >gi|2226124|gnl|PID|e325181 (Y14077) 33 kDa lipoprotein
    [Bacillus subtilis]
    >gi|2633331|gnl|PID|e1182997 (Z99109) molecular chaperonin
    [Bacillus subtilis]
    Length = 292
    Score = 50.4 bits (118), Expect = 1e−05
    Identities = 48/199 (24%), Positives = 82/199 (41%), Gaps = 32/199 (16%)
    Query: 70 VLKNRALKEGLDK-----DKDVQNRFKIAEASF----------YAEEYVRFLERSETVSE 114
    VL     ++ LDK     DK++ N+ K  +             Y ++Y++   + E +++
    Sbjct: 53 VLTQLVQEKVLDKKYKVSDKEIDNKLKEYKTQLGDQYTALEKQYGKDYLKEQVKYELLTQ 112
    Query: 115 SA-----------LRQFYERQIRMIKLQQVSFATEEEARQAQQLLLKGLSFEGLMKRYPN 163
     A           +++++E     I+   +  A ++ A + ++ L KG  FE L K Y
    Sbjct: 113 KAAKDNIKVTDADIKEYWEGLKGKIRASHILVADKKTAEEVEKKLKKGEKFEDLAKEYST 172
    Query: 164 DEQAFDG-----FIMAQQLPEPLASQFAAMNRGDVTRDPVKLGERYYLFKLSEVGKNPDA 218
    D  A  G     F    Q+ E  +     +  G+V+ DPVK    Y++ K +E     D
    Sbjct: 173 DSSASKGGDLGWFAKEGQMDETFSKAAFKLKTGEVS-DPVKTQYGYHIIKKTEERGKYDD 231
    Query: 219 QPFELVRNQLEQGLRQEKA 237
       EL    LEQ L    A
    Sbjct: 232 MKKELKSEVLEQKLNDNAA 250
  • Based on this analysis, including the presence of a putative leader sequence and a RGD motif in the gonococcal protein, it was predicted that the proteins from N. meningitidis and N. gonorrhoeae, and their epitopes, could be useful antigens for vaccines or diagnostics, or for raising antibodies.
  • ORF76-1 (27.8 kDa) was cloned in the pET vector and expressed in E. coli, as described above. The products of protein expression and purification were analyzed by SDS-PAGE. FIG. 10A shows the results of affinity purification of the His-fusion protein, Purified His-fusion protein was used to immunise mice, whose sera were used for Western blot (FIG. 10B), ELISA (positive result), and FACS analysis (FIG. 10C). These experiments confirm that ORF76-1 is a surface-exposed protein, and that it is a useful immunogen.
  • Example 36
  • The following partial DNA sequence was identified in N. meningitidis <SEQ ID 303>:
  • Figure US20130064846A1-20130314-C00138
  • This corresponds to the amino acid sequence <SEQ ID 304; ORF81>:
  • Figure US20130064846A1-20130314-C00139
  • Further work revealed the complete nucleotide sequence <SEQ ID 305>:
  • 1 ATGAAAAAAT CTTTCCTTAC GCTTGTTCTG TATTCGTCTT
    TACTTACCGC
    51 CAGCGAAATT GCCTATCGCT TTGTATTTGG GATTGAAACC
    TTACCGGCGG
    101 CAAAAATTGC GGAAACGTTT GCGCTGACAT TTGTGATTGC
    TGCGCTGTAT
    151 CTGTTTGCGC GTTATAAGGT GACGCGTTTG TTGATTGCGG
    TGTTTTTTGC
    201 GTTCAGCATT ATTGCCAACA ATGTGCATTA CGCGGTTTAT
    CAAAGCTGGA
    251 TGACGGGCAT CAATTATTGG CTGATGCTGA AAGAGGTTAC
    CGAAGTCGGC
    301 AGCGCGGGTG CGTCGATGTT GGATAAGTTG TGGCTGCCTG
    TGTTGTGGGG
    351 CGTGTTGGAA GTCATGTTGT TTTGCAGCCT TGCCAAGTTC
    CGCCGTAAGA
    401 CGCATTTTTC TGCCGATATA CTGTTTGCCT TCCTAATGCT
    GATGATTTTC
    451 GTGCGTTCGT TCGACACGAA ACAAGAGCAC GGTATTTCGC
    CCAAACCGAC
    501 ATACAGCCGC ATCAAAGCCA ATTATTTCAG CTTCGGTTAT
    TTTGTCGGAC
    551 GCGTGTTGCC GTATCAGTTG TTTGATTTAA GCAGGATTCC
    CGCCTTTAAG
    601 CAGCCTGCTC CAAGCAAAAT CGGGCAGGGC AGTGTTCAAA
    ATATCGTCCT
    651 GATTATGGGC GAAAGCGAAA GCGCGGCGCA TTTGAAGCTG
    TTTGGCTACG
    701 GACGCGAAAC TTCGCCGTTT TTAACCCGGC TGTCGCAAGC
    CGATTTTAAG
    751 CCGATTGTGA AACAAAGTTA TTCCGCAGGC TTTATGACTG
    CAGTGTCCCT
    801 GCCCAGTTTT TTCAATGCGA TACCGCACGC CAACGGCTTG
    GAACAAATCA
    851 GCGGCGGCGA TACCAATATG TTCCGCCTCG CCAAAGAGCA
    GGGCTATGAA
    901 ACGTATTTTT ACAGCGCGCA GGCGGAAAAC GAGATGGCGA
    TTTTGAACTT
    951 AATCGGTAAG AAATGGATAG ACCATCTGAT TCAGCCGACG
    CAACTTGGCT
    1001 ACGGCAACGG CGACAATATG CCCGATGAGA AGCTGCTGCC
    GTTGTTCGAC
    1051 AAAATCAATT TGCAGCAGGG CAAGCATTTT ATCGTGTTGC
    ACCAACGCGG
    1101 TTCGCACGCC CCATACGGCG CATTGTTGCA GCCTCAAGAT
    AAAGTATTCG
    1151 GCGAAGCCGA TATTGTGGAT AAGTACGACA ACACCATCCA
    CAAAACCGAC
    1201 CAAATGATTC AAACCGTATT CGAGCAGCTG CAAAAGCAGC
    CTGACGGCAA
    1251 CTGGCTGTTT GCCTATACCT CCGATCATGG CCAGTATGTT
    CGCCAAGATA
    1301 TCTACAATCA AGGCACGGTG CAGCCCGACA GCTATCTCGT
    GCCGCTAGTG
    1351 TTGTACAGCC CGGATAAGGC CGTGCAACAG GCTGCCAACC
    AGGCTTTTGC
    1401 GCCTTGCGAG ATTGCCTTCC ATCAGCAGCT TTCAACGTTC
    CTGATTCACA
    1451 CGTTGGGCTA CGATATGCCG GTTTCAGGTT GTCGCGAAGG
    CTCGGTAACG
    1501 GGCAACCTGA TTACGGGTGA TGCAGGCAGC TTGAACATTC
    GCGACGGCAA
    1551 GGCGGAATAT GTTTATCCGC AATGA
  • This corresponds to the amino acid sequence <SEQ ID 306; ORF81-1>:
  • 1 MKKSFLTLVL YSSLLTASEI AYRFVFGIET LPAAKIAETF
    ALTFVIAALY
    51 LFARYKVTRL LIAVFFAFSI IANNVHYAVY QSWMTGINYW
    LMLKEVTEVG
    101 SAGASMLDKL WLPVLWGVLE VMLFCSLAKF RRKTHFSADI
    LFAFLMLMIF
    151 VRSFDTKQEH GISPKPTYSR IKANYFSFGY FVGRVLPYQL
    FDLSRIPAFK
    201 QPAPSKIGQG SVQNIVLIMG ESESAAHLKL FGYGRETSPF
    LTRLSQADFK
    251 PIVKQSYSAG FMTAVSLPSF FNAIPHANGL EQISGGDTNM
    FRLAKEQGYE
    301 TYFYSAQAEN EMAILNLIGK KWIDHLIQPT QLGYGNGDNM
    PDEKLLPLFD
    351 KINLQQGKHF IVLHQRGSHA PYGALLQPQD KVFGEADIVD
    KYDNTIHKTD
    401 QMIQTVFEQL QKQPDGNWLF AYTSDHGQYV RQDIYNQGTV
    QPDSYLVPLV
    451 LYSPDKAVQQ AANQAFAPCE IAFHQQLSTF LIHTLGYDMP
    VSGCREGSVT
    501 GNLITGDAGS LNIRDGKAEY VYPQ*
  • Computer analysis of this amino acid sequence gave the following results:
  • Homology with a Predicted ORF from N. meningitidis (Strain A)
  • ORF81 shows 84.7% identity over a 85aa overlap and 99.2% identity over a 121aa overlap with an ORF (ORF81a) from strain A of N. meningitidis:
  • Figure US20130064846A1-20130314-C00140
  • The complete length ORF81a nucleotide sequence <SEQ ID 307> is:
  • 1 ATGAAAAAAT CCCTTTTCGT TCTCTTTCTG TATTCGTCCC
    TACTTACTGC
    51 CAGCGAAATT GCTTATCGCT TTGTATTCGG AATTGAAACC
    TTACCGGCTG
    101 CAAAAATGGC AGAAACGTTT GCGCTGACAT TTGTGATTGC
    TGCGCTGTAT
    151 CTGTTTGCGC GTTATAAGGC AACGCGTTTG TTGATTGCGG
    TGTTTTTCGC
    201 GTTCAGCATT ATTGCCAACA ATGTGCATTA CGCGGTTTAT
    CAAAGCTGGA
    251 TAACGGGCAT TAATTATTGG CTGATGCTGA AAGAGATTAC
    CGAAGTTGGC
    301 GGCGCAGGGG CGTCGATGTT GGATAAGTTG TGGCTGCCTG
    CGTTGTGGGG
    351 CGTGTTGGAA GTCATGTTGT TTTGCAGCCT TGCCAAGTTC
    CGCCGTAAGA
    401 CGCATTTTTC TGCCGATATA CTGTTTGCCT TCCTAATGCT
    GATGATTTTC
    451 GTGCGTTCGT TCGACACGAA ACAAGAACAC GGTATTTCGC
    CCAAACCGAC
    501 ATACAGCCGC ATCAAAGCCA ATTATTTCAG CTTCGGTTAT
    TTTGTCGGAC
    551 GCGTGTTGCC GTATCAGTTG TTTGATTTAA GCAAGATTCC
    TGTGTTCAAA
    601 CAGCCTGCTC CAAGCAGAAT CGGGCAAGGC AGTATTCAAA
    ATATCGTCCT
    651 GATTATGGGC GAAAGCGAAA GCGCGGCGCA TTTGAAATTG
    TTTGGCTACG
    701 GGCGCGAAAC TTCGCCGTTT TTGACCCAGC TTTCGCAAGC
    CGATTTTAAG
    751 CCGATTGTGA AACAAAGTTA TTCCGCAGGC TTTATGACGG
    CAGTATCCCT
    801 GCCCAGTTTC TTTAACGTCA TACCGCATGC CAACGGCTTG
    GAACAAATCA
    851 GCGGCGGCGA TATTGTGGAT AAGTACGACA ACACCATCCA
    CAAAACCGAC
    901 CAAATGATTC AAACCGTATT CGAGCAGCTG CAAAAGCAGC
    CTGACGGCAA
    951 CTGGCTGTTT GCCTATACCT CCGATCATGG CCAGTATGTT
    CGCCAAGATA
    1001 TCTACAATCA AGGCACGGTG CAGCCCGACA GCTATCTCGT
    GCCGCTGGTG
    1051 TTGTACAGCC CGGATAAGGC CGTGCAACAG GCTGCCAACC
    AGGCTTTTGC
    1101 GCCTTGCGAG ATTGCCTTCC ATCAGCAGCT TTCAACGTTC
    CTGATTCACA
    1151 CGTTGGGCTA CGATATGCCG GTTTCAGGTT GTCGCGAAGG
    CTCGGTAACG
    1201 GGCAACCTGA TTACGGGTGA TGCAGGCAGC TTGAACATTC
    GCGACGGCAA
    1251 GGCGGAATAT GTTTATCCGC AATGA
  • This encodes a protein having amino acid sequence <SEQ ID 308>:
  • 1 MKKSLFVLFL YSSLLTASEI AYRFVFGIET LPAAKMAETF
    ALTFVIAALY
    51 LFARYKATRL LIAVFFAFSI IANNVH YAVY QSWITGINYW
    LMLKEITEVG
    101 GAGASMLDKL WLPALWGVLE VMLFCSLAKF RRKTHFSADI
    LFAFLMLMIF
    151 VRSFDTKQEH GISPKPTYSR IKANYFSFGY FVGRVLPYQL
    FDLSKIPVFK
    201 QPAPSRIGQG SIQNIVLIMG ESESAAHLKL FGYGRETSPF
    LTQLSQADFK
    251 PIVKQSYSAG FMTAVSLPSF FNVIPHANGL EQISGGDIVD
    KYDNTIHKTD
    301 QMIQTVFEQL QKQPDGNWLF AYTSDHGQYV RQDIYNQGTV
    QPDSYLVPLV
    351 LYSPDKAVQQ AANQAFAPCE IAFHQQLSTF LIHTLGYDMP
    VSGCREGSVT
    401 GNLITGDAGS LNIRDGKAEY VYPQ*
  • ORF81a and ORF81-1 show 77.9% identity in 524 aa overlap:
  • Figure US20130064846A1-20130314-C00141
  • Homology with a Predicted ORF from N. gonorrhoeae
  • The aligned aa sequences of ORF81 and a predicted ORF (ORF81.ng) from N. gonorrhoeae of the N- and C-termini show 82.4% and 97.5% identity in 85 and 121 overlap, respectively:
  • Figure US20130064846A1-20130314-C00142
  • The complete length ORF81ng nucleotide sequence <SEQ ID 309> is:
  • 1 ATGAAAAAAT CCCTTTTCGT TCTCTTTCTG TATTCATCCC
    TACTTACCGC
    51 CAGCGAAATC GCCTATCGCT TTGTATTCGG AATTGAAACC
    TTACCGGCTG
    101 CAAAAATGGC GGAAACGTTT GCGCTGACAT TTATGATTGC
    TGCGCTGTAT
    151 CTGTTTGCGC GTTATAAGGC TTCGCGGCTG CTGATTGCGG
    TGTTTTTCGC
    201 GTTCAGCATG ATTGCCAACA ATGTGCATTA CGCGGTTTAT
    CAAAGCTGGA
    251 TGACGGGTAT TAACTATTGG CTGATGCTGA AAGAGGTTAC
    CGAAGTCGGC
    301 AGCGCGGGCG CGTCGATGTT GGATAAGTTG TGGCTGCCTG
    CTTTGTGGGG
    351 CGTGGCGGAA GTCATGTTGT TTTGCAGCCT TGCCAAGTTC
    CGCCGTAAGA
    401 CGCATTTTTC TGCCGATATA CTGTTTGCCT TCCTAATGCT
    GATGATTTTC
    451 GTGCGTTCGT TCGACACGAA ACAAGAGCAC GGTATTTCGC
    CCAAACCGAC
    501 ATACAGCCGC ATCAAAGCCA ATTATTTCAG CTTCGGTTAT
    TTTGTCGGGC
    551 GCGTGTTGCC GTATCAGTTG TTTGATTTAA GCAAGATCCC
    TGTGTTCAAA
    601 CAGCCTGCTC CAAGCAAAAT CGGGCAAGGC AGTATTCAAA
    ATATCGTCCT
    651 GATTATGGGC GAAAGCGAAA GCGCGGCGCA TTTGAAATTG
    TTTGGTTACG
    701 GGCGCGAAAC TTCGCCGTTT TTAACCCGGC TGTCGCAAGC
    CGATTTTAAG
    751 CCGATTGTGA AACAAAGTTA TTCCGCAGGC TTTATGACGG
    CAGTATCCCT
    801 GCCCAGTTTC TTTAACGTCA TACCGCACGC CAACGGCTTG
    GAACAAATCA
    851 GCGGCGGCGA TACCAATATG TTCCGCCTCG CCAAAGAGCA
    GGGCTATGAA
    901 ACGTATTTTT ACAGTGCCCA GGCTGAAAAC CAAATGGCAA
    TTTTGAACTT
    951 AATCGGTAAG AAATGGATAG ACCATCTGAT TCAGCCGACG
    CAACTTGGCT
    1001 ACGGCAACGG CGACAATATG CCCGATGAGA AGCTGCTGCC
    GTTGTTCGAC
    1051 AAAATCAATT TGCAGCAGGG CAGGCATTTT ATCGTGTTGC
    ACCAACGCGG
    1101 TTCGCACGCC CCATACGGCG CATTGTTGCA GCCTCAAGAT
    AAAGTATTCG
    1151 GCGAAGCCGA TATTGTGGAT AAGTACGACA ACACCATCCA
    CAAAACCGAC
    1201 CAAATGATTC AAACCGTATT CGAGCAGCTG CAAAAGCAGC
    CTGACGGCAA
    1251 CTGGCTGTTT GCCTATACCT CCGATCATGG CCAGTATGTG
    CGCCAAGATA
    1301 TCTACAATCA AGGCACGGTG CAGCCCGACA GCTATATTGT
    GCCTCTGGTT
    1351 TTGTACAGCC CGGATAAGGC CGTGCAACAG GCTGCCAACC
    AGGCTTTTGC
    1401 GCCTTGCGAG ATTGCCTTCC ATCAGCAGCT TTCAACGTTC
    CTGATTCACA
    1451 CGTTGGGCTA CGATATGCCG GTTTCAGGTT GTCGCGAAGG
    CTCGGTAACA
    1501 GGCAACCTGA TTACGGGCGA TGCAGGCAGC TTGAACATTC
    GCAACGGCAA
    1551 GGCGGAATAT GTTTATCCGC AATAA
  • This encodes a protein having amino acid sequence <SEQ ID 310>:
  • 1 MKKSLFVLFL YSSLLTASEI AYRFVFGIET LPAAKMAETF
    ALTFMIAALY
    51 LFARYKASRL LIAVFFAFSM IANNVH YAVY QSWMTGINYW
    LMLKEVTEVG
    101 SAGASMLDKL WLPALWGVAE VMLFCSLAKF RRKTHFSADI
    LFAFLMLMIF
    151 VRSFDTKQEH GISPKPTYSR IKANYFSFGY FVGRVLPYQL
    FDLSKIPVFK
    201 QPAPSKIGQG SIQNIVLIMG ESESAAHLKL FGYGRETSPF
    LTRLSQADFK
    251 PIVKQSYSAG FMTAVSLPSF FNVIPHANGL EQISGGDTNM
    FRLAKEQGYE
    301 TYFYSAQAEN QMAILNLIGK KWIDHLIQPT QLGYGNGDNM
    PDEKLLPLFD
    351 KINLQQGRHF IVLHQRGSHA PYGALLQPQD KVFGEADIVD
    KYDNTIHKTD
    401 QMIQTVFEQL QKQPDGNWLF AYTSDHGQYV RQDIYNQGTV
    QPDSYIVPLV
    451 LYSPDKAVQQ AANQAFAPCE IAFHQQLSTF LIHTLGYDMP
    VSGCREGSVT
    501 GNLITGDAGS LNIRNGKAEY VYPQ*
  • ORF81ng and ORF81-1 show 96.4% identity in 524 aa overlap:
  • Figure US20130064846A1-20130314-C00143
  • Furthermore, ORF81ng shows significant homology to an E. coli OMP:
  • gi|1256380 (U50906) outer membrane adherence protein-associated
    protein [E. coli] Length = 547
    Score = 87.4 bits (213), Expect = 2e−16
    Identities = 122/468 (26%), Positives = 198/468 (42%),
    Gaps = 70/468 (14%)
    Query: 25 VFGIETLPAAKMAETFA-LTFMIAALYLFARYKAS--RLLIAVFFAFSMIANNVHYAVYQ 81
    VFGI  L A+  A     L F +  + +  R  +   RLL+A  F   + A ++  ++Y
    Sbjct: 29 VFGITNLVASSGAHMVQRLLFFVLTILVVKRISSLPLRLLVAAPFVL-LTAADMSISLY- 86
    Query: 82 SWMT-------GINYWLMLKEVTEVGSAGASMLDKLWLPALWGVAEVMLFCSLAKFRRKT 134
    SW T       G    ++  +  EV    A ML  ++ P L   A + L       +
    Sbjct: 87 SWCTFGTTFNDGFAISVLQSDPDEV----AKMLG-MYSPYLCAFAFLSLLFLAVIIKYDV 141
    Query: 135 HFSADILFAFLMLMIFVRSF---------DTKQEHGISPKPTYSRIKAN--YFSFGYFVG 183
          +   L+L++   S          D K ++  SP    SR      +F+  YF
    Sbjct: 142 SLPTKKVTGILLLIVISGSLFSACQFAYKDAKNKNAFSPYILASRFATYTPFFNLNYFAL 201
    Query: 184 RVLPYQ--LFDLSKIPVFKQPAPSKIGQGSIQNIVLIMGESESAAHLKLFGYGRETSPFL 241
        +Q  L   + +P F+      +    I   VLI+GES    ++ L+GY R T+P +
    Sbjct: 202 AAKEHQRLLSIANTVPYFQL----SVRDTGIDTYVLIVGESVRVDNMSLYGYTRSTTPQV 257
    Query: 242 TRLSQADFKPIVKQSYSAGFMTAVSLP---SFFNVIPHANGLEQISGGDTNMFRLAKEQG 298
       +Q     +  Q+ S    TA+S+P   +  +V+ H      I     N+  +A + G
    Sbjct: 258 E--AQRKQIKLFNQAISGAPYTALSVPLSLTADSVLSH-----DIHNYPDNIINMANQAG 310
    Query: 299 YETYFYSAQA---ENQMAILNLIGKKWIDHLIQPTQLGYGNGDNMPDEKLLPLFDKINLQ 355
    ++T++ S+Q+   +N  A+ ++         ++  +  Y  G    DE LLP   +   Q
    Sbjct: 311 FQTFWLSSQSAFRQNGTAVTSI--------AMRAMETVYVRGF---DELLLPHLSQALQQ 359
    Query: 356 --QGRHFIVLHQRGSHAPYGALLQPQDKVFGEADIVDK-YDNTIHKTDQMIQTVFEQLQK 412
      Q +  IVLH  GSH P  +       VF   D  D  YDN+IH TD ++  VFE L+
    Sbjct: 360 NTQQKKLIVLHLNGSHEPACSAYPQSSAVFQPQDDQDACYDNSIHYTDSLLGQVFELLK- 418
    Query: 413 QPDGNWLFAYTSDHG---QYVRQDIYNQG--TVQPDSYIVPL-VLYSP 454
      D      Y +DHG      ++++Y  G       +Y VP+ + YSP
    Sbjct: 419 --DRRASVMYFADHGLERDPTKKNVYFHGGREASQQAYHVPMFIWYSP 464
  • Based on this analysis, including the presence of a putative leader sequence (double-underlined) and several putative transmembrane domains (single-underlined) in the gonococcal protein, it is predicted that the proteins from N. meningitidis and N. gonorrhoeae, and their epitopes, could be useful antigens for vaccines or diagnostics, or for raising antibodies.
  • Example 37
  • The following partial DNA sequence was identified in N. meningitidis <SEQ ID 311>:
  • 1 ...ACCCTGCTCC TCTTCATCCC CCTCGTCCTC ACAC.GTGCG
    GCACACTGAC
    51    CGGCATACTC GCCCaCGGCG GCGGCAAACG CTTTGCCGTC
    GAACAAGAAC
    101    TCGTCGCCGC ATCGTCCCGC GCCGCCGTCA AAGAAATGGA
    TTTGTCCGCC
    151    yTAAAAGGAC GCAAAGCCGC CyTTTACGTC TCCGTTATGG
    GCGACCAAGG
    201    TTCGGGCAAC ATAAGCGGCG GACGCTACTC TATCGACGCA
    CTGATACGCG
    251    GCGGCTACCA CAACAACCCC GAAAGTGCCA CCCAATACAG
    CTACCCCGCC
    301    TACGACACTA CCGCCACCAC CAAATCCGAC GCGCTCTCCA
    GCGTAACCAC
    351    TTCCACATCG CTTTTGAACG CCCCCGCCGC CGyCyTGACG
    AAAAACAGCG
    401    GACGCAAAGG CGAACGcTCC GCCGGACTGT CCGTCAACGG
    CACGGGCGAC
    451    TACCGCAACG AAACCCTGCT CGCCAACCCC CGCGACGTTT
    CCTTCCTGAC
    501    CAACCTCATC CAAACCGTCT TCTACCTGCG CGGCATCGAA
    GTCgTACCGC
    551    CCGrATACGC CGACACCGAC GTATTCGTAA CCGTCGACGT
    A...
  • This corresponds to the amino acid sequence <SEQ ID 312; ORF83>:
  • 1 ..TLLLFIPLVL TXCGTLTGIL AHGGGKRFAV EQELVAASSR
    AAVKEMDLSA
    51   LKGRKAAXYV SVMGDQGSGN ISGGRYSIDA LIRGGYHNNP
    ESATQYSYPA
    101   YDTTATTKSD ALSSVTTSTS LLNAPAAXLT KNSGRKGERS
    AGLSVNGTGD
    151   YRNETLLANP RDVSFLTNLI QTVFYLRGIE VVPPXYADTD
    VFVTVDV..
  • Further work revealed the complete nucleotide sequence <SEQ ID 313>:
  • 1 ATGAAAACCC TGCTCCTCCT CATCCCCCTC GTCCTCACAG
    CCTGCGGCAC
    51 ACTGACCGGC ATACCCGCCC ACGGCGGCGG CAAACGCTTT
    GCCGTCGAAC
    101 AAGAACTCGT CGCCGCATCG TCCCGCGCCG CCGTCAAAGA
    AATGGATTTG
    151 TCCGCCCTAA AAGGACGCAA AGCCGCCCTT TACGTCTCCG
    TTATGGGCGA
    201 CCAAGGTTCG GGCAACATAA GCGGCGGACG CTACTCTATC
    GACGCACTGA
    251 TACGCGGCGG CTACCACAAC AACCCCGAAA GTGCCACCCA
    ATACAGCTAC
    301 CCCGCCTACG ACACTACCGC CACCACCAAA TCCGACGCGC
    TCTCCAGCGT
    351 AACCACTTCC ACATCGCTTT TGAACGCCCC CGCCGCCGCC
    CTGACGAAAA
    401 ACAGCGGACG CAAAGGCGAA CGCTCCGCCG GACTGTCCGT
    CAACGGCACG
    451 GGCGACTACC GCAACGAAAC CCTGCTCGCC AACCCCCGCG
    ACGTTTCCTT
    501 CCTGACCAAC CTCATCCAAA CCGTCTTCTA CCTGCGCGGC
    ATCGAAGTCG
    551 TACCGCCCGA ATACGCCGAC ACCGACGTAT TCGTAACCGT
    CGACGTATTC
    601 GGCACCGTCC GCAGCCGTAC CGAACTGCAC CTCTACAACG
    CCGAAACCCT
    651 TAAAGCCCAA ACCAAGCTCG AATATTTCGC CGTTGACCGC
    GACAGCCGGA
    701 AACTGCTGAT TACCCCTAAA ACCGCCGCCT ACGAATCCCA
    ATACCAAGAA
    751 CAATACGCCC TTTGGACCGG CCCTTACAAA GTCAGCAAAA
    CCGTCAAAGC
    801 CTCAGACCGC CTGATGGTCG ATTTCTCCGA CATTACCCCC
    TACGGCGACA
    851 CAACCGCCCA AAACCGTCCC GACTTCAAAC AAAACAACGG
    TAAAAAACCC
    901 GATGTCGGCA ACGAAGTCAT CCGCCGCCGC AAAGGAGGAT
    AA
  • This corresponds to the amino acid sequence <SEQ ID 314; ORF83-1>:
  • 1 MKTLLLLIPL VLTACGTLTG IPAHGGGKRF AVEQELVAAS
    SRAAVKEMDL
    51 SALKGRKAAL YVSVMGDQGS GNISGGRYSI DALIRGGYHN
    NPESATQYSY
    101 PAYDTTATTK SDALSSVTTS TSLLNAPAAA LTKNSGRKGE
    RSAGLSVNGT
    151 GDYRNETLLA NPRDVSFLTN LIQTVFYLRG IEVVPPEYAD
    TDVFVTVDVF
    201 GTVRSRTELH LYNAETLKAQ TKLEYFAVDR DSRKLLITPK
    TAAYESQYQE
    251 QYALWTGPYK VSKTVKASDR LMVDFSDITP YGDTTAQNRP
    DFKQNNGKKP
    301 DVGNEVIRRR KGG*
  • Computer analysis of this amino acid sequence gave the following results:
  • Homology with a Predicted ORF from N. meningitidis (Strain A)
  • ORF83 shows 96.4% identity over a 197aa overlap with an ORF (ORF83a) from strain A of N. meningitidis:
  • Figure US20130064846A1-20130314-C00144
  • The complete length ORF83a nucleotide sequence <SEQ ID 315> is:
  • 1 ATGAAAACCC TGCTCNTCCT CATCCCCCTC GTCCTCACAG
    CCTGCGGCAC
    51 ACTGACCGGC ATACCCGCCC ACGGCGGCGG CAAACGCTTT
    GCCGTCGAAC
    101 AAGAACTCGT CGCCGCATCG TCCCGCGCCG CCGTCAAAGA
    AATGGACTTG
    151 TCCGCCCTGA AAGGACGCAA AGCCGCCCTT TACGTCTCCG
    TTATGGGCGA
    201 CCAAGGTTCG GGCAACATAA GCGGCGGACG CTACTCTATC
    GACGCACTGA
    251 TACGCGGCGG CTACCACAAC AACCCCGAAA GTGCCACCCA
    ATACAGCTAC
    301 CCCGCCTACG ACACTACCGC CACCACCAAA TCCGACGCGC
    TCTCCAGCGT
    351 AACCACTTCC ACATCGCTTT TGAACGCCCC CGCCGCCGCC
    CTGACGAAAA
    401 ACAGCGGACG CAAAGGCGAA CGCTCCGCCG GACTGTCCGT
    CAACGGCACG
    451 GGCGACTACC GCAACGAAAC CCTGCTCGCC AACCCCCGCG
    ACGTTTCCTT
    501 CCTGACCAAC CTCATCCAAA CCGTCTTCTA CCTGCGCGGC
    ATCGAAGTCG
    551 TACCGCCCGA ATACGCCGAC ACCGACGTAT TCGTAACCGT
    CGACGTATTC
    601 GGCACCGTCC GCAGCCGCAC CGAACTGCAC CTCTACAACG
    CCGAAACCCT
    651 TAAAGCCCAA ACCAAGCTCG AATATTTCGC CGTTGACCGC
    GACAGCCGGA
    701 AACTGCTGAT TGCCCCTAAA ACCGCCGCCT ACGAATCCCA
    ATACCAAGAA
    751 CAATACGCCC TCTGGATGGG ACCTTACAGC GTCGGCAAAA
    CCGTCAAAGC
    801 CTCAGACCGC CTGATGGTCG ATTTCTCCGA CATCACCCCC
    TACGGCGACA
    851 CAACCGCCCA AAACCGTCCC GACTTCAAAC AAAACAACGG
    TAAAAAACCC
    901 GATGTCGGCA ACGAAGTCAT CCGCCGCCGC AAAGGAGGAT
    AA
  • This encodes a protein having amino acid sequence <SEQ ID 316>:
  • 1 MKTLLXLIPL VLTACGTLTG IPAHGGGKRF AVEQELVAAS
    SRAAVKEMDL
    51 SALKGRKAAL YVSVMGDQGS GNISGGRYSI DALIRGGYHN
    NPESATQYSY
    101 PAYDTTATTK SDALSSVTTS TSLLNAPAAA LTKNSGRKGE
    RSAGLSVNGT
    151 GDYRNETLLA NPRDVSFLTN LIQTVFYLRG IEVVPPEYAD
    TDVFVTVDVF
    201 GTVRSRTELH LYNAETLKAQ TKLEYFAVDR DSRKLLIAPK
    TAAYESQYQE
    251 QYALWMGPYS VGKTVKASDR LMVDFSDITP YGDTTAQNRP
    DFKQNNGKKP
    301 DVGNEVIRRR KGG*
  • ORF83a and ORF83-1 show 98.4% identity in 313 aa overlap:
  • Figure US20130064846A1-20130314-C00145
  • Homology with a Predicted ORF from N. gonorrhoeae
  • ORF83 shows 94.9% identity over a 197aa overlap with a predicted ORF (ORF83.ng) from N. gonorrhoeae:
  • Figure US20130064846A1-20130314-C00146
  • The complete length ORF83ng nucleotide sequence <SEQ ID 317> is:
  • 1 ATGAAAACCC TGCTCCTCCT CATCCCCCTC GTACTCACCG
    CCTGCGGCAC
    51 ACTGACCGGC ATACCCGCCC ACGGCGGCGG CAAACGCTTT
    GCCGTCGAAC
    101 AGGAACTCGT CGCCGCATCG TCCCGCGCCG CCGTCAAAGA
    AATGGACTTG
    151 TCCGCCCTGA AAGGACGCAA AGCCGCCCTT TACGTCTCCG
    TTATGGGCGA
    201 CCAAGGTTCG GGCAACATAA GCGGCGGACG CTACTCCATC
    GACGCACTGA
    251 TACGCGGCGG CTACCACAAC AACCCCGACA GCGCCACCCG
    ATACAGCTAC
    301 CCCGCCTATG ACACTACCGC CACCACCAAA TCCGACGCGC
    TCTCCGGCGT
    351 AACCACTTCC ACATCGCTTT TGAACGCCCC CGCCGCCGCC
    CTGACGAAAA
    401 ACAACGGACG CAAAGGCGAA CGCTCCGCCG GACTGTCCGT
    CAACGGCACG
    451 GGCGACTACC GCAACGAAAC CCTGCTCGCC AACCCCCGCG
    ACGTTTCCTT
    501 CCTGACCAAC CTCATCCAAA CCGTCTTCTA CCTGCGCGGC
    ATCGAAGTCG
    551 TACCGCCCGA ATACGCCGAC ACCGACGTAT TCGTAACCGT
    CGACGTATTC
    601 GGCACCGTCC GCAGCCGTAC CGAACTGCAC CTCTACAACG
    CCGAAACCCT
    651 TAAAGCCCAA ACCAAGCTCG AATATTTCGC CGTCGACCGC
    GACAGCCGGA
    701 AACTGCTGAT TGCCCCTAAA ACCGCCGCCT ACGAATCCCA
    ATACCAAGAA
    751 CAATACGCCC TCTGGATGGG ACCTTACAGC GTCGGCAAAA
    CCGTCAAAGC
    801 CTCAGACCGC CTGATGGTCG ATTTCTCCGA CATCACCCCC
    TACGGCGACA
    851 CAACCGCCCA AAACCGTCCC GACTTCAAAC AAAACAACGG
    TAAAAACCCC
    901 GATGTCGGCA ACGAAGTCAT CCGCCGCCGC AAAGGAGGAT
    AA
  • This encodes a protein having amino acid sequence <SEQ ID 318>:
  • 1 MKTLLLLIPL VLTACGTLTG IPAHGGGKRF AVEQELVAAS
    SRAAVKEMDL
    51 SALKGRKAAL YVSVMGDQGS GNISGGRYSI DALIRGGYHN
    NPDSATRYSY
    101 PAYDTTATTK SDALSGVTTS TSLLNAPAAA LTKNNGRKGE
    RSAGLSVNGT
    151 GDYRNETLLA NPRDVSFLTN LIQTVFYLRG IEVVPPEYAD
    TDVFVTVDVF
    201 GTVRSRTELH LYNAETLKAQ TKLEYFAVDR DSRKLLIAPK
    TAAYESQYQE
    251 QYALWMGPYS VGKTVKASDR LMVDFSDITP YGDTTAQNRP
    DFKQNNGKNP
    301 DVGNEVIRRR KGG*
  • ORF83ng and ORF83-1 show 97.1% identity in 313 aa overlap
  • Figure US20130064846A1-20130314-C00147
  • Based on this analysis, including the presence of a putative ATP/GTP-binding site motif A (P-loop) in the gonococcal protein (double-underlined) and a putative prokaryotic membrane lipoprotein lipid attachment site (single-underlined), it is predicted that the proteins from N. meningitidis and N. gonorrhoeae, and their epitopes, could be useful antigens for vaccines or diagnostics, or for raising antibodies.
  • Example 38
  • The following DNA sequence, believed to be complete, was identified in N. meningitidis <SEQ ID 319>:
  • 1 ATGGCAGAGA TCTGTTTGAT AACCGGCACG CCCGGTTCAG
    GGAAAACATT
    51 AAAAATGGTT TCCATGATGG CGAATGATGA AATGTTTAAG
    CCTGATGAAA
    101 AAGCCATACG CCGTAAAGTA TTTACGAACA TAAAAGGCTT
    GAAAATACCG
    151 CACACCTACA TAGAAACGGA CGCAAAAAAG CTGCCGAAAT
    CGACAGATGA
    201 GCAGCTTTCG GCGCATGATA TGTACGAATG GATAAAGAAG
    CCCGAAAATA
    251 TCGGGTCTAT TGTCATTGTA GATGAAGCTC AAGACGTATG
    GCCGGCACGC
    301 TCGGCAGGTT CAAAAATCCC TGAAAATGTC CAATGGCTGA
    ATACGCACAG
    351 ACATCAGGGC ATTGATATAT TTGTTTTGAC TCAAGGTCCT
    AAGCTTCTAG
    401 ATCAAAATCT TAGAACGCTT GTACGGAAAC ATTACCACAT
    CGCTTCAAAC
    451 AAGATGGGTA TGCGTACGCT TTTAGAATGG AAAATATGCG
    CGGACGATCC
    501 CGTAAAAATG GCATCAAGCG CATTCTCCAG TATCTATACA
    CTGGATAAAA
    551 AAGTTTATGA CTTGTAysrr TmmGCGGAAG TTCATACCGT
    AAATAAGGTC
    601 AAGCGGTCAA AGTGGTTTTA CACTCTGCCa GTAATAGTAT
    TGCTGATTCC
    651 CGTGTTTGTC GGCCTGTCCT ATAAAATGTT GagCaGTTAC
    GGAAAAAAAC
    701 aGGAAGAACC CGCAGCACAA GAATCGGCGG CAACAGAACA
    GCAGGCAGTA
    751 CTTCCGGATA AAACAGAAGG CGAGCCGGTA AATAACGGCA
    ACCTTACCGC
    801 AGATATGTTT GTTCCGACAT TGTCCGAaAA ACCCGrAAGC
    AAGCcgaTTT
    851 ATAACGGTGT AAGGCAGGTA AGAACCTTTG AATATATAGC
    AGGCTGTATA
    901 GAAGGCGGAA GAACCGGATG CGCCTGCTAT TCGCaTCAAG
    GGACGGCATt
    951 gaAAGAAGTG ACGGaGTTGA TGTGccaAgG aCTATGTaAA
    AAacGGCTTG
    1001 CCGTTTAACC CaTACAAAGA AGAAAGCCAA GGGCAGGAAG
    TTCAGCAAAG
    1051 CGCGCAgCAA CATTCGGACA GGGCGcCAAG TTGCCACATT
    GGGCGGAAAA
    1101 CCGTAGCAGA ACCTAATGTA CGATAATTGG GAAGAACGCG
    GGAAACCGTT
    1151 TGAAGGAATC GGaCGQGGGC GTGGTCGGAT CGGCAAACTG
    A
  • This corresponds to the amino acid sequence <SEQ ID 320; ORF84>:
  • 1 MAEICLITGT PGSGKTLKMV SMMANDEMFK PDEKAIRRKV
    FTNIKGLKIP
    51 HTYIETDAKK LPKSTDEQLS AHDMYEWIKK PENIGSIVIV
    DEAQDVWPAR
    101 SAGSKIPENV QWLNTHRHQG IDIFVLTQGP KLLDQNLRTL
    VRKHYHIASN
    151 KMGMRTLLEW KICADDPVKM ASSAFSSIYT LDKKVYDLYX
    XAEVHTVNKV
    201 KRSKWFYTLP VIVLLIPVFV GLSYKMLSSY GKKQEEPAAQ
    ESAATEQQAV
    251 LPDKTEGEPV NNGNLTADMF VPTLSEKPXS KPIYNGVRQV
    RTFEYIAGCI
    301 EGGRTGCACY SHQGTALKEV TELMCKDYVK NGLPFNPYKE
    ESQGQEVQQS
    351 AQQHSDRAQV ATLGGKPXQN LMYDNWEERG KPFEGIGGGV
    VGSAN*
  • Further work revealed the complete nucleotide sequence <SEQ ID 321>:
  • 1 ATGGCAGAGA TCTGTTTGAT AACCGGCACG CCCGGTTCAG
    GGAAAACATT
    51 AAAAATGGTT TCCATGATGG CGAATGATGA AATGTTTAAG
    CCTGATGAAA
    101 ACGGCATACG CCGTAAAGTA TTTACGAACA TAAAAGGCTT
    GAAAATACCG
    151 CACACCTACA TAGAAACGGA CGCAAAAAAG CTGCCGAAAT
    CGACAGATGA
    201 GCAGCTTTCG GCGCATGATA TGTACGAATG GATAAAGAAG
    CCCGAAAATA
    251 TCGGGTCTAT TGTCATTGTA GATGAAGCTC AAGACGTATG
    GCCGGCACGC
    301 TCGGCAGGTT CAAAAATCCC TGAAAATGTC CAATGGCTGA
    ATACGCACAG
    351 ACATCAGGGC ATTGATATAT TTGTTTTGAC TCAAGGTCCT
    AAGCTTCTAG
    401 ATCAAAATCT TAGAACGCTT GTACGGAAAC ATTACCACAT
    CGCTTCAAAC
    451 AAGATGGGTA TGCGTACGCT TTTAGAATGG AAAATATGCG
    CGGACGATCC
    501 CGTAAAAATG GCATCAAGCG CATTCTCCAG TATCTATACA
    CTGGATAAAA
    551 AAGTTTATGA CTTGTACGAA TCAGCGGAAG TTCATACCGT
    AAATAAGGTC
    601 AAGCGGTCAA AGTGGTTTTA CACTCTGCCA GTAATAGTAT
    TGCTGATTCC
    651 CGTGTTTGTC GGCCTGTCCT ATAAAATGTT GAGCAGTTAC
    GGAAAAAAAC
    701 AGGAAGAACC CGCAGCACAA GAATCGGCGG CAACAGAACA
    GCAGGCAGTA
    751 CTTCCGGATA AAACAGAAGG CGAGCCGGTA AATAACGGCA
    ACCTTACCGC
    801 AGATATGTTT GTTCCGACAT TGTCCGAAAA ACCCGAAAGC
    AAGCCGATTT
    851 ATAACGGTGT AAGGCAGGTA AGAACCTTTG AATATATAGC
    AGGCTGTATA
    901 GAAGGCGGAA GAACCGGATG CGCCTGCTAT TCGCATCAAG
    GGACGGCATT
    951 GAAAGAAGTG ACGGAGTTGA TGTGCAAGGA CTATGTAAAA
    AACGGCTTGC
    1001 CGTTTAACCC ATACAAAGAA GAAAGCCAAG GGCAGGAAGT
    TCAGCAAAGC
    1051 GCGCAGCAAC ATTCGGACAG GGCGCAAGTT GCCACATTGG
    GCGGAAAACC
    1101 GTAGCAGAAC CTAATGTACG ATAATTGGGA AGAACGCGGG
    AAACCGTTTG
    1151 AAGGAATCGG CGGGGGCGTG GTCGGATCGG CAAACTGA
  • This corresponds to the amino acid sequence <SEQ ID 322; ORF84-1>:
  • 1 MAEICLITGT PGSGKTLKMV SMMANDEMFK PDENGIRRKV
    FTNIKGLKIP
    51 HTYIETDAKK LPKSTDEQLS AHDMYEWIKK PENIGSIVIV
    DEAQDVWPAR
    101 SAGSKIPENV QWLNTHRHQG IDIFVLTQGP KLLDQNLRTL
    VRKHYHIASN
    151 KMGMRTLLEW KICADDPVKM ASSAFSSIYT LDKKVYDLYE
    SAEVHTVNKV
    201 KRSKWFYTLP VIVLLIPVFV GL SYKMLSSY GKKQEEPAAQ
    ESAATEQQAV
    251 LPDKTEGEPV NNGNLTADMF VPTLSEKPES KPIYNGVRQV
    RTFEYIAGCI
    301 EGGRTGCACY SHQGTALKEV TELMCKDYVK NGLPFNPYKE
    ESQGQEVQQS
    351 AQQHSDRAQV ATLGGKP*QN LMYDNWEERG KPFEGIGGGV
    VGSAN*
  • Computer analysis of this amino acid sequence gave the following results:
  • Homology with a Predicted ORF from N. meningitidis (Strain A)
  • ORF84 shows 93.9% identity over a 395aa overlap with an ORF (ORF84a) from strain A of N. meningitidis:
  • Figure US20130064846A1-20130314-C00148
  • The complete length ORF84a nucleotide sequence <SEQ ID 323> is:
  • 1 ATGGCAGAGA TCTGTTTGAT AACCGGCACG CCCGGTTCAG
    GGAAAACATT
    51 AAAAATGGTT TCCATGATGG CAAACGATGA AATGTTTAAG
    CCGGATGAAA
    101 ACGGCATACG CCGTAAAGTA TTTACGAACA TCAAAGGCTT
    GAAGATACCG
    151 CACACCTACA TAGAAACGGA CGCGAAAAAG CTGCCGAAAT
    CGACAGATGA
    201 GCAGCTTTCG GCGCATGATA TGTACGAATG GATAAAGAAG
    CCCGAAAATA
    251 TCGGGTCTAT TGTCATTGTA GATGAAGCTC AAGACGTATG
    GCCGGCACGC
    301 TCGGCAGGTT CAAAAATCCC TGAAAATGTC CAATGGCTGA
    ATACGCACAG
    351 ACATCAGGGC ATTGATATAT TTGTTTTGAC TCAAGGCTCT
    AAGCTTCTAG
    401 ATCAAAATCT TAGAACGCTT GTACGGAAAC ATTACCACAT
    CGCTTCAAAC
    451 AAGATGGGTA TGCGTACGCT TTTAGAATGG AAAATATGCG
    CGGACGATCC
    501 CGTAAAAATG GCATCAAGCG CATTCTCCAG TATCTATACA
    CTGGATAAAA
    551 AAGTTTATGA CTTGTACGAA TCAGCGGAAG TTCATACCGT
    AAATAAGGTC
    601 AAGCGGTCAA AATGGTTTTA TACTCTGCCA GTAATAATAT
    TGCTGATTCC
    651 CGTTTTTGTC GGCCTGTCCT ATAAAATGTT AAGTAGTTAT
    GGAAAAAAAC
    701 AGGAAGAACC CGCAGCACAA GAATCGGCGG CAACAGAACA
    TCAGGCAGTA
    751 TTTCAGGATA AAACAGAAGG CGAGCCGGTA AACAACGGTA
    ACCTTACCGC
    801 AGATATGTTT GTTCCGACAT TGTCCGAAAA ACCCGAAAGC
    AAGCCGATTT
    851 ATAACGGTGT AAGGCAGGTA AGAACCTTTG AATATATAGC
    AGGCTGTGTA
    901 GAAGGCGGAA GAACCGGATG CACATGCTAT TCGCATCAAG
    GGACGGCATT
    951 GAAAGAAATT ACAAAGGAAA TGTGCAAGGA TTACGCAAGA
    AACGGATTGC
    1001 CGTTTAACCC ATATAAAGAA GAAAGCCAAG GGCGGGATGT
    CCAGCAAAGT
    1051 GAGCAGCACC ATTCGGACAG ACCGCAAGTT GCCACGTTGG
    GCGGAAAGCC
    1101 GTGGCAAAAT CTTATGTATG ATAATTGGCA GGAGCGCGGA
    AAACCGTTTG
    1151 AAGGAATCGG CGGGGGCGTG GTCGGATCGG CAAACTGA
  • This encodes a protein having amino acid sequence <SEQ ID 324>:
  • 1 MAEICLITGT PGSGKTLKMV SMMANDEMFK PDENGIRRKV
    FTNIKGLKIP
    51 HTYIETDAKK LPKSTDEQLS AHDMYEWIKK PENIGSIVIV
    DEAQDVWPAR
    101 SAGSKIPENV QWLNTHRHQG IDIFVLTQGS KLLDQNLRTL
    VRKHYHIASN
    151 KMGMRTLLEW KICADDPVKM ASSAFSSIYT LDKKVYDLYE
    SAEVHTVNKV
    201 KRSKWFYTLP VIILLIPVFV GL SYKMLSSY GKKQEEPAAQ
    ESAATEHQAV
    251 FQDKTEGEPV NNGNLTADMF VPTLSEKPES KPIYNGVRQV
    RTFEYIAGCV
    301 EGGRTGCTCY SHQGTALKEI TKEMCKDYAR NGLPFNPYKE
    ESQGRDVQQS
    351 EQHHSDRPQV ATLGGKPWQN LMYDNWQERG KPFEGIGGGV
    VGSAN*
  • ORF84a and ORF84-1 show 95.2% identity in 395 aa overlap:
  • Figure US20130064846A1-20130314-C00149
  • Homology with a Predicted ORF from N. gonorrhoeae
  • ORF84 shows 94.2% identity over a 395aa overlap with a predicted ORF (ORF84.ng) from N. gonorrhoeae:
  • Figure US20130064846A1-20130314-C00150
  • The complete length ORF84ng nucleotide sequence <SEQ ID 325> is:
  • 1 ATGGCAGAAA TCTGTTTGAT AACCGGCACG CCCGGTTCAG
    GGAAAACATT
    51 AAAAATGGTT TCCATGATGG CAAACGATGA AATGTTTAAG
    CCAGATGAAA
    101 ACGGCGTACG CCGTAAAGTA TTTACGAACA TCAAAGGTTT
    GAAGATACCG
    151 CACACCCACA TAGAAACAGA CGCAAAGAAG CTGCCGAAAT
    CAACCGATGA
    201 ACAGCTTTCG GCGCATGATA TGTATGAATG GATCAAGAAG
    CCTGAAAacg
    251 tcggcgCAAT CGTTATTGTC GATGAGGCGC AAGACGTATG
    GCCCGCACGC
    301 TccgCAGGTT CGAAAATCCC CGAAAACGTC CAATGGCTGA
    ACACACACAG
    351 GCATCAGGGC ATAGATATAT TTGTATTGAC ACAAGGTCCT
    AAACTCTTAG
    401 ATCAGAACTT GCGAACATTG GTTAAAAGAC ATTACCACAT
    TGCGGCCAAC
    451 AAAATGGGTT TGCGTACCCT GCTTGAATGG AAAGTATGCG
    CGGATGACCC
    501 GGTAAAAATG GCATCAAGTG CATTTTCCAG TATCTACACA
    CTGGATAAAA
    551 AAGTTTATGA CTTGTACGAA TCCGCAGAAA TTCACACGGT
    AAACAAAGTC
    601 AAGCGTTCAA AATGGTTTTA TGCATTGCCC GTCATCATAT
    TATTGATTCC
    651 GCTATTTGTC GGTTTGTCTT ACAAAATGTT GGGCAGTTAC
    GGAAAAAAAC
    701 AGGAAGAACC CGCAGCACAA GAATCGGCGG CAACAGAACA
    GCAGGCAGTA
    751 CTTCCGGATA AAACAGAAGG AGAATCGGTG AATAACGGAA
    ACCTTACGGC
    801 AGATATGTTT GTTCCGACAT TGCCCGAAAA ACCCGAAAGC
    AAGCCGATTT
    851 ATAACGGTGT AAGGCAGGTA AGGACCTTTG AATATATAGC
    AGGCTGTATA
    901 GAAGGCGGAA GAACCGGATG CACCTGCTAT TCGCATCAAG
    GGACGGCATT
    951 GAAAGAAGTG ACGGAGTTGA TGTGCAAGGA CTATGTAAAA
    AACGGCTTGC
    1001 CGTTTAACCC ATACAAAGAA GAAAGCCAAG GGCAGGAAGT
    TCAGCAAAGC
    1051 GCGCAGCAAC ATTCGGACAG GGCGCAAGTT GCCACCTTGG
    GCGGAAAACC
    1101 GCAGCAGAAC CTAATGTACG ACAATTGGGA AGAACGCGGG
    AAACCGTTTG
    1151 AAGGAATCGG CGGGGGCGTG GTCGGATCGG CAAACTGA
  • This encodes a protein having amino acid sequence <SEQ ID 326>:
  • 1 MAEICLITGT PGSGKTLKMV SMMANDEMFK PDENGVRRKV
    FTNIKGLKIP
    51 HTHIETDAKK LPKSTDEQLS AHDMYEWIKK PENVGAIVIV
    DEAQDVWPAR
    101 SAGSKIPENV QWLNTHRHQG IDIFVLTQGP KLLDQNLRTL
    VKRHYHIAAN
    151 KMGLRTLLEW KVCADDPVKM ASSAFSSIYT LDKKVYDLYE
    SAEIHTVNKV
    201 KRSKWFYALP VIILLIPLFV GL SYKMLGSY GKKQEEPAAQ
    ESAATEQQAV
    251 LPDKTEGESV NNGNLTADMF VPTLPEKPES KPIYNGVRQV
    RTFEYIAGCI
    301 EGGRTGCTCY SHQGTALKEV TELMCKDYVK NGLPFNPYKE
    ESQGQEVQQS
    351 AQQHSDRAQV ATLGGKPQQN LMYDNWEERG KPFEGIGGGV
    VGSAN*
  • ORF84ng and ORF84-1 show 95.4% identity in 395 aa overlap:
  • Figure US20130064846A1-20130314-C00151
  • Based on this analysis, includng the presence of a putative transmembrane domain (single-underlined) in the gonococcal protein, and a putative ATP/GTP-binding site motif A (P-loop, double-underlined), it is predicted that the proteins from N. meningitidis and N. gonorrhoeae, and their epitopes, could be useful antigens for vaccines or diagnostics, or for raising antibodies.
  • Example 39
  • The following partial DNA sequence was identified in N. meningitidis <SEQ ID 327>:
  • 1 GTGGTTTTCC TGAATGCCGA CAACGGGATA TTGGTTCAGG
    ACTTGCCTTT
    51 TGAAGTCAAA CTGAAAAAAT TCCATATCGA TTTTTACAAT
    ACGGGTATGC
    101 CGCGTGATTT CGCCAGCGAT ATTGAAGTGA CGGACAAGGC
    AACCGGTGAG
    151 AAACTCGAGC GCACCATCCG CGTGAACCAT CCTTTGACCT
    TGCACGGCAT
    201 CACGATTTAT CAGGCGAGTT TTGCCGACGG CGGTTCGGAT
    TTGACATTCA
    251 AGGCGTGGAA TTTGGGTGAT GCTTCGCGCG AGCCTGTCGT
    GTTGAAGGCA
    301 ACATCCATAC ACCAGTTTCC GTTGGAAATT GGCAAACACA
    AATATCGTCT
    351 TGAGTTCGAT CAGTTCACTT CTATGAATGT GGAGGACATG
    AGCGAGGGCG
    401 CGGAACGGGA AAAAAGCCTG AAATCCACGC TGCCCGATGT
    CCGCGCCGTT
    451 ACTCAGGAAG GTCACAAATA CACCAAT... ..........
    .....TACCG
    501 TATCCGTGAT GCGCCAGGCC AGGCGGTCGA ATATAAAAAC
    TATATGCTGC
    551 CGGTTTTGCA GGAACAGGAT TATTTTTGGA TTACCGGCAC
    GCGCAGCGC.
    601 TTGCAGCAGC AATACCGCTG GCTGCGTATC CCCTTGGACA
    AGCAGTTGAA
    651 AGCGGACACC TTTATGGCAT TGCGTGAGTT TTTGAAAGAT
    GGGGAAGGGC
    701 GCAAACGTCT .GTTGCCGAC GCAACCAAAG GCGCACCTGC
    CGAAATCCGC
    751 GAACAATTCA TGCTGGCTGC GGAAAACACG CTGAACATCT
    TTGCACAAAA
    801 AGGCTATTTG GGATTGGACG AATTTATTAC GTCCAATATC
    CCGAAAGAGC
    851 AGCAGGATAA GATGCAGGGC TATTTCTACG AAATGCTTTA
    CGGCGTGATG
    901 AACGCTGCTT TGGATGAAAC CAT.ACCCGG TACGGCTTGC
    CCGAATGGCA
    951 GCAGGATGAA GCGCGGAATC GTTTCCTGCT GCACAGTATG
    GATGCGTACA
    1001 CGGGTTTGAC CGAATATCCC GCGCCTATGC TGCTGCAACT
    TGATGGGTTT
    1051 TCCGAGGTGC GTTCGTCGGG TTTGCAGATG ACCCGTTCCC
    C.GGTCCGCT
    1101 TTTGGTCTAT CTC...
  • This corresponds to the amino acid sequence <SEQ ID 328; ORF88>:
  • 1 MVFLNADNGI LVQDLPFEVK LKKFHIDFYN TGMPRDFASD
    IEVTDKATGE
    51 KLERTIRVNH PLTLHGITIY QASFADGGSD LTFKAWNLGD
    ASREPVVLKA
    101 TSIHQFPLEI GKHKYRLEFD QFTSMNVEDM SEGAEREKSL
    KSTLPDVRAV
    151 TQEGHKYTNX XXXXXYRIRD APGQAVEYKN YMLPVLQEQD
    YFWITGTRSX
    201 LQQQYRWLRI PLDKQLKADT FMALREFLKD GEGRKRXVAD
    ATKGAPAEIR
    251 EQFMLAAENT LNIFAQKGYL GLDEFITSNI PKEQQDKMQG
    YFYEMLYGVM
    301 NAALDETXTR YGLPEWQQDE ARNRFLLHSM DAYTGLTEYP
    APMLLQLDGF
    351 SEVRSSGLQM TRSXGPLLVY L...
  • Further work revealed the complete nucleotide sequence <SEQ ID 329>:
  • 1 ATGAGTAAAT CCCGTAGATC TCCCCCACTT CTTTCCCGTC
    CGTGGTTCGC
    51 TTTTTTCAGC TCCATGCGCT TTGCAGTCGC TTTGCTCAGT
    CTGCTGGGTA
    101 TTGCATCGGT TATCGGTACG GTGTTGCAGC AAAACCAGCC
    GCAGACGGAT
    151 TATTTGGTCA AATTCGGATC GTTTTGGGCG CAGATTTTTG
    GTTTTCTGGG
    201 ACTGTATGAC GTCTATGCTT CGGCATGGTT TGTCGTTATC
    ATGATGTTTT
    251 TGGTGGTTTC TACCAGTTTG TGCCTGATTC GCAATGTGCC
    GCCGTTCTGG
    301 CGCGAAATGA AGTCTTTTCG GGAAAAGGTT AAAGAAAAAT
    CTCTGGCGGC
    351 GATGCGCCAT TCTTCGCTGT TGGATGTAAA AATTGCGCCC
    GAGGTTGCCA
    401 AACGTTATCT GGAAGTACAA GGTTTTCAGG GAAAAACCAT
    TAACCGTGAA
    451 GACGGGTCGG TTCTGATTGC CGCCAAAAAA GGCACAATGA
    ACAAATGGGG
    501 CTATATCTTT GCCCATGTTG CTTTGATTGT CATTTGCCTG
    GGCGGGTTGA
    551 TAGACAGTAA CCTGCTGTTG AAACTGGGTA TGCTGACCGG
    TCGGATTGTT
    601 CCGGACAATC AGGCGGTTTA TGCCAAGGAT TTCAAGCCCG
    AAAGTATTTT
    651 GGGTGCGTCC AATCTCTCAT TTAGGGGCAA CGTCAATATT
    TCCGAGGGGC
    701 AGAGTGCGGA TGTGGTTTTC CTGAATGCCG ACAACGGGAT
    ATTGGTTCAG
    751 GACTTGCCTT TTGAAGTCAA ACTGAAAAAA TTCCATATCG
    ATTTTTACAA
    801 TACGGGTATG CCGCGTGATT TCGCCAGCGA TATTGAAGTG
    ACGGACAAGG
    851 CAACCGGTGA GAAACTCGAG CGCACCATCC GCGTGAACCA
    TCCTTTGACC
    901 TTGCACGGCA TCACGATTTA TCAGGCGAGT TTTGCCGACG
    GCGGTTCGGA
    951 TTTGACATTC AAGGCGTGGA ATTTGGGTGA TGCTTCGCGC
    GAGCCTGTCG
    1001 TGTTGAAGGC AACATCCATA CACCAGTTTC CGTTGGAAAT
    TGGCAAACAC
    1051 AAATATCGTC TTGAGTTCGA TCAGTTCACT TCTATGAATG
    TGGAGGACAT
    1101 GAGCGAGGGC GCGGAACGGG AAAAAAGCCT GAAATCCACG
    CTGAACGATG
    1151 TCCGCGCCGT TACTCAGGAA GGTAAAAAAT ACACCAATAT
    CGGCCCTTCC
    1201 ATTGTTTACC GTATCCGTGA TGCGGCAGGG CAGGCGGTCG
    AATATAAAAA
    1251 CTATATGCTG CCGGTTTTGC AGGAACAGGA TTATTTTTGG
    ATTACCGGCA
    1301 CGCGCAGCGG CTTGCAGCAG CAATACCGCT GGCTGCGTAT
    CCCCTTGGAC
    1351 AAGCAGTTGA AAGCGGACAC CTTTATGGCA TTGCGTGAGT
    TTTTGAAAGA
    1401 TGGGGAAGGG CGCAAACGTC TGGTTGCCGA CGCAACCAAA
    GGCGCACCTG
    1451 CCGAAATCCG CGAACAATTC ATGCTGGCTG CGGAAAACAC
    GCTGAACATC
    1501 TTTGCACAAA AAGGCTATTT GGGATTGGAC GAATTTATTA
    CGTCCAATAT
    1551 CCCGAAAGAG CAGCAGGATA AGATGCAGGG CTATTTCTAC
    GAAATGCTTT
    1601 ACGGCGTGAT GAACGCTGCT TTGGATGAAA CCATACGCCG
    GTACGGCTTG
    1651 CCCGAATGGC AGCAGGATGA AGCGCGGAAT CGTTTCCTGC
    TGCACAGTAT
    1701 GGATGCGTAC ACGGGTTTGA CCGAATATCC CGCGCCTATG
    CTGCTGCAAC
    1751 TTGATGGGTT TTCCGAGGTG CGTTCGTCGG GTTTGCAGAT
    GACCCGTTCC
    1801 CCGGGTGCGC TTTTGGTCTA TCTCGGCTCG GTGCTGTTGG
    TATTGGGTAC
    1851 GGTATTGATG TTTTATGTGC GCGAAAAACG GGCGTGGGTA
    TTGTTTTCAG
    1901 ACGGCAAAAT CCGTTTTGCC ATGTCTTCGG CCCGCAGCGA
    ACGGGATTTG
    1951 CAGAAGGAAT TTCCAAAACA CGTCGAGAGT CTGCAACGGC
    TCGGCAAGGA
    2001 CTTGAATCAT GACTGA
  • This corresponds to the amino acid sequence <SEQ ID 330; ORF88-1>:
  • 1 MSKSRRSPPL LSRPWFAFFS SMRFAVALLS LLGIASVIGT
    VLQQNQPQTD
    51 YLVKFGSFWA QIFGFLGLYD VYASAWFVVI MMFLVVSTSL
    CLIRNVPPFW
    101 REMKSFREKV KEKSLAAMRH SSLLDVKIAP EVAKRYLEVQ
    GFQGKTINRE
    151 DGSVLIAAKK GTMNKWGYIF AHVALIVICL GGLIDSNLLL
    KLGMLTGRIV
    201 PDNQAVYAKD FKPESILGAS NLSFRGNVNI SEGQSADVVF
    LNADNGILVQ
    251 DLPFEVKLKK FHIDFYNTGM PRDFASDIEV TDKATGEKLE
    RTIRVNHPLT
    301 LHGITIYQAS FADGGSDLTF KAWNLGDASR EPVVLKATSI
    HQFPLEIGKH
    351 KYRLEFDQFT SMNVEDMSEG AEREKSLKST LNDVRAVTQE
    GKKYTNIGPS
    401 IVYRIRDAAG QAVEYKNYML PVLQEQDYFW ITGTRSGLQQ
    QYRWLRIPLD
    451 KQLKADTFMA LREFLKDGEG RKRLVADATK GAPAEIREQF
    MLAAENTLNI
    501 FAQKGYLGLD EFITSNIPKE QQDKMQGYFY EMLYGVMNAA
    LDETIRRYGL
    551 PEWQQDEARN RFLLHSMDAY TGLTEYPAPM LLQLDGFSEV
    RSSGLQMTRS
    601 PGALLVYLGS VLLVLGTVLM FYVREKRAWV LFSDGKIRFA
    MSSARSERDL
    651 QKEFPKHVES LQRLGKDLNH D*
  • Computer analysis of this amino acid sequence gave the following results:
  • Homology with a Predicted ORF from N. meningitidis (Strain A)
  • ORF88 shows 95.7% identity over a 371aa overlap with an ORF (ORF88a) from strain A of N. meningitidis:
  • Figure US20130064846A1-20130314-C00152
  • The complete length ORF88a nucleotide sequence <SEQ ID 331> is:
  • 1 ATGAGTAAAT CCCGTAGATC TCCCCCACTT CTTTCCCGTC
    CGTGGTTCGC
    51 TTTTTTCAGC TCCATGCGCT TTGCGGTCGC TTTGCTCAGT
    CTGCTGGGTA
    101 TTGCATCGGT TATCGGTACG GTGTTGCAGC AAAACCAGCC
    GCAGACGGAT
    151 TATTTGGTCA AATTCGGATC GTTTTGGGCG CAGATTTTTG
    GTTTTCTGGG
    201 ACTGTATGAC GTCTATGCTT CGGCATGGTT TGTCGTTATC
    ATGATGTTTT
    251 TGGTGGTTTC TACCAGTTTG TGCCTGATTC GCAATGTGCC
    GCCGTTCTGG
    301 CGCGAAATGA AGTCTTTTCG GGAAAAGGTT AAAGAAAAAT
    CTCTGGCGGC
    351 GATGCGCCAT TCTTCGCTGT TGGATGTAAA AATTGCGCCC
    GAGGTTGCCA
    401 AACGTTATCT GGAAGTACAA GGTTTTCAGG GAAAAACCAT
    TAACCGTGAA
    451 GACGGGTCGG TTCTGATTGC CGCCAAAAAA GGCACAATGA
    ACAAATGGGG
    501 CTATATCTTT GCCCATGTTG CTTTGATTGT CATTTGCCTG
    GGCGGGTTGA
    551 TAGACAGTAA CCTGCTGTTG AAACTGGGTA TGCTGACCGG
    TCGGATTGTT
    601 CCGGACAATC AGGCGGTTTA TGCCAAGGAT TTCAAGCCCG
    AAAGTATTTT
    651 GGGTGCGTCC AATCTCTCAT TTAGGGGCAA CGTCAATATT
    TCCGAGGGGC
    701 AGAGTGCGGA TGTGGTTTTC CTGAATGCCG ACAACGGGAT
    ATTGGTTCAG
    751 GACTTGCCTT TTGAAGTCAA ACTGAAAAAA TTCCATATCG
    ATTTTTACAA
    801 TACGGGTATG CCGCGCGATT TTGCCAGTGA TATTGAAGTA
    ACGGATAAGG
    851 CAACCGGTGA GAAACTCGAG CGCACCATCC GCGTGAACCA
    TCCTTTGACC
    901 TTGCACGGCA TCACGATTTA TCAGGCGAGT TTTGCCGACG
    GCGGTTCGGA
    951 TTTGACATTC AAGGCGTGGA ATTTGGGTGA TGCTTCGCGC
    GAGCCTGTCG
    1001 TGTTGAAGGC AACATCCATA CACCAGTTTC CGTTGGAAAT
    TGGCAAACAC
    1051 AAATATCGTC TTGAGTTCGA TCAGTTTACT TCTATGAATG
    TGGAGGACAT
    1101 GAGCGAGGGC GCGGAACGGG AAAAAAGCCT GAAATCCACG
    CTGAACGATG
    1151 TCCGCGCCGT TACTCAGGAA GGTAAAAAAT ACACCAATAT
    CGGCCCTTCC
    1201 ATTGTTTACC GTATCCGTGA TGCGGCAGGG CAGGCGGTCG
    AATATAAAAA
    1251 CTATATGCTG CCGGTTTTGC AGGAACAGGA TTATTTTTGG
    ATTACCGGCA
    1301 CGCGCAGCGG CTTGCAGCAG CAATACCGCT GGCTGCGTAT
    CCCCTTGGAC
    1351 AAGCAGTTGA AAGCGGACAC CTTTATGGCA TTGCGTGAGT
    TTTTGAAAGA
    1401 TGGGGAAGGG CGCAAACGTC TGGTTGCCGA CGCAACCAAA
    GGCGCACCTG
    1451 CCGAAATCCG CGAACAATTC ATGCTGGCTG CGGAAAACAC
    GCTGAACATC
    1501 TTTGCACAAA AAGGCTATTT GGGATTGGAC GAATTTATTA
    CGTCCAATAT
    1551 CCCGAAAGAG CAGCAGGATA AGATGCAGGG CTATTTCTAC
    GAAATGCTTT
    1601 ACGGCGTGAT GAACGCTGCT TTGGATGAAA CCATACGCCG
    GTACGGCTTG
    1651 CCCGAATGGC AGCAGGATGA AGCGCGGAAT CGTTTCCTGC
    TGCACAGTAT
    1701 GGATGCGTAC ACGGGTTTGA CCGAATATCC CGCGCCTATG
    CTGCTGCAAC
    1751 TTGATGGGTT TTCCGAGGTG CGTTCGTCGG GTTTGCAGAT
    GACCCGTTCC
    1801 CCGGGTGCGC TTTTGGTCTA TCTCGGCTCG GTGCTGTTGG
    TATTGGGTAC
    1851 GGTATTGATG TTTTATGTGC GCGAAAAACG GGCGTGGGTA
    TTGTTTTCAG
    1901 ACGGCAAAAT CCGTTTTGCC ATGTCTTCGG CCCGCAGCGA
    ACGGGATTTG
    1951 CAGAAGGAAT TTCCAAAACA CGTCGAGAGT CTGCAACGGC
    TCGGCAAGGA
    2001 CTTGAATCAT GACTGA
  • This encodes a protein having amino acid sequence <SEQ ID 332>:
  • 1 MSKSRRSPPL LSRPWFAFFS SMRFAVALLS LLGIASVIGT
    VLQQNQPQTD
    51 YLVKFGSFWA QIFGFLGLYD VYASAWFVVI MMFLVVSTSL
    CLIRNVPPFW
    101 REMKSFREKV KEKSLAAMRH SSLLDVKIAP EVAKRYLEVQ
    GFQGKTINRE
    151 DGSVLIAAKK GTMNKWGYIF AHVALIVICL GGLIDSNLLL
    KLGMLTGRIV
    201 PDNQAVYAKD FKPESILGAS NLSFRGNVNI SEGQSADVVF
    LNADNGILVQ
    251 DLPFEVKLKK FHIDFYNTGM PRDFASDIEV TDKATGEKLE
    RTIRVNHPLT
    301 LHGITIYQAS FADGGSDLTF KAWNLGDASR EPVVLKATSI
    HQFPLEIGKH
    351 KYRLEFDQFT SMNVEDMSEG AEREKSLKST LNDVRAVTQE
    GKKYTNIGPS
    401 IVYRIRDAAG QAVEYKNYML PVLQEQDYFW ITGTRSGLQQ
    QYRWLRIPLD
    451 KQLKADTFMA LREFLKDGEG RKRLVADATK GAPAEIREQF
    MLAAENTLNI
    501 FAQKGYLGLD EFITSNIPKE QQDKMQGYFY EMLYGVMNAA
    LDETIRRYGL
    551 PEWQQDEARN RFLLHSMDAY TGLTEYPAPM LLQLDGFSEV
    RSSGLQMTRS
    601 PGALLVYLGS VLLVLGTVLM FYVREKRAWV LFSDGKIRFA
    MSSARSERDL
    651 QKEFPKHVES LQRLGKDLNH D*
  • ORF88a and ORF88-1 100.0% identity in 671 aa overlap:
  • Figure US20130064846A1-20130314-C00153
  • Homology with a Predicted ORF from N. gonorrhoeae
  • ORF88 shows 93.8% identity over a 371aa overlap with a predicted ORF (ORF88.ng) from N. gonorrhoeae:
  • Figure US20130064846A1-20130314-C00154
  • An ORF88ng nucleotide sequence <SEQ ID 333> was predicted to encode a protein having amino acid sequence <SEQ ID 334>:
  • 1 MVFLNADNGM LVQDLPFEVK LKKFHIDFYN TGMPRDFASD
    IEVTDKATGE
    51 KLERTIRVNH PLTLHGITIY QASFADGGSD LTFKAWNLRD
    ASREPVVLKA
    101 TSIHQFPLEI GKHKYRLEFD QFTSMNVEDM SEGAEREKSL
    KSTLNDVRAV
    151 TQEGKKYTNI GPSIVYRIRD AAGQAVEYKN YMLPILQDKD
    YFWLTGTRSG
    201 LQQQYRWLRI PLDKQLKADT FMALREFLKD GEGRKRLVAD
    ATKDAPAEIR
    251 EQFMLAAENT LNIFAQKGYL GLDEFITSNI PKGQQDKMQG
    YFYEMLYGVM
    301 NAALDETIRR YGLPEWQQDE ARNRFLLHSM DAYTGLTEYP
    APMLLQLDGF
    351 SEVRSSGLQM TRSPGALLVY LGSVLLVLGT VFMFYVPKKR
    AWVLFSNXKI
    401 RFAMSSARSE RDLQKEFPKH VESLQRLGKD LNHD*
  • Further work revealed the complete gonococcal DNA sequence <SEQ ID 335>:
  • 1 ATGAGTAAAT CCCGTATATC TCCCACACTT CTTTCCCGTC
    CGTGGTTCGC
    51 TTTTTTCAGC TCCATGCGCT TTGCGGTCGC TTTGCTCAGT
    CTGCTGGGTA
    101 TTGCATCGGT TATCGGCACG GTGTTACAGC AAAACCAGCC
    GCAGACGGAT
    151 TATTTGGTCA AATTCGGACC GTTTTGGACT CGGATTTTTG
    ATTTTTTGGG
    201 TTTGTATGAT GTCTATGCTT CGGCATGGTT TGTCGTTATC
    ATGATGTTTC
    251 TGGTGGTTTC TACCAGTTTG TGTTTAATCC GTAACGTTCC
    GCCGTTTTGG
    301 CGCGAAATGA AGTCTTTCCG GGAAAAGGTT AAAGAAAAAT
    CTCTGGCGGC
    351 GATGCGCCAT TCTTCGCTGT TGGATGTAAA AATTGCCCCC
    GAAGTTGCCA
    401 AACGTTATCT GGAGGTGCGG GGTTTTCAGG GAAAAACCGT
    CAGCCGTGAG
    451 GACGGGTCGG TTCTGATTGC CGCCAAAAAA GGCAcaatga
    acaaATGGGG
    501 CTATATCTTT GCccaagtag ctTTGATTGT CATTTGCCTG
    GGCGGGTTGA
    551 TAGACAGTAA CCTGCTGCTG AAGCTGGGTA TGCTGGCCGG
    TCGGATTGTT
    601 CCGGACAATC AGGCGGTTTA TGCCAAGGAT TTCAAGCCCG
    AAAGTATTTT
    651 GGGTGCGTCC AATCTCTCAT TTAGGGGCAA CGTCAATATT
    TCCGAGGGGC
    701 AAAGTGCGGA TGTGGTTTTC CTGAATGCCG ACAACGGGAT
    GTTGGTTCAG
    751 GACTTGCCTT TTGAAGTCAA ACTGAAAAAA TTCCATATCG
    ATTTTTACAA
    801 TACGGGTATG CCGCGCGATT TTGCCAGCGA TATTGAAGTA
    ACGGACAAGG
    851 CAACCGGTGA GAAACTCGAG CGCACCATCC GCGTGAACCA
    TCCTTTGACC
    901 TTGCACGGCA TCACGATTTA TCAGGCGAGT TTTGCCGACG
    GCGGTTCGGA
    951 TTTGACATTC AAGGCGTGGA ATTTGAGGGA TGCTTCGCGC
    GAACCTGTCG
    1001 TGTTGAAGGC AACCTCCATA CACCAGTTTC CGTTGGAAAT
    CGGCAAACAC
    1051 AAATATCGTC TTGAGTTCGA TCAGTTCACT TCTATGAATG
    TGGAGGACAT
    1101 GAGCGAGGGT GCGGAACGGG AAAAAAGCCT GAAATCCACT
    CTGAACGATG
    1151 TCCGCGCCGT TACTCAGGAA GGTAAAAAAT ACACCAATAT
    CGGCCCTTCC
    1201 ATCGTGTACC GCATCCGTGA TGcggCAGGG CAGGCGGTCG
    AATATAAAAA
    1251 CTATATGCTG CCGATTTTGC AGGACAAAGA TTATTTTTGG
    CTGACCGGCA
    1301 CGCGCAGCGG CTTGCAGCAG CAATACCGCT GGCTGCGTAT
    CCCCTTGGAC
    1351 AAGCAGTTGA AAGCGGACAC CTTTATGGCA TTGCGTGAGT
    TTTTGAAAGA
    1401 TGGGGAAGGG CGCAAACGTC TGGTTGCCGA CGCAACCAAA
    GACGCACCTG
    1451 CCGAAATCCG CGAACAATTC ATGCTGGCTG CGGAAAACAC
    GCTGAATATC
    1501 TTTGCGCAAA AAGGCTATTT GGGATTGGAC GAATTTATTA
    CGTCCAATAT
    1551 CCCGAAAGGG CAGCAGGATA AGATGCAGGG CTATTTCTAC
    GAAATGCTTT
    1601 ACGGCGTGAT GAACGCTGCT TTGGATGAAA CCATACGCCG
    GTACGGCTTG
    1651 CCCGAATGGC AGCAGGATGA AGCGCGGAAC CGTTTCCTGC
    TGCACAGTAT
    1701 GGATGCCTAT ACGGGGCTGA CGGAATATCC CGCGCCTATG
    CTGCTCCAGC
    1751 TTGACGGGTT TTCCGAGGTG CGTTCCTCAG GTTTGCAGAT
    GACCCGTTCG
    1801 CCGGGTGCGC TTTTGGTCTA TCtcggctcg gtattgttgg
    TTTTGGgtac
    1851 ggtaTttatg tTTTATGTGC GCGAAAAACG GGCGTGGgta
    tTGTTTTCag
    1901 aCGGCAAAAT CCGTTTTGCT ATGtCTTcgg CCcgcagcga
    ACGGGATTTG
    1951 cAGAaggaaT TTCCAAAACA CGtcgAGAGC CTGCAACggc
    tcggcaaggA
    2001 CttgaaTCAT GACTga
  • This corresponds to the amino acid sequence <SEQ ID 336; ORF88ng-1>:
  • 1 MSKSRISPTL LSRPWFAFFS SMRFAVALLS LLGIASVIGT
    VLQQNQPQTD
    51 YLVKFGPFWT RIFDFLGLYD VYASAWFVVI MMFLVVSTSL
    CLIRNVPPFW
    101 REMKSFREKV KEKSLAAMRH SSLLDVKIAP EVAKRYLEVR
    GFQGKTVSRE
    151 DGSVLIAAKK GTMNKWGYIF AQVALIVICL GGLIDSNLLL
    KLGMLAGRIV
    201 PDNQAVYAKD FKPESILGAS NLSFRGNVNI SEGQSADVVF
    LNADNGMLVQ
    251 DLPFEVKLKK FHIDFYNTGM PRDFASDIEV TDKATGEKLE
    RTIRVNHPLT
    301 LHGITIYQAS FADGGSDLTF KAWNLRDASR EPVVLKATSI
    HQFPLEIGKH
    351 KYRLEFDQFT SMNVEDMSEG AEREKSLKST LNDVRAVTQE
    GKKYTNIGPS
    401 IVYRIRDAAG QAVEYKNYML PILQDKDYFW LTGTRSGLQQ
    QYRWLRIPLD
    451 KQLKADTFMA LREFLKDGEG RKRLVADATK DAPAEIREQF
    MLAAENTLNI
    501 FAQKGYLGLD EFITSNIPKG QQDKMQGYFY EMLYGVMNAA
    LDETIRRYGL
    551 PEWQQDEARN RFLLHSMDAY TGLTEYPAPM LLQLDGFSEV
    RSSGLQMTRS
    601 PGALLVYLGS VLLVLGTVFM FYVREKRAWV LFSDGKIRFA
    MSSARSERDL
    651 QKEFPKHVES LQRLGKDLNH D*
  • ORF88ng-1 and ORF88-1 show 97.0% identity in 671 aa overlap:
  • Figure US20130064846A1-20130314-C00155
  • Furthermore, ORG88ng-1 shows homology with a hypothetical protein from Aquifex aeolicus:
  • gi|2984296 (AE000771) hypothetical protein [Aquifex aeolicus]
    Length = 537 Score = 94.4 bits (231), Expect = 2e−18.
    Identities = 91/334 (27%), Positives = 159/334 (47%), Gaps = 59/334 (17%)
    Query: 16 FAFFSSMRFAVALLSLLGIASVIG-TVLQQNQPQTDYLVKFGPFWTRIFDFLGLYDVYAS 74
    + F +S++ A+ ++ +LGI S++G T ++QNQ    YL +FG         L L DV+ S
    Sbjct: 80 YDFLASLKLAIFIMLVLGILSMLGSTYIKQNQSFEWYLDQFGYDVGIWIWKLWLNDVFHS 139
    Query: 75 AWFVVIMMFLVVSTSLCLIRNVPPFWREMKSFREKVKEKSLAAMRHSSLLDVKIAPEVAK 134
     ++++ ++ L V+   C I+ +P  W++  S +E++ +    A +H   + VKI P+  K
    Sbjct: 140 WYYILFIVLLAVNLIFCSIKRLPRVWKQAFS-KERILKLDEHAEKHLKPITVKI-PDKDK 197
    Query: 135 --RYLEVRGFQGKTVSREDGSVLIAAKKGTMNKWGYIFAQVALIVICLGGLIDSNLLLKL 192
      ++L  +GF+   V  E   + + A+KG  ++ G     +AL+VI  G LID
    Sbjct: 198 VLKFLLKKGFK-VFVEEEGNKLYVFAEKGRFSRLGVYITHIALLVIMAGALID------- 249
    Query: 193 GMLAGRIVPDNQAVYAKDFKPESILGASNLSFRGNVNISEGQSADVVFLNADNGMLVQDL 252
                          +I+G      RG++ ++EG + DV+ + A+       L
    Sbjct: 250 ----------------------AIVGV-----RGSLIVAEGDTNDVMLVGAE--QKPYKL 280
    Query: 253 PFEVKLKKFHIDFY---NTGMPRDFA-------SDIEVTDKATGEKLER--TIRVNHPLT 300
    PF V L  F I  Y   N  + + FA       SDIE+ +   G K+E   T++VN P
    Sbjct: 281 PFAVHLIDFRIKTYAEENPNVDKRFAQAVSSYESDIEIIN---GGKVEAKGTVKVNEPFD 337
    Query: 301 LHGITIYQASFA--DGGSDLTFKAWNLRDASREP 332
         ++QA++   DG S +     + + A  +P
    Sbjct: 338 FGRYRLFQATYGILDGTSGMGVIVVDRKKAHEDP 371
  • Based on this analysis, including the putative transmembrane domain in the gonococcal protein, it is predicted that the proteins from N. meningitidis and N. gonorrhoeae, and their epitopes, could be useful antigens for vaccines or diagnostics, or for raising antibodies.
  • Example 40
  • The following DNA sequence, believed to be complete, was identified in N. meningitidis <SEQ ID 337>:
  • 1 ATGATGAGTA ATAmAATGGm ACAAAAAGGG TTTACATTGA
    TTGmGmTGAT
    51 GATAGTCGTC GCGATACTCG GCATTATCAG CGTCATTGCC
    ATACCTTCTT
    101 ATCmAAGTTA TATTGAAAAA GGCTATCAGT CCCAGCTTTA
    TACGGAGATG
    151 GyCGGTATCA ACAATATTTC CAAACAGTTT ATTTTGAAAA
    ATCCCCTGGA
    201 CGATAATCAG ACCATCGAGA ACAAACTGGA AATATTTGTC
    TCAGGCTATA
    251 AGATGAATCC GAAAATTGCC AAAAAaTATA GTGTTTCGGT
    AAAGTTTGTC
    301 GATAAGGAAA AATCAAGGGC ATACAGGTTG GTCGGCGTTC
    CGAAGGCGGG
    351 GACGGGTTAT ACTTTGTCGG TATGGATGAA CAGCGTGGGC
    GACGGATACA
    401 AATGCCGTGA TGCCGCTTCT GCCCAAGCCC ATTTGGAGAC
    CTTGTCCTCA
    451 GATGTCGGCT GTGAAGCCTT CTCTAATCGT AAAAAATAA
  • This corresponds to the amino acid sequence <SEQ ID 338; ORF89>:
  • 1 MMSNXMXQKG FTLIXXMIVV AILGIISVIA IPSYXSYIEK
    GYQSQLYTEM
    51 XGINNISKQF ILKNPLDDNQ TIENKLEIFV SGYKMNPKIA
    KKYSVSVKFV
    101 DKEKSRAYRL VGVPKAGTGY TLSVWMNSVG DGYKCRDAAS
    AQAHLETLSS
    151 DVGCEAFSNR KK*
  • Further work revealed the complete nucleotide sequence <SEQ ID 339>:
  • 1 ATGATGAGTA ATAAAATGGA ACAAAAAGGG TTTACATTGA
    TTGAGATGAT
    51 GATAGTCGTC GCGATACTCG GCATTATCAG CGTCATTGCC
    ATACCTTCTT
    101 ATCAAAGTTA TATTGAAAAA GGCTATCAGT CCCAGCTTTA
    TACGGAGATG
    151 GTCGGTATCA ACAATATTTC CAAACAGTTT ATTTTGAAAA
    ATCCCCTGGA
    201 CGATAATCAG ACCATCGAGA ACAAACTGGA AATATTTGTC
    TCAGGCTATA
    251 AGATGAATCC GAAAATTGCC AAAAAATATA GTGTTTCGGT
    AAAGTTTGTC
    301 GATAAGGAAA AATCAAGGGC ATACAGGTTG GTCGGCGTTC
    CGAAGGCGGG
    351 GACGGGTTAT ACTTTGTCGG TATGGATGAA CAGCGTGGGC
    GACGGATACA
    401 AATGCCGTGA TGCCGCTTCT GCCCAAGCCC ATTTGGAGAC
    CTTGTCCTCA
    451 GATGTCGGCT GTGAAGCCTT CTCTAATCGT AAAAAATAA
  • This corresponds to the amino acid sequence <SEQ ID 340; ORF89-1>:
  • 1 MMSNKMEQKG FTLIEMMIVV AILGIISVIA IPSYQSYIEK
    GYQSQLYTEM
    51 VGINNISKQF ILKNPLDDNQ TIENKLEIFV SGYKMNPKIA
    KKYSVSVKFV
    101 DKEKSRAYRL VGVPKAGTGY TLSVWMNSVG DGYKCRDAAS
    AQAHLETLSS
    151 DVGCEAFSNR KK*
  • Computer analysis of this amino acid sequence gave the following results:
  • Homology with PilE of N. gonorrhoeae (Accession Number Z69260).
  • ORF89 and PilE protein show 30% aa identity in 120a overlap:
  • orf89 8 QKGFTLIXXMIVVAILGIISVIAIPSYXSYIEKGYQSQLYTEMXGINNISKQFILKNPL- 66
    QKGFTLI  MIV+AI+GI++ +A+P+Y  Y  +   S+      G  +   ++ L + +
    PilE 5 QKGFTLIELMIVIAIVGILAAVALPAYQDYTARAQVSEAILLAEGQKSAVTEYYLNHGIW 64
    orf89 67 -DDNQTIENKLEIFVSGYKMNPKIAKKYSVSVKFVDKEKSRAYRLVGVPKAGTGYTLSVW 125
      DN +         +G   + KI  KY  SV       +      GV K   G  LS+W
    PilE 65 PKDNTS---------AGVASSDKIKGKYVQSVTVAKGVVTAEMASTGVNKEIQGKKLSLW 115

    Homology with a Predicted ORF from N. meningitidis (Strain A)
  • ORF89 shows 83.3% identity over a 162aa overlap with an ORF (ORF89a) from strain A of N. meningitidis:
  • Figure US20130064846A1-20130314-C00156
  • The complete length ORF89a nucleotide sequence <SEQ ID 341> is:
  • 1 ATGATGAGTA ATAAAATGGA ACAAAAAGGG TTTACATTGA
    TTGNGANGNT
    51 NATNGNCNTC GCGATACNCN GCNTTANCAG CGTCATTNCN
    ATNNNTNCNT
    101 ATCNNAGTTA TATTGAAAAA GGCTATCAGT CCCAGCTTTA
    TACGGAGATG
    151 GTCGGTATCA ACAATATTTC CAAACAGTNT ATTTTGAAAA
    ATCCCCTGGA
    201 CGATAATCAG ACCATCAAGA GCAAACTGGA AATATTTGTC
    TCAGGCTATA
    251 AGATGAATCC GAAAATTGCC GAAAAATATA ATGTTTCGGT
    GCATTTTGTC
    301 AATGAGGAAA AACCNAGGGC ATACAGCTTG GTCGGCGTTC
    CAAAGACGGG
    351 GACGGGTTAT ACTTTGTCGG TATGGATGAA CAGCGTGGGC
    GACGGATACA
    401 AATGCCGTGA TGCCGCTTCT GCCCGAGCCC ATTTGGAGAC
    CTTGTCCTCA
    451 GATGTCGGCT GTGAAGCCTT CTCTAATCGT AAAAAATAG
  • This encodes a protein having amino acid sequence <SEQ ID 342>:
  • 1 MMSNKMEQKG FTLIXXXXXX AIXXXXSVIX XXXYXSYIEK
    GYQSQLYTEM
    51 VGINNISKQX ILKNPLDDNQ TIKSKLEIFV SGYKMNPKIA
    EKYNVSVHFV
    101 NEEKPRAYSL VGVPKTGTGY TLSVWMNSVG DGYKCRDAAS
    ARAHLETLSS
    151 DVGCEAFSNR KK*
  • ORF89a and ORF89-1 show 83.3% identity in 162 aa overlap:
  • Figure US20130064846A1-20130314-C00157
  • Homology with a Predicted ORF from N. gonorrhoeae
  • ORF89 shows 84.6% identity over a 162aa overlap with a predicted ORF (ORF89.ng) from N. gonorrhoeae:
  • Figure US20130064846A1-20130314-C00158
  • The complete length ORF89ng nucleotide sequence <SEQ ID 343> is:
  • 1 aTGATGAGCA ATAAAATGGA ACAAAAAGGG TTTACATTGA
    TTGAGATGAT
    51 GATAGTTGTC ACGATACTCG GCATCATCAG CGTCATTGCC
    ATACCTTCTT
    101 ATCAGAGTTA TATTGAAAAA GGCTATCAGT CCCAGCTTTA
    TACGGAGATG
    151 GTCGGTATCA ACAATGTTCT CAAACAGTTT ATTTTGAAAA
    ATCCCCAGGA
    201 CGATAATGAT ACCCTCAAGA GCAAACTGAA AATATTTGTC
    TCAGGCTATA
    251 AGATGAATCC GAAAAttgCC AAAAAATATA GTGTTTCGGt
    aaggtttGTC
    301 gatGCGGAAA AACCAAGGGC ATACAGGTTG GTCGGCGTTC
    CGAACGCGGG
    351 GACGGGTTAT ACTTTGTCGG TATGGATGAA CAGCGTGGGC
    GACGGATACA
    401 AATGCCGTGA TGCCACTTCT GCCCAGGCCT ATTCGGACAC
    CTTGTCCGCA
    451 GATAGCGGCT GTGAAGCTTT CTCTAATCGT AAAAAATAG
  • This encodes a protein having amino acid sequence <SEQ ID 344>:
  • 1 MMSNKMEQ KG FTLIEMMIVV TILGIISVIA IPSYQSYIEK
    GYQSQLYTEM
    51 VGINNVLKQF ILKNPQDDND TLKSKLKIFV SGYKMNPKIA
    KKYSVSVRFV
    101 DAEKPRAYRL VGVPNAGTGY TLSVWMNSVG DGYKCRDATS
    AQAYSDTLSA
    151 DSGCEAFSNR KK*
  • This gonococcal protein has a putative leader peptide (underlined) and N-terminal methylation site (NMePhe or type-4 pili, double-underlined). In addition, ORF89ng and ORF89-1 show 88.3% identity in 162 aa overlap:
  • Figure US20130064846A1-20130314-C00159
  • Based on this analysis, including the gonococcal motifs and the homology with the known PilE protein, it was predicted that these proteins from N. meningitidis and N. gonorrhoeae, and their epitopes, could be useful antigens for vaccines or diagnostics, or for raising antibodies.
  • ORF89-1 (13.6 kDa) was cloned in the pGex vector and expressed in E. coli, as described above. The products of protein expression and purification were analyzed by SDS-PAGE. FIG. 11A shows the results of affinity purification of the GST-fusion protein. Purified GST-fusion protein was used to immunise mice, whose sera gave a positive result in the ELISA test, confirming that ORF89-1 is a surface-exposed protein, and that it is a useful immunogen.
  • Example 41
  • The following partial DNA sequence was identified in N. meningitidis <SEQ ID 345>:
  • 1 ATGAAAAAAT CCTCCCTCAT CAGCGCATTG GGCATCGGTA
    TTTTGAGCAT
    51 CGGCATGGCA TTTGCCGCCC CTGCCGACGC GGTAAGCCAA
    ATCCGTCAAA
    101 ACGCCACTCA AGTATTGAGC ATCTTAAAAA ACGGCGATGC
    CAACACCGCT
    151 CGCCAAAAAG CCGAAGCCTA TGCGATTCCC TATTTCGATT
    TCCAACGTAT
    201 GACCGCATTG GCGGTCGGCA ACCCTTGGsG CACCG.GTCC
    GACG.GCAAA
    251 AACAAGCGTT GGCCn.AGAA TTTCAACCC...
  • This corresponds to the amino acid sequence <SEQ ID 346; ORF91>:
  • 1 MKKSSLISAL GIGILSIGMA FAAPADAVSQ IRQNATQVLS
    ILKNGDANTA
    51 RQKAEAYAIP YFDFQRMTAL AVGNPWXTXS DXQKQALAXE
    FQP...
  • Further work revealed the complete nucleotide sequence <SEQ ID 347>:
  • 1 ATGAAAAAAT CCTCCCTCAT CAGCGCATTG GGCATCGGTA
    TTTTGAGCAT
    51 CGGCATGGCA TTTGCCGCCC CTGCCGACGC GGTAAGCCAA
    ATCCGTCAAA
    101 ACGCCACTCA AGTATTGAGC ATCTTAAAAA ACGGCGATGC
    CAACACCGCT
    151 CGCCAAAAAG CCGAAGCCTA TGCGATTCCC TATTTCGATT
    TCCAACGTAT
    201 GACCGCATTG GCGGTCGGCA ACCCTTGGCG CACCGCGTCC
    GACGCGCAAA
    251 AACAAGCGTT GGCCAAAGAA TTTCAAACCC TGCTGATCCG
    CACCTATTCC
    301 GGCACGATGC TGAAATTAAA AAACGCCAAC GTCAACGTCA
    AAGACAATCC
    351 CATCGTCAAT AAAGGCGGCA AAGAAATCAT CGTCCGCGCC
    GAAGTCGGCG
    401 TACCCGGGCA AAAACCCGTC AACATGGACT TCACCACCTA
    CCAAAGCGGC
    451 GGTAAATACC GTACCTACAA CGTCGCCATC GAAGGCGCGA
    GCCTGGTTAC
    501 CGTGTACCGC AACCAATTCG GCGAAATTAT CAAAGCGAAA
    GGCGTGGACG
    551 GACTGATTGC CGAGTTGAAA GCCAAAAACG GCGGCAAATA
    A
  • This corresponds to the amino acid sequence <SEQ ID 348; ORF91-1>:
  • 1 MKKSSLISAL GIGILSIGMA FAAPADAVSQ IRQNATQVLS
    ILKNGDANTA
    51 RQKAEAYAIP YFDFQRMTAL AVGNPWRTAS DAQKQALAKE
    FQTLLIRTYS
    101 GTMLKLKNAN VNVKDNPIVN KGGKEIIVRA EVGVPGQKPV
    NMDFTTYQSG
    151 GKYRTYNVAI EGASLVTVYR NQFGEIIKAK GVDGLIAELK
    AKNGGK*
  • Computer analysis of this amino acid sequence gave the following results:
  • Homology with a Predicted ORF from N. meningitidis (Strain A)
  • ORF91 shows 92.4% identity over a 92aa overlap with an ORF (ORF91a) from strain A of N. meningitidis:
  • Figure US20130064846A1-20130314-C00160
  • The complete length ORF91a nucleotide sequence <SEQ ID 349> is:
  • 1 ATGAAAAAAT CCTCCTTCAT CAGCGCATTG GGCATCGGTA
    TTTTGAGCAT
    51 CGGCATGGCA TTTGCCGCCC CTGCCGACGC GGTAAACCAA
    ATCCGTCAAA
    101 ACGCCACTCA AGTATTGAGC ATCTTAAAAA GCGGTGATGC
    CAACACCGCC
    151 CGCCAAAAAG CCGAAGCCTA TGCGATTCCC TATTTCGATT
    TCCAACGTAT
    201 GACCGCATTG GCGGTCGGCA ACCCTTGGCG CACCGCGTCC
    GACGCGCAAA
    251 AACAAGCGTT GGCCAAAGAA TTTCAAACCC TGCTGATCCG
    CACCTATTCC
    301 GGCACGATGC TGAAATTAAA AAACGCCAAC GTCAACGTCA
    AAGACAATCC
    351 CATCGTCAAT AAAGGCGGCA AAGAAATCAT CGTCCGCGCC
    GAAGTCGGCG
    401 TACCCGGGCA AAAACCCGTC AACATGGACT TCACCACCTA
    CCAAAGCGGC
    451 GGTAAATACC GTACCTACAA CGTCGCCATC GAAGGCGCGA
    GCCTGGTTAC
    501 CGTGTACCGC AACCAATTCG GCGAAATTAT CAAAGCGAAA
    GGCGTGGACG
    551 GACTGATTGC CGAGTTGAAG GCTAAAAACG GCAGCAAGTA
    A
  • This encodes a protein having amino acid sequence <SEQ ID 350>:
  • 1 MKKSSFISAL GIGILSIGMA FAAPADAVNQ IRQNATQVLS
    ILKSGDANTA
    51 RQKAEAYAIP YFDFQRMTAL AVGNPWRTAS DAQKQALAKE
    FQTLLIRTYS
    101 GTMLKLKNAN VNVKDNPIVN KGGKEIIVRA EVGVPGQKPV
    NMDFTTYQSG
    151 GKYRTYNVAI EGASLVTVYR NQFGEIIKAK GVDGLIAELK
    AKNGSK*
  • ORF91a and ORF91-1 show 98.0% identity in 196 aa overlap:
  • Figure US20130064846A1-20130314-C00161
  • Homology with a Predicted ORF from N. gonorrhoeae
  • ORF91 shows 84.8% identity over a 92aa overlap with a predicted ORF (ORF91.ng) from N. gonorrhoeae:
  • Figure US20130064846A1-20130314-C00162
  • The complete length ORF91ng nucleotide sequence <SEQ ID 351> is predicted to encode a protein having amino acid sequence <SEQ ID 352>:
  • 1 VKKSSFISAL GIGILSIGMA FASPADAVGQ IRQNATQVLT
    ILKSGDAASA
    51 RPKAEAYAVP YFDFQRMTAL AVGNPWRTAS DAQKQALAKE
    FQTLLIRTYS
    101 GTMLKFKNAT VNVKDNPIVN KGGKEIVVRA EVGIPGQKPV
    NMDFTTYQSG
    151 GKYRTYNVAI EGTSLVTVYR NQFGEIIKAK GIDGLIAELK
    AKNGGK*
  • Further work revealed the complete nucleotide sequence <SEQ ID 353>:
  • 1 ATGAAAAAAT CCTCCTTCAT CAGCGCATTG GGCATCGGTA
    TTTTGAGCAT
    51 CGGCATGGCA TTTGCCTCCC CGGCCGACGC AGTGGGACAA
    ATCCGCCAAA
    101 ACGCCACACA GGTTTTGACC ATCCTCAAAA GCGGCGACGC
    GGCTTCTGCA
    151 CGCCCAAAAG CCGAAGCCTA TGCGGTTCCC TATTTCGATT
    TCCAACGTAT
    201 GACCGCATTG GCGGTCGGCA ACCCTTGGCG TACCGCGTCC
    GACGCGCAAA
    251 AACAAGCGTT GGCCAAAGAA TTTCAAACCC TGCTGATCCG
    CACCTATTCC
    301 GGCACGATGC TGAAATTCAA AAACGCGACC GTCAACGTCA
    AAGACAATCC
    351 CATCGTCAAT AAGGGCGGCA AGGAAATCGT CGTCCGTGCC
    GAAGTCGGCA
    401 TCCCCGGTCA GAAGCCCGTC AATATGGACT TTACCACCTA
    CCAAAGCGGC
    451 GGCAAATACC GTACCTACAA CGTCGCCATC GAAGGCACGA
    GCCTGGTTAC
    501 CGTGTACCGC AACCAATTCG GCGAAATCAT CAAAGCCAAA
    GGCATCGACG
    551 GGCTGATTGC CGAGTTGAAA GCCAAAAACG GCGGCAAATA
    A
  • This corresponds to the amino acid sequence <SEQ ID 354; ORF91ng-1>:
  • 1 MKKSSFISAL GIGILSIGMA FASPADAVGQ IRQNATQVLT
    ILKSGDAASA
    51 RPKAEAYAVP YFDFQRMTAL AVGNPWRTAS DAQKQALAKE
    FQTLLIRTYS
    101 GTMLKFKNAT VNVKDNPIVN KGGKEIVVRA EVGIPGQKPV
    NMDFTTYQSG
    151 GKYRTYNVAI EGTSLVTVYR NQFGEIIKAK GIDGLIAELK
    AKNGGK*
  • ORF91ng-1 and ORF91-1 show 92.3% identity in 196 aa overlap:
  • Figure US20130064846A1-20130314-C00163
  • In addition, ORF91ng-1 shows homology to a hypothetical E. coli protein:
  • sp|P45390|YRBC_ECOLI HYPOTHETICAL 24.0 KD PROTEIN IN MURA-RPON
    INTERGENIC
    REGION PRECURSOR (F211) >gi|606130 (U18997) ORF_f211 [Escherichia coli]
    >gi|1789583 (AE000399) hypothetical 24.0 kD protein in murZ-rpoN
    intergenic region [Escherichia coli]Length = 211
    Score = 70.6 bits (170), Expect = 6e−12
    Identities = 42/137 (30%), Positives = 76/137 (54%), Gaps = 6/137 (4%)
    Query: 59 VPYFDFQRMTALAVGNPWRTASDAQKQALAKEFQTLLIRTYSGTMLKFKNATVNVKDNPI 118
    +PY   +   AL +G  +++A+ AQ++A    F+  L + Y   +  +   T  +   P
    Sbjct: 65 LPYVQVKYAGALVLGQYYKSATPAQREAYFAAFREYLKQAYGQALAMYHGQTYQIA--PE 122
    Query: 119 VNKGGKEIV-VRAEVGIP-GQKPVNMDFTTYQSG--GKYRTYNVAIEGTSLVTVYRNQFG 174
       G K IV +R  +  P G+ PV +DF   ++   G ++ Y++  EG S++T  +N++G
    Sbjct: 123 QPLGDKTIVPIRVTIIDPNGRPPVRLDFQWRKNSQTGNWQAYDMIAEGVSMITTKQNEWG 182
    Query: 175 EIIKAKGIDGLIAELKA 191
     +++ KGIDGL A+LK+
    Sbjct: 183 TLLRTKGIDGLTAQLKS 199
  • Based on this analysis, including the presence of a putative leader sequence in the gonococcal protein, it is predicted that the proteins from N. meningitidis and N. gonorrhoeae, and their epitopes, could be useful antigens for vaccines or diagnostics, or for raising antibodies.
  • Example 42
  • The following DNA sequence was identified in N. meningitidis <SEQ ID 355>:
  • 1 ATGAAACACA TACTCCCCCT GATTGCCGCA TCCGCACTCT
    GCATTTCAAC
    51 CGCTTCGGCA CATCCTGCCA GCGAACCGTC CACTCAAAAC
    GAAACCGCTA
    101 TGATCACGCA TACCCTCATC TCAAAATACA GTTTTGGnnn
    nnnnnnnnnn
    151 nnnnnnnnnn nnGCCATAAA AAGCAAAGGG ATGGACATTT
    TTGCCGTCAT
    201 CGACCATCAG GAAGCCGCAC GCCGAAACGG CTTAACGATG
    CAGCCGGCAA
    251 AAGTCATCGT CTTCGGCACG CCCAAAGCCG GCACGCCGCT
    GATGGTCAAA
    301 GACCCCGCCT TCGCCCTGCA ACTGCCCCTA CGCGTCCTCG
    TTACCGAAAC
    351 GGACGGCAAA GTACGCGCCG CCTATACCGA TACGCGCGCC
    CTCATCGCCG
    401 GCAGCCGCAT CGGTTTCGAC GAAGTGGCAA ACACTTTGGC
    AAACGCCGAA
    451 AAACTGATAC AAAAAACCGT AGGCGAATAA
  • This corresponds to the amino acid sequence <SEQ ID 356; ORF97>:
  • 1 MKHILPLIAA SALCISTASA HPASEPSTQN ETAMITHTLI
    SKYSFGXXXX
    51 XXXXAIKSKG MDIFAVIDHQ EAARRNGLTM QPAKVIVFGT
    PKAGTPLMVK
    101 DPAFALQLPL RVLVTETDGK VRAAYTDTRA LIAGSRIGFD
    EVANTLANAE
    151 KLIQKTVGE*
  • Further work revealed the complete nucleotide sequence <SEQ ID 357>:
  • 1 ATGAAACACA TACTCCCCCT GATTGCCGCA TCCGCACTCT
    GCATTTCAAC
    51 CGCTTCGGCA CATCCTGCCA GCGAACCGTC CACCCAAAAC
    GAAACCGCTA
    101 TGACCACGCA TACCCTCACC TCAAAATACA GTTTTGACGA
    AACCGTCAGC
    151 CGCCTTGAAA CCGCCATAAA AAGCAAAGGG ATGGACATTT
    TTGCCGTCAT
    201 CGACCATCAG GAAGCCGCCC GCCGAAACGG CTTAACGATG
    CAGCCGGCAA
    251 AAGTCATCGT CTTCGGCACG CCCAAAGCCG GCACGCCGCT
    GATGGTCAAA
    301 GACCCCGCCT TCGCCCTGCA ACTGCCCCTA CGCGTCCTCG
    TTACCGAAAC
    351 GGACGGCAAA GTACGCGCCG CCTATACCGA TACGCGCGCC
    CTCATCGCCG
    401 GCAGCCGCAT CGGTTTCGAC GAAGTGGCAA ACACTTTGGC
    AAACGCCGAA
    451 AAACTGATAC AAAAAACCGT AGGCGAATAA
  • This corresponds to the amino acid sequence <SEQ ID 358; ORF97-1>:
  • 1 MKHILPLIAA SALCISTASA HPASEPSTQN ETAMTTHTLT
    SKYSFDETVS
    51 RLETAIKSKG MDIFAVIDHQ EAARRNGLTM QPAKVIVFGT
    PKAGTPLMVK
    101 DPAFALQLPL RVLVTETDGK VRAAYTDTRA LIAGSRIGFD
    EVANTLANAE
    151 KLIQKTVGE*
  • Computer analysis of this amino acid sequence gave the following results:
  • Homology with a Predicted ORF from N. meningitidis (Strain A)
  • ORF97 shows 88.7% identity over a 159aa overlap with an ORF (ORF97a) from strain A of N. meningitidis:
  • Figure US20130064846A1-20130314-C00164
  • The complete length ORF97a nucleotide sequence <SEQ ID 359> is:
  • 1 ATGANACACA TACTCCCCCT GANTGNCGCA TCCGCACTCT
    GCATTTCAAC
    51 CGCTTCGGNN CATCCTGCCA GCGAACCGCA AACCCAAAAC
    GAAACCGCTA
    101 TGACCACGCA TACCCTCACC TCAAAATACA GTTTTGACGA
    AACCGTCAGC
    151 CGCCTTGAAA CCGCCATAAA AAGCAAAGGG ATGGACATTT
    TTGCCGTCAT
    201 CGACCATCAG GAAGCCGCCC GCCGAAACGG CTTAACGATG
    CAGCCGGCAA
    251 AAGTCATCGT CTTCGGCACG CCCAAAGCCG GTACGCCGCT
    GATGGTCAAA
    301 GACCCCGCCT TCGCCCTGCA ACTGCCCCTG CGCGTCNTCG
    TTACCGAAAC
    351 GGACGGCAAA GTACGCGCCG CCTATACCGA TACGCGCGCC
    CTCATCGCCG
    401 GCAGCCGCAT CGGTTTCGAC GAAGTGGCAA ACACTTTGGC
    AAACGCCGAA
    451 AAACTGATAC AAAAAACCAT AGGCGAATAA
  • This encodes a protein having amino acid sequence <SEQ ID 360>:
  • 1 MXHILPLXXA SALCISTASX HPASEPQTQN ETAMTTHTLT
    SKYSFDETVS
    51 RLETAIKSKG MDIFAVIDHQ EAARRNGLTM QPAKVIVFGT
    PKAGTPLMVK
    101 DPAFALQLPL RVXVTETDGK VRAAYTDTRA LIAGSRIGFD
    EVANTLANAE
    151 KLIQKTIGE*
  • ORF97a and ORF97-1 show 95.6% identity in 159 aa overlap:
  • Figure US20130064846A1-20130314-C00165
  • Homology with a Predicted ORF from N. gonorrhoeae
  • ORF97 shows 88.1% identity over a 159aa overlap with a predicted ORF (ORF97.ng) from N. gonorrhoeae:
  • Figure US20130064846A1-20130314-C00166
  • The complete length ORF97ng nucleotide sequence <SEQ ID 361> is predicted to encode a protein having amino acid sequence <SEQ ID 362>:
  • 1 MKHILPPIAA SAFCISTASA HPAGKPPTQN ETAMTTHTLT
    SKYSFDETVS
    51 RLETAIKSKG MDIFAVIDHQ EAARRNGLTM QPAKVIVFGT
    PKAGTPLMVK
    101 DPAFALQLPL RVLVTETDGK VRTAYTDTRA LIVGSRISFD
    EVANTLANAE
    151 KLIQKTVGE*
  • Further work revealed the complete nucleotide sequence <SEQ ID 363>:
  • 1 ATGAAACACA TACTCCCcct gatcgccgca TccgcactCT
    GCATTTCAAC
    51 CGCTTCGGCA CACCCTGCCG GCAAACCGCC CACCCAAAAC
    GAAACCGCTA
    101 TGACCACGCA CACCCTCACC TCGAAATACA GTTTTGACGA
    AACCGTCAGC
    151 CGCCTTGAAA CCGCCATAAA AAGCAAAGGG ATGGACATTT
    TTGCCGTCAT
    201 CGACCATCAG GAAGCGGCAC GCCGAAACGG CCTGACCATG
    CAGCCGGCAA
    251 AAGTCATCGT CTTCGGCACG CCCAAGGCCG GTACGCCgct
    GATGGTCAAA
    301 GACCCCGCCT TCGCCCTGCA ACTGCCCCTG CGCGTCCTCG
    TTACCGAAAC
    351 GGACGGCAAA GTACGCACCG CCTATACCGA TACGCGCGCC
    CTCATCGTCG
    401 GCAGCCGCAT CAGTTTCGAC GAAGTGGCAA ACACTTTGGC
    AAACGCCGAA
    451 AAACTGATAC AAAAAACCGT AGGCGAATAA
  • This corresponds to the amino acid sequence <SEQ ID 364; ORF97ng-1>:
  • 1 MKHILPLIAA SALCISTASA HPAGKPPTQN ETAMTTHTLT
    SKYSFDETVS
    51 RLETAIKSKG MDIFAVIDHQ EAARRNGLTM QPAKVIVFGT
    PKAGTPLMVK
    101 DPAFALQLPL RVLVTETDGK VRTAYTDTRA LIVGSRISFD
    EVANTLANAE
    151 KLIQKTVGE*
  • ORF97ng-1 and ORF97-1 show 96.2% identity in 159 aa overlap:
  • Figure US20130064846A1-20130314-C00167
  • Based on this analysis, including the presence of a putative leader sequence in the gonococcal protein, it was predicted that the proteins from N. meningitidis and N. gonorrhoeae, and their epitopes, could be useful antigens for vaccines or diagnostics, or for raising antibodies.
  • ORF97-1 (15.3 kDa) was cloned in pET and pGex vectors and expressed in E. coli, as described above. The products of protein expression and purification were analyzed by SDS-PAGE. FIGS. 12A & 12B show, respectively, the results of affinity purification of the GST-fusion and His-fusion proteins. Purified GST-fusion protein was used to immunise mice, whose sera were used for Western Blot (FIG. 12C), ELISA (positive result), and FACS analysis (FIG. 12D). These experiments confirm that ORF97-1 is a surface-exposed protein, and that it is a useful immunogen. FIG. 12E shows plots of hydrophilicity, antigenic index, and AMPHI regions for ORF97-1.
  • Example 43
  • The following DNA, believed to be complete, sequence was identified in N. meningitidis <SEQ ID 365>:
  • 1 ATGGCTTTTA TTACGCGCTT ATTCAAAAGC AGTAAATGGC
    TGATTGTGCC
    51 GCTGATGCTC CCCGCCTTTC AGAATGTGGC GGCGGAGGGG
    ATAGATGTGA
    101 GCCGTGCCGA AGCGAGGATA ACCGACGGCG GGCAGCTTTC
    CATCAGCAGC
    151 CGCTTCCAAA CCGAGCTGCC CGACCAGCTC CAACAGGCGT
    TGCGCCGGGg
    201 CGTGCCGCTC AACTTTACCT TAAGCTGGCA GCTTTCCGCC
    CCGATAATCG
    251 CTTCTTATCG GTTTAAATTG GGGCAACTGA TTGGCGATGA
    CGACaATATT
    301 GACTACAAAC TGAGTTTCCA TCCGCTGACc AaACGCTACC
    GCGTTACCgT
    351 CGgCGCGTTT TCGACAGACT ACGACACCTT GGATGCGGCA
    TTGCGCGCGA
    401 CCGGCGCGGT TGCCAACTGG AAAGTCCTGA ACAAAGGCGC
    GCTGTCCGGT
    451 GCGGAAGCAG GGGAAACCAA GGCGGAAATC CGCCTGACGC
    TGTCCACTTC
    501 AAAACTGCCC AAGCCTTTTC AAATCAATGC ATTGACTTCT
    CAAAACTGGC
    551 ATTTGGATTC GGGTTGGAAA CCTCTAAACA TCATCGGGAA
    CAAATAA
  • This corresponds to the amino acid sequence <SEQ ID 366; ORF106>:
  • 1 MAFITRLFKS SKWLIVPLML PAFQNVAAEG IDVSRAEARI
    TDGGQLSISS
    51 RFQTELPDQL QQALRRGVPL NFTLSWQLSA PIIASYRFKL
    GQLIGDDDNI
    101 DYKLSFHPLT KRYRVTVGAF STDYDTLDAA LRATGAVANW
    KVLNKGALSG
    151 AEAGETKAEI RLTLSTSKLP KPFQINALTS QNWHLDSGWK
    PLNIIGNK*
  • Further work revealed the following DNA sequence <SEQ ID 367>:
  • 1 ATGGCTTTTA TTACGCGCTT ATTCAAAAGC AGTAAATGGC
    TGATTGTGCC
    51 GCTGATGCTC CCCGCCTTTC AGAATGTGGC GGCGGAGGGG
    ATAGATGTGA
    101 GCCGTGCCGA AGCGAGGATA ACCGACGGCG GGCAGCTTTC
    CATCAGCAGC
    151 CGCTTCCAAA CCGAGCTGCC CGACCAGCTC CAACAGGCGT
    TGCGCCGGGG
    201 CGTGCCGCTC AACTTTACCT TAAGCTGGCA GCTTTCCGCC
    CCGATAATCG
    251 CTTCTTATCG GTTTAAATTG GGGCAACTGA TTGGCGATGA
    CGACAATATT
    301 GACTACAAAC TGAGTTTCCA TCCGCTGACC AACCGCTACC
    GCGTTACCGT
    351 CGGCGCGTTT TCGACAGACT ACGACACCTT GGATGCGGCA
    TTGCGCGCGA
    401 CCGGCGCGGT TGCCAACTGG AAAGTCCTGA ACAAAGGCGC
    GCTGTCCGGT
    451 GCGGAAGCAG GGGAAACCAA GGCGGAAATC CGCCTGACGC
    TGTCCACTTC
    501 AAAACTGCCC AAGCCTTTTC AAATCAATGC ATTGACTTCT
    CAAAACTGGC
    551 ATTTGGATTC GGGTTGGAAA CCTCTAAACA TCATCGGGAA
    CAAATAA
  • This corresponds to the amino acid sequence <SEQ ID 368; ORF106-1>:
  • 1 MAFITRLFKS SKWLIVPLML PAFQNVAAEG IDVSRAEARI
    TDGGQLSISS
    51 RFQTELPDQL QQALRRGVPL NFTLSWQLSA PIIASYRFKL
    GQLIGDDDNI
    101 DYKLSFHPLT NRYRVTVGAF STDYDTLDAA LRATGAVANW
    KVLNKGALSG
    151 AEAGETKAEI RLTLSTSKLP KPFQINALTS QNWHLDSGWK
    PLNIIGNK*
  • Computer analysis of this amino acid sequence gave the following results:
  • Homology with a Predicted ORF from N. meningitidis (Strain A)
  • ORF106 shows 87.4% identity over a 199aa overlap with an ORF (ORF106a) from strain A of N. meningitidis:
  • Figure US20130064846A1-20130314-C00168
  • Due to the K→N substitution at residue 111, the homology between ORF106a and ORF106-1 is 87.9% over the same 199 aa overlap.
  • The complete length ORF106a nucleotide sequence <SEQ ID 369> is:
  • 1 ATGGCTTTTA TTACGCGCTT ATTCAAAAGC ATTAAACAAT
    GGCTTGTGCT
    51 GCTGCCGATG CTTTCCGTTT TGCCGGACGC GGCGGCGGAG
    GGGATAGATG
    101 TGAGCCGCGC CGAAGCGAGG ATAANCGACG GCGGGCAGCT
    TTCCATNAGN
    151 AGCCGCTTCC AAACCGAGCT GCCCGACCAG CTCCAANNNG
    CGNNGNGCCG
    201 GGGCGTGNCG CTCAACTNTA CCTTAAGNTG GCAGCTTTCC
    GCCCCGATAA
    251 TCGCTTCTTA TCGGTTTNAA TTGGGGCAAC TGATTGGCGA
    TGACGACNAT
    301 ATTGACTACA AACTGAGTTT CCATCCGCTG ACCAACCGCT
    ACCGCGTTAC
    351 CGTCGGCGCG TTTTCGACAG ANTACGACAC CTTGGATGCG
    GCATTGCGCG
    401 CGACCGGCGC GGTTGCCAAC TGGAAAGTCC TGAACAAAGG
    CGCGCTGTCC
    451 GGTGCGGAAG CAGGGGAAAC CAAGGCGGAA ATCCGCCTGA
    CGCTGTCCAC
    501 TTCAAAACTG CCCAAGCCTT TTCAAATCAA TGCATTGACT
    TCTCAAAACT
    551 GGCATTTGGA TTCGGGTTGG AAACCTCTAA ACATCATCGG
    GAACAAATAA
  • This encodes a protein having amino acid sequence <SEQ ID 370>:
  • 1 MAFITRLFKS IKQWLVLLPM LSVLPDAAAE GIDVSRAEAR
    IXDGGQLSXX
    51 SRFQTELPDQ LQXAXXRGVX LNXTLXWQLS APIIASYRFX
    LGQLIGDDDX
    101 IDYKLSFHPL TNRYRVTVGA FSTXYDTLDA ALRATGAVAN
    WKVLNKGALS
    151 GAEAGETKAE IRLTLSTSKL PKPFQINALT SQNWHLDSGW
    KPLNIIGNK*

    Homology with a Predicted ORF from N. gonorrhoeae
  • ORF106 shows 90.5% identity over a 199aa overlap with a predicted ORF (ORF106.ng) from N. gonorrhoeae:
  • Figure US20130064846A1-20130314-C00169
  • Due to the K→N substitution at residue 111, the homology between ORF106ng and ORF106-1 is 91.0% over the same 199 aa overlap.
  • The complete length ORF106ng nucleotide sequence <SEQ ID 371> is:
  • 1 ATGGCTTTTA TTACGCGCTT ATTCAAAAGC ATTAAACAAT
    GGCTTGTGCT
    51 GTTGCCGATA CTCTCCGTTT TGCCGGACGC GGCGGCGGAG
    GGCATTGCCG
    101 CGACCCGCGC CGAAGCGAGG ATAACCGACG GCGGGCGGCT
    TTCCATCAGC
    151 AGCCGCTTCC AAACCGAGCT GCCCGACCAG CTCCAACAGG
    CGTTGCGCCG
    201 GGGCGTACCG CTCAACTTTA CCTTAAGCTG GCAGCTTTCC
    GCCCCGACAA
    251 TCGCTTCTTA TCGGTTTAAA TTGGGGCAAC TGATTGGCGA
    TGACGACAAT
    301 ATTGACTACA AACTAAGTTT CCATCCGCTG ACCAACCGCT
    ACCGCGTTAC
    351 CGTCGGCGCA TTTTCCACCG ATTACGACAC TTTGGATGCG
    GCATTGCGCG
    401 CGACCGGCGC GGTTGCCAAC TGGAAAGTCC TGAACAAAGG
    CGCGTTGTCC
    451 GGTGCGGAAG CAGGGGAAAC CAAGGCGGAA ATCCGCCTGA
    CGCTGTCCAC
    501 TTCAAAACTG CCCAAGCCTT TCCAAATCAA CGCATTGACT
    TCTCAAAACT
    551 GGCATTTGGA TTCGGGTTGG AAACCTCTAA ACATCATCGG
    GAACAAATAA
  • This encodes a protein having amino acid sequence <SEQ ID 372>:
  • 1 MAFITRLFKS IKQWLVLLPI LSVLPDAAAE GIAATRAEAR
    ITDGGRLSIS
    51 SRFQTELPDQ LQQALRRGVP LNFTLSWQLS APTIASYRFK
    LGQLIGDDDN
    101 IDYKLSFHPL TNRYRVTVGA FSTDYDTLDA ALRATGAVAN
    WKVLNKGALS
    151 GAEAGETKAE IRLTLSTSKL PKPFQINALT SQNWHLDSGW
    KPLNIIGNK*
  • Based on this analysis, including the presence of a putative leader sequence in the gonococcal protein, it was predicted that the proteins from N. meningitidis and N. gonorrhoeae, and their epitopes, could be useful antigens for vaccines or diagnostics, or for raising antibodies.
  • ORF106-1 (18 kDa) was cloned in pET and pGex vectors and expressed in E. coli, as described above. The products of protein expression and purification were analyzed by SDS-PAGE. FIG. 13A shows the results of affinity purification of the His-fusion protein, and FIG. 13B shows the results of expression of the GST-fusion in E. coli. Purified His-fusion protein was used to immunise mice, whose sera were used for FACS analysis (FIG. 13C) These experiments confirm that ORF106-1 is a surface-exposed protein, and that it is a useful immunogen.
  • Example 44
  • The following DNA sequence, believed to be complete, was identified in N. meningitidis <SEQ ID 373>:
  • 1 ATGGACACAA AAGAAATCCT CGG.TACGCG GcAGGcTCGA
    TCGGCAGCGC
    51 GGTTTTAGCC GTCATCATCc TGCCGCTGCT GTCGTGGTAT
    TTCCCCGCCG
    101 ACGACATCGG GCGCATCGTG CTGATGCAGA CGGCGGCGGG
    GCTgACGGTG
    151 TCGGTGTTGT GCCTCGGGCT GGATCAGGCA TACGTCCGCG
    AATACTATGC
    201 CACCGCCGAC AAAGACAcCT TGTTCAAAAC CCTGTTCCTG
    CCGCCGCTGC
    251 TGTCTGCCGC CGCGATAGCC GCCCTGCTGC TTTCCCGCCC
    GTCCCTGCCG
    301 TCTGAAATCC TGTTTTCACT CGACGATGCC gCCGCCGGCa
    TCGGGCTGGT
    351 GCTGTTTGAA CtGAGCTTCC TGCCCATCCG cTTTCTCTTA
    CTGGTTTTGC
    401 GTATGGAAGG ACGCGCCcTT GCCTTTTCGT CCGCGCAACT
    CGTGCcCAAG
    451 CTCGCCATCC TGCTGCTG.T GCCGCTGACG GTCGGGCTGC
    TGCACTTTCC
    501 AGCGAACACC GCCGTCCTGA CCGCCGTTTA CGCGCTGGCA
    AACCTTGCCG
    551 CCGCCGCCTT TTTGCTGTTT CAAAACCGAT GCCGTCTGAA
    GGCCGTCCGG
    601 CACGCACCGT TTTCGCCCGC CGTCCTGCAC CGGGGG.TGC
    GCTACGGCAT
    651 ACCGATCGCA CTGAGCAGCA TCGCCTATTG GGGGCTGGCA
    TCCGCCGACC
    701 GTTTGTTCCT GAAAAAATAT GCCGGCCTGG AACAGCTCGG
    CGTTTATTCG
    751 ATGGGTATTT CGTTCGGCGG GGCGGCATTA TTGTTCCAAA
    GCATCTTTTC
    801 AACGGTCTGG ACACCGTATA TTTTCCGCGC AATCGAAGAA
    AACGCCCCGC
    851 CCGCTCGCCT CTCGGCAACG GCAGAATCCG CCGCCGCCCT
    GCTTGCCTCC
    901 GCCCTCTGC. TGACCGGCAT TTTCTCGCCC CTTGCCTCCC
    TCCTGCTGCC
    951 GGAAAACTAC GCCGCCGTCC GGTTTATCGT CGTATCGTGT
    ATG.TGCCGC
    1001 CGCTGTTTTG CACGCTGGCG GAAATCAGCG GCATCGGTTT
    GAACGTCGTT
    1051 CGCAAAACGC GCCCGATCGC GCTCGCCACC TTGGGCGCGC
    TGGCGGCAAA
    1101 CCTGCTGCTG CTGGGGCTTG ACCGTGCCGT ACCGGCGAGG
    CCGCC.GGCG
    1151 CGGCGGTTGC CTGTGCCGCC TCATTCTGGC TGTTTTTTGC
    CTTCAAGACC
    1201 GAAAGCTCyT GCCGCCTGTG GCAGCCGCTC AAACGCCTGC
    CGCTTTATCT
    1251 GCACACATTG TTCTGCCTGA CCTCCTCGGC GGCCTACACC
    TGCTTCGGCA
    1301 CGCCGGCAAA CTATCCCCTG TTTGCCGGCG TATGGGCGGC
    ATATCTGGCA
    1351 GGCTGCATCC TGCGCCACCG GAAAGATTTG CACAAACTGT
    TTCATTATTT
    1401 GAAAAAACAA GGTTTCCCAT TATGA
  • This corresponds to the amino acid sequence <SEQ ID 374; ORF10>:
  • 1 MDTKEILXYA AGSIGSAVLA VIILPLLSWY FPADDIGRIV
    LMQTAAGLTV
    51 SVLCLGLDQA YVREYYATAD KDTLFKTLFL PPLLSAAAIA
    ALLLSRPSLP
    101 SEILFSLDDA AAGIGLVLFE LSFLPIRFLL LVLRMEGRAL
    AFSSAQLVPK
    151 LAILLLXPLT VGLLHFPANT AVLTAVYALA NLAAAAFLLF
    QNRCRLKAVR
    201 HAPFSPAVLH RGXRYGIPIA LSSIAYWGLA SADRLFLKKY
    AGLEQLGVYS
    251 MGISFGGAAL LFQSIFSTVW TPYIFRAIEE NAPPARLSAT
    AESAAALLAS
    301 ALCXTGIFSP LASLLLPENY AAVRFIVVSC MXPPLFCTLA
    EISGIGLNVV
    351 RKTRPIALAT LGALAANLLL LGLDRAVPAR PXGAAVACAA
    SFWLFFAFKT
    401 ESSCRLWQPL KRLPLYLHTL FCLTSSAAYT CFGTPANYPL
    FAGVWAAYLA
    451 GCILRHRKDL HKLFHYLKKQ GFPL*
  • Further sequence analysis revealed the complete DNA sequence <SEQ ID 375> to be:
  • 1 ATGGACACAA AAGAAATCCT CGGCTACGCG GCAGGCTCGA
    TCGGCAGCGC
    51 GGTTTTAGCC GTCATCATCC TGCCGCTGCT GTCGTGGTAT
    TTCCCCGCCG
    101 ACGACATCGG GCGCATCGTG CTGATGCAGA CGGCGGCGGG
    GCTGACGGTG
    151 TCGGTGTTGT GCCTCGGGCT GGATCAGGCA TACGTCCGCG
    AATACTATGC
    201 CACCGCCGAC AAAGACACCT TGTTCAAAAC CCTGTTCCTG
    CCGCCGCTGC
    251 TGTCTGCCGC CGCGATAGCC GCCCTGCTGC TTTCCCGCCC
    GTCCCTGCCG
    301 TCTGAAATCC TGTTTTCACT CGACGATGCC GCCGCCGGCA
    TCGGGCTGGT
    351 GCTGTTTGAA CTGAGCTTCC TGCCCATCCG CTTTCTCTTA
    CTGGTTTTGC
    401 GTATGGAAGG ACGCGCCCTT GCCTTTTCGT CCGCGCAACT
    CGTGCCCAAG
    451 CTCGCCATCC TGCTGCTGCT GCCGCTGACG GTCGGGCTGC
    TGCACTTTCC
    501 AGCGAACACC GCCGTCCTGA CCGCCGTTTA CGCGCTGGCA
    AACCTTGCCG
    551 CCGCCGCCTT TTTGCTGTTT CAAAACCGAT GCCGTCTGAA
    GGCCGTCCGG
    601 CACGCACCGT TTTCGCCCGC CGTCCTGCAC CGGGGGCTGC
    GCTACGGCAT
    651 ACCGATCGCA CTGAGCAGCA TCGCCTATTG GGGGCTGGCA
    TCCGCCGACC
    701 GTTTGTTCCT GAAAAAATAT GCCGGCCTGG AACAGCTCGG
    CGTTTATTCG
    751 ATGGGTATTT CGTTCGGCGG GGCGGCATTA TTGTTCCAAA
    GCATCTTTTC
    801 AACGGTCTGG ACACCGTATA TTTTCCGCGC AATCGAAGAA
    AACGCCCCGC
    851 CCGCCCGCCT CTCGGCAACG GCAGAATCCG CCGCCGCCCT
    GCTTGCCTCC
    901 GCCCTCTGCC TGACCGGCAT TTTCTCGCCC CTTGCCTCCC
    TCCTGCTGCC
    951 GGAAAACTAC GCCGCCGTCC GGTTTATCGT CGTATCGTGT
    ATGCTGCCGC
    1001 CGCTGTTTTG CACGCTGGCG GAAATCAGCG GCATCGGTTT
    GAACGTCGTC
    1051 CGCAAAACGC GCCCGATCGC GCTCGCCACC TTGGGCGCGC
    TGGCGGCAAA
    1101 CCTGCTGCTG CTGGGGCTTG CCGTGCCGTC CGGCGGCGCG
    CGCGGCGCGG
    1151 CGGTTGCCTG TGCCGCCTCA TTCTGGCTGT TTTTTGCCTT
    CAAGACCGAA
    1201 AGCTCCTGCC GCCTGTGGCA GCCGCTCAAA CGCCTGCCGC
    TTTATCTGCA
    1251 CACATTGTTC TGCCTGACCT CCTCGGCGGC CTACACCTGC
    TTCGGCACGC
    1301 CGGCAAACTA TCCCCTGTTT GCCGGCGTAT GGGCGGCATA
    TCTGGCAGGC
    1351 TGCATCCTGC GCCACCGGAA AGATTTGCAC AAACTGTTTC
    ATTATTTGAA
    1401 AAAACAAGGT TTCCCATTAT GA
  • This corresponds to the amino acid sequence <SEQ ID 376; ORF10-1>:
  • 1 MDTKEILGYA AGSIGSAVLA VIILPLLSWY FPADDIGRIV
    LMQTAAGLTV
    51 SVLCLGLDQA YVREYYATAD KDTLFKTLFL PPLLSAAAIA
    ALLLSRPSLP
    101 SEILFSLDDA AAGIGLVLFE LSFLPIRFLL LVLRMEGRAL
    AFSSAQLVPK
    151 LAILLLLPLT VGLLHFPANT AVLTAVYALA NLAAAAFLLF
    QNRCRLKAVR
    201 HAPFSPAVLH RGLRYGIPIA LSSIAYWGLA SADRLFLKKY
    AGLEQLGVYS
    251 MGISFGGAAL LFQSIFSTVW TPYIFRAIEE NAPPARLSAT
    AESAAALLAS
    301 ALCLTGIFSP LASLLLPENY AAVRFIVVSC MLPPLFCTLA
    EISGIGLNVV
    351 RKTRPIALAT LGALAANLLL LGLAVPSGGA RGAAVACAAS
    FWLFFAFKTE
    401 SSCRLWQPLK RLPLYLHTLF CLTSSAAYTC FGTPANYPLF
    AGVWAAYLAG
    451 CILRHRKDLH KLFHYLKKQG FPL*
  • Computer analysis of this amino acid sequence gave the following results:
  • Prediction
  • ORF10-1 is predicted to be the precursor of an integral membrane protein, since it comprises several (12-13) potential transmembrane segments, and a probable cleavable signal peptide
  • Homology with EpsM from Streptococcus thermophilus (Accession Number U40830).
  • ORF10 shows homology with the epsM gene of S. thermophilus, which encodes a protein of a size similar to ORF10 and is involved in expolysaccharide synthesis. Other homologies are with prokaryotic membrane proteins:
  • Identities = (25%)
    Query: 213 LRYGIPLALSSLAYWGLASADRLFLKKYAGLEQLGVYSMGISFGGAALLLQSIFSTVW 270
    L Y +PL  SS+ +W L ++ R F+  + G    G+ ++         +  +IF+  W
    Sbjct: 210 LYYALPLIPSSILWWLLNASSRYFVLFFLGAGANGLLAVATKIPSIISIFNTIFTQAW 267
    Identities = 15/57 (26%), Positives = 31/57 (54%)
    Query: 7 LGYAAGSIGSAVLAVIILPLLSWYFPADDIGRIVLMQTAAGLTVSVLCLGLDQAYVR 63
    L +  G++GS +L  +++PL ++     + G   L QT A L + ++ + +  A +R
    Sbjct: 12 LVFTIGNLGSKLLVFLLVPLYTYAMTPQEYGMADLYQTTANLLLPLITMNVFDATLR 68
    Identities = 16/96 (16%), Positives = 36/96 (37%)
    Query: 307 IFSPLASLLLPENYAAVRFTVVSCMLPPLFYTLTEISGIGLNVVRKTRPIXXXXXXXXXX 366
      +  P+   ++  +YA+    V   ML  LF + ++  G      ++T+ +
    Sbjct: 305 VLKPIVEKVVSSDYASSWQYVPFFMLSMLFSSFSDFFGTNYIAAKQTKGVFMTSIYGTIV 364

    Homology with a Predicted ORF from N. meningitidis (Strain A)
  • ORF10 shows 95.4% identity over a 475aa overlap with an ORF (ORF10a) from strain A of N. meningitidis:
  • Figure US20130064846A1-20130314-C00170
  • The complete length ORF10a nucleotide sequence <SEQ ID 377> is:
  • 1 ATGGACACAA AAGAAATCCT CGGCTACGCG GCAGGCTCGA
    TCGGCAGCGC
    51 GGTTTTAGCC GTCATCATCC TGCCGCTGCT GTCGTGGTAT
    TTCCCTGCCG
    101 ACGACATCGG ACGCATCGTG CTGATGCAGA CGGCGGCGGG
    GCTGACGGTG
    151 TCGGTGTTGT GCCTCGGGCT GGATCAGGCA TACGTCCGCG
    AATACTATGC
    201 CGCCGCCGAC AAAGACACTT TGTTCAAAAC CCTGTTCCTG
    CCGCCGCTGC
    251 TGTCTGCCGC CGCGATAGCC GCCCTGCTGC TTTCCCGCCC
    ATCCCTGCCG
    301 TCTGAAATCC TGTTTTCGCT CGACGATGCC GCCGCCGGCA
    TCGGGCTGGT
    351 GCTGTTTGAA CTGAGCTTCC TGCCCATCCG CTTTCTCTTA
    CTGGTTTTGC
    401 GTATGGAAGG ACGCGCCCTT GCCTTTTCGT CCGCGCAACT
    CGTGTCCAAG
    451 CTCGCCATCC TGCTGCTGCT GCCGCTGACG GTCGGGCTGC
    TGCACTTTCC
    501 GGCGAACACC GCCGTCCTGA CCGCCGTTTA CGCGCTGGCA
    AACCTTGCCG
    551 CCGCCGCCTT TTTGCTGTTT CAAAACCGAT GCCGTCTGAA
    GGCCGTCCGG
    601 CGCGCACCGT TTTCATCCGC CGTCCTGCAT CGCGGCCTGC
    GCTACGGCAT
    651 ACCGATCGCA CTAAGCAGCA TCGCCTATTG GGGGCTGGCA
    TCCGCCGACC
    701 GTTTGTTCCT GAAAAAATAT GCCGGCCTAG AACAGCTCGG
    CGTTTATTCG
    751 ATGGGTATTT CGTTCGGCGG AGCGGCATTA TTGTTCCAAA
    GCATCTTTTC
    801 AACGGTCTGG ACACCGTATA TTTTCCGCGC AATCGAAGCA
    AACGCCCCGC
    851 CCGCCCGCCT CTCGGCAACG GCAGAATCCG CCGCCGCCCT
    GCTTGCCTCC
    901 GCCCTCTGCC TGACCGGCAT TTTCTCGCCC CTCGCCTCCC
    TCCTGCTGCC
    951 GGAAAACTAC GCCGCCGTCC GGTTTATCGT CGTATCGTGT
    ATGCTGCCTC
    1001 CGCTGTTTTG CACGCTGGTA GAAATCAGCG GCATCGGTTT
    GAACGTCGTC
    1051 CGAAAAACAC GCCCGATCGC GCTCGCCACC TTGGGCGCGC
    TGGCGGCAAA
    1101 CCTGCTGCTG CTGGGGCTTG CCGTACCGTC CGGCGGCGCG
    CGCGGCGCGG
    1151 CGGTTGCCTG TGCCGCCTCA TTTTGGCTGT TTTTTGTTTT
    CAAGACCGAA
    1201 AGCTCCTGCC GCCTGTGGCA GCCGCTCAAA CGCCTGCCGC
    TTTATATGCA
    1251 CACATTGTTC TGCCTGGCCT CCTCGGCGGC CTACACCTGC
    TTCGGCACTC
    1301 CGGCAAACTA CCCCCTGTTT GCCGGCGTAT GGGCGGTATA
    TCTGGCAGGC
    1351 TGCATCCTGC GCCACCGGAA AGATTTGCAC AAACTGTTTC
    ATTATTTGAA
    1401 AAAACAAGGT TTCCCATTAT GA
  • This encodes a protein having amino acid sequence <SEQ ID 378>:
  • 1 MDTKEILGYA AGSIGSAVLA VIILPLLSWY FPADDIGRIV
    LMQTAAGLTV
    51 SVLCLGLDQA YVREYYAAAD KDTLFKTLFL PPLLSAAAIA
    ALLLSRPSLP
    101 SEILFSLDDA AAGIGLVLFE LSFLPIRFLL LVLRMEGRAL
    AFSSAQLVSK
    151 LAILLLLPLT VGLLHFPANT AVLTAVYALA NLAAAAFLLF
    QNRCRLKAVR
    201 RAPFSSAVLH RGLRYGIPIA LSSIAYWGLA SADRLFLKKY
    AGLEQLGVYS
    251 MGISFGGAAL LFQSIFSTVW TPYIFRAIEA NAPPARLSAT
    AESAAALLAS
    301 ALCLTGIFSP LASLLLPENY AAVRFIVVSC MLPPLFCTLV
    EISGIGLNVV
    351 RKTRPIALAT LGALAANLLL LGLAVPSGGA RGAAVACAAS
    FWLFFVFKTE
    401 SSCRLWQPLK RLPLYMHTLF CLASSAAYTC FGTPANYPLF
    AGVWAVYLAG
    451 CILRHRKDLH KLFHYLKKQG FPL*
  • ORF10a and ORF10-1 show 95.4% identity in 475 aa overlap:
  • Figure US20130064846A1-20130314-C00171
  • Homology with a Predicted ORF from N. gonorrhoeae
  • ORF10 shows 94.1% identity over a 475aa overlap with a predicted ORF (ORF10.ng) from N. gonorrhoeae:
  • Figure US20130064846A1-20130314-C00172
  • The complete length ORF10ng nucleotide sequence <SEQ ID 379> is:
  • 1 ATGGACACAA AAGAAATCCT CGGCTACGCG GCAGGCTCGA
    TCGGCAGCGC
    51 GGTTTTAGCC GTCATCATCC TGCCGCTGCT GTCGTGGTAT
    TTCcccgCCG
    101 ACGACATCGG GCGCATCGTG CTGATGCAGA CGGCGGCGGG
    ACTGACGGTG
    151 TCGGTATTGT GCCTCGGGCT GGATCAGGCA TACGTCCGCG
    AATACTATGC
    201 CGCCGCCGAC AAAGACACTT TGTTCAAAAC CCTGTTCCTG
    CCGCCGCTGC
    251 TGTTTTCCGC CGCGATAGCC GCCCTGCTGC TTTCCCGCCC
    GTCCCTGCCG
    301 TCTGAAATCC TGTTTTCGCT CGACGATGCC GCCGCCGGCA
    TCGGGCTGGT
    351 GCTGTTTGAA CTGAGCTTCC TGCCCATCCG CTTTCTCTTA
    CTGGTTTTGC
    401 GTATGGAAGG GCGCGCCCTT GCCTTTTCGT CCGCGCAACT
    CGTGCCCAAA
    451 CTCGCCATTC TGCTGCTGTT GCCGCTGACG GTCGGGCTGC
    TGCACTTTCC
    501 GGCGAACACC TCCGTCCTGA CCGCCGTTTA CGCGCTGGCA
    AACCTTGCCG
    551 CCGCCGCCTT TTTGCTGTTT CAAAACCGAT GCCGTCTGAA
    GGCCGTCCGG
    601 CGCGCGCCGT TTTCGCCCGC CGTCCTGCAC CGGGGGCTGC
    GCTACGGCAT
    651 ACCGCTCGCA CTGAGCAGCC TTGCCTATTG GGGGCTGGCA
    TCCGCCGACC
    701 GTTTGTTCCT GAAAAAATAT GCGGGCCTGG AACAGCTCGG
    CGTTTATTCG
    751 ATGGGTATTT CGTTCGGCGG GGCGGCATTA TTGCTCCAAA
    GCATCTTTTC
    801 AACGGTCTGG ACACCGTATA TTTTCCGTGC AATCGAAGAA
    AACGCCACGC
    851 CCGCCCGCCT CTCGGCAACG GCAGAATCCG CCGCCGCCCT
    GCTTGCCTCC
    901 GCCCTCTGCC TGACCGGAAT TTTCTCGCCC CTCGCCTCCC
    TCCTGCTGCC
    951 GGAAAACTAC GCCGCCGTCC GGTTTACCGT CGTATCGTGT
    ATGCTGccgc
    1001 cgctGTTTTA CACGCTGACC GAAATCAGCG GCATCGGTTT
    GAACGTCGTC
    1051 CGCAAAACGC GTCCGATCGC GCTTGCCACC TTGGGCGCGC
    TGGCGGCAAA
    1101 CCTGCTGCTG CTGGGGCTTG CCGTACCGTC CGGCGGCACG
    CGCGGCGCGG
    1151 CGGTTGCCTG TGCCGCCTCA TTCTGGTTGT TTTTTGTTTT
    CAAGACAGAA
    1201 AGCTCCTGCC GCCTGTGGCA GCCGCTCAAA CGCCTGCCGC
    TTTATATGCA
    1251 CACATTGTTC TGCCTgGCCT CCTCGGCGGC CTACACCTGC
    TTCGGCACAC
    1301 CGGCAAACTA CCCcctgttt gccggcgtAT GGGCGGCATA
    TCTGGCAGGC
    1351 TGCATCCTGC GCCACCGGAA AAATTTGCAC AAACTGTTTC
    ATTATTTGAA
    1401 AAAACAAGGT TTCCCATTAT GA
  • This encodes a protein having amino acid sequence <SEQ ID 380>:
  • 1 MDTKEILGYA AGSIGSAVLA VIILPLLSWY FPADDIGRIV
    LMQTAAGLTV
    51 SVLCLGLDQA YVREYYAAAD KDTLFKTLFL PPLLFSAAIA
    ALLLSRPSLP
    101 SEILFSLDDA AAGIGLVLFE LSFLPIRFLL LVLRMEGRAL
    AFSSAQLVPK
    151 LAIL LLLPLT VGLLHFPANT SVLTAVYALA NLAAAAFLLF
    QNRCRLKAVR
    201 RAPFSPAVLH RGLRYGIPLA LSSLAYWGLA SADRLFLKKY
    AGLEQLGVYS
    251 MGISFGGAAL LLQSIFSTVW TPYIFRAIEE NATPARLSAT
    AESAAALLAS
    301 ALCLTGIFSP LASLLLPENY AAVRFTVVSC MLPPLFYTLT
    EISGIGLNVV
    351 RKTRPIALAT LGALAANLLL LGLAVPSGGT RGAAVACAAS
    FWLFFVFKTE
    401 SSCRLWQPLK RLPLYMHTLF CLASSAAYTC FGTPANYPLF
    AGVWAAYLAG
    451 CILRHRKNLH KLFHYLKKQG FPL*
  • ORF10ng and ORF10-1 show 96.4% identity in 473 aa overlap:
  • Figure US20130064846A1-20130314-C00173
  • Based on this analysis, including the presence of a putative leader peptide and several transmembrane segments and the presence of a leucine-zipper motif(4 Leu residues spaced by 6 aa, shown in bold), it is predicted that these proteins from N. meningitidis and N. gonorrhoeae, and their epitopes, could be useful antigens for vaccines or diagnostics, or for raising antibodies.
  • Example 45
  • The following partial DNA sequence was identified in N. meningitidis <SEQ ID 381>:
  • 1 ..ATCCTGAAAC CGCATAACCA GCTTAAGGAA GACATCCAAC
    CTGATCCGGC
    51   CGATCAAAAC GCCTTGTCCG AACCGGATGC TGCGACAGAG
    GCAGAGCAGT
    101   CGGATGCGGA AAATGCTGCC GACAAGCAGC CCGTTGCCGA
    TAAAGCCGAC
    151   GAGGTTGAAG AAAAGGCGGG CGAGCCGGAA CGGGAAGAGC
    CGGACGGACA
    201   GGCAGTGCGT AAGAAAGCGC TGACGGAAGA GCGTGAACAA
    ACCGTCAGGG
    251   AAAAAGCGCA GAAGAAAGAT GCCGAAACGG TTAAAATACA
    AGCGGTAAAA
    301   CCGTCTAAAG AAACAGAGAA AAAAGCTTCA AAAGAAGAGA
    AAAAGGCGGC
    351   GAAGGAAAAA GTTGCACCCA AACCAACCCC GGAACAAATC
    CTCAACAGCG
    401   GCAgCATCGA AAAmGCGCGC AgTGCCGCCG CCAAAGAAGT
    GCAGAAAATG
    451   AA.AACGTCC GACAAGGCGG AAGC.AACGC ATTATCTGCA
    AATGGGCGCG
    501   TATGCCGACC GTCAGAGCGC GGAAGGGCAG CGTGCCAAAC
    TGGCAATCTT
    551   GGGCATATCT TCCAAGGTGG TCGGTTATCA GGCGGGACAT
    AAAACGCTTT
    601   ACCGGGTGCA AAGCGGCAAT ATGTCTGCCG ATGCGGTGA
  • This corresponds to the amino acid sequence <SEQ ID 382; ORF65>:
  • 1 ..ILKPHNQLKE DIQPDPADQN ALSEPDAATE AEQSDAENAA
    DKQPVADKAD
    51   EVEEKAGEPE REEPDGQAVR KKALTEEREQ TVREKAQKKD
    AETVKIQAVK
    101   PSKETEKKAS KEEKKAAKEK VAPKPTPEQI LNSGSIEXAR
    SAAAKEVQKM
    151   XNVRQGGSXR IICKWARMPT VRARKGSVPN WQSWAYLPRW
    SVIRRDIKRF
    201   TGCKAAICLP MR*
  • Further work revealed the complete nucleotide sequence <SEQ ID 383>:
  • 1 ATGTTTATGA ACAAATTTTC CCAATCCGGA AAAGGTCTGT
    CCGGTTTTTT
    51 CTTCGGTTTG ATACTGGCGA CGGTCATTAT TGCCGGTATT
    TTGTTTTATC
    101 TGAACCAGAG CGGTCAAAAT GCGTTCAAAA TCCCGGCTTC
    GTCGAAGCAG
    151 CCTGCAGAAA CGGAAATCCT GAAACCGAAA AACCAGCCTA
    AGGAAGACAT
    201 CCAACCTGAA CCGGCCGATC AAAACGCCTT GTCCGAACCG
    GATGCTGCGA
    251 CAGAGGCAGA GCAGTCGGAT GCGGAAAAAG CTGCCGACAA
    GCAGCCCGTT
    301 GCCGATAAAG CCGACGAGGT TGAAGAAAAG GCGGGCGAGC
    CGGAACGGGA
    351 AGAGCCGGAC GGACAGGCAG TGCGTAAGAA AGCGCTGACG
    GAAGAGCGTG
    401 AACAAACCGT CAGGGAAAAA GCGCAGAAGA AAGATGCCGA
    AACGGTTAAA
    451 AAACAAGCGG TAAAACCGTC TAAAGAAACA GAGAAAAAAG
    CTTCAAAAGA
    501 AGAGAAAAAG GCGGCGAAGG AAAAAGTTGC ACCCAAACCA
    ACCCCGGAAC
    551 AAATCCTCAA CAGCGGCAGC ATCGAAAAAG CGCGCAGTGC
    CGCCGCCAAA
    601 GAAGTGCAGA AAATGAAAAC GTCCGACAAG GCGGAAGCAA
    CGCATTATCT
    651 GCAAATGGGC GCGTATGCCG ACCGTCAGAG CGCGGAAGGG
    CAGCGTGCCA
    701 AACTGGCAAT CTTGGGCATA TCTTCCAAGG TGGTCGGTTA
    TCAGGCGGGA
    751 CATAAAACGC TTTACCGGGT GCAAAGCGGC AATATGTCTG
    CCGATGCGGT
    801 GAAAAAAATG CAGGACGAGT TGAAAAAACA TGAAGTCGCC
    AGCCTGATCC
    851 GTTCTATCGA AAGCAAATAA
  • This corresponds to the amino acid sequence <SEQ ID 384; ORF65-1>:
  • 1 MFMNKFSQSG KGLSGFFFGL ILATVIIAGI LFYLNQSGQN
    AFKIPASSKQ
    51 PAETEILKPK NQPKEDIQPE PADQNALSEP DAATEAEQSD
    AEKAADKQPV
    101 ADKADEVEEK AGEPEREEPD GQAVRKKALT EEREQTVREK
    AQKKDAETVK
    151 KQAVKPSKET EKKASKEEKK AAKEKVAPKP TPEQILNSGS
    IEKARSAAAK
    201 EVQKMKTSDK AEATHYLQMG AYADRQSAEG QRAKLAILGI
    SSKVVGYQAG
    251 HKTLYRVQSG NMSADAVKKM QDELKKHEVA SLIRSIESK*
  • Computer analysis of this amino acid sequence gave the following results:
  • Homology with a Predicted ORF from N. meningitidis (Strain A)
  • ORF65 shows 92.0% identity over a 150aa overlap with an ORF (ORF65a) from strain A of N. meningitidis:
  • Figure US20130064846A1-20130314-C00174
  • The complete length ORF65a nucleotide sequence <SEQ ID 385> is:
  • 1 ATGTTTATGA ACAAATTTTC CCAATCCGGA AAAGGTCTGT
    CCGGTTTTTT
    51 CTTCGGTTTG ATACTGGCGA CGGTCATTAT TGCCGGTATT
    TTGTTTTATC
    101 TGAACCAGAG CGGTCAAAAT GCGTTCAAAA TCCCGGTTCC
    GTCGAAGCAG
    151 CCTGCAGAAA CGGAAATCCT GAAACCGAAA AACCAGCCTA
    AGGAAGACAT
    201 CCAACCTGAA CCGGCCGATC AAAACGCCTT GTCCGAACCG
    GATGCTGCGA
    251 AAGAGGCAGA GCAGTCGGAT GCGGAAAAAG CTGCCGACAA
    GCAGCCCGTT
    301 GCCGACAAAG CCGACGAGGT TGAGGAAAAG GCGGACGAGC
    CGGAGCGGGA
    351 AAAGTCGGAC GGACAGGCAG TGCGCAAGAA AGCACTGACG
    GAAGAGCGTG
    401 AACAAACCGT CGGGGAAAAA GCGCAGAAGA AAGATGCCGA
    AACGGTTAAA
    451 AAACAAGCGG TAAAACCATC TAAAGAAACA GAGAAAAAAG
    CTTCAAAAGA
    501 AGAGAAAAAG GCGGAGAAGG AAAAAGTTGC ACCCAAACCG
    ACCCCGGAAC
    551 AAATCCTCAA CAGCGGCAGC ATCGAAAAAG CGCGCAGTGC
    CGCTGCCAAA
    601 GAAGTGCAGA AAATGAAAAC GCCCGACAAG GCGGAAGCAA
    CGCATTATCT
    651 GCAAATGGGC GCGTATGCCG ACCGCCGGAG CGCGGAAGGG
    CAGCGTGCCA
    701 AACTGGCAAT CTTGGGCATA TCTTCCAAGG TGGTCGGTTA
    TCAGGCGGGA
    751 CATAAAACGC TTTACCGGGT GCAAAGCGGC AATATGTCTG
    CCGATGCGGT
    801 GAAAAAAATG CAGGACGAGT TGAAAAAACA TGAAGTCGCC
    AGCCTGATCC
    851 GTTCTATCGA AAGCAAATAA
  • This encodes a protein having amino acid sequence <SEQ ID 386>:
  • 1 MFMNKFSQSG KGLSGFFFGL ILATVIIAGI LFYLNQSGQN
    AFKIPVPSKQ
    51 PAETEILKPK NQPKEDIQPE PADQNALSEP DAAKEAEQSD
    AEKAADKQPV
    101 ADKADEVEEK ADEPEREKSD GQAVRKKALT EEREQTVGEK
    AQKKDAETVK
    151 KQAVKPSKET EKKASKEEKK AEKEKVAPKP TPEQILNSGS
    IEKARSAAAK
    201 EVQKMKTPDK AEATHYLQMG AYADRRSAEG QRAKLAILGI
    SSKVVGYQAG
    251 HKTLYRVQSG NMSADAVKKM QDELKKHEVA SLIRSIESK*
  • ORF65a and ORF65-1 show 96.5% identity in 289 aa overlap:
  • Figure US20130064846A1-20130314-C00175
  • Homology with a Predicted ORF from N. gonorrhoeae
  • ORF65 shows 89.6% identity over a 212aa overlap with a predicted ORF (ORF65.ng) from N. gonorrhoeae:
  • Figure US20130064846A1-20130314-C00176
  • An ORF65ng nucleotide sequence <SEQ ID 387> was predicted to encode a protein having amino acid sequence <SEQ ID 388>:
  • 1 MFMNKFSQSG KGLSGFFFGL ILATVIIAGI LLYLNQGGQN
    AFKIPAPSKQ
    51 PAETEILKLK NQPKEDIQPE PADQNALSEP DVAKEAEQSD
    AEKAADKQPV
    101 ADKADEVEEK AGEPEREEPD GQAVRKKALT EEREQTVREK
    AQKKDAETVK
    151 KKAVKPSKET EKKASKEEKK AAKEKVAPKP TPEQILNSRS
    IEKARSAAAK
    201 EVQKMKNFGQ GGSQRIICKW ARMPNPGARK GSVPNWQSWA
    YLPKWSAIRR
    251 DIKRFTACKA AICPPMR*
  • After further analysis, the complete gonococcal DNA sequence <SEQ ID 389> was found to be:
  • 1 ATGTTTATGA ACAAATTTTC CCAATCCGGA AAAGGTCTGT
    CCGGTTTCTT
    51 CTTCGGTTTG ATACTGGCAA CGGTCATTAT TGCCGGTATT
    TTGCTTTATC
    101 TGAACCAGGG CGGTCAAAAT GCGTTCAAAA TCCCGGCTCC
    GTCGAAGCAG
    151 CCTGCAGAAA CGGAAATCCT GAAACTGAAA AACCAGCCTA
    AGGAAGACAT
    201 CCAACCTGAA CCGGCCGATC AAAACGCCTT GTCCGAACCG
    GATGTTGCGA
    251 AAGAGGCAGA GCAGTCGGAT GCGGAAAAAG CTGCCGACAA
    GCAGCCCGTT
    301 GCCGACAAag ccgacgAGGT TGAAGAAAag GcGGgcgAgc
    cggaACGGga
    351 aGAGCCGGAC ggACAGGCAG TGCGCAAGAA AGCACTGAcg
    gAAGAgcGTG
    401 AACAAACcgt cagggAAAAA GCGCagaaga AAGATGCCGA
    AACGgTTAAA
    451 AAacaaGCgg tAaaaccgtc tAAAGAAACa gagaaaaaag
    cTtcaaaaga
    501 agagaaaaag gcggcgaaag aaaAAGttgc acccaaaccg
    accccggaaC
    551 aaatcctcaa cagccgCagc atcgaaaaag cgcgtagtgc
    cgctgccaaa
    601 gaAgtgcaGA AAatgaaaaa ctTtgggcaa ggcgGaagcc
    aacgcattaT
    651 CTGcaaatgg gcgcgtatgc cgaccgtccg gagcgcggaA
    gggcagcgtg
    701 ccaaACtggc aAtcttgGgc atatctTccg aagtggtcgG
    CTATCAGGCG
    751 GGACATAAAA CGCTTTACCG CGTGCAAagc GGCAatatgt
    ccgccgatgc
    801 gGTGAAAAAA ATGCAGGACG AGTTGAAAAA GCATGGGGtt
    gcCAGCCTGA
    851 TCCGTGcgAT TGAAGGCAAA TAA
  • This encodes the following amino acid sequence <SEQ ID 390>:
  • 1 MFMNKFSQSG KGLSGFFFGL ILATVIIAGI LLYLNQGGQN
    AFKIPAPSKQ
    51 PAETEILKLK NQPKEDIQPE PADQNALSEP DVAKEAEQSD
    AEKAADKQPV
    101 ADKADEVEEK AGEPEREEPD GQAVRKKALT EEREQTVREK
    AQKKDAETVK
    151 KQAVKPSKET EKKASKEEKK AAKEKVAPKP TPEQILNSRS
    IEKARSAAAK
    201 EVQKMKNFGQ GGSQRIICKW ARMPTVRSAE GQRAKLAILG
    ISSEVVGYQA
    251 GHKTLYRVQS GNMSADAVKK MQDELKKHGV ASLIRAIEGK
    *
  • ORF65ng-1 and ORF65-1 show 89.0% identity in 290 aa overlap:
  • Figure US20130064846A1-20130314-C00177
  • On this basis, including the presence of a putative transmembrane domain in the gonococcal protein, it is predicted that the proteins from N. meningitidis and N. gonorrhoeae, and their epitopes, could be useful antigens for vaccines or diagnostics, or for raising antibodies.
  • Example 46
  • The following DNA sequence, believed to be complete, was identified in N. meningitidis <SEQ ID 391>:
  • 1 ATGAACCACG ACATCACTTT CCTCACCCTG TTCCTACTCG
    GTkTCTTCGG
    51 CGGAAcGCAC TGCATCGGTA TGTGCGGCGG ATTAAGCAGC
    GcGTTTGs.s
    101 TCCAACTCCC CCCGCATATC AACCGCTTTT GGCTGATCCT
    GCTGCTTAAC
    151 ACAGGACGGG TAAGCAGCTA TACGGCAAtC GGCCTGATAC
    TCGGATTAAT
    201 CGGACAGGTC GGCGTTTCAC TCGAcCAaAC CCGCGTCCTG
    CAGAATATTT
    251 TATACACGGC CGCCAACCTC CTGCTGCTCT TTTTAGGCTT
    ATACTTGAGC
    301 GGTATTTCTT CCTTGGCGGC AAAAATCGAG AAaATCGGCA
    AACCGATATG
    351 GCGGAACCTG AACCCGATAC TCAACCGGCT GTTACCCATA
    AAATCCATAC
    401 CCGCCTGCCT tGCGgTCGGA ATATTATGGG GCTGGCTGCC
    GTGCGGACTG
    451 GTTTACAGCG CGTCGCTTTA CGCGCTGGGA AgCGGTAGTG
    CGGCAACGGG
    501 CGGGTTATAT ATGCTTGCCT TTGCACTGGG TACGCTGCCC
    AATCTTtTAG
    551 CAATCGGCAT TTTtTCCCTG CAACTGAAwA AAATCATGCA
    AAACCGATAT
    601 ATCCGCCTGT GTACGGGATT ATCCGTATCA TTATGGGCAT
    TATGGAAACT
    651 TGCCGTCCTG TGGCTGTAA
  • This corresponds to the amino acid sequence <SEQ ID 392; ORF103>:
  • 1 MNHDITFLTL FLLGXFGGTH CIGMCGGLSS AFXXQLPPHI
    NRFWLILLLN
    51 TGRVSSYTAI GLILGLIGQV GVSLDQTRVL QNILYTAANL
    LLLFLGLYLS
    101 GISSLAAKIE KIGKPIWRNL NPILNRLLPI KSIPACLAVG
    ILWGWLPCGL
    151 VYSASLYALG SGSAATGGLY MLAFALGTLP NLLAIGIFSL
    QLXKIMQNRY
    201 IRLCTGLSVS LWALWKLAVL WL*
  • Further work elaborated the DNA sequence <SEQ ID 393> as:
  • 1 ATGAACCACG ACATCACTTT CCTCACCCTG TTCCTACTCG
    GTTTCTTCGG
    51 CGGAACGCAC TGCATCGGTA TGTGCGGCGG ATTAAGCAGC
    GCGTTTGCGC
    101 TCCAACTCCC CCCGCATATC AACCGCTTTT GGCTGATCCT
    GCTGCTTAAC
    151 ACAGGACGGG TAAGCAGCTA TACGGCAATC GGCCTGATAC
    TCGGATTAAT
    201 CGGACAGGTC GGCGTTTCAC TCGACCAAAC CCGCGTCCTG
    CAGAATATTT
    251 TATACACGGC CGCCAACCTC CTGCTGCTCT TTTTAGGCTT
    ATACTTGAGC
    301 GGTATTTCTT CCTTGGCGGC AAAAATCGAG AAAATCGGCA
    AACCGATATG
    351 GCGGAACCTG AACCCGATAC TCAACCGGCT GTTACCCATA
    AAATCCATAC
    401 CCGCCTGCCT TGCGGTCGGA ATATTATGGG GCTGGCTGCC
    GTGCGGACTG
    451 GTTTACAGCG CGTCGCTTTA CGCGCTGGGA AGCGGTAGTG
    CGGCAACGGG
    501 CGGGTTATAT ATGCTTGCCT TTGCACTGGG TACGCTGCCC
    AATCTTTTAG
    551 CAATCGGCAT TTTTTCCCTG CAACTGAAAA AAATCATGCA
    AAACCGATAT
    601 ATCCGCCTGT GTACGGGATT ATCCGTATCA TTATGGGCAT
    TATGGAAACT
    651 TGCCGTCCTG TGGCTGTAA
  • This corresponds to the amino acid sequence <SEQ ID 394; ORF103-1>:
  • 1 MNHDITFLTL FLLGFFGGTH CIGMCGGLSS AFALQLPPHI
    NRFWLILLLN
    51 TGRVSSYTAI GLILGLIGQV GVSL DQTRVL QNILYTAANL
    LLLFLGLYLS
    101 GISSLAAKIE KIGKPIWRNL NPILNRLLPI KSIPACLAVG
    ILWGWLPCGL
    151 VYSASLYALG SGSAATGGLY MLAFALGTLP NLLAIGIFSL
    QLKKIMQNRY
    201 IRLCTGLSVS LWALWKLAVL WL*
  • Computer analysis of this amino acid sequence gave the following results:
  • Homology with a Predicted ORF from N. meningitidis (Strain A)
  • ORF103 shows 93.8% identity over. a 222aa overlap with an ORF (ORF103a) from strain A of N. meningitidis:
  • Figure US20130064846A1-20130314-C00178
  • The complete length ORF103a nucleotide sequence <SEQ ID 395> is:
  • 1 ATGAACCANG ACATCACTTT CCTCACCCTG TTCCTACTCG
    GTTTCTTCGG
    51 CGGAACGCAC TGCATCGGTA TGTGCGGCGG ATTAAGCAGC
    GCGTTTGCGC
    101 TCCAACTCCC CCCGCATATC AACCGCTTNT GGCTGATCCT
    GCTGCTTAAC
    151 ACAGGACGGG TAAGCAGCTA TACGGCAATC GGCCTGATAC
    TCGGATTAAT
    201 CGGACAGGTC GGCGTTTCAC TCGACCAAAC CCGCGTCNTG
    CAGAATATTT
    251 TATACACGGC CGCCAACCTC CTGCTGCTCT TTTTAGGCTT
    ATACTTGAGC
    301 GGTATTTCTT CCTTGGCGGC AAAAATCGAG AAAATCGGCA
    AACCGATATG
    351 GCGGAACCTG AACCCGATAC TCAACCGGCT GTTACCCATA
    AAATCCATAC
    401 CCGCCTGCCT TGCGGTCGGA ATATTATGGG GCTGGCTGCC
    GTGCGGACTA
    451 GTTTACAGCG CGTCGCTTTA CGCGCTGGGA AGCGGTAGTG
    CGGCAACGGG
    501 CGGGTTATAT ATGCTTGCCT TTGCACTGGG TACGCTGCCC
    AATCTTTNGG
    551 CAATCGGCAT TTTTTCCCTG CAACTGNAAA AAATCATGCA
    AAACCGATAT
    601 ATCCGCCTGT GTACGGGATT ATCCGTATCA TTATGGGCAT
    TATGGAAACT
    651 TGCCGTCCTG TGGCTGTAA
  • This encodes a protein having amino acid sequence <SEQ ID 396>:
  • 1 MNXDITFLTL FLLGFFGGTH CIGMCGGLSS AFALQLPPHI
    NRXWLILLLN
    51 TGRVSSYTAI GLILGLIGQV GVSL DQTRVX QNILYTAANL
    LLLFLGLYLS
    101 GISSLAAKIE KIGKPIWRNL NPILNRLLPI KSIPACLAVG
    ILWGWLPCGL
    151 VYSASLYALG SGSAATGGLY MLAFALGTLP NLXAIGIFSL
    QLXKIMQNRY
    201 IRLCTGLSVS LWALWKLAVL WL*
  • ORF103a and ORF103-1 show 97.7% identity in 222 aa overlap:
  • Figure US20130064846A1-20130314-C00179
  • Homology with a Predicted ORF from N. gonorrhoeae
  • ORF103 shows 95.5% identity over a 222aa overlap with a predicted ORF (ORF103.ng) from N. gonorrhoeae:
  • Figure US20130064846A1-20130314-C00180
  • The complete length ORF103ng nucleotide sequence <SEQ ID 397> is:
  • 1 ATGAACCACG ACATCACTTT CCTCACCCTG TTCCTGCTCG
    GTTTCTTCGG
    51 CGGAACTCAC TGCATCGGTA TGTGCGGCGG ATTAAGCAGC
    GCGTTTGCGC
    101 TCCAACTCCC CCCGCATATC AACCGCTTTT GGCTGATTCT
    GCTGCTTAAC
    151 ACAGGACGGA TAAGCAGCTA TACGGCAATC GGCCTGATGC
    TCGGATTAAT
    201 CGGACAACTC GGCATTTCAC TCGACCAAAc ccgcgTCCTG
    CAAAATATTT
    251 tatacacagc ctccaaCCTC CTGCTGCTCT TTTTAGGCTT
    ATACTTGAGC
    301 GGTATTTCTT CCTTGGCGGC AAAAATCGAG AAAATCGGCA
    AACCGATATG
    351 GCGCAACCTG AACCCGATAC TCAACCGGCT GCTGCCCATA
    AAATCCATAC
    401 CCGCCTGCCT TGCTGTCGGA ATATTATGGG GCTGGCTGCC
    GTGCGGACTG
    451 GTTTACAGCG CATCACTTTA CGCGCTGGGA AGCGGTAGTG
    CGACAACCGG
    501 CGGACTGTAT ATGCTTGCCT TTGCACTGGG TACGCTGCCC
    AATCTTTTGG
    551 CAATCGGCAT TTTTTCCCTG CAACTGAAAA AAATCATGCA
    AAACCGATAT
    601 ATCCGCCTGT GTACAGGATT ATCCGTATCA TTATGGGCAT
    TATGGAAGCT
    651 TGCCGTCCTG TGGCTGTAA
  • This encodes a protein having amino acid sequence <SEQ ID 398>:
  • 1 MNHDITFLTL FLLGFFGGTH CIGMCGGLSS AFALQLPPHI
    NRFWLILLLN
    51 TGRISSYTAI GLMLGLIGQL GISL DQTRVL QNILYTASNL
    LLLFLGLYLS
    101 GISSLAAKIE KIGKPIWRNL NPILNRLLPI KSIPACLAVG
    ILWGWLPCGL
    151 VYSASLYALG SGSATTGGLY MLAFALGTLP NLLAIGIFSL
    QLKKIMQNRY
    201 IRLCTGLSVS LWALWKLAVL WL*
  • In addition, ORF103ng and ORF103-1 show 97.3% identity in 222 aa overlap:
  • Figure US20130064846A1-20130314-C00181
  • Based on this analysis, including the presence of a putative leader sequence (double-underlined) and several putative transmembrane domains (single-underlined) in the gonococcal protein, it is predicted that the proteins from N. meningitidis and N. gonorrhoeae, and their epitopes, could be useful antigens for vaccines or diagnostics, or for raising antibodies.
  • Example 47
  • The following partial DNA sequence was identified in N. meningitidis <SEQ ID 399>:
  • 1 ATGGAAAACC AAAGGCCGCT CCTAGGCTTT CGCTTGGCAC
    TTTTGGCGGC
    51 GATGACGTGG GGAACGCTGC CGAT.TCCGT GCGGCAGGTA
    TTGAAGTTTG
    101 TCGATGCGCC GACGCTGGTG TGGGTGCGTT TTACCGTGGC
    GGCGGCGGTA
    151 TTGTTTGTTT TGCTGGCACT GGGCGGGCGG CTGCcGAAGC
    GGCGaGGATT
    201 TTTCTTGGTG CTCATTCAGG CTGCTGCTGC TCGGCGTGGC
    GGGCATTTCG
    251 GCAAACTTTG TGCTGATTGC CCAAGGGCTG CATTATATTT
    CGCCGACCAC
    301 GACGCAGGTT TTGTGGCAGA TTTCGCCGTT TACGATGATT
    GTwGTCGGTG
    351 TGTTGGTGTT TAAAGACCGG ATGACTGCCG CTCAGAAAAT
    CGGCTTGGTT
    401 TTGCTGCTTG CCGGTTTGCT TATGTATTTT AACGATAAAT
    TCGGCGAGTT
    451 GTCGGGTTTG GGCGCGTATG C.AAGGGCGT GTTGCTGTGT
    GCGGCAGGCA
    501 GTATGGCATG GGTGTGTAAT GCCGTGGCGC AAAAGCTGCT
    GTCGGCGCAA
    551 TTCGGGCCGC AACAGATTCT GCTGTTGATT TATGCGGCAA
    GTGCCGCCGT
    601 GTTCCTGCCG TTTGCCGAAC CGGCACACAT CGGAAGTATG
    GACGGTACGT
    651 TGGCGTGGGT ATGTATTGCG TATTGCTGCT TGAATACGTT
    AATCGGTTAC
    701 GGCTCGTTCG GCGAGGCGTT GAAACATTGG GAGGCTTCCA
    AAGTCAGCGC
    751 GGTAACAACC TTGCTCCCCG TGTTTACCGT AATAAATACT
    TTGCTCGGGC
    801 ATTATGTGAT GCCTGAAACT TTTGCCGCGC CGGA..
  • This corresponds to the amino acid sequence <SEQ ID 400; ORF104>:
  • 1 MENQRPLLGF RLALLAAMTW GTLPXSVRQV LKFVDAPTLV
    WVRFTVAAAV
    51 LFVLLALGGR LPKRRDFSWC SFRLLLLGVA GISANFVLIA
    QGLHYISPTT
    101 TQVLWQISPF TMIVVGVLVF KDRMTAAQKI GLVLLLAGLL
    MYFNDKFGEL
    151 SGLGAYXKGV LLCAAGSMAW VCNAVAQKLL SAQFGPQQIL
    LLIYAASAAV
    201 FLPFAEPAHI GSMDGTLAWV CIAYCCLNTL IGYGSFGEAL
    KHWEASKVSA
    251 VTTLLPVFTV INTLLGHYVM PETFAAP...
  • Further work revealed further, partial DNA sequence <SEQ ID 401>:
  • 1 ATGGAAAACC AAAGGCCGCT CCTAGGCTTC GCGTTGGCAC
    TTTTGGCGGC
    51 GATGACGTGG GGAACGCTGC CGATTGCCGT GCGGCAGGTA
    TTGAAGTTTG
    101 TCGATGCGCC GACGCTGGTG TGGGTGCGTT TTACCGTGGC
    GGCGGCGGTA
    151 TTGTTTGTTT TGCTGGCACT GGGCGGGCGG CTGCCGAAGC
    GGCGGGATTT
    201 TTCTTGGTGC TCATTCAGGC TGCTGCTGCT CGGCGTGGCG
    GGCATTTCGG
    251 CAAACTTTGT GCTGATTGCC CAAGGGCTGC ATTATATTTC
    GCCGACCACG
    301 ACGCAGGTTT TGTGGCAGAT TTCGCCGTTT ACGATGATTG
    TTGTCGGTGT
    351 GTTGGTGTTT AAAGACCGGA TGACTGCCGC TCAGAAAATC
    GGCTTGGTTT
    401 TGCTGCTTGC CGGTTTGCTT ATGTTTTTTA ACGATAAATT
    CGGCGAGTTG
    451 TCGGGTTTGG GCGCGTATGC GAAGGGCGTG TTGCTGTGTG
    CGGCAGGCAG
    501 TATGGCATGG GTGTGTTATG CCGTGGCGCA AAAGCTGCTG
    TCGGCGCAAT
    551 TCGGGCCGCA ACAGATTCTG CTGTTGATTT ATGCGGCAAG
    TGCCGCCGTG
    601 TTCCTGCCGT TTGCCGAACC GGCACACATC GGAAGTTTGG
    ACGGTACGTT
    651 GGCGTGGGTT TGTTTTGCGT ATTGCTGCTT GAATACGTTA
    ATCGGTTACG
    701 GCTCGTTCGG CGAGGCGTTG AAACATTGGG AGGCTTCCAA
    AGTCAGCGCG
    751 GTAACAACCT TGCTCCCCGT GTTTACCGTA ATAwTwwCTT
    TGCTCGGGCA
    801 TTATGTGATG CCTGAAACTT TTGCCGCGCC GGA...
  • This corresponds to the amino acid sequence <SEQ ID 402; ORF104-1>:
  • 1 MENQRPLLGF ALALLAAMTW GTLPIAVRQV LKFVDAPTLV
    WVRFTVAAAV
    51 LFVLLALGGR LPKRRDFSWC SFRLLLLGVA GISANFVLIA
    QGLHYISPTT
    101 TQVLWQISPF TMIVVGVLVF KDRMTAAQKI GLVLLLAGLL
    MFFNDKFGEL
    151 SGLGAYAKGV LLCAAGSMAW VCYAVAQKLL SAQFGPQQIL
    LLIYAASAAV
    201 FLPFAEPAHI GSLDGTLAWV CFAYCCLNTL I GYGSFGEAL
    KHWEASKVSA
    251 VTTLLPVFTV IXXLLGHYVM PETFAAP...
  • Computer analysis of this amino acid sequence gave the following results:
  • Homology with Hypothetical HI0878 Protein of H. influenzae (Accession Number U32769)
  • ORF104 and HI0878 show 40% aa identity in 277aa overlap:
  • orf104 4 QRPLLGFRLALLAAMTWGTLPXSVRQVLKFVDAPTLVWXXXXXXXXXXXXXXXXXXXXP- 62
    Q+PLLGF  AL+ AM WG+LP +++QVL  ++A T+VW                    P
    HI0878 3 QQPLLGFTFALITAMAWGSLPIALKQVLSVMNAQTIVWYRFIIAAVSLLALLAYKKQLPE 62
    orf104 63 --KRRDFSWCSFRLLLLGVAGISANFVLIAQGLHYISPTTTQVLWQISPFTMIVVGVLVF 120
      K R ++W    ++L+GV G+++NF+L +  L+YI P+  Q+   +S F M++ GVL+F
    HI0878 63 LMKVRQYAW----IMLIGVIGLTSNFLLFSSSLNYIEPSVAQIFIHLSSFGMLICGVLIF 118
    orf104 121 KDRMTAAQKIXXXXXXXXXXMYFNDKFGELSGLGAYXKGVLLCAAGSMAWVCNAVAQKLL 180
    K+++   QKI          ++FND+F   +GL  Y  GV+L   G++ WV   +AQKL+
    HI0878 119 KEKLGLHQKIGLFLLLIGLGLFFNDRFDAFAGLNQYSTGVILGVGGALIWVAYGMAQKLM 178
    orf104 181 SAQFGPQQILLLIYAASAAVFLPFAEPAHIGSMDGTLAWVCIAYCCLNTLIGYGSFGEAL 240
      +F  QQILL++Y   A  F+P A+ + +  +   LA +C  YCCLNTLIGYGS+ EAL
    HI0878 179 LRKFNSQQILLMMYLGCAIAFMPMADFSQVQELT-PLALICFIYCCLNTLIGYGSYAEAL 237
    orf104 241 KHWEASKVSAVTTLLPVFTVINTLLGHYVMPETFAAP 277
      W+ SKVS V TL+P+FT++ + + HY  P  FAAP
    HI0878 238 NRWDVSKVSVVITLVPLFTILFSHIAHYFSPADFAAP 274

    Homology with a Predicted ORF from N. meningitidis (Strain A)
  • ORF104 shows 95.3% identity over a 277aa overlap with an ORF (ORF104a) from strain A of N. meningitidis:
  • Figure US20130064846A1-20130314-C00182
  • The complete length ORF104a nucleotide sequence <SEQ ID 403> is:
  • 1 ATGGAAAACC AAAGGCCGCT CCTAGGCTTC GCGTTGGCAC
    TTTTGGCGGC
    51 GATGACGTGG GGAACGCTGC CGATTGCCGT GCGGCAGGTA
    TTGAAGTTTG
    101 TCGATGCGCC GACGCTGGTG TGGGTGCGTT TTACCGTGGC
    GGCGGCGGTA
    151 TTGTTTGTTT TGCTGGCATT GGGCGGGCGG CTGCCGAAGT
    GGCGGGATTT
    201 TTCTTGGTGC TCATTCAGGC TGCTGCTGCT CGGCGTGGCG
    GGCATTTCGG
    251 CAAACTTTGT GCTGATTGCC CAAGGGCTGC ATTATATTTC
    GCCGACCACG
    301 ACGCAGGTTT TGTGGCAGAT TTCGCCGTTT ACGATGATTG
    TTGTCGGTGT
    351 GTTGGTGTTT AAAGACCGGA TGACTGCCGC TCAGAAAATC
    GGCTTGGTTT
    401 TGCTGCTTGC CGGTTTGCTT ATGTTTTTTA ACGATAAATT
    CGGCGAGTTG
    451 TCGGGTTTGG GCGCGTATGC GAAGGGCGTG TTGCTGTGTG
    CGGCAGGCAG
    501 TATGGCATGG GTGTGTTATG CCGTGGCGCA AAAGCTGCTG
    TCGGCGCAAT
    551 TCGGGCCGCA ACAGATTCTG CTGTTGATTT ATGCGGCAAG
    TGCCGCCGTG
    601 TTCCTGCCGT TTGCCGAACT GGCACACATC GGAAGTTTGG
    ACGGTACGTT
    651 GGCGTGGGTT TGTTTTGCGT ATTGCTGCTT GAATACGTTA
    ATCGGTTACG
    701 GCTCGTTCGG CGAGGCGTTG AAACATTGGG AGGCTTCCAA
    AGTCAGCGCG
    751 GTAACAACCT TGCTCCCCGT GTTTACCGTA ATATTTTCTT
    TGCTCGGGCA
    801 TTATGTGATG CCTGATACTT TTGCCGCGCC GGATATGAAC
    GGTTTGGGTT
    851 ATGCCGGCGC ACTGGTCGTG GTCGGGGGTG CGGTTACGGC
    GGCGGTGGGG
    901 GACAGGCTGT TCAAACGCCG CTAG
  • This encodes a protein having amino acid sequence <SEQ ID 404>:
  • 1 MENQRPLLGF ALALLAAMTW GTLPIAVRQV LKFVDAPTLV
    WVRFTVAAAV
    51 LFVLLALGGR LPKWRDFSWC SFRLLLLGVA GISANFVLIA
    QGLHYISPTT
    101 TQVLWQISPF TMIVVGVLVF KDRMTAAQKI GLVLLLAGLL
    MFFNDKFGEL
    151 SGLGAYAKGV LLCAAGSMAW VCYAVAQKLL SAQFGPQQIL
    LLIYAASAAV
    201 FLPFAELAHI GSLDGTLAWV CFAYCCLNTL I GYGSFGEAL
    KHWEASKVSA
    251 VTTLLPVFTV IFSLLGHYVM PDTFAAPDMN GLGYAGALVV
    VGGAVTAAVG
    301 DRLFKRR*
  • ORF104a and ORF104-1 show 98.2% identity in 277 aa overlap:
  • Figure US20130064846A1-20130314-C00183
  • Homology with a Predicted ORF from N. gonorrhoeae
  • ORF104 shows 93.9% identity over a 277aa overlap with a predicted ORF (ORF104.ng) from N. gonorrhoeae:
  • Figure US20130064846A1-20130314-C00184
  • The complete length ORF104ng nucleotide sequence <SEQ ID 405> is predicted to encode a protein having amino acid sequence <SEQ ID 406>:
  • 1 MENQRPLLGF ALALLAAMTW GTLPIAVRQV LKFVDAPTLV
    WVRFTVAAAV
    51 LFVLLALGGR LPKRRDFSWH SFRLLLLGVT GISANFVLIA
    QGLHYISPTT
    101 TQVLWQISPF TMIVVGVLVF KDRMTAAQKI GLVLLLVGLL
    MFFNDKFGEL
    151 SGLGAYAKGV LLCAAGSMAW VCYAVAQKLL SAQFGPQQIL
    LLIYAASAAV
    201 FLLXAEPAHI GSLDGTLAWV CFVYCCLNTL  IGYGSFGEAL
    KHWEASKVSA
    251 VTTLLPVFTV IFSLLGHYVM PDTFAAPDMN GLGYVGALVV
    VGGAVTAAVG
    301 DRPFKRR*
  • Further work revealed the complete gonococcal nucleotide sequence <SEQ ID 407>:
  • 1 ATGGAAAACC AAAGGCCGCT CCTAGGCTTC GCGTTGGCAC
    TTTTGGCGGC
    51 GATGACGTGG GGGACGCTGC CGATTGCCGT GCGGCAGGTA
    TTGAAGTTTG
    101 TCGATGCGCC GACGCTGGTG TGGGTGCGTT TTACCGTGGC
    GGCGGCGGTA
    151 TTGTTTGTTT TGCTGGCATT GGGCGGGCGG CTGCCGAAGC
    GGCGGGATTT
    201 TTCTTGGCAT TCATTCAGGC TGCTGCTGCT CGGCGTGACG
    GGCATTTCGG
    251 CAAACTTTGT GCTGATTGCC CAAGGGCTGC ATTATATTTC
    GCCGACCACG
    301 ACGCAGGTTT TGTGGCAGAT TTCGCCGTTT ACGATGATTG
    TTGTCGGCGT
    351 GTTGGTGTTT AAAGACCGGA tgaCTGCCGC GCAGAAAATC
    GGTTTGGTTT
    401 TGCTGCttgT CGGTttgCTT ATGTTTTtta ACGACAAATT
    CGGCGAGTTG
    451 TCGGGTTTGG GCGCGTATGC GAAGGGCGTG TTGCTGTGTG
    CGGCAGGCAG
    501 TATGGCCTGG GTGTGTTATG CCGTGGCGCA AAAGCTGCTG
    TCGGCGCAAT
    551 TCGGGCCGCA ACAGATTCTG CTGTTGATTT ATGCGGcaag
    tgccgccGTG
    601 TTCCtgccgT TTGccgaaCC GGCACACATC GGAAGTTTgg
    aCGGTACGtt
    651 GGCGTGGGTT TGTTTTGTGT ATTGCTGCTT GAATACGTTA
    ATCGGTTACG
    701 GCTCGTTCGG CGAGGCGTTG AAACATTGGG AGGCTTCCAA
    AGTCAGCGCG
    751 GTAACAACCT TGCTCCCCGT GTTTACCGTA ATATTTTCTT
    TGCTCGGGCA
    801 TTATGTGATG CCTGATACTT TTGCCGCGCC GGATATGAAC
    GGTTTGGGTT
    851 ATGTCGGCGC ACTGGTCGTG GTCGGGGGTG CGGTTACGGC
    GGCGGTGGGG
    901 GACAGGCCGT TCAAACGCCG CTAG
  • This corresponds to the amino acid sequence <SEQ ID 408; ORF104ng-1>:
  • 1 MENQRPLLGF ALALLAAMTW GTLPIAVRQV LKFVDAPTLV
    WVRFTVAAAV
    51 LFVLLALGGR LPKRRDFSWH SFRLLLLGVT GISANFVLIA
    QGLHYISPTT
    101 TQVLWQISPF TMIVVGVLVF KDRMTAAQKI GLVLLLVGLL
    MFFNDKFGEL
    151 SGLGAYAKGV LLCAAGSMAW VCYAVAQKLL SAQFGPQQIL
    LLIYAASAAV
    201 FLPFAEPAHI GSLDGTLAWV CFVYCCLNTL I GYGSFGEAL
    KHWEASKVSA
    251 VTTLLPVFTV IFSLLGHYVM PDTFAAPDMN GLGYVGALVV
    VGGAVTAAVG
    301 DRPFKRR*
  • ORF104ng-1 and ORF104-1 show 97.5% identity in 277 aa overlap:
  • Figure US20130064846A1-20130314-C00185
  • In addition, ORF104ng-1 shows significant homology with a hypothetical H. influenzae protein:
  • gi|1573895 (U32769) hypothetical [Haemophilus influenzae] Length = 306
    Score = 237 bits (598), Expect = 8e−62
    Identities = 114/280 (40%), Positives = 168/280 (59%), Gaps = 8/280 (2%)
    Query: 30 QRPXXXXXXXXXXXMTWGTLPIAVRQVLKFVDAPTLVWXXXXXXXXXXXXXXXXXXXXP- 88
    Q+P           M WG+LPIA++QVL  ++A T+VW                    P
    Sbjct: 3 QQPLLGFTFALITAMAWGSLPIALKQVLSVMNAQTIVWYRFIIAAVSLLALLAYKKQLPE 62
    Query: 89 --KRRDFSWHSFRLLLLGVTGISANFVLIAQGLHYISPTTTQVLWQISPFTMIVVGVLVF 146
      K R ++W    ++L+GV G+++NF+L +  L+YI P+  Q+   +S F M++ GVL+F
    Sbjct: 63 LMKVRQYAW----IMLIGVIGLTSNFLLFSSSLNYIEPSVAQIFIHLSSFGMLICGVLIF 118
    Query: 147 KDRMTAAQKIXXXXXXXXXXMFFNDKFGELSGLGAYAKGVLLCAAGSMAWVCYAVAQKLL 206
    K+++   QKI          +FFND+F   +GL  Y+ GV+L   G++ WV Y +AQKL+
    Sbjct: 119 KEKLGLHQKIGLFLLLIGLGLFFNDRFDAFAGLNQYSTGVILGVGGALIWVAYGMAQKLM 178
    Query: 207 SAQFGPQQILLLIYAASAAVFLPFAEPAHIGSLDGTLAWVCFVYCCLNTLIGYGSFGEAL 266
      +F  QQILL++Y   A  F+P A+ + +  L   LA +CF+YCCLNTLIGYGS+ EAL
    Sbjct: 179 LRKFNSQQILLMMYLGCAIAFMPMADFSQVQELT-PLALICFIYCCLNTLIGYGSYAEAL 237
    Query: 267 KHWEASKVSAVTTLLPVFTVIFSLLGHYVMPDTFAAPDMN 306
      W+ SKVS V TL+P+FT++FS + HY  P  FAAP++N
    Sbjct: 238 NRWDVSKVSVVITLVPLFTILFSHIAHYFSPADFAAPELN 277
  • Based on this analysis, including the presence of a putative leader sequence and several putative transmembrane domains in the gonococcal protein, it is predicted that the proteins from N. meningitidis and N. gonorrhoeae, and their epitopes, could be useful antigens for vaccines or diagnostics, or for raising antibodies.
  • Example 48
  • The following partial DNA sequence was identified in N. meningitidis <SEQ ID 409>:
  • 1 ATGGTAGCTC GTCGGGCTCA TAACCCGAAG GTCGTAGGTT
    CGAATCCTGT
    51 .CCCGCAACC TAATTTCAAA CCCCTCGGTT CAATGCCGAG
    GG.GTTTTGT
    101 T.TTGCCTGT TTCCTGTTTC CTGTTTCCTG CCGCCTCCGT
    TTTTTGCCGG
    151 ATTTTCCTTC CGGCCGCAAT ATCGGAACGG CAGACCGCCG
    TCTGTTTGCG
    201 GTTGCAAATT CAGGCAGTTT GGCTACAATC TTCCGCATTG
    TCTTCAAGAA
    251 AGCCAACCAT GCCGACCGTC CGTTTTACCG AATCCGTCAG
    CAAACAAGAC
    301 CTTGATGCTC TGTTCGAGTG GGCAAAAGCA AGTTACGGTG
    CAGAAAGTTG
    351 CTGGAAAACG CTGTATCTGA ACGGTCysCC TTTGGGCAAC
    CTGTCGCCGG
    401 AATGGGTGGA ACGCGTsmmA AAAGACTGGG AGGCAGGCTG
    CyCGGAGTCT
    451 TCAGACGGCA TTTTTCTGAA TgCGGACGGc TGgCctGATA
    TGGgCGGAcg
    501 cTTACAGCAC CTCGCCCTCG GTTGGCACTG TGCGGGGCTG
    TTGGACGgsT
    551 GGCGCAACGA GTGTTTCGAC CTGACCGACG GCGGCGGCAA
    CCCCTTGTTC
    601 ACGCTCGaAc GCGCCGyTTT mCGTCCTkTC GGACTGCTCA
    GCCGCGCCGT
    651 CCATCTCAAC GGTCTGACCG AATCGGACGG CCGATGGCAT
    TTCTGGATAG
    701 GCAGGCGCAG TCCGCACAAA GCAGTCGATC CCAACAAACT
    CGACAATACT
    751 rCCGCCGGCG GTGTTTCCGG CGGCGAAATG CCGTCTGAAG
    CCGTGTGTCG
    801 CGAAAGCAGC GAAGAAGCCG GTTTGGATAA AACGCTGcTT
    CCGCTCATCC
    851 GCCCGGTATC GCAGCTGCAC AGCCTGCGCT CCGTCAGCCG
    GGGTGTACAC
    901 AATGAAATCC TGTATGTATT CGATGCCGTC CTGCCG...
  • This corresponds to the amino acid sequence <SEQ ID 410; ORF105>:
  • 1 MVARRAHNPK VVGSNPXPAT XFQTPRFNAE XVLXLPVSCF
    LFPAASVFCR
    51 IFLPAAISER QTAVCLRLQI QAVWLQSSAL SSRKPTMPTV
    RFTESVSKQD
    101 LDALFEWAKA SYGAESCWKT LYLNGXPLGN LSPEWVERVX
    KDWEAGCXES
    151 SDGIFLNADG WPDMGGRLQH LALGWHCAGL LDGWRNECFD
    LTDGGGNPLF
    201 TLERAXXRPX GLLSRAVHLN GLTESDGRWH FWIGRRSPHK
    AVDPNKLDNT
    251 XAGGVSGGEM PSEAVCRESS EEAGLDKTLL PLIRPVSQLH
    SLRSVSRGVH
    301 NEILYVFDAV LP...
  • Further work revealed the complete nucleotide sequence <SEQ ID 411>:
  • 1 ATGCCGACCG TCCGTTTTAC CGAATCCGTC AGCAAACAAG
    ACCTTGATGC
    51 TCTGTTCGAG TGGGCAAAAG CAAGTTACGG TGCAGAAAGT
    TGCTGGAAAA
    101 CGCTGTATCT GAACGGTCTG CCTTTGGGCA ACCTGTCGCC
    GGAATGGGTG
    151 GAACGCGTCA AAAAAGACTG GGAGGCAGGC TGCTCGGAGT
    CTTCAGACGG
    201 CATTTTTCTG AATGCGGACG GCTGGCCTGA TATGGGCGGA
    CGCTTACAGC
    251 ACCTCGCCCT CGGTTGGCAC TGTGCGGGGC TGTTGGACGG
    CTGGCGCAAC
    301 GAGTGTTTCG ACCTGACCGA CGGCGGCGGC AACCCCTTGT
    TCACGCTCGA
    351 ACGCGCCGCT TTCCGTCCTT TCGGACTGCT CAGCCGCGCC
    GTCCATCTCA
    401 ACGGTCTGAC CGAATCGGAC GGCCGATGGC ATTTCTGGAT
    AGGCAGGCGC
    451 AGTCCGCACA AAGCAGTCGA TCCCAACAAA CTCGACAATA
    CTGCCGCCGG
    501 CGGTGTTTCC GGCGGCGAAA TGCCGTCTGA AGCCGTGTGT
    CGCGAAAGCA
    551 GCGAAGAAGC CGGTTTGGAT AAAACGCTGC TTCCGCTCAT
    CCGCCCGGTA
    601 TCGCAGCTGC ACAGCCTGCG CTCCGTCAGC CGGGGTGTAC
    ACAATGAAAT
    651 CCTGTATGTA TTCGATGCCG TCCTGCCCGA AACCTTCCTG
    CCTGAAAATC
    701 AGGATGGCGA AGTGGCGGGT TTTGAGAAAA TGGACATCGG
    CGGTCTGTTG
    751 GATGCCATGT TGTCGGGAAA CATGATGCAC GACGCGCAAC
    TGGTTACGCT
    801 GGACGCGTTT TGCCGTTACG GTCTGATTGA TGCCGCCCAT
    CCGCTGTCCG
    851 AGTGGCTGGA CGGCATACGT TTATAG
  • This corresponds to the amino acid sequence <SEQ ID 412; ORF105-1>:
  • 1 MPTVRFTESV SKQDLDALFE WAKASYGAES CWKTLYLNGL
    PLGNLSPEWV
    51 ERVKKDWEAG CSESSDGIFL NADGWPDMGG RLQHLALGWH
    CAGLLDGWRN
    101 ECFDLTDGGG NPLFTLERAA FRPFGLLSRA VHLNGLTESD
    GRWHFWIGRR
    151 SPHKAVDPNK LDNTAAGGVS GGEMPSEAVC RESSEEAGLD
    KTLLPLIRPV
    201 SQLHSLRSVS RGVHNEILYV FDAVLPETFL PENQDGEVAG
    FEKMDIGGLL
    251 DAMLSGNMMH DAQLVTLDAF CRYGLIDAAH PLSEWLDGIR
    L*
  • Computer analysis of this amino acid sequence gave the following results:
  • Homology with a Predicted ORF from N. meningitidis (Strain A)
  • ORF105 shows 89.4% identity over a 226aa overlap with an ORF (ORF105a) from strain A of N. meningitidis:
  • Figure US20130064846A1-20130314-C00186
  • The complete length ORF105a nucleotide sequence <SEQ ID 413> is:
  • 1 ATGCCGACCG TCCGTTTTAC CGAATCCGTC AGCAAACACG
    ACCTTGATGC
    51 CCTATTCGAG TGGGCAAAGG CAAGTTACGG TGCGGAAAGT
    TGCTGGAAAA
    101 CGCTGTATCT GAACGGTCTG CCTTTGGGCA ATCTGTCGCC
    GGAATGGGCG
    151 GAGCGCGTCA AAAAAGACTG GGAGGCAGGC TGCTCGGAGT
    CTTCAGACGG
    201 CATTTTCCTG AATGCGGACG GCTGGCCAGA TATGGGCAGA
    CGCTTGCAGC
    251 ACCTCGCCCG AATATGGAAA GAAGCGGGAC TGCTTCACGG
    CTGGCGCGAC
    301 GAGTGTTTCG ACCTGACCGA CGGCGGCAGC AATCCCTTGT
    TCGCGCTCGA
    351 ACGCGCCGCT TTCCGTCCGT TCGGACTGCT CAGCCGCGCC
    GTCCATCTCA
    401 ACGGTTTGGT CGAATCGGAC GGCCGATGGC ATTTCTGGAT
    AGGCAGGCGC
    451 AGTCCGCACA AAGCAGTCGA TCCCGACAAA CTCGACAATA
    CTGCCGCCGG
    501 CGGTGTTTCC AGCGGTGAAT TGCCGTCTGA AACCGTGTGT
    CGCGAAAGCA
    551 GCGAAGAAGC CGGTTTGGAT AAAACGCTGC TTCCGCTCAT
    CCGCCCGGTA
    601 TCGCAGCTGC ACAGCCTGCG CCCCGTCAGC CGGGGTGTGC
    ACAATGAAAT
    651 CCTGTATGTA TTCGATGCCG TCCTGCCCGA AACCTTCCTG
    CCTGAAAATC
    701 AGGATGGCGA AGTGGCGGGT TTTGAGAAAA TGGACATCGG
    CGGTCTGTTG
    751 GCTGCCATGT TGTCGGGAAA CATGATGCAC GACGCGCAAC
    TGGTTACGCT
    801 GGACGCGTTT TGCCGTTACG GTCTGATTGA TGCCGCCCAT
    CCGCTGTCCG
    851 AGTGGCTGGA CGGCATACGT TTATAG
  • This encodes a protein having amino acid sequence <SEQ ID 414>:
  • 1 MPTVRFTESV SKHDLDALFE WAKASYGAES CWKTLYLNGL
    PLGNLSPEWA
    51 ERVKKDWEAG CSESSDGIFL NADGWPDMGR RLQHLARIWK
    EAGLLHGWRD
    101 ECFDLTDGGS NPLFALERAA FRPFGLLSRA VHLNGLVESD
    GRWHFWIGRR
    151 SPHKAVDPDK LDNTAAGGVS SGELPSETVC RESSEEAGLD
    KTLLPLIRPV
    201 SQLHSLRPVS RGVHNEILYV FDAVLPETFL PENQDGEVAG
    FEKMDIGGLL
    251 AAMLSGNMMH DAQLVTLDAF CRYGLIDAAH PLSEWLDGIR
    L*
  • ORF105a and ORF105-1 show 93.8% identity in 291 aa overlap:
  • Figure US20130064846A1-20130314-C00187
  • Homology with a Predicted ORF from N. gonorrhoeae
  • ORF105 shows 87.5% identity over a 312aa overlap with a predicted ORF (ORF105.ng) from N. gonorrhoeae:
  • Figure US20130064846A1-20130314-C00188
  • A complete length ORF105ng nucleotide sequence <SEQ ID 415> was predicted to encode a protein having amino acid sequence <SEQ ID 416>:
  • 1 MVARRAHNPK VVGSNPAPAT KYQTPRFNAE GVLFFLFPAA
    SVFCRIFLPA
    51 AISERQAAVC LRLQIQAVWL QSSALCSRKP AMPTVRFTES
    VSKQDLDALF
    101 ERAKASYGAE SCWKTLYLNR LPLGNLSPEW AERIKKDWEA
    GCSESSNGIF
    151 LNADGWPDMG GRLQHLARTW NKAGLLHGWR NECFDLTDGG
    GNPLFTLERA
    201 AFRPFGLLIR AVHLNGLVES NGRWHFWIGR RSPHKAVDPG
    KLDNIAGGGV
    251 SGGEMPSEAV CRESSEEAGL DKTLFPLIRP VSRLHSLRPV
    SRGVHNEILY
    301 VFDAVLPETF LPENQDGEVA GFEKMDIGGL LDAMLSKNMM
    HDAQLVTLDA
    351 FYRYGLIDAA HPLSEWLDGI RL*
  • Further work revealed the complete nucleotide sequence <SEQ ID 417>:
  • 1 ATGCCGACCG TCCGTTTTAC CGAATCCGTC AGCAAACAAG
    ACCTTGATGC
    51 CCTGTTCGAG CGGGCAAAAG CAAGTTACGG TGCCGAAAGT
    TGCTGGAAAA
    101 CGCTGTATCT GAACCGTCTT CCTTTGGGCA ATCTGTCGCC
    GGAATGGGCT
    151 GAGCGCATCA AAAAAGACTG GGAGGCAGGC TGCTCCGAGT
    CTTCAGACGG
    201 CATTTTTCTG AATGCGGACG GCTGGCCGGA TATGGGCGGA
    CGCTTGCAGC
    251 ACCTCGCCCG CACATGGAAC AAGGCGGGGC TGCTTCACGG
    ATGGCGCAAC
    301 GAGTGTTTCG ACCTGACCGA CGGCGGCGGC AACCCCTTGT
    TCACGCTCGA
    351 ACGCGCCGCT TTCCGTCCGT TCGGACTACT CAGCCGCGCC
    GTCCATCTCA
    401 ACGGTTTGGT CGAATCGAAC GGCAGATGGC ATTTTTGGAT
    AGGCAGGCGC
    451 AGTCCGCACA AAGCAGTCGa tcCCGGCAAG CTCGACAATA
    TTGCCGGCGG
    501 CGGTGTTTCC GGCGGCGAAA TGCCGTCTGA AGCCGTGTGC
    CGCGAAAGCA
    551 GCGAAGAAGC CGGTTTGGAT AAAACGCTGT TTCCGCTCAT
    CCGCCCAGTA
    601 TCGCGGCTGC ACAGCCTTCG CCCCGTCAGC CGAGGTGTGC
    ACAATGAAAT
    651 CCTGTATGTG TTCGATGCCG TCCTGCCCGA AACCTTCCTG
    CCTGAAAATC
    701 AGGATGGCGA GGTAGCGGGT TTTGAAAAGA TGGACATTGG
    CGGCCTATTG
    751 GATGCCATGT TGTCGAAAAA CATGATGCAC GACGCGCAAC
    TGGTTACGCT
    801 GGACGCGTTT TACCGTTACG GTCTGATTGA TGCCGCCCAT
    CCGCTGTCCG
    851 AGTGGCTGGA CGGCATACGT TTATAG
  • This corresponds to the amino acid sequence <SEQ ID 418; ORF105ng-1>:
  • 1 MPTVRFTESV SKQDLDALFE RAKASYGAES CWKTLYLNRL
    PLGNLSPEWA
    51 ERIKKDWEAG CSESSDGIFL NADGWPDMGG RLQHLARTWN
    KAGLLHGWRN
    101 ECFDLTDGGG NPLFTLERAA FRPFGLLSRA VHLNGLVESN
    GRWHFWIGRR
    151 SPHKAVDPGK LDNIAGGGVS GGEMPSEAVC RESSEEAGLD
    KTLFPLIRPV
    201 SRLHSLRPVS RGVHNEILYV FDAVLPETFL PENQDGEVAG
    FEKMDIGGLL
    251 DAMLSKNMMH DAQLVTLDAF YRYGLIDAAH PLSEWLDGIR
    L*
  • ORG105ng-1 and ORF105-1 show 93.5% identity in 291 aa overlap:
  • Figure US20130064846A1-20130314-C00189
  • Furthermore, ORF105ng-1 shows homology with a yeast enzyme:
  • sp|P41888|TNR3_SCHPO THIAMIN PYROPHOSPHOKINASE (TPK) (THIAMIN KINASE)
    >gi|1076928|pir||S52350 thiamin pyrophosphokinase (EC 2.7.6.2) - fission
    yeast (Schizosaccharomyces pombe) >gi|666111 (X84417) thiamin
    pyrophosphokinase [Schizosaccharomyces pombe]
    >gi|2330852|gnl|PID|e334056 (Z98533) thiamin
    pyrophosphokinase [Schizosaccharomyces pombe] Length = 569
    Score = 105 bits (259), Expect = 4e−22
    Identities = 64/192 (33%), Positives = 94/192 (48%), Gaps = 3/192 (1%)
    Query: 268 NKAGLLHGWRNECFDLTDGGGNPLFTLERAAFRPFGLLSRAVHLNGLVESNGRW--HFWI 441
    N  G+   WRNE + +      P+  +ER  F  FG LS  VH    + +        W+
    Sbjct: 96 NTFGIADQWRNELYTVYGKSKKPVLAVERGGFWLFGFLSTGVHCTMYIPATKEHPLRIWV 155
    Query: 442 GRRSPHKAVDPGKLDNIAGGGVSGGEMPSEAVCRESSEEAGLDKTLFPLIRPVSRLHSLR 621
     RRSP K   P  LDN   GG++ G+     + +E SEEA LD +   LI P   +  ++
    Sbjct: 156 PRRSPTKQTWPNYLDNSVAGGIAHGDSVIGTMIKEFSEEANLDVSSMNLI-PCGTVSYIK 214
    Query: 622 PVSRG-VHNEILYVFDAVLPETFLPENQDGEVAGFEKMDIGGLLDAMLSKNMMHDAQLVT 798
       R  +  E+ YVFD  + +  +P   DGEVAGF  + +  +L  +  K+   +  LV
    Sbjct: 215 MEKRHWIQPELQYVFDLPVDDLVIPRINDGEVAGFSLLPLNQVLHELELKSFKPNCALVL 274
    Query: 799 LDAFYRYGLIDAAHP 843
    LD   R+G+I   HP
    Sbjct: 275 LDFLIRHGIITPQHP 289
  • Based on this analysis, including the presence of a putative transmembrane domain in the gonococcal protein, it is predicted that the proteins from N. meningitidis and N. gonorrhoeae, and their epitopes, could be useful antigens for vaccines or diagnostics, or for raising antibodies.
  • Example 49
  • The following DNA sequence, believed to be complete, was identified in N. meningitidis <SEQ ID 419>:
  • 1 ATGAATAGAC CCAAGCAACC CTTCTTCCGT CCCGAAGTCG
    CCGTTGCCCG
    51 CCAAACCAGC CTGACGGGTA AAGTGATTCT GACACGACCG
    TTGTCATTTT
    101 CCCTATGGAC GACATTTGCA TCGATATCTG CGTTATTGAT
    TATCCTGTTT
    151 TTGATATTTG GTAACTATAC GCGAAAGACA ACAGTGGAGG
    GACAAATTTT
    201 ACCTGCATCG GGCGTAATCA GGGTGTATGC ACCGgATACG
    rGkACAATTA
    251 CAGCGAAATT CGTGGAAGAT GGmsAAAAGG TTAAGGCTGG
    CGACAAGCTA
    301 TTTGCGCTTT CGACCTCACG TTTCGGCGCA GGAGGTAGCG
    TGCAGCAGCA
    351 GTTGAAAACG GAGGCAGTTT TGAAGAAAAC GTTGGCAGAA
    CAGGAACTGG
    401 GTCGTCTGAA GCTGATACAC GGGAATGAAA CGCGCAgCcT
    TAAAGCAACT
    451 GTCGAACGTT TGGAAAACCA GGAACTCCAT ATTTCGCAAC
    AGATAGACGG
    501 TCAGAAAAGG CGCATTAGAC TTGCGGAAGA AATGTTGCAG
    AAATATCGTT
    551 TCCTATCCGC .CAATGA
  • This corresponds to the amino acid sequence <SEQ ID 420; ORF107>:
  • 1 MNRPKQPFFR PEVAVARQTS LTGKVILTRP LSFSLWTTFA
    SISALLIILF
    51 LIFGNYTRKT TVEGQILPAS GVIRVYAPDT XTITAKFVED
    GXKVKAGDKL
    101 FALSTSRFGA GGSVQQQLKT EAVLKKTLAE QELGRLKLIH
    GNETRSLKAT
    151 VERLENQELH ISQQIDGQKR RIRLAEEMLQ KYRFLSXQ*
  • Computer analysis of this amino acid sequence gave the following results:
  • Homology with a Predicted ORF from N. meningitidis (Strain A)
  • ORF107 shows 97.8% identity over a 186aa overlap with an ORF (ORF107a) from strain A of N. meningitidis:
  • Figure US20130064846A1-20130314-C00190
  • The complete length ORF107a nucleotide sequence <SEQ ID 421> is:
  • 1 ATGAATAGAC CCAAGCAACC NTTCTTCCGT CCCGAAGTCG
    CCGTTGCCCG
    51 CCAAACCAGC CTGACGGGTA AAGTGATTCT GACACGACCG
    TTGTCATTTT
    101 CCCTATGGAC GACATTTGCA TCGATATCTG CGTTATTGAT
    TATCCTGTTT
    151 TTGATATTTG GTAACTATAC GCGAAAGACA ACAGTGGAGG
    GACAAATTTT
    201 ACCTGCATCG GGCGTAATCA GGGTGTATGC ACCGGATACG
    GGGACAATTA
    251 CNGCGAAATT CNTGGAAGAT GGAGAAAAGG TTAAGGCTGG
    CGACAAGCTA
    301 TTTGCGCTTT CGACCTCACG TTTCGGCGCA GGAGATAGCG
    TGCAGCAGCA
    351 GTTGAAAACG GAGGCAGTTT TGAAGAAAAC GTTGGCAGAA
    CAGGAACTGG
    401 GTCGTCTGAA GCTGATACAC GGGAATGAAA CGCGCAGCCT
    TAAAGCAACT
    451 GTCGAACGTT TGGAAAACCA GGAACTCCAT ATTTCGCAAC
    AGATAGACGG
    501 TCAGAAAAGG CGCATTAGAC TTGCGGAAGA AATGTTGCAG
    AAATATCGTT
    551 TCCTATCCGC CAATGATGCA GTGCCAAAAC AAGAAATGAT
    GAATGTCAAG
    601 GCAGAGCTTT TAGAGCAGAA AGCCAAACTT GATGCCTACC
    GCCGAGAAGA
    651 AGTCGGGCTG CTTCAGGAAA TCCGCACGCA GAATCTGACA
    TTGGNNAGCC
    701 TCCCCCAAGC GGCATGA
  • This encodes a protein having amino acid sequence <SEQ ID 422>:
  • 1 MNRPKQPFFR PEVAVARQTS LTGKVILTRP LSFSLWTTFA
    SISALLIILF
    51 LIFGNYTRKT TVEGQILPAS GVIRVYAPDT GTITAKFXED
    GEKVKAGDKL
    101 FALSTSRFGA GDSVQQQLKT EAVLKKTLAE QELGRLKLIH
    GNETRSLKAT
    151 VERLENQELH ISQQIDGQKR RIRLAEEMLQ KYRFLSANDA
    VPKQEMMNVK
    201 AELLEQKAKL DAYRREEVGL LQEIRTQNLT LXSLPQAA*

    Homology with a Predicted ORF from N. gonorrhoeae
  • ORF107 shows 95.7% identity over a 188aa overlap with a predicted ORF (ORF107.ng) from N. gonorrhoeae:
  • Figure US20130064846A1-20130314-C00191
  • The complete length ORF107ng nucleotide sequence <SEQ ID 423> is predicted to encode a protein having amino acid sequence <SEQ ID 424>:
  • 1 MNRPKQPFFR PEVAIARQTS LTGKVILTRP LSFSLWTTFA
    SISALLIILF
    51 LIFGNYTRKT TMEGQILPAS GVIRVYAPDT GTITAKFVED
    GEKVKAGDKL
    101 FALSTSRFGA GGSVQQQLKT EAVLKKTLAE QELGRLKLIH
    ENETRSLKAT
    151 VERLENQKLH ISQQIDGQKR RIRLAEEMLR KYRFLSAQ*
  • Based on the presence of a putative transmembrane domain in the gonococcal protein, it is predicted that the proteins from N. meningitidis and N. gonorrhoeae, and their epitopes, could be useful antigens for vaccines or diagnostics, or for raising antibodies.
  • Example 50
  • The following DNA sequence, believed to be complete, was identified in N. meningitidis <SEQ ID 425>:
  • 1 ATGCTGAATA CTTTTTTTGC CGTATTGGGC GGCTGCCTGC
    TGCT.TTGCC
    51 GTGCGGCAAA TCCGTAAATA CGGCGGTACA GCCGCAAAAC
    GCGGTACAAA
    101 GCGCGCCGAA ACCGGTTTTC AAAGTCATAT ATATCGACAA
    TACGGCGATT
    151 GCCGGTTTGG ATTTGGGACA AAGCAGCGAA GGCAAAACCA
    ACGACGGCAA
    201 AAAACAAATC AGTTATCCGA TTAAAGGCTT GCCGGAACAA
    AATGTTATCC
    251 GACTGATCGG CAAGCATCCC GGCGACTTGG AAGCCGTCAG
    CGGCAAATGT
    301 ATGGAAACCG ATGATAAGGA CAGTCCGGCA GGTTGGGCAG
    AAAACGGCGT
    351 GTGCCATACC TTGTTTGCCA AACTGGTGGG CAATATCGCC
    GAAGACGGCG
    401 GCAAACTGAC GGATTACCTA GTTTCGCATG CCGCCCTGCA
    ACCCTATCAG
    451 GCAGGCAAAA GCGGCTATGC CGCCGTGCAG AACGGACGCT
    ATGTGCTGGA
    501 AATCGACAGC GAAGGGGCGT TTTATTTCCG CCGCCGCCAT
    TATTGA
  • This corresponds to the amino acid sequence <SEQ ID 426; ORF108>:
  • 1 MLNTFFAVLG GCLLXLPCGK SVNTAVQPQN AVQSAPKPVF
    KVIYIDNTAI
    51 AGLDLGQSSE GKTNDGKKQI SYPIKGLPEQ NVIRLIGKHP
    GDLEAVSGKC
    101 METDDKDSPA GWAENGVCHT LFAKLVGNIA EDGGKLTDYL
    VSHAALQPYQ
    151 AGKSGYAAVQ NGRYVLEIDS EGAFYFRRRH Y*
  • Further work revealed the following DNA sequence <SEQ ID 427>:
  • 1 ATGCTGAAAA CATCTTTTGC CGTATTGGGC GGCTGCCTGC
    TGCTTGCCGC
    51 CTGCGGCAAA TCCGAAAATA CGGCGGAACA GCCGCAAAAC
    GCGGTACAAA
    101 GCGCGCCGAA ACCGGTTTTC AAAGTCAAAT ATATCGACAA
    TACGGCGATT
    151 GCCGGTTTGG ATTTGGGACA AAGCAGCGAA GGCAAAACCA
    ACGACGGCAA
    201 AAAACAAATC AGTTATCCGA TTAAAGGCTT GCCGGAACAA
    AATGTTATCC
    251 GACTGATCGG CAAGCATCCC GGCGACTTGG AAGCCGTCAG
    CGGCAAATGT
    301 ATGGAAACCG ATGATAAGGA CAGTCCGGCA GGTTGGGCAG
    AAAACGGCGT
    351 GTGCCATACC TTGTTTGCCA AACTGGTGGG CAATATCGCC
    GAAGACGGCG
    401 GCAAACTGAC GGATTACCTA GTTTCGCATG CCGCCCTGCA
    ACCCTATCAG
    451 GCAGGCAAAA GCGGCTATGC CGCCGTGCAG AACGGACGCT
    ATGTGCTGGA
    501 AATCGACAGC GAAGGGGCGT TTTATTTCCG CCGCCGCCAT
    TATTGA
  • This corresponds to the amino acid sequence <SEQ ID 428; ORF108-1>:
  • 1 MLKTSFAVLG GCLLLAACGK SENTAEQPQN AVQSAPKPVF
    KVKYIDNTAI
    51 AGLDLGQSSE GKTNDGKKQI SYPIKGLPEQ NVIRLIGKHP
    GDLEAVSGKC
    101 METDDKDSPA GWAENGVCHT LFAKLVGNIA EDGGKLTDYL
    VSHAALQPYQ
    151 AGKSGYAAVQ NGRYVLEIDS EGAFYFRRRH Y*
  • Computer analysis of this amino acid sequence gave the following results:
  • Homology with a Predicted ORF from N. gonorrhoeae
  • ORF108 shows 88.4% identity over a 181 aa overlap with a predicted ORF (ORF 108.ng) from N. gonorrhoeae:
  • Figure US20130064846A1-20130314-C00192
  • ORF108-1 shows 92.3% identity with ORF108ng over the same 181 aa overlap:
  • Figure US20130064846A1-20130314-C00193
  • The complete length ORF108ng nucleotide sequence <SEQ ID 429> is:
  • 1 ATGCTGAAAa tacctTTTGC CGTGTtgggc ggCtgcctGC
    TGCTTGCCGC
    51 CTGCGGCAAA TCCGAAAATa cggcggaACA GCCGCAAAAT
    gcggCACAAA
    101 GCGCGCCGAA ACCGGTTTTC AAAGTCAAAT ACATCGACAA
    TACGGCGATT
    151 GCCGGTTTGG CTTTGGGACA AAGTAGCGAA GGCAAAACCA
    acgacgGCAA
    201 AAAACAAATC AGTTATccgA TTAAAGGCTT GCCGGAACAA
    Aacgccgtcc
    251 gGCTGACCGG AAAGCATCCC AACGACTTGG AagccgtcgT
    CGGCAAATGT
    301 ATGGAAACCG ACGGAAAGGA CGCGCCTTCG GGCTGGGCGG
    AAAACGGCGT
    351 GTGCCATACC TTGTTTGCCA AACTGGTGGG CAATATCGCC
    GAAGACGGCG
    401 GCAAACTGAC TGATTACCTG ATTTCGCATT CCGCCCTGCA
    ACCCTATCAG
    451 GCAGGCAAAA GCGGCTATGC CGCCGTGCAG AACGGACGCT
    ATGTGCTGGA
    501 AATCGACAGC GagggGGCGT TTTATttccg ccgccgccat
    tattgA
  • This encodes a protein having amino acid sequence <SEQ ID 430>:
  • 1 MLKIPFAVLG GCLLLAACGK SENTAEQPQN AAQSAPKPVF
    KVKYIDNTAI
    51 AGLALGQSSE GKTNDGKKQI SYPIKGLPEQ NAVRLTGKHP
    NDLEAVVGKC
    101 METDGKDAPS GWAENGVCHT LFAKLVGNIA EDGGKLTDYL
    ISHSALQPYQ
    151 AGKSGYAAVQ NGRYVLEIDS EGAFYFRRRH Y*
  • Based on this analysis, including the presence of a predicted prokaryotic membrane lipoprotein lipid attachment site (underlined) and a putative ATP/GTP-binding site motif A (P-loop, double-underlined) in the gonococcal protein, it is predicted that the proteins from N. meningitidis and N. gonorrhoeae, and their epitopes, could be useful antigens for vaccines or diagnostics, or for raising antibodies.
  • Example 51
  • The following DNA sequence was identified in N. meningitidis <SEQ ID 431>:
  • 1 ATGGAAGATT TATATATAAT ACTCGCTTTG GGTTTGGTTG
    CGATGATTGC
    51 CGgATTTATC GATgcgatTg cGggCGGGGG TGGTTTGATT
    ACGCTGCCCG
    101 CACTCTTGTT GGCAGGTATT CCTCCCGTGT CGGCAATTGC
    CACCAACAAG
    151 CTGCAAgCAG CCGCTGCTAC GTTTTCAGCT ACGGTTTCTT
    TTGCACGCAA
    201 AGGTTTGATT GATTGGAAGA AAGGTCTCCC GATTGCCGCA
    GCATCGTTTG
    251 TAGGCGGCGT GGcCGGTGCA TTATCGGTCA GCTTGGTTTC
    CAAAGATATT
    301 CTgCTgGCGG TCGTGCCGGT TTTGTTGATA TTTGTCGCAC
    TGTATTTTGT
    351 GTTTTCGCCC AAGCTCGACG GCAGTAAGGA AGGCAAAGCC
    AGAATGTCTT
    401 TTTTTCTGTT cGGGCTGACG GTCGC.ACCG CTTTTGGGTT
    TTTACGACGG
    451 TGTGTTCGGA CCGGGTGTCG GCTCGTTTTT TCTGATTGCC
    TTTATTGTTT
    501 TGCTCGGCTG CAAgCTGTTG AACGCGATGT CTTACACCAA
    ATTGGCGAAC
    551 GTTGCCTGCA ATCTTGGTTC GCTATCGGTA TTCCTGCTGC
    ACGGTTCGAT
    601 TATTTTCCCG ATTGCGGCAA CGaTGGCGGT CGGTGCGTTT
    GTCGGtGCGA
    651 ATTTAgGTGC GAGATTTGCC GTaCgctTCG GTTCGAAGCT
    GATTAA
  • This corresponds to the amino acid sequence <SEQ ID 432; ORF109>:
  • 1 MEDLYIILAL GLVAMIAGFI DAIAGGGGLI TLPALLLAGI
    PPVSAIATNK
    51 LQAAAATFSA TVSFARKGLI DWKKGLPIAA ASFVGGVAGA
    LSVSLVSKDI
    101 LLAVVPVLLI FVALYFVFSP KLDGSKEGKA RMSFFLFGLT
    VXTAFGFLRR
    151 CVRTGCRLVF SDCLYCFARL QAVERDVLHQ IGERCLQSWF
    AIGIPAARFD
    201 YFPDCGNDGG RCVCRCEFRC EICRTLRFEA D*
  • Further work revealed the following DNA sequence <SEQ ID 433>:
  • 1 ATGGAAGATT TATATATAAT ACTCGCTTTG GGTTTGGTTG
    CGATGATTGC
    51 CGGATTTATC GATGCGATTG CGGGCGGGGG TGGTTTGATT
    ACGCTGCCCG
    101 CACTCTTGTT GGCAGGTATT CCTCCCGTGT CGGCAATTGC
    CACCAACAAG
    151 CTGCAAGCAG CCGCTGCTAC GTTTTCAGCT ACGGTTTCTT
    TTGCACGCAA
    201 AGGTTTGATT GATTGGAAGA AAGGTCTCCC GATTGCCGCA
    GCATCGTTTG
    251 TAGGCGGCGT GGCCGGTGCA TTATCGGTCA GCTTGGTTTC
    CAAAGATATT
    301 CTGCTGGCGG TCGTGCCGGT TTTGTTGATA TTTGTCGCAC
    TGTATTTTGT
    351 GTTTTCGCCC AAGCTCGACG GCAGTAAGGA AGGCAAAGCC
    AGAATGTCTT
    401 TTTTTCTGTT CGGGCTGACG GTCGCACCGC TTTTGGGTTT
    TTACGACGGT
    451 GTGTTCGGAC CGGGTGTCGG CTCGTTTTTT CTGATTGCCT
    TTATTGTTTT
    501 GCTCGGCTGC AAGCTGTTGA ACGCGATGTC TTACACCAAA
    TTGGCGAACG
    551 TTGCCTGCAA TCTTGGTTCG CTATCGGTAT TCCTGCTGCA
    CGGTTCGATT
    601 ATTTTCCCGA TTGCGGCAAC GATGGCGGTC GGTGCGTTTG
    TCGGTGCGAA
    651 TTTAGGTGCG AGATTTGCCG TCCGCTTCGG TTCGAAGCTG
    ATTAAGCCGC
    701 TGCTGATTGT CATCAGCATT TCGATGGCTG TGAAATTGTT
    GATAGACGAG
    751 AGAAATCCGC TGTATCAGAT GATTGTTTCG ATGTTTTAA
  • This corresponds to the amino acid sequence <SEQ ID 434; ORF109-1>:
  • 1 MEDLYIILAL GLVAMIAGFI DAIAGGGGLI TLPALLLAGI
    PPVSAIATNK
    51 LQAAAATFSA TVSFARKGLI DWKKGLPIAA ASFVGGVAGA
    LSVSLVSKDI
    101 LLAVVPVLLI FVALYFVFSP KLDGSKEGKA RMSFFLFGLT
    VAPLLGFYDG
    151 VFGPGVGSFF LIAFIVLLGC KLLNAMSYTK LANVACNLGS
    LSVFLLHGSI
    201 IFPIAATMAV GAFVGANLGA RFAVRFGSKL IKPLLIVISI
    SMAVKLLIDE
    251 RNPLYQMIVS MF*
  • Computer analysis of this amino acid sequence gave the following results:
  • Homology with a Predicted ORF from N. meningitidis (Strain A)
  • ORF109 shows 95.9% identity over a 147aa overlap with an ORF (ORF109a) from strain A of N. meningitidis:
  • Figure US20130064846A1-20130314-C00194
  • The complete length ORF109a nucleotide sequence <SEQ ID 435> is:
  • 1 ATGGAAGATT TATACATAAT ACTCGCTTTG GGTTTGGTTG
    CGATGATTGC
    51 CGGATTTATC GATGCGATTG CGGGTGGGGG TGGTTTGATT
    ACGCTGCCTG
    101 CACTCTTGTT GGCAGGTATT CCTCCCGTGT CGGCAATTGC
    CACCAACAAG
    151 CTGCAAGCAG CCGCTGCTAC GTTTTCGGCT ACGGTTTCTT
    TTGCACGCAA
    201 AGGTTTGATT GATTGGAAGA AAGGTCTCCC GATTGCGGCA
    GCATCGTTTG
    251 CAGGCGGCGT GGTCGGTGCA TTATCGGTCA GCTTGGTTTC
    CAAAGATATT
    301 CTGCTGGCGG TCGTGCCGGT TTTGTTGATA TTTGTCGCGC
    TGTATTTTGT
    351 GTTTTCGCCC AAGCTCGACG GCAGTAAGGA AGGCAAAGCC
    AGAATGTCTT
    401 TTTTTCTGTT CGGTCTGACG GTTGCACCAC TTTTGGGTTT
    TTACGACGGT
    451 GTGTTCGGAC CGGGTGTCGG CTCGTTTTTT CTGATTGCCT
    TTATTGTTTT
    501 GCTCGGCTGC AAGCTGTTGA ACGCGATGTC TTACACCAAA
    TTGGCGAACG
    551 TTGCCTGCAA TCTTGGTTCG CTATCGGTAT TCCTGCTGCA
    CGGTTCGATT
    601 ATTTTCCCGA TTGCGGCAAC GATGGCGGTC GGTGCGTTTG
    TCGGTGCGAA
    651 TTTAGGTGCG AGATTTGCCG TCCGCTTCGG TTCGAAGCTG
    ATTAAGCCGC
    701 TGCTGATTGT CATCAGCATT TCGATGGCTG TGAAATTGTT
    GATAGACGAG
    751 AGAAATCCGC TGTATCAGAT GATTGTTTCG ATGTTTTAA
  • This encodes a protein having amino acid sequence <SEQ ID 436>:
  • 1 MEDLYIILAL GLVAMIAGFI DAIAGGGGLI TLPALLLAGI
    PPVSAIATNK
    51 LQAAAATFSA TVSFARKGLI DWKKGLPIAA ASFAGGVVGA
    LSVSLVSKDI
    101 LLAVVPVLLI FVALYFVFSP KLDGSKEGKA RMSFFLFGLT
    VAPLLGFYDG
    151 VFGPGVGSFF LIAFIVLLGC KLNAMSYTK LANVACNLGS
    LSVFLLHGSI
    201 IFPIAATMAV GAFVGANLGA RFAVRFGSKL IKPLLIVISI
    SMAVKLLIDE
    251 RNPLYQMIVS MF*
  • ORF109a and ORF109-1 show 99.2% identity in 262 aa overlap:
  • Figure US20130064846A1-20130314-C00195
  • Homology with a Predicted ORF from N. gonorrhoeae
  • ORF109 shows 98.3% identity over a 231aa overlap with a predicted ORF (ORF109.ng) from N. gonorrhoeae:
  • Figure US20130064846A1-20130314-C00196
  • An ORF109ng nucleotide sequence <SEQ ID 437> was predicted to encode a protein having amino acid sequence <SEQ ID 438>:
  • 1 MEDLYIILAL GLVAMIAGFI DAIAGGGGLI TLPALLLAGI
    PPVSAIATNK
    51 LQAAAATFSA TVSFARKGLI DWKKGLPIAA ASFAGGVVGA
    LSVSLVSKDI
    101 LLAVVPVLLI FVALYFVFSP KLDGSKEGKA RMSFFLFGLT
    VATAFGFLRR
    151 CVRTGCRLVF SDCLYCFARL QAVERDVLHQ IGERCLQSWF
    AIGIPAARFD
    201 YFPDCGNDGG RCVCRCEFRC EICRPLRFEA D*
  • Further work revealed the following gonococcal DNA sequence <SEQ ID 439>:
  • 1 ATGGAAGATT TATACATAAT ACTCGCTTTG GGTTTGGTTG
    CGATGATCGC
    51 CGGATTTATC GATGCGATTG CGGGCGGGGG TGGTTTGATT
    ACGCTGCCTG
    101 CACTCTTGTT GGCAGGTATT CCTCCCGTGT CGGCAATTGC
    CACCAACAAG
    151 CTGCAAGCAG CCGCTGCTAC GTTTTCGGCT ACGGTTTCTT
    TTGCACGCAA
    201 AGGTTTGATT GATTGGAAGA AAGGTCTCCC GATTGCCGCA
    GCATCGTTTG
    251 CAGGCGGCGT GGTCGGTGCA TTATCGGTCA GCTTGGTTTC
    CAAAGATATT
    301 TTGCTGGCGG TCGTGCCGGT TTTGTTGATA TTTGTCGCGC
    TGTATTTTGT
    351 GTTTTCGCCC AAGCTCGACG GCAGTAAGGA AGGCAAAGCC
    AGAATGTCTT
    401 TTTTTCTATT CGGGCTGACG GTTGCACCGC TTTTGGGTTT
    TTACGACGGT
    451 GTGTTCGGAC CGGGTGTCGG CTCGTTTTTT CTGATTGCCT
    TTATTGTTTT
    501 GCTCGGCTGC AAGCTGTTGA ACGCGATGTC TTACACCAAA
    TTGGCGAACG
    551 TTGCTTGCAA TCTTGGTTCG CTATCGGTAT TCCTGCTGCA
    CGGTTCGATT
    601 ATTTTCCCGA TTGTGGCAAC GATGGCGGTC GGTGCGTTTG
    TCGGTGCGAA
    651 TTTAGGTGCG AGATTTGCCG TCCGCTTCGG TTCGAAGCTG
    ATTAAGCCGC
    701 TGCTGATTGT CATCAGCATT TCGATGGCTG TGAAATTGTT
    GATAGACGAG
    751 AGAAATCCGC TGTATCAGAT GATTGTTTCG ATGTTTTAA
  • This corresponds to the amino acid sequence <SEQ ID 440; ORF109ng-1>:
  • 1 MEDLYIILAL GLVAMIAGFI DAIAGGGGLI TLPALLLAGI
    PPVSAIATNK
    51 LQAAAATFSA TVSFARKGLI DWKKGLPIAA ASFAGGVVGA
    LSVSLVSKDI
    101 LLAVVPVLLI FVALYFVFSP KLDGSKEGKA RMSFFLFGLT
    VAPLLGFYDG
    151 VFGPGVGSFF LIAFIVLLGC KLLNAMSYTK LANVACNLGS
    LSVFLLHGSI
    201 IFPIVATMAV GAFVGANLGA RFAVRFGSKL IKPLLIVISI
    SMAVKLLIDE
    251 RNPLYQMIVS MF*
  • ORF109ng-1 and ORF109-1 show 98.9% identity in 262 aa overlap:
  • Figure US20130064846A1-20130314-C00197
  • In addition, ORF109ng-1 shows homology to a hypothetical Pseudomonas protein:
  • sp|P29942|YCB9_PSEDE HYPOTHETICAL 27.4 KD PROTEIN IN COBO 3′REGION (ORF9)
    >gi|94984|pir||I38164 hypothetical protein 9 - Pseudomonas sp >gi|551929
    (M62866) ORF9 [Pseudomonas denitrificans] Length = 261
    Score = 175 bits (439), Expect = 3e−43
    Identities = 83/214 (38%), Positives = 131/214 (60%), Gaps = 1/214 (0%)
    Query: 41 PPVSAIATNKLQXXXXXXXXXXXXXRKGLIDWKKGLPIXXXXXXXXXXXXXXXXXXXKDI 100
    PP+  + TNKLQ             R+G ++ K+ LP+                    D+
    Sbjct: 43 PPLQTLGTNKLQGLFGSGSATLSYARRGHVNLKEQLPMALMSAAGAVLGALLATIVPGDV 102
    Query: 101 LLAVVPVLLIFVALYFVFSPKLDGSKEGKARMSFFLFGLTVAPLLGFYDGVFGPGVGSFF 160
    L A++P LLI +ALYF   P + G  +  +R++ F+F LT+ PL+GFYDGVFGPG GSFF
    Sbjct: 103 LKAILPFLLIAIALYFGLKPNM-GDVDQHSRVTPFVFTLTLVPLIGFYDGVFGPGTGSFF 161
    Query: 161 LIAFIVLLGCKLLNAMSYTKLANVACNLGSLSVFLLHGSIIFPIVATMAVGAFVGANLGA 220
    ++ F+ L G  +L A ++TK  N   N+G+  VFL  G++++ +   M +G F+GA +G+
    Sbjct: 162 MLGFVTLAGFGVLKATAHTKFLNFGSNVGAFGVFLFFGAVLWKVGLLMGLGQFLGAQVGS 221
    Query: 221 RFAVRFGSKLIKPLLIVISISMAVKLLIDERNPL 254
    R+A+  G+K+IKPLL+++SI++A++LL D  +PL
    Sbjct: 222 RYAMAKGAKIIKPLLVIVSIALAIRLLADPTHPL 255
  • Based on this analysis, including the presence of a putative leader sequence (double-underlined) and several putative transmembrane domains (single-underlined) in the gonococcal protein, it is predicted that the proteins from N. meningitidis and N. gonorrhoeae, and their epitopes, could be useful antigens for vaccines or diagnostics, or for raising antibodies.
  • Example 52
  • The following partial DNA sequence was identified in N. meningitidis <SEQ ID 441>:
  • 1 ..CTGCTAGGGT ATTGCATCGG TTATCGGTAC GGCTGTTGCA
    GCAAAACCAG
    51   CCGCAGACGG ATTATTTGGT CAAATTCGGA TCGTTTTGGG
    CGAG.ATTTT
    101   TGGTTTTCTG GGACTGTATG ACGTCTATGC TTCGGCATGG
    TTTGTCGTTA
    151   TCATGATGTT TTTGGTGGTT TCTACCAGTT TGTGCCTGAT
    TCGCAATGTG
    201   CCGCCGTTCT GGCGCGAAAT GAAGTCTTTT CGGGAAAAGG
    TTAAAGAAAA
    251   ATCTCTGGCG GCGATGCGCC ATTCTTCGCT GTTGGATGTA
    AAAATTGCGC
    301   CCGAGGTTGC CAAACGTTAT CTGGAAGTAC AAGGTTTTCA
    GGGGAAAACC
    351   ATTAACCGTG AAGACGGGTC GGTTCTGATT GCCGCCAAAA
    AAGGCACAAT
    401   GAACAAATGG GGCTATATCT TTGCCCATGT TGCTTTGATT
    GTCATTTGCC
    451   TGGGCGGGTT GATAGACAGT AACCTGCTGT TGAAACTGGG
    TATGCTGACC
    501   GGTCGGATTG TTCCGGACAA TCAGGCGGTT TATGCCAAGG
    ATTTC.AAGC
    551   CCGAAAGTAT .TTTGGGTGC gTCCAATCTC TCATTTAGGG
    GCAACGTCAA
    601   TATTTCCG.A GGGGCAGAgT GCGGATGTGG TTTTCCTGA
  • This corresponds to the amino acid sequence <SEQ ID 442; ORF110>:
  • 1 ..LLGIASVIGT LLQQNQPQTD YLVKFGSFWA XIFGFLGLYD
    VYASAWFVVI
    51   MMFLVVSTSL CLIRNVPPFW REMKSFREKV KEKSLAAMRH
    SSLLDVKIAP
    101   EVAKRYLEVQ GFQGKTINRE DGSVLIAAKK GTMNKWGYIF
    AHVALIVICL
    151   GGLIDSNLLL KLGMLTGRIF RTIRRFMPRI XKPESXFGCV
    QSLI*GQRQY
    201   FXRGRVRMWF S*
  • Computer analysis of this amino acid sequence gave the following results:
  • Homology with ORF88a from N. meningitidis (Strain A)
  • ORF110 shows 91.5% identity over a 188aa overlap with ORF88a from strain A of N. meningitidis:
  • Figure US20130064846A1-20130314-C00198
  • However, ORF88 and ORF110 do not align, because they represent two different fragments of the same protein.
  • Homology with a Predicted ORF from N. gonorrhoeae
  • ORF110 shows 88.6% identity over a 211 as overlap with a predicted ORF (ORF110.ng) from N. gonorrhoeae:
  • Figure US20130064846A1-20130314-C00199
  • The complete length ORF110ng nucleotide sequence <SEQ ID 443> is predicted to encode a protein having amino acid sequence <SEQ ID 444>:
  • 1 MSKSRISPTL LSRPWFAFFS SMRFAVALLS LLGIASVIGT
    VLQQNQPQTD
    51 YLVKFGPFWT RIFDFLGLYD VYASAWFVVI MMFLVVSTSL
    CLIRNVPPFW
    101 REMKSFREKV KEKSLAAMRH SSLLDVKIAP EVAKRYLEVR
    GFQGKTVSRE
    151 DGSVLIAAKK GTMNKWGYIX AHVALIVICL GRLINXNLLL
    KLGMLAGSIF
    201 RNNRRVMPRI SKPESIWGGV QSLIKGQRQY FQRGKVRMWF
    S*
  • Based on the putative transmembrane domains in the gonococcal protein, it is predicted that the proteins from N. meningitidis and N. gonorrhoeae, and their epitopes, could be useful antigens for vaccines or diagnostics, or for raising antibodies.
  • Example 53
  • The following DNA sequence was identified in N. meningitidis <SEQ ID 445>:
  • 1 ATGCCGTCTG AAACACGCCT GCCGAACTTT ATCCGCGTCT
    TGATATTTGC
    51 CCTGGGTTTC ATCTTCCTGA ACGCCTGTTC GGAACAAACC
    GCGCAAACCG
    101 TTACCCTGCA AGGCGAAACG ATGGGCACGA CCTATACCGT
    CAAATACCTT
    151 TCAAATAATC GGGACAAACT CCCCTCACCT GCCGAAATAC
    AAAAACGCAT
    201 CGATGACGCG CTTAAAGAAG TCAACCGGCA GATGTCCACC
    TATCAGCCCG
    251 ACTCCGAAAT CAGCCGGTTC AACCAACACA CAGCCGGCAA
    GCCCCTCCGC
    301 ATTTCAAGCG ACTTCGCACA CGTTACTGCC GAAGCCGTCC
    GCCTGAACCG
    351 CCTGACACAC GGCGCGCTGG ACGTAACCGT CGGCCCCTTG
    GTCAACCTTT
    401 GGGGATTCGG CCCCGACAAA TCCGTTACCC GTGAACCGTC
    GCCGGAACAA
    451 ATCAAACAGG CGGCATCTTA TACGGGCATA GACAAAATCA
    TTTTGAAACA
    501 AGGCAAAGAT TACGCTTCCT TGAGCAAAAC CCACCCCAAG
    GCCTATTTGG
    551 ATTTATCTTC GATTGCCAAA GGCTTCGGCG TTGATAAAGT
    TGCGGGCGAA
    601 CTGGAAAAAT ACGGCATTCA AAATTATCTG GTCGAAATCG
    GCGGCGAGTT
    651 GCACGGCAAA GGCAAAAACG CGCGCGGCGA ACCGTGGCGC
    ATCGGTATCG
    701 AGCAGCCCAA TATCGTCCAA GGCGGCAATA CGCAGATTAT
    CGTCCCGCTG
    751 AACAACCGTT CGCTTGCCAC TTCCGGCGAT TACCGTATTT
    TCCACGTCGA
    801 TAAAAACGGC AAACGCCTCT CCCATATCAT CAACCCGAAC
    AACAAACGAC
    851 CCATCAGCCA CAACCTCGCC TCCATCAGCG TGGTCGCAGA
    CAGTGCGATG
    901 ACGGCGGACG GCTTGTCCAC AGGATTATTC GTATTGGGCG
    AAACCGAAGC
    951 CTTAAAGCTG GCAGAGCGCG AAAAACTCGC TGTTTTCCTG
    ATTGTCAGGG
    1001 ATAAAGGCGG CTACCGCACC GCCATGTCTT CCGAATTTGA
    AAAACTGCTC
    1051 CGCTAA
  • This corresponds to the amino acid sequence <SEQ ID 446; ORF111>:
  • 1 MPSETRLPNF IRVLIFALGF IFLNACSEQT AQTVTLQGET
    MGTTYTVKYL
    51 SNNRDKLPSP AEIQKRIDDA LKEVNRQMST YQPDSEISRF
    NQHTAGKPLR
    101 ISSDFAHVTA EAVRLNRLTH GALDVTVGPL VNLWGFGPDK
    SVTREPSPEQ
    151 IKQAASYTGI DKIILKQGKD YASLSKTHPK AYLDLSSIAK
    GFGVDKVAGE
    201 LEKYGIQNYL VEIGGELHGK GKNARGEPWR IGIEQPNIVQ
    GGNTQIIVPL
    251 NNRSLATSGD YRIFHVDKNG KRLSHIINPN NKRPISHNLA
    SISVVADSAM
    301 TADGLSTGLF VLGETEALKL AEREKLAVFL IVRDKGGYRT
    AMSSEFEKLL
    351 R*
  • Computer analysis of this amino acid sequence gave the following results:
  • Homology with a Predicted ORF from N. meningitidis (Strain A)
  • ORF111 shows 96.9% identity over a 351aa overlap with an ORF (ORF111a) from strain A of N. meningitidis:
  • Figure US20130064846A1-20130314-C00200
  • The complete length ORF111a nucleotide sequence <SEQ ID 447> is:
  • 1 ATGCCGTCTG AAACACGCCT GCCGAACTTT ATCCGCACCT
    TGATATTTGC
    51 CCTGAGTTTT ATCTTCCTGA ACGCCTGTTC GGAACAAACC
    GCGCAAACCG
    101 TTACCCTGCA AGGTGAAACG ATGGGCACGA CCTATACCGT
    CAAATACCTT
    151 TCAAATAATC GGGACNAACT CCCNTCACCT GCCGAAATAC
    AAAANCGCAT
    201 CGATGACGCG CTTAAAGAAG TCAACCGGCA GATGTCCACC
    TATCAGCCCG
    251 ACTCCGAAAT CAGCCGGTTC AACCAACACA CAGCCGGCAA
    GCCCCTCCGC
    301 ATTTCAAGCG ACTTCGCACA CGTTACTGCC GAAGCCGTCC
    ACCTGAACCG
    351 CCTGACACAC GGCGCGCTGG ACGTAACCGT CGGCCCCTTG
    GTCAACCTTT
    401 GGGGATTCGG CCCCGACAAA TCCGTTACCC GTGAACCGTC
    GCCGGAACAA
    451 ATCAAACAAG CAGCATCTTA TACGGGCATA GACAAAATCA
    TTTTGAAACA
    501 AGGCAAAGAT TACGCTTCCT TGAGCAAAAC CCACCCCAAG
    GCCTATTTGG
    551 ATTTATCTTC GATTGCCAAA GGCTTCGGCG TTGATNANGT
    TGCGGGCGAA
    601 CTGGAAAAAT ACGGCATTCA AAATTATCTG GTCGAAATCG
    GCGGNGAGTT
    651 GCACGGCAAA GNCAAAAACG CGCGCGGCGA ACCTTGGCGC
    ATCGGCATCG
    701 AACAGCCCAA CATCGTCCAA GGCGGCAATA CGCAGATTAT
    CGTCCCGCTG
    751 AACAACCGTT CGNTTGCCAC TTCCGGCGAT TACCGTATTT
    TCCACGTCGA
    801 TAAAAGCGGC AAACGCCTCT CCCATATCAT TAATCCGAAC
    AACAAACGAC
    851 CCATCAGCCA CAACCTCGCC TCCATCAGCG TGNTCGCAGA
    CAGTGCGATG
    901 ACGGCGGACG GCTTNTCCAC AGGATTATTC GTATTGGGCG
    AAACCGAAGC
    951 CTTAAAGCTG GCAGAGCGCG AAAAACTCGC TGTTTTCCTG
    ATTGTCAGGG
    1001 ATAAAGGCGG CTACCGCACC GCCATGTCTT CCGAATTTGA
    AAAACTGCTC
    1051 CGCTAA
  • This encodes a protein having amino acid sequence <SEQ ID 448>:
  • 1 MPSETRLPNF IRTLIFALSF IFLNACSEQT AQTVTLQGET
    MGTTYTVKYL
    51 SNNRDXLPSP AEIQXRIDDA LKEVNRQMST YQPDSEISRF
    NQHTAGKPLR
    101 ISSDFAHVTA EAVHLNRLTH GALDVTVGPL VNLWGFGPDK
    SVTREPSPEQ
    151 IKQAASYTGI DKIILKQGKD YASLSKTHPK AYLDLSSIAK
    GFGVDXVAGE
    201 LEKYGIQNYL VEIGGELHGK XKNARGEPWR IGIEQPNIVQ
    GGNTQIIVPL
    251 NNRSXATSGD YRIFHVDKSG KRLSHIINPN NKRPISHNLA
    SISVXADSAM
    301 TADGXSTGLF VLGETEALKL AEREKLAVFL IVRDKGGYRT
    AMSSEFEKLL
    351 R*

    Homology with a Predicted ORF from N. gonorrhoeae
  • ORF111 shows 96.6% identity over a 351aa overlap with a predicted ORF (ORF111.ng) from N. gonorrhoeae:
  • Figure US20130064846A1-20130314-C00201
  • The complete length ORF111ng nucleotide sequence <SEQ ID 449> is:
  • 1 ATGCCGTCTG AAACACGCCT GCCGAACCTT ATCCGCGCCT
    TGATATTTGC
    51 CCTGGGTTTC ATCTTCCTGA ACGCCTGTTC GGaacaaacC
    GCGCAaaccg
    101 TTACCCTGCA AGGCGAAAcg aTGGGTACGA CCTATACCGT
    CAAATACCTT
    151 TCAAATAATC GGGACAAACT CCCCTCCCCT GCCAAAATAC
    AAAAGCGCAT
    201 TGATGATGCG CTTAAAGAAG TCAACCGGCA GATGTCCACC
    TACCAGACCG
    251 ATTCCGAAAT CAGCCGGTTC AACCAACACA CAGCCGGCAA
    GCCCCTCCGC
    301 ATTTCAAGCG ATTTCGCACA CGTTACCGCC GAAGCCGTCC
    GCCTGAACCG
    351 CCTGACTCAC GGCGCACTGG ACGTAACCGT CGGCCCTTTG
    GTCAACCTTT
    401 GGGGGTTCGG CCCCGACAAA TCCGTTACCC GTGAACCGTC
    GCCGGAACAA
    451 ATCAAACAGG CGGCATCTTA TACGGGCATA GACAAAATCA
    TTTTGCAACA
    501 AGGCAAAGAT TACGCTTCCT TGAGCAAAAC CCACCCCAAA
    GCCTATTTGG
    551 ATTTATCTTC GATTGCCAAA GGCTTCGGCG TTGATAAAGT
    TGCGGGCGAA
    601 CTGGAAAAAT ACGGCATTCA AAATTATCTG GTCGAAAtcg
    gcggcGAGTT
    651 GCACGGCAAA GGCAAAAATG CGCACGGCGA ACCGTGGCGC
    ATCGGTATAG
    701 AGCAACCCAA TATCATCCAA GgcgGCAata CGCAGATTAt
    cgtcccgctg
    751 aaCaaccgtt cgctTGCCAC TTCCGGCGAT TAccgtaTTT
    tccacgtcgA
    801 TAAAAAcggc aaacgccttt cccacaTCAT CAATCCCaAC
    aacAAACgac
    851 ccATCAGcca caacctcgcc tccatcagcg tggtctcAGA
    CAGTGCAATG
    901 ACGGCGGACG GTTtatCCAC AGGATTATTT GTTTTAGGCG
    AAACCGAAGC
    951 CTTAAGGCTG GCAGAACAAG AAAAACTCGC TGTTTTCCTA
    ATTGTCCGGG
    1001 ATAAGGACGG CTACCGCACC GCCATGTCTT CCGAATTTGC
    CAAGCTGCTC
    1051 CGCTAA
  • This encodes a protein having amino acid sequence <SEQ ID 450>:
  • 1 MPSETRLPNL IRALIFALGF IFLNACSEQT AQTVTLQGET
    MGTTYTVKYL
    51 SNNRDKLPSP AKIQKRIDDA LKEVNRQMST YQTDSEISRF
    NQHTAGKPLR
    101 ISSDFAHVTA EAVRLNRLTH GALDVTVGPL VNLWGFGPDK
    SVTREPSPEQ
    151 IKQAASYTGI DKIILQQGKD YASLSKTHPK AYLDLSSIAK
    GFGVDKVAGE
    201 LEKYGIQNYL VEIGGELHGK GKNAHGEPWR IGIEQPNIIQ
    GGNTQIIVPL
    251 NNRSLATSGD YRIFHVDKNG KRLSHIINPN NKRPISHNLA
    SISVVSDSAM
    301 TADGLSTGLF VLGETEALRL AEQEKLAVFL IVRDKDGYRT
    AMSSEFAKLL
    351 R*
  • This protein shows homology with a hypothetical lipoprotein precursor from H. influenzae:
  • sp|P44550|YOJL_HAEIN HYPOTHETICAL LIPOPROTEIN HI0172 PRECURSOR >gi|1074292|pir|4
    hypothetical protein HI0172 - Haemophilus influenzae (strain Rd KW20)
    >gi|1573128 (U32702) hypothetical [Haemophilus influenzae] Length = 346
    Score = 353 bits (896), Expect = 9e−97
    Identities = 181/344 (52%), Positives = 247/344 (71%), Gaps = 4/344 (1%)
    Query: 7 LPNLIRALIFALGFIFLNACSEQTAQTVTLQGETMGTTYTVKYLSNNRDKLPSPAKIQKR 66
    +  LI  +I     + L AC ++T + ++L G+TMGTTY VKYL +      S  K  +
    Sbjct: 1 MKKLISGIIAVAMALSLAACQKET-KVISLSGKTMGTTYHVKYLDDGSITATSE-KTHEE 58
    Query: 67 IDDALKEVNRQMSTYQTDSEISRFNQHT-AGKPLRISSDFAHVTAEAVRLNRLTHGALDV 125
    I+  LK+VN +MSTY+ DSE+SRFNQ+T    P+ IS+DFA V AEA+RLN++T GALDV
    Sbjct: 59 IEAILKDVNAKMSTYKKDSELSRFNQNTQVNTPIEISADFAKVLAEAIRLNKVTEGALDV 118
    Query: 126 TVGPLVNLWGFGPDKSVTREPSPEQIKQAASYTGIDKIILQQGKDYASLSKTHPKAYLDL 185
    TVGP+VNLWGFGP+K   ++P+PEQ+ +  ++ GIDKI L   K+ A+LSK  P+ Y+DL
    Sbjct: 119 TVGPVVNLWGFGPEKRPEKQPTPEQLAERQAWVGIDKITLDTNKEKATLSKALPQVYVDL 178
    Query: 186 SSIAKGFGVDKVAGELEKYGIQNYLVEIGGELHGKGKNAHGEPWRIGIEQPNIIQGGNTQ 245
    SSIAKGFGVD+VA +LE+   QNY+VEIGGE+  KGKN  G+PW+I IE+P        +
    Sbjct: 179 SSIAKGFGVDQVAEKLEQLNAQNYMVEIGGEIRAKGKNIEGKPWQIAIEKPTTTGERAVE 238
    Query: 246 IIVPLNNRSLATSGDYRIFHVDKNGKRLSHIINPNNKRPISHNLASISVVSDSAMTADGL 305
     ++ LNN  +A+SGDYRI+  ++NGKR +H I+P    PI H+LASI+V++ ++MTADGL
    Sbjct: 239 AVIGLNNMGMASSGDYRIY-FEENGKRFAHEIDPKTGYPIQHHLASITVLAPTSMTADGL 297
    Query: 306 STGLFVLGETEALRLAEQEKLAVFLIVRDKDGYRTAMSSEFAKL 349
    STGLFVLGE +AL +AE+  LAV+LI+R  +G+ T  SS F KL
    Sbjct: 298 STGLFVLGEDKALEVAEKNNLAVYLIIRTDNGFVTKSSSAFKKL 341
  • Based on this analysis, it is predicted that the proteins from N. meningitidis and N. gonorrhoeae, and their epitopes, could be useful antigens for vaccines or diagnostics, or for raising antibodies.
  • Example 54
  • The following partial DNA sequence was identified in N. meningitidis <SEQ ID 451>:
  • 1 ..CCGTGCCGCC GACAGGGCGA CGACGTGTAT GCGGCGCACG
    CGTCCCGTCA
    51   AAAATTGTGG CTGCGCTTCA TCGGCGGCCG GTCGCATCAA
    AATATACGGG
    101   GCGGCGCGGC TGCGGACGGG TGGCGCAAAG GCGTGCAAAT
    CGGCGGCGAG
    151   GTGTTTGTAC GGCAAAATGA AGGCAGCCkA yTGGCAATCG
    GCGTGATGGG
    201   CGGCAGGGCC GGCCAGCACG CwTCAGTCAA CGGCAAAGGC
    GGTGCGGCAG
    251   gCAGTGATTT GTATGGTTAT GgCGGGGgTG TTTATGCTgC
    GTGGCATCAG
    301   TTGCGCGATA AACAAACGGG TgCGTATTTG GACGGCTGGT
    TGCAATACCA
    351   ACGTTTCAAA CACCGCATCA ATGATGAAAA CCGTGCGGAA
    CgCTACAAAA
    401   CCAAAGGTTG GACGGCTTCT GTCGAAGGCG GCTACAACGC
    GCTTGTGGCG
    451   GAAGGCATTG TCGGAAAAGG CAATAATGTG CGGTTTTACC
    TACAACCGCA
    501   GgCGCAGTTT ACCTACTTGG GCGTAAACGG CGGCTTTACC
    GACAGCGAGG
    551   GGACGGCGGT CGGACTGCTC GGCAGCGGTC AGTGGCAAAG
    CCGCGCCGGC
    601   AtTCGGGCAA AAACCCGTTT TGCTTTGCGT AACGGTGTCA
    ATCTTCAGCC
    651   TTTTGCCGCT TTTAATGTtt TGCACAGGTC AAAATCTTTC
    GGCGTGGAAA
    701   TGGACGGCGA AAAACAGACG CTGGCAGGCA GGACGGCACT
    CGAAGGGCGG
    751   TTCGGTATTG AAGCCGGTTG GAAAGGCCAT ATGTCCGCA..
  • This corresponds to the amino acid sequence <SEQ ID 452; ORF35>:
  • 1 ..PCRRQGDDVY AAHASRQKLW LRFIGGRSHQ NIRGGAAADG
    WRKGVQIGGE
    51   VFVRQNEGSX LAIGVMGGRA GQHASVNGKG GAAGSDLYGY
    GGGVYAAWHQ
    101   LRDKQTGAYL DGWLQYQRFK HRINDENRAE RYKTKGWTAS
    VEGGYNALVA
    151   EGIVGKGNNV RFYLQPQAQF TYLGVNGGFT DSEGTAVGLL
    GSGQWQSRAG
    201   IRAKTRFALR NGVNLQPFAA FNVLHRSKSF GVEMDGEKQT
    LAGRTALEGR
    251   FGIEAGWKGH MSA..
  • Computer analysis of this amino acid sequence gave the following results:
  • Homology with Putative Secreted VirG-Homolgue of N. meningitidis (Accession Number A32247)
  • ORF and virg-h protein show 51% aa identity in 261aa overlap:
  • Orf35 5 QGDDVYAAHASRQKLWLRFIGGRSHQNIRGGAA-ADGWRKGVQIGGEVFVRQNEGSXLAI 63
    +  D++     R+ LWLR I G S+Q ++G  A  +G+RKGVQ+GGEVF  QNE + L+I
    virg-h 396 KNSDIFDRTLPRKGLWLRVIDGHSNQWVQGKTAPVEGYRKGVQLGGEVFTWQNESNQLSI 455
    Orf35 64 GVMGGRAGQHASVNGKG--GAAGSDLYGYGGGVYAAWHQLRDKQTGAYLDGWLQYQRFKH 121
    G+MGG+A Q ++ +          ++ G+G GVYA WHQL+DKQTGAY D W+QYQRF+H
    virg-h 456 GLMGGQAEQRSTFHNPDTDNLTTGNVKGFGAGVYATWHQLQDKQTGAYADSWMQYQRFRH 515
    Orf35 122 RINDENRAERYKTKGWTASVEGGYNALVAEGIVGKGNNVRFYLQPQAQFTYLGVNGGFTD 181
    RIN E+  ER+ +KG TAS+E GYNAL+AE    KGN++R YLQPQAQ TYLGVNG F+D
    virg-h 516 RINTEDGTERFTSKGITASIEAGYNALLAEHFTKKGNSLRVYLQPQAQLTYLGVNGKFSD 575
    Orf35 182 SEGTAVGLLGSGQWQSRAGIRAKTRFALRNGVNLQPFAAFNVLHRSKSFGVEMDGEKQTL 241
    SE   V LLGS Q Q+R G++AK +F+L   + ++PFAA N L+ +K FGVEMDGE++ +
    virg-h 576 SENAHVNLLGSRQLQTRVGVQAKAQFSLYKNIAIEPFAAVNALYHNKPFGVEMDGERRVI 635
    Orf35 242 AGRTALEGRFGIEAGWKGHMS 262
      +TA+E + G+    K H++
    virg-h 636 NNKTAIESQLGVAVKIKSHLT 656

    Homology with a Predicted ORF from N. meningitidis (Strain A)
  • ORF35 shows 96.9% identity over a 259aa overlap with an ORF (ORF35a) from strain A of N. meningitidis:
  • Figure US20130064846A1-20130314-C00202
  • The complete length ORF35a nucleotide sequence <SEQ ID 453> is:
  • 1 ATGTTCAGAG CTCAGCTTGG TTCAAATACT CGTTCTACCA
    AAATCGGCGA
    51 CGATGCCGAT TTTTCATTTT CAGACAAGCC GAAACCCGGC
    ACTTCCCATT
    101 ATTTTTCCAG CGGTAAAACC GATCAAAATT CATCCGAATA
    TGGGTATGAC
    151 GAAATCAATA TCCAAGGTAA AAACTACAAT AGCGGCATAC
    TCGCCGTCGA
    201 TAATATGCCC GTTGTTAAGA AATATATTAC AGATACTTAC
    GGGGATAATT
    251 TAAAGGATGC GGTTAAGAAG CAATTACAGG ATTTATACAA
    AACAAGACCC
    301 GAAGCTTGGG AAGAAAATAA AAAACGGACT GAGGAGGCGT
    ATATAGAACA
    351 GCTTGGACCA AAATTTAGTA TACTCAAACA GAAAAACCCC
    GATTTAATTA
    401 ATAAATTGGT AGAAGATTCC GTACTCACTC CTCATAGTAA
    TACATCACAG
    451 ACTAGTCTCA ACAACATCTT CAATAAAAAA TTACACGTCA
    AAATCGAAAA
    501 CAAATCCCAC GTCGCCGGAC AGGTGTTGGA ACTGACCAAG
    ATGACGCTGA
    551 AAGATTCCCT TTGGGAACCG CGCCGCCATT CCGACATCCA
    TATGCTGGAA
    601 ACTTCCGATA ATGCCCGCAT CCGCCTGAAC ACGAAAGATG
    AAAAACTGAC
    651 CGTCCATAAA GCGTATCAGG GCGGTGCGGA TTTCCTGTTC
    GGCTACGACG
    701 TGCGGGAGTC GGACAAACCC GCCCTGACCT TTGAAGAAAA
    AGTCAGCGGA
    751 CAATCCGGCG TGGTTTTGGA ACGCCGGCCG GAAAATCTGA
    AAACGCTCGA
    801 CGGGCGCAAA CTGATTGCGG CGGAAAAGGC AGACTCTAAT
    TCGTTTGCGT
    851 TTAAACAAAA TTACCGGCAG GGACTGTACG AATTATTGCT
    CAAGCAATGC
    901 GAAGGCGGAT TTTGCTTGGG CGTGCAGCGT TTGGCTATCC
    CCGAGGCGGA
    951 AGCGGTTTTA TATGCCCAAC AGGCTTATGC GGCAAATACT
    TTGTTCGGGC
    1001 TGCGTGCCGC CGACAGGGGC GACGACGTGT ATGCCGCCGA
    TCCGTCCCGT
    1051 CAAAAATTGT GGCTGCGCTT CATCGGCGGC CGGTCGCATC
    AAAATATACG
    1101 GGGCGGCGCG GCTGCGGACG GGCGGCGCAA AGGCGTGCAA
    ATCGGCGGCG
    1151 AGGTGTTTGT ACGGCAAAAT GAAGGCAGCC GGCTGGCAAT
    CGGCGTGATG
    1201 GGCGGCAGGG CTGGCCAGCA CGCATCAGTC AACGGCAAAG
    GCGGTGCGGC
    1251 AGGCAGTTAT TTGCATGGTT ATGGCGGGGG TGTTTATGCT
    GCGTGGCATC
    1301 AGTTGCGCGA TAAACAAACG GGTGCGTATT TGGACGGCTG
    GTTGCAATAC
    1351 CAACGTTTCA AACACCGCAT CAATGATGAA AACCGTGCGG
    AACGCTACAA
    1401 AACCAAAGGT TGGACGGCTT CTGTCGAAGG CGGCTACAAC
    GCGCTTGTGG
    1451 CGGAAGGCGT TGTCGGAAAA GGCAATAATG TGCGGTTTTA
    CCTGCAACCG
    1501 CAGGCGCAGT TTACCTACTT GGGCGTAAAC GGCGGCTTTA
    CCGACAGCGA
    1551 GGGGACGGCG GTCGGACTGC TCGGCAGCGG TCAGTGGCAA
    AGCCGCGCCG
    1601 GCATTCGGGC AAAAACCCGT TTTGCTTTGC GTAACGGTGT
    CAATCTTCAG
    1651 CCTTTTGCCG CTTTTAATGT TTTGCACAGG TCAAAATCTT
    TCGGCGTGGA
    1701 AATGGACGGC GAAAAACAGA CGCTGGCAGG CAGGACGGCG
    CTCGAAGGGC
    1751 GGTTCGGCAT TGAAGCCGGT TGGAAAGGCC ATATGTCCGC
    ACGCATCGGA
    1801 TACGGCAAAA GGACGGACGG CGACAAAGAA GCCGCATTGT
    CGCTCAAATG
    1851 GCTGTTTTGA
  • This encodes a protein having amino acid sequence <SEQ ID 454>:
  • 1 MFRAQLGSNT RSTKIGDDAD FSFSDKPKPG TSHYFSSGKT
    DQNSSEYGYD
    51 EINIQGKNYN SGILAVDNMP VVKKYITDTY GDNLKDAVKK
    QLQDLYKTRP
    101 EAWEENKKRT EEAYIEQLGP KFSILKQKNP DLINKLVEDS
    VLTPHSNTSQ
    151 TSLNNIFNKK LHVKIENKSH VAGQVLELTK MTLKDSLWEP
    RRHSDIHMLE
    201 TSDNARIRLN TKDEKLTVHK AYQGGADFLF GYDVRESDKP
    ALTFEEKVSG
    251 QSGVVLERRP ENLKTLDGRK LIAAEKADSN SFAFKQNYRQ
    GLYELLLKQC
    301 EGGFCLGVQR LAIPEAEAVL YAQQAYAANT LFGLRAADRG
    DDVYAADPSR
    351 QKLWLRFIGG RSHQNIRGGA AADGRRKGVQ IGGEVFVRQN
    EGSRLAIGVM
    401 GGRAGQHASV NGKGGAAGSY LHGYGGGVYA AWHQLRDKQT
    GAYLDGWLQY
    451 QRFKHRINDE NRAERYKTKG WTASVEGGYN ALVAEGVVGK
    GNNVRFYLQP
    501 QAQFTYLGVN GGFTDSEGTA VGLLGSGQWQ SRAGIRAKTR
    FALRNGVNLQ
    551 PFAAFNVLHR SKSFGVEMDG EKQTLAGRTA LEGRFGIEAG
    WKGHMSARIG
    601 YGKRTDGDKE AALSLKWLF*

    Homology with a Predicted ORF from N. gonorrhoeae
  • ORF35 shows 51.7% identity over a 261aa overlap with a predicted ORF (ORF35ngh) from N. gonorrhoeae:
  • Figure US20130064846A1-20130314-C00203
  • A partial ORF35ngh nucleotide sequence <SEQ ID 455> is predicted to encode a protein having partial amino acid sequence <SEQ ID 456>:
  • 1 ..KKLRDRNSEY WKEETYHIKS NGRTYPNIPA LFPKHPFDPF
    ENINNSKKIS
    51   FYDKEYTEDY LVGFARGFGV EKRNGEEEKP LRQYFKDCVN
    TENSNNDNCK
    101   ISSFGNYGPI LIKSDIFALA SQIKNSHINS EILSVGNYIE
    WLRPTLNKLT
    151   GWQEHLYAGL DPFHYIEVTD NSHVIGQTID LGALELTNSL
    WKPRWNSNID
    201   YLITKNAEIR FNTKNESLLV KEDYAGGARF RFAYDLKDKV
    PEIPVLTFEK
    251   NITGTSDIIF EGKALDNLKH LDGHQIVKVN DTADKDAFRL
    SSKYRKGIYT
    301   LSLQQRPEGF FTKVQERDDI AIYAQQAQAA NTLFALRLND
    KNSDIFDRTL
    351   PRKGLWLRVI DGHSNQWVQG KTAPVEGYRK GVQLGGEVFT
    WQNESNQLSI
    401   GLMGGQAEQR STFRNPDTDN LTTGNVKGFG AGVYATWHQL
    QDKQTGAYVD
    451   SWMQYQRFRH RINTEYATER FTSKGITASI EAGYNALLAE
    HFTKKGNSLR
    501   VYLQPQAQLT YLGVNGKFSD SENAQVNLLG SRQLQSRVGV
    QAKAQFAFTN
    551   GVTFQPFVAV NSIYQQKPFG VEIDGDRRVI NNKTVIETQL
    GVAAKIKSHL
    601   TLQASFNRQT SKHHHAKQGA LNLQWTF*
  • Based on this prediction, these proteins from N. meningitidis and N. gonorrhoeae, and their epitopes, could be useful antigens for vaccines or diagnostics, or for raising antibodies.
  • Example 55
  • The following partial DNA sequence was identified in N. meningitidis <SEQ ID 457>:
  •   1 ..GCGGAATATG TTCAGTTCTC TATAGATTTG TTCAGTGTGG
    GTAAATCGGG
     51   GGGCGGTATA CCTAAGGCTA AGCCTGTGTT TGATGCGAAA
    CCGAGATGGG
    101   AGGTTGATAG GAAGCTTAAT AAATTGACAA CTCGTGAGCA
    GGTGGAGAAA
    151   AATGTTCAGG AAACGAGAAG AAGGAGTCAG AGTAGTCAGT
    TTAAAGCCCA
    201   TGCGCAACGA GAATGGGAAA ATAAAACAGG GTTAGATTTT
    AATCATTTTA
    251   TAGGTGGTGA TATCAATAAA AAAGGCACAG TAACAGGAGG
    GCATAGTCTA
    301   ACCCGTGGTG ATGTACGGGT GATACAACAA ACCTCGGCAC
    CTGATAAACA
    351   TGGGGT.TTA TCAAGCGACA GTGGAAATTN A
  • This corresponds to the amino acid sequence <SEQ ID 458; ORF46>:
  •   1 ..AEYVQFSIDL FSVGKSGGGI PKAKPVFDAK PRWEVDRKLN
    KLTTREQVEK
     51   NVQETRRRSQ SSQFKAHAQR EWENKTGLDF NHFIGGDINK
    KGTVTGGHSL
    101   TRGDVRVIQQ TSAPDKHGXL SSDSGNX
  • Further work revealed further partial nucleotide sequence <SEQ ID 459>:
  •   1 ..GCAGTGTGCC TnCCGATGCA TGCACACGCC TCAnATTTGG
    CAAACGATTC
     51   TTTTATCCGG CAGGTTCTCG ACCGTCAGCA TTTCGAACCC
    GACGGGAAAT
    101   ACCACCTATT CGGCAGCAGG GGGGAACTTG CCGAGCGCCA
    GTCTCATATC
    151   GGATTGGGAA AAATACAAAG CCATCAGTTG GGCAACCTGA
    TGATTCAACA
    201   GGCGGCCATT AAAGGAAATA TCGGCTACAT TGTCCGCTTT
    TCCGATCACG
    251   GGCACGAAGT CCATTCCCCs TTCGACAACC ATGCCTCACA
    TTCCGATTCT
    301   GATGAAGCCG GTAGTCCCGT TGACGGATTT AGCCTTTACC
    GCATCCATTG
    351   GGACGGATAC GAACACCATC CCGCCGACGG CTATGACGGG
    CCACAGGGCG
    401   GCGGCTATCC CGCTCCCAAA GGCGCGAGGG ATATATACAG
    TTACGACATA
    451   AAAGGCGTTG CCCAAAATAT CCGCCTCAAC CTGACCGACA
    ACCGCAGCAC
    501   CGGACAACGG CTTGCCGACC GTTTCCACAA TGCCGGTAGT
    ATGCTGACGC
    551   AAGGAGTAGG CGACGGATTC AAACGCGCCA CCCGATACAG
    CCCCGAGCTG
    601   GACAGATCGG GCAATGCCGC CGAAGCCTTC AACGGCACTG
    CAGATATCGT
    651   TAAAAACATC ATCGGCGCTG CAGGAGAAAT TGT
  • This corresponds to the amino acid sequence <SEQ ID 460; ORF46-1>:
  •   1 ..AVCLPMHAHA SXLANDSFIR QVLDRQHFEP DGKYHLFGSR
    GELAERQSHI
     51   GLGKIQSHQL GNLMIQQAAI KGNIGYIVRF SDHGHEVHSP
    FDNHASHSDS
    101   DEAGSPVDGF SLYRIHWDGY EHHPADGYDG PQGGGYPAPK
    GARDIYSYDI
    151   KGVAQNIRLN LTDNRSTGQR LADRFHNAGS MLTQGVGDGF
    KRATRYSPEL
    201   DRSGNAAEAF NGTADIVKNI IGAAGEI
  • Computer analysis of this amino acid sequence gave the following results:
  • Homology with a Predicted ORF from N. gonorrhoeae
  • ORF46 shows 98.2% identity over, a 111 aa overlap with a predicted ORF (ORF46ng) from N. gonorrhoeae:
  • Figure US20130064846A1-20130314-C00204
  • A partial ORF46ng nucleotide sequence <SEQ ID 461> is predicted to encode a protein having partial amino acid sequence <SEQ ID 462>:
  •   1 ..RRLKHCCHAR LGSAFHRKQD GAHQRFGRYG ATQRLCRSSH
    PRLGSPKPQC
     51   RTRHRSRQQY LYGSHPHQRD WSCPGKIQLG RHHGTSCRAV
    ADXRDRICER
    101   EIRRQRQXCR CRLGKIPSLS IPKYPLKLEQ RYGKENITSS
    TVPPSNGKNV
    151   KLADQRHPKT GVPFDGKGFP NFEKHVKYDT KLDIQELSGG
    GIPKAKPVFD
    201   AKPRWEVDRK LNKLTTREQV EKNVQETRRR SQSSQFKAHA
    QREWENKTGL
    251   DFNHFIGGDI NKKGAVTGGH SLTRGDVRVI QQTSAPDKHG
    VLSSDSGN*
  • Further work revealed the complete gonococcal DNA sequence <SEQ ID 463>:
  • 1 TTGGGCATTT CCCGCAAAAT ATCCCTTATT CTGTCCATAC
    TGGCAGTGTG
    51 CCTGCCGATG CATGCACACG CCTCAGATTT GGcaAACGAT
    CCCTTTATCC
    101 GgCaggttcT CGaccGTCAG CATTTCGaac ccgacggGAa
    ATACCaCCTA
    151 TTcggCaGCA GGGGGGAGCT TgccnagcGC aacggccATa
    tcggattggG
    201 aaacaTAcaa Agccatcagt tGggccacct gatgattcaa
    caggcggccg
    251 ttgaaggaaA TAtcgGctac attgtccgct tttccgatca
    cgggcacaaa
    301 ttccattcgc ccttcGAcaa ccaTGCCTCA CATTCCGATT
    CTGACGAAGC
    351 CGGTAGTCCC GTTGACGGAT TCAGCCTTTA CCGCATCCAT
    TGGGACGGAT
    401 ACGAACACCA TCCCGCCGAC GGCTATGACG GGCCACAGGG
    CGGCGGCTAT
    451 CCCGCTCCCA AAGGCGCGAG GGATATATAC AGCTACGACA
    TAAAAGGCGT
    501 TGCCCAAAAT ATCCGCCTCA ACCTGACCGA CAACCGCAGC
    ACCGGACAAC
    551 GGCTTGCCGA CCGTTTCCAC AATGCCGGCG CTATGCTGAC
    GCAAGGAGTA
    601 GGCGACGGAT TCAAACGCGC CACCCGATAC AGCCCCGAGC
    TGGACAGATC
    651 GGGCAATGCc gccGAAGCCT TCAACGGCAC TGCAGATATC
    GTCAAAAACA
    701 TCATCGGCGC GGCAGGAGAA ATTGTCGGCG CAGGCGATGC
    CGTGCagGGT
    751 ATAAGCGAAG GCTCAAACAT TGCTGTCATG CACGGCTTGG
    GTCTGCTTTC
    801 CACCGAAAAC AAGATGGCGC GCATCAACGA TTTGGCAGAT
    ATGGCGCAAC
    851 TCAAAGACTA TGCCGCAGCA GCCATCCGCG ATTGGGCAGT
    CCAAAACCCC
    901 AATGCCGCAC AAGGCATAGA AGCCGTCAGC AATATCTTTA
    TGGCAGCCAT
    951 CCCCATCAAA GGGATTGGAG CTGTCCGGGG AAAATACGGC
    TTGGGCGGCA
    1001 TCACGGCACA TCCTGTCAAG CGGTCGCAGA TGGGCGCGAT
    CGCATTGCCG
    1051 AAAGGGAAAT CCGCCGTCAG CGACAATTTT GCCGATGCGG
    CATACGCCAA
    1101 ATACCCGTCC CCTTACCATT CCCGAAATAT CCGTTCAAAC
    TTGGAGCAGC
    1151 GTTACGGCAA AGAAAACATC ACCTCCTCAA CCGTGCCGCC
    GTCAAACGGC
    1201 AAAAATGTCA AACTGGCAGA CCAACGCCAC CCGAAGACAG
    GCGTACCGTT
    1251 TGACGGTAAA GGGTTTCCGA ATTTTGAGAA GCACGTGAAA
    TATGATACGA
    1301 AGCTCGATAT TCAAGAATTA TCGGGGGGCG GTATACCTAA
    GGCTAAGCCT
    1351 GTGTTTGATG CGAAACCGAG ATGGGAGGTT GATAGGAAGC
    TTAATAAATT
    1401 GACAACTCGT GAGCAGGTGG AGAAAAATGT TCAGGAAACG
    AGAAGAAGGA
    1451 GTCAGAGTAG TCAGTTTAAA GCCCATGCGC AACGAGAATG
    GGAAAATAAA
    1501 ACAGGGTTAG ATTTTAATCA TTTTATAGGT GGTGATATCA
    ATAAGAAAGG
    1551 CACAGTAACA GGAGGGCATA GTCTAACCCG TGGTGATGTA
    CGGGTGATAC
    1601 AACAAACCTC GGCACCTGAT AAACATGGGG TTTATCAAGC
    GACAGTGGAA
    1651 ATTAAAAAGC CTGATGGAAG TTGGGAGGTG AAAACGAAAA
    AAGGTGGGAA
    1701 AGTGATGACC AAGCACACCA TGTTCCCAAA AGATTGGGAT
    GAGGCTAGAA
    1751 TTAGGGCTGA AGTTACTTCG GCTTGGGAAA GTAGAATAAT
    GCTTAAGGAT
    1801 AATAAATGGC AGGGTACAAG TAAATCGGGT ATTAAAATAG
    AAGGATTTAC
    1851 CGAACCTAAT AGAACAGCAT ATCCCATTTA TGAATAG
  • This corresponds to the amino acid sequence <SEQ ID 464; ORF46ng-1>:
  •   1 LGISRKISLI LSILAVCLPM HAHASDLAND PFIRQVLDRQ
    HFEPDGKYHL
     51 FGSRGELAXR NGHIGLGNIQ SHQLGHLMIQ QAAVEGNIGY
    IVRFSDHGHK
    101 FHSPFDNHAS HSDSDEAGSP VDGFSLYRIH WDGYEHHPAD
    GYDGPQGGGY
    151 PAPKGARDIY SYDIKGVAQN IRLNLTDNRS TGQRLADRFH
    NAGAMLTQGV
    201 GDGFKRATRY SPELDRSGNA AEAFNGTADI VKNIIGAAGE
    IVGAGDAVQG
    251 ISEGSNIAVM HGLGLLSTEN KMARINDLAD MAQLKDYAAA
    AIRDWAVQNP
    301 NAAQGIEAVS NIFMAAIPIK GIGAVRGKYG LGGITAHPVK
    RSQMGAIALP
    351 KGKSAVSDNF ADAAYAKYPS PYHSRNIRSN LEQRYGKENI
    TSSTVPPSNG
    401 KNVKLADQRH PKTGVPFDGK GFPNFEKHVK YDTKLDIQEL
    SGGGIPKAKP
    451 VFDAKPRWEV DRKLNKLTTR EQVEKNVQET RRRSQSSQFK
    AHAQREWENK
    501 TGLDFNHFIG GDINKKGTVT GGHSLTRGDV RVIQQTSAPD
    KHGVYQATVE
    551 IKKPDGSWEV KTKKGGKVMT KHTMFPKDWD EARIRAEVTS
    AWESRIMLKD
    601 NKWQGTSKSG IKIEGFTEPN RTAYPIYE*
  • ORF46ng-1 and ORF46-1 show 94.7% identity in 227 aa overlap:
  • Figure US20130064846A1-20130314-C00205
  • Homology with a Predicted ORF from N. meningitidis (Strain A)
  • ORF46ng-1 shows 87.4% identity over a 486aa overlap with an ORF (ORF46a) from strain A of N. meningitidis:
  • Figure US20130064846A1-20130314-C00206
  • The complete length ORF46a DNA sequence <SEQ ID 465> is:
  • 1 TTGGGCATTT CCCGCAAAAT ATCCCTTATT CTGTCCATAC
    TGGCAGTGTG
    51 CCTGCCGATG CATGCACACG CCTCAGATTT GGCAAACGAT
    TCTTTTATCC
    101 GGCAGGTTCT CGACCGTCAG CATTTCGAAC CCGACGGGAA
    ATACCACCTA
    151 TTCGGCAGCA GGGGGGAACT TGCCGAGCGC AGCGGTCATA
    TCGGATTGGG
    201 AAACATACAA AGCCATCAGT TGGGCAACCT GTTCATCCAG
    CAGGCGGCCA
    251 TTAAAGGAAA TATCGGCTAC ATTGTCCGCT TTTCCGATCA
    CGGGCACGAA
    301 GTCCATTCCC CCTTCGACAA CCATGCCTCA CATTCCGATT
    CTGATGAAGC
    351 CGGTAGTCCC GTTGACGGAT TCAGCCTTTA CCGCATCCAT
    TGGGACGGAT
    401 ACGAACACCA TCCCGCCGAC GGCTATGACG GGCCACAGGG
    CGGCGGCTAT
    451 CCCGCTCCCA AAGGCGCGAG GGATATATAC AGCTACGACA
    TAAAAGGCGT
    501 TGCCCAAAAT ATCCGCCTCA ACCTGACCGA CAACCGCAGC
    ACCGGACAAC
    551 GGCTTGTCGA CCGTTTCCAC AATACCGGTA GTATGCTGAC
    GCAAGGAGTA
    601 GGCGACGGAT TCAAACGCGC CACCCGATAC AGCCCCGAGC
    TGGACAGATC
    651 GGGCAATGCC GCCGAAGCTT TCAACGGCAC TGCAGATATC
    GTCAAAAACA
    701 TCATCGGCGC GGCAGGAGAA ATTGTCGGCG CAGGCGATGC
    CGTGCAGGGT
    751 ATAAGCGAAG GCTCAAACAT TGCTGTTATG CACGGCTTGG
    GTCTGCTTTC
    801 CACCGAAAAC AAGATGGCGC GCATCAACGA TTTGGCAGAT
    ATGGCGCAAC
    851 TCAAAGACTA TGCCGCAGCA GCCATCCGCG ATTGGGCAGT
    CCAAAACCCC
    901 AATGCCGCAC AAGGCATAGA AGCCGTCAGC AATATCTTTA
    CGGCAGTCAT
    951 CCCCGTCAAA GGGATTGGAG CTGTTCGGGG AAAATACGGC
    TTGGGCGGCA
    1001 TCACGGCACA TCCTGTCAAG CGGTCGCAGA TGGGCGAGAT
    CGCATTGCCG
    1051 AAAGGGAAAT CCGCCGTCAG CGACAATTTT GCCGATGCGG
    CATACGCCAA
    1101 ATACCCGTCC CCTTACCATT CCCGAAATAT CCGTTCAAAC
    TTGGAGCAGC
    1151 GTTACGGCAA AGAAAACATC ACCTCCTCAA CCGTGCCGCC
    GTCAAACGGA
    1201 AAGAATGTGA AACTGGCAAA CAAACGCCAC CCGAAGACCA
    AAGTGCCGTT
    1251 TGACGGTAAA GGGTTTCCGA ATTTTGAAAA AGACGTAAAA
    TACGATACGA
    1301 GAATTAATAC CGCTGTACCA CAAGTGAATC CTATAGATGA
    ACCCGTCTTT
    1351 AATCCTAAAG GTTCTGTCGG ATCGGCTCAT TCTTGGTCTA
    TAACTGCCAG
    1401 AATTCAATAC GCAAAATTAC CAAGGCAAGG TAGAATCAGA
    TATATCCCAC
    1451 CTAAAAATTA CTCTCCTTCA GCACCGCTAC CAAAAGGACC
    TAATAATGGA
    1501 TATTTGGATA AATTTGGTAA TGAATGGACT AAAGGTCCAT
    CAAGAACTAA
    1551 AGGTCAAGAA TTTGAATGGG ATGTTCAATT GTCTAAAACA
    GGAAGAGAGC
    1601 AACTTGGATG GGCTAGTAGG GATGGTAAGC ATTTAAATAT
    ATCAATTGAT
    1651 GGAAAGATTA CACACAAATG A
  • This corresponds to the amino acid sequence <SEQ ID 466>:
  •   1 LGISRKISLI LSILAVCLPM HAHASDLAND SFIRQVLDRQ
    HFEPDGKYHL
     51 FGSRGELAER SGHIGLGNIQ SHQLGNLFIQ QAAIKGNIGY
    IVRFSDHGHE
    101 VHSPFDNHAS HSDSDEAGSP VDGFSLYRIH WDGYEHHPAD
    GYDGPQGGGY
    151 PAPKGARDIY SYDIKGVAQN IRLNLTDNRS TGQRLVDRFH
    NTGSMLTQGV
    201 GDGFKRATRY SPELDRSGNA AEAFNGTADI VKNIIGAAGE
    IVGAGDAVQG
    251 ISEGSNIAVM HGLGLLSTEN KMARINDLAD MAQLKDYAAA
    AIRDWAVQNP
    301 NAAQGIEAVS NIFTAVIPVK GIGAVRGKYG LGGITAHPVK
    RSQMGEIALP
    351 KGKSAVSDNF ADAAYAKYPS PYHSRNIRSN LEQRYGKENI
    TSSTVPPSNG
    401 KNVKLANKRH PKTKVPFDGK GFPNFEKDVK YDTRINTAVP
    QVNPIDEPVF
    451 NPKGSVGSAH SWSITARIQY AKLPRQGRIR YIPPKNYSPS
    APLPKGPNNG
    501 YLDKFGNEWT KGPSRTKGQE FEWDVQLSKT GREQLGWASR
    DGKHLNISID
    551 GKITHK*
  • Based on this analysis, including the presence of a RGD sequence in the gonococcal protein, typical of adhesins, it is predicted that the proteins from N. meningitidis and N. gonorrhoeae, and their epitopes, could be useful antigens for vaccines or diagnostics, or for raising antibodies.
  • Example 56
  • The following partial DNA sequence was identified in N. meningitidis <SEQ ID 467>:
  •   1 ATGAATATTC ACACCCTGCT CTCCAAACAA TGGACGCTGC
    CGCCATTCCT
     51 GCCGAAACGG CTGCTGCTGT CCCTGCTGAT ACTGCTTGCC
    CCCAATGCGG
    101 TGTTTTGGGT TTTGGCACTG CTGACCGCCA CCGCCCGCCC
    GATTGTCAAT
    151 TTGGACTATC TTCCCGCCGC GCTGCTGATC GCCCTGCCTT
    GGCGTTTCGT
    201 CAAAATTGCC GGCGTATTGG CGTTTTGGCT GGCGGTTTTG
    TTTGACGGGC
    251 TGATGATGGT GATCCAACTC TTCCCTTTTA TGGATCTCAT
    CGGCGCCATC
    301 AACCTCGTCC CCTTCATCCT GACCGCCCCC GCCCCTTATC
    AGATAATGAC
    351 CGGGCTG...
  • This corresponds to the amino acid sequence <SEQ ID 468; ORF48>:
  •   1 MNIHTLLSKQ WTLPPFLPKR LLLSLLILLA PNAVFWVLAL
    LTATARPIVN
     51 LDYLPAALLI ALPWRFVKIA GVLAFWLAVL FDGLMMVIQL
    FPFMDLIGAI
    101 NLVPFILTAP APYQIMTGL...
  • Further work revealed the complete nucleotide sequence <SEQ ID 469>:
  • 1 ATGAATATTC ACACCCTGCT CTCCAAACAA TGGACGCTGC
    CGCCATTCCT
    51 GCCGAAACGG CTGCTGCTGT CCCTGCTGAT ACTGCTTGCC
    CCCAATGCGG
    101 TGTTTTGGGT TTTGGCACTG CTGACCGCCA CCGCCCGCCC
    GATTGTCAAT
    151 TTGGACTATC TTCCCGCCGC GCTGCTGATC GCCCTGCCTT
    GGCGTTTCGT
    201 CAAAATTGCC GGCGTATTGG CGTTTTGGCT GGCGGTTTTG
    TTTGACGGGC
    251 TGATGATGGT GATCCAACTC TTCCCTTTTA TGGATCTCAT
    CGGCGCCATC
    301 AACCTCGTCC CCTTCATCCT GACCGCCCCC GCCCCTTATC
    AGATAATGAC
    351 CGGGCTGTTG CTGCTGTATA TGCTGGCGAT GCCGTTTGTG
    TTGCAGAAAG
    401 CCGCCGCCAA AACCGACTTC CGGCACATTG CCGTCTGCGC
    CGCCGTTGTG
    451 GCGGCAGCCG GCTATTTCAC CGGCCATTTG AGTTACTACG
    ACCGGGGTCG
    501 GATGGCCAAT ATCTTCGGCG CAAACAACTT CTACTACGCC
    AAAAGTCAGG
    551 CGATGCTCTA CACCGTCAGC CAGAATGCCG ACTTTATTAC
    CGCCGGCCTG
    601 GTCGATCCCG TCTTCCTCCC CTTGGGCAAT CAACAGCGTG
    CCGCCACGCA
    651 TCTGAACGAG CCGAAATCTC AAAAAATCCT CTTTATCGTC
    GCCGAATCTT
    701 GGGGGCTGCC GGCCAATCCC GAACTTCAAA ACGCCACTTT
    TGCCAAACTG
    751 CTGGCGCAAA AAGACCGTTT TTCGGTTTGG GAAAGCGGCA
    GTTTTCCCTT
    801 CATCGGCGCG ACGGTCGAAG GCGAAATGCG CGAACTGTGT
    GCCTACGGCG
    851 GTTTGCGCGG GTTCGCACTG CGCCGCGCGC CCGACGAAAA
    ATTTGCCCGC
    901 TGCCTCCCCA ACCGTTTGAA ACAAGAAGGT TACGCCACCT
    TTGCGATGCA
    951 CGGCGCGGGC AGTTCGCTTT ACGACCGCTT CAGCTGGTAT
    CCGAGGGCGG
    1001 GCTTTCAAGA AATCAAAACC GCCGAAAACC TGATCGGTAA
    AAAAACCTGC
    1051 GCCATTTTCG GCGGCGTGTG CGACAGCGAG CTGTTCGGCG
    AAGTGTCGGC
    1101 ATTTTTCAAA AAACACGACA AGGGACTGTT TTACTGGATG
    ACGCTGACCA
    1151 GCCACGCCGA CTATCCCGAA TCCGACATTT TCAACCACAG
    GCTCAAATGC
    1201 ACCGAATATG GCCTGCCCGC CGAAACCGAC CTCTGCCGCA
    ATTTCAGCCT
    1251 GCACACCCAA TTCTTCGACC AACTGGCGGA TTTGATCCAA
    CGCCCCGAAA
    1301 TGAAAGGCAC GGAAGTCATC ATCGTCGGCG ACCATCCGCC
    GCCCGTCGGC
    1351 AACCTCAATG AAACCTTCCG CTACCTCAAA CAGGGGCACG
    TCGCCTGGCT
    1401 GAACTTCAAA ATCAAATAA
  • This corresponds to the amino acid sequence <SEQ ID 470; ORF48-1>:
  •   1 MNIHTLLSKQ WTLPPFLPKR LLLSLLILLA PNAVFWVLAL
    LTATARPIVN
     51 LDYLPAALLI ALPWRFVKIA GVLAFWLAVL FDGLMMVIQL
    FPFMDLIGAI
    101 NLVPFILTAP APYQIMTGLL LLYMLAMPFV LQKAAAKTDF
    RHIAVCAAVV
    151 AAAGYFTGHL SYYDRGRMAN IFGANNFYYA KSQAMLYTVS
    QNADFITAGL
    201 VDPVFLPLGN QQRAATHLNE PKSQKILFIV AESWGLPANP
    ELQNATFAKL
    251 LAQKDRFSVW ESGSFPFIGA TVEGEMRELC AYGGLRGFAL
    RRAPDEKFAR
    301 CLPNRLKQEG YATFAMHGAG SSLYDRFSWY PRAGFQEIKT
    AENLIGKKTC
    351 AIFGGVCDSE LFGEVSAFFK KHDKGLFYWM TLTSHADYPE
    SDIFNHRLKC
    401 TEYGLPAETD LCRNFSLHTQ FFDQLADLIQ RPEMKGTEVI
    IVGDHPPPVG
    451 NLNETFRYLK QGHVAWLNFK IK*
  • Computer analysis of this amino acid sequence gave the following results:
  • Homology with a Predicted ORF from N. meningitidis (Strain A)
  • ORF48 shows 94.1% identity over a 119aa overlap with an ORF (ORF48a) from strain A of N. meningitidis:
  • Figure US20130064846A1-20130314-C00207
  • The complete length ORF48a nucleotide sequence <SEQ ID 471> is:
  • 1 ATGAATATTC ACACCCTGCT CTCCAAACAA TGGACGCTGC
    CGCCATTCCT
    51 GCCGAAACGG CTGCTGCTGT CCCTGCTGAT ACTGCTNNCC
    CCCAATGCGG
    101 TGTTTTGGGT TTTGGCACTG CTGACCGCCA CCGCCCGCCC
    GATTGTCAAT
    151 TTGGANTACC TTCCCGCCGC GCTGCTGATC GCCCTGCCTT
    GGCGTNTCGT
    201 CAAAATTGNC GGCGTATTGG CGTNTTGGCT GGCGGTTTTG
    TTTGACGGGC
    251 TGATGATGGT GATCCAACTC TTCCCTTTTA TGGATCTCAT
    CGGCGCCATC
    301 AACCTCGTCC CCTTCATCNT GACCGCCCCC GCCCTTTATC
    AGATAATGAC
    351 CGGGCTGTTA CTGCTGTATA TGCTGGCGAT GCCGTTTGTG
    TTGCAGAAAG
    401 CCGCCGCCAA AACCGACTTC CGACACATTG CCGCCTGTGC
    CGCCGTTGTG
    451 GTGGCAGCCG GCTATTTTAC CGGCCATTTG AGTTANTACG
    ACCGGGGGCG
    501 GATGGCCAAT ATCTTCGGCG CAAACAACTT CTATTACGCC
    AAAAGTCAGG
    551 CGATGCTCTA CACCGTCAGC CAGAATGCCG ACTTTATTAC
    CGCCGGCCTG
    601 GTCGATCCCG TCTTCCTCCC CTTGGGCAAT CAACAGCGTG
    CCGCCACGCA
    651 TCTGAACGAG CCGAAATCTC AAAAAATCCT CTTTATCGTC
    GCCGAATCTT
    701 GGGGGCTGCC GGCCAATCCC GAACTTCAAA ACGCCACTTT
    TGCCAAACTG
    751 CTGGCGCAAA AAGANCGTTT TTCGGTTTGG GAAAGCGGCA
    GTTTTCCCTT
    801 CATCGGCGCG ACGATCGAAG GCGAAATGCG CGAACTGTGT
    GCCTACGGCG
    851 GTTTGCGCGG GTTCGCACTG CGCCGCGCGC CCGACGAAAA
    ATTTGCCCGC
    901 TGCCTCCCCA ACCGTTTGAA ACAAGAAGGT TACGCCACCT
    TTGCGATGCA
    951 CGGCGCGGGC AGTTCGCTTT ACGACCGCTT CAGCTGGTAT
    CCGAGGGCGG
    1001 GCTTTCAAGA AATCAAAACC GCCGAAAACC TGATCGGTAA
    AAAAACCTGC
    1051 GCCATTTTCG GCGGCGTGTG CGACAGCGAG CTGTTCGGCG
    AAGTGTCGGC
    1101 ANTTTTCAAA AAACACGACA AGGGACTGTT TTACTGGATG
    ACGCTGACCA
    1151 GCCACGCCGA CTATCCCGAA TCNGACATTT TCAACCACAG
    GCTCAAATGC
    1201 ACCGAATATG GCCTGCCCGC CGAAACCGAC NTCTGCCGCA
    ATTTCAGCCT
    1251 GCACACCCAA TTCTTCGACC AACTGGCGGA TTTGATCCAA
    CGCCCCGAAA
    1301 TGAAAGGCAC GGAAGTCATC ATCGTCGGCG ACCATCCGCC
    GCCCGTCGGC
    1351 AACCTCAATG AAACCTTCCG CTACCTCAAA CAGGGGCACG
    TCGNCTGGCT
    1401 GAACTTCAAA ATCAAATAA
  • This encodes a protein having amino acid sequence <SEQ ID 472>:
  •   1 MNIHTLLSKQ WTLPPFLPKR LLLSLLILLX PNAVFWVLAL
    LTATARPIVN
     51 LXYLPAALLI ALPWRXVKIX GVLAXWLAVL FDGLMMVIQL
    FPFMDLIGAI
    101 NLVPFIXTAP ALYQIMTGLL LLYMLAMPFV LQKAAAKTDF
    RHIAACAAVV
    151 VAAGYFTGHL SXYDRGRMAN IFGANNFYYA KSQAMLYTVS
    QNADFITAGL
    201 VDPVFLPLGN QQRAATHLNE PKSQKILFIV AESWGLPANP
    ELQNATFAKL
    251 LAQKXRFSVW ESGSFPFIGA TIEGEMRELC AYGGLRGFAL
    RRAPDEKFAR
    301 CLPNRLKQEG YATFAMHGAG SSLYDRFSWY PRAGFQEIKT
    AENLIGKKTC
    351 AIFGGVCDSE LFGEVSAXFK KHDKGLFYWM TLTSHADYPE
    SDIFNHRLKC
    401 TEYGLPAETD XCRNFSLHTQ FFDQLADLIQ RPEMKGTEVI
    IVGDHPPPVG
    451 NLNETFRYLK QGHVXWLNFK IK*
  • ORF48a and ORF48-1 show 96.8% identity in 472 aa overlap:
  • Figure US20130064846A1-20130314-C00208
  • Homology with a Predicted ORF from N. gonorrhoeae
  • ORF48 shows 97.5% identity over a 119aa overlap with a predicted ORF (ORF48ng) from N. gonorrhoeae:
  • Figure US20130064846A1-20130314-C00209
  • The ORF48ng nucleotide sequence <SEQ ID 473> was predicted to encode a protein having amino acid sequence <SEQ ID 474>:
  •   1 MNIHALLSEQ WTLPPFLPKR LLLSLLILLA PNAVFWVLAL
    LTATARPIVN
     51 LDYLPAALLI ALPWRFVKIA GVLAFWPAVL FDGLMMVIQL
    FPFMDLIGAI
    101 NLVPFILTAP APYQIMTGLL LLYMLAMPFV LQKAAVKTDF
    RHIAVCAAVV
    151 AAARYFTGPF ELLRTGGRWQ YVQHRRLLLS GSRASFRRRQ
    KADVLRRLGN
    201 PYASMGNGG..
  • Further work identified the complete gonococcal DNA sequence <SEQ ID 475>:
  • 1 ATGAATATTC ACGCCCTGCT CTCCGAACAA TGGACGCTGC
    CGCCATTCCT
    51 GCCGAAACGG CTGCTGCTGT CCCTGCTGAT ACTGCTGGCC
    CCCAATGCGG
    101 TGTTTTGGGT TTTGGCACTG CTGACCGCCA CCGCCCGCCC
    GATTGTCAAT
    151 TTGGACTACC TTCCCGCCGC GCTGCTGATC GCCCTGCCTT
    GGCGTTTCGT
    201 CAAAATTGCC GGCGTATTGG CGTTTTGGCC GGCGGTTTTG
    TTTGACGGGC
    251 TGATGATGGT GATCCAACTC TTCCCTTTTA TGGACCTCAT
    CGGCGCCATC
    301 AACCTCGTCC CCTTCATCCT GACCGCCCCC GCCCCTTATC
    AGATAATGAC
    351 CGGGCTGTTG CTGCTGTATA TGCTGGCGAT GCCGTTTGTG
    TTGCAAAAAG
    401 CCGCCGTCAA AACCGACTTC CGACACATTG CCGTCTGTGC
    CGCCGTTGTG
    451 GCGGCAGCCG GCTATTTCAC CGGCCATTTG AGTTACTACG
    ACCGGGGGCG
    501 GATGGCCAAT ATCTTCGGCG CAAACAACTT CTATTACGCc
    aAAAGTCAGG
    551 CGATGCTCTA CACCGTCAGC CAGAATGCCG ACTTTATTAC
    CGCCGgcctG
    601 GTCGACCCCG TCTTCCTCCC CTTGGGCAAT CAGCAGCGTG
    CCGCCACGCG
    651 GCTGAGTGAG CCGAAATCTC AAAAAATCCT CTTTATCGTC
    GCCGAATCTT
    701 GGGGGCTGCC GGGCAATCCC GAGCTTCAAA ACGCCACTTT
    TGCCAAACTG
    751 CTGGCGCAAA AAGACCGTTT TTCGGTTTGG GAAAGCGGCA
    GTTTTCCCTT
    801 CATCGGCGCG ACGGTCGAAG GCGAAATGCG CGAATTGTGC
    GCCTACGGCG
    851 GTTTGCGCGG GTTCGCACTG CGCCGCGCGC CCGACGAAAA
    ATTTGCCCGC
    901 TGCCTCCCCA ACCGTTTGAA ACAAGAAGGT TACGCCACCT
    TTGCGATGCA
    951 CGGCGCGGGT AGTTCGCTTT ACGACCGCTT CAGCTGGTAT
    CCGAGGGCGG
    1001 GCTTTCAAAA AATCAAAACC GCCGAAAACC TGATCGGTAA
    AAAAACCTGC
    1051 GCCATTTTCG GCGGCGTGTG CGACAGCGAG CTGTTCGGCG
    AAGTGTCGGC
    1101 ATTTTTCAAA AAACACGACA AGGGACTGTT TTACTGGATG
    ACGCTGACCA
    1151 GCCACGCCGA CTATCCCGAA TCCGACATTT TCAACCACAG
    GCTCAAATGC
    1201 ACCGAATACG GCCTGCCCGC CGAAACCGAC CTCTGCCGCA
    ATTTCAGCCT
    1251 GCACACCCAA TtcttcgACC AACTGGCGGA TTTGATCCGA
    CGCCCCGAAA
    1301 TGAAAGGCAC GGAAGTCATC ATCGTCGGCG ACCATCCGCC
    GCCCGTCGGC
    1351 AACCTCAATG AAACCTTCCG CTACCTCAAA CAGGGACACG
    TCGCCTGGCT
    1401 GCACTTCAAA ATCAAATAA
  • This encodes a protein having amino acid sequence <SEQ ID 476; ORF48ng-1>:
  •   1 MNIHALLSEQ WTLPPFLPKR LLLSLLILLA PNAVFWVLAL
    LTATARPIVN
     51 LDYLPAALLI ALPWRFVKIA GVLAFWPAVL FDGLMMVIQL
    FPFMDLIGAI
    101 NLVPFILTAP APYQIMTGLL LLYMLAMPFV LQKAAVKTDF
    RHIAVCAAVV
    151 AAAGYFTGHL SYYDRGRMAN IFGANNFYYA KSQAMLYTVS
    QNADFITAGL
    201 VDPVFLPLGN QQRAATRLSE PKSQKILFIV AESWGLPGNP
    ELQNATFAKL
    251 LAQKDRFSVW ESGSFPFIGA TVEGEMRELC AYGGLRGFAL
    RRAPDEKFAR
    301 CLPNRLKQEG YATFAMHGAG SSLYDRFSWY PRAGFQKIKT
    AENLIGKKTC
    351 AIFGGVCDSE LFGEVSAFFK KHDKGLFYWM TLTSHADYPE
    SDIFNHRLKC
    401 TEYGLPAETD LCRNFSLHTQ FFDQLADLIR RPEMKGTEVI
    IVGDHPPPVG
    451 NLNETFRYLK QGHVAWLHFK IK*
  • ORG48ng-1 and ORF48-1 show 97.9% identity in 472 aa overlap:
  • Figure US20130064846A1-20130314-C00210
  • Based on this analysis, including the presence of a putative leader sequence (double-underlined) and two putative transmembrane domains (single-underlined) in the gonococcal protein, it is predicted that the proteins from N. meningitidis and N. gonorrhoeae, and their epitopes, could be useful antigens for vaccines or diagnostics, or for raising antibodies.
  • Example 57
  • The following partial DNA sequence was identified in N. meningitidis <SEQ ID 477>:
  •   1 ..GTGAGCGGAC GTTACCGCGC TTTGGATCGC GTTTCCAAAA
    TCATCATCGT
     51   TACTTTGAGT ATCGCCACGC TTGCCGCCGC CGGCATCGCT
    ATGTCGCGCG
    101   GTATGCAGAT GCAGTCCGAT TTTATCGAGC CGACACCGTG
    GACGCTTGCC
    151   GGTTTGGGCT TCCTGATCGC GCTGATGGGC TGGATGCCCG
    CGCCGATTGA
    201   AATTTCCGCC ATCAATTCTT TGTGGGTAAC CGAAAAACAA
    CGCATCAATC
    251   CTTCCGAATA CCGCGACGGG ATTTTTGAAT TCAACGTCGG
    TTATATCGCC
    301   AGTGCGGTTT TGGCTTTGGT TTTCCTTGCA CTGGGCGC.G
    TAGCGCCGAA
    351   CGGCAACGGC GA.ACAGTGC AGATGGCGGG CGGCAAATAT
    AACGGGCAAT
    401   TGATCAATAT GTACGCC..
  • This corresponds to the amino acid sequence <SEQ ID 478; ORF53>:
  •   1 ..VSGRYRALDR VSKIIIVTLS IATLAAAGIA MSRGMQMQSD
    FIEPTPWTLA
     51   GLGFLIALMG WMPAPIEISA INSLWVTEKQ RINPSEYRDG
    IFEFNVGYIA
    101   SAVLALVFLA LGXVAPNGNG XTVQMAGGKY NGQLINMYA..
  • Further work revealed the complete nucleotide sequence <SEQ ID 479>:
  • 1 ATGTCCGAAC AACATATTTC GACTTGGAAA AGTAAAATCA
    ACGCATTGGG
    51 TCCGGGGATC ATGATGGCTT CGGCGGCGGT CGGCGGTTCG
    CACCTGATTG
    101 CCTCGACGCA GGCGGGCGCG CTTTACGGCT GGCAGATCGC
    GCTCATCATC
    151 ATCCTGACCA ACCTCTTCAA ATACCCGTTT TTCCGCTTCA
    GCGCGCATTA
    201 CACGCTGGAC ACGGGCAAGA GCCTGATTGA AGGTTATGCC
    GAGAAAAGCC
    251 GCGTTTATTT GTGGGTATTC CTGATTTTGT GCATCCTCTC
    CGCCACGATT
    301 AACGCGGGCG CGGTCGCCAT TGTAACCGCC GCCATCGTCA
    AAATGGCGAT
    351 TCCCTCGCTG ATGTTTGATG CCGGCACGGT TGCCGCCTTG
    ATTATGGCAT
    401 CCTGCCTGAT TATTTTGGTG AGCGGACGTT ACCGCGCTTT
    GGATCGCGTT
    451 TCCAAAATCA TCATCGTTAC TTTGAGTATC GCCACGCTTG
    CCGCCGCCGG
    501 CATCGCTATG TCGCGCGGTA TGCAGATGCA GTCCGATTTT
    ATCGAGCCGA
    551 CACCGTGGAC GCTTGCCGGT TTGGGCTTCC TGATCGCGCT
    GATGGGCTGG
    601 ATGCCCGCGC CGATTGAAAT TTCCGCCATC AATTCTTTGT
    GGGTAACCGA
    651 AAAACAACGC ATCAATCCTT CCGAATACCG CGACGGGATT
    TTTGATTTCA
    701 ACGTCGGTTA TATCGCCAGT GCGGTTTTGG CTTTGGTTTT
    CCTTGCACTG
    751 GGCGCGTTTG TGCAATACGG CAACGGCGAA GCAGTGCAGA
    TGGCGGGCGG
    801 CAAATATATC GGGCAATTGA TCAATATGTA CGCCGTTACC
    ATCGGCGGCT
    851 GGTCGCGCCC GCTGGTGGCG TTTATCGCGT TTGCCTGTAT
    GTACGGCACG
    901 ACGATTACCG TCGTGGACGG CTATGCCCGT GCCATTGCCG
    AACCCGTGCG
    951 CCTGCTGCGC GGAAAAGACA AAACGGGCAA CGCCGAATTC
    TTTGCCTGGA
    1001 ATATTTGGGT GGCGGGCAGC GGTTTGGCGG TGATTTTCTG
    GTTTGACGGC
    1051 GTAATGGCGA ATCTGCTCAA ATTTGCGATG ATTGCCGCTT
    TTGTGTCCGC
    1101 CCCTGTGTTT GCCTGGCTGA ATTACCGTTT GGTTAAAGGT
    GATGAAAAAC
    1151 ACAAACTCAC ATCAGGTATG AATGCCCTTG CATTGGCAGG
    CTTGATTTAT
    1201 CTGACCGGTT TTACCGTTTT GTTCTTATTG AATTTGGCGG
    GAATGTTCAA
    1251 ATGA
  • This corresponds to the amino acid sequence <SEQ ID 480; ORF53-1>:
  •   1 MSEQHISTWK SKINALGPGI MMASAAVGGS HLIASTQAGA
    LYGWQIALII
     51 ILTNLFKYPF FRFSAHYTLD TGKSLIEGYA EKSRVYLWVF
    LILCILSATI
    101 NAGAVAIVTA AIVKMAIPSL MFDAGTVAAL IMASCLIILV
    SGRYRALDRV
    151 SKIIIVTLSI ATLAAAGIAM SRGMQMQSDF IEPTPWTLAG
    LGFLIALMGW
    201 MPAPIEISAI NSLWVTEKQR INPSEYRDGI FDFNVGYIAS
    AVLALVFLAL
    251 GAFVQYGNGE AVQMAGGKYI GQLINMYAVT IGGWSRPLVA
    FIAFACMYGT
    301 TITVVDGYAR AIAEPVRLLR GKDKTGNAEF FAWNIWVAGS
    GLAVIFWFDG
    351 VMANLLKFAM IAAFVSAPVF AWLNYRLVKG DEKHKLTSGM
    NALALAGLIY
    401 LTGFTVLFLL NLAGMFK*
  • Computer analysis of this amino acid sequence gave the following results:
  • Homology with a Predicted ORF from N. meningitidis (Strain A)
  • ORF53 shows 93.5% identity over a 139aa overlap with an ORF (ORF53a) from strain A of N. meningitidis:
  • Figure US20130064846A1-20130314-C00211
  • The complete length ORF53a nucleotide sequence <SEQ ID 481> is:
  • 1 ATGTCCGAAC AACATATTTC GACTTGGAAA AGTAAAATCA
    ACGCATTGGG
    51 ACCGGGGATT ATGATGGCTT CGGCGGCGGT CGGCGGTTCG
    CACCTGATTG
    101 CCTCGACGCA GGCGGGCGCG CTTTACGGCT GGCAGATCGC
    GCTCATCATC
    151 ATCCTGACCA ACCTCTTCAA ATACCCGTTT TTCCGCTTCA
    GCGCGCATTA
    201 CACGCTGGAC ACGGGCAAGA GCCTGATTGA AGGTTATGCC
    GAGAAAAGCC
    251 GCGTTTATTT GTGGGTATTC CTGATTTTGT GCATCCTCTC
    CGCCACGATT
    301 AACGCGGGCG CGGTCGCCAT TGTAACCGCC GCCATCGTCA
    AAATGGCGAT
    351 TCCCTCGCTG ATGTTTGATG CCGGCACGGT TGCCGCCTTG
    ATTATGGCAT
    401 CCTGCCTGAT TATTTTGGTG AGCGGACGTT ACCGCGCTTT
    GGATCGCGTT
    451 TCCAAAATCA TCATCGTTAC TTTGAGTATC GCCACGCTTG
    CCGCCGCCGG
    501 CATCGCTATG TCGCGCGGTA TGCAGATGCA GTCCGATTTT
    ATCGAGCCGA
    551 CACCGTGGAC GCTTGCCGGT TTGGGCTTCC TGATCGCGCT
    GATGGGCTGG
    601 ATGCCCGCGC CGATTGAAAT TTCCGCCATC AATTCTTTGT
    GGGTAACCGA
    651 AAAACAACGC ATCAATCCTT CCGAATACCG CGACGGGATT
    TTTGATTTCA
    701 ACGTCGGTTA TATCGCCAGT GCGGTTTTGG CTTTGGTTTT
    CCTTGCACTG
    751 GGCGCGTTTG TGCAATACGG CAACGGCGAA GCAGTGCAGA
    TGGCGGGCGG
    801 CAAATATATC GGGCAATTGA TCAATATGTA CGCCGTTACC
    ATCGGCGGCT
    851 GGTCGCGCCC GCTGGTGGCG TTTATCGCGT TTGCCTGTAT
    GTACGGCACG
    901 ACGATTACCG TTGTGGACGG CTATGCCCGT GCCATTGCCG
    AACCCGTGCG
    951 CCTGCTGCGC GGAAAAGACA AAACGGGCAA CGCCGAATTC
    TTTGCCTGGA
    1001 ATATTTGGGT GGCGGGCAGC GGTTTGGCGG TGATTTTCTG
    GTTTGACGGC
    1051 GTAATGGCGA ATCTGCTCAA ATTTGCGATG ATTGCCGCTT
    TTGTGTCCGC
    1101 CCCTGTGTTT GCCTGGCTGA ATTACCGTTT GGTCAAAGGT
    GATGAAAAAC
    1151 ACAAACTCAC ATCAGGTATG AATGCCCTTG CATTGGCAGG
    CTTGATTTAT
    1201 CTGACCGGTT TTACCGTTTT GTTCTTATTG AATTTGGCGG
    GAATGTTCAA
    1251 ATGA
  • This encodes a protein having amino acid sequence <SEQ ID 482>:
  •   1 MSEQHISTWK SKINALGPGI MMASAAVGGS HLIASTQAGA
    LYGWQIALII
     51 ILTNLFKYPF FRFSAHYTLD TGKSLIEGYA EKSRVYLWVF
    LILCILSATI
    101 NAGAVAIVTA AIVKMAIPSL MFDAGTVAAL IMASCLIILV
    SGRYRALDRV
    151 SKIIIVTLSI ATLAAAGIAM SRGMQMQSDF IEPTPWTLAG
    LGFLIALMGW
    201 MPAPIEISAI NSLWVTEKQR INPSEYRDGI FDFNVGYIAS
    AVLALVFLAL
    251 GAFVQYGNGE AVQMAGGKYI GQLINMYAVT IGGWSRPLVA
    FIAFACMYGT
    301 TITVVDGYAR AIAEPVRLLR GKDKTGNAEF FAWNIWVAGS
    GLAVIFWFDG
    351 VMANLLKFAM IAAFVSAPVF AWLNYRLVKG DEKHKLTSGM
    NALALAGLIY
    401 LTGFTVLFLL NLAGMFK*
  • ORF 53a shows 100.0% identity in 417 aa overlap with ORF53-1:
  • Figure US20130064846A1-20130314-C00212
  • Homology with a Predicted ORF from N. gonorrhoeae
  • ORF53 shows 92.1% identity over a 139aa overlap with a predicted ORF (ORF53ng) from N. gonorrhoeae:
  • Figure US20130064846A1-20130314-C00213
  • An ORF53ng nucleotide sequence <SEQ ID 483> was predicted to encode a protein having amino acid sequence <SEQ ID 484>:
  •   1 MPKKSCVYLW VFLILCIASA TINAGAVAIV TAAIVKMAIP
    SLMFDAGTVA
     51 ALIMASCLII LVSGRYRALD RVSKIIIVTL SIATLAAAGI
    AMSRGMQMQP
    101 DFIEPTPWTL AGLGFLIALM GWMPAPIEIS AINSLWVTEK
    QRINPSEYRD
    151 GIFDFNVGYI ASAVLALVFL ALGAFVQYGN GEAVQMGGGK
    YIGQLINMYA
    201 VTIGGGSRPL VAFIAFACMY GAASTVV DGY ARAIAEPVRL
    LRGKDKTARP
    251 IVLLEKLGGR HRFGRDFLV*
  • Further analysis revealed further partial DNA gonococcal sequence <SEQ ID 485>:
  • 1 ..aagaAAAGCT GCGTTTATTT GTGGGTTTTT TTGATTTTGT
    GTATCGCCTC
    51   CGCCACGATT AACGCGGGCG CGGTCGCCAT TGTAACCGCC
    GCCATCGTCA
    101   AAATGGCGAT TCCCTCGCTG ATGTTTGATG CCGGCACGGT
    TGCCGCCTTG
    151   ATTATGGCAT CCTGCCTGAT TATTTTGGTG AGCGGACGTT
    ACCGCGCTTT
    201   GGATCGTGTT TCCAAAATCA TCATTGTTAC TTTGAGCATC
    GCCACGCTTG
    251   CCGCCGCCGG CATCGCTATG TCGCGCGGTA TGCAGATGCA
    GCCCGATTTT
    301   ATCGAGCCGA CACCGTGGAC GCTTGCCGGT TTGGGCTTCC
    TGATCGCGCT
    351   GATGGGCTGG ATGCCCGCGC CGATCGAAAT TTCCGCCATC
    AATTCTTTGT
    401   GGGTAACCGA AAAACAACGC ATCAATCCTT CTGAATACCG
    CGACGGGATT
    451   TTCGATTTCA ACGTCGGTTA TATCGCcagT GCGGTTTTGG
    CTTTGGTTTT
    501   CCTTGCACTG GGCGCGTTTG TGCAATACGG CAACGGCGAA
    GCAGTGCAGA
    551   TGGCGGGCGG CAAATATATC GGGCAATTGA TTAATATGTA
    TGCCGTAACC
    601   ATCGGCGGCT GGTCTCGTCC GCTGGTGGCG TTTATCGCGT
    TTGCCTGTAT
    651   GTACGGCACG ACGATTACCG TTGTGGACGG TTATGCGCGT
    GCCATTGCCG
    701   AACCCGTGCG CCTGCTGCGC GGCAGGGATA AAACCGGCAA
    CGCCGAGTTG
    751   TTtgccTGGA ATATTTGGGT GGCGGGCAGC GGTTTGGCGG
    TGATTTTCTG
    801   GTTTGACggc gcaaTGGCgG AACtgcTCAA ATTTGCGATG
    ATtgccgcCT
    851   TTGTGTCCGC CCCTGTGTTC GCCTGGCTCA ACTACCGCCT
    CGTCAAAGGG
    901   GACAAACGCC ACAGGCTTAC CGCCGGTATG AACGCCCTTG
    CCATTGTCGG
    951   CCTGCTCTAC CTGGCCGGGT TTGCCGTTTT GTTCCTGTTG
    AACCTTACCG
    1001   GACTTTTGGC ATAG
  • This corresponds to the amino acid sequence <SEQ ID 486; ORF53ng-1>:
  •   1 ..KKSCVYLWVF LILCIASATI NAGAVAIVTA AIVKMAIPSL
    MFDAGTVAAL
     51   IMASCLIILV SGRYRALDRV SKIIIVTLSI ATLAAAGIAM
    SRGMQMQPDF
    101   IEPTPWTLAG LGFLIALMGW MPAPIEISAI NSLWVTEKQR
    INPSEYRDGI
    151   FDFNVGYIAS AVLALVFLAL GAFVQYGNGE AVQMAGGKYI
    GQLINMYAVT
    201   IGGWSRPLVA FIAFACMYGT TITVV DGYAR AIAEPVRLLR
    GRDKTGNAEL
    251   FAWNIWVAGS GLAVIFWFDG AMAELLKFAM IAAFVSAPVF
    AWLNYRLVKG
    301   DKRHRLTAGM NALAIVGLLY LAGFAVLFLL NLTGLLA*
  • ORF53ng-1 and ORF53-1 show 94.0% identity in 336 aa overlap:
  • Figure US20130064846A1-20130314-C00214
  • Based on this analysis, including the presence of a putative leader sequence (double-underlined) and several putative transmembrane domains (single-underlined) in the gonococcal protein, it is predicted that the proteins from N. meningitidis and N. gonorrhoeae, and their epitopes, could be useful antigens for vaccines or diagnostics, or for raising antibodies.
  • Example 58
  • The following partial DNA sequence was identified in N. meningitidis <SEQ ID 487>:
  •   1 ..TTGCGGGAAA CGGCATATGT TTTGGATAGT TTTGATCGTT
    ATTTTGTTGT
     51   TGCGCTTGCC GGCTTGTTTT TTGTCCGCGC ACAATCCGAA
    CGCGAGTGGA
    101   TGCGCGAGGT TTCTGCGTGG CAGGAAAAGA AAGGGGAAAA
    ACAGGCGGAG
    151   CTGCCTGAAA TCAAAGACGG TATGCCCGAT TTTCCCGAAC
    TTGCCCTGAT
    201   GCTTTTCCAC GCCGTCAAAA CGGCAGTGTA TTGGCTGTTT
    GTCGGTGTCG
    251   TCCGTTTCTG CCGAAACTAT CTGGCGCACG AATCCGAACC
    GGACAGGCCC
    301   GTTCCGCCT..
  • This corresponds to the amino acid sequence <SEQ ID 488; ORF58>:
  •   1 ..LRETAYVLDS FDRYFVVALA GLFFVRAQSE REWMREVSAW
    QEKKGEKQAE
     51   LPEIKDGMPD FPELALMLFH AVKTAVYWLF VGVV RFCRNY
    LAHESEPDRP
    101   VPP..
  • Further work revealed the complete nucleotide sequence <SEQ ID 489>:
  • 1 ATGTTTTGGA TAGTTTTGAT CGTTATTTTG TTGCTTGCGC
    TTGCCGGCTT
    51 GTTTTTTGTC CGCGCACAAT CCGAACGCGA GTGGATGCGC
    GAGGTTTCTG
    101 CGTGGCAGGA AAAGAAAGGG GAAAAACAGG CGGAGCTGCC
    TGAAATCAAA
    151 GACGGTATGC CCGATTTTCC CGAACTTGCC CTGATGCTTT
    TCCATGCCGT
    201 CAAAACGGCA GTGTATTGGC TGTTTGTCGG TGTCGTCCGT
    TTCTGCCGAA
    251 ACTATCTGGC GCACGAATCC GAACCGGACA GGCCCGTTCC
    GCCTGCTTCT
    301 GCAAACCGTG CGGATGTTCC GACCGCATCC GACGGATATT
    CAGACAGTGG
    351 AAACGGGACG GAAGAAGCGG AAACGGAAGA AGCAGAAGCT
    GCGGAGGAAG
    401 AGGCTGCCGA TACGGAAGAC ATTGCAACTG CCGTAATCGA
    CAACCGCCGC
    451 ATCCCATTCG ACCGGAGTAT TGCTGAAGGG TTGATGCCGT
    CTGAAAGCGA
    501 AATTTCGCCC GTCCGTCCGG TTTTTAAAGA AATCACTTTG
    GAAGAAGCAA
    551 CGCGTGCTTT AAACAGCGCG GCTTTAAGGG AAACGAAAAA
    ACGCTATATC
    601 GATGCATTTG AGAAAAACGA AACAGCGGTC CCCAAAGTCC
    GCGTGTCCGA
    651 TACCCCGATG GAAGGGCTGC AGATTATCGG TTTGGACGAC
    CCTGTGCTTC
    701 AACGCACGTA TTCCCATATG TTCGATGCGG ACAAAGAAGC
    GTTTTCCGAG
    751 TCTGCGGATT ACGGATTTGA GCCGTATTTT GAGAAGCAGC
    ATCCGTCTGC
    801 CTTTTCTGCA GTCAAAGCCG AAAATGCACG GAATGCGCCG
    TTCCACCGTC
    851 ATGCAGGGCA GGGGAAAGGG CAGGCGGAGG CAAAATCCCC
    GGATGTTTCC
    901 CAAGGGCAGT CCGTTTCAGA CGGCACGGCC GTCCGCGATG
    CCCGCCGCCG
    951 CGTTTCCGTC AATTTGAAAG AACCGAACAA GGCAACGGTT
    TCTGCGGAGG
    1001 CGCGAATTTC TCGCCTGATT CCGGAAAGTC AGACGGTTGT
    CGGGAAACGG
    1051 GATGTCGAAA TGCCGTCTGA AACCGAAAAT GTTTTCACGG
    AAACCGTTTC
    1101 GTCTGTGGGA TACGGCGGTC CGGTTTATGA TGAAACTGCC
    GATATCCATA
    1151 TTGAAGAACC TGCCGCGCCC GATGCTTGGG TGGTCGAACC
    ACCCGAAGTG
    1201 CCGAAAGTTC CCATGACCGC AATCGATATT CAGCCGCCGC
    CTCCCGTATC
    1251 GGAAATCTAC AACCGTACCT ATGAACCGCC GTCAGGATTC
    GAGCAGGTGC
    1301 AACGCAGCCG CATTGCCGAG ACCGACCATC TTGCCGATGA
    TGTTTTGAAT
    1351 GGAGGTTGGC AGGAGGAAAC CGCCGCTATT GCGGATGACG
    GCAGTGAAGG
    1401 TGCGGCAGAG CGGTCAAGCG GGCAATATCT GTCGGAAACC
    GAAGCGTTCG
    1451 GGCATGACAG TCAGGCGGTT TGTCCGTTTG AAAATGTGCC
    GTCTGAACGC
    1501 CCGTCCTGCC GGGTATCGGA TACGGAAGCG GATGAAGGGG
    CGTTCCCATC
    1551 TGAAGAAACC GGTGCGGTAT CCGAACACCT GCCGACAACC
    GACCTGCTTC
    1601 TGCCTCCGCT GTTCAATCCC GAGGCGACGC AAACCGAAGA
    AGAACTGTTG
    1651 GAAAACAGCA TCACCATCGA AGAAAAATTG GCGGAGTTCA
    AAGTCAAGGT
    1701 CAAGGTTGTC GATTCTTATT CCGGCCCCGT AATTACGCGT
    TATGAAATCG
    1751 AACCCGATGT CGGCGTGCGC GGCAATTCCG TTCTGAATCT
    GGAAAAAGAT
    1801 TTGGCGCGTT CGCTCGGCGT GGCTTCCATC CGCGTTGTCG
    AAACCATCCC
    1851 CGGCAAAACC TGCATGGGTT TGGAACTTCC GAACCCGAAA
    CGCCAAATGA
    1901 TACGCCTGAG CGAAATCTTC AATTCGCCCG AGTTTGCCGA
    ATCCAAATCC
    1951 AAGCTGACGC TCGCGCTCGG TCAGGACATC ACCGGACAGC
    CCGTCGTAAC
    2001 CGACTTGGGA AAAGCACCGC ATTTGTTGGT TGCCGGCACG
    ACCGGTTCGG
    2051 GCAAATCGGT GGGTGTCAAC GCGATGATTC TGTCTATGCT
    TTTCAAAGCC
    2101 GCGCCGGAAG ACGTGCGTAT GATTATGATC GATCCGAAAA
    TGCTGGAATT
    2151 GAGCATTTAC GAAGGCATCC CGCACCTGCT CGCCCCTGTC
    GTTACCGATA
    2201 TGAAGCTGGC GGCAAACGCG CTGAACTGGT GTGTTAACGA
    AATGGAAAAA
    2251 CGCTACCGCC TGATGAGCTT TATGGGCGTG CGTAATCTTG
    CGGGCTTCAA
    2301 TCAAAAAATC GCCGAAGCCG CAGCAAGGGG AGAAAAAATC
    GGCAATCCGT
    2351 TCAGCCTCAC GCCCGACGAT CCCGAACCTT TGGAAAAACT
    GCCGTTTATC
    2401 GTGGTCGTGG TCGATGAGTT TGCCGACCTG ATGATGACGG
    CAGGCAAGAA
    2451 AATCGAAGAA CTGATTGCCC GCCTCGCCCA AAAAGCCCGC
    GCGGCAGGCA
    2501 TCCATTTGAT TCTTGCCACA CAACGCCCCA GCGTCGATGT
    CATCACGGGT
    2551 CTGATTAAGG CGAACATCCC GACGCGTATC GCGTTCCAAG
    TGTCCAGCAA
    2601 AATCGACAGC CGCACGATTC TCGACCAAAT GGGCGCGGAA
    AACCTGCTCG
    2651 GTCAGGGCGA TATGCTGTTC CTGCTGCCGG GTACTGCCTA
    TCCGCAGCGC
    2701 GTTCACGGCG CGTTTGCCTC GGATGAAGAG GTGCACCGCG
    TGGTCGAATA
    2751 TTTGAAACAG TTTGGCGAAC CGGACTATGT TGACGATATT
    TTGAGCGGCG
    2801 GCGGCAGCGA AGAGCTGCCC GGCATCGGGC GCAGCGGCGA
    CGACGAAACC
    2851 GATCCGATGT ACGACGAGGC CGTATCCGTT GTCCTGAAAA
    CGCGCAAAGC
    2901 CAGCATTTCG GGCGTACAGC GCGCCTTGCG TATCGGCTAC
    AACCGCGCCG
    2951 CGCGTCTGAT TGACCAGATG GAGGCGGAAG GCATTGTGTC
    CGCACCGGAA
    3001 CACAACGGCA ACCGTACGAT TCTCGTCCCC TTGGACAATG
    CTTGA
  • This corresponds to the amino acid sequence <SEQ ID 490; ORF58-1>:
  • 1 MFWIVLIVIL LLALAGL FFV RAQSEREWMR EVSAWQEKKG
    EKQAELPEIK
    51 DGMPDFPELA LMLFHAVKTA VYWLFVGVV R FCRNYLAHES
    EPDRPVPPAS
    101 ANRADVPTAS DGYSDSGNGT EEAETEEAEA AEEEAADTED
    IATAVIDNRR
    151 IPFDRSIAEG LMPSESEISP VRPVFKEITL EEATRALNSA
    ALRETKKRYI
    201 DAFEKNETAV PKVRVSDTPM EGLQIIGLDD PVLQRTYSHM
    FDADKEAFSE
    251 SADYGFEPYF EKQHPSAFSA VKAENARNAP FHRHAGQGKG
    QAEAKSPDVS
    301 QGQSVSDGTA VRDARRRVSV NLKEPNKATV SAEARISRLI
    PESQTVVGKR
    351 DVEMPSETEN VFTETVSSVG YGGPVYDETA DIHIEEPAAP
    DAWVVEPPEV
    401 PKVPMTAIDI QPPPPVSEIY NRTYEPPSGF EQVQRSRIAE
    TDHLADDVLN
    451 GGWQEETAAI ADDGSEGAAE RSSGQYLSET EAFGHDSQAV
    CPFENVPSER
    501 PSCRVSDTEA DEGAFPSEET GAVSEHLPTT DLLLPPLFNP
    EATQTEEELL
    551 ENSITIEEKL AEFKVKVKVV DSYSGPVITR YEIEPDVGVR
    GNSVLNLEKD
    601 LARSLGVASI RVVETIPGKT CMGLELPNPK RQMIRLSEIF
    NSPEFAESKS
    651 KLTLALGQDI TGQPVVTDLG KAPHLLVAGT TGSGKSVGVN
    AMILSMLFKA
    701 APEDVRMIMI DPKMLELSIY EGIPHLLAPV VTDMKLAANA
    LNWCVNEMEK
    751 RYRLMSFMGV RNLAGFNQKI AEAAARGEKI GNPFSLTPDD
    PEPLEKLPFI
    801 VVVVDEFADL MMTAGKKIEE LIARLAQKAR AAGIHLILAT
    QRPSVDVITG
    851 LIKANIPTRI AFQVSSKIDS RTILDQMGAE NLLGQGDMLF
    LLPGTAYPQR
    901 VHGAFASDEE VHRVVEYLKQ FGEPDYVDDI LSGGGSEELP
    GIGRSGDDET
    951 DPMYDEAVSV VLKTRKASIS GVQRALRIGY NRAARLIDQM
    EAEGIVSAPE
    1001 HNGNRTILVP LDNA*
  • Computer analysis of this amino acid sequence predicts the indicated transmembrane region, and also gave the following results:
  • Homology with a Predicted ORF from N. meningitidis (Strain A)
  • ORF58 shows 96.6% identity over a 89aa overlap with an ORF (ORF58a) from strain A of N. meningitidis:
  • Figure US20130064846A1-20130314-C00215
  • The complete length ORF58a nucleotide sequence <SEQ ID 491> is:
  • 1 ATGTTTTGGA TAGTTTTGAT CGTTATTTTG TTGCTTGCGC
    TTGCCGGCTT
    51 GTTTTTTGTC CGCGCACAAT CCGAACGCGA GTGGATGCGC
    GAGGTTTCTG
    101 CGTGGCAGGA AAAGAAAGGG GAAAAACAGG CGGAGCTGCC
    TGAAATCAAA
    151 GACGGTATGC CCGATTTTCC CGAACTTGCC CTGATGCTTT
    TCCATGCCGT
    201 CAAAACGGCA GTGTATTGGC TGTTTGTCGG TGTCGTCCGT
    TTCTGCCGAA
    251 ACTATCTGGC GCACGAATCC GAACCGGACA GGCCCGTTCC
    GCCTGCTTCT
    301 GCAAATCGTG CGGATGTTCC GACCGCATCC GACGGATATT
    CAGACAGTGG
    351 AAACGGGACG GAAGAAGCGG AAACGGAAGA AGCAGAAGCT
    GCGGAGGAAG
    401 AGGCTGCCGA TACGGAAGAC ATTGCAACTG CCGTAATCGA
    CAACCGCCGC
    451 ATCCCATTCG ACCGGAGTAT TGCTGAAGGG TTGATGCCGT
    CTGAAAGCGA
    501 AATTTCGCCC GTCCGTCCGG TTTTTAAGGA AATCACTTTG
    GAAGAAGCAA
    551 CGCGTGCTTT AAACAGCGCG GCTTTAAGGG AAACGAAAAA
    ACGCTATATC
    601 GATGCATTTG AGAAAAACGA AACAGCGGTC CCCAAAGTCC
    GCGTGTCCGA
    651 TACCCCGATG GAAGGGCTGC AGATTATCGG TTTGGACGAC
    CCTGTGCTTC
    701 AACGCACGTA TTCCCGTATG TTCGATGCGG ACAAAGAAGC
    GTTTTCCGAG
    751 TCTGCGGATT ACGGATTTGA GCCGTATTTT GAGAAGCAGC
    ATCCGTCTGC
    801 CTTTTCTGCA GTCAAAGCCG AAAATGCACG GAATGCGCCG
    TTCCGCCGTC
    851 ATGCAGGGCA GGGNAAAGGG CAGGCGGAGG CNAAATCCCC
    GGATGTTTCC
    901 CAAGGGCAGT CCGTTTCAGA CGGCACAGCC GTCCGCGATG
    CCNGCCGCCG
    951 CGTTTCCGTC AATTTGAAAG AACCGAACAA GGCAACGGTT
    TCTGCGGAGG
    1001 CGCGGATTTC GCGCCTGATT CCGGAAAGTC GGACGGTTGT
    CGGGAAACGG
    1051 GATGTCGAAA TGCCGTCTGA AACCGAAAAT GTTTTCACGG
    AAANTGTTTC
    1101 GTCTGTGGGA TACGGCGNTC CGGTTTATGA TGAAACTGCC
    GATATCCATA
    1151 TTGAAGAACC TGCCGCGCCC GATGCTTGGG TGGTCGAACC
    ACCCGAAGTG
    1201 CCGAAAGTTC CCATGCCCGC AATNGATATT CCGCCGCCGC
    CTCCCGTATC
    1251 GGAAATCTAC AACCGTACCT ATGAACCGCC GGCAGGATTC
    GAGCAGGTGC
    1301 AACGCAGCCG CATTGCCGAA ACCGATCATC TTGCCGATGA
    TGTTTTGAAT
    1351 GGAGGTTGGC AGGAGGAAAC CGCCGCTATT GCGAATGACG
    GCAGTGAGGG
    1401 TGTGGCAGAG CGGTCAAGCG GGCAATATTT GTCGGAAACC
    GAAGCGTTCG
    1451 GGCATGACAG TCAGGCGGTT TGTCCGTTTG AAAATGTGCC
    GTCTGAACGC
    1501 CCGTCCCGCC GGGCATNGGA TACGGAAGCG GATGAAGGGG
    CGTTCCAATC
    1551 TGAAGAAACC GGTGCGGTAT CCGAACACCT GCCGACAACC
    GACCTGCTTC
    1601 TGCCGCCGCT GTTCAATCCC GGGGCGACGC AAACCGAAGA
    AGANCTGTTG
    1651 GANAACAGCA TCACCATCGA AGAAAAATNG GCGGAGTTCA
    AAGTCAAGGT
    1701 CAAGGTTGTC GATTCTTATT CCGGCCCCGT GATTACGCGT
    TATGAAATCG
    1751 AACCCGATGT CGGCGTGCGC GGCAATTCCG TTCTAAATCT
    GGAAAAAGAN
    1801 TTGGCGCGTT CGCTCGGCGT GGCTTCCATC CGCGTTGTCG
    AAACCATCCT
    1851 CGGCAAAACC TGTATGGGTT TGGAACTTCC GAACCCGAAA
    CGCCAAATGA
    1901 TACGCCTGAG CGAAATCTTC AATTCGCCCG AGTTTGCCGA
    ATCCAAATCC
    1951 AAGCTGACGC TCGCGCTCGG TCAGGACATC ACCGGACAGC
    CCGTCGTAAC
    2001 CGACTTGGGC AAAGCACCGC ATTTGTTGGT TGCCGGCACG
    ACCGGTTCGG
    2051 GCAAATCGGT GGGTGTCAAC GCGATGATTC TGTCTATGCT
    TTTCAAAGCC
    2101 GCGCCGGAAG ACGTGCGTAT GATTATGATC GATCCGAAAA
    TGCTGGAATT
    2151 GAGCATTTAC GAAGGCATCC CGCACCTGCT CGCCCCTGTC
    GTTACCGATA
    2201 TGAAGCTGGC GGCAAACGCG CTGAACTGGT GTGTTAACGA
    AATGGAAAAA
    2251 CGCTACCGCC TGATGAGCTT TATGGGCGTG CGCAATCTTG
    CGGGTNTCAA
    2301 TCAAAAAATC GCCGAAGCCG CAGCAAGGGG GGAGAAAATC
    GGCAACCCGT
    2351 TCAGCCTCAC GCCCGACAAT CCCGAACCTT TGGANAAATT
    GCCGTTTATC
    2401 GTGGTCGTGG TTGATGAGTT TGCCGACCTG ATGATGACGG
    CAGGCAAGAA
    2451 AATCGAAGAA CTGATTGCCC GCCTCGCCCA AAAAGCCCGC
    GCGGCAGGCA
    2501 TCCATCTTAT CCTTGCCACA CAACGCCCCA GTGTCGATGT
    CATCACGGGT
    2551 CTGATTAAGG CGAACATCCC GACGCGTATC GCGTTCCAAG
    TGTCCAGCAA
    2601 AATCGACAGC CGCACGATTC TTGACCAAAT GGGTGCGGAA
    AACCTGCTCG
    2651 GGCAGGGCGA TATGCTGTTC CTGCCGCCGG GTACGGCCTA
    TCCGCAGCGC
    2701 GTTCACGGCG CGTTTGCCTC GGATGAAGAG GTGCACCGCG
    TGGTCGAATA
    2751 TCTGAAACAG TTTGGCGAAC CGGACTATGT TGACGATATN
    TTGAGCGGCG
    2801 GTATGTCCGA CGATTTGCTG GGAATCAGCC GGAGCGGCGA
    CGGCGAAACC
    2851 GATCCGATGT ACGACGAGGC CGTGTCNGTT GTTTTGAAAA
    CGCGCAAAGC
    2901 CAGCATTTCT GGCGTGCAGC GCGCATTGCG TATCGGCTAT
    AATCGCGCCG
    2951 CGCGTCTGAT TGACCAGATG GAGGCGGAAG GCATTGTGTC
    CGCACCGGAA
    3001 CACAACGGCA ACCGTACGAT TCTCGTCCCC TTNGACAATG
    CTTGA
  • This encodes a protein having amino acid sequence <SEQ ID 492>:
  • 1 MFWIVLIVIL LLALAGLFFV RAQSEREWMR EVSAWQEKKG
    EKQAELPEIK
    51 DGMPDFPELA LMLFHAVKTA VYWLFVGVV R FCRNYLAHES
    EPDRPVPPAS
    101 ANRADVPTAS DGYSDSGNGT EEAETEEAEA AEEEAADTED
    IATAVIDNRR
    151 IPFDRSIAEG LMPSESEISP VRPVFKEITL EEATRALNSA
    ALRETKKRYI
    201 DAFEKNETAV PKVRVSDTPM EGLQIIGLDD PVLQRTYSRM
    FDADKEAFSE
    251 SADYGFEPYF EKQHPSAFSA VKAENARNAP FRRHAGQGKG
    QAEAKSPDVS
    301 QGQSVSDGTA VRDAXRRVSV NLKEPNKATV SAEARISRLI
    PESRTVVGKR
    351 DVEMPSETEN VFTEXVSSVG YGXPVYDETA DIHIEEPAAP
    wDAWVVEPPEV
    401 PKVPMPAXDI PPPPPVSEIY NRTYEPPAGF EQVQRSRIAE
    TDHLADDVLN
    451 GGWQEETAAI ANDGSEGVAE RSSGQYLSET EAFGHDSQAV
    CPFENVPSER
    501 PSRRAXDTEA DEGAFQSEET GAVSEHLPTT DLLLPPLFNP
    GATQTEEXLL
    551 XNSITIEEKX AEFKVKVKVV DSYSGPVITR YEIEPDVGVR
    GNSVLNLEKX
    601 LARSLGVASI RVVETILGKT CMGLELPNPK RQMIRLSEIF
    NSPEFAESKS
    651 KLTLALGQDI TGQPVVTDLG KAPHLLVAGT TGSGKSVGVN
    AMILSMLFKA
    701 APEDVRMIMI DPKMLELSIY EGIPHLLAPV VTDMKLAANA
    LNWCVNEMEK
    751 RYRLMSFMGV RNLAGXNQKI AEAAARGEKI GNPFSLTPDN
    PEPLXKLPFI
    801 VVVVDEFADL MMTAGKKIEE LIARLAQKAR AAGIHLILAT
    QRPSVDVITG
    851 LIKANIPTRI AFQVSSKIDS RTILDQMGAE NLLGQGDMLF
    LPPGTAYPQR
    901 VHGAFASDEE VHRVVEYLKQ FGEPDYVDDX LSGGMSDDLL
    GISRSGDGET
    951 DPMYDEAVSV VLKTRKASIS GVQRALRIGY NRAARLIDQM
    EAEGIVSAPE
    1001 HNGNRTILVP XDNA*
  • ORF58a and ORF58-1 show 96.6% identity in 1014 aa overlap:
  • Figure US20130064846A1-20130314-C00216
    Figure US20130064846A1-20130314-C00217
  • Homology with a Predicted ORF from N. gonorrhoeae
  • ORF58 shows complete identity over a 9aa overlap with a predicted ORF (ORF58ng) from N. gonorrhoeae:
  • Figure US20130064846A1-20130314-C00218
  • The ORF58ng nucleotide sequence <SEQ ID 493> is predicted to encode a protein having partial amino acid sequence <SEQ ID 494>:
  • 1 ..SEPDRPVPPA SANRADVPTA SDGYSDSGNG TEEAETEAAE
    AAEEEAADTE
    51   DIATAVIDNR RIPFDRSIAE GLMQSESKTS PVRPVFKEIT
    LEEATRALSS
    101   AALRETKKRY IDAFEKNGTA VPKVRVSDTP MEGLQIIGLD
    DPVLQRTYSR
    151   MFDADKEAFS ESADYGFEPY FEKQHPSAFS AVKAENARNA
    PFRRHAGQEK
    201   GQAEAKSPDV SQGQSVSDGT AVRDARRRVS VNLKEPNKAT
    VSAEARISRL
    251   IPESRTVVGK RDVEMPSETE NVFTETVSSV GYGGPVYDEA
    ADIHIEEPAA
    301   PDAWVVEPPE VPEVAVPEID ILPPPPVSEI YNRTYEPPAG
    FEQAQRSRIA
    351   ETDHLAADVL NGGWQEETAA IADDGSEGAA ERSSGQYLSE
    TEAFGHDSQA
    401   VCPFEDVPSE RPSCRVSDTE ADEGAFQSEE TGAVSEHLPT
    TDLLLPPLFN
    451   PEATQTEEEL LENSITIEEK LAEFKVKVKV VDSYSGPVIT
    RYEIEPDVGV
    501   RGNSVLNLEK DLARSLGVAS IRVVETIPGK TCMGLELPNP
    KRQMIRLSEI
    551   FNSPEFAESK SKLTLALGQD ITGQPVVTDL GKAPHLLVAG
    TTGSGKSVGV
    601   NAMILSMLFK AAPEDVRMIM IDPKMLELSI YEGITHLLAP
    VVTDMKLAAN
    651   ALNWCVNEME KRYRLMSFMG VRNLAGFNQK IAEAAARGEK
    IGNPFSLTPD
    701   DPEPLEKLPF IVVVVDEFAD LMMTAGKKIE ELIARLAQKA
    RAAGIHLILA
    751   TQRPSVDVIT GLIKANIPTR IAFQVSSKID SRTILDQMGA
    ENLLGQGDML
    801   FLPPGTAYPQ RVHGAFASDE EVHRVVEYLK QFGEPDYVDD
    ILSGGGSEEL
    851   PGIGRSGDGE TDPMYDEAVS VVLKTRKASI SGVQRALRIG
    YNRAARLIDQ
    901   MEAEGIVSAP EHNGNRTILV PLDNA*
  • This partial gonococcal sequence contains a predicted transmembrane region and a predicted ATP/GTP-binding site motif A (P-loop; double underlined). Furthermore, it has a domain homologous to the FTSK cell division protein of E. coli. Alignment of ORF58ng and FtsK (accession number p46889) show a 65% amino acid identity in 459 overlap:
  • ORF58ng:  467 IEEKLAEFKVKVKVVDSYSGPVITRYEIEPDVGVRGNSVLNLEKDLARSLGVASIRVVET  526
                  +E +LA+F++K  VV+   GPVITR+E+    GV+   + NL +DLARSL    ++RVVE
    FtsK:     868 VEARLADFRIKADVVNYSPGPVITRFELNLAPGVKAARISNLSRDLARSLSTVAVRVVEV  927
    ORF58ng:  527 IPGKTCMGLELPNPKRQMIRLSEIFNSPEFAESKSKLTLALGQDITGQPVVTDLGKAPHL  586
                  IPGK  +GLELPN KRQ + L E+ ++ +F ++ S LT+ LG+DI G+PVV DL K  PHL
    FtSK:     928 IPGKPYVGLELPNKKRQTVYLREVLDNAKFRDNPSPLTVVLGKDIAGEPVVADLAKMPHL  987
    ORF58ng:  587 LVAGTTGSGKSVGVNAMILSMLFKAAPEDVRMIMIDPKMLELSIYEGITHLLAPVVTDMK  646
                  LVAGTTGSGKSVGVNAMILSML+KA PEDVR IMIDPKMLELS+YEGI HLL  VVTDMK
    FtsK:     988 LVAGTTGSGKSVGVNAMILSMLYKAQPEDVRFIMIDPKMLELSVYEGIPHLLTEVVTDMK 1047
    ORF58ng:  647 LAANALNWCVNEMEKRYRLMSFMGVANLAGFNQKIAEAAARGEKIGNPFSLTPDDPEP--  704
                   AANAL WCVNEME+RY+LMS +GVRNLAG+N+KIAEA      I +P+     D  +
    FtsK:    1048 DAANALRWCVNEMERRYKLMSALGVRNLAGYNEKIAEADRMMRPIPDPYWKPGDSMDAQH 1107
    ORF58ng:  705 --LEKLPFIVVVVDEFADLMMTAGKKIEELIARLAQKARAAGIHLILATQRPSVDVITGL  762
                    L+K P+IVV+VDEFADLMMT GKK+EELIARLAQKARAAGIHL+LATQRPSVDVITGL
    FtsK:    1108 PVLKKEPYIVVLVDEFADLMMTVGKKVEELIARLAQKARAAGIHLVLATQRPSVDVITGL 1167
    ORF58ng:  763 IKANIPTRIAFQVSSKIDSRTILDQMGAENLLGQGDMLFLPPGTAYPQRVHGAFASDEEV  822
                  IKANIPTRIAF VSSKIDSRTILDQ GAE+LLG GDML+  P +  P RVHGAF  D+EV
    FtsK:    1168 IKANIPTRIAFTVSSKIDSRTILDQAGAESLLGMGDMLYSGPNSTLPVRVHGAFVRDQEV 1227
    ORF58ng:  823 HRVVEYLKQFGEPDYVDDILSGGGSEELPGIGRSGDGETDPMYDEAVSVVLKTRKASISG   882
                  H VV+  K  G P YVD I S   SE   G G  G  E DP++D+AV  V + RKASISG
    FtsK:    1228 HAVVQDWKARGRPQYVDGITSDSESEGGAG-GFDGAEELDPLFDQAVQFVTEKRKASISG  1286
    ORF58ng:  883 VQRALRIGYNRAARLIDQMEAEGIVSAPEHNGNRTILVP                       921
                  VQR  RIGYNRAAR+I+QMEA+GIVS   HNGNR +L P
    FtsK:    1287 VQRQFRIGYNRAARIIEQMEAQGIVSEQGHNGNREVLAP                      1325
  • Further work on ORF58ng revealed the complete gonococcal DNA sequence to be <SEQ ID 495>:
  • 1 ATGTTTTGGA TAGTTTTGAT CGTTATtgtg TTGCTTGCGC
    TTGCCGGCCT
    51 GTTTTTTGTC CGCGCACAAT CCGAACGCGA GTGGATGCGC
    GAGGTTTCTG
    101 CGTGGCAGGA AAAGAAAGGG GAAAAACAGG CGGAGCTGCC
    TGAAATCAAA
    151 GACGGTATGC CCGATTTTCC CGAGTTTTCC CTGATGCTTT
    TCCATGCCGT
    201 CAAAACGGCA GTGTATTGGC TGTTTGTCGG TGTCGTCCGT
    TTCTGCCGAA
    251 ACTATCTGGC GCACGAATCC GAACCGGACA GGCCCGTTCC
    GCCTGCTTCT
    301 GCAAACCGTG CGGATGTTCC GACCGCATCC GACGGGTATT
    CAGACAGTGG
    351 AAACGGGACG GAAGAAGCGG AAACGGAAGC AGCAGAAGCT
    GCGGAGGAAG
    401 AGGCTGCCgA TACgGAAGAC ATTGCAACTG CCGTAATCGA
    CAACCGCCGC
    451 ATCCcatTCG ACCGGAGTAT TGCTGAAGGG TTGATGCAGT
    CTGAAAGCAA
    501 AACTTCGCCC GTCCGTCCGG TTTTTAAGGA AATCACTTTG
    GAAGAAGCAA
    551 CGCGTGCTTT AAGCAGCGCG GCTTTAAGGG AAACGAAAAA
    ACGCTATATC
    601 GATGCATTTG AGAAAAACGG AACAGCCGTC CCCAAAGTAC
    GCGTGTCCGA
    651 TACCCCGATG GAAGGGCTGC AGATTATCGG TTTGGACGAC
    CCTGTGCTTC
    701 AACGCACGTA TTCCCGTATG TTTGATGCGG ACAAAGAAGC
    GTTTTCCGAG
    751 TCTGCGGATT ACGGATTTGA GCCGTATTTT GAGAAGCAGC
    ATCCGTCTGC
    801 CTTTTCTGCA GTCAAAGCCG AAAATGCACG GAATGCGCCG
    TTCCGCCGTC
    851 ATGCAGGGCA GGAGAAAGGG CAGGCGGAGG CAAAATCCCC
    GGATGTTTCC
    901 CAAGGGCAGT CCGTTTCAGA CGGCACAGCC GTCCGCGATG
    CCCGCCGCCG
    951 CGTTTCCGTC AATTTGAAAG AACCGAACAA GGCAACGGTT
    TCTGCGGAGG
    1001 CGCGGATTTC GCGCCTGATT CCGGAAAGTC GGACGGTTGT
    CGGGAAACGG
    1051 GATGTCGAAA TGCCGTCTGA AACCGAAAAT GTTTTCACGG
    AAACCGTTTC
    1101 GTCTGTGGGA TACGGCGGTC CGGTTTATGA TGAAGCTGCC
    GATATCCATA
    1151 TTGAAGAGCC TGCCGCGCCC GATGCTTGGG TGGTCGAACC
    ACCCGAAGTG
    1201 CCGGAGGTAG CCGTACCCGA AATCGATATT CTGCCGCCGC
    CTCCCGTATC
    1251 GGAAATCTAC AACCGTACCT ATGAGCCGCC GGCAGGATTC
    GAGCAGGCGC
    1301 AACGCAGCCG CATTGCCGAA ACCGACCATC TTGCCGCTGA
    TGTTTTGAAT
    1351 GGAGGTTGGC AGGAGGAAAC CGCCGCTATT GCAGATGACG
    GCAGTGAGGG
    1401 TGCGGCAGAG CGGTCAAGCG GGCAATATCT GTCGGAAACC
    GAAGCGTTCG
    1451 GGCATGACAG TCAGGCGGTT TGTCCGTTTG AAGATGTGCC
    GTCTGAACGC
    1501 CCGTCCTGCC GGGTATCGGA TACGGAAGCG GATGAAGGGG
    CGTTCCAATC
    1551 GGAAGAGACC GGTGCGGTAT CCGAACACCT GCCGACAACC
    GACCTGCTTC
    1601 TGCCTCCGCT GTTCAATCCC GAGGCGACGC AAACCGAAGA
    AGAACTGTTG
    1651 GAAAACAGCA TCACCATCGA AGAAAAATTG GCGGAGTTCA
    AAGTCAAGGT
    1701 CAAGGTTGTC GATTCTTATT CCGGCCCCGT GATTACGCGT
    TATGAAATCG
    1751 AACCCGATGT CGGCGTGCGC GGCAATTCCG TTCTGAATTT
    GGAAAAAGAC
    1801 TTGGCGCGTT CGCTCGGCGT GGCTTCCATC CGCGTTGTCG
    AAACCATCCC
    1851 CGGCAAAACC TGCATGGGTT TGGAACTTCC GAACCCGAAA
    CGCCAAATGA
    1901 TACGCCTGAG CGAAATTTTC AATTCGCCCG AGTTTGCCGA
    ATCCAAATCC
    1951 AAGCTGACGC TCGCGCTCGG TCAGGACATT ACCGGACAGC
    CCGTCGTAAC
    2001 CGACTTGGGC AAAGCACCGC ATTTGCTGGT TGCCGGCACG
    ACCGGTTCGG
    2051 GCAAATCGGT GGGTGTCAAC GCGATGATTC TGTCTATGCT
    TTTCAAAGCC
    2101 GCGCCGGAAG ACGTGCGTAT GATTATGATC GATCCGAAAA
    TGCTGGAATT
    2151 GAGCATTTAC GAAGGCATCA CGCACCTGCT CGCCCCTGTC
    GTTACCGATA
    2201 TGAAGCTGGC GGCAAACGCG CTGAACTGGT GTGTTAACGA
    AATGGAAAAA
    2251 CGCTACCGCC TGATGAGCTT TATGGGCGTG CGCAATCTTG
    CGGGCTTCAA
    2301 CCAAAAAATC GCCGAAGCCG CAGCAAGGGG AGAAAAAATC
    GGCAATCCGT
    2351 TCAGCCTCAC GCCCGACGAT CCCGAACCTT TGGAAAAACT
    GCCGTTTATC
    2401 GTGGTCGTGG TCGATGAGTT TGCCGATTTG ATGATGACGG
    CAGGCAAGAA
    2451 AATCGAAGAA CTGATTGCGC GCCTCGCCCA AAAAGCCCGC
    GCGGCAGGCA
    2501 TCCACCTTAT CCTTGCCACA CAACGCCCCA GCGTCGATGT
    CATCACGGGT
    2551 CTGATTAAGG CGAACATCCC GACGCGTATC GCGTTCCAAG
    TGTCCAGCAA
    2601 AATCGACAGC CGCACGATTC TCGACCAAAT GGGCGCGGAA
    AACCTGCTCG
    2651 GTCAGGGCGA TATGCTGTTC CTGCCGCCGG GTACTGCCTA
    TCCGCAGCGC
    2701 GTTCACGGCG CGTTTGCCTC GGATGAAGAG GTGCACCGCG
    TGGTCGAATA
    2751 TCTGAAGCAG TTTGGCGAGC CGGACTATGT TGACGATATT
    TTGAGCGGCG
    2801 GCGGCAGCGA AGAGCTGCCC GGCATCGGGC GCAGCGGCGA
    CGGCGAAACC
    2851 GATCCGATGT ACGACGAGGC CGTATCCGTT GTCCTGAAAA
    CGCGCAAAGC
    2901 CAGCATTTCG GGCGTACAGC GCGCCTTGCG CATCGGCTAC
    AACCGCGCCG
    2951 CGCGTCTGAT TGACCAAATG GAAGCGGAAG GCATTGTGTC
    CGCACCGGAA
    3001 CACAACGGCA ACCGTACGAT TCTCGTCCCC TTGGACAATG
    CTTGA
  • This corresponds to the amino acid sequence <SEQ ID 496; ORF58ng-1>:
  • 1 MFWIVLIVIV LLALAGLFFV RAQSEREWMR EVSAWQEKKG
    EKQAELPEIK
    51 DGMPDFPEFS LMLFHAVKTA VYWLFVGVV R FCRNYLAHES
    EPDRPVPPAS
    101 ANRADVPTAS DGYSDSGNGT EEAETEAAEA AEEEAADTED
    IATAVIDNRR
    151 IPFDRSIAEG LMQSESKTSP VRPVFKEITL EEATRALSSA
    ALRETKKRYI
    201 DAFEKNGTAV PKVRVSDTPM EGLQIIGLDD PVLQRTYSRM
    FDADKEAFSE
    251 SADYGFEPYF EKQHPSAFSA VKAENARNAP FRRHAGQEKG
    QAEAKSPDVS
    301 QGQSVSDGTA VRDARRRVSV NLKEPNKATV SAEARISRLI
    PESRTVVGKR
    351 DVEMPSETEN VFTETVSSVG YGGPVYDEAA DIHIEEPAAP
    DAWVVEPPEV
    401 PEVAVPEIDI LPPPPVSEIY NRTYEPPAGF EQAQRSRIAE
    TDHLAADVLN
    451 GGWQEETAAI ADDGSEGAAE RSSGQYLSET EAFGHDSQAV
    CPFEDVPSER
    501 PSCRVSDTEA DEGAFQSEET GAVSEHLPTT DLLLPPLFNP
    EATQTEEELL
    551 ENSITIEEKL AEFKVKVKVV DSYSGPVITR YEIEPDVGVR
    GNSVLNLEKD
    601 LARSLGVASI RVVETIPGKT CMGLELPNPK RQMIRLSEIF
    NSPEFAESKS
    651 KLTLALGQDI TGQPVVTDLG KAPHLLVAGT TGSGKSVGVN
    AMILSMLFKA
    701 APEDVRMIMI DPKMLELSIY EGITHLLAPV VTDMKLAANA
    LNWCVNEMEK
    751 RYRLMSFMGV RNLAGFNQKI AEAAARGEKI GNPFSLTPDD
    PEPLEKLPFI
    801 VVVVDEFADL MMTAGKKIEE LIARLAQKAR AAGIHLILAT
    QRPSVDVITG
    851 LIKANIPTRI AFQVSSKIDS RTILDQMGAE NLLGQGDMLF
    LPPGTAYPQR
    901 VHGAFASDEE VHRVVEYLKQ FGEPDYVDDI LSGGGSEELP
    GIGRSGDGET
    951 DPMYDEAVSV VLKTRKASIS GVQRALRIGY NRAARLIDQM
    EAEGIVSAPE
    1001 HNGNRTILVP LDNA*
  • ORF58ng-1 and ORF58-1 show 97.2% identity in 1014 aa overlap:
  • Figure US20130064846A1-20130314-C00219
    Figure US20130064846A1-20130314-C00220
  • Furthermore, ORF58ng-1 shows significant homology to the E. coli protein FtsK:
  • sp|P46889|FTSK_ECOLI CELL DIVISION PROTEIN FTSK >gi|1651412|gnl|PID|d1015290
    (Dl division protein FtsK [Escherichia coli] >gi|1651418|gnl|PID|d1015296
    (D90727) Cell division protein FtsK [Escherichia coli] >gi|1787117 (AE000191)
    cell division protein FtsK [Escherichia coli] Length = 1329
    Score = 576 bits (1469), Expect = e−163
    Identities = 301/459 (65%), Positives = 353/459 (76%), Gaps = 5/459 (1%)
    Query: 556 IEEKLAEFKVKVKVVDSYSGPVITRYEIEPDVGVRGNSVLNLEKDLARSLGVASIRVVET 615
    +E +LA+F++K  VV+   GPVITR+E+    GV+   + NL +DLARSL   ++RVVE
    Sbjct: 868 VEARLADFRIKADVVNYSPGPVITRFELNLAPGVKAARISNLSRDLARSLSTVAVRVVEV 927
    Query: 616 IPGKTCMGLELPNPKRQMIRLSEIFNSPEFAESKSKLTLALGQDITGQPVVTDLGKAPHL 675
    IPGK  +GLELPN KRQ + L E+ ++ +F ++ S LT+ LG+DI G+PVV DL K PHL
    Sbjct: 928 IPGKPYVGLELPNKKRQTVYLREVLDNAKFRDNPSPLTVVLGKDIAGEPVVADLAKMPHL 987
    Query: 676 LVAGTTGSGKSVGVNAMILSMLFKAAPEDVRMIMIDPKMLELSIYEGITHLLAPVVTDMK 735
    LVAGTTGSGKSVGVNAMILSML+KA  PEDVR IMIDPKMLELS+YEGI HLL  VVTDMK
    Sbjct: 988 LVAGTTGSGKSVGVNAMILSMLYKAQPEDVRFIMIDPKMLELSVYEGIPHLLTEVVTDMK 1047
    Query: 736 LAANALNWCVNEMEKRYRLMSFMGVRNLAGFNQKIAEAAARGEKIGNPFSLTPDDPEP-- 793
     AANAL WCVNEME+RY+LMS +GVRNLAG+N+KIAEA      I +P+    D  +
    Sbjct: 1048 DAANALRWCVNEMERRYKLMSALGVRNLAGYNEKIAEADRMMRPIPDPYWKPGDSMDAQH 1107
    Query: 794 --LEKLPFIVVVVDEFADLMMTAGKKIEELIARLAQKARAAGIHLILATQRPSVDVITGL 851
      L+K P+IVV+VDEFADLMMT GKK+EELIARLAQKARAAGIHL+LATQRPSVDVITGL
    Sbjct: 1108 PVLKKEPYIVVLVDEFADLMMTVGKKVEELIARLAQKARAAGIHLVLATQRPSVDVITGL 1167
    Query: 852 IKANIPTRIAFQVSSKIDSRTILDQMGAENLLGQGDMLFLPPGTAYPQRVHGAFASDEEV 911
    IKANIPTRIAF VSSKIDSRTILDQ GAE+LLG GDML+  P +  P RVHGAF  D+EV
    Sbjct: 1168 IKANIPTRIAFTVSSKIDSRTILDQAGAESLLGMGDMLYSGPNSTLPVRVHGAFVRDQEV 1227
    Query: 912 HRVVEYLKQFGEPDYVDDILSGGGSEELPGIGRSGDGETDPMYDEAVSVVLKTRKASISG 971
    H VV+  K  G P YVD I S   SE   G G  G  E DP++D+AV  V + RKASISG
    Sbjct: 1228 HAVVQDWKARGRPQYVDGITSDSESEGGAG-GFDGAEELDPLFDQAVQFVTEKRKASISG 1286
    Query: 972 VQRALRIGYNRAARLIDQMEAEGIVSAPEHNGNRTILVP 1010
    VQR  RIGYNRAAR+I+QMEA+GIVS   HNGNR +L P
    Sbjct: 1287 VQRQFRIGYNRAARIIEQMEAQGIVSEQGHNGNREVLAP 1325
  • Based on this analysis, it is predicted that the proteins from N. meningitidis and N. gonorrhoeae, and their epitopes, could be useful antigens for vaccines or diagnostics, or for raising antibodies.
  • Example 59
  • The following partial DNA sequence was identified in N. meningitidis <SEQ ID 497>:
  • Figure US20130064846A1-20130314-C00221
  • This corresponds to the amino acid sequence <SEQ ID 498; ORF101>:
  • Figure US20130064846A1-20130314-C00222
  • Further work revealed the complete nucleotide sequence <SEQ ID 499>:
  • 1 ATGATTTATC AAAGAAACCT CATCAAAGAA CTCTCTTTTA
    CCGCCGTCGG
    51 CATTTTCGTC GTCCTCTTGG CGGTATTGGT CTCCACGCAG
    GCAATCAACC
    101 TGCTCGGCCG TGCCGCCGAC GGGCGTGTCG CCATCGATGC
    CGTGTTGGCA
    151 TTGGTCGGCT TCTGGGTCAT CGGTATGACG CCGCTTTTGC
    TGGTGTTGAC
    201 CGCATTTATC AGTACGTTGA CCGTGTTGAC CCGCTACTGG
    CGCGACAGCG
    251 AAATGTCGGT CTGGCTATCC TGCGGATTGG CATTGAAACA
    ATGGATACGC
    301 CCGGTGATGC AGTTTGCCGT GCCGTTTGCC GTTTTGGTTG
    CCGTCATGCA
    351 GCTTTGGGTG ATACCGTGGG CAGAGCTACG CAGCCGCGAA
    TACGCTGAAA
    401 TCCTGAAGCA GAAGCAGGAA TTGTCTTTGG TGGAGGCAGG
    CGAGTTCAAC
    451 AGTTTGGGCA AGCGCAACGG CAGGGTTTAT TTTGTCGAAA
    CCTTCGATAC
    501 CGAATCCGGC ATCATGAAAA ACCTGTTCCT GCGCGAACAG
    GACAAAAACG
    551 GCGGCGACAA CATCATCTTC GCCAAAGAAG GTAACTTCTC
    GCTGAACGAC
    601 AACAAACGCA CGCTCGAATT GCGCCACGGC TACCGTTACA
    GCGGCACGCC
    651 CGGACGCGCC GACTACAATC AGGTTTCCTT CCAAAAACTC
    AACCTGATTA
    701 TCAGCACCAC GCCCAAACTC ATCGACCCCG TTTCCCACCG
    CCGTACCATT
    751 CCGACCGCCC AACTGATTGG CAGCAGCAAC CCGCAACATC
    AGGCGGAATT
    801 GATGTGGCGC ATCTCGCTGA CCGTCAGCGT CCTCCTACTC
    TGCCTGCTTG
    851 CCGTGCCGCT TTCCTATTTC AACCCGCGCA GCGGACATAC
    CTACAATATC
    901 TTGATTGCCA TCGGTTTGTT TTTAATTTAC CAAAACGGGC
    TGACCCTGCT
    951 TTTTGAAGCC GTGGAAGACG GCAAAATCCA TTTTTGGCTC
    GGACTGCTGC
    1001 CTATGCACAT TATCATGTTT GCCGTTGCAC TCATCCTGTT
    GCGCGTCCGC
    1051 AGTATGCCCA GCCAGCCCTT CTGGCAGGCG GTTGGCAAAA
    GTCTGACATT
    1101 GAAAGGCGGA AAATGA
  • This corresponds to the amino acid sequence <SEQ ID 500; ORF101-1>:
  • 1 MIYQRNLIKE LSFTAVGIFV VLLAVLVSTQ AINLLGRAAD
    GRVAIDAVLA
    51 LVGFWVIGMT PLLLVLTAFI STLTVLTRYW RDSEMSVWLS
    CGLALKQWIR
    101 PVMQFAVPFA VLVAVMQLWV IPWAELRSRE YAEILKQKQE
    LSLVEAGEFN
    151 SLGKRNGRVY FVETFDTESG IMKNLFLREQ DKNGGDNIIF
    AKEGNFSLND
    201 NKRTLELRHG YRYSGTPGRA DYNQVSFQKL NLIISTTPKL
    IDPVSHRRTI
    251 PTAQLIGSSN PQHQAELMWR ISLTVSVLLL CLLAVPLSYF
    NPRSGHTYNI
    301 LIAIGLFLIY QNGLTLLFEA VEDGKIHFWL GLLPMHIIMF
    AVALILLRVR
    351 SMPSQPFWQA VGKSLTLKGG K*
  • Computer analysis of this amino acid sequence gave the following results:
  • Homology with a Predicted ORF from N. meningitidis (Strain A)
  • ORF101 shows 91.2% identity over a 57aa overlap and 95.7% identity over a 69aa overlap with an ORF (ORF101a) from strain A of N. meningitidis:
  • Figure US20130064846A1-20130314-C00223
  • The complete length ORF101a nucleotide sequence <SEQ ID 501> is:
  • 1 ATGATTTATC AAAGAAACCT CATCAAAGAA CTCTCTTTTA
    CCGCCGTCGG
    51 CATTTTCGTC GTCCTCTTGG CGGTATTGGT CTCCACGCAG
    GCAATCAACC
    101 TGCTCGGCCN TGCCGCCGAC NGGCGTNTCG CCATCGATGC
    CGTGTTGGCA
    151 TTGGTCGGCT TCTGGGTCNN NNGNATGACG CCGCTTTTGC
    TNGTGTTGAC
    201 CGCATTTATC AGTACGTTGA CCGTGTTGAC CCGCTACTGG
    CGNGACAGCG
    251 AAATGTCGGT CTGGNTATCC TGCGGATTGG CATTGAAACA
    ATGGATACGC
    301 CCGGTGATGC AGTTTGCCGT GCCGTTTGCC GTTTTGGTTG
    CCGTCATGCA
    351 GCTTTGGGTG ATACCGTGGG CAGAGCTACG CAGCCGCGAA
    TACGCTGAAA
    401 TCCTGAAGCA GAAGCAGGAA TTGTCTTTGG TGGAGGCAGG
    CGGGTTCAAC
    451 AGTTTGGGCA AGCGCAACGG CAGGGTTTAT TTTGTCGAAA
    CCTTCGATAC
    501 CGAATCCGGC ATCATGAAAA ACCTGTTCCT GCGCGAACAG
    GACAAAAACG
    551 GCGGCGACAA CATCATCTTC NCCAAAGAAA GTAACTTCTC
    GCTGAACGAC
    601 AACAAACGCA CGCTCGAATT GCGCCACGGC TACCGTTACA
    GCGGCACGCC
    651 CGGACGCGCC GACTACAATC AGGTTTCCTT CCNAAAACTC
    AACCTGATTA
    701 TCAGCACCAC GCCCAAACTC ATCGACCCCG TTTCCCACCG
    CCGTACNATN
    751 CCNACNGCCC AACTGATTGG CAGCAGCAAC CCGCAACATC
    ANGCGGAATT
    801 GATGTGGCGC ATCTCGCTGA CCGTCAGCGT CCTCCTACTC
    TGCCTGCTTG
    851 CCGTGCCGCT TTCCTATTTC AACCCGCGCA GCGGACATAC
    CTACAATATC
    901 TTGANTGCCA TCGGTTTGTT TTTAATTTAC CAAAACGGGC
    TGACCCTGCT
    951 TTTTGAAGCC GTGGAAGACG GCAAAATCCA TTTTTGGCTC
    GGACTGCTGC
    1001 CTATGCACAT CATCATGTTC GTCATCGCAA TCGTACTTCT
    GCGCGTCCGC
    1051 AGCATGCCCA GCCAGCCCTT CTGGCAGGCG GTTGGCAAAA
    GTCTGACATT
    1101 GAAAGGCGGA AAATGA
  • This encodes a protein having amino acid sequence <SEQ ID 502>:
  • 1 MIYQRNLIKE LSFTAVGIFV VLLAVLVSTQ AINLLGXAAD
    XRXAIDAVLA
    51 LVGFWVXXMT PLLLVLTAFI STLTVLTRYW RDSEMSVWXS
    CGLALKQWIR
    101 PVMQFAVPFA VLVAVMQLWV IPWAELRSRE YAEILKQKQE
    LSLVEAGGFN
    151 SLGKRNGRVY FVETFDTESG IMKNLFLREQ DKNGGDNIIF
    XKESNFSLND
    201 NKRTLELRHG YRYSGTPGRA DYNQVSFXKL NLIISTTPKL
    IDPVSHRRTX
    251 PTAQLIGSSN PQHXAELMWR ISLTVSVLLL CLLAVPLSYF
    NPRSGHTYNI
    301 LXAIGLFLIY QNGLTLLFEA VEDGKIHFWL GLLPMHIIMF
    VIAIVLLRVR
    351 SMPSQPFWQA VGKSLTLKGG K*
  • ORF101a and ORF101-1 show 95.4% identity in 371 aa overlap:
  • Figure US20130064846A1-20130314-C00224
  • Homology with a Predicted ORF from N. gonorrhoeae
  • ORF101 shows 96.5% identity in 57aa overlap at the N-terminal domain and 95.1% identity in 61 as overlap at the C-terminal domain, respectively, with a predicted ORF (ORF101ng) from N. gonorrhoeae:
  • Figure US20130064846A1-20130314-C00225
  • The ORF101ng nucleotide sequence <SEQ ID 503> is predicted to encode a protein having partial amino acid sequence <SEQ ID 504>:
  • 1 MIYQRNLIKE LSFTAVGIFV VLLAVLVSTQ AINLLGRAAD
    GRVAIDAVLA
    51 LVGFWVIGMT PLLLVLTAFI STLTVLTRYW RDSEMSVWLS
    CGLALKQWIR
    101 PVMQFAVPFA ILIAVMQLWV IPWAELRSRE YAEILKQKQE
    LSLVEAGEFN
    151 NLGKRNGRVY FVETFDTESG IMKNLFLREQ DKNGGDNIIF
    AKEGNFSLKD
    201 NKRTLELRHG YRYSGTPGRA DYNQVSFQKL NLIISTTPKL
    IDPVSHRRTI
    251 STAQLIGSSN PQHQAELMWR ISLTVSVLLL CLLAVPLSYF
    NPRSGHTYNI
    301 LIAIGLFLIY QNGLTLLFEA VEDGKIHFWL GLLPMHIIMF
    VIAIVLLRVR
    351 SMPSQPFWQA VG...
  • Further work revealed the complete nucleotide sequence <SEQ ID 505>:
  • 1 ATGATTTATC AAAGAAACCT CATCAAAGAA CTCTCTTTTA
    CCGCCGTCGG
    51 CATTTTCGTC GTCCTCTTGG CGGTGTTGGT GTCCACGCAG
    GCGATCAACC
    101 TGCTTGGCCG CGCAGCTGAC GGGCGTGTCG CCATCGATGC
    CGTGTTGGCC
    151 TTAGTCGGCT TCTGGGTCAT CGGTATGACC CCGCTTTTGC
    TGGTGTTGAC
    201 CGCATTCATC AGCACGCTGA CCGTATTGAC CCGCTACTGG
    CGCGACAGCG
    251 AAATGTCGGT CTGGCTATCC TGCGGATTGG CGTTGAAACA
    GTGGATACGC
    301 CCCGTCATGC AGTTTGCCGT GCCGTTTGCC ATCCTGATTG
    CCGTCATGCA
    351 GCTTTGGGTG ATACCGTGGG CAGAGCTGCG CAGCCGCGAA
    TATGCCGAAA
    401 TTTTGAAGCA GAAGCAGGAA TTGTCTTTGG TGGAAGCCGG
    CGAGTTCAAT
    451 AACTTGGGCA AGCGCAACGG CAgggtttaT TtcgtcgaaA
    CCTTTGACAC
    501 CGaatccgGC ATCATGAAAA ACCTGTtcct GcGCGAACAG
    GACAAAAACG
    551 gcggcgacaA CATCATCTTC GCcaaaGAag gtaactTctc
    gctgaaggaC
    601 AACAAAcgca cgctcgaATT GCGCCACGGC TACCGTTACA
    GCGGcacgcC
    651 CGGacGCGCc gactaCAATC AGGTTtcctt cCAAAAacTc
    aacctgATta
    701 TCAGCACCAC GCCCAAacTT ATCGaccCCG TTTCCCACCG
    CCGCACCATT
    751 tcgacCGCCC AAcTGATTGG CAGCAGCAAT CCGCAACATC
    AGGCAGAATT
    801 GATGTGGCGC ATCTCGCTGA CCGTCAGCGT CCTCCTGCTC
    TGCCTACTCG
    851 CCGTGCCGCT TTCCTATTTC AACCCGCGCA GCGGACATAC
    CTACAATATC
    901 TTGATTGCCA TCGGTTTGTT TTTAATTTAC CAAAACGGGC
    TGACCCTGCT
    951 TTTTGAAGCC GTGGAAGACG GCAAAATCCA TTTTTGGCTC
    GGACTGCTGC
    1001 CTATGCACAT CATCATGTTC GTCATCGCAA TCGTACTTCT
    GCGCGTCCGC
    1051 AGTATGCCCA GCCAGCCCTT CTGGCAGGCG GTTGGCAAAA
    GTCTGACATT
    1101 GAAAGgcgGA AAATGA
  • This corresponds to the amino acid sequence <SEQ ID 506; ORF101ng-1>:
  • 1 MIYQRNLIKE LSFTAVGIFV VLLAVLVSTQ AINLLGRAAD
    GRVAIDAVLA
    51 LVGFWVIGMT PLLLVLTAFI STLTVLTRYW RDSEMSVWLS
    CGLALKQWIR
    101 PVMQFAVPFA ILIAVMQLWV IPWAELRSRE YAEILKQKQE
    LSLVEAGEFN
    151 NLGKRNGRVY FVETFDTESG IMKNLFLREQ DKNGGDNIIF
    AKEGNFSLKD
    201 NKRTLELRHG YRYSGTPGRA DYNQVSFQKL NLIISTTPKL
    IDPVSHRRTI
    251 STAQLIGSSN PQHQAELMWR ISLTVSVLLL CLLAVPLSYF
    NPRSGHTYNI
    301 LIAIGLFLIY QNGLTLLFEA VEDGKIHFWL GLLPMHIIMF
    VIAIVLLRVR
    351 SMPSQPFWQA VGKSLTLKGG K*
  • ORF101ng-1 and ORF101-1 show 97.6% identity in 371 aa overlap:
  • Figure US20130064846A1-20130314-C00226
  • Based on this analysis, including the presence of a putative leader sequence (double-underlined) and several putative transmembrane domains (single-underlined) in the gonococcal protein, it is predicted that the proteins from N. meningitidis and N. gonorrhoeae, and their epitopes, could be useful antigens for vaccines or diagnostics, or for raising antibodies.
  • Example 60
  • The following partial DNA sequence was identified in N. meningitidis <SEQ ID 507>:
  • 1 ..GGTGGTGGTT TTATCAATGC TTCCTGTGCC ACTTTGACGA
    CAGCCAAACC
    51   GCAATATCAA GCAGGAGACC TTAGCGCTTT TAAGATAAGG
    CAAGGCAATG
    101   TTGTAATCGC CGGACACGGT TTGGATGCAC GTGATACCGA
    TTACACACGT
    151   ATTCTCAGTT ATCATTCCAA AATCGATGCA CCCGTATGGG
    GACAAGATGT
    201   TCGTGTCGTC GCGGGACAAA ACGATGTGGC CGCAACAGGT
    GATGCACATT
    251   CGCCTATTCT CAATAATGCT GCTGCCAATA CGTCAAACAA
    TACAGCCAAC
    301   AACGGCACAC ATATCCCTTT ATTTGCGATT GATACAGGCA
    AATTAGGAGG
    351   TAT.GTATGC CAACAAAATC ACCTTGATCA GTACGGTCGA
    GCAAGCAGGC
    401   ATTCGTAA
  • This corresponds to the amino acid sequence <SEQ ID 508; ORF113>:
  • 1 ..GGGFINASCA TLTTAKPQYQ AGDLSAFKIR QGNVVIAGHG
    LDARDTDYTR
    51   ILSYHSKIDA PVWGQDVRVV AGQNDVAATG DAHSPILNNA
    AANTSNNTAN
    101   NGTHIPLFAI DTGKLGGXVC QQNHLDQYGR ASRHS*
  • Computer analysis of this amino acid sequence gave the following results:
  • Homology with pspA Putative Secreted Protein of N. meningitidis (Accession AF030941)
  • ORF and pspA show 44% aa identity in 179aa overlap:
  • orf113 GGGFINASCATLTTAKPQYQAGDLSAFKIRQGNVVIAGHGLDARDTDYTRILSYHSKIDA 60
    GGG INA+  TLT+  P    G+L+ F +  G VVI G GLD  D DYTRILS  ++I+A
    pspa GGGLINAASVTLTSGVPVLNNGNLTGFDVSSGKVVIGGKGLDTSDADYTRILSRAAEINA 256
    orf113 PVWGQDVRVVAGQNDVAATGDAHSPILXXXXXXXXXXXXXXGTHIPLFAIDTGKLGGMYA 120
     VWG+DV+VV+G+N +   G                      +  P  AIDT  LGGMYA
    pspa GVWGKDVKVVSGKNKLDFDG---------SLAKTASAPSSSDSVTPTVAIDTATLGGMYA 307
    orf113 NKITLISTVEQAGIRNQGQWFASAGNVAVNAEGKLVNTGMIAATGENHAVSLHARNVHN 179
    +KITLIST   A IRN+G+ FA+ G V ++A+GKL N+G I A      +++ A+ V N
    pspa DKITLISTDNGAVIRNKGRIFAATGGVTLSADGKLSNSGSIDAA----EITISAQTVDN 362

    Homology with a Predicted ORF from N. gonorrhoeae
  • ORF113 shows 86.5% identity in 52aa overlap at the N-terminal part and 94.1% identity in 17aa overlap at the C-terminal part with a predicted ORF (ORF113ng) from N. gonorrhoeae:
  • Figure US20130064846A1-20130314-C00227
  • The complete length ORF113ng nucleotide sequence <SEQ ID 509> is predicted to encode a protein having amino acid sequence <SEQ ID 510>:
  • 1 MNKTLYRVIF NRKRGAVVAV AETTKREGKS CADSGSGSVY
    VKSVSFIPTH
    51 SKAFCFSALG FSLCLALGTV NIAFADGIIT DKAAPKTQQA
    TILQTGNGIP
    101 QVNIQTPTSA GVSVNQYAQF DVGNRGAILN NSRSNTQTQL
    GGWIQGNPWL
    151 TRGEARVVVN QINSSHPSQL NGYIEVGGRR AEVVIANPAG
    IAVNGGGFIN
    201 ASRATLTTGQ PQYQAGDFSG FKIRQGNAVI AGHGLDARDT
    DFTRILVCQQ
    251 NHLDQYGRTS RHS*
  • Based on this analysis, it is predicted that these proteins from N. meningitidis and N. gonorrhoeae, and their epitopes, could be useful antigens for vaccines or diagnostics, or for raising antibodies.
  • Example 61
  • The following partial DNA sequence was identified in N. meningitidis <SEQ ID 511>:
  • 1 ..TCAACGGGAC ATAGCGAACA AAATTACACT TTGCCGCGAG
    AAATCACACG
    51   CAACATTTCA CTGGGTTCAT TTGCCTATGA ATCGCATCGC
    AAAGCATTAA
    101   GCCATCATGC GCCCAGCCAA GGCACTGAGT TGCCGCAAAG
    CAACGGTATT
    151   TCGCTACCCT ATACGTCCAA TTCTTTTACC CCATTACCCA
    GCAGCAGCTT
    201   ATACATTATC AATCCTGTCA ATAAAGGCTA TCTTGTTGAA
    ACCGATCCAC
    251   GCTTTGCCAA CTACCGTCAA TGGTTGGGTA GTGACTATAT
    GCtGGACAGC
    301   CTCAAACTAG ACCCAAACAA TTTACATAAA CGTTTGGGTG
    ATGGTTATTA
    351   CGAGCAACGT TTAATCAATG AACAAATCGC AGAGCTGACA
    GGGCATCGTC
    401   GTTTAGAcGG TTATCAAAAC GACGAAGAAC AATTTAAAGC
    CTTAATGGAT
    451   AATGGCGCGA CTGCGGCACG TTcGATGAAT CTCAGCGTTG
    GCATTGCATT
    501   AAGTGCCGAG CAAGTAGCGC AACTGACCAG CGATATTGTT
    TGGTTGGTAC
    551   AAAAAGAAGT TAAGCTTCCT GATGGCGGCA CACAAACCGT
    ATTGGTGCCA
    601   CAGGTTTATG TACGCGTTAA AAATGGCGAC ATAGACGGTA
    AAGGTGCATT
    651   GTTGTCAGGC AGCAATACAC AAATCAATGT TTCAGGCAGC
    CTGAAAAACT
    701   CAGGCACGAT TGCAGGgCGC AATGCGCTTA TTATCAATAC
    CGATACGCTA
    751   GACAATATCG GTGGGCGTAT TCATGCGCAA AAATCAGCGG
    TTACGGCCAC
    801   ACAAGACATC AATAATATTG GCGGCATGCT TTCTGCCGAA
    CAGACATTAT
    851   TGCTCAACGC AGGCAACAAC ATCAACAGCC AAAGCACCAC
    CGCCAGCAGT
    901   CAAAATACAC AAGGCAGCAG CACCTACCTA GACCGAATGG
    CAGGTATTTA
    951   TATCACAGGC AAAGAAAAAG GTGTTT..
  • This corresponds to the amino acid sequence <SEQ ID 512; ORF115>:
  • 1 ..STGHSEQNYT LPREITRNIS LGSFAYESHR KALSHHAPSQ
    GTELPQSNGI
    51   SLPYTSNSFT PLPSSSLYII NPVNKGYLVE TDPRFANYRQ
    WLGSDYMLDS
    101   LKLDPNNLHK RLGDGYYEQR LINEQIAELT GHRRLDGYQN
    DEEQFKALMD
    151   NGATAARSMN LSVGIALSAE QVAQLTSDIV WLVQKEVKLP
    DGGTQTVLVP
    201   QVYVRVKNGD IDGKGALLSG SNTQINVSGS LKNSGTIAGR
    NALIINTDTL
    251   DNIGGRIHAQ KSAVTATQDI NNIGGMLSAE QTLLLNAGNN
    INSQSTTASS
    301   QNTQGSSTYL DRMAGIYITG KEKGV..
  • Computer analysis of this amino acid sequence gave the following results:
  • Homology with the pspA Putative Secreted Protein of N. meningitidis (Accession Number AF030941)
  • ORF115 and pspA protein show 50% aa identity in 325aa overlap:
  • Orf115: 1 STGHSEQNYTLPREITRNISLGSFAYESHRKALSHHAPSQGTELPQSNGISLPYTSNSFT 60
    STG+S   Y    E++ +I +G  AY+ +    +   P     +   NGI   +T
    pspA: 778 STGYSRSPYEPAPEVS-SIRMGISAYKGYAPQQASDIPGTVVPVVAENGIHPTFT----- 831
    Orf115: 61 PLPSSSLYIINPVNKGYLVETDPRFANYRQWLGSDYMLDSLKLDPNNLHKRLGDGYYEQR 120
     LP+SSL+ I P NKGYL+ETDP F +YR+WLGS YML +L+ DPN++HKRLGDGYYEQ+
    pspA: 832 -LPNSSLFAIAPNNKGYLIETDPAFTDYRKWLGSGYMLAALQQDPNHIHKRLGDGYYEQK 890
    Orf115: 121 LINEQIAELTGHRRLDGYQNDEEQFKALMDNGATAARSMNLSVGIALSAEQVAQLTSDIV 180
    L+NEQIA+LTG+RRLDGY NDEEQFKALMDNG T A+ + L+ GIALSAEQVA+LTSDIV
    pspA: 891 LVNEQIAKLTGYRRLDGYTNDEEQFKALMDNGITIAKELQLTPGIALSAEQVARLTSDIV 950
    Orf115: 181 WLVQKEVKLPDGGTQTVLVPQVYVRVKNGDIDGKGALLSGSNTQINVSGSLKN-SGTIAG 239
    WL  + V LPDG TQTVL P+VYVR +  D++G+GALLSGS   I  SG+++N  G IAG
    pspA: 951 WLENETVTLPDGTTQTVLKPKVYVRARPKDMNGQGALLSGSVVDIG-SGAIENRGGLIAG 1009
    Orf115: 240 RNALIINTDTLDNIGGRIHAQKSAVTATQDINNIGGMLSAEQTLLLNAGXXXXXXXXXXX 299
    R ALI+N   + N+ G +  +     A  DI N G  + AE  LLL A
    pspA: 1010 REALILNAQNIKNLQGDLQGKNIFAAAGSDITNTGS-IGAENALLLKASNNIESRSETRS 1068
    Orf115: 300 XXXXXXXXXYLDRMAGIYITGKEKG 324
              + R+AGIY+TG++ G
    pspA: 1069 NQNEQGSVRNIGRVAGIYLTGRQNG 1093

    Homology with a Predicted ORF from N. gonorrhoeae
  • ORF115 shows 91.9% identity over a 334aa overlap with a predicted ORF (ORF115ng) from N. gonorrhoeae:
  • Figure US20130064846A1-20130314-C00228
  • An ORF115ng nucleotide sequence <SEQ ID 513> was predicted to encode a protein having amino acid sequence <SEQ ID 514>:
  • 1 MLVQTEKDGL HNEQTFGEKK VFSENGKLHN YWRARRKGHD
    ETGHREQNYT
    51 LPEEITRDIS LGSFAYESHS KALSRHAPSQ GTELPQSNRD
    NIRTAKSNGI
    101 SLPYTPNSFT PLPGSSLYII NPANKGYLVE TDPRFANYRQ
    WLGSDYMLGS
    151 LKLDPNNLHK RLGDGYYEQR LINEQIAELT GHRRLDGYQN
    DEEQFKALMD
    201 NGATAARSMN LSVGIALSAE QAAQLTSDIV WLVQKEVKLP
    DGGTQTVLMP
    251 QVYVRVKNGG IDGKGALLSG SNTQINVSGS LKNSGTIAGR
    NALIINTDTL
    301 DNIGGRIHAQ KSAVTATQDI NNIGGILSAE QTLLLNAGNN
    INNQSTAKSS
    351 QNAQGSSTYL DRMAGIYITG KEKGVLAAQA GKDINIIAGQ
    ISNQSDQGQT
    401 RLQAGRDINL DTVQTGKYQE IHFDADNHTI RGSTNEVGSS
    IQTKGDVTLL
    451 SGNNLNAKAA EVGSAKGTLA VYAKNDITIS SGIHAGQVDD
    ASKHTGRSGG
    501 GNKLVITDKA QSHHETAQSS TFEGKQVVLQ AGNDANILGS
    NVISDNGTRI
    551 QAGNHVRIGT TQTQSQSETY HQTQKSGLMS AGIGFTIGSK
    TNTQENQSQS
    601 NEHTGSTVGS LKGDTTIVAS KHYEQTGSNV SSPEGNNLIS
    TQSMDIGAAQ
    651 NQLNSKTTQT YEQKGLTVAF SSPVTDLAQQ AIAVAHKAAK
    QFDKAKTTAL
    701 MPWRLPMQVG RLFKQAKAPK K*
  • Further work revealed the following partial gonococcal DNA sequence <SEQ ID 515>:
  • 1 TTGCTTGTGC AAACAGAAAA AGACGGTTTG CATAACGAGC
    AAACCTTTGG
    51 CGAGAAGAAA GTCTTCAGCG AAAATGGTAA GTTGCACAAC
    TACTGGCGTG
    101 CGCGTCGTAA AGGACATGAT GAAACAGGGC ATCGTGAACA
    AAATTATACT
    151 TTGCCGGAGG AAATCACACG CGACATTTCA CTGGGTTCAT
    TTGCCTATGA
    201 ATCGCATAGC AAAGCATTAA GCCGTCATGC GCCCAGCCAA
    GGCACTGAGT
    251 TGCCACAAAG TAACCGGGAT AATATCCGTA CTGCGAAAAG
    CAACGGTATT
    301 TCGCTACCCT ATACGCCCAA TTCTTTTACC CCATTACCCG
    GCAGCAGCTT
    351 ATACATTATC AATCCTGCCA ATAAAGGCTA TCTTGTTGAA
    ACCGATCCAC
    401 GCTTTGCCAA CTACCGTCAA TGGTTGGGTA GTGACTATAT
    GCTGGGCAGC
    451 CTCAAACTAG ACCCAAACAA TTTACATAAA CGTTTGGGTG
    ATGGTTATTA
    501 CGAGCAACGT TTAATCAATG AACAAATCGC AGAGCTGACA
    GGGCATCGTC
    551 GTTTAGACGG TTATCAAAAC GACGAAGAAC AATTTAAAGC
    CTTAATGGAT
    601 AATGGCGCGA CTGCGGCACG TTCGATGAAT CTCAGCGTTG
    GCATTGCATT
    651 AAGTGCCGAG CAAGCAGCGC AACTGACCAG CGATATTGTT
    TGGTTGGTAC
    701 AAAAAGAAGT TAAACTTCCT GATGGCGGCA CACAAACCGT
    ATTGATGCCA
    751 CAGGTTTATG TACGCGTTAA AAATGGCGGC ATAGACGGTA
    AAGGTGCATT
    801 GTTGTCAGGC AGCAATACAC AAATCAATGT TTCAGGCAGC
    CTGAAAAACT
    851 CAGGCACGAT TGCAGGGCGC AATGCGCTTA TTATCAATAC
    CGATACGCTA
    901 GACAATATCG GTGGGCGTAT TCATGCGCAA AAATCAGCGG
    TTACGGCCAC
    951 ACAAGACATC AATAATATTG GCGGCATTCT TTCTGCCGAA
    CAGACATTAT
    1001 TGCTCAATGC GGGTAACAAC ATCAACAACC AAAGCACGGC
    CAAGAGCAGT
    1051 CAAAATGCAC AAGGTAGCAG CACCTACCTA GACCGAATGG
    CAGGTATTTA
    1101 TATCACAGGC AAAGAAAAAG GTGTTTTAGC AGCGCAGGCA
    GGCAAAGACA
    1151 TCAACATCAT TGCCGGTCAA ATCAGCAATC AATCAGATCA
    AGGGCAAACC
    1201 CGGCTGCAGG CAGGACGCGA CATTAACCTG GATACGGTAC
    AAACCGGCAA
    1251 ATATCAAGAA ATCCATTTTG ATGCCGATAA CCATACCATC
    CGAGGTTCAA
    1301 CGAACGAAGT CGGCAGCAGC ATTCAAACAA AAGGCGATGT
    TACCCtatTG
    1351 TCAGGGAATA ATCTCAATGC CAAAGCTGCC GAAGTCGGCA
    GCGCAAAAGG
    1401 CACACTTGCC GTGTATGCTA AAAATGACAT TACTATCAGC
    TCAGGCATCC
    1451 ATGCCGGCCA AGTTGATGAT GCGTCCAAAC ATACAGGCAG
    AAGCGGCGGC
    1501 GGTAATAAAT TAGTCATTAC CGATAAAGCC CAAAGTCATC
    ACGAAACTGC
    1551 TCAAAGCAGC ACCTTTGAAG GCAAGCAAGT TGTATTGCAG
    GCAGGAAACG
    1601 ATGCCAACAT CCTTGGCAGT AATGTTATTT CCGATAATGG
    CACCCGGATT
    1651 CAAGCAGGCA ATCATGTTCG CATTGGTACA ACCCAAACTC
    AAAGCCAAAG
    1701 CGAAACCTAT CATCAAACCC AAAAATCAGG ATTGATGAGT
    GCAGGTATCG
    1751 GCTTCACTAT TGGCAGCAAG ACAAACACAC AAGAAAACCA
    ATCCCAAAGC
    1801 AACGAACATA CAGGCAGTAC CGTAGGCAGC CTGAAAGGCG
    ATACCACCAT
    1851 TGTTGCAAGC AAACACTACG AACAAACCGG CAGCAACGTT
    TCCAGCCCTG
    1901 AGGGCAACAA CCTTATCAGC ACGCAAAGTA TGGATATTGG
    CGCAGCACAA
    1951 AACCAATTAA ACAGCAAAAC CACCCAAACC TACGAACAAA
    AAGGCTTAAC
    2001 GGTGGCATTC AGTTCGCCCG TTACCGATTT GGCACAACAA
    GCGATTGCCG
    2051 TAGCACACAA AGCAGCAAAC AAGTCGGACA AAGCAAAAAC
    GACCGCGTTA
    2101 ATGCCATGGC GGCTGCCAAT GCAGGTTGGC AGGCCTATCA
    AACAGGCAAA
    2151 GGCGCACAAA ACTTAG
  • This corresponds to the amino acid sequence <SEQ ID 516; ORF115ng-1>:
  • 1 LLVQTEKDGL HNEQTFGEKK VFSENGKLHN YWRARRKGHD
    ETGHREQNYT
    51 LPEEITRDIS LGSFAYESHS KALSRHAPSQ GTELPQSNRD
    NIRTAKSNGI
    101 SLPYTPNSFT PLPGSSLYII NPANKGYLVE TDPRFANYRQ
    WLGSDYMLGS
    151 LKLDPNNLHK RLGDGYYEQR LINEQIAELT GHRRLDGYQN
    DEEQFKALMD
    201 NGATAARSMN LSVGIALSAE QAAQLTSDIV WLVQKEVKLP
    DGGTQTVLMP
    251 QVYVRVKNGG IDGKGALLSG SNTQINVSGS LKNSGTIAGR
    NALIINTDTL
    301 DNIGGRIHAQ KSAVTATQDI NNIGGILSAE QTLLLNAGNN
    INNQSTAKSS
    351 QNAQGSSTYL DRMAGIYITG KEKGVLAAQA GKDINIIAGQ
    ISNQSDQGQT
    401 RLQAGRDINL DTVQTGKYQE IHFDADNHTI RGSTNEVGSS
    IQTKGDVTLL
    451 SGNNLNAKAA EVGSAKGTLA VYAKNDITIS SGIHAGQVDD
    ASKHTGRSGG
    501 GNKLVITDKA QSHHETAQSS TFEGKQVVLQ AGNDANILGS
    NVISDNGTRI
    551 QAGNHVRIGT TQTQSQSETY HQTQKSGLMS AGIGFTIGSK
    TNTQENQSQS
    601 NEHTGSTVGS LKGDTTIVAS KHYEQTGSNV SSPEGNNLIS
    TQSMDIGAAQ
    651 NQLNSKTTQT YEQKGLTVAF SSPVTDLAQQ AIAVAHKAAN
    KSDKAKTTAL
    701 MPWRLPMQVG RPIKQAKAHK T*
  • This gonococcal protein (ORF115ng-1) shows 91.9% identity with ORF115 over 334aa:
  • Figure US20130064846A1-20130314-C00229
  • In addition, it shows homology with a secreted N. meningitidis protein in the database:
  • gi|2623258 (AF030941) putative secreted protein [Neisseria meningitidis]
    Length = 2273
    Score = 604 bits (1541), Expect = e−172
    Identities = 325/678 (47%), Positives = 449/678 (65%), Gaps = 22/678 (3%)
    Query: 1 LLVQTEKDGLHNEQTFGEKKVFSENGKLHNYWRARRKGHDETGHREQNYTLPEEITRDIS 60
    L+V T +  L N++T G K + ++ G LH Y R  +KG D TG+    Y    E++  I
    Sbjct: 739 LIVGTPESALDNDETLGTKTI-TDKGDLHRYHRHHKKGRDSTGYSRSPYEPAPEVS-SIR 796
    Query: 61 LGSFAYESHSKALSRHAPSQGTELPQSNRDNIRTAKSNGISLPYTPNSFTPLPGSSLYII 120
    +G  AY+ +       AP Q +++P +    +     NGI   +T      LP SSL+ I
    Sbjct: 797 MGISAYKGY-------APQQASDIPGTV---VPVVAENGIHPTFT------LPNSSLFAI 840
    Query: 121 NPANKGYLVETDPRFANYRQWLGSDYMLGSLKLDPNNLHKRLGDGYYEQRLINEQIAELT 180
     P NKGYL+ETDP F +YR+WLGS YML +L+ DPN++HKRLGDGYYEQ+L+NEQIA+LT
    Sbjct: 841 APNNKGYLIETDPAFTDYRKWLGSGYMLAALQQDPNHIHKRLGDGYYEQKLVNEQIAKLT 900
    Query: 181 GHRRLDGYQNDEEQFKALMDNGATAARSMNLSVGIALSAEQAAQLTSDIVWLVQKEVKLP 240
    G+RRLDGY NDEEQFKALMDNG T A+ + L+ GIALSAEQ A+LTSDIVWL  + V LP
    Sbjct: 901 GYRRLDGYTNDEEQFKALMDNGITIAKELQLTPGIALSAEQVARLTSDIVWLENETVTLP 960
    Query: 241 DGGTQTVLMPQVYVRVKNGGIDGKGALLSGSNTQINVSGSLKN-SGTIAGRNALIINTDT 299
    DG TQTVL P+VYVR +   ++G+GALLSGS   I  SG+++N  G IAGR ALI+N
    Sbjct: 961 DGTTQTVLKPKVYVRARPKDMNGQGALLSGSVVDIG-SGAIENRGGLIAGREALILNAQN 1019
    Query: 300 LDNIGGRIHAQKSAVTATQDINNIGGILSAEQTLLLNAGNNINNQSTAKSSQNAQGSSTY 359
    + N+ G +  +     A  DI N G I  AE  LLL A NNI ++S  +S+QN QGS
    Sbjct: 1020 IKNLQGDLQGKNIFAAAGSDITNTGSI-GAENALLLKASNNIESRSETRSNQNEQGSVRN 1078
    Query: 360 LDRMAGIYITGKEKGVLAAQAGKDINIIAGQISNQSDQGQTRLQAGRDINLDTVQTGKYQ 419
    + R+AGIY+TG++ G +   AG +I + A +++NQS+ GQT L AG DI  DT    + Q
    Sbjct: 1079 IGRVAGIYLTGRQNGSVLLDAGNNIVLTASELTNQSEDGQTVLNAGGDIRSDTTGISRNQ 1138
    Query: 420 EIHFDADNHTIRGSTNEVGSSIQTKGDVTLLSGNNLNAKAAEVGSAKGTLAVYAKNDITI 479
       FD+DN+ IR   NEVGS+I+T+G+++L +  ++  +AAEVGS + G L + A  DI +
    Sbjct: 1139 NTIFDSDNYVIRKEQNEVGSTIRTRGNLSLNAKGDIRIRAAEVGSEQGRLKLAAGRDIKV 1198
    Query: 480 SSGIHAGQVDDASKHTGRSGGGNKLVITDKAQSHHETAQSSTFEGKQVVLQAGNDANILG 539
     +G    + +DA K+TGRSGGG K  +T   ++ +  A S T +GK+++L +G D  + G
    Sbjct: 1199 EAGKAHTETEDALKYTGRSGGGIKQKMTRHLKNQNGQAVSGTLDGKEIILVSGRDITVTG 1258
    Query: 540 SNVISDNGTRIQAGNHVRIGTTQTQSQSETYHQTQKSGLM-SAGIGFTIGSKTNTQENQS 598
    SN+I+DN T + A N++ +   +T+S+S   ++ +KSGLM S GIGFT GSK +TQ N+S
    Sbjct: 1259 SNIIADNHTILSAKNNIVLKAAETRSRSAEMNKKEKSGLMGSGGIGFTAGSKKDTQTNRS 1318
    Query: 599 QSNEHTGSTVGSLKGDTTIVASKHYEQTGSNVSSPEGNNLISTQSMDIGAAQNQLNSKTT 658
    ++  HT S VGSL G+T I A KHY QTGS +SSP+G+  IS+  + I AAQN+ + ++
    Sbjct: 1319 ETVSHTESVVGSLNGNTLISAGKHYTQTGSTISSPQGDVGISSGKISIDAAQNRYSQESK 1378
    Query: 659 QTYEQKGLTVAFSSPVTD 676
    Q YEQKG+TVA S PV +
    Sbjct: 1379 QVYEQKGVTVAISVPVVN 1396
  • Based on this analysis, it is predicted that the proteins from N. meningitidis and N. gonorrhoeae, and their epitopes, could be useful antigens for vaccines or diagnostics, or for raising antibodies.
  • Example 62
  • The following partial DNA sequence was identified in N. meningitidis <SEQ ID 517>:
  • 1 ..TCAGGGAATA ACCTCAATGC CAAAGCTGCC GAAGTCAGCA
    GCGCAAACGG
    51   TACACTCGCT GTGTCTGCCA ATAATGACAT CAACATCAGC
    GCAGGCATCA
    101   ACACGACCCA TGTTGATGAT GCGTCCAAAC ACACAGGCAG
    AAGCGGTGGT
    151   GGCAATAAAT TAGTCATTAC CGATAAAGCC CAAAGTCATC
    ACGAAACCGC
    201   CCAAAGCAGC ACCTTTGAAG GCAAGCAAGT TGTATTGCAG
    GCAGGAAACG
    251   ATGCCAACAT CCTTGGCAGC AATGTTATTT CCGATAATGG
    CACCCAGATT
    301   CAAGCAGGCA ATCATGTTCG CATTGGTACA ACCCAAACTC
    AAAGCCAAAG
    351   CGAAACCTAT CATCAAACCC AGAAATCAGG ATTGATGAGT
    GCAGGTATCG
    401   GCTTCACTAT TGGCAGCAAG ACAAACACAC AAGAAAACCA
    ATCCCAAAGC
    451   AACGAACATA CAGGCAGTAC CGTAGGCAGC TTGAAAGGCG
    ATACCACCAT
    501   TGTTGCAGGC AAACACTACG AACAAATCGG CAGTACCGTT
    TCCAGCCCGG
    551   AAGGCAACAA TACCATCTAT GCCCAAAGCA TAGACATTCA
    AGCGGCACAC
    601   AACAAATTAA ACAGTAATAC CACCCAAACC TATGAACAAA
    AAGG.CTAAC
    651   GGTGGCATTC AGTTCGCCCG TTACCGATTT GGCACAACAA
    ...
  • This corresponds to the amino acid sequence <SEQ ID 518; ORF117>:
  • 1 ..SGNNLNAKAA EVSSANGTLA VSANNDINIS AGINTTHVDD
    ASKHTGRSGG
    51   GNKLVITDKA QSHHETAQSS TFEGKQVVLQ AGNDANILGS
    NVISDNGTQI
    101   QAGNHVRIGT TQTQSQSETY HQTQKSGLMS AGIGFTIGSK
    TNTQENQSQS
    151   NEHTGSTVGS LKGDTTIVAG KHYEQIGSTV SSPEGNNTIY
    AQSIDIQAAH
    201   NKLNSNTTQT YEQKXLTVAF SSPVTDLAQQ ...
  • Computer analysis of this amino acid sequence gave the following results:
  • Homology with the pspA Putative Secreted Protein of N. meningitidis (Accession Number AF030941)
  • ORF117 and pspA protein show 45% aa identity in 224aa overlap:
  • Orf117: 4 NLNAKAAEVSSANGTLAVSANNDINISAGINTTHVDDASKHTGRSGGGNKLVITDKAQSH 63
    ++  +AAEV S  G L ++A  DI + AG   T  +DA K+TGRSGGG K  +T   ++
    pspA: 1173 DIRIRAAEVGSEQGRLKLAAGRDIKVEAGKAHTETEDALKYTGRSGGGIKQKMTRHLKNQ 1232
    Orf117: 64 HETAQSSTFEGKQVVLQAGNDANILGSNVISDNGTQIQAGNHVRIGTTQTQSQSETYHQT 123
    +  A S T +GK+++L +G D  + GSN+I+DN T + A N++ +   +T+S+S   ++
    pspA: 1233 NGQAVSGTLDGKEIILVSGRDITVTGSNIIADNHTILSAKNNIVLKAAETRSRSAEMNKK 1292
    Orf117: 124 QKSGLM-SAGIGFTIGSKTNTQENQSQSNEHTGSTVGSLKGDTTIVAGKHYEQIGSTVSS 182
    +KSGLM S GIGFT GSK +TQ N+S++  HT S VGSL G+T I AGKHY Q GST+SS
    pspA: 1293 EKSGLMGSGGIGFTAGSKKDTQTNRSETVSHTESVVGSLNGNTLISAGKHYTQTGSTISS 1352
    Orf117: 183 PEGNNTIYAQSIDIQAAHNKLNSNTTQTYEQKXLTVAFSSPVTD 226
    P+G+  I +  I I AA N+ +  + Q YEQK +TVA S PV +
    pspA: 1353 PQGDVGISSGKISIDAAQNRYSQESKQVYEQKGVTVAISVPVVN 1396

    Homology with a Predicted ORF from N. gonorrhoeae
  • ORF117 shows 90% identity over a 230aa overlap with a predicted ORF (ORF117ng) from N. gonorrhoeae:
  • Figure US20130064846A1-20130314-C00230
  • An ORF117ng nucleotide sequence <SEQ ID 519> was predicted to encode a protein having amino acid sequence <SEQ ID 520>:
  • 1 ..LLVQTEKDGL HNEQTFGEKK VFSENGKLHN YWRARRKGHD
    ETGHREQNYT
    51   LPEEITRDIS LGSFAYESHS KALSRHAPSQ GTELPQSNRD
    NIRTAKSNGI
    101   SLPYTPNSFT PLPGSSLYII NPANKGYLVE TDPRFANYRQ
    WLGSDYMLGS
    151   LKLDPNNLHK RLGDGYYEQR LINEQIAELT GHRRLDGYQN
    DEEQFKALMD
    201   NGATAARSMN LSVGIALSAE QAAQLTSDIV WLVQKEVKLP
    DGGTQTVLMP
    251   QVYVRVKNGG IDGKGALLSG SNTQINVSGS LKNSGTIAGR
    NALIINTDTL
    301   DNIGGRIHAQ KSAVTATQDI NNIGGILSAE QTLLLNAGNN
    INNQSTAKSS
    351   QNAQGSSTYL DRMAGIYITG KEKGVLAAQA GKDINIIAGQ
    ISNQSDQGQT
    401   RLQAGRDINL DTVQTGKYQE IHFDADNHTI RGSTNEVGSS
    IQTKGDVTLL
    451   SGNNLNAKAA EVGSAKGTLA VYAKNDITIS SGIHAGQVDD
    ASKHTGRSGG
    501   GNKLVITDKA QSHHETAQSS TFEGKQVVLQ AGNDANILGS
    NVISDNGTRI
    551   QAGNHVRIGT TQTQSQSETY HQTQKSGLMS AGIGFTIGSK
    TNTQENQSQS
    601   NEHTGSTVGS LKGDTTIVAS KHYEQTGSNV SSPEGNNLIS
    TQSMDIGAAQ
    651   NQLNSKTTQT YEQKGLTVAF SSPVTDLAQQ AIAVAHKAAK
    QFDKAKTTAL
    701   MPWRLPMQVG RLFKQAKAPK K*
  • Further work revealed the following gonococcal partial DNA sequence <SEQ ID 521>:
  • 1 TTGCTTGTGC AAACAGAAAA AGACGGTTTG CATAACGAGC
    AAACCTTTGG
    51 CGAGAAGAAA GTCTTCAGCG AAAATGGTAA GTTGCACAAC
    TACTGGCGTG
    101 CGCGTCGTAA AGGACATGAT GAAACAGGGC ATCGTGAACA
    AAATTATACT
    151 TTGCCGGAGG AAATCACACG CGACATTTCA CTGGGTTCAT
    TTGCCTATGA
    201 ATCGCATAGC AAAGCATTAA GCCGTCATGC GCCCAGCCAA
    GGCACTGAGT
    251 TGCCACAAAG TAACCGGGAT AATATCCGTA CTGCGAAAAG
    CAACGGTATT
    301 TCGCTACCCT ATACGCCCAA TTCTTTTACC CCATTACCCG
    GCAGCAGCTT
    351 ATACATTATC AATCCTGCCA ATAAAGGCTA TCTTGTTGAA
    ACCGATCCAC
    401 GCTTTGCCAA CTACCGTCAA TGGTTGGGTA GTGACTATAT
    GCTGGGCAGC
    451 CTCAAACTAG ACCCAAACAA TTTACATAAA CGTTTGGGTG
    ATGGTTATTA
    501 CGAGCAACGT TTAATCAATG AACAAATCGC AGAGCTGACA
    GGGCATCGTC
    551 GTTTAGACGG TTATCAAAAC GACGAAGAAC AATTTAAAGC
    CTTAATGGAT
    601 AATGGCGCGA CTGCGGCACG TTCGATGAAT CTCAGCGTTG
    GCATTGCATT
    651 AAGTGCCGAG CAAGCAGCGC AACTGACCAG CGATATTGTT
    TGGTTGGTAC
    701 AAAAAGAAGT TAAACTTCCT GATGGCGGCA CACAAACCGT
    ATTGATGCCA
    751 CAGGTTTATG TACGCGTTAA AAATGGCGGC ATAGACGGTA
    AAGGTGCATT
    801 GTTGTCAGGC AGCAATACAC AAATCAATGT TTCAGGCAGC
    CTGAAAAACT
    851 CAGGCACGAT TGCAGGGCGC AATGCGCTTA TTATCAATAC
    CGATACGCTA
    901 GACAATATCG GTGGGCGTAT TCATGCGCAA AAATCAGCGG
    TTACGGCCAC
    951 ACAAGACATC AATAATATTG GCGGCATTCT TTCTGCCGAA
    CAGACATTAT
    1001 TGCTCAATGC GGGTAACAAC ATCAACAACC AAAGCACGGC
    CAAGAGCAGT
    1051 CAAAATGCAC AAGGTAGCAG CACCTACCTA GACCGAATGG
    CAGGTATTTA
    1101 TATCACAGGC AAAGAAAAAG GTGTTTTAGC AGCGCAGGCA
    GGCAAAGACA
    1151 TCAACATCAT TGCCGGTCAA ATCAGCAATC AATCAGATCA
    AGGGCAAACC
    1201 CGGCTGCAGG CAGGACGCGA CATTAACCTG GATACGGTAC
    AAACCGGCAA
    1251 ATATCAAGAA ATCCATTTTG ATGCCGATAA CCATACCATC
    CGAGGTTCAA
    1301 CGAACGAAGT CGGCAGCAGC ATTCAAACAA AAGGCGATGT
    TACCCtatTG
    1351 TCAGGGAATA ATCTCAATGC CAAAGCTGCC GAAGTCGGCA
    GCGCAAAAGG
    1401 CACACTTGCC GTGTATGCTA AAAATGACAT TACTATCAGC
    TCAGGCATCC
    1451 ATGCCGGCCA AGTTGATGAT GCGTCCAAAC ATACAGGCAG
    AAGCGGCGGC
    1501 GGTAATAAAT TAGTCATTAC CGATAAAGCC CAAAGTCATC
    ACGAAACTGC
    1551 TCAAAGCAGC ACCTTTGAAG GCAAGCAAGT TGTATTGCAG
    GCAGGAAACG
    1601 ATGCCAACAT CCTTGGCAGT AATGTTATTT CCGATAATGG
    CACCCGGATT
    1651 CAAGCAGGCA ATCATGTTCG CATTGGTACA ACCCAAACTC
    AAAGCCAAAG
    1701 CGAAACCTAT CATCAAACCC AAAAATCAGG ATTGATGAGT
    GCAGGTATCG
    1751 GCTTCACTAT TGGCAGCAAG ACAAACACAC AAGAAAACCA
    ATCCCAAAGC
    1801 AACGAACATA CAGGCAGTAC CGTAGGCAGC CTGAAAGGCG
    ATACCACCAT
    1851 TGTTGCAAGC AAACACTACG AACAAACCGG CAGCAACGTT
    TCCAGCCCTG
    1901 AGGGCAACAA CCTTATCAGC ACGCAAAGTA TGGATATTGG
    CGCAGCACAA
    1951 AACCAATTAA ACAGCAAAAC CACCCAAACC TACGAACAAA
    AAGGCTTAAC
    2001 GGTGGCATTC AGTTCGCCCG TTACCGATTT GGCACAACAA
    GCGATTGCCG
    2051 TAGCACACAA AGCAGCAAAC AAGTCGGACA AAGCAAAAAC
    GACCGCGTTA
    2101 ATGCCATGGC GGCTGCCAAT GCAGGTTGGC AGGCCTATCA
    AACAGGCAAA
    2151 GGCGCACAAA ACTTAG
  • This corresponds to the amino acid sequence <SEQ ID 522; ORF117ng-1>:
  • 1 LLVQTEKDGL HNEQTFGEKK VFSENGKLHN YWRARRKGHD
    ETGHREQNYT
    51 LPEEITRDIS LGSFAYESHS KALSRHAPSQ GTELPQSNRD
    NIRTAKSNGI
    101 SLPYTPNSFT PLPGSSLYII NPANKGYLVE TDPRFANYRQ
    WLGSDYMLGS
    151 LKLDPNNLHK RLGDGYYEQR LINEQIAELT GHRRLDGYQN
    DEEQFKALMD
    201 NGATAARSMN LSVGIALSAE QAAQLTSDIV WLVQKEVKLP
    DGGTQTVLMP
    251 QVYVRVKNGG IDGKGALLSG SNTQINVSGS LKNSGTIAGR
    NALIINTDTL
    301 DNIGGRIHAQ KSAVTATQDI NNIGGILSAE QTLLLNAGNN
    INNQSTAKSS
    351 QNAQGSSTYL DRMAGIYITG KEKGVLAAQA GKDINIIAGQ
    ISNQSDQGQT
    401 RLQAGRDINL DTVQTGKYQE IHFDADNHTI RGSTNEVGSS
    IQTKGDVTLL
    451 SGNNLNAKAA EVGSAKGTLA VYAKNDITIS SGIHAGQVDD
    ASKHTGRSGG
    501 GNKLVITDKA QSHHETAQSS TFEGKQVVLQ AGNDANILGS
    NVISDNGTRI
    551 QAGNHVRIGT TQTQSQSETY HQTQKSGLMS AGIGFTIGSK
    TNTQENQSQS
    601 NEHTGSTVGS LKGDTTIVAS KHYEQTGSNV SSPEGNNLIS
    TQSMDIGAAQ
    651 NQLNSKTTQT YEQKGLTVAF SSPVTDLAQQ AIAVAHKAAN
    KSDKAKTTAL
    701 MPWRLPMQVG RPIKQAKAHK T*
  • ORF117ng-1 shows the same 90% identity over a 230aa overlap with ORF117. In addition, it shows homology with a secreted N. meningitidis protein in the database:
  • gi|2623258 (AF030941) putative secreted protein [Neisseria meningitidis]
    Length = 2273
    Score = 604 bits (1541), Expect = e−172
    Identities = 325/678 (47%), Positives = 449/678 (65%), Gaps = 22/678 (3%)
    Query: 1 LLVQTEKDGLHNEQTFGEKKVFSENGKLHNYWRARRKGHDETGHREQNYTLPEEITRDIS 60
    L+V T +  L N++T G K + ++ G LH Y R  +KG D TG+    Y    E++  I
    Sbjct: 739 LIVGTPESALDNDETLGTKTI-TDKGDLHRYHRHHKKGRDSTGYSRSPYEPAPEVS-SIR 796
    Query: 61 LGSFAYESHSKALSRHAPSQGTELPQSNRDNIRTAKSNGISLPYTPNSFTPLPGSSLYII 120
    +G  AY+ +       AP Q +++P +    +     NGI   +T      LP SSL+ I
    Sbjct: 797 MGISAYKGY-------APQQASDIPGTV---VPVVAENGIHPTFT------LPNSSLFAI 840
    Query: 121 NPANKGYLVETDPRFANYRQWLGSDYMLGSLKLDPNNLHKRLGDGYYEQRLINEQIAELT 180
     P NKGYL+ETDP F +YR+WLGS YML +L+ DPN++HKRLGDGYYEQ+L+NEQIA+LT
    Sbjct: 841 APNNKGYLIETDPAFTDYRKWLGSGYMLAALQQDPNHIHKRLGDGYYEQKLVNEQIAKLT 900
    Query: 181 GHRRLDGYQNDEEQFKALMDNGATAARSMNLSVGIALSAEQAAQLTSDIVWLVQKEVKLP 240
    G+RRLDGY NDEEQFKALMDNG T A+ + L+ GIALSAEQ A+LTSDIVWL  + V LP
    Sbjct: 901 GYRRLDGYTNDEEQFKALMDNGITIAKELQLTPGIALSAEQVARLTSDIVWLENETVTLP 960
    Query: 241 DGGTQTVLMPQVYVRVKNGGIDGKGALLSGSNTQINVSGSLKN-SGTIAGRNALIINTDT 299
    DG TQTVL P+VYVR +   ++G+GALLSGS   I  SG+++N  G IAGR ALI+N
    Sbjct: 961 DGTTQTVLKPKVYVRARPKDMNGQGALLSGSVVDIG-SGAIENRGGLIAGREALILNAQN 1019
    Query: 300 LDNIGGRIHAQKSAVTATQDINNIGGILSAEQTLLLNAGNNINNQSTAKSSQNAQGSSTY 359
    + N+ G +  +     A  DI N G I  AE  LLL A NNI ++S  +S+QN QGS
    Sbjct: 1020 IKNLQGDLQGKNIFAAAGSDITNTGSI-GAENALLLKASNNIESRSETRSNQNEQGSVRN 1078
    Query: 360 LDRMAGIYITGKEKGVLAAQAGKDINIIAGQISNQSDQGQTRLQAGRDINLDTVQTGKYQ 419
    + R+AGIY+TG++ G +   AG +I + A +++NQS+ GQT L AG DI  DT    + Q
    Sbjct: 1079 IGRVAGIYLTGRQNGSVLLDAGNNIVLTASELTNQSEDGQTVLNAGGDIRSDTTGISRNQ 1138
    Query: 420 EIHFDADNHTIRGSTNEVGSSIQTKGDVTLLSGNNLNAKAAEVGSAKGTLAVYAKNDITI 479
       FD+DN+ IR   NEVGS+I+T+G+++L +  ++  +AAEVGS +G L + A  DI +
    Sbjct: 1139 NTIFDSDNYVIRKEQNEVGSTIRTRGNLSLNAKGDIRIRAAEVGSEQGRLKLAAGRDIKV 1198
    Query: 480 SSGIHAGQVDDASKHTGRSGGGNKLVITDKAQSHHETAQSSTFEGKQVVLQAGNDANILG 539
     +G    + +DA K+TGRSGGG K  +T   ++ +  A S T +GK+++L +G D  + G
    Sbjct: 1199 EAGKAHTETEDALKYTGRSGGGIKQKMTRHLKNQNGQAVSGTLDGKEIILVSGRDITVTG 1258
    Query: 540 SNVISDNGTRIQAGNHVRIGTTQTQSQSETYHQTQKSGLM-SAGIGFTIGSKTNTQENQS 598
    SN+I+DN T + A N++ +   +T+S+S   ++ +KSGLM S GIGFT GSK +TQ N+S
    Sbjct: 1259 SNIIADNHTILSAKNNIVLKAAETRSRSAEMNKKEKSGLMGSGGIGFTAGSKKDTQTNRS 1318
    Query: 599 QSNEHTGSTVGSLKGDTTIVASKHYEQTGSNVSSPEGNNLISTQSMDIGAAQNQLNSKTT 658
    ++  HT S VGSL G+T I A KHY QTGS +SSP+G+  IS+  + I AAQN+ + ++
    Sbjct: 1319 ETVSHTESVVGSLNGNTLISAGKHYTQTGSTISSPQGDVGISSGKISIDAAQNRYSQESK 1378
    Query: 659 QTYEQKGLTVAFSSPVTD 676
    Q YEQKG+TVA S PV +
    Sbjct: 1379 QVYEQKGVTVAISVPVVN 1396
  • Based on this analysis, it is predicted that the proteins from N. meningitidis and N. gonorrhoeae, and their epitopes, could be useful antigens for vaccines or diagnostics, or for raising antibodies.
  • Example 63
  • The following partial DNA sequence was identified in N. meningitidis <SEQ ID 523>:
  • 1 ATGATTTACA TCGTACTGTT TCTAGCTGTC GTCCTCGCCG
    TTGTCGCCTA
    51 CAACATGTAT CAGGAAAACC AATACCGCAA AAAAGTGCGC
    GACCAGTTCG
    101 GACACTCCGA CAAAGATGCC CTGCTCAACA GCAwAACCAG
    CCATGTCCGC
    151 GACGGCAAAC CGTCCGGCGG GTCAGTCATG ATGCCGAAAC
    CCCAACCGGC
    201 GGTCAAAAAA ACGGCAAAAC CCCAAGACCC CGyCATGCGC
    AACCTGCAAG
    251 AACAGGATGC CGTCTACATC GCCAAGCAGA AACAGGCAAA
    AGCCTCCCCG
    301 TTCAAAACCG AAATCGAAAC CGCCTTGGAA GAAAGCGGCA
    TTATCGGCAA
    351 CTCCGCCCAC ACCGTTTCCG AACCCCAAAC CGGACATTCC
    GCAACGAAAC
    401 CTGCCGACGC GTCGGCAAAA CCTGCACCCG TTCCGCAAAC
    ACCTGCAAAA
    451 CCGCTGATTA CGCTCAAAGA ACTGTCAAAA GTCGAATTAT
    CCTGGTTTGA
    501 CGTGCGCATC GACTTCATCT CCTAT...
  • This corresponds to the amino acid sequence <SEQ ID 524; ORF119>:
  • 1 MIYIVLFLAV VLAVVAYNMY QENQYRKKVR DQFGHSDKDA
    LLNSXTSHVR
    51 DGKPSGGSVM MPKPQPAVKK TAKPQDPXMR NLQEQDAVYI
    AKQKQAKASP
    101 FKTEIETALE ESGIIGNSAH TVSEPQTGHS ATKPADASAK
    PAPVPQTPAK
    151 PLITLKELSK VELSWFDVRI DFISY...
  • Further work revealed the complete nucleotide sequence <SEQ ID 525>:
  • 1 ATGATTTACA TCGTACTGTT TCTAGCTGTC GTCCTCGCCG
    TTGTCGCCTA
    51 CAACATGTAT CAGGAAAACC AATACCGCAA AAAAGTGCGC
    GACCAGTTCG
    101 GACACTCCGA CAAAGATGCC CTGCTCAACA GCAAAACCAG
    CCATGTCCGC
    151 GACGGCAAAC CGTCCGGCGG GTCAGTCATG ATGCCGAAAC
    CCCAACCGGC
    201 GGTCAAAAAA ACGGCAAAAC CCCAAGACCC CGCCATGCGC
    AACCTGCAAG
    251 AACAGGATGC CGTCTACATC GCCAAGCAGA AACAGGCAAA
    AGCCTCCCCG
    301 TTCAAAACCG AAATCGAAAC CGCCTTGGAA GAAAGCGGCA
    TTATCGGCAA
    351 CTCCGCCCAC ACCGTTTCCG AACCCCAAAC CGGACATTCC
    GCACCGAAAC
    401 CTGCCGACGC GCCGGCAAAA CCTGCACCCG TTCCGCAAAC
    ACCTGCAAAA
    451 CCGCTGATTA CGCTCAAAGA ACTGTCAAAA GTCGAATTAC
    CCTGGTTTGA
    501 CGTGCGCTTC GACTTCATCT CCTATATCGC GCTGACCGAA
    GCCAAAGAAC
    551 TGCACGCACT GCCGCGCCTT TCCAACCGCT GCCGCTACCA
    GATTGTCGGC
    601 TGCACCATGG ACGACCATTT CCAGATTGCC GAACCCATCC
    CGGGCATCCG
    651 CTATCAGGCA TTTATCGTGG GTATTCAGGC AGTCAGCCGC
    AACGGACTTG
    701 CCTCGCAGGA AGAACTCTCC GCATTCAACC GCCAGGTGGA
    CGCATTCGCA
    751 CAAAGCATGG GCGGTCAGAC GCTGCACACC GACCTTGCCG
    CCTTTATCGA
    801 AGTGGCTTCC GCACTGGACG CATTCTGCGC GCGCGTCGAC
    CAGACCATCG
    851 CCATCCATTT GGTTTCCCCG ACCAGCATCA GCGGCGTAGA
    ACTGCGTTCC
    901 GCCGTAACGG GCGTGGGTTT CGTTTTGGAA GACGACGGCG
    CGTTCCACTA
    951 TACCGACACG TCGGGCTCGA CCATGTTCTC CATCTGCTCG
    CTCAACAACG
    1001 AGCCGTTTAC CAACGCCCTT TTGGACAACC AGTCCTACAA
    AGGCTTCAGT
    1051 ATGCTGCTCG ACATCCCGCA CTCTCCGGCA GGCGAAAAAA
    CCTTCGACGA
    1101 TTTGTTTATG GATTTGGCGG TACGCCTGTC CGGCCAGTTG
    AACCTGAATC
    1151 TGGTCAACGA CAAAATGGAA GAAGTTTCGA CCCAATGGCT
    CAAAGACGTG
    1201 CGCACTTATG TATTGGCGCG TCAGTCCGAG ATGCTCAAAG
    TCGGTATCGA
    1251 ACCGGGCGGC AAAACCGCAT TGCGCCTGTT CTCCTAA
  • This corresponds to the amino acid sequence <SEQ ID 526; ORF119-1>:
  • 1 MIYIVLFLAV VLAVVAYNMY QENQYRKKVR DQFGHSDKDA
    LLNSKTSHVR
    51 DGKPSGGSVM MPKPQPAVKK TAKPQDPAMR NLQEQDAVYI
    AKQKQAKASP
    101 FKTEIETALE ESGIIGNSAH TVSEPQTGHS APKPADAPAK
    PAPVPQTPAK
    151 PLITLKELSK VELPWFDVRF DFISYIALTE AKELHALPRL
    SNRCRYQIVG
    201 CTMDDHFQIA EPIPGIRYQA FIVGIQAVSR NGLASQEELS
    AFNRQVDAFA
    251 QSMGGQTLHT DLAAFIEVAS ALDAFCARVD QTIAIHLVSP
    TSISGVELRS
    301 AVTGVGFVLE DDGAFHYTDT SGSTMFSICS LNNEPFTNAL
    LDNQSYKGFS
    351 MLLDIPHSPA GEKTFDDLFM DLAVRLSGQL NLNLVNDKME
    EVSTQWLKDV
    401 RTYVLARQSE MLKVGIEPGG KTALRLFS*
  • Computer analysis of this amino acid sequence gave the following results:
  • Homology with a Predicted ORF from N. meningitidis (Strain A)
  • ORF119 shows 93.7% identity over. a 175aa overlap with an ORF (ORF119a) from strain A of N. meningitidis:
  • Figure US20130064846A1-20130314-C00231
  • The complete length ORF119a nucleotide sequence <SEQ ID 527> is:
  • 1 ATGATTTACA TCGTACTGTT CCTCGCCGCC GTCCTCGCCG
    TTGTCGCCTA
    51 CAATATGTAT CAGGAAAACC AATACCGCAA AAAAGTGCGC
    GACCAGTTCG
    101 GGCACTCCGA CAAAGATGCC CTGCTCAACA GCAAAACCAG
    CCATGTCCGC
    151 GACGGCAAAC CGTCCGGCGG GCCAGTCATG ATGCCGAAAC
    CCCAACCGGC
    201 GGTCAAAAAA ACGGCAAAAT CCCAAGACCC CGCCATGCGC
    AACCTGCAAG
    251 AGCAGGATGC CGTCTACATC GCCAAGCAGA AACAGGCAAA
    AGCCTCCCCG
    301 TTCAAAACCG AAATCGAAAC CGCCTTGGAA GAAAGCGGCA
    TTATCGGCAA
    351 CTCCGCCCAC ACCGTTCCCG AACCCCAAAC CGGACATTCC
    GCACCAAAAC
    401 CTGCCGACGC GCCGGCAAAA CCTGTTCCCG TTCCGCAAAC
    GCCGGCAAAA
    451 CCGCTGATTA CGCTCAAAGA GCTGTCGAAG GTCGAGCTGC
    CCTGGTTTGA
    501 CGTGCGCTTC GACTTCATCT CTTATATCGC GCTGACCGAA
    GCCAAAGAAC
    551 TGCACGCACT GCCGCGCCTT TCCAACCGCT GCCGCTACCA
    GATTGTCGGC
    601 TGCACCATGG ACGACCATTT CCAGATTGCC GAACCCATCC
    CGGGCATCCG
    651 CTATCAGGCA TTTATCGTGG GTATTCAGGC AGTCAGCCGC
    AACGGACTTG
    701 CCTCGCAGGA AGAACTCTCC GCATTCAACC GCCAGGTGGA
    TGCATTCGCA
    751 CACAGCATGG GCGGTCAGAC GCTGCACACC GACCTTGCCG
    CCTTTATCGA
    801 AGTGGCTTCC GCACTGGACG CATTCTGCGC GCGCGTCGAC
    CAGACTATCG
    851 CCATCCATTT GGTTTCCCCG ACCAGCATCA GCGGCGTAGA
    ACTGCGTTCC
    901 GCCGTAACGG GCGTGGGTTT CGTTTTGGAA GACGACGGCG
    CGTTCCACTA
    951 TACCGACACG TCGGGCTCGA CCATGTTCTC CATCTGCTCG
    CTCAACAACG
    1001 AGCCGTTTAC CAATGCCCTT TTGGACAACC AGTCCTATAA
    AGGCTTCAGT
    1051 ATGCTGCTCG ACATCCCGCA CTCTCCGGCA GGCGAAAAAA
    CCTTCGACGA
    1101 TTTGTTTATG GATTTGGCGG TACGCCTGTC CGGCCAGTTG
    AACCTGAATC
    1151 TGGTCAACGA CAAAATGGAA GAAGTTTCGA CCCAATGGCT
    CAAAGACGTG
    1201 CGCACTTATG TATTGGCTCG TCAGTCCGAG ATGCTCAAAG
    TCGGTATCGA
    1251 ACCGGGCGGC AAAACCGCAT TGCGCCTGTT CTCCTAA
  • This encodes a protein having amino acid sequence <SEQ ID 528>:
  • 1 MIYIVLFLAA VLAVVAYNMY QENQYRKKVR DQFGHSDKDA
    LLNSKTSHVR
    51 DGKPSGGPVM MPKPQPAVKK TAKSQDPAMR NLQEQDAVYI
    AKQKQAKASP
    101 FKTEIETALE ESGIIGNSAH TVPEPQTGHS APKPADAPAK
    PVPVPQTPAK
    151 PLITLKELSK VELPWFDVRF DFISYIALTE AKELHALPRL
    SNRCRYQIVG
    201 CTMDDHFQIA EPIPGIRYQA FIVGIQAVSR NGLASQEELS
    AFNRQVDAFA
    251 HSMGGQTLHT DLAAFIEVAS ALDAFCARVD QTIAIHLVSP
    TSISGVELRS
    301 AVTGVGFVLE DDGAFHYTDT SGSTMFSICS LNNEPFTNAL
    LDNQSYKGFS
    351 MLLDIPHSPA GEKTFDDLFM DLAVRLSGQL NLNLVNDKME
    EVSTQWLKDV
    401 RTYVLARQSE MLKVGIEPGG KTALRLFS*
  • ORF119a and ORF119-1 show 98.6% identity in 428 aa overlap:
  • Figure US20130064846A1-20130314-C00232
  • Homology with a Predicted ORF from N. gonorrhoeae
  • ORF119 shows 93.1% identity over a 175aa overlap with a predicted ORF (ORF119ng) from N. gonorrhoeae:
  • Figure US20130064846A1-20130314-C00233
  • The complete length ORF119ng nucleotide sequence <SEQ ID 529> is:
  • 1 ATGATTTACA TCGTACTGTT CCTCGCCGCC GTCCTCGCCG
    TTGTCGCCTA
    51 CAATATGTAT CAGGAAAACC AATACCGCAA AAAAGTGCGC
    GACCAGTTCG
    101 GACACTCCGA CAAAGATGCC CTGCTCAACA GCAAAACCAG
    CCATGTCCGC
    151 GACGGCAAAC CGTCCGGCGG GCCAGTCATG ATGCCGAAAC
    CCCAACCGGC
    201 GGTCAAAAAA CCGGCCAAAC CCCAAGACTC CGCCATGCGC
    AACCTGCAAG
    251 AACAGGATGC CGTCTACATC GCCAAGCAGA AACAGGCAAA
    AGCCTCCCCG
    301 TTCAAAACCG AAATCGAAAC CGCCTTGGAA GAAATCGGCA
    TTATCGGCAA
    351 CTCCGCCCAC ACCGTTTCCG AACCCCAAAC CGGACATTCC
    GCACCGAAAC
    401 CTGCCGACGC GCCGGCAAAA CCCGTTCCCG TTCCGCAAAC
    GCCGGCAAAA
    451 CCGCTGATTA CGCTCAAAGA GCTGTCGAAG GTCGAGCTGC
    CCTGGTTTGA
    501 CGTGCGCTtc gACTTCATCT CCTATATCGC GCTGACCGAA
    GCCAAAGAAC
    551 TGCACGCACT GCCGCGCCTT tccAACCGCT GCCGCTACCA
    GATTGTCGGC
    601 TGCACCATGG ACGACCATTT CCAGATTGCC GAACCCATCC
    CGGGCATCCG
    651 CTATCAGGCA TTTATCGTGG GTATCCAGGC AGTCAGCCGC
    AACGGACTTG
    701 CCTCGCAGGA AGAACTCTCC GCATTCAACC GCCAGGCGGA
    CGCATTCGCA
    751 CAAAGCATGG GCGGTCAGAC GCTGCACACC GACCTTGCCG
    CCTTTATCGA
    801 AGTGGCTTCC GCACTGGACG CATTCTGCGC GCGCGTCGAC
    CAGACCATCG
    851 CCATCCATTT GGTTTCGCCG ACCAGCATCA GCGGCGTAGA
    ACTGCGTTCC
    901 GCCGTAACGG GCGTGGGTTT CGTTTTGGAA GACGACGGCG
    CGTTCCACTA
    951 TACCGACACG TCGGGCTCGA CCATGTTCTC CATCTGCTCG
    CTCAACAACG
    1001 AGCCGTTTAC CAATGCCCTT TTGGACAACC AGTCCTACAA
    AGGCTTCAGT
    1051 ATGCTGCTCG ACATCCCGCA CTCTCCGGCA GGCGAAAAAA
    CCTTCGACGA
    1101 TTTGTTTATG GATTTGGCGG TACGCCTGTC CGGTCAGTTG
    AACCTGAATC
    1151 TGGTCAACGA CAAAATGGAA GAAGTTTCGA CCCAATGGCT
    CAAAGACGTA
    1201 CGCACTTATG TATTGGCGCG TCAGTCCGAG ATGCTCAAAG
    TCGGTATCGA
    1251 ACCGGGCGGC AAAACCGCCC TGCGCCTGTT TTCATAA
  • This encodes a protein having amino acid sequence <SEQ ID 530>:
  • 1 MIYIVLFLAA VLAVVAYNMY QENQYRKKVR DQFGHSDKDA
    LLNSKTSHVR
    51 DGKPSGGPVM MPKPQPAVKK PAKPQDSAMR NLQEQDAVYI
    AKQKQAKASP
    101 FKTEIETALE EIGIIGNSAH TVSEPQTGHS APKPADAPAK
    PVPVPQTPAK
    151 PLITLKELSK VELPWFDVRF DFISYIALTE AKELHALPRL
    SNRCRYQIVG
    201 CTMDDHFQIA EPIPGIRYQA FIVGIQAVSR NGLASQEELS
    AFNRQADAFA
    251 QSMGGQTLHT DLAAFIEVAS ALDAFCARVD QTIAIHLVSP
    TSISGVELRS
    301 AVTGVGFVLE DDGAFHYTDT SGSTMFSICS LNNEPFTNAL
    LDNQSYKGFS
    351 MLLDIPHSPA GEKTFDDLFM DLAVRLSGQL NLNLVNDKME
    EVSTQWLKDV
    401 RTYVLARQSE MLKVGIEPGG KTALRLFS*
  • ORF119ng and ORF119-1 show 98.4% identity over 428 aa overlap:
  • Figure US20130064846A1-20130314-C00234
  • Based on this analysis, including the presence of a putative leader sequence in the gonococcal protein, it is predicted that the proteins from N. meningitidis and N. gonorrhoeae, and their epitopes, could be useful antigens for vaccines or diagnostics, or for raising antibodies.
  • Example 64
  • The following partial DNA sequence was identified in N. meningitidis <SEQ ID 531>
  • 1 ..GCGCGGCACG GCACGGAAGA TTTCTTCATG AACAACAGCG
    ACAC.ATCAG
    51   GCAGATAGTC GAAAGCACCA CCGGTACGAT GAAGCTGCTG
    ATTTCCTCCA
    101   TCGCCCTGAT TTCATTGGTA GTCGGCGGCA TCGGCGTGAT
    GAACATCATG
    151   CTGGTGTCCG TTACCGAGCG CACCAAAGAA ATCGGCATAC
    GGATGGCAAT
    201   CGGCGCGCGG CGCGGCAATA TTTyGCAGCA GTTTTTGATT
    GAGGCGGTGT
    251   TAATCTGCGT CATCGGCGGT TTGGTCGGCG TGGGTTTGTC
    CGCCGCCGTC
    301   AGCCTCGTGT TCAATCATTT TGTAACCGAC TTCCCGATGG
    ACATTTCCGC
    351   CATGTCCGTC ATCGGCGCGG TCGCCTGTTC GACCGGAATC
    GGCATCGCGT
    401   TCGGCTTTAT GCCTGCCAAT AAAGCAGCCA AACTCAATCC
    GATAGACGCA
    451   TTGGCACAGG ATTGA
  • This corresponds to the amino acid sequence <SEQ ID 532; ORF134>:
  • 1 ..ARHGTEDFFM NNSDXIRQIV ESTTGTMKLL ISSIALISLV
    VGGIGVMNIM
    51   LVSVTERTKE IGIRMAIGAR RGNIXQQFLI EAVLICVIGG
    LVGVGLSAAV
    101   SLVFNHFVTD FPMDISAMSV IGAVACSTGI GIAFGFMPAN
    KAAKLNPIDA
    151   LAQD*
  • Further work revealed the complete nucleotide sequence <SEQ ID 533>:
  • 1 ATGTCGGTGC AAGCAGTATT GGCGCACAAA ATGCGTTCGC
    TTCTGACGAT
    51 GCTCGGCATC ATCATCGGTA TCGCGTCGGT GGTTTCCGTC
    GTCGCATTGG
    101 GCAATGGTTC GCAGAAAAAA ATCCTTGAAG ACATCAGTTC
    GATAGGGACG
    151 AACACCATCA GCATCTTCCC GGGGCGCGGC TTCGGCGACA
    GGCGCAGCGG
    201 CAGGATTAAA ACCCTGACCA TAGACGACGC AAAAATCATC
    GCCAAACAAA
    251 GCTACGTTGC TTCCGCCACG CCCATGACTT CGAGCGGCGG
    CACGCTGACT
    301 TACCGCAACA CCGACCTGAC CGCCTCGCTT TACGGCGTGG
    GCGAACAATA
    351 TTTCGACGTG CGCGGACTGA AGCTGGAAAC GGGGCGGCTG
    TTTGACGAAA
    401 ACGATGTGAA AGAAGACGCG CAGGTCGTCG TCATCGACCA
    AAATGTCAAA
    451 GACAAACTCT TTGCGGACTC GGATCCGTTG GGTAAAACCA
    TTTTGTTCAG
    501 GAAACGCCCC TTGACCGTCA TCGGCGTGAT GAAAAAAGAC
    GAAAACGCTT
    551 TCGGCAATTC CGACGTGCTG ATGCTTTGGT CGCCCTATAC
    GACGGTGATG
    601 CACCAAATCA CAGGCGAGAG CCACACCAAC TCCATCACCG
    TCAAAATCAA
    651 AGACAATGCC AATACCCAGG TTGCCGAAAA AGGGCTGACC
    GATCTGCTCA
    701 AAGCGCGGCA CGGCACGGAA GATTTCTTCA TGAACAACAG
    CGACAGCATC
    751 AGGCAGATAG TCGAAAGCAC CACCGGTACG ATGAAGCTGC
    TGATTTCCTC
    801 CATCGCCCTG ATTTCATTGG TAGTCGGCGG CATCGGCGTG
    ATGAACATCA
    851 TGCTGGTGTC CGTTACCGAG CGCACCAAAG AAATCGGCAT
    ACGGATGGCA
    901 ATCGGCGCGC GGCGCGGCAA TATTTTGCAG CAGTTTTTGA
    TTGAGGCGGT
    951 GTTAATCTGC GTCATCGGCG GTTTGGTCGG CGTGGGTTTG
    TCCGCCGCCG
    1001 TCAGCCTCGT GTTCAATCAT TTTGTAACCG ACTTCCCGAT
    GGACATTTCC
    1051 GCCATGTCCG TCATCGGCGC GGTCGCCTGT TCGACCGGAA
    TCGGCATCGC
    1101 GTTCGGCTTT ATGCCTGCCA ATAAAGCAGC CAAACTCAAT
    CCGATAGACG
    1151 CATTGGCACA GGATTGA
  • This corresponds to the amino acid sequence <SEQ ID 534; ORF134-1>:
  • 1 MSVQAVLAHK MRSLLTMLGI IIGIASVVSV VALGNGSQKK
    ILEDISSIGT
    51 NTISIFPGRG FGDRRSGRIK TLTIDDAKII AKQSYVASAT
    PMTSSGGTLT
    101 YRNTDLTASL YGVGEQYFDV RGLKLETGRL FDENDVKEDA
    QVVVIDQNVK
    151 DKLFADSDPL GKTILFRKRP LTVIGVMKKD ENAFGNSDVL
    MLWSPYTTVM
    201 HQITGESHTN SITVKIKDNA NTQVAEKGLT DLLKARHGTE
    DFFMNNSDSI
    251 RQIVESTTGT MKLLISSIAL ISLVVGGIGV MNIMLVSVTE
    RTKEIGIRMA
    301 IGARRGNILQ QFLIEAVLIC VIGGLVGVGL SAAVSLVFNH
    FVTDFPMDIS
    351 AMSVIGAVAC STGIGIAFGF MPANKAAKLN PIDALAQD*
  • Computer analysis of this amino acid sequence gave the following results:
  • Homology with the Hypothetical Protein o648 of E. coli (Accession Number AE000189)
  • ORF134 and o648 protein show 45% aa identity in 153aa overlap:
  • Orf134:   2 RHGTEDFFMNNSDXIRQIVESTTGTMKXXXXXXXXXXXVVGGIGVMNIMLVSVTERTKEI  61
                RHG +DFFN   D + + VE TT T++            VVGGIGVMNIMLVSVTERT+EI
    o648:   496 RHGKKDFFTWNMDGVLKTVEKTTRTLQLFLTLVAVISLVVGGIGVMNIMLVSVTERTREI 555
    Orf134:  62 GIRMAIGARRGNIXQQFLIEAXXXXXXXXXXXXXXXXXXXXXFNHFVTDFPMDISAMSVI 121
                GIRMA+GAR  ++ QQFLIEA                        F+ + +   S ++++
    o648:   556 GIRMAVGARASDVLQQFLIEAVLVCLVGGALGITLSLLIAFTLQLFLPGWEIGFSPLALL 615
    Orf134: 122 GAVACSTGIGIAFGFMPANKAAKLNPIDALAQD                            154
                 A  CST  GI FG++PA  AA+L+P+DALA++
    o648:   616 LAFLCSTVTGILFGWLPARNAARLDPVDALARE                            648

    Homology with a Predicted ORF from N. meningitidis (Strain A)
  • ORF134 shows 98.7% identity over a 154aa overlap with an ORF (ORF134a) from strain A of N. meningitidis:
  • Figure US20130064846A1-20130314-C00235
  • The complete length ORF134a nucleotide sequence <SEQ ID 535> is:
  • 1 ATGTCGGTGC AAGCAGTATT GGCGCACAAA ATGCGTTCGC
    TTCTGACGAT
    51 GCTCGGCATC ATCATCGGTA TCGCTTCGGT TGTCTCCGTC
    GTCGCATTGG
    101 GCAACGGTTC GCAGAAAAAA ATCCTTGAAG ACATCAGTTC
    GATAGGGACG
    151 AACACCATCA GCATCTTCCC AGGGCGCGGC TTCGGCGACA
    GGCGCAGCGG
    201 CAGGATTAAA ACCCTGACCA TAGACGACGC AAAAATCATC
    GCCAAACAAA
    251 GCTACGTTGC TTCCGCCACG CCCATGACTT CGAGCGGCGG
    CACGCTGACT
    301 TACCGCAATA CCGACCTGAC CGCTTCTTTG TACGGTGTGG
    GCGAACAATA
    351 TTTCGACGTG CGCGGGCTGA AGCTGGAAAC GGGGCGGCTG
    TTTGACGAAA
    401 ACGATGTGAA AGAAGACGCG CAGGTCGTCG TCATCGACCA
    AAATGTCAAA
    451 GACAAACTCT TTGCGGACTC GGATCCGTTG GGTAAAACCA
    TTTTGTTCAG
    501 GAAACGCCCC TTGACCGTCA TCGGCGTGAT GAAAAAAGAC
    GAAAACGCTT
    551 TCGGCAATTC CGACGTGCTG ATGCTTTGGT CGCCCTATAC
    GACGGTGATG
    601 CACCAAATCA CAGGCGAGAG CCACACCAAC TCCATCACCG
    TCAAAATCAA
    651 AGACAATGCC AATACCCAGG TTGCCGAAAA AGGGCTGACC
    GATCTGCTCA
    701 AAGCGCGGCA CGGCACGGAA GATTTCTTCA TGAACAACAG
    CGACAGCATC
    751 AGGCAGATAG TCGAAAGCAC CACCGGTACG ATGAAGCTGC
    TGATTTCCTC
    801 CATCGCCCTG ATTTCATTGG TAGTCGGCGG CATCGGCGTG
    ATGAACATCA
    851 TGCTGGTGTC CGTTACCGAG CGCACCAAAG AAATCGGCAT
    ACGGATGGCA
    901 ATCGGCGCGC GGCGCGGCAA TATTTTGCAG CAGTTTTTGA
    TTGAGGCGGT
    951 GTTAATCTGC GTCATCGGCG GTTTGGTCGG CGTGGGTTTG
    TCCGCCGCCG
    1001 TCAGCCTCGT GTTCAATCAT TTTGTAACCG ACTTCCCGAT
    GGACATTTCC
    1051 GCCATGTCCG TCATCGGCGC GGTCGCCTGT TCGACCGGAA
    TCGGCATCGC
    1101 GTTCGGCTTT ATGCCTGCCA ATAAAGCAGC CAAACTCAAT
    CCGATAGATG
    1151 CATTGGCGCA GGATTGA
  • This encodes a protein having amino acid sequence <SEQ ID 536>:
  • 1 MSVQAVLAHK MRSLLTMLGI IIGIASVVSV VALGNGSQKK
    ILEDISSIGT
    51 NTISIFPGRG FGDRRSGRIK TLTIDDAKII AKQSYVASAT
    PMTSSGGTLT
    101 YRNTDLTASL YGVGEQYFDV RGLKLETGRL FDENDVKEDA
    QVVVIDQNVK
    151 DKLFADSDPL GKTILFRKRP LTVIGVMKKD ENAFGNSDVL
    MLWSPYTTVM
    201 HQITGESHTN SITVKIKDNA NTQVAEKGLT DLLKARHGTE
    DFFMNNSDSI
    251 RQIVESTTGT MKLLISSIAL ISLVVGGIGV MNIMLVSVTE
    RTKEIGIRMA
    301 IGARRGNILQ QFLIEAVLIC VIGGLVGVGL SAAVSLVFNH
    FVTDFPMDIS
    351 AMSVIGAVAC STGIGIAFGF MPANKAAKLN PIDALAQD*
  • ORF134a and ORF134-1 show 100.0% identity in 388 aa overlap:
  • Figure US20130064846A1-20130314-C00236
  • Homology with a Predicted ORF from N. gonorrhoeae
  • ORF134 shows 96.8% identity over a 154aa overlap with a predicted ORF (ORF 134.ng) from N. gonorrhoeae:
  • Figure US20130064846A1-20130314-C00237
  • The complete length ORF134ng nucleotide sequence <SEQ ID 537> is:
  • 1 ATGTCGGTGC AAGCAGTATT GGCGCACAAA ATGCGTTCGC
    TTCTGACCAT
    51 GCTCGGCATC ATCATCGGTA TCGCTTCGGT TGTCTCCGTC
    GTCGCGCTGG
    101 GCAACGGTTC GCAGAAAAAA ATCCTCGAAG ACATCAGTTC
    GATGGGGACG
    151 AACACCATCA GCATCTTCCC CGGGCGCGGC TTCGGCGACA
    GGCGCAGCGG
    201 CAAAATCAAA ACCCTGACCA TAGACGACGC AAAAATCATC
    GCCAAACAAA
    251 GCTACGTTGC CTCCGCCACG CCCATGACTT CGAGCGGCGG
    CACGCTGACC
    301 TACCGCAATA CCGACCTGAC CGCTTCTTTG TACGGTGTGG
    GCGAACAATA
    351 TTTCGACGTG CGCGGGCTGA AGCTGGAAAC GGGGCGGCTG
    TTTGATGAGA
    401 ACGATGTGAA AGAAGACGCG CAAGTCGTCG TCATCGACCA
    AAATGTCAAA
    451 GACAAACTCT TTGCGGACTC GGATCCGTTG GGTAAAACCA
    TTTTGTTCAG
    501 GAAACGCCCC TTGACCGTCA TCGGCGTGAT GAAAAAAGAC
    GAAAACGCTT
    551 TCGGCAATTC CGACGTGCTG ATGCTTTGGT CGCCCTATAC
    GACGGTGATG
    601 CACCAAATCA CAGGCGAGAG CCACACCAAC TCCATCACCG
    TCAAAATCAA
    651 AGACAATGCC AATACCCGGG TTGCCGAAAA AGGGCTGGCC
    GAGCTGCTCA
    701 AAGCACGGCA CGGCACGGAA GACTTCTTTA TGAACAACAG
    CGACAGCATC
    751 AGGCAGATGG TCGAAAGCAC CACCGGTACG ATGAAGCTGC
    TGATTTCCTC
    801 CATCGCCCTG ATTTCATTGG TAGTCGGCGG CATCGGTGTG
    ATGAACATTA
    851 TGCTGGTGTC CGTTACCGAG CGCACCAAAG AAATCGGCAT
    ACGGATGGCA
    901 ATCGGCGCGC GGCGCGGCAA TATTTTGCAG CAGTTTTTGA
    TTGAGGCGGT
    951 GTTAATCTGC ATCATCGGAG GCTTGGTCGG CGTAGGTTTG
    TCCGCCGCCG
    1001 TCAGCCTCGT GTTCAATCAT TTTGTAACCG ATTTCCCGAT
    GGACATTTCG
    1051 GCGGCATCCG TTATCGGGGC GGTCGCCTGT TCGACCGGAA
    TCGGCATCGC
    1101 GTTCGGCTTT ATGCCTGCCA ATAAGGCAGC CAAACTCAAT
    CCGATAGATG
    1151 CATTGGCGCA GGATTGA
  • This encodes a protein having amino acid sequence <SEQ ID 538>:
  • 1 MSVQAVLAHK MRSLLTMLGI IIGIASVVSV VALGNGSQKK
    ILEDISSMGT
    51 NTISIFPGRG FGDRRSGKIK TLTIDDAKII AKQSYVASAT
    PMTSSGGTLT
    101 YRNTDLTASL YGVGEQYFDV RGLKLETGRL FDENDVKEDA
    QVVVIDQNVK
    151 DKLFADSDPL GKTILFRKRP LTVIGVMKKD ENAFGNSDVL
    MLWSPYTTVM
    201 HQITGESHTN SITVKIKDNA NTRVAEKGLA ELLKARHGTE
    DFFMNNSDSI
    251 RQMVESTTGT MKLLISSIAL ISLVVGGIGV MNIMLVSVTE
    RTKEIGIRMA
    301 IGARRGNILQ QFLIEAVLIC IIGGLVGVGL SAAVSLVFNH
    FVTDFPMDIS
    351 AASVIGAVAC STGIGIAFGF MPANKAAKLN PIDALAQD*
  • ORF134ng and ORF134-1 show 97.9% identity in 388 aa overlap:
  • Figure US20130064846A1-20130314-C00238
  • ORF134ng also shows homology to an E. coli ABC transporter:
  • sp|P75831|YBJZ_ECOLI HYPOTHETICAL ABC TRANSPORTER ATP-BINDING
    PROTEIN YBJZ >gi5 (AE000189) o648; similar to YBBA_HAEIN SW: P45247
    [Escherichia coli] Length = 648
    Score = 297 bits (753), Expect = 6e−80
    Identities = 162/389 (41%), Positives = 230/389 (58%), Gaps = 1/389 (0%)
    Query: 1 MSVQAVLAHKMRSLLTMLXXXXXXXXXXXXXXLGNGSQKKILEDISSMGTNTISIFPGRG 60
    M+ +A+ A+KMR+LLTML              +G+ +++ +L DI S+GTNTI ++PG+
    Sbjct: 260 MAWRALAANKMRTLLTMLGIIIGIASVVSIVVVGDAAKQMVLADIRSIGTNTIDVYPGKD 319
    Query: 61 FGDRRSGKIKTLTIDDAKIIAKQSYVASATPMTSSGGTLTYRNTDLTASLYGVGEQYFDV 120
    FGD      + L  DD   I KQ +VASATP  S    L Y N D+ AS  GV   YF+V
    Sbjct: 320 FGDDDPQYQQALKYDDLIAIQKQPWVASATPAVSQNLRLRYNNVDVAASANGVSGDYFNV 379
    Query: 121 RGLKLETGRLFDENDVKEDAQVVVIDQNVKDKLFAD-SDPLGKTILFRKRPLTVIGVMKK 179
     G+    G  F++  +   AQVVV+D N + +LF   +D +G+ IL    P  VIGV ++
    Sbjct: 380 YGMTFSEGNTFNQEQLNGRAQVVVLDSNTRRQLFPHKADVVGEVILVGNMPARVIGVAEE 439
    Query: 180 DENAFGNSDVLMLWSPYTTVMHQITGESHTNSITVKIKDNANTRVAEKGLAELLKARHGT 239
     ++ FG+S VL +W PY+T+  ++ G+S  NSITV++K+  ++  AE+ L  LL  REG
    Sbjct: 440 KQSMFGSSKVLRVWLPYSTMSGRVMGQSWLNSITVRVKEGFDSAEAEQQLTRLLSLRHGK 499
    Query: 240 EDFFMNNSDSIRQMVESTTGTMKXXXXXXXXXXXVVGGIGVMNIMLVSVTERTKEIGIRM 299
    +DFF  N D + + VE TT T++           VVGGIGVMNIMLVSVTERT+EIGIRM
    Sbjct: 500 KDFFTWNMDGVLKTVEKTTRTLQLFLTLVAVISLVVGGIGVMNIMLVSVTERTREIGIRM 559
    Query: 300 AIGARRGNILQQFLIEXXXXXXXXXXXXXXXXXXXXXXFNHFVTDFPMDISAASVIGAVA 359
    A+GAR  ++LQQFLIE                         F+  + +  S  +++ A
    Sbjct: 560 AVGARASDVLQQFLIEAVLVCLVGGALGITLSLLIAFTLQLFLPGWEIGFSPLALLLAFL 619
    Query: 360 CSTGIGIAFGFMPANKAAKLNPIDALAQD 388
    CST  GI FG++PA  AA+L+P+DALA++
    Sbjct: 620 CSTVTGILFGWLPARNAARLDPVDALARE 648
  • Based on this analysis, including the presence of the leader peptide and transmembrane regions in the gonococcal protein, it is prediceted that these proteins from N. meningitidis and N. gonorrhoeae, and their epitopes, could be useful antigens for vaccines or diagnostics, or for raising antibodies.
  • Example 65
  • The following partial DNA sequence was identified in N. meningitidis <SEQ ID 539>:
  • 1 ..GGGACGGGAG CGATGCTGCT GCTGTTTTAC GCGGTAACGA
    T.CTGCCTTT
    51   GGCCACTGGC GTTACCCTGA GTTACACCTC GTCGATTTTT
    TTGGCGGTAT
    101   TTTCCTTCCT GATTTTGAAA GAACGGATTT CCGTTTACAC
    GCAGGCGGTG
    151   CTGCTCCTTG GTTTTGCCGG CGTGGTATTG CTGCTTAATC
    CCTCGTTCCG
    201   CAGCGGTCAG GAAACGGCGG CACTCGCCGG GCTGGCGGGC
    GGCGCGATGT
    251   CCGGCTGGGC GTATTTGAAA GTGCGCGAAC TGTCTTTGGC
    GGGCGAACCC
    301   GGCTGGCGCG TCGTGTTTTA CCTTTCCGTG ACAGGTGTGG
    CGATGTCGTC
    351   GGTTTGGGCG ACGCTGACCG GCTGGCACAC CCTGTCCTTT
    CCATCGGCAG
    401   TTTATCTGTC GTGCATCGGC GTGTCCGCGC TGATTGCCCA
    ACTGTCGATG
    451   ACGCGCGCCT ACAAAGTCGG CGACAAATTC ACGGTTGCCT
    CGCTTTCCTA
    501   TATGACCGTC GTTTTTTCCG CTCTGTCTGC CGCATTTTTT
    CTGGGCGAAG
    551   AGCTTTTCTG GCAGGAAATA CTCGGTATGT GCATCATCAT
    CCTCAGCGGT
    601   ATTTTGA
  • This corresponds to the amino acid sequence <SEQ ID 540; ORF135>:
  • 1 ..GTGAMLLLFY AVTILPLATG VTLSYTSSIF LAVFSFLILK
    ERISVYTQAV
    51   LLLGFAGVVL LLNPSFRSGQ ETAALAGLAG GAMSGWAYLK
    VRELSLAGEP
    101   GWRVVFYLSV TGVAMSSVWA TLTGWHTLSF PSAVYLSCIG
    VSALIAQLSM
    151   TRAYKVGDKF TVASLSYMTV VFSALSAAFF LGEELFWQEI
    LGMCIIISAV
    201   F*
  • Further work revealed the complete nucleotide sequence <SEQ ID 541>:
  • 1 ATGGATACCG CAAAAAAAGA CATTTTAGGA TCGGGCTGGA
    TGCTGGTGGC
    51 GGCGGCCTGC TTTACCATTA TGAACGTATT GATTAAAGAG
    GCATCGGCAA
    101 AATTTGCCCT CGGCAGCGGC GAATTGGTCT TTTGGCGCAT
    GCTGTTTTCA
    151 ACCGTTGCGC TCGGGGCTGC CGCCGTATTG CGTCGGGACA
    mCTTCCGCAC
    201 GCCCCATTGG AAAAACCACT TAAACCGCAG TATGGTCGGG
    ACGGGGGCGA
    251 TGCTGCTGCT GTTTTACGCG GTAACGCATC TGCCTTTGGC
    CACTGGCGTT
    301 ACCCTGAGTT ACACCTCGTC GATTTTTTTG GCGGTATTTT
    CCTTCCTGAT
    351 TTTGAAAGAA CGGATTTCCG TTTACACGCA GGCGGTGCTG
    CTCCTTGGTT
    401 TTGCCGGCGT GGTATTGCTG CTTAATCCCT CGTTCCGCAG
    CGGTCAGGAA
    451 ACGGCGGCAC TCGCCGGGCT GGCGGGCGGC GCGATGTCCG
    GCTGGGCGTA
    501 TTTGAAAGTG CGCGAACTGT CTTTGGCGGG CGAACCCGGC
    TGGCGCGTCG
    551 TGTTTTACCT TTCCGTGACA GGTGTGGCGA TGTCGTCGGT
    TTGGGCGACG
    601 CTGACCGGCT GGCACACCCT GTCCTTTCCA TCGGCAGTTT
    ATCTGTCGTG
    651 CATCGGCGTG TCCGCGCTGA TTGCCCAACT GTCGATGACG
    CGCGCCTACA
    701 AAGTCGGCGA CAAATTCACG GTTGCCTCGC TTTCCTATAT
    GACCGTCGTT
    751 TTTTCCGCTC TGTCTGCCGC ATTTTTTCTG GGCGAAGAGC
    TTTTCTGGCA
    801 GGAAATACTC GGTATGTGCA TCATCATCCT CAGCGGTATT
    TTGAGCAGCA
    851 TCCGCCCCAC TGCCTTCAAA CAGCGGCTGC AATCCCTGTT
    CCGCCAAAGA
    901 TAA
  • This corresponds to the amino acid sequence <SEQ ID 542; ORF135-1>:
  • 1 MDTAKKDILG SGWMLVAAAC FTIMNVLIKE ASAKFALGSG
    ELVFWRMLFS
    51 TVALGAAAVL RRDXFRTPHW KNHLNRSMVG TGAMLLLFYA
    VTHLPLATGV
    101 TLSYTSSIFL AVFSFLILKE RISVYTQAVL LLGFAGVVLL
    LNPSFRSGQE
    151 TAALAGLAGG AMSGWAYLKV RELSLAGEPG WRVVFYLSVT
    GVAMSSVWAT
    201 LTGWHTLSFP SAVYLSCIGV SALIAQLSMT RAYKVGDKFT
    VASLSYMTVV
    251 FSALSAAFFL GEELFWQEIL GMCIIILSGI LSSIRPTAFK
    QRLQSLFRQR
    301 *
  • Computer analysis of this amino acid sequence gave the following results:
  • Homology with a Predicted ORF from N. meningitidis (Strain A)
  • ORF135 shows 99.0% identity over a 197aa overlap with an ORF (ORF135a) from strain A of N. meningitidis:
  • Figure US20130064846A1-20130314-C00239
  • The complete length ORF135a nucleotide sequence <SEQ ID 543> is:
  • 1 ATGGATACCG CAAAAAAAGA CATTTTAGGA TCGGGCTGGA
    TGCTGGTGGC
    51 GGCGGCCTGC TTTACCATTA TGAACGTATT GATTAAAGAG
    GCATCGGCAA
    101 AATTTGCCCT CGGCAGCGGC GAATTGGTCT TTTGGCGCAT
    GCTGTTTTCA
    151 ACCGTTGCGC TCGGGGCTGC CGCCGTATTG CGTCGGGACA
    CCTTCCGCAC
    201 GCCCCATTGG AAAAACCACT TAAACCGCAG TATGGTCGGG
    ACGGGGGCGA
    251 TGCTGCTGCT GTTTTACGCG GTAACGCATC TGCCTTTGGC
    CACCGGCGTT
    301 ACCCTGAGTT ACACCTCGTC GATTTTTTTG GCGGTATTTT
    CCTTCCTGAT
    351 TTTGAAAGAA CGGATTTCCG TTTACACGCA GGCGGTGCTG
    CTCCTTGGTT
    401 TTGCCGGCGT GGTATTGCTG CTTAATCCCT CGTTCCGCAG
    CGGTCAGGAA
    451 ACGGCGGCAC TCGCCGGGCT GGCGGGCGGC GCGATGTCCG
    GCTGGGCGTA
    501 TTTGAAAGTG CGCGAACTGT CTTTGGCGGG CGAACCCGGC
    TGGCGCGTCG
    551 TGTTTTACCT TTCCGTGACA GGTGTGGCGA TGTCATCGGT
    TTGGGCGACG
    601 CTGACCGGCT GGCACACCCT GTCCTTTCCA TCGGCAGTTT
    ATCTGTCGTG
    651 CATCGGCGTG TCCGCGCTGA TTGCCCAACT GTCGATGACG
    CGCGCCTACA
    701 AAGTCGGCGA CAAATTCACG GTTGCCTCGC TTTCCTATAT
    GACCGTCGTT
    751 TTTTCCGCTC TGTCTGCCGC ATTTTTTCTG GCCGAAGAGC
    TTTTCTGGCA
    801 GGAAATACTC GGTATGTGCA TCATCATCCT CAGCGGTATT
    TTGAGCAGCA
    851 TCCGCCCCAC TGCCTTCAAA CAGCGGCTGC AATCCCTGTT
    CCGCCAAAGA
    901 TAA
  • This encodes a protein having amino acid sequence <SEQ ID 544>:
  • 1 MDTAKKDILG SGWMLVAAAC FTIMNVLIKE ASAKFALGSG
    ELVFWRMLFS
    51 TVALGAAAVL RRDTFRTPHW KNHLNRSMVG TGAMLLLFYA
    VTHLPLATGV
    101 TLSYTSSIFL AVFSFLILKE RISVYTQAVL LLGFAGVVLL
    LNPSFRSGQE
    151 TAALAGLAGG AMSGWAYLKV RELSLAGEPG WRVVFYLSVT
    GVAMSSVWAT
    201 LTGWHTLSFP SAVYLSCIGV SALIAQLSMT RAYKVGDKFT
    VASLSYMTVV
    251 FSALSAAFFL AEELFWQEIL GMCIIILSGI LSSIRPTAFK
    QRLQSLFRQR
    301 *
  • ORF135a and ORF135-1 show 99.3% identity in 300 aa overlap:
  • Figure US20130064846A1-20130314-C00240
  • Homology with a Predicted ORF from N. gonorrhoeae
  • ORF135 shows 97% identity over a 201aa overlap with a predicted ORF (ORF135ng) from N. gonorrhoeae:
  • Figure US20130064846A1-20130314-C00241
  • An ORF135ng nucleotide sequence <SEQ ID 545> was predicted to encode a protein having amino acid sequence <SEQ ID 546>:
  • 1 MPSEKAFRRH LRTASFQGLH LHHFHQKVGK CGIIGFGIHI
    FPTLLPAAQG
    51 ILDIQLGLFR IDFAALAVYR RTQVDFIHTV IDGIASDQAF
    SEVVQILRRL
    101 NLGHFTDTHL IAQARRFIAD FGNIRPMRRG EAKTFCRCFR
    FDGIDGIHGD
    151 FRQCGHINRL APGKDCRNGK RDKVFFHTRH YNQVCLEKTN
    CSARKIKFRH
    201 QKQAKTHSTS LAARFTIRPS LSQRPFMDTA KKDILGSGWM
    LVAAACFTVM
    251 NVLIKEASAK FALGSGELVF WRMLFSTVTL GAAAVLRRDT
    FRTPHWKNHL
    301 NRSMVGTGAM LLLFYAVTHL PLTTGVTLSY TSSIFLAVFS
    FLILKERISV
    351 YTQAVLLLGF AGVVLLLNPS FRSGQEPAAL AGLAGGAMSG
    WAYLKVRELS
    401 LAGEPGWRVV FYLSATGVAM SSVWATLTGW HTLSFPSAVY
    LSGIGVSALI
    451 AQLSMTRAYK VGDKFTVASL SYMTVVFSAL SAAFFLGEEL
    FWQEILGMCI
    501 IISAAF*
  • Further work revealed the following gonococcal sequence <SEQ ID 547>:
  • 1 ATGGATACCG CAAAAAAAGA CATTTTAGGA TCGGGCTGGA
    TGCTGGTGGC
    51 GGCGGCCTGC TTCACCGTTA TGAACGTATT GATTAAAGAG
    GCATCGGCAA
    101 AATTTGCCCT CGGCAGCGGC GAATTGGTCT TTTGGCGCAT
    GCTGTTTTCA
    151 ACCGTTACGC TCGGTGCTGC CGCCGTATTG CGGCGCGACA
    CCTTCCGCAC
    201 GCCCCATTGG AAAAACCACT TAAACCGCAG TATGGTCGGG
    ACGGGGGCGA
    251 TGCTGCTGCT GTTTTACGCG GTAACGCATC TGCCTTTGAC
    AACCGGCGTT
    301 ACCCTGAGTT ACACCTCGTC GATTTTTttg GCGGTATTTT
    CCTTCCTCAT
    351 TTTGAAAGAA CGGATTTCCG TTTACACGCA GGCGGTGCTG
    CTCCTTGGTT
    401 TTGCCGGCGT GGTATTGCTG CTTAATCCCT CGTTCCGCAG
    CGGTCAGGAA
    451 CCGGCGGCAC TCGCCGGGCT GGCGGGCGGC GCGATGTCCG
    GCTGGGCGTA
    501 TTTGAAAGTG CGCGAACTGT CTTTGGCGGG CGAACCCGGC
    TGGCGCGTCG
    551 TGTTTTACCT TTCCGCAACC GGCGTGGCGA TGTCGTCggt
    ttgggcgacg
    601 Ctgaccggct ggCACAcccT GTCCTTTcca tcggcagttt
    ATCtgtCGGG
    651 CATCGGCGTG tccgcgCtgA TTGCCCAaCT GtcgatgAcg
    cGCGcctaca
    701 aaGTCGGCGA CAAATTCACG GTTGCCTCGC tttcctaTAt
    gaccgtcGTC
    751 TTTTCCGCCC TGTCTGCCGC ATTTTTTCTg ggcgaagagc
    tttTCtggCA
    801 GGAAATACTC GGTATGTGCA TCATTAtccT CAGCGGCATT
    TTGAGCAGCA
    851 TCCGCCCCAT TGCCTTCAAA CAGCGGCTGC AAGCCCTCTT
    CCGCCAAAGA
    901 TAA
  • This corresponds to the amino acid sequence <SEQ ID 548; ORF135ng-1>:
  • 1 MDTAKKDILG SGWMLVAAAC FTVMNVLIKE ASAKFALGSG
    ELVFWRMLFS
    51 TVTLGAAAVL RRDTFRTPHW KNHLNRSMVG TGAMLLLFYA
    VTHLPLTTGV
    101 TLSYTSSIFL AVFSFLILKE RISVYTQAVL LLGFAGVVLL
    LNPSFRSGQE
    151 PAALAGLAGG AMSGWAYLKV RELSLAGEPG WRVVFYLSAT
    GVAMSSVWAT
    201 LTGWHTLSFP SAVYLSGIGV SALIA QLSMT RAYKVGDKFT
    VASLSYMTVV
    251 FSALSAAFFL GEELFWQEIL GMCIIILSGI LSSIRPIAFK
    QRLQALFRQR
    301 *
  • ORF135ng-1 and ORF135-1 show 97.0% identity in 300 aa overlap:
  • Figure US20130064846A1-20130314-C00242
  • Based on this analysis, including the presence of several putative transmembrane domains in the gonococcal protein, it is predicted that the proteins from N. meningitidis and N. gonorrhoeae, and their epitopes, could be useful antigens for vaccines or diagnostics, or for raising antibodies.
  • Example 66
  • The following DNA sequence was identified in N. meningitidis <SEQ ID 549>:
  • 1 ATGAAGCGGC GTATAGCCGT CTTCGTCCTG TTCCCGCAGA
    TAATCCGAGT
    51 TTTGGGACAA CTGTTGCCGA AAATCGTCAA TACAGTTCCG
    GCACATCGGA
    101 TGCTCTTCCA GATTTTCGGG ATGTTCTTTT TCTTCATACA
    CCAGCAATAT
    151 CTGCCCGGGA TCGCCGAAAT CGATTCCCCA TGCGGCATCG
    TGTTCGGTGC
    201 GCTCCTCTTC CGTCATCTGC CCGCGCATTG CCTGTATGGT
    AAAGCCGCCG
    251 TAGGGGATGC CgTTGCACAC GAACATCCAG TCGCTGATGT
    CGTCAACCGG
    301 AACGCAAACG cTTTCGCCTT GTTCGACATT GGTCAGTTCG
    CCsGGTTCAT
    351 TGTTCAGCAC ACCGTAAATA TAAAGACCGT CAAAATAAAT
    ATCGTCGATC
    401 CACATATGTT CGCAAATTTC GCCGTCTTCG CCGTCTTGGA
    AAAAAGGGAC
    451 TTTGACCATG GCAAAATCCA AGGCGGAAAT AATGCGGCGG
    CGTTCCCAAA
    501 AAAGcTCGCG CCAAAAATAT TTGAATGTTT TACGGGCGCG
    TTCGTCGGCA
    551 CGGTTTACCG GTTCGTCTGC CTGTTCTACA TAATAAATGA
    CGGAATCGCC
    601 CATCATATCT GCTCCTCAAC GTGTACGGTA TCTGTTTGCA
    CCTTACTGCG
    651 GCTTTCTgcC kTCGGCATCC GATTCGGATT TGAAAAGTTC
    mmrwyATTCG
    701 GAATAG
  • This corresponds to the amino acid sequence <SEQ ID 550; ORF136>:
  • 1 MKRRIAVFVL FPQIIRVLGQ LLPKIVNTVP AHRMLFQIFG
    MFFFFIHQQY
    51 LPGIAEIDSP CGIVFGALLF RHLPAHCLYG KAAVGDAVAH
    EHPVADVVNR
    101 NANAFALFDI GQFAXFIVQH TVNIKTVKIN IVDPHMFANF
    AVFAVLEKRD
    151 FDHGKIQGGN NAAAFPKKLA PKIFECFTGA FVGTVYRFVC
    LFYIINDGIA
    201 HHSAPQRVRY LFAPYCGFLP SASDSDLKSS XXSE*
  • Further work revealed the complete nucleotide sequence <SEQ ID 551>:
  • 1 ATGATGAAGC GGCGTATAGC CGTCTTCGTC CTGTTCCCGC
    AGATAATCCG
    51 AGTTTTGGGA CAACTGTTGC CGAAAATCGT CAATACAGTT
    CCGGCACATC
    101 GGATGCTCTT CCAGATTTTC GGGATGTTCT TTTTCTTCAT
    ACACCAGCAA
    151 TATCTGCCCG GGATCGCCGA AATCGATTCC CCATGCGGCA
    TCGTGTTCGG
    201 TGCGCTCCTC TTCCGTCATC TGCCCGCGCA TTGCCTGTAT
    GGTAAAGCCG
    251 CCGTAGGGGA TGCCGTTGCA CACGAACATC CAGTCGCTGA
    TGTCGTCAAC
    301 CGGAACGCAA ACGCTTTCGC CTTGTTCGAC ATTGGTCAGT
    TCGCCGGGTT
    351 CATTGTTCAG CACACCGTAA ATATAAAGAC CGTCAAAATA
    AATATCGTCG
    401 ATCCACATAT GTTCGCAAAT TTCGCCGTCT TCGCCGTCTT
    GGAAAAAAGG
    451 GACTTTGACC ATGGCAAAAT CCAAGGCGGA AATAATGCGG
    CGGCGTTCCC
    501 AAAAAAGCTC GCGCCAAAAA TATTTGAATG TTTTACGGGC
    GCGTTCGTCG
    551 GCACGGTTTA CCGGTTCGTC TGCCTGTTCT ACATAATAAA
    TGACGGAATC
    601 GCCCATCATT CTGCTCCTCA ACGTGTACGG TATCTGTTTG
    CACCTTACTG
    651 CGGCTTTCTG CCTTCGGCAT CCGATTCGGA TTTGAAAAGT
    TCCAAATATT
    701 CGGAATAG
  • This corresponds to the amino acid sequence <SEQ ID 552; ORF136-1>:
  • 1 MMKRRIAVFV LFPQIIRVLG QLLPKIVNTV PAHRMLFQIF
    GMFFFFIHQQ
    51 YLPGIAEIDS PCGIVFGALL FRHLPAHCLY GKAAVGDAVA
    HEHPVADVVN
    101 RNANAFALFD IGQFAGFIVQ HTVNIKTVKI NIVDPHMFAN
    FAVFAVLEKR
    151 DFDHGKIQGG NNAAAFPKKL APKIFECFTG AFVGTVYRFV
    CLFYIINDGI
    201 AHHSAPQRVR YLFAPYCGFL PSASDSDLKS SKYSE*
  • Computer analysis of this amino acid sequence gave the following results:
  • Homology with a Predicted ORF from N. meningitidis (Strain A)
  • ORF136 shows 71.7% identity over. a 237aa overlap with an ORF (ORF136a) from strain A of N. meningitidis:
  • Figure US20130064846A1-20130314-C00243
  • The complete length ORF136a nucleotide sequence <SEQ ID 553> is:
  • 1 ATGATGAAGC GGCGTATAGC CGTCTTCGTC CTGCTCATGC
    AGAAAATCCG
    51 GATTTTGGGA CAACTGTTGC CGAAAATCGT CAATACAGTT
    CCGGCACATC
    101 GGATGCTCTT CCAGATNTTC GGGATGTTCT TTTTCTTCAT
    ACACCAGCAA
    151 TACCTGCCCG GGATCGCCGA AATCGATTCC CCATGCGGCA
    TCGTGTTCGG
    201 TACGCTCCTC TTCCGTCATC NGTCCACGCA TTGCCTGTAT
    GGTAAAGCCG
    251 CCGTAGGGAA TGCCGTTGCA CACGAACATC CAGTCGCTGA
    TGTCGTCAAC
    301 CGGAACGCAA ACGCTTTCGC CTTGTTCGAC ATTGGTCAGT
    TCGCCGGGTT
    351 CATTGTTCAG CACGCCATAA ATGTAAAGAC CGTCAAAATA
    AATATCGTCG
    401 ATCCACATAT GTTCGCAAAT TTCGCCNTCT TCGCCGTCTT
    GGAAAAAAGG
    451 GCTTTGACCA TGGCAAAATC TAAGGNGNNA NNGATGCGGC
    GGCGTTCCCA
    501 AAAAAGCTCG CGCCAAAAAT ATTTGAATGT TTTGCGGGCG
    CGTTCGCCGG
    551 CACGGTTTAC CGGTTTGTCT GCCTGTTCTA CATAATAAAT
    GACGGAATCG
    601 CCCATCATAT CTGCTCCTCA ACGTGTACGG TATCTGTTTG
    CACCTTACTG
    651 CGGCTTTCTG CCTTCGGCAT CCGATTCGGA TTTGAAAAGT
    TCCAAATATT
    701 CGGAATAG
  • This encodes a protein having amino acid sequence <SEQ ID 554>:
  • 1 MMKRRIAVFV LLMQKIRILG QLLPKIVNTV PAHRMLFQXF
    GMFFFFIHQQ
    51 YLPGIAEIDS PCGIVFGTLL FRHXSTHCLY GKAAVGNAVA
    HEHPVADVVN
    101 RNANAFALFD IGQFAGFIVQ HAINVKTVKI NIVDPHMFAN
    FAXFAVLEKR
    151 ALTMAKSKXX XMRRRSQKSS RQKYLNVLRA RSPARFTGLS
    ACST**MTES
    201 PIISAPQRVR YLFAPYCGFL PSASDSDLKS SKYSE*
  • ORF136a and ORF136-1 show 73.1% identity in 238 aa overlap:
  • Figure US20130064846A1-20130314-C00244
  • Homology with a Predicted ORF from N. gonorrhoeae
  • ORF136 shows 92.3% identity over a 234aa overlap with a predicted ORF (ORF136ng) from N. gonorrhoeae:
  • Figure US20130064846A1-20130314-C00245
  • The complete length ORF136ng nucleotide sequence <SEQ ID 555> is:
  • 1 ATGATGAAGC GGCGTATAGC CGTCTTCGTC CTGCTCATGC
    AGAAAATCCG
    51 GATTTTGGGA CAACTGTTGC CGAAAATCGT CAATACAGTT
    CCGGCACATC
    101 GGATGCTCTT CCAAATTTTC GGGATGTTCT TTTTCTTCAT
    ACACCGGCAA
    151 TACCTGCCCG GGATCGCCGA AATCGATTCC CCAGGCGGTA
    TCGTGTTCGG
    201 TACGCTCCTC TTCCGTCATC TGTCCGCGCA TTGCCTGTAC
    GGTAAAGCCG
    251 CCGTAGGGGA TGCCGTTGCA CACGAACATC CAGTCGCTGA
    TGTCGCCAAC
    301 CGGAACGCAA ACGCTTTCGC CTTGTTCGAC ATTGGTCAGT
    CCGCCGGGTT
    351 CATTGTTCAG CACACCGTAA ATATAAAGAC CGTCAAAATA
    AATATCGTCG
    401 ATCCACATAT GTTCGCAAAT TTCGCCGTCT TCGCCGTCTT
    GGAAAAAAGG
    451 GACTTTGACC ATGGCAAAAT CCAAGGCGGA AATAATGCGG
    CGGCGTTCCC
    501 AAAAAAGCTC GCGCCAAAAG TATTTGAATG TTTTACGGGC
    GCGTTCGCCG
    551 GCACGGTTTA CCGGTTCGTC TGCCTGTTCT ACATAATAAA
    TGACGGAATC
    601 GCCCATCATA CTGCTCCTCA ACGTGTACGG TATCTGTTTG
    CACCTTACCG
    651 CGGTTTTCTA CCTCCGGCAT CCGATTCGGA TTTGAAAAGT
    TCCAAATATT
    701 CGGAATAG
  • This encodes a protein having amino acid sequence <SEQ ID 556>:
  • 1 MMKRRIAVFV LLMQKIRILG QLLPKIVNTV PAHRMLFQIF
    GMFFFFIHRQ
    51 YLPGIAEIDS PGGIVFGTLL FRHLSAHCLY GKAAVGDAVA
    HEHPVADVAN
    101 RNANAFALFD IGQSAGFIVQ HTVNIKTVKI NIVDPHMFAN
    FAVFAVLEKR
    151 DFDHGKIQGG NNAAAFPKKL APKVFECFTG AFAGTVYRFV
    CLFYIINDGI
    201 AHHTAPQRVR YLFAPYRGFL PPASDSDLKS SKYSE*
  • ORF136ng and ORF136-1 show 93.6% identity in 235 aa overlap:
  • Figure US20130064846A1-20130314-C00246
  • Based on the presence of the putative transmembrane domains in the gonococcal protein, it is predicted that the proteins from N. meningitidis and N. gonorrhoeae, and their epitopes, could be useful antigens for vaccines or diagnostics, or for raising antibodies.
  • Example 67
  • The following partial DNA sequence was identified in N. meningitidis <SEQ ID 557>:
  • 1 ATGGAAAATA TGGTAACGTT TTCAAAAATC AGACCGCTTT
    TGGCAATCGC
    51 CGCCGCCGCG TTGCTTGCCG CC.TGCGGAC GGCGGGAAAT
    AATGCTGTCC
    101 GCAAGCCGGT GCAAACCGCC AAACCCGCCG CAGTGGTCGG
    TTTGGCACTC
    151 GGTGGCGGCG CATCTAAAGG ATTTGCCCAT GTAGGTATTA
    TTAAGGTTTT
    201 GAAAGAAAAC GGTATTCCTG TGAAGGTGGT TACCGGCACC
    TCCGCAGGTT
    251 CGATTGTCGG CAACCTTTTT GCATCGGGTA TGTCGCCCGA
    CCGCCTCGAA
    301 TTGGAAGCCG AAATTTTAGG CAAAACCGAT TTGGTCGATT
    TAACCTTGTC
    351 CACCAATGGG TTTATCAAAG GCGCAAAGCT GCAAAATTAC
    ATCAACCGAA
    401 AACTCCGCGG CATGCAGATT CAGCAGTTTC CCATCAAATT
    TGCCGCC..
  • This corresponds to the amino acid sequence <SEQ ID 558; ORF137>:
  • 1 MENMVTFSKI RPLLAIAAAA LLAAXRTAGN NAVRKPVQTA
    KPAAVVGLAL
    51 GGGASKGFAH VGIIKVLKEN GIPVKVVTGT SAGSIVGNLF
    ASGMSPDRLE
    101 LEAEILGKTD LVDLTLSTNG FIKGAKLQNY INRKLRGMQI
    QQFPIKFAA..
  • Further work revealed the complete nucleotide sequence <SEQ ID 559>:
  • 1 ATGGAAAATA TGGTAACGTT TTCAAAAATC AGACCGCTTT
    TGGCAATCGC
    51 CGCCGCCGCG TTGCTTGCCG CCTGCGGCAC GGCGGGAAAT
    AATGCTGTCC
    101 GCAAGCCGGT GCAAACCGCC AAACCCGCCG CAGTGGTCGG
    TTTGGCACTC
    151 GGTGGCGGCG CATCTAAAGG ATTTGCCCAT GTAGGTATTA
    TTAAGGTTTT
    201 GAAAGAAAAC GGTATTCCTG TGAAGGTGGT TACCGGCACA
    TCGGCAGGTT
    251 CGATTGTCGG CAGCCTTTTT GCATCGGGTA TGTCGCCCGA
    CCGCCTCGAA
    301 TTGGAAGCCG AAATTTTAGG CAAAACCGAT TTGGTCGATT
    TAACCTTGTC
    351 CACCAGTGGT TTTATCAAAG GCGAAAAGCT GCAAAATTAC
    ATCAACCGAA
    401 AAGTCGGCGG CAGGCAGATT CAGCAGTTTC CCATCAAATT
    TGCCGCCGTT
    451 GCTACTGATT TTGAAACCGG CAAGGCCGTC GCTTTCAATC
    AGGGGAATGC
    501 CGGGCAGGCT GTGCGCGCTT CCGCCGCCAT TCCCAATGTG
    TTCCAACCCG
    551 TTATCATCGG CAGGCATACA TATGTTGACG GCGGTCTGTC
    GCAGCCCGTG
    601 CCCGTCAGTG CCGCCCGGCG GCAGGGGGCG AATTTCGTGA
    TTGCCGTCGA
    651 TATTTCCGCC CGTCCGGGCA AAAACATCAG CCAAGGTTTC
    TTCTCTTATC
    701 TCGATCAGAC GCTGAACGTA ATGAGCGTTT CTGCGTTGCA
    AAATGAGTTG
    751 GGGCAGGCGG ATGTGGTTAT CAAACCGCAG GTTTTGGATT
    TGGGTGCAGT
    801 CGGCGGATTC GATCAGAAAA AACGCGCCAT CCGGTTGGGT
    GAGGAGGCAG
    851 CACGTGCCGC ATTGCCTGAA ATCAAACGCA AACTGGCGGC
    ATACCGTTAT
    901 TGA
  • This corresponds to the amino acid sequence <SEQ ID 560; ORF137-1>:
  • 1 MENMVTFSKI RPLLAIAAAA LLAACGTAGN NAVRKPVQTA
    KPAAVVGLAL
    51 GGGASKGFAH VGIIKVLKEN GIPVKVVTGT SAGSIVGSLF
    ASGMSPDRLE
    101 LEAEILGKTD LVDLTLSTSG FIKGEKLQNY INRKVGGRQI
    QQFPIKFAAV
    151 ATDFETGKAV AFNQGNAGQA VRASAAIPNV FQPVIIGRHT
    YVDGGLSQPV
    201 PVSAARRQGA NFVIAVDISA RPGKNISQGF FSYLDQTLNV
    MSVSALQNEL
    251 GQADVVIKPQ VLDLGAVGGF DQKKRAIRLG EEAARAALPE
    IKRKLAAYRY
    301 *
  • Computer analysis of this amino acid sequence gave the following results:
  • Homology with a Predicted ORF from N. meningitidis (Strain A)
  • ORF137 shows 93.3% identity over a 149aa overlap with an ORF (ORF137a) from strain A of N. meningitidis:
  • Figure US20130064846A1-20130314-C00247
  • The complete length ORF137a nucleotide sequence <SEQ ID 561> is:
  • 1 ATGGAAAATA TGGTAACGTT TTCAAAAATC AGACCGCTTT
    TGGCAATCGC
    51 CGCCGCCGCG TTGCTTGCCG CCTGCGGCAC GGCGGGAAAT
    AATGCTGCCC
    101 GCAAGCCGGT GCAAACCGCC AAACCCGCCG CAGTGGTCGG
    TTTGGCACTC
    151 GGTGGCGGCG CATCTAAAGG ATTTGCCCAT GTAGGTATTA
    TTAAGGTTTT
    201 GAAAGAAAAC GGTATTCCTG TGAAGGTGGT TACCGGCACA
    TCGGCAGGTT
    251 CGATAGTCGG CAGCCTTTTT GCATCGGGTA TGTCGCCCGA
    CCGCCTCGAA
    301 TTGGAAGCCG AAATTTTAGG TAAAACCGAT TTGGTCGATT
    TAACCTTGTC
    351 CACCAGTGGT TTTATCAAAG GCGAAAAGCT GCAAAATTAC
    ATCAACCGAA
    401 AAGTCGGCGG CAGGCGGATT CAGCAGTTTC CCATCAAATT
    TGCCGCCGTT
    451 GCTACTGATT TTGAAACCGG CAAGGCCGTC GCTTTCAATC
    AAGGGAATGC
    501 CGGGCAGGCT GTGCGCGCTT CCGCCGCCAT TCCCAATGTG
    TTCCAACCCG
    551 TTATCATCGG CAGGCATACA TATGTTGACG GCGGTCTGTC
    GCAGCCCGTG
    601 CCCGTCAGTG CCGCCCGGCG GCANGNNNNG NATNTCGTGA
    TTGCCGTCGA
    651 TATTTCCGCC CGTCCGAGCA AAAACATCAG CCAAGGCTTC
    TTCTCTTATC
    701 TCGATCAGAC GCTGAACGTA ATGAGCGTTT CCGCGTTGCA
    AAATGAGTTG
    751 GGGCAGGCGG ATGTGGTTAT CAAACCGCAG GTTTTGGATT
    TGGGTGCAGT
    801 CGGCGGATTC GATCAGAAAA AACGCGCCAT CCGGTTGGGT
    GAGGAGGCAG
    851 CACGTGCCGC ATTGCCTGAA ATCAAACGCA AACTGGCGGC
    ATACCGTTAT
    901 TGA
  • This encodes a protein having amino acid sequence <SEQ ID 562>:
  • 1 MENMVTFSKI RPLLAIAAAA LLAACGTAGN NAARKPVQTA
    KPAAVVGLAL
    51 GGGASKGFAH VGIIKVLKEN GIPVKVVTGT SAGSIVGSLF
    ASGMSPDRLE
    101 LEAEILGKTD LVDLTLSTSG FIKGEKLQNY INRKVGGRRI
    QQFPIKFAAV
    151 ATDFETGKAV AFNQGNAGQA VRASAAIPNV FQPVIIGRHT
    YVDGGLSQPV
    201 PVSAARRXXX XXVIAVDISA RPSKNISQGF FSYLDQTLNV
    MSVSALQNEL
    251 GQADVVIKPQ VLDLGAVGGF DQKKRAIRLG EEAARAALPE
    IKRKLAAYRY
    301 *
  • ORF137a and ORF137-1 show 97.3% identity in 300 aa overlap:
  • Figure US20130064846A1-20130314-C00248
  • Homology with a Predicted ORF from N. gonorrhoeae
  • ORF137 shows 89.9% identity over a 149aa overlap with a predicted ORF (ORF137ng) from N. gonorrhoeae:
  • Figure US20130064846A1-20130314-C00249
  • The complete length ORF137ng nucleotide sequence <SEQ ID 563> is:
  • 1 ATGGAAAATA TGGTAACGTT TTCAAAAATC AGATCATTTT
    TGGCAATCGC
    51 CGCCGCCGCG TTGCTTGCCG CCTGCGGTAC GGCGGGAAAC
    AATGCCGCCC
    101 GCAAGCCGGT GCAAACCGCC AAACCCGCCG CAGTGGTCGC
    TTTGGCACTC
    151 GGTGGCGGCG CATCTAAAGG ATTTGCCCAT ATAGGAATTG
    TTAAGGTTTT
    201 GAAAGAAAAC GGTATTCCTG TGAAGGTGGT TACCGGCACA
    TCGGCAGGTT
    251 CGATAGTCGG CAGCCTTTTG GCATCGGGTA TGTCGCCCGA
    CCGCCTCGAA
    301 TTGGAAGCCG AGATTTTAGG TAAAACCGAT TTAGTCGATT
    TAACCTTGTC
    351 CACCAGTGGT TTTATCAAAG GCGAAAAGCT GCAAAATTAC
    ATCAACCGAA
    401 AAGTCGGCGG CAGGCAGATT CAGCAGTTTC CCATCAAATT
    TGCCGCCGTT
    451 GCCACTGATT TTGAAACCGG CAAGGCCGTC GCTTTCAATC
    AAGGGAATGC
    501 CGGGCAGGCG GTTCGTGCTT CCGCCGCCAT TCCCAATGTG
    TTCCAGCCAG
    551 TCATCATCGG CAGGCACAAA TATGTTGACG GCGGTCTGTC
    GCAGCCCGTG
    601 CCCGTCAGTG CCGCTCGGCG GCAGGGGGCG AATTTCGTGA
    TTGCCGTCGA
    651 TATTTCCGCA CGTCCGAGCA AAAATGTCGG TCAAGGTTTC
    TTCTCTTATC
    701 TCGATCAGAC GCTGAACGTG ATGAGCGTTT CCGTGTTGCA
    AAACGAGTTG
    751 gggcAGGCGG ATGTGGTTAT CAAACCGCag gtTTTGGATT
    TGGGTGCAGT
    801 CGGCGGATTC GATCAGAAAA AGCGCGCCAT CCGGTTGGGC
    GAGGAGGCAG
    851 CACGTGCCGC ATTGCCTGAA ATCAAACGCA AACTGGCGGC
    ATACCGTTAT
    901 TGA
  • This encodes a protein having amino acid sequence <SEQ ID 564>:
  • 1 MENMVTFSKI RSFLAIAAAA LLAACGTAGN NAARKPVQTA
    KPAAVVALAL
    51 GGGASKGFAH IGIVKVLKEN GIPVKVVTGT SAGSIVGSLL
    ASGMSPDRLE
    101 LEAEILGKTD LVDLTLSTSG FIKGEKLQNY INRKVGGRQI
    QQFPIKFAAV
    151 ATDFETGKAV AFNQGNAGQA VRASAAIPNV FQPVIIGRHK
    YVDGGLSQPV
    201 PVSAARRQGA NFVIAVDISA RPSKNVGQGF FSYLDQTLNV
    MSVSVLQNEL
    251 GQADVVIKPQ VLDLGAVGGF DQKKRAIRLG EEAARAALPE
    IKRKLAAYRY
    301 *
  • ORF137ng and ORF137-1 show 96.0% identity in 300 aa overlap:
  • Figure US20130064846A1-20130314-C00250
  • Based on the presence of a predicted prokaryotic membrane lipoprotein lipid attachment site (underlined) in the gonococcal protein, it is predicted that the proteins from N. meningitidis and N. gonorrhoeae, and their epitopes, could be useful antigens for vaccines or diagnostics, or for raising antibodies.
  • Example 68
  • The following partial DNA sequence was identified in N. meningitidis <SEQ ID 565>:
  • 1 ATGTTTCGTT TACAATTCAG GCTGTTTCCC CCTTTGCGAA
    CCGCCATGCA
    51 CATCCTGTTG ACCGCCCTGC TCAAATGCCT CTCCCTGcTG
    CCGCTTTCCT
    101 GTCTGCACAC GCTGGGAAAC CGGCTCGGAC ATCTGGCGTT
    TTACCTTTTA
    151 AAGGAAGACC GCGCGCGCAT CGTCGCCmAT ATGCGGCAGG
    CGGGTTTGAA
    201 CCCCGACCCC AAAACGGTCA AAGCCGTTTT TGCGGAAACG
    GCAAAAGGCG
    251 GTTTGGAACT TGCCCCCGCG TTTTTCAGAA AACCGGAAGA
    CATAGAAACA
    301 ATGTTCAAAG CGGTACACGG CTGGGAACAT GTGCAGCAGG
    CTTTGGACAA
    351 ACACGAAGGG CTGCTATTC..
  • This corresponds to the amino acid sequence <SEQ ID 566; ORF138>:
  • 1 MFRLQFRLFP PLRTAMHILL TALLKCLSLL PLSCLHTLGN
    RLGHLAFYLL
    51 KEDRARIVAX MRQAGLNPDP KTVKAVFAET AKGGLELAPA
    FFRKPEDIET
    101 MFKAVHGWEH VQQALDKHEG LLF
  • Further work revealed the complete nucleotide sequence <SEQ ID 567>:
  • 1 ATGTTTCGTT TACAATTCAG GCTGTTTCCC CCTTTGCGAA
    CCGCCATGCA
    51 CATCCTGTTG ACCGCCCTGC TCAAATGCCT CTCCCTGCTG
    CCGCTTTCCT
    101 GTCTGCACAC GCTGGGAAAC CGGCTCGGAC ATCTGGCGTT
    TTACCTTTTA
    151 AAGGAAGACC GCGCGCGCAT CGTCGCCAAT ATGCGGCAGG
    CGGGTTTGAA
    201 CCCCGACCCC AAAACGGTCA AAGCCGTTTT TGCGGAAACG
    GCAAAAGGCG
    251 GTTTGGAACT TGCCCCCGCG TTTTTCAGAA AACCGGAAGA
    CATAGAAACA
    301 ATGTTCAAAG CGGTACACGG CTGGGAACAT GTGCAGCAGG
    CTTTGGACAA
    351 ACACGAAGGG CTGCTATTCA TCACGCCGCA CATCGGCAGC
    TACGATTTGG
    401 GCGGACGCTA CATCAGCCAG CAGCTTCCGT TCCCGCTGAC
    CGCCATGTAC
    451 AAACCGCCGA AAATCAAAGC GATAGACAAA ATCATGCAGG
    CGGGCAGGGT
    501 TCGCGGCAAA GGAAAAACCG CGCCTACCAG CATACAAGGG
    GTCAAACAAA
    551 TCATCAAAGC CCTGCGTTCG GGCGAAGCAA CCATCGTCCT
    GCCCGACCAC
    601 GTCCCCTCCC CTCAAGAAGG CGGGGAAGGC GTATGGGTGG
    ATTTCTTCGG
    651 CAAACCTGCC TATACCATGA CGCTGGCGGC AAAATTGGCA
    CACGTCAAAG
    701 GCGTGAAAAC CCTGTTTTTC TGCTGCGAAC GCCTGCCTGG
    CGGACAAGGT
    751 TTCGATTTGC ACATCCGCCC CGTCCAAGGG GAATTGAACG
    GCGACAAAGC
    801 CCATGATGCC GCCGTGTTCA ACCGCAATGC CGAATATTGG
    ATACGCCGTT
    851 TTCCGACGCA GTATCTGTTT ATGTACAACC GCTACAAAAT
    GCCGTAA
  • This corresponds to the amino acid sequence <SEQ ID 568; ORF138-1>:
  • 1 MFRLQFRLFP PLRTAMHILL TALLKCLSLL PLSCLHTLGN
    RLGHLAFYLL
    51 KEDRARIVAN MRQAGLNPDP KTVKAVFAET AKGGLELAPA
    FFRKPEDIET
    101 MFKAVHGWEH VQQALDKHEG LLFITPHIGS YDLGGRYISQ
    QLPFPLTAMY
    151 KPPKIKAIDK IMQAGRVRGK GKTAPTSIQG VKQIIKALRS
    GEATIVLPDH
    201 VPSPQEGGEG VWVDFFGKPA YTMTLAAKLA HVKGVKTLFF
    CCERLPGGQG
    251 FDLHIRPVQG ELNGDKAHDA AVFNRNAEYW IRRFPTQYLF
    MYNRYKMP*
  • Computer analysis of this amino acid sequence gave the following results:
  • Homology with a Predicted ORF from N. meningitidis (Strain A)
  • ORF138 shows 99.2% identity over a 123aa overlap with an ORF (ORF138a) from strain A of N. meningitidis:
  • Figure US20130064846A1-20130314-C00251
  • The complete length ORF138a nucleotide sequence <SEQ ID 569> is:
  • 1 ATGTTTCGTT TACAATTCAG GCTGTTTCCC CCTTTGCGAA
    CCGCCATGCA
    51 CATCCTGTTG ACCGCCCTGC TCAAATGCCT CTCCCTGCTG
    CCGCTTTCCT
    101 GTCTGCACAC GCTGGGAAAC CGGCTCGGAC ATCTGGCGTT
    TTACCTTTTA
    151 AAGGAAGACC GCGCGCGCAT CGTCGCCAAT ATGCGTCAGG
    CAGGCATGAA
    201 TCCCGACCCC AAAACGGTCA AAGCCGTTTT TGCGGAAACG
    GCAAAAGGCG
    251 GTTTGGAACT TGCCCCCGCG TTTTTCAGAA AACCGGAAGA
    CATAGAAACA
    301 ATGTTCAAAG CGGTACACGG CTGGGAACAT GTGCAGCAGG
    CTTTGGACAA
    351 ACACGAAGGG CTGCTATTCA TCACGCCGCA CATCGGCAGC
    TACGATTTGG
    401 GCGGACGCTA CATCAGCCAG CAGCTTCCGT TCCCGCTGAC
    CGCCATGTAC
    451 AAACCGCCGA AAATCAAAGC GATAGACAAA ATCATGCAGG
    CGGGCAGGGT
    501 TCGCGGCAAA GGAAAAACCG CGCCTACCAG CATACAAGGG
    GTCAAACAAA
    551 TCATCAAAGC CCTGCGTTCG GGCGAAGCAA CCATCGTCCT
    GCCCGACCAC
    601 GTCCCCTCCC CTCAAGAAGG CGGGGAAGGC GTATGGGTGG
    ATTTCTTCGG
    651 CAAACCTGCC TATACCATGA CGCTGGCGGC AAAATTGGCA
    CACGTCAAAG
    701 GCGTGAAAAC CCTGTTTTTC TGCTGCGAAC GCCTGCCTGG
    CGGACAAGGT
    751 TTCGATTTGC ACATCCGCCC CGTCCAAGGG GAATTGAACG
    GCGACAAAGC
    801 CCATGATGCC GCCGTGTTCA ACCGCAATGC CGAATATTGG
    ATACGCCGTT
    851 TTCCGACGCA GTATCTGTTT ATGTACAACC GCTACAAAAT
    GCCGTAA
  • This encodes a protein having amino acid sequence <SEQ ID 570>:
  •   1 MFRLQFRLFP PLRTAMHILL TALLKCLSLL PLSCLHTLGN RLGHLAFYLL
     51 KEDRARIVAN MRQAGLNPDP KTVKAVFAET AKGGLELAPA FFRKPEDIET
    101 MFKAVHGWEH VQQALDKHEG LLFITPHIGS YDLGGRYISQ QLPFPLTAMY
    151 KPPKIKAIDK IMQAGRVRGK GKTAPTSIQG VKQIIKALRS GEATIVLPDH
    201 VPSPQEGGEG VWVDFFGKPA YTMTLAAKLA HVKGVKTLFF CCERLPGGQG
    251 FDLHIRPVQG ELNGDKAHDA AVFNRNAEYW IRRFPTQYLF MYNRYKMP*
  • ORF138a and ORF138-1 show 99.7% identity over a 298aa overlap:
  • Figure US20130064846A1-20130314-C00252
  • Homology with a Predicted ORF from N. gonorrhoeae
  • ORF138 shows 94.3% identity over a 123aa overlap with a predicted ORF (ORF138ng) from N. gonorrhoeae:
  • Figure US20130064846A1-20130314-C00253
  • The complete length ORF138ng nucleotide sequence <SEQ ID 571> is:
  • 1 ATGTTTCGTT TACAATTCAG GCTGTTTCCC CCTTTGCGAA
    CCGCCATGCA
    51 CATCCTGTTG ACCGCCCTGC TCAAATGCCT CTCCCTGCTG
    TCGCTTTCCT
    101 GTCTGCACAC GCTGGGAAAC CGGCTCGGAC ATCTGGCGTT
    TTACCTTTTA
    151 AAGGAAGACC GCGCGCGCAT CGTCGCCAAT ATGCGGCAGG
    CGGGTTTGAA
    201 CCCCGACACG CAGACGGTCA AAGCCGTTTT TGCGGAAACG
    GCAAAATGCG
    251 GTTTGGAACT TGCCCCCGCG TTTTTCAAAA AACCGGAAGA
    CATCGAAACA
    301 ATGTTCAAAG CGGTACACGG CTGGGAACAC GTGCAGCAGG
    CTTTGGACAA
    351 GGGCGAAGGG CTGCTGTTCA TCACGCCGCA CATCGGCAGC
    TACGATTTGG
    401 GCGGACGCTA CATCAGCCAG CAGCTTCCGT TCCACCTGAC
    CGCCATGTAC
    451 AAGCCGCCGA AAATCAAAGC GATAGACAAA ATCATGCAGG
    CGGGCAGGGT
    501 GCGCGGCAAA GGCAAAACcg cgcccaccgg catACAAGGG
    GTCAAACAAA
    551 tcatcaAGGC CCTGCGCGCG GGCGAGGCAA CCAtcATCCT
    GCCCGACCAC
    601 GTCCCTTCTC CGCAGGAagg cggCGGCGTG TGGGCGGATT
    TTTTCGGCAA
    651 ACCTGCATAC acCATGACAC TGGCGGCAAA ATTGGCACAC
    GTCAAAGGCG
    701 TGAAAACCCT GTTTTTCTGC TGCGAACGCC TGCCCGACGG
    ACAAGGCTTC
    751 GTGTTGCACA TCCGCCCCGT CCAAGGGGAA TTGAACGGCA
    ACAAAGCCCA
    801 CGATGCCGCC GTGTTCAACC GCAATACCGA ATATTGGATA
    CGCCGTTTTC
    851 CGACGCAGTA TCTGTTTATG TACAACCGCT ATAAAACGCC
    GTAA
  • This encodes a protein having amino acid sequence <SEQ ID 572>:
  • 1 MFRLQFRLFP PLRTAMHILL TALLKCLSLL SLSCLHTLGN
    RLGHLAFYLL
    51 KEDRARIVAN MRQAGLNPDT QTVKAVFAET AKCGLELAPA
    FFKKPEDIET
    101 MFKAVHGWEH VQQALDKGEG LLFITPHIGS YDLGGRYISQ
    QLPFHLTAMY
    151 KPPKIKAIDK IMQAGRVRGK GKTAPTGIQG VKQIIKALRA
    GEATIILPDH
    201 VPSPQEGGGV WADFFGKPAY TMTLAAKLAH VKGVKTLFFC
    CERLPDGQGF
    251 VLHIRPVQGE LNGNKAHDAA VFNRNTEYWI RRFPTQYLFM
    YNRYKTP*
  • ORF138ng and ORF138-1 show 94.3% identity over 299aa overlap:
  • Figure US20130064846A1-20130314-C00254
  • In addition, ORF138ng is homologous to htrB protein from Pseudomonas fluorescens:
  • gnl|PID|e334283 (Y14568) htrB [Pseudomonas fluorescens] Length = 253
    Score = 80.8 bits (196), Expect = 9e−15
    Identities = 49/151 (32%), Positives = 79/151 (51%), Gaps = 6/151 (3%)
    Query: 101  MFKAVHGWEHVQQALDKGEGLLFITPHIGSYD-LGGRYISQQLPFHLTAMYKPPKIKAID 159
    + + V G E +++AL  G+G++ IT H+G+++ L   Y SQ  P      Y+PPK+KA+D
    Sbjct: 94  LVREVEGLEVLKEALASGKGVVGITSHLGNWEVLNHFYCSQCKPI---IFYRPPKLKAVD 150
    Query: 160 KIMQAGRVRGKGKTAPTGIQGVKQIIKALRAGEATIILPDHVPSPQEGGGVWADFFGKPA 219
    ++++  RV+   K A +  +G+  +IK +R G    I  D  P P E  G++  FF   A
    Sbjct: 151 ELLRKQRVQLGNKVAASTKEGILSVIKEVRKGGQVGIPAD--PEPAESAGIFVPFFATQA 208
    Query: 220 YTMTLAAKLAHVKGVKTLFFCCERLPDGQGF 250
     T      +        +F    RLPDG G+
    Sbjct: 209 LTSKFVPNMLAGGKAVGVFLHALRLPDGSGY 239
  • Based on this analysis, including the presence of a putative transmembrane domain in the gonococcal protein, it was predicted that the proteins from N. meningitidis and N. gonorrhoeae, and their epitopes, could be useful antigens for vaccines or diagnostics, or for raising antibodies.
  • ORF138-1 (57 kDa) was cloned in the pGex vectors and expressed in E. coli, as described above. The products of protein expression and purification were analyzed by SDS-PAGE. FIG. 14A shows the results of affinity purification of the GST-fusion protein. Purified GST-fusion protein was used to immunise mice, whose sera were used for ELISA (positive result) and FACS analysis (FIG. 14B). These experiments confirm that ORF138-1 is a surface-exposed protein, and that it is a useful immunogen.
  • Example 69
  • The following partial DNA sequence was identified in N. meningitidis <SEQ ID 573>:
  • 1 ..GCGTGGTCGG CCGGCGAATC GTGGCGTGTG TTAATGGAAA
    GTGAAACGTG
    51   GCATGCGGTG TGGAATACTT TGCGCTTCTC GGCGGCGGCG
    GTGTATGCGG
    101   CAGCGGTTTT GGGTGTGGTG TATGCGGCGC CGGCGCGGCG
    GTCGGCGTGG
    151   ATGCGCGGGC TGATGTTTTA GCCGTTTATG GTGTCGCCGG
    TTTGTGTTTC
    201   GGCGGGCGTG CTGCTGCTTT ATCCGCAGTG GACGGCTTCG
    TTGCCGTTGC
    251   TGCTGGCGAT GTATGCGCTG CTGGCGTATC CGTTTGTGGC
    AAAAGATGTT
    301   TTATCAGCCT GGGATGCACT GCCGCCGGAT TACGGCAGGG
    CGGCGGCGGG
    351   TTTGGGTGCA AACGGCTTTC AGACGGCATG CCGCATCACG
    TTCCCCCTCT
    401   TGAAACCGGC GTTGCGGCGC GGTCTGACTT TGGCGGCGGC
    AACCTGCGTG
    451   GGCGAATTTG CGGCGACATT GTTTCTGTCG CGTCCGGAAT
    GGCAGACGCT
    501   GACGACTTTG ATTTATGCCT ATTTGGGACG CGCGGGTGAG
    GATAATTACG
    551   CGCGGGCGAT GGTGCTG..
  • This corresponds to the amino acid sequence <SEQ ID 574; ORF139>:
  • 1 ..AWSAGESWRV LMESETWHAV WNTLRFSAAA VYAAAVLGVV
    YAAPARRSAW
    51   MRGLMFXPFM VSPVCVSAGV LLLYPQWTAS LPLLLAMYAL
    LAYPFVAKDV
    101   LSAWDALPPD YGRAAAGLGA NGFQTACRIT FPLLKPALRR
    GLTLAAATCV
    151   GEFAATLFLS RPEWQTLTTL IYAYLGRAGE DNYARAMVL..
  • Further work revealed the complete nucleotide sequence <SEQ ID 575>:
  • 1 ATGGATGGAC GGCGTTGGGT GGTATGGGGT GCTTTTGCCC
    TGCTGCCTTC
    51 GGCTTTTTTG GCGGTAATGG TCGTTGCGCC TTTGTGGGCG
    GTGGCGGCGT
    101 ATGACGGTTT GGCGTGGCGC GCGGTGCTGT CGGATGCCTA
    TATGCTCAAA
    151 CGTTTGGCGT GGACGGTATT TCAGGCAGCG GCAACCTGTG
    TGCTGGTGCT
    201 GCCTTTGGGC GTGCCTGTCG CGTGGGTGCT GGCGCGGCTG
    GCGTTTCCGG
    251 GGCGGGCTTT GGTGCTGCGC CTGCTGATGC TGCCTTTTGT
    GATGCCCACG
    301 TTGGTGGCGG GCGTGGGCGT GCTGGCCCTG TTCGGGGCGG
    ACGGGCTGTT
    351 GTGGCGCGGC AGGCAGGATA CGCCGTATCT GTTGTTGTAC
    GGCAATGTGT
    401 TTTTCAACCT TCCTGTGTTG GTCAGGGCGG CGTATCAGGG
    GTTTGTGCAA
    451 GTGCCTGCGG CACGGCTTCA GACGGCACGG ACGTTGGGCG
    CGGGGGCGTG
    501 GCGGCGGTTT TGGGACATTG AAATGCCCGT TTTGCGCCCG
    TGGCTTGCCG
    551 GCGGCGTGTG CCTTGTCTTT CTGTATTGTT TTTCCGGGTT
    CGGGCTGGCG
    601 CTGCTGCTGG GCGGCAGCCG TTATGCCACG GTCGAAGTGG
    AAATTTACCA
    651 GTTGGTCATG TTCGAACTCG ATATGGCGGT TGCTTCGGTG
    CTGGTGTGGC
    701 TGGTGTTGGG GGTAACGGCG GCGGCAGGGT TGCTGTATGC
    GTGGTTCGGC
    751 AGGCGCGCGG TTTCGGATAA GGCGGTTTCC CCTGTGATGC
    CGTCGCCGCC
    801 GCAGTCGGTC GGGGAATATG TGCTGCTGGC GTTTGCGGCG
    GCGGTGTTGT
    851 CTGTGTGCTG CCTGTTTCCT TTGTTGGCAA TTGTTGTGAA
    AGCGTGGTCG
    901 GCCGGCGAAT CGTGGCGTGT GTTAATGGAA AGTGAAACGT
    GGCAGGCGGT
    951 GTGGAATACT TTGCGCTTCT CGGCGGCGGC GGTGTATGCG
    GCGGCGGTTT
    1001 TGGGTGTGGT GTATGCGGCG GCGGCGCGGC GGTCGGCGTG
    GATGCGCGGG
    1051 CTGATGTTTT TGCCGTTTAT GGTGTCGCCG GTTTGTGTTT
    CGGCGGGCGT
    1101 GCTGCTGCTT TATCCGCAGT GGACGGCTTC GTTGCCGTTG
    CTGCTGGCGA
    1151 TGTATGCGCT GCTGGCGTAT CCGTTTGTGG CAAAAGATGT
    TTTATCAGCC
    1201 TGGGATGCAC TGCCGCCGGA TTACGGCAGG GCGGCGGCGG
    GTTTGGGTGC
    1251 AAACGGCTTT CAGACGGCAT GCCGCATCAC GTTCCCCCTC
    TTGAAACCGG
    1301 CGTTGCGGCG CGGTCTGACT TTGGCGGCGG CAACCTGCGT
    GGGCGAATTT
    1351 GCGGCGACAT TGTTTCTGTC GCGTCCGGAA TGGCAGACGC
    TGACGACTTT
    1401 GATTTATGCC TATTTGGGAC GCGCGGGTGA GGATAATTAC
    GCGCGGGCGA
    1451 TGGTGCTGAC ATTGCTGTTG GCGGCGTTCG CGCTGGGTAT
    TTTCCTGCTG
    1501 TTGGACGGCG GCGAAGGCGG AAAACAGACG GAAACGTTAT
    AA
  • This corresponds to the amino acid sequence <SEQ ID 576; ORF139-1>:
  • 1 MDGRRWVVWG AFALLPSAFL AVMVVAPLWA VAAYDGLAWR
    AVLSDAYMLK
    51 RLAWTVFQAA ATCVLVLPLG VPVAWV LARL AFPGRALVLR
    LLMLPFVMPT
    101 LVAGVGVLAL FGADGLLWRG RQDTPYLLLY GNVFFNLPVL
    VRAAYQGFVQ
    151 VPAARLQTAR TLGAGAWRRF WDIEMPVLRP WLAGGVCLVF
    LYCFSGFGLA
    201 LLLGGSRYAT VEVEIYQLVM FELDMAVASV LVWLVLGVTA
    AAGLLYAWFG
    251 RRAVSDKAVS PVMPSPPQSV GEYVLLAFAA AVLSVCCLFP
    LLAIVVKAWS
    301 AGESWRVLME SETWQAVWNT LRFSAAAVYA AAVLGVVYAA
    AARRSAWMRG
    351 LMFLPFMVSP VCVSAGVLLL YPQWTASLPL LLAMYALLAY
    PFVAKDVLSA
    401 WDALPPDYGR AAAGLGANGF QTACRITFPL LKPALRRGLT
    LAAATCVGEF
    451 AATLFLSRPE WQTLTTLIYA YLGRAGEDNY ARAM VLTLLL
    AAFALGIFLL
    501 LDGGEGGKQT ETL*
  • Computer analysis of this amino acid sequence gave the following results:
  • Homology with a Predicted ORF from N. meningitidis (Strain A)
  • ORF139 shows 94.7% identity over a 189aa overlap with an ORF (ORF139a) from strain A of N. meningitidis:
  • Figure US20130064846A1-20130314-C00255
  • The complete length ORF139a nucleotide sequence <SEQ ID 577> is:
  • 1 ATGGATGGAC GGCGTTGGGC GGTATGGGGT GCTTTTGCCC
    TGCTGCCTTC
    51 GGCTTTTTTG GCGGCAATGG TCGTTGCGCC TTTGTGGGCG
    GTGGCGGCGT
    101 ATGACGGTTT GGCGTGGCGC GCGGTGCTGT CGGATGCCTA
    TATGCTCAAA
    151 CGTTTGGCGT GGACGGTATT TCAGGCAGCG GCAACCTGTG
    TGCTGGTGCT
    201 GCCTTTGGGC GTGCCTGTCG CGTGGGTGCT GGCGCGGCTG
    GCGTTTCCGG
    251 GGCGGGCTTT GGTGCTGCGC CTGCTGATGC TGCCTTTTGT
    GATGCCCACG
    301 TTGGTGGCGG GCGTGGGCGT GCTGGCTCTG TTCGGGGCGG
    ACGGCCTGTN
    351 GTGGCGCGGC TGGCAGGATA CGCCGTATCT GTTGTTGTAC
    GGCAATGTGT
    401 TTTTTNACCT TCCTGTGTTG GTCAGGGCGG CATATCAGGG
    GTTTGTGCAA
    451 GTGCCTGCGG CACGGCTTCA GACGGCACNG ACATTGGGCG
    CGGGGGCGTG
    501 GCGGCGGTTT TGGGACATTG AAATGCCCGT TTTGCGCCCG
    TGGCTTGCCG
    551 GCGGCGTGTG CCTTGTCTTC CTGTATTGTT TTTCGGGGTT
    CGGGCTGGCA
    601 TTGCTGCTGG GCGGCAGCCG TTATGCCACG GTCGAAGTGG
    AAATTTACCA
    651 GTTGGTCATG TTCGAACTCG ATATGGCGGT TGCTTCGGTG
    CTNGTGTGGC
    701 TGGTGTNGGG GGTAACNGCG GCGGCAGGGT TGCTGTATGC
    GTGGTTCGGC
    751 AGGCGCGCGG TTTCGGATAA GGCNGTTTCC CCTGTGATGC
    CGTCGCCGCC
    801 GCAGTCGGTC GGGGAATATG TGCTNCTGGC GTTTGCGGCG
    GCGGTGTNGT
    851 CTGTGTGCTG CCTGTTTCNT TTGTTGGCAA TTGTTGTGAA
    AGCGTGGTCG
    901 GCCGGCGAAT CGTGGCGTGT GTTAATGGAA AGTGAAACGT
    GGCAGGCGGT
    951 GTGGAATACT NTGCGCTTCT CGGCGGCGGC GGTGTATGCG
    GCGGCGGTTT
    1001 TGGGTGTGGT GTATGCGGCG GCGGCGCGGC GGTCGGCGTG
    GATGCGCGGG
    1051 CTGATGTTTT TGCCGTTTAT GGTGTCGCCG GTTTGTGTTT
    CGGCGGGCGT
    1101 GCTGCTGCTT NATCCGCAGT GGACGGCTTC GTTGCCGCTG
    CTGCTGGCGA
    1151 TGTATGCGCT GCTGGCGTAT CCGTTTGTGG CAAAAGATGT
    TTTATCAGCC
    1201 TGNGATGCAC TGCCGCCGGA TTACGGCAGG GCGGCGGCGG
    GTTTGGGTGC
    1251 AAACGGCTTT CAGACGGCAT GCCGCATCAC GTTCCCCCTC
    TTGAAACCGG
    1301 CGTTGCGGCG CGGTCTGACT TTGGCGGCGG CAACCTGCGT
    GGGCGAATTT
    1351 GCGGCAACCT TGTTCNTGTC GCGTCNCGAG TGGCAGACGC
    TGACGACTTT
    1401 GATTTATGCC TATNTGGGAC GCGCGGGTGA NGATAATTAC
    GCGCGGGCGA
    1451 TGGTGCTGAC ATTGCTGTTG GCGGCGTTCG CGCTGGGTAT
    NTTCCTGCTG
    1501 TTGGACGGCG GCGAAGGCGG AAAACGGACG GAAACGTTAT
    AA
  • This encodes a protein having amino acid sequence <SEQ ID 578>:
  • 1 MDGRRWAVWG AFALLPSAFL AAMVVAPLWA VAAYDGLAWR
    AVLSDAYMLK
    51 RLAWTVFQAA ATCVLVLPLG VPVAWV LARL AFPGRALVLR
    LLMLPFVMPT
    101 LVAGVGVLAL FGADGLXWRG WQDTPYLLLY GNVFFXLPVL
    VRAAYQGFVQ
    151 VPAARLQTAX TLGAGAWRRF WDIEMPVLRP WLAGGVCLVF
    LYCFSGFGLA
    201 LLLGGSRYAT VEVEIYQLVM FELDMAVASV LVWLVXGVTA
    AAGLLYAWFG
    251 RRAVSDKAVS PVMPSPPQSV GEYVLLAFAA AVXSVCCLFX
    LLAIVVKAWS
    301 AGESWRVLME SETWQAVWNT XRFSAAAVYA AAVLGVVYAA
    AARRSAWMRG
    351 LMFLPFMVSP VCVSAGVLLL XPQWTASLPL LLAMYALLAY
    PFVAKDVLSA
    401 XDALPPDYGR AAAGLGANGF QTACRITFPL LKPALRRGLT
    LAAATCVGEF
    451 AATLFXSRXE WQTLTTLIYA YXGRAGXDNY ARAMVLTLLL
    AAFALGXFLL
    501 LDGGEGGKRT ETL*
  • ORF139a and ORF139-1 show 96.5% homology over a 514aa overlap:
  • Figure US20130064846A1-20130314-C00256
  • Homology with a Predicted ORF from N. gonorrhoeae
  • ORF139 shows 95.2% identity over a 189aa overlap with a predicted ORF (ORF139ng) from N. gonorrhoeae:
  • Figure US20130064846A1-20130314-C00257
  • The complete length ORF139ng nucleotide sequence <SEQ ID 579> is predicted to encode a protein having amino acid sequence <SEQ ID 580>:
  • 1 MDGRCWAVRG AFSLLPSAFL AVMVVAPLWA VAAYDGLAWR
    AVLSDAYMLK
    51 RLAWTVFQAA ATCVLVLPLG VPVAWVLARL AFPGRALVLR
    LLMLPFVMPT
    101 LVAGVGVLAL FGADGLLWRG RQDTPYLLLY GNVFFNLPVL
    VRAAYQGFAQ
    151 VPAARLQTAR TLGAGAWRPF WDIEMPVLRP WLAGGVCLVF
    LYCFSGFGLA
    201 LLLGGSRYAT VEVEIYQLVM FELDMAGASA LVWLVLGVTA
    AAGLLYAWFG
    251 RRAVSDKAVS PVMPSPPQSV GEYVLLAFSV AVLSVCCLFP
    LSAIVVKAWS
    301 AGESRRVLME SETWQAVWNT LRFSAAAVFA AAVLGVVYAA
    AARRLVWMRG
    351 LVFLPFMVSP VCVSAGVLLL YPGWTASLPL LLAMYALLAY
    PFVAKDVLSA
    401 WDALPPDYGR AAAGLGANGF QTACRITFPL LKPALRRGLT
    LAAATCVGEF
    451 AATLFLSRPE WQTLTTLIYA YLGRAGEDNY ARAMVLTLLL
    SAFAVCIFLL
    501 LDNGEGGKRT ETL*
  • Further work revealed a variant gonococcal DNA sequence <SEQ ID 581>:
  • 1 ATGGATGGAC GGTGTTGGGC GGTACGGGGT GCTTTTTCCC
    TGCTGCCTTC
    51 GGCTTTTTTG GCGGTAATGG TCGTTGCGCC TTTGTGGGCG
    GTGGCGGCGT
    101 ATGACGGTTT GGCGTGGCGC GCGGTGCTGT CGGATGCCTA
    TATGCTCAAA
    151 CGTTTGGCGT GGACGGTGTT TCAGGCGGCG GCAACCTGTG
    TGCTGGTGCT
    201 GCCTTTGGGC GTGCCTGTCG CGTGGGTGCT GGCGCGGCTG
    GCGTTCCCGG
    251 GGCGGGCTTT GGTGCTGCGC CTGCTGATGC TGCCGTTTGT
    GATGCCCACG
    301 CTGGTGGCGG GCGTGGGCGT GCTGGCTCTG TTCGGGGCGG
    ACGGGCTGTT
    351 GTGGCGCGGC CGGCAGGATA CGCCGTATCT GTTGTTGTAC
    GGCAATGTGT
    401 TTTTCAACCT GCCCGTGTTG GTCAGGGCGG CGTATCAGGG
    GTTTGCTCAA
    451 GTGCCTGCGG CACGGCTTCA GACGGCACGG ACGTTGGGCG
    CGGGGGCGTG
    501 GCGGCGGTTT TGGGACATTG AAATGCCCGT TTTGCGCCCG
    TGGCTTGCCG
    551 GCGGCGTGTG CCTTGTCTTC CTGTATTGTT TTTCGGGGTT
    CGGGCTGGCA
    601 TTGCTGTTGG GCGGCAGCCG TTATGCCACG GTCGAAGTGG
    AAATTTACCA
    651 GTTGGTTATG TTCGAACTCG ATATGGCGGG GGCTTCGGCG
    CTGGTGTGGC
    701 TGGTGTTGGG GGTAACGGCG GCGGCAGGGT TGCTGTATGC
    GTGGTTCGGC
    751 AGGCGCGCGG TTTCGGATAA GGCGGTTTCC CCCGTGATGC
    CGTCGCCGCC
    801 GCAATCGGTG GGGGAATATG TATTGCTGGC ATTTTCGGTG
    GCGGTGTTGT
    851 CCGTGTGCTG CCTGTTTCCT TTGTCGGCAA TTGTTGTGAA
    AGCGTGGTCG
    901 GCCGGCGAAT CGCGGCGTGT GTTAATGGAA AGTGAAACGT
    GGCAGGCAGT
    951 GTGGAATACt ttGCGCTTTT CGGCGGCGGC GGTGTTTGCG
    GCGGCGGTTT
    1001 TGGGTGTGGT GTATGCGGCG GCGGCGCGGC GGCTGGTGTG
    GATGCGCGGA
    1051 CTGGTGTTTT TACCGTTTAT GGTGTCGCCG GTTTGTGTTT
    CGGCGGGCGT
    1101 GCTGCTGCTT TATCCGGGGT GGACGGCTTC GTTACCGCTG
    CTGCTGGCGA
    1151 TGTATGCGCT GCTGGCGTAT CCGTTTGTGG CAAAAGATGT
    TTTATCGGCC
    1201 TGGGATGCAC TGCCGCCGGA TTACGGCAGG GCGGCGGCAG
    GTTTGGGCGC
    1251 AAACGGCTTT CAGACGGCAT GCCGTATCAC GTTCCCCCTC
    TTGAAACCGG
    1301 CGTTGCGGCG CGGTCTGACT TTGGCGGCGG CGACGTGTGT
    GGGCGAATTT
    1351 GCGGCAACCT TGTTCCTGTC GCGTCCGGAA TGGCAGACGT
    TGACGACTTT
    1401 GATTTATGCC TATTTGGGGC GTGCGGGTGA GGACAATTAT
    GCGCGGGCAA
    1451 TGGTGTTGAC ATTGCTGTTG TCGGCATTTG CGGTGTGCAT
    TTTCCTGCTG
    1501 TTGGACAACG GCGAAGGCGg aaaACGGACG GAAACGTTAT
    AA
  • This corresponds to the amino acid sequence <SEQ ID 582; ORF139ng-1>:
  • 1 MDGRCWAVRG AFSLLPSAFL AVMVVAPLWA VAAYDGLAWR
    AVLSDAYMLK
    51 RLAWTVFQAA ATCVLVLPLG VPVAWVL ARL AFPGRALVLR
    LLMLPFVMPT
    101 LVAGVGVLAL FGADGLLWRG RQDTPYLLLY GNVFFNLPVL
    VRAAYQGFAQ
    151 VPAARLQTAR TLGAGAWRRF WDIEMPVLRP WLAGGVCLVF
    LYCFSGFGLA
    201 LLLGGSRYAT VEVEIYQLVM FELDMAGASA LVWLVLGVTA
    AAGLLYAWFG
    251 RRAVSDKAVS PVMPSPPQSV GEYVLLAFSV AVLSVCCLFP
    LSAIVVKAWS
    301 AGESRRVLME SETWQAVWNT LRFSAAAVFA AAVLGVVYAA
    AARRLVWMRG
    351 LVFLPFMVSP VCVSAGVLLL YPGWTASLPL LLAMYALLAY
    PFVAKDVLSA
    401 WDALPPDYGR AAAGLGANGF QTACRITFPL LKPALRRGLT
    LAAATCVGEF
    451 AATLFLSRPE WQTLTTLIYA YLGRAGEDNY ARAMVLTLLL
    SAFAVCIFLL
    501 LDNGEGGKRT ETL*
  • ORF139ng-1 and ORF139-1 show 95.9% identity over 513aa overlap:
  • Figure US20130064846A1-20130314-C00258
  • Based on the presence of a predicted binding-protein-dependent transport systems inner membrane component signature (underlined) in the gonococcal protein, it is predicted that the proteins from N. meningitidis and N. gonorrhoeae, and their epitopes, could be useful antigens for vaccines or diagnostics, or for raising antibodies.
  • Example 70
  • The following partial DNA sequence was identified in N. meningitidis <SEQ ID 583>:
  • 1 ATGGACGGCT GGACACAGAC GCTGTCCGCG CAAACCCTGT
    TGGGCATTTC
    51 GGCGGCGGCA ATCATCCTCA TTCTGATTTT AATCGTCAGA
    TTCCGCATCC
    101 ACGCGCTGCT GACACTGGTC ATCGTCAGCC TGCTGACGGC
    TTTGGCAACC
    151 GGTTTGCCCA CAGGCAGCAT TGTCAAAGAC ATACTGGTCA
    AAAACTTCGG
    201 CGGCACGCTC GGCGGCGTGG CGCTTCTGGT CGGCCTGGGC
    GCGATGCTCG
    251 AACGTTTGGT C...
  • This corresponds to the amino acid sequence <SEQ ID 584; ORF140>:
  • 1 MDGWTQTLSA QTLLGISAAA IILILILIVR FRIHALLTLV
    IVSLLTALAT
    51 GLPTGSIVKD ILVKNFGGTL GGVALLVGLG AMLERLV..
  • Further work revealed the complete nucleotide sequence <SEQ ID 585>:
  • 1 ATGGACGGCT GGACACAGAC GCTGTCCGCG CAAACCCTGT
    TGGGCATTTC
    51 GGCGGCGGCA ATCATCCTCA TTCTGATTTT AATCGTCAAA
    TTCCGCATCC
    101 ACGCGCTGCT GACACTGGTC ATCGTCAGCC TGCTGACGGC
    TTTGGCAACC
    151 GGTTTGCCCA CAGGCAGCAT TGTCAACGAC ATACTGGTCA
    AAAACTTCGG
    201 CGGCACGCTC GGCGGCGTGG CGCTTCTGGT CGGCCTGGGC
    GCGATGCTCG
    251 GACGTTTGGT CGAAACATCC GGCGGCGCAC AGTCGCTGGC
    GGACGCGCTG
    301 ATCCGGATGT TCGGCGAAAA ACGCGCACCG TTCGCGCTGG
    GCGTTGCCTC
    351 GCTGATTTTC GGCTTCCCGA TTTTCTTCGA TGCCGGACTA
    ATCGTCATGC
    401 TGCCCATCGT GTTCGCCACC GCACGGCGCA TGAAACAGGA
    CGTACTGCCC
    451 TTCGCGCTTG CCTCCATCGG CGCATTTTCC GTCATGCACG
    TCTTCCTGCC
    501 GCCCCATCCG GGCCCGATTG CCGCTTCCGA ATTTTACGGC
    GCGAACATCG
    551 GCCAAGTTTT GATTTTGGGT CTGCCGACCG CCTTCATCAC
    ATGGTATTTC
    601 AGCGGCTATA TGCTCGGCAA AGTGTTGGGG CGCACCATCC
    ATGTTCCCGT
    651 TCCCGAACTG CTCAGCGGCG GCACGCAAGA CAACGACCTG
    CCGAAAGAAC
    701 CTGCCAAAGC AGGAACGGTC GTCGCCATCA TGCTGATTCC
    CATGCTGCTG
    751 ATTTTCCTGA ATACCGGCGT ATCGGCCCTC ATCAGCGAAA
    AACTCGTAAG
    801 TGCGGACGAA ACCTGGGTTC AGACGGCAAA AATAATCGGT
    TCGACACCGA
    851 TCGCCCTTCT GATTTCCGTA TTGGTCGCAC TGTTTGTCTT
    GGGACGCAAA
    901 CGCGGCGAAA GCGGCAGCGC GTTGGAAAAA ACCGTGGACG
    GCGCACTCGC
    951 CCCCGTCTGT TCCGTGATTC TGATTACCGG CGCGGGCGGT
    ATGTTCGGCG
    1001 GCGTTTTGCG CGCTTCCGGC ATCGGCAAGG CACTCGCCGA
    CAGCATGGCG
    1051 GATTTGGGCA TTCCCGTCCT TTTGGGCTGT TTCCTTGTCG
    CCTTGGCACT
    1101 GCGTATCGCG CAAGGTTCGG CAACCGTCGC CCTGACCACC
    GCCGCCGCGC
    1151 TGATGGCTCC TGCCGTTGCC GCCGCCGGCT TTACCGACTG
    GCAGCTCGCC
    1201 TGTATCGTAT TGGCAACGGC GGCAGGTTCG GTCGGTTGCA
    GCCACTTCAA
    1251 CGACTCCGGC TTCTGGCTGG TCGGCCGTCT CTTGGACATG
    GACGTACCGA
    1301 CCACGCTGAA AACCTGGACG GTCAACCAAA CCCTCATCGC
    ACTCATCGGC
    1351 TTTGCCTTGT CCGCACTGCT GTTCGCCATC GTCTGA
  • This corresponds to the amino acid sequence <SEQ ID 586; ORF140-1>:
  • 1 MDGWTQTLSA QTLLGISAAA IILILILIVK FRIHALLTLV
    IVSLLTALAT
    51 GLPTGSIVND ILVKNFGGTL  GGVALLVGLG AMLGRLV ETS
    GGAQSLADAL
    101 IRMFGEKRAP FALGVASLIF GFPIFFDAGL IVMLPIVFAT
    ARRMKQDVLP
    151 FALASIGAFS VMHVFLPPHP GPIAASEFYG ANIGQVLILG
    LPTAFITWYF
    201 SGYMLGKVLG RTIHVPVPEL LSGGTQDNDL PKEPAKAGTV
    VAIMLIPMLL
    251 IFLNTGVSAL ISEKLVSADE TWVQTAKIIG STPIALLISV
    LVALFVLGRK
    301 RGESGSALEK TVDGALAPVC SVILITGAGG MFGGVLRASG
    IGKALADSMA
    351 DLGIPVLLGC FLVALALRIA QGSATVALTT AAALMAPAVA
    AAGFTDWQLA
    401 CIVLATAAGS VGCSHFNDSG FWLVGRLLDM DVPTTLKTWT
    VNQTLIALIG
    451 FALSALLFAI V*
  • Computer analysis of this amino acid sequence gave the following results:
  • Homology with a Predicted ORF from N. meningitidis (Strain A)
  • ORF140 shows 95.4% identity over a 87aa overlap with an ORF (ORF140a) from strain A of N. meningitidis:
  • Figure US20130064846A1-20130314-C00259
  • The complete length ORF140a nucleotide sequence <SEQ ID 587> is:
  • 1 ATGGACGGCT GGACACAGAC GCTGTCCGCG CAAACCCTGT
    TGGGCATTTC
    51 GGCGGCGGCA ATCATCCTCA TTCTGATTTT AATCGTCAAA
    TTCCGCATCC
    101 ACGCGCTGCT GACACTGGTC ATCGTCAGCC TGCTGACGGC
    TTTGGCAACC
    151 GGTTTGCCCA CAGGCAGCAT TGTCAACGAC GTACTGGTCA
    AAAACTTCGG
    201 CGGCACGCTC GGCGGCGTGG CGCTTCTGGT CGGCCTGGGC
    GCGATGCTCG
    251 GACGTTTGGT CGAAACATCC GGCGGCGCAC AGTCGCTGGC
    GGACGCGCTG
    301 ATCCGGATGT TCGGCGAAAA ACGCGCACCG TTCGCGCTGG
    GCGTTGCCTC
    351 GCTGATTTTC GGCTTCCCGA TTTTCTTCGA TGCCGGACTA
    ATCGTCATGC
    401 TGCCCATCGT GTTCGCCACC GCACGGCGCA TGAAACAGGA
    CGTACTGCCC
    451 TTCGCGCTTG CCTCCATCGG CGCATTTTCC GTCATGCACG
    TCTTCCTGCC
    501 GCCCCATCCG GGCCCGATTG CCGCTTCCGA ATTTTACGGC
    GCGAACATCG
    551 GCCAAGTTTT GATTTTGGGT CTGCCGACCG CCTTCATCAC
    ATGGTATTTC
    601 AGCGGCTATA TGCTCGGCAA AGTGTTGGGG CGCACCATCC
    ATGTTCCCGT
    651 TCCCGAACTG CTCAGCGGCG GCACGCAAGA CAACGACCTG
    CCGAAAGAAC
    701 CTGCCAAAGC AGGAACGGTC GTCGCCATCA TGCTGATTCC
    CATGCTGCTG
    751 ATTTTCCTGA ATACCGGCGT ATCGGCCCTC ATCAGCGAAA
    AACTCGTAAG
    801 TGCGGACGAA ACCTGGGTTC AGACGGCAAA AATAATCGGT
    TCGACACCGA
    851 TCGCCCTTCT GATTTCCGTA TTGGTCGCAC TGTTTGTCTT
    GGGACGCAAA
    901 CGCGGCGAAA GCGGCAGCGC GTTGGAAAAA ACCGTGGACG
    GCGCACTCGC
    951 CCCCGTCTGT TCCGTGATTC TGATTACCGG CGCGGGCGGT
    ATGTTCGGCG
    1001 GCGTTTTGCG CGCTTCCGGC ATCGGCAAGG CACTCGCCGA
    CAGCATGGCG
    1051 GATTTGGGCA TTCCCGTCCT TTTGGGCTGT TTCCTTGTCG
    CCTTGGCACT
    1101 GCGTATCGCG CAAGGTTCGG CAACCGTCGC CCTGACCACC
    GCCGCCGCGC
    1151 TGATGGCTCC TGCCGTTGCC GCCGCCGGCT TTACCGACTG
    GCAGCTCGCC
    1201 TGTATCGTAT TGGCAACGGC GGCAGGTTCG GTCGGTTGCA
    GCCACTTCAA
    1251 CGACTCCGGC TTCTGGCTGG TCGGCCGCCT CTTGGACATG
    GACGTACCGA
    1301 CCACGCTGAA AACCTGGACG GTCAACCAAA CCCTCATCGC
    ACTCATCGGC
    1351 TTTGCCTTGT CCGCACTGCT GTTCGCCATC GTCTGA
  • This encodes a protein having amino acid sequence <SEQ ID 588>:
  • 1 MDGWTQTLSA QTLLGISAAA IILILILIVK FRIHALLTLV
    IVSLLTALAT
    51 GLPTGSIVND VLVKNFGGTL  GGVALLVGLG AMLGRLV ETS
    GGAQSLADAL
    101 IRMFGEKRAP FALGVASLIF GFPIFFDAGL IVMLPIVFAT
    ARRMKQDVLP
    151 FALASIGAFS VMHVFLPPHP GPIAASEFYG ANIGQVLILG
    LPTAFITWYF
    201 SGYMLGKVLG RTIHVPVPEL LSGGTQDNDL PKEPAKAGTV
    VAIMLIPMLL
    251 IFLPNTGVSAL ISEKLVSADE TWVQTAKIIG STPIALLISV
    LVALFVLGRK
    301 RGESGSALEK TVDGALAPVC SVILITGAGG MFGGVLRASG
    IGKALADSMA
    351 DLGIPVLLGC FLVALALRIA QGSATVALTT AAALMAPAVA
    AAGFTDWQLA
    401 CIVLATAAGS VGCSHFNDSG FWLVGRLLDM DVPTTLKTWT
    VNQTLIALIG
    451 FALSALLFAI V*
  • ORF140a and ORF140-1 show 99.8% identity over a 461aa overlap:
  • Figure US20130064846A1-20130314-C00260
  • Homology with a Predicted ORF from N. gonorrhoeae
  • ORF140 shows 92% identity over a 87aa overlap with a predicted ORF (ORF140ng) from N. gonorrhoeae:
  • Figure US20130064846A1-20130314-C00261
  • The complete length ORF140ng nucleotide sequence <SEQ ID 589> was predicted to encode a protein having amino acid sequence <SEQ ID 590>:
  • 1 MDGRTQTLSA QTLLGISAAA IILILILIVK FRIRALLTLV
    IASLLTALAT
    51 GLPTGSIVND VLVKNFGGTL  GGVALLVGLG AMLGRLV ETS
    GGAQSLADAL
    101 IRMFGEKRAP FAPGVASLIF GFPIFFDAGL IVMLPIVFAT
    ARRMKQDVLP
    151 FALASVGAFS VMHVFLPPHP GPIAASEFYG ANIGQVLILG
    LPTAFITWYF
    201 SGYMLGKVLG RAIHVPVPEL LSGGTQDSDP PKEPAKAGTV
    VAVMLIPMLL
    251 IFLNTGVSAL ISEKLVSADE TWVQTAKMIG STPVALLISV
    LAALLVLGRK
    301 RGESGSTLEK TVDGALAPAC SVILITGAGG MFGGVLRASG
    IGKALADSMA
    351 DLGIPVLLGC FLVALALRIA QGSATVALTT AAALMAPAVA
    AAGFTDWQLA
    401 CIVLATAAGS VGCSHFNDSG FWLVGRLSDM DVPTTLKTWT
    VNQTLIAFIG
    451 FALSALLFAI V*
  • Further work revealed a variant gonococcal DNA sequence <SEQ ID 591>:
  • 1 ATGGACGGCC GGACACAGAC GCTGTCCGCG CAAACCTTGT
    TGGGCATTTC
    51 GGCGGCGGCA ATCATCCTCA TTCTGATTTT AATCGTCAAA
    TTCCGCATCC
    101 GCGCGCTGCT GACACTGGTC ATCGCCAGCC TGCTGACGGC
    TTTGGCAACC
    151 GGTTTGCCCA CAGGCAGCAT CGTCAACGAC GTACTGGTCA
    AAAACTTCGG
    201 CGGCACGCTC GGCGGCGTGG CGCTTCTGGT CGGTCTGGGC
    GCAATGCTCG
    251 GACGTTTGGT AGAAACATCC GGCGGCGCAC AGTCGCTGGC
    GGACGCGCTG
    301 ATCCGGATGT TCGGCGAAAA ACGCGCACCG TTCGCTCCGG
    GCGTTGCCTC
    351 GCTGATTTTC GGCTTCCCGA TTTTCTTCGA TGCCGGACTA
    ATCGTCATGC
    401 TGCCCATCGT ATTCGCCACC GCACGGCGCA TGAAACAGGA
    CGTACTGCCC
    451 TTCGCGCTTG CCTCCGTCGG CGCATTTTCC GTCATGCACG
    TCTTCCTGCC
    501 GCCCCATCCG GGCCCGATTG CCGCTTCCGA ATTTTACGGC
    GCGAACATCG
    551 GCCAGGTTTT GATTTTGGGT CTGCCGACCG CCTTCATCAC
    ATGGTATTTC
    601 AGCGGCTATA TGCTCGGCAA AGTGTTGGGG CGCGCCATCC
    ATGTTCCCGT
    651 TCCCGAACTG CTCAGCGGCG GCACGCAAGA CAGCGACCCG
    CCGAAAGAAC
    701 CTGCCAAAGC AGGAACGGTC GTCGCCGTCA TGCTGATTCC
    CATGCTGCTG
    751 ATTTTCCTGA ATACCGGCGT ATCAGCCCTC ATCAGCGAAA
    AACTCGTAAG
    801 TGCGGACGAA ACTTGGGTTC AGACGGCAAA AATGATCGGT
    TCGACACCTG
    851 TCGCCCTTCT GATTTCCGTA TTGGCCGCAC TGTTGGTCTT
    GGGACGCAAA
    901 CGCGGCGAAA GCGGCAGCAC GTTGGAAAAA ACCGTGGACG
    GCGCACTCGC
    951 CCCCGCCTGT TCCGTGATTC TGATTACCGG CGCGGGCGGT
    ATGTTCGGCG
    1001 GCGTTTTGCG CGCTTCCGGC ATCGGCAAGG CACTCGCCGA
    CAGCATGGCG
    1051 GATTTGGGCA TTCCCGTCCT TTTGGGCTGC TTCCTTGTCG
    CCTTGGCACT
    1101 GCGTATCGCG CAAGGTTCGG CAACCGTCGC CCTGACCACA
    GCCGCCGCGC
    1151 TGATGGCTCC TGCCGTTGCC GCCGCCGGCT TTACCGACTG
    GCAGCTCGCC
    1201 TGTATCGTAT TGGCAACGGC GGCAGGTTCG GTCGGTTGCA
    GCCACTTCAA
    1251 CGACTCCGGC TTCTGGCTGG TCGGCCGCCT CTTGGATATG
    GACGTACCGA
    1301 CCACGCTGAA AACCTGGACG GTCAACCAAA CCCTCATCGC
    ATTCATCGGC
    1351 TTTGCCTTGT CCGCACTGCT GTTTGCCATC GTCTGA
  • This corresponds to the amino acid sequence <SEQ ID 592; ORF140ng-1>:
  • 1 MDGRTQTLSA QTLLGISAAA IILILILIVK FRIRALLTLV
    IASLLTALAT
    51 GLPTGSIVND VLVKNFGGTL  GGVALLVGLG AMLGRLV ETS
    GGAQSLADAL
    101 IRMFGEKRAP FAPGVASLIF GFPIFFDAGL IVMLPIVFAT
    ARRMKQDVLP
    151 FALASVGAFS VMHVFLPPHP GPIAASEFYG ANIGQVLILG
    LPTAFITWYF
    201 SGYMLGKVLG RAIHVPVPEL LSGGTQDSDP PKEPAKAGTV
    VAVMLIPMLL
    251 IFLTGVSAL ISEKLVSADE TWVQTAKMIG STPVALLISV
    LAALLVLGRK
    301 RGESGSTLEK TVDGALAPAC SVILITGAGG MFGGVLRASG
    IGKALADSMA
    351 DLGIPVLLGC FLVALALRIA QGSATVALTT AAALMAPAVA
    AAGFTDWQLA
    401 CIVLATAAGS VGCSHFNDSG FWLVGRLLDM DVPTTLKTWT
    VNQTLIAFIG
    451 FALSALLFAI V*
  • ORF140ng-1 and ORF140-1 show 96.3% identity over 461aa overlap:
  • Figure US20130064846A1-20130314-C00262
  • Furthermore, ORF140ng-1 is homologous to an E. coli protein:
  • gi|882633 (U29579) ORF_o454 [Escherichia coli] >gi|1789097 (AE000358) o454;
    This 454 aa ORF is 34% identical (9 gaps) to 444 residues of an approx. 
    456 aa protein GNTP_BACLI SW: P46832 [Escherichia coli] Length = 454
    Score = 210 bits (529), Expect = 1e−53
    Identities = 130/384 (33%), Positives = 194/384 (49%), Gaps = 19/384 (4%)
    Query: 88 ETSGGAQSLADALIRMFGEKRAPFAPGVASLIFGFPIFFDAGLIVMLPIVFATARRMKQD 147
    E SGGA+SLA+   R  G+KR   A  +A+   G P+FFD G I++ PI++  A+  K
    Sbjct: 80 EHSGGAESLANYFSRKLGDKRTIAALTLAAFFLGIPVFFDVGFIILAPIIYGFAKVAKIS 139
    Query: 148 VLPFALASVGAFSVMHVFLPPHPGPIAASEFYGANIGQVLILGLPTAFITWYFSGYMLGK 207
     L F L   G    +HV +PPHPGP+AA+    A+IG + I+G+  + I    GY   K
    Sbjct: 140 PLKFGLPVAGIMLTVHVAVPPHPGPVAAAGLLHADIGWLTIIGIAIS-IPVGVVGYFAAK 198
    Query: 208 VLGRAIHVPVPELL----------SGGTQDSDPPKEPAKAGTVVAVMLIPMLLIFLNTGV 257
    ++ +  +    E+L           G T+ SD    P  A  V ++++IP+ +I   T
    Sbjct: 199 IINKRQYAMSVEVLEQMQLAPASEEGATKLSDKINPPGVA-LVTSLIVIPIAIIMAGT-- 255
    Query: 258 SALISEKLVSADETWVQTAKMIGSTPXXXXXXXXXXXXXXGRKRGESGSTLEKTVDGALA 317
       +S  L+      + T ++IGS                  +RG S       +  AL
    Sbjct: 256 ---VSATLMPPSHPLLGTLQLIGSPMVALMIALVLAFWLLALRRGWSLQHTSDIMGSALP 312
    Query: 318 PACSVILITGAGGMFGGVLRASGIGKALADSMADLGIPVLLGCFLVALALRIAQGSXXXX 377
     A  VIL+TGAGG+FG VL  SG+GKALA+ +  + +P+L   F+++LALR +QGS
    Sbjct: 313 TAAVVILVTGAGGVFGKVLVESGVGKALANMLQMIDLPLLPAAFIISLALRASQGS--AT 370
    Query: 378 XXXXXXXXXXXXXXXGFTDWQLACIVLATAAGSVGCSHFNDSGFWLVGRLLDMDVPTTLK 437
                   G   Q   + LA   G +G SH NDSGFW+V + L + V   LK
    Sbjct: 371 VAILTTGGLLSEAVMGLNPIQCVLVTLAACFGGLGASHINDSGFWIVTKYLGLSVADGLK 430
    Query: 438 TWTVNQTLIAFIGFALSALLFAIV 461
    TWTV  T++ F GF ++  ++A++
    Sbjct: 431 TWTVLTTILGFTGFLITWCVWAVI 454
  • Based on this analysis, including the identification of the presence of a putative leader sequence (double-underlined) and several putative transmembrane domains (single-underlined) in the gonococcal protein, it is predicted that the proteins from N. meningitidis and N. gonorrhoeae, and their epitopes, could be useful antigens for vaccines or diagnostics, or for raising antibodies.
  • Example 71
  • The following partial DNA sequence was identified in N. meningitidis <SEQ ID 593>:
  • 1 ..GATTTCGGCA TATCGCCCGT GTATCTTTGG GTTGCCGCCG
    CGTTCAAACA
    51   TTTGCTGTCG CCGTGGGCTG CCGACTCATA CGATGTCGCA
    CGCTTTGCAG
    101   GCGTATTTTT TGCCGTTATC GGACTGACTT CCTGCGGCTT
    TGCCGGTTTC
    151   AACTTTTTGG GCAGACACCA CGGGCGCAC. GTCGTCCTGA
    TTCTCATCGG
    201   CTGTATCGGG CTGATTCCAG TTGCCCATTT CCTCAACCCC
    GCTGCCGCCG
    251   CCTTTGCCGC CGCCGGACTG GTGCTGCACG GTTATTCTTT
    GGCTCGCCGG
    301   CGCGTGATTG CCGCCTCTTT TCTGCTCGGT ACGGGCTGGA
    CGCTGATGTC
    351   GTTGGCAGCA GCTTATCCGG CAGCATTTGC CCTGATGCTG
    CCCTTGCCCG
    401   TACTGATGTT TTTCCGTCCG ..
  • This corresponds to the amino acid sequence <SEQ ID 594; ORF141>:
  • 1 ..DFGISPVYLW VAAAFKHLLS PWAADSYDVA RFAGVFFAVI
    GLTSCGFAGF
    51   NFLGRHHGRX VVLILIGCIG LIPVAHFLNP AAAAFAAAGL
    VLHGYSLARR
    101   RVIAASFLLG TGWTLMSLAA AYPAAFALML PLPVLMFFRP
    ..
  • Further work revealed the complete nucleotide sequence <SEQ ID 595>:
  • 1 ATGCTGACCT ATACCCCGCC CGATGCCCGC CCGCCCGCCA
    AAACCCACGA
    51 AAAGCCGTGG CTGCTGCTGT TGATGGCGTT TGCCTGGTTG
    TGGCCCGGCG
    101 TGTTTTCCCA CGATTTGTGG AATCCTGACG AACCTGCCGT
    CTATACCGCC
    151 GTCGAAGCAC TGGCAGGCAG CCCCACCCCC TTGGTTGCCC
    ATCTGTTCGG
    201 TCAAACCGAT TTCGGCATAC CGCCCGTGTA TCTTTGGGTT
    GCCGCCGCGT
    251 TCAAACATTT GCTGTCGCCG TGGGCTGCCG ACTCATACGA
    TGCCGCACGC
    301 TTTGCAGGCG TATTTTTTGC CGTTATCGGA CTGACTTCCT
    GCGGCTTTGC
    351 CGGTTTCAAC TTTTTGGGCA GACACCACGG GCGCAgCGTC
    GTCCTGATTC
    401 TCATCGGCTG TATCGGGCTG ATTCCAGTTG CCCATTTCCT
    CAACCCCGCT
    451 GCCGCCGCCT TTGCCGCCGC CGGACTGGTG CTGCACGGTT
    ATTCTTTGGC
    501 TCGCCGGCGC GTGATTGCCG CCTCTTTTCT GCTCGGTACG
    GGCTGGACGC
    551 TGATGTCGTT GGCAGCAGCT TATCCGGCAG CATTTGCCCT
    GATGCTGCCC
    601 TTGCCCGTAC TGATGTTTTT CCGTCCGTGG CAAAGCAGGC
    GTTTGATGTT
    651 GACGGCAGTC GCCTCACTTG CCTTTGCCCT GCCGCTTATG
    ACCGTTTACC
    701 CGCTGCTCTT GGCAAAAACG CAGCCCGCGC TGTTCGCGCA
    ATGGCTCGAC
    751 TATCACGTTT TCGGTACGTT CGGCGGCGTG CGGCACGTTC
    AGACGGCATT
    801 CAGTTTGTTT TACTATCTGA AAAACCTGCT TTGGTTTGCA
    TTGCCCGCGC
    851 TGCCGCTGGC GGTTTGGACG GTTTGCCGCA CGCGCCTGTT
    TTCGACCGAC
    901 TGGGGGATTT TGGGCGTCGT CTGGATGCTT GCCGTTTTGG
    TGCTGCTTGC
    951 CGTCAATCCG CAGCGTTTTC AGGATAACCT CGTCTGGCTG
    CTTCCGCCGC
    1001 TTGCCCTGTT CGGCGCGGCG CAACTGGACA GCCTGAGGCG
    CGGCGCGGCG
    1051 GCGTTTGTCA ACTGGTTCGG CATTATGGCG TTCGGACTGT
    TTGCCGTGTT
    1101 CCTGTGGACG GGCTTTTTCG CCATGAATTA CGGCTGGCCC
    GCCAAGCTTG
    1151 CCGAACGCGC CGCCTATTTC AGCCCGTATT ATGTTCCTGA
    TATCGATCCC
    1201 ATTCCGATGG CGGTTGCCGT ACTGTTCACA CCCTTGTGGC
    TGTGGGCGAT
    1251 TACCCGGAAA AACATACGCG GCAGGCAGGC GGTTACCAAC
    TGGGCGGCAG
    1301 GCGTTACCCT GACCTGGGCT TTGCTGATGA CGCTGTTCCT
    GCCGTGGCTG
    1351 GACGCGGCGA AAAGCCACGC GCCGGTCGTC CGGAGTATGG
    AGGCATCGCT
    1401 TTCCCCGGAA TTGAAACGGG AGCTTTCAGA CGGCATCGAG
    TGTATCGGCA
    1451 TAGGCGGCGG CGACCTGCAC ACGCGGATTG TTTGGACGCA
    GTACGGCACA
    1501 TTGCCGCACC GCGTCGGCGA TGTACAATGC CGCTACCGCA
    TCGTCCTCCT
    1551 GCCCCAAAAT GCGGATGCGC CGCAAGGCTG GCAGACGGTT
    TGGCAGGGTG
    1601 CGCGTCCGCG CAACAAAGAC AGTAAGTTCG CACTGATACG
    GAAAATCGGG
    1651 GAAAATATAT AA
  • This corresponds to the amino acid sequence <SEQ ID 596; ORF141-1>:
  •   1 MLTYTPPDAR PPAKTHEKPW LLLLMAFAWL WPGVFSHDLW
    NPDEPAVYTA
     51 VEALAGSPTP LVAHLFGQTD FGIPPVYLWV AAAFKHLLSP
    WAADSYDAAR
    101 FAGVFFAVIGLTSCGFAGFN FLGRHHGRSV VLILIGCIGL
    IPVAHFLNPA
    151 AAAFAAAGLV LHGYSLARRR VIAASFLLGTGWTLMSLAAA
    YPAAFALMLP
    201 LPVLMFFRPW QSRRLMLTAV ASLAFALPLM TV YPLLLAKT
    QPALFAQWLD
    251 YHVFGTFGGV RHVQTAFSLF YYLKNLLWFA LPALPLAVWT
    VCRTRLFSTD
    301 WGILGVVWML AVLVLLAVNP QRFQDNLVWL LPPLALFGAA
    QLDSLRRGAA
    351 AFVNWFGIMA FGLFAVFLWT GFFAMNYGWP AKLAERAAYF
    SPYYVPDIDP
    401 IPMAVAVLFT PLWLWAITRK NIRGRQAVTN WAAGVTLTWA
    LLMTLFLPWL
    451 DAAKSHAPVV RSMEASLSPE LKRELSDGIE CIGIGGGDLH
    TRIVWTQYGT
    501 LPHRVGDVQC RYRIVLLPQN ADAPQGWQTV WQGARPRNKD
    SKFALIRKIG
    551 ENI*
  • Computer analysis of this amino acid sequence gave the following results:
  • Homology with a Predicted ORF from N. meningitidis (Strain A)
  • ORF141 shows 95.0% identity over a 140aa overlap with an ORF (ORF141a) from strain A of N. meningitidis:
  • Figure US20130064846A1-20130314-C00263
  • The complete length ORF141a nucleotide sequence <SEQ ID 597> is:
  • 1 ATGCTGACCT ATACCCCGCC CGATGCCCGC CCGCCCGCCA
    AAACCCACGA
    51 AAAGCCGTGG CTGTTGCTGT TGATGGCGTT TGCCTGGTTG
    TGGCCCGGCG
    101 TGTTTTCCCA CGATTTGTGG AATCCTGACG AACCTGCCGT
    CTATACCGCC
    151 GTCGAAGCAC TGGCAGGCAG CCCCACCCCT TTGGTTGCCC
    ATCTGTTCGG
    201 TCAAATCGAT TTCGGCATAC CGCCCGTGTA TCTTTGGGTT
    GCCGCCGCGT
    251 TCAAACATTT GCTGTCGCCG TGGGCTGCCG ACCCGTATGA
    TGCCGCACGC
    301 TTTGCCGGCG TGTTTTTCGC CGTTGTCGGA CTGACTTCCT
    GCGGCTTTGC
    351 CGGTTTCAAC TTTTTGGGCA GACACCACGG GCGCAGCGTC
    GTCCTGATTC
    401 TCATCGGCTG TATCGGGCTG ATTCCGACCG TACACTTTCT
    CAACCCCGCT
    451 GCCGCCGCCT TTGCCGCCGC CGGACTGGTG CTGCACGGTT
    ATTCTTTGGC
    501 TCGCCGGCGC GTGATTGCCG CCTCTTTTCT GCTCGGTACG
    GGTTGGACGC
    551 TGATGTCGTT GGCAGCAGCT TATCCGGCGG CATTTGCCCT
    GATGCTGCCC
    601 CTGCCCGTGC TGATGTTTTT CCGTCCGTGG CAAAGCAGGC
    GTTTGATGTT
    651 GACGGCAGTC GCCTCGCTTG CCTTTGCCCT GCCGCTTATG
    ACCGTTTACC
    701 CGCTGCTCTT GGCAAAAACG CAGCCCGCGC TGTTCGCGCA
    ATGGCTCGAC
    751 GATCACGTTT TCGGTACGTT CGGCGGCGTG CGGCACATTC
    AGACGGCATT
    801 CAGTTTGTTT TACTATCTGA AAAACCTGCT TTGGTTTGCA
    TTGCCTGCGC
    851 TGCCGCTGGC GGTTTGGACG GTTTGCCGCA CGCGCCTGTT
    TTCGACCGAC
    901 TGGGGGATTT TGGGCGTCGT CTGGATGCTT GCCGTTTTGG
    TGCTGCTTGC
    951 CGTCAATCCG CAGCGTTTTC AGGATAACCT CGTCTGGCTG
    CTTCCGCCGC
    1001 TTGCCCTGTT CGGCGCGGCG CAACTGGACA GCCTGAGACG
    CGGCGCGGCG
    1051 GCGTTTGTCA ACTGGTTCGG CATTATGGCG TTCGGACTGT
    TTGCCGTGTT
    1101 CCTGTGGACG GGCTTTTTCG CCATGAATTA CGGCTGGCCC
    GCCAAGCTTG
    1151 CCGAACGCGC CGCCTATTTC AGCCCGTATT ATGTTCCTGA
    TATCGATCCC
    1201 ATTCCGATGG CGGTTGCCGT ACTGTTCACA CCCTTGTGGC
    TGTGGGCGAT
    1251 TACCCGCAAA AACATACGCG GCAGGCAGGC GGTTACCAAC
    TGGGCGGCAG
    1301 GCGTTACCCT GACCTGGGCT TTGCTGATGA CGCTGTTCCT
    GCCGTGGCTG
    1351 GACGCGGCGA AAAGCCACGC GCCCGTCGTC CGGAGTATGG
    AGGCATCGCT
    1401 TTCCCCGGAA TTAAAACGGG AGCTTTCAGA CGGCATCGAG
    TGTATCGACA
    1451 TAGGCGGCGG CGACCTACAC ACGCGGATTG TTTGGACGCA
    GTACGGCACA
    1501 TTGCCGCACC GCGTCGGCGA TGTACAATGC CGCTACCGCA
    TCGTCCGCTT
    1551 GCCCCAAAAC GCGGATGCGC CGCAAGGCTG GCAGACGGTC
    TGGCAGGGTG
    1601 CGCGCCCGCG CAACAAAGAC AGTAAGTTCG CACTGATACG
    GAAAACCGGG
    1651 GAAAATATAT TAAAAACAAC AGATTGA
  • This encodes a protein having amino acid sequence <SEQ ID 598>:
  •   1 MLTYTPPDAR PPAKTHEKPW LLLLMAFAWL WPGVFSHDLW
    NPDEPAVYTA
     51 VEALAGSPTP LVAHLFGQID FGIPPVYLWV AAAFKHLLSP
    WAADPYDAAR
    101 FAGVFFAVVG LTSCGFAGFN FLGRHHGRSV VLILIGCIGL
    IPTVHFLNPA
    151 AAAFAAAGLV LHGYSLARRR VIAASFLLGT GWTLMSLAAA
    YPAAFALMLP
    201 LPVLMFFRPW QSRRLMLTAV ASLAFALPLM TV YPLLLAKT
    QPALFAQWLD
    251 DHVFGTFGGV RHIQTAFSLF YYLKNLLWFA LPALPLAVWT
    VCRTRLFSTD
    301 WGILGVVWML AVLVLLAVNP QRFQDNLVWL LPPLALFGAA
    QLDSLRRGAA
    351 AFVNWFGIMA FGLFAVFLWT GFFAMNYGWP AKLAERAAYF
    SPYYVPDIDP
    401 IPMAVAVLFT PLWLWAITRK NIRGRQAVTN WAAGVTLTWA
    LLMTLFLPWL
    451 DAAKSHAPVV RSMEASLSPE LKRELSDGIE CIDIGGGDLH
    TRIVWTQYGT
    501 LPHRVGDVQC RYRIVRLPQN ADAPQGWQTV WQGARPRNKD
    SKFALIRKTG
    551 ENILKTTD*
  • ORF141a and ORF141-1 show 98.2% identity in 553 aa overlap:
  • Figure US20130064846A1-20130314-C00264
  • Homology with a Predicted ORF from N. gonorrhoeae
  • ORF141 shows 95% identity over a 140aa overlap with a predicted ORF (ORF141ng) from N. gonorrhoeae:
  • Figure US20130064846A1-20130314-C00265
  • An ORF141ng nucleotide sequence <SEQ ID 599> was predicted to encode a protein having amino acid sequence <SEQ ID 600>:
  •   1 MPSEAVSARP LCEYLLHLAI RPFLLTLMLT YTPPDARPPA
    KTHEKPWLLL
     51 LMAFAWLWPG VFSHDLWNPA EPAVYTAVEA LAGSPTPLVA
    HLFGQTDFGI
    101 PPVYLWVAAA FKHLLSPWAA HPYDAARFAG VFFAVIGLTS
    CGFAGFNFLG
    151 RHHGRSVVLI HIGCIGLIPV AHFFNPAAAA FAAAGLVLHG
    YSLARRRVIA
    201 ASFLLGTGWT LMSLAAAYPA AFALMLPLPV LMFF RPWQSR
    RLMLTAVASL
    251 AFALPLMTVY PLLLAKTQPA LFAQWLNYHV FGTFGGVRHI
    QRAFSLFHYL
    301 KNLLWFAPPG LPLAVWTVCR TRLFSTDWGI LGIVWMLAVL
    VLLAFNPQRF
    351 QDNLVWLLPP LALFGAAQLD SLRRGAAAFV NWFGIMAFGL
    FAVFLWTGFF
    401 AMNYGWPAKL AERAAYFSPY YVPDIDPIPM AVAVLFTPLW
    LWAITRKNIR
    451 GRQAVTNWAA GVTLTWALLM TLFLPWLDAA KSHAPVVRSM
    EASFSPELKR
    501 ELSDGIECIG IGGGDLHTRI VWTQYGTLPH RVGDVRCRYR
    IVRLPQNADA
    551 PQGWQTVWQG ARPRNKDSKF ALIRKIGENI LKTTD*
  • Further work revealed the following gonococcal DNA sequence <SEQ ID 601>:
  • 1 ATGCTGACCT ATACCCCGCC CGATGCCCGC CCGCCCGCCA
    AAACCCACGA
    51 AAAACCGTGG CTGCTGCTGT TGATGGCGTT TGCCTGGCTG
    TGGCCCGGCG
    101 TGTTTTCCCA CGATTTGTGG AATCCTGCCG AACCTGCCGT
    CTATACCGCC
    151 GTCGAAGCAC TGGCAGGCAG CCCCACCCCC TTGGTTGCCC
    ATCTGTTCGG
    201 TCAAACCGAT TTCGGCATAC CGCCCGTGTA TCTTTGGGTT
    GCCGCCGCAT
    251 TCAAACATTT GCTGTCGCCG TGGGCAGCCG ACCCGTATGA
    TGCCGCACGC
    301 TTTGCAGGCG TATTTTTTGC CGTTATCGGA CTGACTTCTT
    GCGGCTTTGC
    351 CGGTTTCAAC TTTTTGGGCA GACACCACGG GCGCAGCGTT
    GTTTTAATCC
    401 ATATCGGCTG TATCGGGCTG ATTCCGGTTG CCCATTTCCT
    CAATCCcgcc
    451 gccgccgcct tTGCCGCCGC CGGACTGGTG CTGCacggct
    actcgctgGC
    501 ACGCCGGCGC GTGATtgccg cctctTtccT GCTCGGTACG
    GGTTGGACGT
    551 TGATGTCGCT GGCGGCAGCT TATCCGGCGG CGTTTGCGCT
    GATGCTGCCC
    601 CTGCCCGTGC TGATGTTTTT CCGTCCGTGG CAAAGCAGGC
    GTTTGATGTT
    651 GACGGCAGTC GCCTCGCTTG CCTTTGCCCT GCCGCTTATG
    ACCGTTTACC
    701 CGCTGCTCtt gGCAAAAACG CAGCCCGCGC TGTTTGCGCA
    ATGGCTCAAC
    751 TATCACGTTT TCGGTACGTt cggcgGCGTG CGGCAcaTTC
    AGAggGCatT
    801 Cagtttgttt cactatctgA AAaatctgct ttggttcgca
    ccgcccgggC
    851 TGCCGCTGGC GGTTTGGACG GTTTGCCGCA CACGCCTGTT
    TTCGACCGAC
    901 TGGGGGATTT TGGGCATTGT CTGGATGCTT GCCGTTTTGG
    TGCTGCTCGC
    951 CTTTAATCCG CAGCGTTTTC AAGACAACCT CGTCTGGCTG
    CTGCCGCCGC
    1001 TTGCCCTGTT CGGCGCGGCG CAACTGGACA GCCTGAGGCG
    CGGCGCGGCG
    1051 GCTTTTGTCA ACTGGTTCGG CATTATGGCG TTCGGGCTGT
    TTGCCGTGTT
    1101 CCTGTGGACG GGCTTTTTCG CCATGAATTA CGGCTGGCCC
    GCCAAGCTTG
    1151 CCGAACGCGC CGCCTACTTC AGCCCGTATT ACGTTCCCGA
    CATCGATCCC
    1201 ATTCCGATGG CGGTTGCCGT ACTGTTCACA CCCTTGTGGC
    TGTGGGCGAT
    1251 TACCCGGAAA AACATACGCG GCAGGCAGGC GGTTACCAAC
    TGGGCGGCAG
    1301 GCGTTACCCT GACCTGGGCT TTGCTGATGA CGCTGTTCCT
    GCCGTGGCTG
    1351 GACGCGGCGA AAAGCCACGC GCCCGTCGTC CGGAGTATGG
    AGGCATCGTT
    1401 TTCCCCGGAA TTAAAACGGG AGCTTTCAGA CGGCATCGAG
    TGTATCGGCA
    1451 TAGGCGGCGG CGACCTGCAC ACGCGGATTG TTTGGACGCA
    GTACGGCACA
    1501 TTGCCGCACC GCGTCGGCGA TGTCCGTTGC CGCTACCGTA
    TCGTCCGCCT
    1551 GCCCCAAAAC GCGGATGCGC CGCAAGGCTG GCAGACGGTC
    TGGCAGGGTG
    1601 CGCGCCCGCG CAACAAAGAC AGTAAGTTTG CACTGATACG
    GAAAATCGGG
    1651 GAAAATATAT TAAAAACAAC AGATTGA
  • This corresponds to the amino acid sequence <SEQ ID 602; ORF141ng-1>:
  •   1 MLTYTPPDAR PPAKTHEKPW LLLLMAFAWL WPGVFSHDLW
    NPAEPAVYTA
     51 VEALAGSPTP LVAHLFGQTD FGIPPVYLWV AAAFKHLLSP
    WAADPYDAAR
    101 FAGVFFAVIG LTSCGFAGFN FLGRHHGRSV VLIHIGCIGL
    IPVAHFLNPA
    151 AAAFAAAGLV LHGYSLARRR VIAASFLLGT GWTLMSLAAA
    YPAAFALMLP
    201 LPVLMFFRPW QSRRLMLTAV ASLAFALPLM TV YPLLLAKT
    QPALFAQWLN
    251 YHVFGTFGGV RHIQRAFSLF HYLKNLLWFA PPGLPLAVWT
    VCRTRLFSTD
    301 WGILGIVWML AVLVLLAFNP QRFQDNLVWL LPPLALFGAA
    QLDSLRRGAA
    351 AFVNWFGIMA FGLFAVFLWT GFFAMNYGWP AKLAERAAYF
    SPYYVPDIDP
    401 IPMAVAVLFT PLWLWAITRK NIRGRQAVTN WAAGVTLTWA
    LLMTLFLPWL
    451 DAAKSHAPVV RSMEASFSPE LKRELSDGIE CIGIGGGDLH
    TRIVWTQYGT
    501 LPHRVGDVRC RYRIVRLPQN ADAPQGWQTV WQGARPRNKD
    SKFALIRKIG
    551 ENILKTTD*
  • ORF141ng-1 and ORF141-1 show 97.5% identity in 553 aa overlap:
  • Figure US20130064846A1-20130314-C00266
  • Based on the presence of several putative transmembrane domains in the gonococcal protein, it is predicted that the proteins from N. meningitidis and N. gonorrhoeae, and their epitopes, could be useful antigens for vaccines or diagnostics, or for raising antibodies.
  • Example 72
  • The following partial DNA sequence was identified in N. meningitidis <SEQ ID 603>:
  •   1 ..CAATCCGCCA AATGGTTATC GGGCCAAACT CTAGTCGGCA
    CAGCAATTGG
     51   GATACGCGGG CAGATAAAGC TTGGCGGCAA CCTGCATTAC
    GATATATTTA
    101   CCGGCCGCGC ATTGAAAAAG CCCGAATTTT TCCAATCAAG
    GAAATGGGCA
    151   AGCGGTTTTC AGGTAGGCTA TACGTTTTAA
  • This corresponds to the amino acid sequence <SEQ ID 604; ORF142>:
  •  1 ..QSAKWLSGQT LVGTAIGIRG QIKLGGNLHY DIFTGRALKK
    PEFFQSRKWA
    51   SGFQVGYTF*
  • Further work revealed the complete nucleotide sequence <SEQ ID 605>:
  •   1 ATGGATAATT CGGGTAGTGA GGCGACAGGA AAATACCAAG
    GAAATATCAC
     51 TTTCTCTGCC GACAATCCTT TGGGACTGAG TGATATGTTC
    TATGTAAATT
    101 ATGGACGTTC GATTGGCGGT ACGCCCGATG AGGAAAGTTT
    TGACGGCCAT
    151 CGCAAAGAAG GCGGATCAAA CAATTACGCC GTACATTATT
    CAGCCCCTTT
    201 CGGTAAATGG ACATGGGCAT TCAATCACAA TGGCTACCGT
    TACCATCAGG
    251 CAGTTTCCGG ATTATCGGAA GTCTATGACT ATAATGGAAA
    AAGTTACAAT
    301 ACTGATTTCG GCTTCAACCG CCTGTTGTAT CGTGATGCCA
    AACGCAAAAC
    351 CTATCTCGGT GTAAAACTGT GGATGAGGGA AACAAAAAGT
    TACATTGATG
    401 ATGCCGAACT GACTGTACAA CGGCGTAAAA CTGCGGGTTG
    GTTGGCAGAA
    451 CTTTCCCACA AAGAATATAT CGGTCGCAGT ACGGCAGATT
    TTAAGTTGAA
    501 ATATAAACGC GGCACCGGCA TGAAAGATGC TCTGCGCGCG
    CCTGAAGAAG
    551 CCTTTGGCGA AGGCACGTCA CGTATGAAAA TTTGGACGGC
    ATCGGCTGAT
    601 GTAAATACTC CTTTTCAAAT CGGTAAACAG CTATTTGCCT
    ATGACACATC
    651 CGTTCATGCA CAATGGAACA AAACCCCGCT AACATCGCAA
    GACAAACTGG
    701 CTATCGGCGG ACACCACACC GTACGTGGCT TCGACGGTGA
    AATGAGTTTG
    751 TCTGCCGAGC GGGGATGGTA TTGGCGCAAC GATTTGAGCT
    GGCAATTTAA
    801 ACCAGGCCAT CAGCTTTATC TTGGGGCTGA TGTAGGACAT
    GTTTCAGGAC
    851 AATCCGCCAA ATGGTTATCG GGCCAAACTC TAGTCGGCAC
    AGCAATTGGG
    901 ATACGCGGGC AGATAAAGCT TGGCGGCAAC CTGCATTACG
    ATATATTTAC
    951 CGGCCGCGCA TTGAAAAAGC CCGAATTTTT CCAATCAAGG
    AAATGGGCAA
    1001  GCGGTTTTCA GGTAGGCTAT ACGTTTTAA
  • This corresponds to the amino acid sequence <SEQ ID 606; ORF142-1>:
  •   1 MDNSGSEATG KYQGNITFSA DNPLGLSDMF YVNYGRSIGG
    TPDEESFDGH
     51 RKEGGSNNYA VHYSAPFGKW TWAFNHNGYR YHQAVSGLSE
    VYDYNGKSYN
    101 TDFGFNRLLY RDAKRKTYLG VKLWMRETKS YIDDAELTVQ
    RRKTAGWLAE
    151 LSHKEYIGRS TADFKLKYKR GTGMKDALRA PEEAFGEGTS
    RMKIWTASAD
    201 VNTPFQIGKQ LFAYDTSVHA QWNKTPLTSQ DKLAIGGHHT
    VRGFDGEMSL
    251 SAERGWYWRN DLSWQFKPGH QLYLGADVGH VSGQSAKWLS
    GQTLVGTAIG
    301 IRGQIKLGGN LHYDIFTGRA LKKPEFFQSR KWASGFQVGY
    TF*
  • Computer analysis of this amino acid sequence gave the following results:
  • Homology with a Predicted ORF from N. gonorrhoeae
  • ORF142 shows 88.1% identity over a 59aa overlap with a predicted ORF (ORF142ng) from N. gonorrhoeae:
  • Figure US20130064846A1-20130314-C00267
  • The complete length ORF142ng nucleotide sequence <SEQ ID 607> is:
  •   1 ATGGATAATT CGGGTAGTGA GGCGACAGGA AAATACCAAG
    GAAATATCAC
     51 TTTCTCTGCC GACAATCCTT TTGGACTGAG TGATATGTTC
    TATGTAAATT
    101 ATGGACGTTC AATTGGCGGT ACGCCCGATG AGGAAAATTT
    TGACGGCCAT
    151 CGCAAAGAAG GCGGATCAAA CAATTACGCC GTACATTATT
    CAGCCCCTTT
    201 CGGTAAATGG ACATGGGCAT TCAATCACAA TGGCTACCGT
    TACCATCAGG
    251 CGGTTTCCGG ATTATCGGAA GTCTATGACT ATAATGGAAA
    AAGTTACAAC
    301 ACTGATTTCG GCTTCAACCG CCTGTTGTAT CGTGATGCCA
    AACGCAAAAC
    351 CTATCTCAGT GTAAAACTGT GGACGAGGGA AACAAAAAGT
    TACATTGATG
    401 ATGCCGAACT GACTGTACAA CGGCGTAAAA CCACAGGTTG
    GTTGGCAGAA
    451 CTTTCCCACA AAGGATATAT CGGTCGCAGT ACGGCAGATT
    TTAAGTTGAA
    501 ATATAAACAC GGCACCGGCA TGAAAGATGC TCTGCGCGCG
    CCTGAAGAAG
    551 CCTTTGGCGA AGGCACGTCA CGTATGAAAA TTTGGACGGC
    ATCGGCTGAT
    601 GTAAATACTC CTTTTCAAAT CGGTAAACAG CTATTTGCCT
    ATGACACATC
    651 CGTTCATGCA CAATGGAACA AAACCCCGCT AACATCGCAA
    GACAAACTGG
    701 CTATCGGCGG ACACCACACC GTACGTGGCT TCGACGGTGA
    AATGAGTTTG
    751 CCTGCCGAGC GGGGATGGTA TTGGCGCAAC GATTTGAGCT
    GGCAATTTAA
    801 ACCAGGCCAT CAGCTTTATC TTGGGGCTGA TGTAGGACAT
    GTTTCAGGAC
    851 AATCCGCCAA ATGGTTATCG GGCCAAACTC TAGCCGGCAC
    AGCAATTGGG
    901 ATACGCGGGC AGATAAAGCT TGGCGGCAAC CTGCATTACG
    ATATATTTAC
    951 CGGCCGTGCA TTGAAAAAGC CCGAATATTT TCAGACGAAG
    AAATGGGTAA
    1001  CGGGGTTTCA GGTGGGTTAT TCGTTTTGA
  • This encodes a protein having amino acid sequence <SEQ ID 608>:
  •   1 MDNSGSEATG KYQGNITFSA DNPFGLSDMF YVNYGRSIGG
    TPDEENFDGH
     51 RKEGGSNNYA VHYSAPFGKW TWAFNHNGYR YHQAVSGLSE
    VYDYNGKSYN
    101 TDFGFNRLLY RDAKRKTYLS VKLWTRETKS YIDDAELTVQ
    RRKTTGWLAE
    151 LSHKGYIGRS TADFKLKYKH GTGMKDALRA PEEAFGEGTS
    RMKIWTASAD
    201 VNTPFQIGKQ LFAYDTSVHA QWNKTPLTSQ DKLAIGGHHT
    VRGFDGEMSL
    251 PAERGWYWRN DLSWQFKPGH QLYLGADVGH VSGQSAKWLS
    GQTLAGTAIG
    301 IRGQIKLGGN LHYDIFTGRA LKKPEYFQTK KWVTGFQVGY
    SF*
  • The underlined sequence (aromatic-Xaa-aromatic amino acid motif) is usually found at the C-terminal end of outer membrane proteins.
  • ORF142ng and ORF142-1 show 95.6% identity over 342aa overlap:
  • Figure US20130064846A1-20130314-C00268
  • In addition, ORF142ng is homologous to the HecB protein of E. chrysanthemi:
  • gi|1772622 (L39897) HecB [Erwinia chrysanthemi] Length = 558
    Score = 119 bits (295), Expect = 3e−26
    Identities = 88/346 (25%), Positives = 151/346 (43%),
    Gaps = 22/346 (6%)
    Query:   2 DNSGSEATGKYQGNITFSADNPFGLSDMFYVNYGRSIGGTPDEENFDGHRKEGGSNNYAV  61
    DNSG ++TG+ Q N + + DN FGL+D ++++ G S   +    + D    + G
    Sbjct: 230 DNSGQKSTGEEQLNGSLALDNVFGLADQWFISAGHS---SRFATSHDAESLQAG------ 280
    Query:  62 HYSAPFGKWTWAFNHNGYRYHQAVSGLSEVYDYNGKSYNTDFGFNRLLYRDAKRKTYLSV 121
     +S P+G W   +N++  RY          +   G S    F  +R+++RD   KT ++
    Sbjct: 281 -FSMPYGYWNLGYNYSQSRYRNTFINRDFPWHSTGDSDTHRFSLSRVVFRDGTMKTAIAG 339
    Query: 122 KLWTRETKSYIDDAELTVQRRKTTGWLAELSHKGYIGRSTADFKLKYKHGTGMKDALRAP 181
        R   +Y++ + L    RK +     ++H   +    A F   Y  G     +
    Sbjct: 340 TFSQRTGNNYLNGSLLPSSSRKLSSVSLGVNHSQKLWGGLATFNPTYNRGVRWLGSETDT 399
    Query: 182 EEAFGEGTSRMKIWTASADVNTPFQIGKQLFAYDTSVHAQWNKTPLTSQDKLAIGGHHTV 241
    +++  E  +    WT SA    P         Y  S++ Q++   L   ++L +GG  ++
    Sbjct: 400 DKSADEPRAEFNKWTLSASYYHPV---TDSITYLGSLYGQYSARALYGSEQLTLGGESSI 456
    Query: 242 RGFDGEMSLPAERGWYWRNDLSWQFKP----GHQLYLGA-DVGHVSGQSAKWLSGQTLAG 296
    RGF  E      RG YWRN+L+WQ       G+  ++ A D GH+        +  +L G
    Sbjct: 457 RGF-REQYTSGNRGAYWRNELNWQAWQLPVLGNVTFMAAVDGGHLYNHKQDNSTAASLWG 515
    Query: 297 TAIGIRGQIKLGGNLHYDIFTGRALKKPEYFQTKKWVTGFQVGYSF 342
     A+G+    +    L   +  G  +  P + Q    V G++VG SF
    Sbjct: 516 GAVGMTVASRW---LSQQVTVGWPISYPAWLQPDTMVVGYRVGLSF 558
  • On the basis of this analysis, it is predicted that the proteins from N. meningitidis and N. gonorrhoeae, and their epitopes, could be useful antigens for vaccines or diagnostics, or for raising antibodies.
  • Example 73
  • The following partial DNA sequence was identified in N. meningitidis <SEQ ID 609>:
  •   1 ATGCGGACGA AATGGTCAGC AGTGAGAAGC TGCTTACTTG
    GgCGGACACC
     51 GCCGACATCG ATACCGCTTT GAACCTGTTG TACCGTTTGC
    AAAAACTCGA
    101 ATTCCTCTAT GGCGATGAAA ACGGTCATTC AGACGGCATC
    AATTTGwCGG
    151 ACGAGCAATT GCCGTTGCTG ATGGAACAAT TGTCCGGCAG
    CGGTAAGGCG
    201 TTATTGGTCG ATCGGAACGG TCTGTATCTT GCCAACGCCA
    ATTTCCATCA
    251 TGAGGCGGCG GAAGAGTTGG GGTTGTTGGC GGCAGAAGTC
    GCACAGATGG
    301 AAAAGAAATA CCGGCTGCTG ATTAAGAACA AC..
  • This corresponds to the amino acid sequence <SEQ ID 610; ORF143>:
  •   1 MRTKWSAVRS CTWADTADID TALNLLYRLQ KLEFLYGDEN
    GHSDGINLXD
     51 EQLPLLMEQL SGSGKALLVD RNGLYLANAN FHHEAAEELG
    LLAAEVAQME
    101 KKYRLLIKNN ..
  • Further work revealed the complete nucleotide sequence <SEQ ID 611>:
  • 1 ATGGAATCAA CACTTTCACT ACAAGCAAAT TTATATCCCC
    GCCTGACTCC
    51 TGCCGGTGCA TTTTATGCCG TATCCAGCGA TGCCCCCAGT
    GCCGGTAAAA
    101 CTTTGTTGCA CAGCCTGTTG AAAGCAGATG CGGACGAAAT
    GGTCAGCAGT
    151 GAGAAGCTGC TTACTTGGGC GGACACCGCC GACATCGATA
    CCGCTTTGAA
    201 CCTGTTGTAC CGTTTGCAAA AACTCGAATT CCTCTATGGC
    GATGAAAACG
    251 GTCATTCAGA CGGCATCAAT TTGTCGGACG AGCAATTGCC
    GTTGCTGATG
    301 GAACAATTGT CCGGCAGCGG TAAGGCGTTA TTGGTCGATC
    GGAACGGTCT
    351 GTATCTTGCC AACGCCAATT TCCATCATGA GGCGGCGGAA
    GAGTTGGGGT
    401 TGTTGGCGGC AGAAGTCGCA CAGATGGAAA AGAAATACCG
    GCTGCTGATT
    451 AAGAACAACC TGTATATCAA CAATAACGCT TGGGGCGTTT
    GCGATCCTTC
    501 CGGTCAGAGC GAATTGACAT TTTTCCCATT GTATATCGGT
    TCAACCAAAT
    551 TTATTTTGGT TATCGGCGGC ATTCCCGATT TGGGCAAAGA
    GGCATTTGTT
    601 ACTTTGGTAA GGATTTTATA CCGCCGTTAC AGCAACCGCG
    TGTAA
  • This corresponds to the amino acid sequence <SEQ ID 612; ORF143-1>:
  • 1 MESTLSLQAN LYPRLTPAGA FYAVSSDAPS AGKTLLHSLL
    KADADEMVSS
    51 EKLLTWADTA DIDTALNLLY RLQKLEFLYG DENGHSDGIN
    LSDEQLPLLM
    101 EQLSGSGKAL LVDRNGLYLA NANFHHEAAE ELGLLAAEVA
    QMEKKYRLLI
    151 KNNLYINNNA WGVCDPSGQS ELTFFPLYIG STKFILVIGG
    IPDLGKEAFV
    201 TLVRILYRRY SNRV*
  • Computer analysis of this amino acid sequence gave the following results:
  • Homology with a Predicted ORF from N. meningitidis (Strain A)
  • ORF143 shows 92.4% identity over a 105aa overlap with an ORF (ORF143a) from strain A of N. meningitidis:
  • Figure US20130064846A1-20130314-C00269
  • The complete length ORF143a nucleotide sequence <SEQ ID 613> is:
  • 1 ATGGAATCAA CANTTTCACT ACAAGCAAAT TTATATCNCC
    GCCTGACTCC
    51 TGCCGGTGCA TTTTATGCCG TATCCAGCGA TGNCCCCAGT
    GCCGGTAAAA
    101 CTTTGTTGCA CAGCCTGTTG AAAGCGGATG CGGACGAAAT
    GGTNAGCAGT
    151 GAGAAGCTGC TTACCTGGGC GGANACCGCC GACATCGATA
    CCGCTTTGAA
    201 CCTGTTGTAC CGTTTGCAAA AACTCGAATT CCTCTATGGC
    GATGAAAACG
    251 GTCATTCAGA CGGCATCAAT TTGTCGGACG AGCAATTGCC
    GTTGCTGATG
    301 GAACAATTGT CCGGCAGCGG TAAGGCGTTA TTGGTCGATC
    GGAACGGTCT
    351 GTATCTTGCC AACGCCAATT TCCATCATGA GGCGGCGGAA
    GAGTTGGGGT
    401 TGTTGGCGGC AGAAGTCGCA CAGATGGAAA AGAAATACCG
    GCTGCNNATT
    451 AAGAACAACC TGTATATCAA CAATAACGCT TGGGGCGTTT
    GCGATCCTTC
    501 CGGTCAGAGC GAATTGACAT TTTTCCCATT GTATATCGGT
    TCAACCAAAT
    551 TTATTTTGGT TATCGGCGGC ATTCCCGATT TGGGCAAAGA
    GGCATTTGTT
    601 ACTTTGGTAA GGATNTTATA CCNCCNGTTA CAGCAACCGC
    GTGTAAAACT
    651 TGGGAGAGAG GANGGGTTAT GCAGCAATTA TTGA
  • This encodes a protein having amino acid sequence <SEQ ID 614>:
  • 1 MESTXSLQAN LYXRLTPAGA FYAVSSDXPS AGKTLLHSLL
    KADADEMVSS
    51 EKLLTWAXTA DIDTALNLLY RLQKLEFLYG DENGHSDGIN
    LSDEQLPLLM
    101 EQLSGSGKAL LVDRNGLYLA NANFHHEAAE ELGLLAAEVA
    QMEKKYRLXI
    151 KNNLYINNNA WGVCDPSGQS ELTFFPLYIG STKFILVIGG
    IPDLGKEAFV
    201 TLVRXLYXXL QQPRVKLGRE XGLCSNY*
  • ORF143a and ORF143-1 show 97.1% identity in 207 aa overlap:
  • Figure US20130064846A1-20130314-C00270
  • Homology with a Predicted ORF from N. gonorrhoeae
  • ORF143 shows 95.5% identity over a 110aa overlap with a predicted ORF (ORF143ng) from N. gonorrhoeae:
  • Figure US20130064846A1-20130314-C00271
  • An ORF143ng nucleotide sequence <SEQ ID 615> was predicted to encode a protein having amino acid sequence <SEQ ID 616>:
  • 1 MRTKWSAVRS CSRADTADID TALNLLYRLQ KLEFLYGDEN
    GHSDGINLSD
    51 EQLPLLMEQL SGSGKALLVD RNGLYLANAN FHHESAEELG
    LLAAEVAQME
    101 KKYRLLIRNN LYINNNAWGV CDPSGQSELT FFPLYIGSTK
    FILVIAGIPD
    151 LSKGGICYFG KDFIPPLQQP RVKLGTGGIM RQLLISILED
    LNNTSTDIIA
    201 SAVISTDGLP MATMLPSHLN SDRVGAISAT LLALGSRSVQ
    ELACGELEQV
    251 MIKGKSGYIL LSQAGKDAVL VLVAKETGRL GLILLDAKRA
    ARHIAEAI*
  • Further work revealed the following gonococcal DNA sequence <SEQ ID 617>:
  • 1 ATGGAATCAA CACTTTCACT ACAAGCGAAT TTATATCCCT
    GCCTGACTCC
    51 TGCCGGTGCA TTTTATGCCG TATCCAGCGA TGCCCCCAGT
    GCCGGTAAAA
    101 CTTTGTTGCG CAGCCTGTTG AAAGCGGATG CGGACGAAGT
    GGTCAGCAGT
    151 GAGAAGCTGC TCGCGGCGGA CACCGCCGAC ATCGATACCG
    CTTTGAACCT
    201 GTTGTACCGT TTGCAAAAAC TCGAATTCCT CTATGGCGAT
    GAAAACGGTC
    251 ATTCAGACGG CATCAATTTG TCGGACGAGC AATTGCCGTT
    GCTGATGGAA
    301 CAATTGTCCG GCAGCGGTAA GGCATTATTG GTCGATCGGA
    ACGGTCTGTA
    351 TCTTGCCAAC GCCAATTTCC ATCATGAGTC GGCGGAAGAG
    TTGGGGTTGT
    401 TGGCGGCAGA AGTCGCACAG ATGGAAAAGA AATACCGGCT
    GCTGATTAGG
    451 AACAACCTGT ATATCAACAA TAACGCTTGG GGCGTTTGCG
    ATCCTTCCGG
    501 TCAGAGCGAA TTGACATTTT TCCCATTGTA TATCGGTTCA
    ACCAAATTTA
    551 TTTTGGTTAT CGCCGGCATT CCCGATTTGA GCAAAGAGGC
    ATTTGTTACT
    601 TTGGTAAGGA TTTTATACCG CCGTTACAGC AACCGCGTGT
    AA
  • This corresponds to the amino acid sequence <SEQ ID 618; ORF143ng-1>:
  • 1 MESTLSLQAN LYPCLTPAGA FYAVSSDAPS AGKTLLRSLL
    KADADEVVSS
    51 EKLLAADTAD IDTALNLLYR LQKLEFLYGD ENGHSDGINL
    SDEQLPLLME
    101 QLSGSGKALL VDRNGLYLAN ANFHHESAEE LGLLAAEVAQ
    MEKKYRLLIR
    151 NNLYINNNAW GVCDPSGQSE LTFFPLYIGS TKFILVIAGI
    PDLSKEAFVT
    201 LVRILYRRYS NRV*
  • ORF143ng-1 and ORF143-1 show 95.8% identity in 214 aa overlap:
  • Figure US20130064846A1-20130314-C00272
  • Based on the presence of the putative transmembrane domains in the gonococcal protein, it is predicted that the proteins from N. meningitidis and N. gonorrhoeae, and their epitopes, could be useful antigens for vaccines or diagnostics, or for raising antibodies.
  • Example 74
  • The following partial DNA sequence was identified in N. meningitidis <SEQ ID 619>:
  • 1 ATGACCTTTT TACAACGTTT GCAAGGTTTG GCAGACAATA
    AAATCTGTGC
    51 GTTTGCATGG TTCGTCGTCC GCCGCTTTGA TGAAGAACGC
    GTACCGCAGr
    101 CGGCGGCAAG CATGACGTTT ACGACGCTGC TGGCACTCGT
    CCCCGTGCTG
    151 ACCGTGATGG TGGCGGTCGC TTCGATTTTC CCCGTGTTCG
    ACCGCTGGTC
    201 GGATTCGTTC GTCTCCTTCG TCAACCAAAC CATTGTGCCG
    CA.GGCGCGG
    251 ACATGGTGTT CGACTATATC AATGCGTTCC GCGAGCAGGC
    GAACCGGCTG
    301 ACGGCAATCG GCAGCGTGAT GCTGGTCGTT ACCTCGCTGA
    TGCTGATTCG
    351 GACGATAGAC AATACGTTCA ACCGCATCTG GaCGGGTCAA
    wTyCCAGCGT
    401 CCGTGGATG..
  • This corresponds to the amino acid sequence <SEQ ID 620; ORF144>:
  • 1 MTFLQRLQGL ADNKICAFAW FVVRRFDEER VPQXAASMTF
    TTLLALVPVL
    51 TVMVAVASIF PVFDRWSDSF VSFVNQTIVP XGADMVFDYI
    NAFREQANRL
    101 TAIGSVMLVV TSLMLIRTID NTFNRIWRVX XQRPWM...
  • Further work revealed the complete nucleotide sequence <SEQ ID 621>:
  • 1 ATGACCTTTT TACAACGTTT GCAAGGTTTG GCAGACAATA
    AAATCTGTGC
    51 GTTTGCATGG TTCGTCGTCC GCCGCTTTGA TGAAGAACGC
    GTACCGCAGG
    101 CGGCGGCAAG CATGACGTTT ACGACGCTGC TGGCACTCGT
    CCCCGTGCTG
    151 ACCGTGATGG TGGCGGTCGC TTCGATTTTC CCCGTGTTCG
    ACCGCTGGTC
    201 GGATTCGTTC GTCTCCTTCG TCAACCAAAC CATTGTGCCG
    CAGGGCGCGG
    251 ACATGGTGTT CGACTATATC AATGCGTTCC GCGAGCAGGC
    GAACCGGCTG
    301 ACGGCAATCG GCAGCGTGAT GCTGGTCGTT ACCTCGCTGA
    TGCTGATTCG
    351 GACGATAGAC AATACGTTCA ACCGCATCTG GCGGGTCAAT
    TCCCAGCGTC
    401 CGTGGATGAT GCAGTTTCTC GTCTATTGGG CTTTACTGAC
    GTTCGGGCCG
    451 CTGTCTTTGG GCGTGGGCAT TTCCTTTATG GTCGGCTCGG
    TACAGGATGC
    501 CGCGCTTGCC TCAGGTGCGC CGCAGTGGTC GGGCGCGTTG
    CGAACGGCGG
    551 CGACGCTGAC CTTCATGACG CTTTTGCTGT GGGGGCTGTA
    CCGCTTCGTG
    601 CCAAACCGCT TCGTTCCCGC GCGGCAGGCG TTTGTCGGGG
    CTTTGGCAAC
    651 AGCGTTTTGT CTGGAAACCG CGCGCTCCCT CTTCACTTGG
    TATATGGGCA
    701 ATTTCGACGG CTACCGCTCG ATTTACGGCG CGTTTGCCGC
    CGTGCCGTTT
    751 TTTCTGTTGT GGCTGAACCT GTTGTGGACG CTGGTCTTGG
    GCGGCGCGGT
    801 GCTGACTTCT TCACTCTCCT ACTGGCAGGG AGAAGCGTTC
    CGCAGGGGCT
    851 TCGACTCGCG CGGACGGTTT GACGACGTGT TGAAAATCCT
    GCTGCTTCTG
    901 GATGCGGCGC AAAAAGAAGG CAAAGCCTTG CCTGTTCAGG
    AGTTCAGACG
    951 GCATATCAAT ATGGGCTACG ACGAGTTGGG CGAGCTTTTG
    GAAAAGCTGG
    1001 CGCGGCACGG CTACATCTAT TCCGGCAGAC AGGGTTGGGT
    GTTGAAAACG
    1051 GGGGCGGATT CGATTGAGTT GAACGAACTC TTCAAGCTCT
    TCGTTTACCG
    1101 TCCGTTGCCT GTGGAAAGGG ATCATGTGAA CCAAGCTGTC
    GATGCGGTAA
    1151 TGACACCGTG TTTGCAGACT TTGAACATGA CGCTGGCAGA
    GTTTGACGCT
    1201 CAGGCGAAAA AACGGCAGTA G
  • This corresponds to, the amino acid sequence <SEQ ID 622; ORF144-1>:
  • 1 MTFLQRLQGL ADNKICAFAW FVVRRFDEER VPQAAASMTF
    TTLLALVPVL
    51 TVMVAVASIF PVFDRWSDSF VSFVNQTIVP QGADMVFDYI
    NAFREQANRL
    101 TAIGSVMLVV TSLMLIRTID NTFNRIWRVN SQRPWMMQFL
    VYWALLTFGP
    151 LSLGVGISFM VGSVQDAALA SGAPQWSGAL RTAATLTFMT
    LLLWGLYRFV
    201 PNRFVPARQA FVGALATAFC LETARSLFTW YMGNFDGYRS
    IYGAFAAVPF
    251 FLLWLNLLWT LVLGGAVLTS SLSYWQGEAF RRGFDSRGRF
    DDVLKILLLL
    301 DAAQKEGKAL PVQEFRRHIN MGYDELGELL EKLARHGYIY
    SGRQGWVLKT
    351 GADSIELNEL FKLFVYRPLP VERDHVNQAV DAVMTPCLQT
    LNMTLAEFDA
    401 QAKKRQ*
  • Computer analysis of this amino acid sequence gave the following results:
  • Homology with a Predicted ORF from N. meningitidis (Strain A)
  • ORF144 shows 96.3% identity over a 136aa overlap with an ORF (ORF144a) from strain A of N. meningitidis:
  • Figure US20130064846A1-20130314-C00273
  • The complete length ORF144a nucleotide sequence <SEQ ID 623> is:
  • 1 ATGACCTTTT TACAACGTTT GCAAGGTTTG GCAGACAATA
    AAATCTGTGC
    51 GTTTGCATGG TTCGTCGTCC GCCGCTTTGA TGAAGAACGC
    GTACCGCAGG
    101 CGGCGGCAAG CATGACGTTT ACGACACTGC TGGCACTCGT
    CCCCGTGCTG
    151 ACCGTGATGG TGGCGGTCGC TTCGATTTTC CCCGTGTTCG
    ACCGNTGGTC
    201 GGATTCGTTC GTCTCCTTCG TCAACCAAAC CATTGTGCCG
    CAGGGCGCGG
    251 ACATGGTNTT CGACTATATC AATGCGTTCC GCGAGCAGGC
    GAACCGGCTG
    301 ACGGCAATCG GCAGCGTGAT GCTGGTCGTT ACCTCGCNGA
    TGCTGATTCG
    351 GACGATAGAC AATACGTTCA ACCGCATCTG GCGGGTCAAT
    TCCCAGCGTC
    401 CGTGGATGAT GCAGTTTCTC GTCTATTGGG CTTTACTGAC
    GTTCGGGCCG
    451 CTGTCTTTGG GCGTGGGCAT TTCCTTTATN GTCGGCTCGG
    TACAGGATGC
    501 CGCGCTTGCC TCAGGTGCGC CGCAGTGGTC GGGCGCGTTG
    CGAACGGCGG
    551 CGACGCTGAN CTTCATGACG CTTTTGCTGT GGGGGCTGTA
    CCGCTNCGTG
    601 CCAAACCGCT TCGTTCCCGC GCGGCANGCG TTTGTCGGGG
    CTTTGGCAAC
    651 AGCGTTCTGT CTGGAAACCG CGCGTTCCCT CTTTACTTGG
    TATATGGGCA
    701 ATTTCGACGG CTACCGCTCG ATTTACGGNG CGTTTGCCGC
    CGTGCCGTTT
    751 TTTCTGTTGT GGCTGAACCT GTTGTGGACG CTGGTCTTGG
    GCGGCGCGGT
    801 GCTGACTTCT TCACTCTCCT ACTGGCAGGG AGAAGCGTTC
    CGCAGGGNCT
    851 TCGACTCGCG CGGACGGTTT GACGACGTGT TGAAAATCCT
    GCTGCTTCTG
    901 GATGCGGCGC AAAAAGAAGG CNAAGCCTTG CCTGTTCAGG
    AGTTCAGACG
    951 GCATATCAAT ATGGGCTACG ACGAGTTGGG CGAGCTTTTG
    GAAAAGCTGG
    1001 CGCGGCACGG CTACATCTAT TCCGGCAGAC AGGGTTGGGT
    GTTGAAAACG
    1051 GGGGCGGATT CGATTGAGTT GAACGAACTC TTCAAGCTCT
    TCGTTTACCG
    1101 TCCGTTGCCT GTGGAAAGGG ATCATGTGAA CCAAGCTGTC
    GATGCGGTAA
    1151 TGATGCCGTG TTTGCAGACT TTGAACATGA CGCTGGCAGA
    GTTTGACGCT
    1201 CAGGCGAAAA AACAGCAGCA ATCTTGA
  • This encodes a protein having amino acid sequence <SEQ ID 624>:
  • 1 MTFLQRLQGL ADNKICAFAW FVVRRFDEER VPQAAASMTF
    TTLLALVPVL
    51 TVMVAVASIF PVFDRWSDSF VSFVNQTIVP QGADMVFDYI
    NAFREQANRL
    101 TAIGSVMLVV TSXMLIRTID NTFNRIWRVN SQRPWMMQFL
    VYWALLTFGP
    151 LSLGVGISFX VGSVQDAALA SGAPQWSGAL RTAATLXFMT
    LLLWGLYRXV
    201 PNRFVPARXA FVGALATAFC LETARSLFTW YMGNFDGYRS
    IYGAFAAVPF
    251 FLLWLNLLWT LVLGGAVLTS SLSYWQGEAF RRXFDSRGRF
    DDVLKILLLL
    301 DAAQKEGXAL PVQEFRRHIN MGYDELGELL EKLARHGYIY
    SGRQGWVLKT
    351 GADSIELNEL FKLFVYRPLP VERDHVNQAV DAVMMPCLQT
    LNMTLAEFDA
    401 QAKKQQQS*
  • ORF144a and ORF144-1 show 97.8% identity in 406 aa overlap:
  • Figure US20130064846A1-20130314-C00274
  • Homology with a Predicted ORF from N. gonorrhoeae
  • ORF144 shows 91.2% identity over a 136aa overlap with a predicted ORF (ORF144ng) from N. gonorrhoeae:
  • Figure US20130064846A1-20130314-C00275
  • The complete length ORF144ng nucleotide sequence <SEQ ID 625> is predicted to encode a protein having amino acid sequence <SEQ ID 626>:
  • 1 MTFLQCWQGS ADNKICAFAW FVIRRFSEER VPQAAASMTF
    TTLLALVPVL
    51 TVMVAVASIF PVFDRWSDSF VSFVNQTIVP QGADMVFDYI
    DAFRDQANRL
    101 TAIGSVMLVV TSLMLIRTID NAFNRIWRVN TQRPWMMQFL
    VYWALLTFGP
    151 LSLGVGISFM VGSVQDSVLS SGAQQWADAL KTAARLAFMT
    LLLWGLYRFV
    201 PNRFVPARQA FVGALITAFC LETARFLFTW YMGNFDGYRS
    IYGAFAAVPF
    251 FLLWLNLLWT LVLGGAVLTS SLSYWQGEAF RRGFDSRGRF
    DDVLKILLLL
    301 DAAQKEGRTL SVQEFRRHIN MGYDELGELL EKLARYGYIY
    SGRQGWVLKT
    351 GADSIELSEL FKLFVYRPLP VERDHVNQAV DAVMTPCLQT
    LNMTLAEFDA
    401 QAKKQQQS*
  • Further work revealed the following gonococcal DNA sequence <SEQ ID 627>:
  • 1 ATGACCTTTT TACAACGTTG GCAAGGTTTG GCGGACAATA
    AAATCTGTGC
    51 ATTTGCATGG TTCGTCATCC GCCGTTTCAG TGAAGAGCGC
    GTACCGCAGG
    101 CAGCGGCGAG CATGACGTTT ACGACACTGC TGGCACTCGT
    CCCCGTACTG
    151 ACCGTAATGG TCGCGGTCGC TTCGATTTTC CCCGTGTTCG
    ACCGCTGGTC
    201 GGATTCGTTC GTCTCCTTCG TCAACCAAAC CATTGTGCCG
    CAGGGCGCGG
    251 ATATGGTGTT CGACTATATC GACGCATTCC GCGATCAGGC
    AAACCGGCTG
    301 ACCGCCATCG GCAGCGTGAT GCTGGTCGTA ACCTCGCTGA
    TGCTGATTCG
    351 GACGATAGAC AATGCGTTCA ACCGCATCTG GCGGGTTAAC
    ACGCAACGCC
    401 CCTGGATGAT GCAGTTCCTC GTTTATTGGG CGTTGCTGAC
    TTTCGGGCCT
    451 TTGTCTTTGG GTGTGGGCAT TTCCTTTATG GTCGGGTCGG
    TTCAAGACTC
    501 CGTACTCTCC TCCGGAGCGC AACAATGGGC GGACGCGTTG
    AAGACGGCGG
    551 CAAGGCTGGC TTTCATGACG CTTTTGCTGT GGGGGCTGTA
    CCGCTTCGTG
    601 CCCAACCGCT TCGTGCCCGC CCGGCAGGCG TTTGTCGGAG
    CTTTGATTAC
    651 GGCATTCTGC CTGGAGACGG CACGTTTCCT GTTCACCTGG
    TATATGGGCA
    701 ATTTCGACGG CTACCGCTCG ATTTACGGCG CATTTGCCGC
    CGTGCCGTTT
    751 TTCCTGCTGT GGTTAAACCT GCTGTGGACG CTGGTCTTGG
    GCGGGGCGGT
    801 GCTGACTTCG TCGCTGTCTT ATTGGCAGGG CGAGGCCTTC
    CGCAGGGGAT
    851 TCGACTCGCG CGGACGGTTT GACGACGTGT TGAAAATCCT
    GCTGCTTCTG
    901 GATGCGGCGC AAAAAGAAGG CCGAACCCTG TCCGTTCAGG
    AGTTCAGACG
    951 GCATATCAAT ATGGGTTACG ATGAATTGGG CGAGCTTTTG
    GAAAAGCTGG
    1001 CGCGGTACGG CTATATCTAT TCCGGCAGAC AGGGCTGGGT
    TTTGAAAACG
    1051 GGGGCGGATT CGATTGAGTT GAGCGAACTC TTCAAGCTCT
    TCGTGTACCG
    1101 CCCGTTGCct gtggaAAGGG ATCATGTGAA CCAAGCTGtc
    gaTGCGGTAA
    1151 TGAcgccgtG TTTGCAGACT TTGAACATGA CGCTGGCGGA
    GTTTGACGCT
    1201 CAGgcgAAAA AACAGCAGCA GTCTTGA
  • This encodes a variant of ORF144ng, having the amino acid sequence <SEQ ID 628; ORF144ng-1>:
  • 1 MTFLQCWQGL ADNKICAFAW FVIRRFSEER VPQAAASMTF
    TTLLALVPVL
    51 TVMVAVASIF PVFDRWSDSF VSFVNQTIVP QGADMVFDYI
    DAFRDQANRL
    101 TAIGSVMLVV TSLMLIRTID NAFNRIWRVN TQRPWMMQFL
    VYWALLTFGP
    151 LSLGVGISFM VGSVQDSVLS SGAQQWADAL KTAARLAFMT
    LLLWGLYRFV
    201 PNRFVPARQA FVGALITAFC LETARFLFTW YMGNFDGYRS
    IYGAFAAVPF
    251 FLLWLNLLWT LVLGGAVLTS SLSYWQGEAF RRGFDSRGRF
    DDVLKILLLL
    301 DAAQKEGRTL SVQEFRRHIN MGYDELGELL EKLARYGYIY
    SGRQGWVLKT
    351 GADSIELSEL FKLFVYRPLP VERDHVNQAV DAVMTPCLQT
    LNMTLAEFDA
    401 QAKKQQQS*
  • ORF144ng-1 and ORF144-1 show 94.1% identity in 406 aa overlap:
  • Figure US20130064846A1-20130314-C00276
  • On this basis of this analysis, including the identification of several putative transmembrane domains in the gonococcal protein, it is predicted that the proteins from N. meningitidis and N. gonorrhoeae, and their epitopes, could be useful antigens for vaccines or diagnostics, or for raising antibodies.
  • Example 75
  • The following partial DNA sequence was identified in N. meningitidis <SEQ ID 629>:
  • 1 ..AGACACGCCC GCCGCATCCG CATCGACACC GCCATCAACC
    CCGAACTGGA
    51   AGCCCTCGCC GAACACCTCC ACTACCAATG GCAGGGCTTC
    CTCTGGCTCA
    101   GCACCGATAT GCGTCAGGAA ATTTCCGCCC TCGTCATCCT
    GCTGCAACGC
    151   ACCCGCCGCA AATGGCTGGA TGCCCACGAA CGCCAACACC
    TGCGCCAAAG
    201   CCTGCTTGAA ACACGGGAAC ACGGCTGA
  • This corresponds to the amino acid sequence <SEQ ID 630; ORF146>:
  • 1 ..RHARRIRIDT AINPELEALA EHLHYQWQGF LWLSTDMRQE
    ISALVILLQR
    51   TRRKWLDAHE RQHLRQSLLE TREHG*
  • Further work revealed the complete nucleotide sequence <SEQ ID 631>:
  • 1 ATGAACACCT CGCAACGCAA CCGCCTCGTC AGCCGCTGGC
    TCAACTCCTA
    51 CGAACGCTAC CGCTACCGCC GCCTCATCCA CGCCGTCCGG
    CTCGGCGGGG
    101 CCGTCCTGTT CGCCACCGCC TCCGCCCGGC TGCTCCACCT
    CCAACACGGC
    151 GAGTGGATAG GGATGACCGT CTTCGTCGTC CTCGGCATGC
    TCCAGTTTCA
    201 AGGGGCGATT TACTCCAAGG CGGTGGAACG TATGCTCGGC
    ACGGTCATCG
    251 GGCTGGGCGC GGGTTTGGGC GTTTTATGGC TGAACCAGCA
    TTATTTCCAC
    301 GGCAACCTCC TCTTCTACCT CACCGTCGGC ACGGCAAGCG
    CACTGGCCGG
    351 CTGGGCGGCG GTCGGCAAAA ACGGCTACGT CCCTATGCTG
    GCAGGGCTGA
    401 CGATGTGTAT GCTCATCGGC GACAACGGCA GCGAATGGCT
    CGACAGCGGA
    451 CTCATGCGCG CCATGAACGT CCTCATCGGC GCGGCCATCG
    CCATCGCCGC
    501 CGCCAAACTG CTGCCGCTGA AATCCACACT GATGTGGCGT
    TTCATGCTTG
    551 CCGACAACCT GGCCGACTGC AGCAAAATGA TTGCCGAAAT
    CAGCAACGGC
    601 AGGCGCATGA CCCGCGAACG CCTCGAGGAG AACATGGCGA
    AAATGCGCCA
    651 AATCAACGCA CGCATGGTCA AAAGCCGCAG CCATCTCGCC
    GCCACATCGG
    701 GCGAAAGCCG CATCAGCCCC GCCATGATGG AAGCCATGCA
    GCACGCCCAC
    751 CGTAAAATCG TCAACACCAC CGAGCTGCTC CTGACCACCG
    CCGCCAAGCT
    801 GCAATCTCCC AAACTCAACG GCAGCGAAAT CCGGCTGCTT
    GACCGCCACT
    851 TCACACTGCT CCAAACCGAC CTGCAACAAA CCGTCGCCCT
    TATCAACGGC
    901 AGACACGCCC GCCGCATCCG CATCGACACC GCCATCAACC
    CCGAACTGGA
    951 AGCCCTCGCC GAACACCTCC ACTACCAATG GCAGGGCTTC
    CTCTGGCTCA
    1001 GCACCAATAT GCGTCAGGAA ATTTCCGCCC TCGTCATCCT
    GCTGCAACGC
    1051 ACCCGCCGCA AATGGCTGGA TGCCCACGAA CGCCAACACC
    TGCGCCAAAG
    1101 CCTGCTTGAA ACACGGGAAC ACGGCTGA
  • This corresponds to the amino acid sequence <SEQ ID 632; ORF146-1>:
  • 1 MNTSQRNRLV SRWLNSYERY RYRRLIHAVR LGGAVLFATA
    SARLLHLQHG
    51 EWIGMTVFVV LGMLQFQGAI YSKAVERMLG TVIGLGAGLG
    VLWLNQHYFH
    101 GNLLFYLTVG TASALAGWAA VGKNGYVPML AGLTMCMLIG
    DNGSEWLDSG
    151 LMRAMNVLIG AAIAIAAAKL LPLKSTLMWR FMLADNLADC
    SKMIAEISNG
    201 RRMTRERLEE NMAKMRQINA RMVKSRSHLA ATSGESRISP
    AMMEAMQHAH
    251 RKIVNTTELL LTTAAKLQSP KLNGSEIRLL DRHFTLLQTD
    LQQTVALING
    301 RHARRIRIDT AINPELEALA EHLHYQWQGF LWLSTNMRQE
    ISALVILLQR
    351 TRRKWLDAHE RQHLRQSLLE TREHG*
  • Computer analysis of this amino acid sequence gave the following results:
  • Homology with a Predicted ORF from N. meningitidis (Strain A)
  • ORF146 shows 98.6% identity over a 74aa overlap with an ORF (ORF146a) from strain A of N. meningitidis:
  • Figure US20130064846A1-20130314-C00277
  • The complete length ORF146a nucleotide sequence <SEQ ID 633> is:
  • 1 ATGAACACCT CGCAACGCAA CCGCCTCGTC AGCCGCTGGC
    TCAACTCCTA
    51 CGAACGCTAC CGCTACCGCC GCCTCATCCA CGCCGTCCGG
    CTCGGCGGGG
    101 CCGTCCTGTT CGCCACCGCC TCCGCCCGGC TGCTCCACCT
    CCAACACGGC
    151 GAGTGGATAG GGATGACCGT CTTCGTCGTC CTCGGCATGC
    TCCAGTTTCA
    201 AGGGGCGATT TACTCCAAGG CGGTGGAACG TATGCTCGGC
    ACGGTCATCG
    251 GGCTGGGCGC GGGTTTGGGC GTTTTATGGC TGAACCAGCA
    TTATTTCCAC
    301 GGCAACCTCC TCTTCTACCT CACCGTCGGC ACGGCAAGCG
    CACTGGCCGG
    351 CTGGGCGGCG GTCGGCAAAA ACGGCTACGT CCCTATGCTG
    GCGGGGCTGA
    401 CGATGTGCAT GCTCATCGGC GACAACGGCA GCGAATGGTT
    CGACAGCGGC
    451 CTGATGCGCG CGATGAACGT CCTCATCGGC GCGGCCATCG
    CCATCGCCGC
    501 CGCCAAACTG CTGCCGCTGA AATCCACACT GATGTGGCGT
    TTCATGCTTG
    551 CCGACAACCT GACCGACTGC AGCAAAATGA TTGCCGAAAT
    CAGCAACGGC
    601 AGGCGCATGA CCCGCGAACG CCTCGAAGAG AACATGGCGA
    AAATGCGCCA
    651 AATCAACGCA CGCATGGTCA AAAGCCGCAG CCACCTCGCC
    GCCACATCGG
    701 GCGAAAGCCG CATCAGCCCC GCCATGATGG AAGCCATGCA
    GCACGCCCAC
    751 CGTAAAATTG TCAACACCAC CGAGCTGCTC CTGACCACCG
    CCGCCAAGCT
    801 GCAATCTCCC AAACTCAACG GCAGCGAAAT CCGGCTGCTT
    GACCGCCACT
    851 TCACACTGCT CCAAACCGAC CTGCAACAAA CCGTCGCCCT
    TATCAACGGC
    901 AGACACGCCC GCCGCATCCG CATCGACACC GCCATCAACC
    CCGAACTGGA
    951 AGCCCTCGCC GAACACCTCC ACTACCAATG GCAGGGCTTC
    CTCTGGCTCA
    1001 GCACCAATAT GCGTCAGGAA ATTTCCGCCC TCGTCATCCT
    GCTGCAACGC
    1051 ACCCGCCGCA AATGGCTGGA TGCCCACGAA CGCCAACACC
    TGCGCCAAAG
    1101 CCTGCTTGAA ACACGGGAAC ACAGTTGA
  • This encodes a protein having amino acid sequence <SEQ ID 634>:
  • 1 MNTSQRNRLV SRWLNSYERY RYRRLIHAVR LGGAVLFATA
    SARLLHLQHG
    51 EWIGMTVFVV LGMLQFQGAI YSKAVERMLG TVIGLGAGLG
    VLWLNQHYFH
    101 GNLLFYLTVG TASALAGWAA VGKNGYVPML AGLTMCMLIG
    DNGSEWFDSG
    151 LMRAMNVLIG AAIAIAAAKL LPLKSTLMWR FMLADNLTDC
    SKMIAEISNG
    201 RRMTRERLEE NMAKMRQINA RMVKSRSHLA ATSGESRISP
    AMMEAMQHAH
    251 RKIVNTTELL LTTAAKLQSP KLNGSEIRLL DRHFTLLQTD
    LQQTVALING
    301 RHARRIRIDT AINPELEALA EHLHYQWQGF LWLSTNMRQE
    ISALVILLQR
    351 TRRKWLDAHE RQHLRQSLLE TREHS*
  • ORF146a and ORF146-1 show 99.5% identity in 374 aa overlap:
  • Figure US20130064846A1-20130314-C00278
  • Homology with a Predicted ORF from N. gonorrhoeae
  • ORF146 shows 97.3% identity over a 75aa overlap with a predicted ORF (ORF146ng) from N. gonorrhoeae:
  • Figure US20130064846A1-20130314-C00279
  • An ORF146ng nucleotide sequence <SEQ ID 635> was predicted to encode a protein having amino, acid sequence <SEQ ID 636>:
  • 1 MSGVRFPSPA PIPSTDPPSG SLCFFTFPLQ TASDMNSSQR
    KRLSGRWLNS
    51 YERYRHRRLI HAVRLGGTVL FATALARLLH LQHGEWIGMT
    VFVVLGMLQF
    101 QGAIYSNAVE RMLGTVIGLG AGLGVLWLNQ HYFHGNLLFY
    LTIGTASALA
    151 GWAAVGKNGY VPMLAGLTMC MLIGDNGSEW LDSGLMRAMN
    VLIGAAIAIA
    201 AAKLLPLKST LMWRFMLADN LADCSKMIAE ISNGRRMTRE
    RLEQNMVKMR
    251 QINARMVKSR SHLAATSGES RISPSMMEAM QHAHRKIVNT
    TELLLTTAAK
    301 LQSPKLNGSE IRLLDRHFTL LQTDLQQTAA LINGRHARRI
    RIDTAINPEL
    351 EALAEHLHYQ WQGFLWLSTN MRQEISALVI PLQRTRRKWL
    DAHERQHLRQ
    401 SLLETREHG*
  • Further work revealed the following gonococcal DNA sequence <SEQ ID 637>:
  • 1 ATGAACTCCT CGCAACGCAA ACGCCTTTCC GgccGCTGGC
    TCAACTCCTA
    51 CGAACGCTac cGCCaccGCC GCCTCATACA TGCCGTGCGG
    CTCGGCggaa
    101 ccgtCCTGTT CGCCACCGCA CTCGCCCGgc tACTCCACCT
    CCAacacggc
    151 gAATGGATAG GGAtgaCCGT CTTCGTCGTC CTCGGCATGC
    TCCAGTTCCA
    201 AGGCgcgatt tActccaacg cggtgGAacg taTGctcggt
    acggtcatcg
    251 ggctgGGCGC GGGTTTGGgc gTTTTATGGC TGAACCAGCA
    TTAtttccac
    301 ggcaacCTcc tcttctacct gaccatcggc acggcaagcg
    cactggccgg
    351 ctGGGCGGCG GTCGGCAAAA acggctacgt ccctatgctg
    GCGGGGctgA
    401 CGATGTGCAT gctcatcggc gACAACGGCA GCGAATGGCT
    CGACAGCGGC
    451 CTGATGCGCG CGATGAACGT CCTCATCGGC GCCGCCATCG
    CCATTGCCGC
    501 CGCCAAACTG CTGCCGCTGA AATCCACACT GATGTGGCGT
    TTCATGCTTG
    551 CCGACAACCT GGCCGACTGC AGCAAAATGA TTGCCGAAAT
    CAGCAACGGC
    601 AGGCGTATGA CGCGCGAACG TTTGGAGCAG AATATGGTCA
    AAATGCGCCA
    651 AATCAACGCA CGCATGGTCA AAAGCCGCAG CCACCTCGCC
    GCCACATCGG
    701 GCGAAAGCCG CATCAGCCCC TCCATGATGG AAGCCATGCA
    GCACGCCCAC
    751 CGCAAAATCG TCAACACCAC CGAGCTGCTC CTGACCACCG
    CCGCCAAGCT
    801 GCAATCTCCC AAACTCAACG GCAGCGAAAT CCGGCTGCTC
    GACCGCCACT
    851 TCACACTGCT CCAAACCGAC CTGCAACAAA CCGCCGCCCT
    CATCAACGGC
    901 AGACACGCCC GCCGCATCCG CATCGACACC GCCATCAACC
    CCGAACTGGA
    951 AGCCCTCGCC GAACACCTCC ACTACCAATG GCAGGGCTTC
    CTCTGGCTCA
    1001 GCACCAATAT GCGTCAGGAA ATTTCCGCCC TCGTCATCCT
    GCTGCAACGC
    1051 ACCCGCCGCA AATGGCTGGA TGCCCACGAA CGCCAACACC
    TGCGCCAAAG
    1101 CCTGCTTGAA ACACGGGAAC ACGGCTGA
  • This corresponds to the amino acid sequence <SEQ ID 638; ORF146ng-1>:
  • 1 MNSSQRKRLS GRWLNSYERY RHRRLIHAVR LGGTVLFATA
    LARLLHLQHG
    51 EWIGMTVFVV LGMLQFQGAI YSNAVERMLG TVIGLGAGLG
    VLWLNQHYFH
    101 GNLLFYLTIG TASALAGWAA VGKNGYVPML AGLTMCMLIG
    DNGSEWLDSG
    151 LMRAMNVLIG AAIAIAAAKL LPLKSTLMWR FMLADNLADC
    SKMIAEISNG
    201 RRMTRERLEQ NMVKMRQINA RMVKSRSHLA ATSGESRISP
    SMMEAMQHAH
    251 RKIVNTTELL LTTAAKLQSP KLNGSEIRLL DRHFTLLQTD
    LQQTAALING
    301 RHARRIRIDT AINPELEALA EHLHYQWQGF LWLSTNMRQE
    ISALVILLQR
    351 TRRKWLDAHE RQHLRQSLLE TREHG*
  • ORF146ng-1 and ORF146-1 show 96.5% identity in 375 aa overlap
  • Figure US20130064846A1-20130314-C00280
  • Furthermore, ORF146ng-1 shows homology with a hypothetical E. coli protein:
  • sp|P33011|YEEA_ECOLI HYPOTHETICAL 40.0 KD PROTEIN IN
    COBU-SBMC INTERGENIC REGION
    >gi|1736674|gnl|PID|d1016553 (D90838) ORF_ID: o348#20;
    similar to [SwissProt Accession Number P33011] [Escherichia coli]
    >gi|1736682|gnl|PID|d1016560 (D90839) ORF_ID: o348#20;
    similar to [SwissProt Accession Number P33011] [Escherichia coli]
    >gi|1788318 (AE000292) f352; 100% identical to fragment YEEA_ECOLI
    SW: P33011 but has 203 additional C-terminal residues [Escherichia coli]
    Length = 352 Score = 109 bits (271), Expect = 2e−23
    Identities = 89/347 (25%), Positives = 150/347 (42%), Gaps = 21/347 (6%)
    Query: 20 YRHRRLIHAVRLGGTVLFATALARLLHLQHGEWIGMTVFVVLGMLQFQGAIYSNAVERML 79
    YRH R++H  R+    L    + RL  +    W  +T+ V++G + F G +   A ER+
    Sbjct: 15 YRHYRIVHGTRVALAFLLTFLIIRLFTIPESTWPLVTMVVIMGPISFWGNVVPRAFERIG 74
    Query: 80 GTVIGLGAGLGVLWLNQHYFHGNLLFYLTIGTASALAGWAAVGKNGYVPMLAGLTMCMLI 139
    GTV+G   GL  L L         L  +    A  L GW A+GK  Y  +L G+T+ +++
    Sbjct: 75 GTVLGSILGLIALQLE---LISLPLMLVWCAAAMFLCGWLALGKKPYQGLLIGVTLAIVV 131
    Query: 140 GDNGSEWLDSGLMRAMNVLIGXXXXXXXXKLLPLKSTLMWRFMLADNLADCSKMIAEISN 199
    G    E +D+ L R+ +V++G         + P ++ + WR  LA +L + +++     +
    Sbjct: 132 GSPTGE-IDTALWRSGDVILGSLLAMLFTGIWPQRAFIHWRIQLAKSLTEYNRVYQSAFS 190
    Query: 200 GRRMTRERLEQNMVKMRQINARMVKSRSHLAATSGESRISPSMMEAMQHAHRKIVNXXXX 259
       + R RLE ++ K+       VK R  +A  S E+RI  S+ E +Q  +R +V
    Sbjct: 191 PNLLERPRLESHLQKLL---TDAVKMRGLIAPASKETRIPKSIYEGIQTINRNLVCMLEL 247
    Query: 260 XXXXXXXXQSPK---LNGSEIRLLDRHFXXXXXXXXXXAALINGRHARRIRIDTAINPEL 316
            +      LN  ++R  D              AL  G           +N  +
    Sbjct: 248 QINAYWATRPSHFVLLNAQKLR--DTQHMMQQILLSLVHALYEGNPQPVFANTEKLNDAV 305
    Query: 317 EALAEHL--HYQWQ-------GFLWLSTNMRQEISALVILLQRTRRK 354
    E L + L  H+  +       G++WL+     ++  L  L+ R  RK
    Sbjct: 306 EELRQLLNNHHDLKVVETPIYGYVWLNMETAHQLELLSNLICRALRK 352
  • On the basis of this analysis, including the identification of several transmembrane domains in the gonococcal protein, it is predicted that the proteins from N. meningitidis and N. gonorrhoeae, and their epitopes, could be useful antigens for vaccines or diagnostics, or for raising antibodies.
  • Example 76
  • The following partial DNA sequence was identified in N. meningitidis <SEQ ID 639>
  • 1 ..GCCGAAGACA CGCGCGTTAC CGCACAGCTT TTGAGCGCGT
    ACGGCATTCA
    51   GGGCAAACTC GTCAGTGTGC GCGAACACAA CGAACGGCAG
    ATGGCGGACA
    101   AGATTGTCGG CTATCTTTCA GACGGCATGG TTGTGGCACA
    GGTTTCCGAT
    151   GCGGGTACGC CGGCCGTGTG CGACCCGGGC GCGAAACTCG
    CCCGCCGCGT
    201   GCGTGAGGCC GGGTTTAAAG TCGTTCCCGT CGTGGGCGCA
    AC.GCGGTGA
    251   TGGCGGCTTT GAGCGTGGCC GGTGTGGAAG GATCCGATTT
    TTATTTCAAC
    301   GGTTTTGTAC CGCCGAAATC GGGAGAACGC AGGAAACTGT
    TTGCCAAATG
    351   GGTGCGGGCG GCGTTTCCTA TCGTCATGTT TGAAACGCCG
    CACCGCATCG
    401   GTGCAGCGCT TGCCGATATG GCGGAACTGT TCCCCGAACG
    CCGATTAATG
    451   CTGGCGCGCG AAATTACGAA AACGTTTGAA ACGTTCTTAA
    GCGGCACGGT
    501   TGGGGAAATT CAGACGGCAT TGTCTGCCGA CGGCGACCAA
    TCGCGCGGCG
    551   AGATGGTGTT GGTGCTTTAT CCGGCGCAGG ATGAAAAACA
    CGAAGGCTTG
    601   TCCGAGTCCG CGCAAAACAT CATGAAAATC CTCACAGCCG
    AGCTGCCGAC
    651   CAAACAGGCG GCGGAGCTTG CTGCCAAAAT CACGGGCGAG
    GGAAAGAAAG
    701   CTTTGTACGA T..
  • This corresponds to the amino acid sequence <SEQ ID 640; ORF147>:
  • 1 ..AEDTRVTAQL LSAYGIQGKL VSVREHNERQ MADKIVGYLS
    DGMVVAQVSD
    51   AGTPAVCDPG AKLARRVREA GFKVVPVVGA XAVMAALSVA
    GVEGSDFYFN
    101   GFVPPKSGER RKLFAKWVRA AFPIVMFETP HRIGAALADM
    AELFPERRLM
    151   LAREITKTFE TFLSGTVGEI QTALSADGDQ SRGEMVLVLY
    PAQDEKHEGL
    201   SESAQNIMKI LTAELPTKQA AELAAKITGE GKKALYD..
  • Further work revealed the complete nucleotide sequence <SEQ ID 641>:
  • 1 ATGTTTCAGA AACATTTGCA GAAAGCCTCC GACAGCGTCG
    TCGGAGGGAC
    51 ATTATACGTG GTTGCCACGC CCATCGGCAA TTTGGCGGAC
    ATTACCCTGC
    101 GCGCTTTGGC GGTATTGCAA AAGGCGGACA TCATCTGTGC
    CGAAGACACG
    151 CGCGTTACCG CACAGCTTTT GAGCGCGTAC GGCATTCAGG
    GCAAACTCGT
    201 CAGTGTGCGC GAACACAACG AACGGCAGAT GGCGGACAAG
    ATTGTCGGCT
    251 ATCTTTCAGA CGGCATGGTT GTGGCACAGG TTTCCGATGC
    GGGTACGCCG
    301 GCCGTGTGCG ACCCGGGCGC GAAACTCGCC CGCCGCGTGC
    GTGAGGCCGG
    351 GTTTAAAGTC GTTCCCGTCG TGGGCGCAAG CGCGGTGATG
    GCGGCTTTGA
    401 GCGTGGCCGG TGTGGAAGGA TCCGATTTTT ATTTCAACGG
    TTTTGTACCG
    451 CCGAAATCGG GAGAACGCAG GAAACTGTTT GCCAAATGGG
    TGCGGGCGGC
    501 GTTTCCTATC GTCATGTTTG AAACGCCGCA CCGCATCGGT
    GCGACGCTTG
    551 CCGATATGGC GGAACTGTTC CCCGAACGCC GATTAATGCT
    GGCGCGCGAA
    601 ATTACGAAAA CGTTTGAAAC GTTCTTAAGC GGCACGGTTG
    GGGAAATTCA
    651 GACGGCATTG TCTGCCGACG GCAACCAATC GCGCGGCGAG
    ATGGTGTTGG
    701 TGCTTTATCC GGCGCAGGAT GAAAAACACG AAGGCTTGTC
    CGAGTCCGCG
    751 CAAAACATCA TGAAAATCCT CACAGCCGAG CTGCCGACCA
    AACAGGCGGC
    801 GGAGCTTGCT GCCAAAATCA CGGGCGAGGG AAAGAAAGCT
    TTGTACGATC
    851 TGGCTCTGTC TTGGAAAAAC AAATAG
  • This corresponds to the amino acid sequence <SEQ ID 642; ORF147-1>:
  • 1 MFQKHLQKAS DSVVGGTLYV VATPIGNLAD ITLRALAVLQ
    KADIICAEDT
    51 RVTAQLLSAY GIQGKLVSVR EHNERQMADK IVGYLSDGMV
    VAQVSDAGTP
    101 AVCDPGAKLA RRVREAGFKV VPVVGASAVM AALSVAGVEG
    SDFYFNGFVP
    151 PKSGERRKLF AKWVRAAFPI VMFETPHRIG ATLADMAELF
    PERRLMLARE
    201 ITKTFETFLS GTVGEIQTAL SADGNQSRGE MVLVLYPAQD
    EKHEGLSESA
    251 QNIMKILTAE LPTKQAAELA AKITGEGKKA LYDLALSWKN
    K*
  • Computer analysis of this amino acid sequence gave the following results:
  • Homology with Hypothetical Protein ORF286 of E. coli (Accession Number U 18997)
  • ORF147 and E. coli ORF286 protein show 36% aa identity in 237aa overlap:
  • Orf147: 1 AEDTRVTAQLLSAYGIQGKLVSVREHNERQMADKIVGYLSDGMVVAQVSDAGTPAVCDPG 60
    AEDTR T  LL  +GI  +L ++ +HNE+Q A+ ++  L +G  +A VSDAGTP + DPG
    Orf286: 43 AEDTRHTGLLLQHFGINARLFALHDHNEQQKAETLLAKLQEGQNIALVSDAGTPLINDPG 102
    Orf147: 61 AKLARRVREXXXXXXXXXXXXXXXXXXXXXXXEGSDFYFNGFVPPKSGERRKLFAKWVRA 120
      L R  RE                           F + GF+P KS  RR
    Orf286: 103 YHLVRTCREAGIRVVPLPGPCAAITALSAAGLPSDRFCYEGFLPAKSKGRRDALKAIEAE 162
    Orf147: 121 AFPIVMFETPHRIGAALADMAELFPERR-LMLAREITKTFETFLSGTVGEIQTALSADGD 179
       ++ +E+ HR+  +L D+  +  E R ++LARE+TKT+ET     VGE+   +  D +
    Orf286: 163 PRTLIFYESTHRLLDSLEDIVAVLGESRYVVLARELTKTWETIHGAPVGELLAWVKEDEN 222
    Orf147: 180 QSRGEMVLVLYPAQDEKHEGLSESAQNIMKILTAELPTKQAAELAAKITGEGKKALY 236
    + +GEMVL++      + E L   A   + +L AELP K+AA LAA+I G  K ALY
    Orf286: 223 RRKGEMVLIV-EGHKAQEEDLPADALRTLALLQAELPLKKAAALAAEIHGVKKNALY 278

    Homology with a Predicted ORF from N. meningitidis (Strain A)
  • ORF147 shows 96.6% identity over a 237aa overlap with ORF75a from strain A of N. meningitidis:
  • Figure US20130064846A1-20130314-C00281
  • ORF147a is identical to ORF75a, which includes aa 56-292 of ORF75.
  • Homology with a Predicted ORF from N. gonorrhoeae
  • ORF147 shows 94.1% identity over a 237aa overlap with a predicted ORF (ORF147ng) from N. gonorrhoeae:
  • Figure US20130064846A1-20130314-C00282
  • An ORF147ng nucleotide sequence <SEQ ID 643> was predicted to encode a protein having amino acid sequence <SEQ ID 644>:
  • 1 MSVFQTAFFM FQKHLQKASD SVVGGTLYVV ATPIGNLADI
    TLRALAVLQK
    51 ADIICAEDTR VTAQLLSAYG IQGRLVSVRE HNERQMADKV
    IGFLSDGLVV
    101 AQVSDAGTPA VCDPGAKLAR RVREAGFKVV PVVGASAVMA
    ALSVAGVAES
    151 DFYFNGFVPP KSGERRKLFA KWVRAAFPVV MFETPHRIGA
    TLADMAELFP
    201 ERRLMLAREI TKTFETFLSG TVGEIQTALA ADGNQSRGEM
    VLVLYPAQDE
    251 KHEGLSESAQ NAMKILAAEL PTKQAAELAA KITGEGKKAL
    YDLALSWKNK
    301 *
  • Further work revealed the following gonococcal DNA sequence <SEQ ID 645>:
  • 1 ATGTTTCAGA AACACTTGCA GAAAGCCTCC GACAGCGTCG
    TCGGAGGGAC
    51 ATTATACGTG GTTGCCACGC CCATCGGCAA TTTGGCAGAC
    ATTACCCTGC
    101 GCGCTTTGGC GGTATTGCAA AAGGCGGACA TCATTTGTGC
    CGAAGACACG
    151 CGCGTTACTG CGCAGCTTTT GAGCGCGTAC GGCATTCAGG
    GCAGGTTGGT
    201 CAGTGTGCGC GAACACAACG AGCGGCAGAT GGCGGACAAG
    GTAATCGGTT
    251 TCCTTTCAGA CGGCCTGGTT GTGGCGCAGG TTTCCGATGC
    GGGTACGCCG
    301 GCCGTGTGCG ACCCGGGCGC GAAACTCGCC CGCCGCGTGC
    GCGAAGCAGG
    351 GTTCAAAGTC GTTCCCGTCG TGGGCGCAAG CGCGGTAATG
    GCGGCGTTGA
    401 GTGTGGCCGG TGTGGCGGAA TCCGATTTTT ATTTCAACGG
    TTTTGTACCG
    451 CCGAAATCGG GCGAACGTAG GAAATTGTTT GCCAAATGGG
    TGCGGGCGGC
    501 ATTTCCTGTC GTCATGTTTG AAACGCCGCA CCGAATCGGG
    GCAACGCTTG
    551 CCGATATGGC GGAATTGTTC CCCGAACGCC GTCTGATGCT
    GGCGCGCGAA
    601 ATCACGAAAA CGTTTGAAAC GTTCTTAAGC GGCACGGTTG
    GGGAAATTCA
    651 GACGGCATTG GCGGCGGACG GCAACCAATC GCGCGGCGAG
    ATGGTGTTGG
    701 TGCTTTATCC GGCGCAGGAT GAAAAACACG AAGGCTTGTC
    CGAGTCTGCG
    751 CAAAATGCGA TGAAAATCCT TGCGGCCGAG CTGCCGACCA
    AGCAGGCGGC
    801 GGAGCTTGCC GCCAAGATTA CAGGTGAGGG CAAAAAGGCT
    TTGTACGATT
    851 TGGCACTGTC GTGGAAAAAC AAATGA
  • This corresponds to the amino acid sequence <SEQ ID 646; ORF147ng-1>:
  • 1 MFQKHLQKAS DSVVGGTLYV VATPIGNLAD ITLRALAVLQ
    KADIICAEDT
    51 RVTAQLLSAY GIQGRLVSVR EHNERQMADK VIGFLSDGLV
    VAQVSDAGTP
    101 AVCDPGAKLA RRVREAGFKV VPVVGASAVM AALSVAGVAE
    SDFYFNGFVP
    151 PKSGERRKLF AKWVRAAFPV VMFETPHRIG ATLADMAELF
    PERRLMLARE
    201 ITKTFETFLS GTVGEIQTAL AADGNQSRGE MVLVLYPAQD
    EKHEGLSESA
    251 QNAMKILAAE LPTKQAAELA AKITGEGKKA LYDLALSWKN
    K*
  • ORF147ng shows homology to a hypothetical E. coli protein:
  • sp|P45528|YRAL_ECOLI HYPOTHETICAL 31.3 KD PROTEIN IN AGAI-MTR
    INTERGENIC REGION (F286)
    >gi|606086 (U18997) ORF_f286 [Escherichia coli]
    >gi|1789535 (AE000395) hypothetical 31.3 kD protein in agai-mtr intergenic region
    [Escherichia coli] Length = 286
    Score = 218 bits (550), Expect = 3e−56
    Identities = 128/284 (45%), Positives = 171/284 (60%), Gaps = 4/284 (1%)
    Query: 4 KHLQKASDSVVGGTLYVVATPIGNLADITLRALAVLQKADIICAEDTRVTAQLLSAYGIQ 63
    K  Q A +S   G LY+V TPIGNLADIT RAL VLQ  D+I AEDTR T  LL  +GI
    Sbjct: 2 KQHQSADNSQ--GQLYIVPTPIGNLADITQRALEVLQAVDLIAAEDTRHTGLLLQHFGIN 59
    Query: 64 GRLVSVREHNERQMADKVIGFLSDGLVVAQVSDAGTPAVCDPGAKLARRVREAGFKVVPV 123
     RL ++ +HNE+Q A+ ++  L +G  +A VSDAGTP + DPG  L R  REAG +VVP+
    Sbjct: 60 ARLFALHDHNEQQKAETLLAKLQEGQNIALVSDAGTPLINDPGYHLVRTCREAGIRVVPL 119
    Query: 124 VGASAVMAALSVAGVAESDFYFNGFVPPKSGERRKLFAKWVRAAFPVVMFETPHRIGATL 183
     G  A + ALS AG+    F + GF+P KS  RR            ++ +E+ HR+  +L
    Sbjct: 120 PGPCAAITALSAAGLPSDRFCYEGFLPAKSKGRRDALKAIEAEPRTLIFYESTHRLLDSL 179
    Query: 184 ADMAELFPERR-LMLAREITKTFETFLSGTVGEIQTALAADGNQSRGEMVLVLYPAQDEK 242
     D+  +  E R ++LARE+TKT+ET     VGE+   +  D N+ +GEMVL++      +
    Sbjct: 180 EDIVAVLGESRYVVLARELTKTWETIHGAPVGELLAWVKEDENRRKGEMVLIV-EGHKAQ 238
    Query: 243 HEGLSESAQNAMKILAAELPTKQAAELAAKITGEGKKALYDLAL 286
     E L   A   + +L AELP K+AA LAA+I G  K ALY  AL
    Sbjct: 239 EEDLPADALRTLALLQAELPLKKAAALAAEIHGVKKNALYKYAL 282
  • Based on the computer analysis and the presence of a putative transmembrane domain in the gonococcal protein, it is predicted that these proteins from N. meningitidis and N. gonorrhoeae, and their epitopes, could be useful antigens for vaccines or diagnostics, or for raising antibodies.
  • Example 77
  • The following partial DNA sequence was identified in N. meningitidis <SEQ ID 647>
  • Figure US20130064846A1-20130314-C00283
  • This corresponds to the amino acid sequence <SEQ ID 648; ORF1>:
  • Figure US20130064846A1-20130314-C00284
  • Further sequencing analysis revealed the complete nucleotide sequence <SEQ ID 649>:
  • 1 ATGAAAACAA CCGACAAACG GACAACCGAA ACACACCGCA
    AAGCCCCGAA
    51 AACCGGCCGC ATCCGCTTCT CGCCTGCTTA CTTAGCCATA
    TGCCTGTCGT
    101 TCGGCATTCT TCCCCAAGCC TGGGCGGGAC ACACTTATTT
    CGGCATCAAC
    151 TACCAATACT ATCGCGACTT TGCCGAAAAT AAAGGCAAGT
    TTGCAGTCGG
    201 GGCGAAAGAT ATTGAGGTTT ACAACAAAAA AGGGGAGTTG
    GTCGGCAAAT
    251 CAATGACAAA AGCCCCGATG ATTGATTTTT CTGTGGTGTC
    GCGTAACGGC
    301 GTGGCGGCAT TGGTGGGCGA TCAATATATT GTGAGCGTGG
    CACATAACGG
    351 CGGCTATAAC AACGTTGATT TTGGTGCGGA AGGAAGAAAT
    CCCGATCAAC
    401 ATCGTTTTAC TTATAAAATT GTGAAACGGA ATAATTATAA
    AGCAGGGACT
    451 AAAGGCCATC CTTATGGCGG CGATTATCAT ATGCCGCGTT
    TGCATAAATT
    501 TGTCACAGAT GCAGAACCTG TTGAAATGAC CAGTTATATG
    GATGGGCGGA
    551 AATATATCGA TCAAAATAAT TACCCTGACC GTGTTCGTAT
    TGGGGCAGGC
    601 AGGCAATATT GGCGATCTGA TGAAGATGAG CCCAATAACC
    GCGAAAGTTC
    651 ATATCATATT GCAAGTGCGT ATTCTTGGCT CGTTGGTGGC
    AATACCTTTG
    701 CACAAAATGG ATCAGGTGGT GGCACAGTCA ACTTAGGTAG
    TGAAAAAATT
    751 AAACATAGCC CATATGGTTT TTTACCAACA GGAGGCTCAT
    TTGGCGACAG
    801 TGGCTCACCA ATGTTTATCT ATGATGCCCA AAAGCAAAAG
    TGGTTAATTA
    851 ATGGGGTATT GCAAACGGGC AACCCCTATA TAGGAAAAAG
    CAATGGCTTC
    901 CAGCTGGTTC GTAAAGATTG GTTCTATGAT GAAATCTTTG
    CTGGAGATAC
    951 CCATTCAGTA TTCTACGAAC CACGTCAAAA TGGGAAATAC
    TCTTTTAACG
    1001 ACGATAATAA TGGCACAGGA AAAATCAATG CCAAACATGA
    ACACAATTCT
    1051 CTGCCTAATA GATTAAAAAC ACGAACCGTT CAATTGTTTA
    ATGTTTCTTT
    1101 ATCCGAGACA GCAAGAGAAC CTGTTTATCA TGCTGCAGGT
    GGTGTCAACA
    1151 GTTATCGACC CAGACTGAAT AATGGAGAAA ATATTTCCTT
    TATTGACGAA
    1201 GGAAAAGGCG AATTGATACT TACCAGCAAC ATCAATCAAG
    GTGCTGGAGG
    1251 ATTATATTTC CAAGGAGATT TTACGGTCTC GCCTGAAAAT
    AACGAAACTT
    1301 GGCAAGGCGC GGGCGTTCAT ATCAGTGAAG ACAGTACCGT
    TACTTGGAAA
    1351 GTAAACGGCG TGGCAAACGA CCGCCTGTCC AAAATCGGCA
    AAGGCACGCT
    1401 GCACGTTCAA GCCAAAGGGG AAAACCAAGG CTCGATCAGC
    GTGGGCGACG
    1451 GTACAGTCAT TTTGGATCAG CAGGCAGACG ATAAAGGCAA
    AAAACAAGCC
    1501 TTTAGTGAAA TCGGCTTGGT CAGCGGCAGG GGTACGGTGC
    AACTGAATGC
    1551 CGATAATCAG TTCAACCCCG ACAAACTCTA TTTCGGCTTT
    CGCGGCGGAC
    1601 GTTTGGATTT AAACGGGCAT TCGCTTTCGT TCCACCGTAT
    TCAAAATACC
    1651 GATGAAGGGG CGATGATTGT CAACCACAAT CAAGACAAAG
    AATCCACCGT
    1701 TACCATTACA GGCAATAAAG ATATTGCTAC AACCGGCAAT
    AACAACAGCT
    1751 TGGATAGCAA AAAAGAAATT GCCTACAACG GTTGGTTTGG
    CGAGAAAGAT
    1801 ACGACCAAAA CGAACGGGCG GCTCAACCTT GTTTACCAGC
    CCGCCGCAGA
    1851 AGACCGCACC CTGCTGCTTT CCGGCGGAAC AAATTTAAAC
    GGCAACATCA
    1901 CGCAAACAAA CGGCAAACTG TTTTTCAGCG GCAGACCAAC
    ACCGCACGCC
    1951 TACAATCATT TAAACGACCA TTGGTCGCAA AAAGAGGGCA
    TTCCTCGCGG
    2001 GGAAATCGTG TGGGACAACG ACTGGATCAA CCGCACATTT
    AAAGCGGAAA
    2051 ACTTCCAAAT TAAAGGCGGA CAGGCGGTGG TTTCCCGCAA
    TGTTGCCAAA
    2101 GTGAAAGGCG ATTGGCATTT GAGCAATCAC GCCCAAGCAG
    TTTTTGGTGT
    2151 CGCACCGCAT CAAAGCCACA CAATCTGTAC ACGTTCGGAC
    TGGACGGGTC
    2201 TGACAAATTG TGTCGAAAAA ACCATTACCG ACGATAAAGT
    GATTGCTTCA
    2251 TTGACTAAGA CCGACATCAG CGGCAATGTC GATCTTGCCG
    ATCACGCTCA
    2301 TTTAAATCTC ACAGGGCTTG CCACACTCAA CGGCAATCTT
    AGTGCAAATG
    2351 GCGATACACG TTATACAGTC AGCCACAACG CCACCCAAAA
    CGGCAACCTT
    2401 AGCCTCGTGG GCAATGCCCA AGCAACATTT AATCAAGCCA
    CATTAAACGG
    2451 CAACACATCG GCTTCGGGCA ATGCTTCATT TAATCTAAGC
    GACCACGCCG
    2501 TACAAAACGG CAGTCTGACG CTTTCCGGCA ACGCTAAGGC
    AAACGTAAGC
    2551 CATTCCGCAC TCAACGGTAA TGTCTCCCTA GCCGATAAGG
    CAGTATTCCA
    2601 TTTTGAAAGC AGCCGCTTTA CCGGACAAAT CAGCGGCGGC
    AAGGATACGG
    2651 CATTACACTT AAAAGACAGC GAATGGACGC TGCCGTCAGG
    CACGGAATTA
    2701 GGCAATTTAA ACCTTGACAA CGCCACCATT ACACTCAATT
    CCGCCTATCG
    2751 CCACGATGCG GCAGGGGCGC AAACCGGCAG TGCGACAGAT
    GCGCCGCGCC
    2801 GCCGTTCGCG CCGTTCGCGC CGTTCCCTAT TATCCGTTAC
    ACCGCCAACT
    2851 TCGGTAGAAT CCCGTTTCAA CACGCTGACG GTAAACGGCA
    AATTGAACGG
    2901 TCAGGGAACA TTCCGCTTTA TGTCGGAACT CTTCGGCTAC
    CGCAGCGACA
    2951 AATTGAAGCT GGCGGAAAGT TCCGAAGGCA CTTACACCTT
    GGCGGTCAAC
    3001 AATACCGGCA ACGAACCTGC AAGCCTCGAA CAATTGACGG
    TAGTGGAAGG
    3051 AAAAGACAAC AAACCGCTGT CCGAAAACCT TAATTTCACC
    CTGCAAAACG
    3101 AACACGTCGA TGCCGGCGCG TGGCGTTACC AACTCATCCG
    CAAAGACGGC
    3151 GAGTTCCGCC TGCATAATCC GGTCAAAGAA CAAGAGCTTT
    CCGACAAACT
    3201 CGGCAAGGCA GAAGCCAAAA AACAGGCGGA AAAAGACAAC
    GCGCAAAGCC
    3251 TTGACGCGCT GATTGCGGCC GGGCGCGATG CCGTCGAAAA
    GACAGAAAGC
    3301 GTTGCCGAAC CGGCCCGGCA GGCAGGCGGG GAAAATGTCG
    GCATTATGCA
    3351 GGCGGAGGAA GAGAAAAAAC GGGTGCAGGC GGATAAAGAC
    ACCGCCTTGG
    3401 CGAAACAGCG CGAAGCGGAA ACCCGGCCGG CTACCACCGC
    CTTCCCCCGC
    3451 GCCCGCCGCG CCCGCCGGGA TTTGCCGCAA CTGCAACCCC
    AACCGCAGCC
    3501 CCAACCGCAG CGCGACCTGA TCAGCCGTTA TGCCAATAGC
    GGTTTGAGTG
    3551 AATTTTCCGC CACGCTCAAC AGCGTTTTCG CCGTACAGGA
    CGAATTAGAC
    3601 CGCGTATTTG CCGAAGACCG CCGCAACGCC GTTTGGACAA
    GCGGCATCCG
    3651 GGACACCAAA CACTACCGTT CGCAAGATTT CCGCGCCTAC
    CGCCAACAAA
    3701 CCGACCTGCG CCAAATCGGT ATGCAGAAAA ACCTCGGCAG
    CGGGCGCGTC
    3751 GGCATCCTGT TTTCGCACAA CCGGACCGAA AACACCTTCG
    ACGACGGCAT
    3801 CGGCAACTCG GCACGGCTTG CCCACGGCGC CGTTTTCGGG
    CAATACGGCA
    3851 TCGACAGGTT CTACATCGGC ATCAGCGCGG GCGCGGGTTT
    TAGCAGCGGC
    3901 AGCCTTTCAG ACGGCATCGG AGGCAAAATC CGCCGCCGCG
    TGCTGCATTA
    3951 CGGCATTCAG GCACGATACC GCGCCGGTTT CGGCGGATTC
    GGCATCGAAC
    4001 CGCACATCGG CGCAACGCGC TATTTCGTCC AAAAAGCGGA
    TTACCGCTAC
    4051 GAAAACGTCA ATATCGCCAC CCCCGGCCTT GCATTCAACC
    GCTACCGCGC
    4101 GGGCATTAAG GCAGATTATT CATTCAAACC GGCGCAACAC
    ATTTCCATCA
    4151 CGCCTTATTT GAGCCTGTCC TATACCGATG CCGCTTCGGG
    CAAAGTCCGA
    4201 ACACGCGTCA ATACCGCCGT ATTGGCTCAG GATTTCGGCA
    AAACCCGCAG
    4251 TGCGGAATGG GGCGTAAACG CCGAAATCAA AGGTTTCACG
    CTGTCCCTCC
    4301 ACGCTGCCGC CGCCAAAGGC CCGCAACTGG AAGCGCAACA
    CAGCGCGGGC
    4351 ATCAAATTAG GCTACCGCTG GTAA
  • This corresponds to the amino acid sequence <SEQ ID 650; ORF1-1>:
  • 1 MKTTDKRTTE THRKAPKTGR IRFSPAYLAI CLSFGILPQA
    WAGHTYFGIN
    51 YQYYRDFAEN KGKFAVGAKD IEVYNKKGEL VGKSMTKAPM
    IDFSVVSRNG
    101 VAALVGDQYI VSVAHNGGYN NVDFGAEGRN PDQHRFTYKI
    VKRNNYKAGT
    151 KGHPYGGDYH MPRLHKFVTD AEPVEMTSYM DGRKYIDQNN
    YPDRVRIGAG
    201 RQYWRSDEDE PNNRESSYHI ASAYSWLVGG NTFAQNGSGG
    GTVNLGSEKI
    251 KHSPYGFLPT GGSFGDSGSP MFIYDAQKQK WLINGVLQTG
    NPYIGKSNGF
    301 QLVRKDWFYD EIFAGDTHSV FYEPRQNGKY SFNDDNNGTG
    KINAKHEHNS
    351 LPNRLKTRTV QLFNVSLSET AREPVYHAAG GVNSYRPRLN
    NGENISFIDE
    401 GKGELILTSN INQGAGGLYF QGDFTVSPEN NETWQGAGVH
    ISEDSTVTWK
    451 VNGVANDRLS KIGKGTLHVQ AKGENQGSIS VGDGTVILDQ
    QADDKGKKQA
    501 FSEIGLVSGR GTVQLNADNQ FNPDKLYFGF RGGRLDLNGH
    SLSFHRIQNT
    551 DEGAMIVNHN QDKESTVTIT GNKDIATTGN NNSLDSKKEI
    AYNGWFGEKD
    601 TTKTNGRLNL VYQPAAEDRT LLLSGGTNLN GNITQTNGKL
    FFSGRPTPHA
    651 YNHLNDHWSQ KEGIPRGEIV WDNDWINRTF KAENFQIKGG
    QAVVSRNVAK
    701 VKGDWHLSNH AQAVFGVAPH QSHTICTRSD WTGLTNCVEK
    TITDDKVIAS
    751 LTKTDISGNV DLADHAHLNL TGLATLNGNL SANGDTRYTV
    SHNATQNGNL
    801 SLVGNAQATF NQATLNGNTS ASGNASFNLS DHAVQNGSLT
    LSGNAKANVS
    851 HSALNGNVSL ADKAVFHFES SRFTGQISGG KDTALHLKDS
    EWTLPSGTEL
    901 GNLNLDNATI TLNSAYRHDA AGAQTGSATD APRRRSRRSR
    RSLLSVTPPT
    951 SVESRFNTLT VNGKLNGQGT FRFMSELFGY RSDKLKLAES
    SEGTYTLAVN
    1001 NTGNEPASLE QLTVVEGKDN KPLSENLNFT LQNEHVDAGA
    WRYQLIRKDG
    1051 EFRLHNPVKE QELSDKLGKA EAKKQAEKDN AQSLDALIAA
    GRDAVEKTES
    1101 VAEPARQAGG ENVGIMQAEE EKKRVQADKD TALAKQREAE
    TRPATTAFPR
    1151 ARRARRDLPQ LQPQPQPQPQ RDLISRYANS GLSEFSATLN
    SVFAVQDELD
    1201 RVFAEDRRNA VWTSGIRDTK HYRSQDFRAY RQQTDLRQIG
    MQKNLGSGRV
    1251 GILFSHNRTE NTFDDGIGNS ARLAHGAVFG QYGIDRFYIG
    ISAGAGFSSG
    1301 SLSDGIGGKI RRRVLHYGIQ ARYRAGFGGF GIEPHIGATR
    YFVQKADYRY
    1351 ENVNIATPGL AFNRYRAGIK ADYSFKPAQH ISITPYLSLS
    YTDAASGKVR
    1401 TRVNTAVLAQ DFGKTRSAEW GVNAEIKGFT LSLHAAAAKG
    PQLEAQHSAG
    1451 IKLGYRW*
  • Computer analysis of these sequences gave the following results:
  • Homology with a Predicted ORF from N. meningitidis (Strain A)
  • ORF1 shows 57.8% identity over a 1456aa overlap with an ORF (ORF1a) from strain A of N. meningitidis:
  • Figure US20130064846A1-20130314-C00285
    Figure US20130064846A1-20130314-C00286
  • The complete length ORF1a nucleotide sequence <SEQ ID 651> is:
  • 1 ATGAAAACAA CCGACAAACG GACAACCGAA ACACACCGCA
    AAGCCCCGAA
    51 AACCGGCCGC ATCCGCTTCT CGCCTGCTTA CTTAGCCATA
    TGCCTGTCGT
    101 TCGGCATTCT TCCCCAAGCT TGGGCGGGAC ACACTTATTT
    CGGCATCAAC
    151 TACCAATACT ATCGCGACTT TGCCGAAAAT AAAGGCAAGT
    TTGCAGTCGG
    201 GGCGAAAGAT ATTGAGGTNT ACAACAAAAA AGGGGAGTTG
    GTCGGCAAAT
    251 CAATGACAAA AGCCCCGATG ATTGATTTTT CTGTGGTGTC
    GCGTAACGGC
    301 GTGGCGGCAT TGGTGGGCGA TCAATATATT GTGAGCGTGG
    CACATAACGG
    351 CGGCTATAAC AACGTTGATT TTGGTGCGGA AGGAAGNAAT
    CCCGATCAGC
    401 ACCGTTTTTC TTACCAAATT GTGAAAAGAA ATAATTATAA
    GCCTGACAAT
    451 TCACACCCTT ACAACGGCGA TTANCATATG CCGCGTTTGC
    ATAAATTTGT
    501 CACAGATGCA GAACCTGTCG AAATGACGAG TGACATGAGG
    GGGAATACCT
    551 ATTCCGATAA AGAAAAATAT CCCGAGCGTG TCCGCATCGG
    CTCAGGACAC
    601 CACTATTGGC GTTATGATGA TGACAAACAC GGCGATTTAT
    CCTACTCCGG
    651 CGCATGGTTA ATTGGCGGCA ATACACATAT GCAGGGTTGG
    GGAAATAATG
    701 GCGTANTTAG TTTGAGCGGC GATGTGCGCC ATGCCAACGA
    CTATGGCCCT
    751 ATGCCGATTG CAGGTGCGGC AGGCGACAGC GGTTCGCCAA
    TGTTTATTTA
    801 TGACAAAACA AACAATAAAT GGCTGCTCAA CGGAGTTTTA
    CAAACCGGCT
    851 ACCCTTATTC CGGCAGGGAA AACGGTTTCC AGCTGATACG
    CAAAGATTGG
    901 TTCTACGATG ACATTTACAG AGGCGATACA CATACCGTCT
    NTTTTGAACC
    951 GCGCAGTAAC GGACATTTTT CCTTTACATC CAACAACAAC
    GGTACGGGTA
    1001 CGGTAACAGA AACCAACGAA AAGGTNTCCA ATCCAAAGCT
    TAAAGTACAG
    1051 ACAGTCCGAC TGTTTGACGA ATCTTTGAAT GAAACTGATA
    AAGAACCAGT
    1101 TTACGCGGCA GGGGGTGTTA ATCAGTACCG TCCAAGGTTA
    AACAACGGTG
    1151 AAAACCTTTC TTTTATCGAT TACGGCAACG GCAAACTCAT
    CTTATCAAAC
    1201 AACATCAACC AAGGCGCGGG CGGTTTGTAT TTTGAAGGTG
    ATTTTACGGT
    1251 CTCGCCTGAA AACAACGAAA CGTGGCAAGG CGCGGGCGTT
    CATATCAGTG
    1301 AAGACAGTAC CGTTACTTGG AAAGTAAACG GCGTGGCAAA
    CGACCGCCTG
    1351 TCCAAAATCG GCAAAGGCAC GCTGCACGTT CAAGCCAAAG
    GGGAAAACCA
    1401 AGGCTCGATC AGCGTGGGCG ACGGTACAGT CATTTTGGAT
    CAGCAGGCAG
    1451 ACGATAAAGG CAAAAAACAA GCCTTTAGTG AAATCGGCTT
    GNTCAGCGGC
    1501 AGGGGTACGG TGCAACTGAA TGCCGATAAT CAGTTCAACC
    CCGACAAACT
    1551 CTATTTCGGC TTTCGCGGCG GACGTTTGGA TTTAAACGGG
    CATTCGCTTT
    1601 CGTTCCACCG TATTCAAAAT ACCGATGAAG GGGCGATGAT
    TGNCNATCAT
    1651 AATGCCACAA CAACATCCAC CGTTACCATT ACAGGGAATG
    AAAGTATTAC
    1701 ACAACCGAGT GGTAAGAATA TCAATAGACT TAATTACAGC
    AAAGAAATTG
    1751 CCTACAACGG TTGGTTTGGC GAGAAAGATA CGACCAAAAC
    GAACGGGCGG
    1801 CTCAACCTTG TTTACCAGCC CGCCGCAGAA GACCGCACCC
    NGCTGCTTTC
    1851 CGGCGGAACA AATTTAAACG GCAACATCAC GCAAACAAAC
    GGCAAACTGT
    1901 TTTTCAGCGG CAGACCGACA CCGCACGCCT ACAATCATTT
    AGGAAGCGGG
    1951 TGGTCAAAAA TGGAAGGTAT CCCACAAGGA GAAATCGTGT
    GGGACAACGA
    2001 CTGGATCNAC CGCACGTTTA AAGCGGAAAA TTTCCATATT
    CAGGGCGGGC
    2051 AGGCGGTGAT TTCCCGCAAT GTTGCCAAAG TGGAAGGCGA
    TTGNCATTTG
    2101 AGCAATCACG CCCAAGCAGT TTTTGGTGTC GCACCGCATC
    AAAGCCATAC
    2151 AATCTGTACA CGTTCGGACT GGACNGGTCT GACAAATTGT
    GTCGAANAAA
    2201 NCATTACCGA CGATAAAGTG ATTGCTTCAT TGACTAAGAC
    NGACNTNAGC
    2251 GGCANTGTNA GNCTNNCCNA TNACGNTNNT TNAAANCTCN
    CNGGGCNTGC
    2301 NNCACTNAAN GGCAATCTTA GTGCAAATGG CGATACACGT
    TATACAGTCA
    2351 GCCACAACGC CACCCAAAAC GGCAACCTTA GCCTCGTGGG
    CAATGCCCAA
    2401 GCAACATTTA ATCAAGCCAC ATTAAACGGC AACNCATCGG
    NTTCGGGCAA
    2451 TGCTTCATTT AATCTAAGCA ACAACGCCGC ACAAAACGGC
    AGTCTGACGC
    2501 TTTCCGACAA CGCTAAGGCA AACGTAAGCC ATTCCGCACT
    CAACGGCAAT
    2551 GTCTCCCTAG CCGATAAGGC AGTATTCCAT TTTGAAAACA
    GCCGCTTTAC
    2601 CGGACAACTC AGCGGCAGCA AGGANACAGC ATTACACTTA
    AAAGACAGCG
    2651 AATGGACGCT GCCGTCAGGC ACGGAATTAG GCAATTTAAA
    CCTTGACAAC
    2701 GCCACCATTA CACTCAATTC CGCCTATCGC CACGATGCTG
    CAGGCGCGCA
    2751 AACCGGCAGN GTGTCAGACA CGCCGCGCCG CCGTTCGCGC
    CGTTCCCTAT
    2801 TATCCGTTAC ACCGCCAACT TCGGTAGAAT CCCGTTTCAA
    CACGCTGACG
    2851 GTAAACGGCA AATTGAACNG TCAAGGAACA TTCCGCTTTA
    TGTCGGAACT
    2901 CTTCGGCTAC CGAAGCGACA AATTGAAGCT GGCGGAAAGT
    TCCGAAGGNA
    2951 CTTACACCTT GGCGGTCAAC AATACCGGCA ACGAACCCGT
    AAGCCTCGAT
    3001 CAATTGACGG TAGTGGAAGG GAAAGACAAC AAACCGCTGT
    CCGAAAACCT
    3051 TAATTTCACC CTGCAAAACG AACACGTCGA TGCCGGCGCG
    TGGCGTTACC
    3101 AACTCATCCG CAAAGACGGC GAGTTCCGCC TGCATAATCC
    GGTCAAAGAA
    3151 CAAGAGCTTT CCGACAAACT CGGCAAGGCA GAAGCCAAAA
    AACAGGCGGA
    3201 AAAAGACAAC GCGCAAAGCC TTGACGCGCT GATTGCGGCC
    GGGCGCGATG
    3251 CCGCCGAAAA GACAGAAAGC GTTGCCGAAC CGGCCCGGCN
    GGCAGGCGGG
    3301 GAAAATGTCG GCATTATGCA GGCGGAGGAA GAGAAAAAAC
    GGGTGCAGGC
    3351 GGATAAAGAC AGCGCNTTGG CGAAACAGCG CGAAGCGGAA
    ACCCGGCCGG
    3401 NTACCACCGC CTTCCCCCGC GCCCGCNGCG CCCGCCGGGA
    TTTGCCGCAA
    3451 CCGCAGCCCC AACCGCAACC TCAACCCCAA CCGCAGCGCG
    ACCTGATNAG
    3501 CCGTTATGCC AATAGCGGTT TGAGTGAATT TTCCGCCACG
    CTCAACAGCG
    3551 TTTTCGCCGT ACAGGACGAA TTGGACCGCG TGTTTGCCGA
    AGACCGCCGC
    3601 AACGCNGTTT GGACAAGCNG CATCCGGNAC ACCAAACACT
    ACCGTTCGCA
    3651 AGATTTCCGC GCCTACCGCC AACAAACCGA CCTGCGCCAA
    ATCGGTATGC
    3701 AGAAAAACCT CGGCAGCGGG CGCGTCGGCA TCCTGTTTTC
    GCACAACCGG
    3751 ACCGAAAACA NCTTCGACGA CGGCATCGGC AACTCGGCAC
    GGCTTGCCCA
    3801 CGGCGCCGTT TTCGGGCAAT ACGGCATCGG CAGGTTCGAC
    ATCGGCATCA
    3851 GCACGGGCGC GGGTTTTAGC AGCGGCANTC TNTCAGACGG
    CATCGGAGGC
    3901 AAAATCCGCC GCCGCGTGCT GCATTACGGC ATTCAGGCAC
    GATACCGCGC
    3951 CGGTTTCGGC GGATTCGGCA TCGAACCGTA CATCGGCGCA
    ACGCGCTATT
    4001 TCGTCCAAAA AGCGGATTAC CGCTACGAAA ACGTCAATAT
    CGCCACCCCC
    4051 GGTCTTGCGT TCAACCGNTA CCGNGCGGGC ATTAAGGCAG
    ATTATTCATT
    4101 CAAACCGGCG CAACACATNT CCATCACNCC TTATTTNAGC
    CTGTCCTATA
    4151 CCGATGCCGC TTCGGGCAAA GTCCGAACAC GCGTCAATAC
    CGCNGTATTG
    4201 GCTCAGGATT TCGGCAAAAC CCGCAGTGCG GAATGGGGCG
    TAAACGCCGA
    4251 AATCAAAGGT TTCACGCTGT CCNTCCACGC TGCCGCCGCC
    AAAGGNCCGC
    4301 AACTGGAAGC GCAACACAGC GCGGGCATCA AATTAGGCTA
    CCGCTGGTAA
  • This encodes a protein having amino acid sequence <SEQ ID 652>:
  • 1 MKTTDKRTTE THRKAPKTGR IRFSPAYLAI CLSFGILPQA
    WAGHTYFGIN
    51 YQYYRDFAEN KGKFAVGAKD IEVYNKKGEL VGKSMTKAPM
    IDFSVVSRNG
    101 VAALVGDQYI VSVAHNGGYN NVDFGAEGXN PDQHRFSYQI
    VKRNNYKPDN
    151 SHPYNGDXHM PRLHKFVTDA EPVEMTSDMR GNTYSDKEKY
    PERVRIGSGH
    201 HYWRYDDDKH GDLSYSGAWL IGGNTHMQGW GNNGVXSLSG
    DVRHANDYGP
    251 MPIAGAAGDS GSPMFIYDKT NNKWLLNGVL QTGYPYSGRE
    NGFQLIRKDW
    301 FYDDIYRGDT HTVXFEPRSN GHFSFTSNNN GTGTVTETNE
    KVSNPKLKVQ
    351 TVRLFDESLN ETDKEPVYAA GGVNQYRPRL NNGENLSFID
    YGNGKLILSN
    401 NINQGAGGLY FEGDFTVSPE NNETWQGAGV HISEDSTVTW
    KVNGVANDRL
    451 SKIGKGTLHV QAKGENQGSI SVGDGTVILD QQADDKGKKQ
    AFSEIGLXSG
    501 RGTVQLNADN QFNPDKLYFG FRGGRLDLNG HSLSFHRIQN
    TDEGAMIXXH
    551 NATTTSTVTI TGNESITQPS GKNINRLNYS KEIAYNGWFG
    EKDTTKTNGR
    601 LNLVYQPAAE DRTXLLSGGT NLNGNITQTN GKLFFSGRPT
    PHAYNHLGSG
    651 WSKMEGIPQG EIVWDNDWIX RTFKAENFHI QGGQAVISRN
    VAKVEGDXHL
    701 SNHAQAVFGV APHQSHTICT RSDWTGLTNC VEXXITDDKV
    IASLTKTDXS
    751 GXVXLXXXXX XXLXGXAXLX GNLSANGDTR YTVSHNATQN
    GNLSLVGNAQ
    801 ATFNQATLNG NXSXSGNASF NLSNNAAQNG SLTLSDNAKA
    NVSHSALNGN
    851 VSLADKAVFH FENSRFTGQL SGSKXTALHL KDSEWTLPSG
    TELGNLNLDN
    901 ATITLNSAYR HDAAGAQTGX VSDTPRRRSR RSLLSVTPPT
    SVESRFNTLT
    951 VNGKLNXQGT FRFMSELFGY RSDKLKLAES SEGTYTLAVN
    NTGNEPVSLD
    1001 QLTVVEGKDN KPLSENLNFT LQNEHVDAGA WRYQLIRKDG
    EFRLHNPVKE
    1051 QELSDKLGKA EAKKQAEKDN AQSLDALIAA GRDAAEKTES
    VAEPARXAGG
    1101 ENVGIMQAEE EKKRVQADKD SALAKQREAE TRPXTTAFPR
    ARXARRDLPQ
    1151 PQPQPQPQPQ PQRDLXSRYA NSGLSEFSAT LNSVFAVQDE
    LDRVFAEDRR
    1201 NAVWTSXIRX TKHYRSQDFR AYRQQTDLRQ IGMQKNLGSG
    RVGILFSHNR
    1251 TENXFDDGIG NSARLAHGAV FGQYGIGRFD IGISTGAGFS
    SGXLSDGIGG
    1301 KIRRRVLHYG IQARYRAGFG GFGIEPYIGA TRYFVQKADY
    RYENVNIATP
    1351 GLAFNRYRAG IKADYSFKPA QHXSITPYXS LSYTDAASGK
    VRTRVNTAVL
    1401 AQDFGKTRSA EWGVNAEIKG FTLSXHAAAA KGPQLEAQHS
    AGIKLGYRW*
  • A transmembrane region is underlined.
  • ORF1-1 shows 86.3% identity over a 1462aa overlap with ORF1a:
  • Figure US20130064846A1-20130314-C00287
    Figure US20130064846A1-20130314-C00288
  • Homology with Adhesion and Penetration Protein Hap Precursor of H. influenzae (Accession Number P45387)
  • Amino acids 23-423 of ORF1 show 59% aa identity with hap protein in 450aa overlap:
  • orf1 23 FXAAYLAICLSFGILPQAWAGHTYFGINYQYYRDFAENKGKFAVGAKDIEVYNKKGELVG 82
    F   +L  C+S GI  QAWAGHTYFGI+YQYYRDFAENKGKF VGAK+IEVYNK+G+LVG
    hap 6 FRLNFLTACVSLGIASQAWAGHTYFGIDYQYYRDFAENKGKFTVGAKNIEVYNKEGQLVG 65
    orf1 83 KSMTKAPMIDFSVVSRNGVAALVGVQYIVSVAHNGGYNNVDFGAEGXNIXDQXRXTYKIV 142
     SMTKAPMIDFSVVSRNGVAALVG QYIVSVAHNGGYN+VDFGAEG N  DQ R TY+IV
    hap 66 TSMTKAPMIDFSVVSRNGVAALVGDQYIVSVAHNGGYNDVDFGAEGRN-PDQHRFTYQIV 124
    orf1 143 KRNNYKAGTKGHPYGGDYHMPRLHKXVTDAEPVEMTSYMDGRKYIDQNNYPDRVRIGAGR 202
    KRNNY+A  + HPY GDYHMPRLHK VT+AEPV MT+ MDG+ Y D+ NYP+RVRIG+GR
    hap 125 KRNNYQAWERKHPYDGDYHMPRLHKFVTEAEPVGMTTNMDGKVYADRENYPERVRIGSGR 184
    orf1 203 QYWRSDEDEPNNRESSYHIA---------------------------------------- 222
    QYWR+D+DE  N  SSY+++
    hap 185 QYWRTDKDEETNVHSSYYVSGAYRYLTAGNTHTQSGNGNGTVNLSGNVVSPNHYGPLPTG 244
    orf1 223 -----SGSPMFIYDAQKQKWLINGVLQTGNPYIGKSNGFQLVRKDWFYDEIFAGDTHSVF 277
         SGSPMFIYDA+K++WLIN VLQTG+P+ G+ NGFQL+R++WFY+E+ A DT SVF
    hap 245 GSKGDSGSPMFIYDAKKKQWLINAVLQTGHPFFGRGNGFQLIREEWFYNEVLAVDTPSVF 304
    orf1 278 --YEPRQNGKYSFNDDNNGTGKIN-AKHEHNSLPNRLKTRTVQLFNVSLSETAREPVYHA 334
      Y P  NG YSF  +N+GTGK+   +   +    + +  TV+LFN SL++TA+E V  A
    hap 305 QRYIPPINGHYSFVSNNDGTGKLTLTRPSKDGSKAKSEVGTVKLFNPSLNQTAKEHV-KA 363
    orf1 335 AGGVNSYRPRLNNGENISFIDEGKGELILTSNINQGAGGLYFQGDFTV-SPENNETWQGA 393
    A G N Y+PR+  G+NI   D+GKG L + +NINQGAGGLYF+G+F V   +NN TWQGA
    hap 364 AAGYNIYQPRMEYGKNIYLGDQGKGTLTIENNINQGAGGLYFEGNFVVKGKQNNITWQGA 423
    orf1 394 GVHISEDSTVTWKVNGVANDRLSKIGKGTL 423
    GV I +D+TV WKV+   NDRLSKIG GTL
    hap 424 GVSIGQDATVEWKVHNPENDRLSKIGIGTL 453
  • Amino acids 715-1011 of ORF1 show 50% aa identity with hap protein in 258aa overlap:
  • Orf1 41 DTRYTVSHNATQ-NGNXSLVXNAQATFNQ-ATLNGNTSASGNASFNLSDHAVQNGSLTLS 98
    DT+   S   TQ NG+ +L  NA    +  A LNGN +   ++ F LS++A Q G++ LS
    hap 733 DTKVINSIPITQINGSINLTNNATVNIHGLAKLNGNVTLIDHSQFTLSNNATQTGNIKLS 792
    orf1 99 GNAKANVSHSALNGNVSLADKAVFHFESSRFTGQISGGKDTALHLKDSEWTLPSGXELGN 158
     +A A V+++ LNGNV L D A F  ++S F  QI G KDT + L+++ WT+PS   L N
    hap 793 NHANATVNNATLNGNVHLTDSAQFSLKNSHFWHQIQGDKDTTVTLENATWTMPSDTTLQN 852
    orf1 159 LNLDNATITLNSAYRHDAAGAQTGSATDAPXXXXXXXXXXLLXVTPPTSVESRFNTLTVN 218
    L L+N+T+TLNSAY        + S+ +AP          L   T PTS E RFNTLTVN
    hap 853 LTLNNSTVTLNSAY--------SASSNNAPRHRRS-----LETETTPTSAEHRFNTLTVN 899
    orf1 219 GKLNGQGTFRFMSELFGYRSDKLKLAESSEGTYTLAVNNTGNEPASLEQLTVVEGKDNKP 278
    GKL+GQGTF+F S LFGY+SDKLKL+  +EG YTL+V NTG EP +LEQLT++E  DNKP
    hap 900 GKLSGQGTFQFTSSLFGYKSDKLKLSNDAEGDYTLSVRNTGKEPVTLEQLTLIESLDNKP 959
    orf1 279 LSENLNFTLQNEHVDAGA 296
    LS+ L FTL+N+HVDAGA
    hap 960 LSDKLKFTLENDHVDAGA 977
  • Amino acids 1192-1450 of ORF1 show 41% aa identity with hap protein in 259aa overlap:
  • Orf1 1 LDRVFAEDRRNAVWTSGIRDTKHYRSQDFRAYRQQTDLRQIGMQKNLGSGRVGILFSHNR 60
    LDR+F +  ++AVWT+  +D + Y S  FRAY+Q+T+LRQIG+QK L +GR+G +FSH+R
    hap 1135 LDRLFVDQAQSAVWTNIAQDKRRYDSDAFRAYQQKTNLRQIGVQKALANGRIGAVFSHSR 1194
    orf1 61 TENTFDDGIGNSARLAHGAVFGQYGIDRFYXXXXXXXXXXXXXXXXXIGXKXRRRVLHYG 120
    ++NTFD+ + N A L   + F QY                          K  R+ ++YG
    hap 1195 SDNTFDEQVKNHATLTMMSGFAQYQWGDLQFGVNVGTGISASKMAEEQSRKIHRKAINYG 1254
    orf1 121 IQARYRAGFGGFGIEPHIGATRYFVQKADYRYENVNIATPGLAFNRYRAGIKADYSFKPA 180
    + A Y+   G  GI+P+ G  RYF+++ +Y+ E V + TP LAFNRY AGI+ DY+F P
    hap 1255 VNASYQFRLGQLGIQPYFGVNRYFIERENYQSEEVRVKTPSLAFNRYNAGIRVDYTFTPT 1314
    orf1 181 QHISITPYLSLSYTDAASGKVRTRVNTAVLAQDFGKTRSAEWGVNAEIKGFTLSLHAAAA 240
     +IS+ PY  ++Y D ++  V+T VN  VL Q FG+    E G+ AEI  F +S   + +
    hap 1315 DNISVKPYFFVNYVDVSNANVQTTVNLTVLQQPFGRYWQKEVGLKAEILHFQISAFISKS 1374
    orf1 241 KGPQLEAQHSAGIKLGYRW 259
    +G QL  Q + G+KLGYRW
    hap 1375 QGSQLGKQQNVGVKLGYRW 1393

    Homology with a Predicted ORF from N. gonorrhoeae
  • The blocks of ORF1 show 83.5%, 88.3%, and 97.7% identities in 467, 298, and 259 aa overlap, respectively with a predicted ORF (ORF1ng) from N. gonorrhoeae:
  • Figure US20130064846A1-20130314-C00289
    Figure US20130064846A1-20130314-C00290
  • The complete length ORF1ng nucleotide sequence was identified <SEQ ID 653>:
  • 1 ATGAAAACAA CCGACAAACG GACAACCGAA ACACACCGCA
    AAGCCCCTAA
    51 AACCGGCCGC ATCCGCTTCT CGCCCGCTTA CTTAGCCATA
    TGCCTGTCGT
    101 TCGGCATTCT GCCCCAAGCC CGGGCGGGAC ACACTTATTT
    CGGCATCAAC
    151 TACCAATACT ATCGCGACTT TGCCGAAAAT AAAGGCAAGT
    TTGCAGTCGG
    201 GGCGAAAGAT ATTGAGGTTT ACAACAAAAA AGGGGAGTTG
    GTCGGCAAAT
    251 CGATGACGAA AGCCCCGATG ATTGATTTTT CTGTGGTATC
    GCGTAACGGC
    301 GTGGCGGCAT TGGCGGGCGA TCAATATATT GTGAGCGTGG
    CACATAACGG
    351 CGGCTATAAC AATGTTGATT TTGGTGCGGA GGGAAGCAAT
    CCCGATCAGC
    401 ACCGCTTTTC TTACCAAATT GTGAAAAGAA ATAATTATAA
    AGCAGGGACT
    451 AACGGCCATC CTTATGGCGG CGATTATCAT ATGCCGCGTT
    TGCACAAATT
    501 TGTCACAGAT GCAGAACCTG TTGAGATGAC CAGTTATATG
    GATGGGTGGA
    551 AATACGCTGA TTTAAATAAA TACCCTGATC GTGTTCGAAT
    CGGAGCAGGC
    601 AGACAATATT GGCGGTCTGA TGAAGACGAA CCCAATAACC
    GCGAAAGTTC
    651 ATATCATATT GCAAGCGCAT ATTCTTGGCT CGTCGGTGGC
    AATACCTTTG
    701 CACAAAATGG ATCAGGTGGT GGCACAGTCA ACTTAGGTAG
    CGAAAAAATT
    751 AAACATAGCC CATATGGTTT TTTACCAACA GGAGGCTCAT
    TTGGCGACAG
    801 TGGCTCACCA ATGTTTATCT ATGATGCCCA AAAGCAAAAG
    TGGTTAATTA
    851 ATGGGGTATT GCAAACAGGC AACCCCTATA TAGGAAAAAG
    CAATGGCTTC
    901 CAGCTAGTTC GTAAAGATTG GTTCTATGAT GAAATCTTTG
    CTGGAGATAC
    951 CCATTCAGTA TTCTACGAAC CACATCAAAA TGGGAAATAC
    TTTTTTAACG
    1001 ACAATAATAA TGGCGCAGGA AAAATCGATG CCAAACATAA
    ACACTATTCT
    1051 CTACCTTATA GATTAAAAAC ACGAACCGTT CAATTGTTTA
    ATGTTTCTTT
    1101 ATCCGAGACA GCAAGAGAAC CTGTTTATCA TGCTGCAGGT
    GGGGTCAACA
    1151 GTTATCGACC CAGACTGAAT AATGGAGAAA ATATTTCCTT
    TATTGACAAA
    1201 GGAAAAGGTG AATTGATACT TACCAGCAAC ATCAACCAAG
    GCGCGGGCGG
    1251 TTTGTATTTT GAGGGTAATT TTACGGTCTC GCCTAAAAAC
    AACGAAACGT
    1301 GGCAAGGCGC GGGCGTTCAT ATCAGTGATG GCAGTACCGT
    TACTTGGAAA
    1351 GTAAACGGCG TGGCAAACGA CCGCCTGTCC AAAATCGGCA
    AAGGCACGCT
    1401 GCTGGTTCAA GCCAAAGGGG AAAACCAAGG CTCGGTCAGC
    GTGGGCGACG
    1451 GTAAAGTCAT CTTAGATCAG CAGGCGGACG ATCAAGGCAA
    AAAACAAGCC
    1501 TTTAGTGAAA TCGGCTTGGT CAGCGGCAGG GGGACGGTGC
    AACTGAATGC
    1551 CGATAATCAG TTCAACCCCG ACAAACTCTA TTTCGGCTTT
    CGCGGCGGAC
    1601 GTTTGGATTT GAACGGGCAT TCGCTTTCGT TCCACCGCAT
    TCAAAATACC
    1651 GATGAAGGGG CGATGATTGT CAACCACAAT CAAGACAAAG
    AATCCACCGT
    1701 TACCATTACA GGCAATAAAG ATATTACTAC AACCGGCAAT
    AACAACAACT
    1751 TGGATAGCAA AAAAGAAATT GCCTACAACG GTTGGTTTGG
    CGAGAAAGAT
    1801 GCAACCAAAA CGAACGGGCG GCTCAATCTG AATTACCAAC
    CGGAAGAAGC
    1851 GGATCGCACT TTACTGCTTT CCGGCGGAAC AAATTTAAAC
    GGCAATATCA
    1901 CGCAAACAAA CGGCAAACTG TTTTTCAGCG GCAGACCGAC
    ACCGCACGCC
    1951 TACAATCATT TAGGAAGCGG GTGGTCAAAA ATGGAAGGTA
    TCCCACAAGG
    2001 AGAAATCGTG TGGGACAACG ATTGGATCGA CCGCACATTT
    AAAGCGGAAA
    2051 ACTTCCATAT TCAGGGCGGA CAAGCGGTGG TTTCCCGCAA
    TGTTGCCAAA
    2101 GTGGAAGGCG ATTGGCATTT AAGCAATCAC GCCCAAGCAG
    TTTTCGGTGT
    2151 CGCACCGCAT CAAAGCCACA CAATCTGTAC ACGTTCGGAC
    TGGACGGGTC
    2201 TGACAAGTTG TACCGAAAAA ACCATTACCG ACGATAAAGT
    GATTGCTTCA
    2251 TTGAGCAAGA CCGACATCAG AGGCAATGTC AGCCTTGCCG
    ATCACGCTCA
    2301 TTTAAATCTC ACAGGACTTG CCACACTCAA CGGCAATCTT
    AGTGCAGGCG
    2351 GAGACACGCA CTATACGGTT ACGCGCAACG CCACCCAAAA
    CGGCAACCTC
    2401 AGCCTCGTGG GCAATGCCCA AGCAACATTT AATCAAGCCA
    CATTAAACGG
    2451 CAACACATCG GCTTCGGACA ATGCTTCATT TAATCTAAGC
    AACAACGCCG
    2501 TACAAAACGG CAGTCTGACG CTTTCCGACA ACGCTAAGGC
    AAACGTAAGC
    2551 CATTCCGCAC TCAACGGCAA TGTCTCCCTA GCCGATAAGG
    CAGTATTCCA
    2601 TTTTGAAAAC AGCCGCTTTA CCGGAAAAAT CAGCGGCGGC
    AAGGATACGG
    2651 CATTACACTT AAAAGACAGC GAATGGACGC TGCCGTCGGG
    CACGGAATTA
    2701 GGCAATTTAA ACCTTGACAA CGCCACCATT ACACTCAATT
    CCGCCTATCG
    2751 ACACGATGCG GCAGGCGCGC AAACCGGCAG TGCGGCAGAT
    GCGCCGCGCC
    2801 GCCGTTCGCG CCGTTCCCTA TTATCCGTTA CGCCGCCAAC
    TTCGGCAGAA
    2851 TCCCGTTTCA ACACGCTGAC GGTAAACGGC AAATTGAACG
    GTCAGGGAAC
    2901 ATTCCGCTTT ATGTCGGAAC TCTTCGGCTA CCGCAGCGGC
    AAATTGAAGC
    2951 TGGCGGAAAG TTCCGAAGGC ACTTACACCT TGGCTGTCAA
    CAATACCGGC
    3001 AACGAACCCG TAAGTCTCGA GCAATTGACG GTAGTGGAAG
    GAAAAGACAA
    3051 CACACCGCTG TCCGAAAATC TTAATTTCAC CCTGCaaaAc
    gaacacgtcg
    3101 atgccggcgc atggCGTTAT CAGCTTATCC gcaaagacgG
    CGAGTTCCgc
    3151 CTGCATAATC CGGTCAAAGA ACAAGAGCTT TCCGACAAAC
    TCGGCAAGgc
    3201 gggagaaACA GAggccgccT TGACGGCAAA ACAGGCacaA
    CTTGCCGCCA
    3251 AAcaacaggc ggaaaAAGAC AACgcgcaaa gccttgAcgc
    gctgattgcg
    3301 gCcgggcgca atgccaccga AAAGGCAgaa agtgttgccg
    aaccgGCCCG
    3351 GCAGGCAGGC GGGGAAAAtg ccgGCATTAT GCAGGCGGAG
    GAAGAGAAAA
    3401 AACGGGTGCA GGCGGATAAA GACACCGCCT TGGCGAAACA
    GCGCGAAGCG
    3451 GAAACCCGGC CGGCTACCAC CGCCTTCCCC CGCGCCCGCC
    GCGCCCGCCG
    3501 GGATTTGCCG CAACCGCAGC CCCAACCGCA ACCCCAACCG
    CAGCGCGACC
    3551 TGATCAGCCG TTATGCCAAT AGCGGTTTGA GTGAATTTTC
    CGCCACGCTC
    3601 AACAGCGTTT TCGCCGTACA GGACGAATTG GACCGCGTGT
    TTGCCGAAGA
    3651 CCGCCGCAAC GCCGTTTGGA CAAGCGGCAT CCGGGACACC
    AAACACTACC
    3701 GTTCGCAAGA TTTCCGCGCC TACCGCCAAC AAACCGACCT
    GCGCCAAATC
    3751 GGTATGCAGA AAAACCTCGG CAGCGGGCGC GTCGGCATCC
    TGTTTTCGCA
    3801 CAACCGGACC GGAAACACCT TCGACGACGG CATCGGCAAC
    TCGGCACGGC
    3851 TTGCCCACGG TGCCGTTTTC GGGCAATACG GCATCGGCAG
    GTTCGACATC
    3901 GGCATCAGCG CGGGCGCGGG TTTTAGTAGC GGCAGCCTTT
    CAGACGGCAT
    3951 CAGAGGCAAA ATCCGCCGCC GCGTGCTGCA TTACGGCATT
    CAGGCAAGAT
    4001 ACCGCGCAGG TTTCGGCGGA TTCGGCATCG AACCGCACAT
    CGGCGCAACG
    4051 CGCTATTTCG TCCAAAAAGC GGATTACCGA TACGAAAACG
    TCAATATCGC
    4101 CACCCCGGGC CTTGCATTCA ACCGCTACCG CGCGGGCATT
    AAGGCAGATT
    4151 ATTCATTCAA ACCGGCGCAA CACATTTCCA TCACGCCTTA
    TTTGAGCCTG
    4201 TCCTATACCG ATGCCGCTTC CGGCAAAGTC CGAACGCGCG
    TCAATACCGC
    4251 CGTATTGGCG CAGGATTTCG GCAAAACCCG CAGTGCGGAA
    TGGGGCGTAA
    4301 ACGCCGAAAT CAAAGGTTTC ACGCTGTCCC TCCACGCTGC
    CGCCGCCAAG
    4351 GGGCCGCAAT TGGAAGCGCA GCACAGCGCG GGCATCAAAT
    TAGGCTACCG
    4401 CTGGTAA
  • This is predicted to encode a protein having amino acid sequence <SEQ ID 654>:
  • 1 MKTTDKRTTE THRKAPKTGR IRFSPAYLAI CLSFGILPQA
    RAGHTYFGIN
    51 YQYYRDFAEN KGKFAVGAKD IEVYNKKGEL VGKSMTKAPM
    IDFSVVSRNG
    101 VAALAGDQYI VSVAHNGGYN NVDFGAEGSN PDQHRFSYQI
    VKRNNYKAGT
    151 NGHPYGGDYH MPRLHKFVTD AEPVEMTSYM DGWKYADLNK
    YPDRVRIGAG
    201 RQYWRSDEDE PNNRESSYHI ASAYSWLVGG NTFAQNGSGG
    GTVNLGSEKI
    251 KHSPYGFLPT GGSFGDSGSP MFIYDAQKQK WLINGVLQTG
    NPYIGKSNGF
    301 QLVRKDWFYD EIFAGDTHSV FYEPHQNGKY FFNDNNNGAG
    KIDAKHKHYS
    351 LPYRLKTRTV QLFNVSLSET AREPVYHAAG GVNSYRPRLN
    NGENISFIDK
    401 GKGELILTSN INQGAGGLYF EGNFTVSPKN NETWQGAGVH
    ISDGSTVTWK
    451 VNGVANDRLS KIGKGTLLVQ AKGENQGSVS VGDGKVILDQ
    QADDQGKKQA
    501 FSEIGLVSGR GTVQLNADNQ FNPDKLYFGF RGGRLDLNGH
    SLSFHRIQNT
    551 DEGAMIVNHN QDKESTVTIT GNKDITTTGN NNNLDSKKEI
    AYNGWFGEKD
    601 ATKTNGGLNL NYPPEEADRT LLLSGGTNLN GNITQTNGKL
    FFSGRPTPHA
    651 YNHLGSGWSK MEGIPQGEIV WDNDWIDRTF KAENFHIQGG
    QAVVSRNVAK
    701 VEGDWHLSNH AQAVFGVAPH QSHTICTRSD WTGLTSCTEK
    TITDDKVIAS
    751 LSKTDVRGNV SLADHAHLNL TGLATFNGNL VQAETRTIRL
    RANATQNGNL
    801 SLVGNAQATF NQATLNGNTS ASDNASFNLS NNAVQNGSLT
    LSDNAKANVS
    851 HSALNGNVSL ADKAVFHFEN SRFTGKISGG KDTALHLKDS
    EWTLPSGTEL
    901 GNLNLDNATI TLNSAYRHDA AGAQTGSAAD APRRRSRRSL
    LSVTPPTSAE
    951 SRFNTLTVNG KLNGQGTFRF MSELFGYRSG KLKLAESSEG
    TYTLAVNNTG
    1001 NEPVSLEQLT VVEGKDNTPL SENLNFTLQN EHVDAGAWRY
    QLIRKDGEFR
    1051 LHNPVKEQEL SDKLGKAGET EAALTAKQAQ LAAKQQAEKD
    NAQSLDALIA
    1101 AGRNATEKAE SVAEPARQAG GENAGIMQAE EEKKRVQADK
    DTALAKQREA
    1151 ETRPATTAFP RARRARRDLP QPQPQPQPQP QRDLISRYAN
    SGLSEFSATL
    1201 NSVFAVQDEL DRVFAEDRRN AVWTSGIRDT KHYRSQDFRA
    YRQQTDLRQI
    1251 GMQKNLGSGR VGILFSHNRT GNTFDDGIGN SARLAHGAVF
    GQYGIGRFDI
    1301 GISAGAGFSS GSLSDGIRGK IRRRVLHYGI QARYRAGFGG
    FGIEPHIGAT
    1351 RYFVQKADYR YENVNIATPG LAFNRYRAGI KADYSFKPAQ
    HISITPYLSL
    1401 SYTDAASGKV RTRVNTAVLA QDFGKTRSAE WGVNAEIKGF
    TLSLHAAAAK
    1451 GPQLEAQHSA GIKLGYRW*
  • Underlined and double-underlined sequences represent the active site of a serine protease (trypsin family) and an ATP/GTP-binding site motif A (P-loop).
  • ORF1-1 and ORF1ng show 93.7% identity in 1471 aa overlap:
  • Figure US20130064846A1-20130314-C00291
    Figure US20130064846A1-20130314-C00292
  • In addition, ORF1ng shows 55.7% identity with hap protein (P45387) over a 1455aa overlap:
  • Figure US20130064846A1-20130314-C00293
    Figure US20130064846A1-20130314-C00294
    Figure US20130064846A1-20130314-C00295
  • Based on this analysis, it is predicted that these proteins from N. meningitidis and N. gonorrhoeae, and their epitopes, could be useful antigens for vaccines or diagnostics, or for raising antibodies.
  • Example 78
  • The following partial DNA sequence was identified in N. meningitidis <SEQ ID 655>:
  • 1 ..AAGGTGTGGC AATTTGTCGA AGA.CCGCTG CGTGCCGTCG
    TGCCTGCCGA
    51   CAGTTTTGAA CCGACCGCGC AAAAATTGAA CCTGTTTAAG
    GCGGGTGCGG
    101   CAACCATTTT GTTTTATGAA GATCAAAATG TCGTCAAAGG
    TTTGCAGGAG
    151   CAGTTCCCTG CTTATGCCGC TAACTTCCCC GTTTGGGCGg
    ATCAGGCAAA
    201   CGCGATGGTG CAGTATGCCG TTTGGACGAC ACTTGCCGCG
    GTCGGCGTAG
    251   GTGCAAACCT GCAACATTAC AATCCCTTGC CCGATGCGGC
    GATTGCCAAA
    301   GCGTGGAATA TCCCCGAAAA CTGGTTGTTG CGCGCACAAA
    TGGTTATCGG
    351   CGGTATTGAA GGGGCGGCAG GTGAAAAGAC CTTTGAACCC
    GTTGCAGAAC
    401   GTTTGAAAGT GTTCGGCGCA TAA
  • This corresponds to the amino acid sequence <SEQ ID 656; ORF6>:
  •   1 . . . KVWQFVEXPL RAWPADSFE PTAQKLNLFK AGAATILFYE  DQNVVKGLQE
     51       QFPAYAANFP VWADQANAMV QYAVWTTLAA VGVGANLQHY NPLPDAAIAK
    101       AWNIPENWLL RAQMVIGGIE GAAGEKTFEP VAERLKVFGA *
  • Further sequence analysis revealed a further partial DNA sequence <SEQ ID 657>:
  •   1 . . . CTGCGTGCCG TCGTGCCTGC CGACAGTTTT GAACCGACCG CGCAAAAATT
     51       GAACCTGTTT AAGGCGGGTG CGGCAACCAT TTTGTTTTAT GAAGATCAAA
    101       ATGTCGTCAA AGGTTTGCAG GAGCAGTTCC CTGCTTATGC CGCTAACTTC
    151       CCCGTTTGGG CGGATCAGGC AAACGCGATG GTGCAGTATG CCGTTTGGAC
    201       GACACTTGCC GCGGTCGGCG TAGGTGCAAA CCTGCAACAT TACAATCCCT
    251       TGCCCGATGC GGCGATTGCC AAAGCGTGGA ATATCCCCGA AAACTGGTTG
    301       TTGCGCGCAC AAATGGTTAT CGGCGGTATT GAAGGGGCGG CAGGTGAAAA
    351       GACCTTTGAA CCCGTTGCAG AACGTTTGAA AGTGTTCGGC GCATAA
  • This corresponds to the amino acid sequence <SEQ ID 658; ORF6-1>:
  •  1 . . . LRAVVPADSF EPTAQKLNLF KAGAATILFY EDQNVVKGLQ EQFPAYAANF
     51       PVWADQANAM VQYAVWTTLA AVGVGANLQH YNPLPDAAIA KAWNIPENWL
    101       LRAQMVIGGI EGAAGEKTFE PVAERLKVFG A*
  • Computer analysis of this amino acid sequence gave the following results:
  • Homology with a Predicted ORF from N. meningitidis (Strain A)
  • ORF6 shows 98.6% identity over a 140aa overlap with an ORF (ORF6a) from strain A of N. meningitidis:
  • Figure US20130064846A1-20130314-C00296
  • The complete length ORF6a nucleotide sequence <SEQ ID 659> is:
  •   1 ATGACCCGTC AATCTCTGCA ACAGGCTGCC GAAAGCCGCC GTTCCATTTA
     51 TTCGTTAAAT AAAAATCTGC CCGTCGGCAA AGATGAAATC GTCCAAATCG
    101 TCGAACACGC CGTTTTGCAC ACACCTTCTT CGTTCAATTC CCAATCTGCC
    151 CGTGTGGTCG TGCTGTTTGG CGAAGAGCAT GATAAGGTGT GGCAATTTGT
    201 CGAAGACGCG CTGCGTGCCG TCGTGCCTGC CGACAGTTTT GAACCGACCG
    251 CGCAAAAATT GAACCTGTTT AAGGCGGGTG CGGCAACTAT TTTGTTTTAT
    301 GAAGATCAAA ATGTCGTCAA AGGTTTGCAG GAGCAGTTCC CTGCTTATGC
    351 CGCCAACTTT CCCGTTTGGG CGGACCAGGC GAACGCGATG GTGCAGTATG
    401 CCGTTTGGAC GACACTTGCC GCGGTCGGCG TAGGTGCAAA CCTGCAACAT
    451 TACAATCCCT TGCCCGATGC GGCGATTGCC AAAGCGTGGA ATATCCCCGA
    501 AAACTGGTTG TTGCGCGCAC AAATGGTTAT CGGCGGTATT GAAGGGGCGG
    551 CAGGTGAAAA GACCTTTGAA CCAGTTGCAG AACGTTTGAA AGTGTTCGGC
    601 GCATAA
  • This is predicted to encode a protein having amino acid sequence <SEQ ID 660>:
  •   1 MTRQSLQQAA ESRRSIYSLN KNLPVGKDEI VQIVEHAVLH TPSSFNSQSA
     51 RVVVLFGEEH DKVWQFVEDA LRAVVPADSF EPTAQKLNLF KAGAATILFY
    101 EDQNVVKGLQ EQFPAYAANF PVWADQANAM VQYAVWTTLA AVGVGANLQH
    151 YNPLPDAAIA KAWNIPENWL LRAQMVIGGI EGAAGEKTFE PVAERLKVFG
    201 A*
  • ORF6a and ORF6-1 show 100.0% identity in 131 aa overlap:
  • Figure US20130064846A1-20130314-C00297
  • Homology with a Predicted ORF from N. gonorrhoeae
  • ORF6 shows 95.7% identity over a 140aa overlap with a predicted ORF (ORF6ng) from N. gonorrhoeae:
  • Figure US20130064846A1-20130314-C00298
  • The complete length ORF6ng nucleotide sequence <SEQ ID 661> was identified as:
  •   1 ATGGCCGTTG CGTCAAATGT CAGCTTGGAT ATGTCCAATC CTACGGTGTT
     51 ACGCATGGGA TTACCCTTAT ATATTGCGTC CCTAAGAAGG GGCGCAATAT
    101 ATAAGGTGTG GCAATTTGTC GAAGACGCGC TGCGTGCCGT CGTGCCTGCC
    151 GACAGTTTTG AACCGACCGC GCAAAAATTG AAGCTGTTTA AGGCGGGCGC
    201 GGCAACCATT TTGTTTTATG AAGATCAAAA TGTCGTCAAA GGTTTGCAGG
    251 AGCAGTTCCC TGCTTATGCC GCCAACTTTC CCGTTTGGGC GGACCAGGCG
    301 AACGCTATGG TACAGTATGC CGTCTGGACG ACACTTGCCG CGGTCGGTGC
    351 AGGTGCAAAT CTGCAACATT ACAACCCCTT GCCCGATGTG GCGATTGCTA
    401 AAGCGTGGAA TATTCCCGAA AACTGGCTGT TGCGCGCGCA AATGGTTATC
    451 GGTGGTATTG AAGGGGcggc aggtgaaaaa gtctttgaac CCGTTGCgga
    501 acgtttgAAA GTGTTCGGCG CATAA
  • This encodes a protein having amino acid sequence <SEQ ID 662>:
  •   1 MAVASNVSLD MSNPTVLRMG LPLYIASLRR GAIYKVWQFV EDALRAVVPA
     51 DSFEPTAQKL KLFKAGAATI LFYEDQNVVK GLQEQFPAYA ANFPVWADQA
    101 NAMVQYAVWT TLAAVGAGAN LQHYNPLPDV AIAKAWNIPE NWLLRAQMVI
    151 GGIEGAAGEK VFEPVAERLK VFGA*
  • ORF6ng and ORF6-1 show 96.9% identity in 131 aa overlap:
  • Figure US20130064846A1-20130314-C00299
  • It is predicted that the proteins from N. meningitidis and N. gonorrhoeae, and their epitopes, could be useful antigens for vaccines or diagnostics, or for raising antibodies.
  • Example 79
  • The following partial DNA sequence was identified in N. meningitidis <SEQ ID 663>
  •   1 . . . GGCTACAACT ACCTGTTCGC GCGCGGCAGC CGCATCGCCA ACTACCAAAT
     51       CAACGGCATC CCCGTTGCCG ACGCGCTGGC CGATACGGGt CAATGCCAAC
    101       ACCGCCGCCT ATGAGCGCGT AGAAGTCGTG CGCGGCGTGG CGGGGCTGCT
    151       GGACGGCACG GGCGAGCCTT CCGCCACCGT CAATCTGGTG CGCAAACGCC
    201       TGACCCGCAA GCCATTGTTT GAAGTCCGCG CCGAAGCgGG CAACCGcAAA
    251       CATTTCGGGC TGGACGCGGA CGTATCGGGC AGCCTGAACA CCGAAG.crC
    301       rCTGCGCgGC CGCCTGGTTT CCAcCTTCGG ACGCGGCGAC TCGTGGCGGC
    351       GGCGCGAACG CAGCCGskAT GCCGAACTCT ACGGCATTTT GGAATACGAC
    401       ATCGCACCGC AAACCCGCGT CCACGCArGC ATGGACTACC AGCAGGCGAA
    451       AGAAACCGCC GACGCGCCGC TCAGcTACGC CGTGTACGAC AGCCAAGGTT
    501       ATGCCACCGC CTTCGGCCCG AAAGACAACC CCGCCACAAA TTGGGCGAAC
    551       AGCCACCACC GTGCGCTCAA CCTGTTCGCC GGCATCGAAC ACCGCTTCAA
    601       CCAAGACTGG AAACTCAAAG CCGAATACGA CTAC . . . 
  • This corresponds to the amino acid sequence <SEQ ID 664; ORF23>:
  •   1 . . . GYNYLFARGS RIANYQINGI PVADALADTG NANTAAYERV EVVRGVAGLL
     51       DGTGEPSATV NLVRKRLTRK PLFEVRAEAG NRKHFGLDAD VSGSLNTEXX
    101       LRGRLVSTFG RGDSWRRRER SRXAELYGIL EYDIAPQTRV HAXMDYQQAK
    151       ETADAPLSYA VYDSQGYATA FGPKDNPATN WANSHHRALN LFAGIEHRFN
    201       QDWKLKAEYD Y . . . 
  • Further work revealed the complete nucleotide sequence <SEQ ID 665>:
  •    1 ATGACACGCT TCAAATATTC CCTGCTGTTT GCCGCCCTGT TGCCCGTGTA
      51 CGCGCAGGCC GATGTTTCTG TTTCAGACGA CCCCAAACCG CAGGAAAGCA
     101 CTGAATTGCC GACCATCACC GTTACCGCCG ACCGCACCGC GAGTTCCAAC
     151 GACGGCTACA CTGTTTCCGG CACGCACACC CCGCTCGGGC TGCCCATGAC
     201 CCTGCGCGAA ATCCCGCAGA GCGTCAGCGT CATCACATCG CAACAAATGC
     251 GCGACCAAAA CATCAAAACG CTCGACCGCG CCCTGTTGCA GGCGACCGGC
     301 ACCAGCCGCC AGATTTACGG CTCCGACCGC GCGGGCTACA ACTACCTGTT
     351 CGCGCGCGGC AGCCGCATCG CCAACTACCA AATCAACGGC ATCCCCGTTG
     401 CCGACGCGCT GGCCGATACG GGCAATGCCA ACACCGCCGC CTATGAGCGC
     451 GTAGAAGTCG TGCGCGGCGT GGCGGGGCTG CTGGACGGCA CGGGCGAGCC
     501 TTCCGCCACC GTCAATCTGG TGCGCAAACG CCTGACCCGC AAGCCATTGT
     551 TTGAAGTCCG CGCCGAAGCG GGCAACCGCA AACATTTCGG GCTGGACGCG
     601 GACGTATCGG GCAGCCTGAA CACCGAAGGC ACGCTGCGCG GCCGCCTGGT
     651 TTCCACCTTC GGACGCGGCG ACTCGTGGCG GCGGCGCGAA CGCAGCCGCG
     701 ATGCCGAACT CTACGGCATT TTGGAATACG ACATCGCACC GCAAACCCGC
     751 GTCCACGCAG GCATGGACTA CCAGCAGGCG AAAGAAACCG CCGACGCGCC
     801 GCTCAGCTAC GCCGTGTACG ACAGCCAAGG TTATGCCACC GCCTTCGGCC
     851 CGAAAGACAA CCCCGCCACA AATTGGGCGA ACAGCCGCCA CCGTGCGCTC
     901 AACCTGTTCG CCGGCATCGA ACACCGCTTC AACCAAGACT GGAAACTCAA
     951 AGCCGAATAC GACTACACCC GCAGCCGCTT CCGCCAGCCC TACGGCGTAG
    1001 CAGGCGTGCT TTCCATCGAC CACAACACCG CCGCCACCGA CCTGATTCCC
    1051 GGTTATTGGC ACGCCGACCC GCGCACCCAC AGCGCCAGCG TGTCATTGAT
    1101 CGGCAAATAC CGCCTGTTCG GCCGCGAACA CGATTTAATC GCGGGTATCA
    1151 ACGGTTACAA ATACGCCAGC AACAAATACG GCGAACGCAG CATCATCCCC
    1201 AACGCCATTC CCAACGCCTA CGAATTTTCC CGCACGGGTG CCTACCCGCA
    1251 GCCTGCATCG TTTGCCCAAA CCATCCCGCA ATACGGCACC AGGCGGCAAA
    1301 TCGGCGGCTA TCTCGCCACC CGTTTCCGCG CCGCCGACAA CCTTTCGCTG
    1351 ATTTTGGGCG GACGATACAC CCGTTACCGC ACCGGCAGCT ACGACAGCCG
    1401 CACACAAGGC ATGACCTATG TGTCCGCCAA CCGTTTCACC CCCTACACAG
    1451 GCATCGTGTT CGACCTGACC GGCAACCTGT CTCTTTACGG CTCGTACAGC
    1501 AGCCTGTTCG TCCCGCAATC GCAAAAAGAC GAACACGGCA GCTACCTGAA
    1551 ACCCGTAACC GGCAACAATC TGGAAGCCGG CATCAAAGGC GAATGGCTTG
    1601 AAGGCCGTCT GAACGCATCC GCCGCCGTGT ACCGCGCCCG TAAAAACAAC
    1651 CTCGCCACCG CAGCAGGACG CGACCCGAGC GGCAACACCT ACTACCGCGC
    1701 CGCCAACCAA GCCAAAACCC ACGGCTGGGA AATCGAAGTC GGCGGCCGCA
    1751 TCACGCCCGA ATGGCAGATA CAGGCAGGTT ACAGCCAAAG CAAAACCCGC
    1801 GACCAAGACG GCAGCCGCCT GAACCCCGAC AGCGTACCCG AACGCAGCTT
    1851 CAAACTCTTC ACTGCCTACC ACTTTGCCCC CGAAGCCCCC AGCGGCTGGA
    1901 CCATCGGCGC AGGCGTGCGC TGGCAGAGCG AAACCCACAC CGACCCTGCC
    1951 ACGCTCCGCA TCCCCAACCC CGCCGCCAAA GCCCGCGCCG CCGACAACAG
    2001 CCGCCAAAAA GCCTACGCCG TCGCCGACAT CATGGCGCGT TACCGCTTCA
    2051 ATCCGCGCGC CGAACTGTCG CTGAACGTGG ACAATCTGTT CAACAAACAC
    2101 TACCGCACCC AGCCCGACCG CCACAGCTAC GGCGCACTGC GGACAGTGAA
    2151 CGCGGCGTTT ACCTATCGGT TTAAATAA
  • This corresponds to the amino acid sequence <SEQ ID 666; ORF23-1>:
  •   1 MTRFKYSLLF AALLPVYAQA DVSVSDDPKP QESTELPTIT VTADRTASSN
     51 DGYTVSGTHT PLGLPMTLRE IPQSVSVITS QQMRDQNIKT LDRALLQATG
    101 TSRQIYGSDR AGYNYLFARG SRIANYQING IPVADALADT GNANTAAYER
    151 VEVVRGVAGL LDGTGEPSAT VNLVRKRLTR KPLFEVRAEA GNRKHFGLDA
    201 DVSGSLNTEG TLRGRLVSTF GRGDSWRRRE RSRDAELYGI LEYDIAPQTR
    251 VHAGMDYQQA KETADAPLSY AVYDSQGYAT AFGPKDNPAT NWANSRHRAL
    301 NLFAGIEHRF NQDWKLKAEY DYTRSRFRQP YGVAGVLSID HNTAATDLIP
    351 GYWHADPRTH SASVSLIGKY RLFGREHDLI AGINGYKYAS NKYGERSIIP
    401 NAIPNAYEFS RTGAYPQPAS FAQTIPQYGT RRQIGGYLAT RFRAADNLSL
    451 ILGGRYTRYR TGSYDSRTQG MTYVSANRFT PYTGIVFDLT GNLSLYGSYS
    501 SLFVPQSQKD EHGSYLKPVT GNNLEAGIKG EWLEGRLNAS AAVYRARKNN
    551 LATAAGRDPS GNTYYRAANQ AKTHGWEIEV GGRITPEWQI QAGYSQSKTR
    601 DQDGSRLNPD SVPERSFKLF TAYHFAPEAP SGWTIGAGVR WQSETHTDPA
    651 TLRIPNPAAK ARAADNSRQK AYAVADIMAR YRFNPRAELS LNVDNLFNKH
    701 YRTQPDRHSY GALRTVNAAF TYRFK*
  • Computer analysis of this amino acid sequence gave the following results:
  • Homology with the Ferric-Pseudobactin Receptor PupB of Pseudomonas putida (Accession Number P38047)
  • ORF23 and PupB protein show 32% aa identity in 205aa overlap:
  • Orf23 6 FARGSRIANYQINGIPVADALADTGNANTAAYERVEVVRGVAGLLDGTGEPSATVNLVRK 65
    ++RG  I NY+++G+P +   L D  + + A ++RVE+VRG  GL+ G G PSAT+NL+RK
    PupB 215 WSRGFAIQNYEVDGVPTSTRL-DNYSQSMAMFDRVEIVRGATGLISGMGNPSATINLIRK 273
    Orf23 66 RLTRKPLFEVRAEAGNRKHFGLDADVSGSLNTEXXLRGRLVSTFXXXXXXXXXXXXXXAE 125
    R T +    +  EAGN   +G   DVSG L     +RGR V+ +
    PupB 274 RPTAEAQASITGEAGNWDRYGTGFDVSGPLTETGNIRGRFVADYKTEKAWIDRYNQQSQL 333
    Orf23 126 LYGILEYDIAPQTRVHAXMDYQQAKETADAPLSYAVYD--SQGYATAFGPKDNPATNWAN 183
    +YGI E+D++  T+      Y   +    D+PL   +    S G  T      N A +W+
    PupB 334 MYGITEFDLSEDTLLTVGFSY--LRSDIDSPLRSGLPTRFSTGERTNLKRSLNAAPDWSY 391
    Orf23 184 SHHRALNLFAGIEHRFNQDWKLKAE 208
    + H   + F  IE +    W  K E
    PupB 392 NDHEQTSFFTSIEQQLGNGWSGKIE 416

    Homology with a Predicted ORF from N. meningitidis (Strain A)
  • ORF23 shows 95.7% identity over a 211aa overlap with an ORF (ORF23a) from strain A of N. meningitidis:
  • Figure US20130064846A1-20130314-C00300
  • The complete length ORF23a nucleotide sequence <SEQ ID 667> is:
  •    1 ATGACACGCT TCAAATATTC CCTGCTGTTT GCCGCCCTGT TGCCCGTGTA
      51 CGCGCAGGCC GATGTTTCTG TTTCAGACGA CCCAAAACCG CAGGAAAGCA
     101 CTGAATTGCC GACCATCACC GTTACCGCCG ACCGCACCGC GAGTTCCAAC
     151 GACGGCTACA CTGTTTCCGG CACGCACACC CCGCTCGGGC TGCCCATGAC
     201 CCTGCGCGAA ATCCCGCAGA GCGTCAGCGT CATCACATCG CAACAAATGC
     251 GCGACCAAAA CATCAAAGCG CTCGACCGCG CCCTGTTGCA GGCGACCGGC
     301 ACCAGCCGCC AGATTTACGG CTCCGACCGC GCGGGCTACA ACTACCTGTT
     351 CGCGCGCGGC AGCCGCATCG CCAACTACCA AATCAACGGC ATCCCCGTTG
     401 CCGACGCGCT GGCCGATACG GGCAATGCCA ACACCGCCGC CTATGAGCGC
     451 GTAGAAGTCG TGCGCGGCGT GGCGGGGCTG CTGGACGGCA CGGGCGAGCC
     501 TTCCGCCACC GTCAATCTGG TGCGCAAACG CCCGACCCGC AAGCCATTGT
     551 TTGAAGTCCG CGCCGAAGCG GGCAACCGCA AACATTTCGG GCTGGGCGCG
     601 GACGTATCGG GCAGCCTGAA TGCCGAAGGC ACGCTGCGCG GCCGCCTGGT
     651 TTCCACCTTC GGACGCGGCG ACTCGTGGCG GCAGCGCGAA CGCAGCCGCG
     701 ATGCCGAACT CTACGGCATT TTGGAATACG ACATCGCACC GCAAACCCGC
     751 GTCCACGCAG GCATGGACTA CCAGCAGGCG AAAGAAACCG CCGACGCGCC
     801 GCTCAGCTAC GCCGTGTACG ACAGCCAAGG TTATGCCACC GCCTTCGGCC
     851 CGAAAGACAA CCCCGCCACA AATTGGGCGA ACAGCCGCCA CCGTGCGCTC
     901 AACCTGTTCG CCGGCATCGA ACACCGCTTC AACCAAGACT GGAAACTCAA
     951 AGCCGAATAC GACTACACCC GCAGCCGCTT CCGCCAGCCC TACGGCGTAG
    1001 CAGGCGTGCT TTCCATCGAC CACAACACCG CCGCCACCGA CCTGATTCCC
    1051 GGTTATTGGC ACGCCGACCC GCGCACCCAC AGCGCCAGCG TGTCATTAAT
    1101 CGGCAAATAC CGCCTGTTCG GCCGCGAACA CGATTTAATC GCGGGTATCA
    1151 ACGGTTACAA ATACGCCAGC AACAAATACG GCGAACGCAG CATCATCCCC
    1201 AACGCCATTC CCAACGCCTA CGAATTTTCC CGCACGGGTG CCTACCCGCA
    1251 GCCTGCATCG TTTGCCCAAA CCATCCCGCA ATACGGCACC AGGCGGCAAA
    1301 TCGGCGGCTA TCTCGCCACC CGTTTCCGCG CCGCCGACAA CCTTTCGCTG
    1351 ATACTCGGCG GCAGATACAG CCGTTACCGC ACCGGCAGCT ACGACAGCCG
    1401 CACACAAGGC ATGACCTATG TGTCCGCCAA CCGTTTCACC CCCTACACAG
    1451 GCATCGTGTT CGACCTGACC GGCAACCTGT CGCTTTACGG CTCGTACAGC
    1501 AGCCTGTTCG TCCCGCAATC GCAAAAAGAC GAACACGGCA GCTACCTGAA
    1551 ACCCGTAACC GGCAACAATC TGGAAGCCGG CATCAAAGGC GAATGGCTTG
    1601 AAGGCCGTCT GAACGCATCC GCCGCCGTGT ACCGCGCCCG TAAAAACAAC
    1651 CTCGCCACCG CAGCAGGACG CGACCCGAGC GGCAACACCT ACTACCGCGC
    1701 CGCCAACCAA GCCAAAACCC ACGGCTGGGA AATCGAAGTC GGCGGCCGCA
    1751 TCACGCCCGA ATGGCAGATA CAGGCAGGTT ACAGCCAAGG CAAAACCCGC
    1801 GACCAAGACG GCAGCCGCCT GAACCCCGAC AGCGTACCCG AACGCAGCTT
    1851 CAAACTCTTC ACTGCCTACC ACTTTGCCCC CGAAGCCCCC AGCGGCTGGA
    1901 CCATCGGCGC AGGCGTGCGC TGGCAGAGCG AAACCCACAC CGACCCTGCC
    1951 ACGCTCCGCA TCCCCAACCC CGCCGCCAAA GCCCGCGCCG CCGACAACAG
    2001 CCGCCAAAAA GCCTACGCCG TCGCCGACAT CATGGCGCGT TACCGCTTCA
    2051 ATCCGCGCGC CGAACTGTCG CTGAACGTGG ACAATCTGTT CAACAAACAC
    2101 TACCGCACCC AGCCCGACCG CCACAGCTAC GGCGCACTGC GGACAGTGAA
    2151 CGCGGCGTTT ACCTATCGGT TTAAATAA
  • This encodes a protein having amino acid sequence <SEQ ID 668>:
  •   1 MTRFKYSLLF AALLPVYAQA DVSVSDDPKP QESTELPTIT VTADRTASSN
     51 DGYTVSGTHT PLGLPMTLRE IPQSVSVITS QQMRDQNIKA LDRALLQATG
    101 TSRQIYGSDR AGYNYLFARG SRIANYQING IPVADALADT GNANTAAYER
    151 VEVVRGVAGL LDGTGEPSAT VNLVRKRPTR KPLFEVRAEA GNRKHFGLGA
    201 DVSGSLNAEG TLRGRLVSTF GRGDSWRQRE RSRDAELYGI LEYDIAPQTR
    251 VHAGMDYQQA KETADAPLSY AVYDSQGYAT AFGPKDNPAT NWANSRHRAL
    301 NLFAGIEHRF NQDWKLKAEY DYTRSRFRQP YGVAGVLSID HNTAATDLIP
    351 GYWHADPRTH SASVSLIGKY RLFGREHDLI AGINGYKYAS NKYGERSIIP
    401 NAIPNAYEFS RTGAYPQPAS FAQTIPQYGT RRQIGGYLAT RFRAADNLSL
    451 ILGGRYSRYR TGSYDSRTQG MTYVSANRFT PYTGIVFDLT GNLSLYGSYS
    501 SLFVPQSQKD EHGSYLKPVT GNNLEAGIKG EWLEGRLNAS AAVYRARKNN
    551 LATAAGRDPS GNTYYRAANQ AKTHGWEIEV GGRITPEWQI QAGYSQSKTR
    601 DQDGSRLNPD SVPERSFKLF TAYHFAPEAP SGWTIGAGVR WQSETHTDPA
    651 TLRIPNPAAK ARAADNSRQK AYAVADIMAR YRFNPRAELS LNVDNLFNKH
    701 YRTQPDRHSY GALRTVNAAF TYRFK*
  • ORF23a and ORF23-1 show 99.2% identity in 725 aa overlap:
  • Figure US20130064846A1-20130314-C00301
    Figure US20130064846A1-20130314-C00302
  • Homology with a Predicted ORF from N. gonorrhoeae
  • ORF23 shows 93.4% identity over a 211 as overlap with a predicted ORF (ORF23.ng) from N. gonorrhoeae:
  • Figure US20130064846A1-20130314-C00303
  • The ORF23ng nucleotide sequence <SEQ ID 669> is predicted to encode a protein comprising amino acid sequence <SEQ ID 670>:
  •   1 SAVDACRIPG YNYLFARGSR IANYQINGIP VADALADTGN ANTAAYERVE
     51 VVRGVAGLPD GTGEPSATVN LVRKHPTRKP LFEVRAEAGN RKHFGLGADV
    101 SGSLNAEGTL RGRLVSTFGR GDSWRQLERS RDAELYGILE YDIAPQTRVH
    151 AGMDYQQAKE TADAPLSYAV YDSQGYATAF GPKDNPATNW SNSRNRALNL
    201 FAGIEHRFNQ DWKLKAEYDY TRSRFRQPYG VAGVLSIDHS TAATDLIPGY
    251 WHADPRTHSA SMSLTGKYRL FGREHDLIAG INGYKYASNK YGERSIIPNA
    301 IPNAYEFSRT GAYPQPSSFA QTIPQYDTRR QIGGYLATRF RAADNLSLIL
    351 GGRYSRYRAG SYNSRTQGMT YVSANRFTPY TGIVFDLTGN LSLYGSYSSL
    401 FVPQLQKDEH GSYLKPVTGN NLEADIKGEW LEGRLNASAA VYRARKNNLA
    451 TAAGRDQSGN TYYRAANQAK THGWEIEVGG RITPEWQIQA GYSQSKPRDQ
    501 DGSRLNPDSV PERSFKLFTA YHLAPEAPSG RTIGAGVRRQ GETHTDPAAL
    551 RIPNPAAKAR AVANSRQKAY AVADIMARYR FNPRTELSLN VDNLFNKHYR
    601 TQPDRHSYGA LRTVNAAFTY RFK*
  • Further work revealed the complete nucleotide sequence <SEQ ID 671>:
  • 1 ATGACACGCT TCAAATACTC CCTGCTTTTT GCCGCCCTGC
    TACCCGTGTA
    51 CGCGCAGGCC GATGTTTCTG TTTCAGACGA CCCCAAACCG
    CAGGAAAGCA
    101 CCGAATTGCC GACCATCACC GTTACCGCCG ACCGCACCGC
    GAGTTCCAAC
    151 GACGGCTACA CCGTTTCCGG CACGCACACC CCGTTCGGGC
    TGCCCATGAC
    201 CCTGCGCGAA ATCCCGCAGA GCGTCAGCGT CATCACATCG
    CAACAAATGC
    251 GCGACCAAAA CATCAAAACG CTCGACCGCG CCCTGTTGCA
    GGCGACCGGC
    301 ACCAGCCGCC AGATTTACGG CTCCGACCGC GCGGGCTACA
    ACTACCTGTT
    351 CGCGCGCGGC AGCCGCATCG CCAACTACCA AATCAACGGC
    ATCCCCGTTG
    401 CCGACGCGCT GGCCGATACG GGCAATGCCA ACACCGCCGC
    CTATGAGCGC
    451 GTAGAAGTCG TGCGCGGCGT GGCGGGGCTG CCGGACGGCA
    CGGGCGAGCC
    501 TTCTGCCACC GTCAATCTGG TACGCAAACA CCCGACCCGC
    AAGCCATTGT
    551 TTGAAGTCCG CGCCGAAGCC GGCAACCGCA AACATTTCGG
    GCTGGGCGCG
    601 GACGTATCGG GCAGCCTGAA CGCCGAAGGC ACGCTGCGCG
    GCCGCCTGGT
    651 TTCCACCTTC GGACGCGGCG ACTCGTGGCG GCAGCTCGAA
    CGCAGCCGCG
    701 ATGCCGAACT CTACGGCATT TTGGAATACG ACATCGCACC
    GCAAACCCGC
    751 GTCCACGCAG GCATGGACTA CCAGCAGGCG AAAGAAACCG
    CAGACGCGCC
    801 GCTCAGCTAC GCCGTGTACG ACAGCCAAGG TTATGCCACC
    GCCTTCGGCC
    851 CAAAAGACAA CCCCGCCACA AATTGGTCGA ACAGCCGCAA
    CCGTGCGCTC
    901 AACCTGTTCG CCGGCATAGA ACACCGCTTC AACCAAGACT
    GGAAACTCAA
    951 AGCCGAATAC GACTACACCC GTAGCCGCTT CCGCCAGCCC
    TACGGTGTGG
    1001 CAGGCGTACT TTCCATCGAC CACAGCACTG CCGCCACCGA
    CCTGATTCCC
    1051 GGTTATTGGC ACGCcgatcc GCGCACCCAC AGCGCCAGCA
    TGTCATTGAC
    1101 CGGCAAATAC CgcctGTTCG GCCGCGAGCA CGATTTAATC
    GCGGGTATCA
    1151 ACGGCTACAA ATACGCCAGC AACAAATACG GCGAACGCAG
    CATCATTCCC
    1201 AACGCCATTC CCAACGCCTA CGAATTTTCC CGCACGGGCG
    CCTATCCGCA
    1251 GCCATCATCG TTTGCCCAAA CCATCCCGCA ATACGACACC
    AGGCGGCAAA
    1301 TCGGCGGCTA TCTCGCCACC CGTTTCCGCG CCGCCGACAA
    CCTTTCGCTG
    1351 ATACTCGGCG GCAGATACAG CCGCTACCGC GCAGGCAGCT
    ACAACAGCCG
    1401 CACACAAGGC ATGACCTATG TGTCCGCCAA CCGTTTCACC
    CCCTACACAG
    1451 GCATCGTGTT CGATCTGACC GGCAACCTGT CGCTTTACGG
    CTCGTACAGC
    1501 AGCCTGTTCG TCCCGCAATT GCAAAAAGAC GAACACGGCA
    GCTACCTGAA
    1551 ACCCGTAACC GGCAACAATC TGGAAGCCGA CATCAAAGGC
    GAATGGCTTG
    1601 AAGGGCGTCT GAACGCATCC GCCGCCGTGT ACCGCGCCCG
    TAAAAACAAC
    1651 CTCGCCACCG CAGCAGGACG CGACCAGAGC GGCAACACCT
    ACTATCGCGC
    1701 CGCCAACCAA GCCAAAACCC ACGGCTGGGA AATCGAAGTC
    GGCGGCCGCA
    1751 TCACGCCCGA ATGGCAGATA CAGGCAGGCT ACAGCCAAAG
    CAAACCCCGC
    1801 GACCAAGACG GCAGCCGCCT GAACCCCGAC AGCGTAcCCG
    AACGCAGCTT
    1851 CAAACTCTTC ACCGCCTACC ACTTAGCCCC CGAAGCCCCC
    AGCGGCCGGA
    1901 CCATcggTGC GGGTGTGCGC CGGCAGGGCG AAACCCACAC
    CGACCCAGCC
    1951 GCGCTCCGCA TCCCCAACCC CGCCGCCAAA GCCCGCGCCG
    TCGCCAACAG
    2001 CCGCCAGAAA GCCTACGCCG TCGCCGACAT CATGGCGCGT
    TACCGCTTCA
    2051 ATCCGCGCAC CGAACTGTCG CTGAACGTGG ACAACCTGTT
    CAACAAACAC
    2101 TACCGCACCC AGCCCGACCG CCACAGCTAC GGCGCACTGC
    GGACAGTGAA
    2151 CGCGGCGTTT ACCTATCGGT TTAAATAA
  • This corresponds to the amino acid sequence <SEQ ID 672; ORF23ng-1>:
  •   1 MTRFKYSLLF AALLPVYAQA DVSVSDDPKP QESTELPTIT
    VTADRTASSN
     51 DGYTVSGTHT PFGLPMTLRE IPQSVSVITS QQMRDQNIKT
    LDRALLQATG
    101 TSRQIYGSDR AGYNYLFARG SRIANYQING IPVADALADT
    GNANTAAYER
    151 VEVVRGVAGL PDGTGEPSAT VNLVRKHPTR KPLFEVRAEA
    GNRKHFGLGA
    201 DVSGSLNAEG TLRGRLVSTF GRGDSWRQLE RSRDAELYGI
    LEYDIAPQTR
    251 VHAGMDYQQA KETADAPLSY AVYDSQGYAT AFGPKDNPAT
    NWSNSRNRAL
    301 NLFAGIEHRF NQDWKLKAEY DYTRSRFRQP YGVAGVLSID
    HSTAATDLIP
    351 GYWHADPRTH SASMSLTGKY RLFGREHDLI AGINGYKYAS
    NKYGERSIIP
    401 NAIPNAYEFS RTGAYPQPSS FAQTIPQYDT RRQIGGYLAT
    RFRAADNLSL
    451 ILGGRYSRYR AGSYNSRTQG MTYVSANRFT PYTGIVFDLT
    GNLSLYGSYS
    501 SLFVPQLQKD EHGSYLKPVT GNNLEADIKG EWLEGRLNAS
    AAVYRARKNN
    551 LATAAGRDQS GNTYYRAANQ AKTHGWEIEV GGRITPEWQI
    QAGYSQSKPR
    601 DQDGSRLNPD SVPERSFKLF TAYHLAPEAP SGRTIGAGVR
    RQGETHTDPA
    651 ALRIPNPAAK ARAVANSRQK AYAVADIMAR YRFNPRTELS
    LNVDNLFNKH
    701 YRTQPDRHSY GALRTVNAAF TYRFK*
  • ORF23ng-1 and ORF23-1 show 95.9% identity in 725 aa overlap:
  • Figure US20130064846A1-20130314-C00304
    Figure US20130064846A1-20130314-C00305
  • In addition, ORF23ng-1 shows significant homology with an OMP from E. coli:
  • sp|P16869|FHUE_ECOLI OUTER-MEMBRANE RECEPTOR FOR FE(III)-COPROGEN,
    FE(III)-FERRIOXAMINE B AND FE(III)-RHODOTRULIC ACID PRECURSOR
    >gi|1651542|gnl|PID|d1015403
    (D90745) Outer membrane protein FhuE precursor [Escherichia coli]
    >gi|1651545|gnl|PID|d1015405 (D90746) Outer membrane protein
    FhuE precursor [Escherichia coli] >gi|1787344 (AE000210)
    outer-membrane receptor for Fe(III)-
    coprogen, Fe(III)-ferrioxamine B and Fe(III)-rhodotrulic acid precursor
    [Escherichia coli] Length = 729
    Score = 332 bits (843), Expect = 3e−90
    Identities = 228/717 (31%), Positives = 350/717 (48%),
    Gaps = 60/717 (8%)
    Query:  38 TITVTADRTASSN--DGYTVSGTHTPFGLPMTLREIPQSVSVITSQQMRDQNIKTLDRAL  95
    T+ V    TA  +  + Y+V+ T     + MT R+IPQSV++++ Q+M DQ ++TL   +
    Sbjct:  43 TVIVEGSATAPDDGENDYSVTSTSAGTKMQMTQRDIPQSVTIVSQQRMEDQQLQTLGEVM 102
    Query:  96 LQATGTSRQIYGSDRAGYNYLFARGSRIANYQINGIP--------VADALADTGNANTAA 147
        G S+    SDRA Y   ++RG +I NY ++GIP        + DAL+D      A
    Sbjct: 103 ENTLGISKSQADSDRALY---YSRGFQIDNYMVDGIPTYFESRWNLGDALSDM-----AL 154
    Query: 148 YERVEVVRGVAGLPDGTGEPSATVNLVRKHPTRKPLF-EVRAEAGNRKHFGLGADVSGSL 206
    +ERVEVVRG  GL  GTG PSA +N+VRKH T +    +V AE G+       AD+   L
    Sbjct: 155 FERVEVVRGATGLMTGTGNPSAAINMVRKHATSREFKGDVSAEYGSWNKERYVADLQSPL 214
    Query: 207 NAEGTLRGRLVSTFGRGDSWRQLERSRDAELYGILEYDIAPQTRVHAGMDYQQAKETADA 266
      +G +R R+V  +   DSW     S      GI++ D+   T + AG +YQ+    +
    Sbjct: 215 TEDGKIRARIVGGYQNNDSWLDRYNSEKTFFSGIVDADLGDLTTLSAGYEYQRIDVNSPT 274
    Query: 267 PLSYAVYDSQGYATAFGPKDNPATNWSNSRNRALNLFAGIEHRFNQDWKLKAEYDYTRSR 326
          +++ G + ++    + A +W+ +      +F  ++ +F   W+      ++
    Sbjct: 275 WGGLPRWNTDGSSNSYDRARSTAPDWAYNDKEINKVFMTLKQQFADTWQATLNATHSEVE 334
    Query: 327 F--RQPYGVAGVLSIDHSTAA--TDLIPGY-------WHADPRTHSA-SMSLTGKYRLFG 374
    F  +  Y  A V   D       ++  PG+       W++  R   A  +   G Y LFG
    Sbjct: 335 FDSKMMYVDAYVNKADGMLVGPYSNYGPGFDYVGGTGWNSGKRKVDALDLFADGSYELFG 394
    Query: 375 REHDLIAGINGYKYASNKYGER--SIIPNAIPNAYEFSRTGAYPQPSSFAQTIPQYDTRR 432
    R+H+L+ G   Y   +N+Y     +I P+ I + Y F+  G +PQ     Q++ Q DT
    Sbjct: 395 RQHNLMFG-GSYSKQNNRYFSSWANIFPDEIGSFYNFN--GNFPQTDWSPQSLAQDDTTH 451
    Query: 433 QIGGYLATRFRAADNLSLILGGRYSRYRAGSYNSRTQGMTY-VSANRFTPYTGIVFDXXX 491
        Y ATR   AD L LILG RY+ +R  +       +TY +  N  TPY G+VFD
    Sbjct: 452 MKSLYAATRVTLADPLHLILGARYTNWRVDT-------LTYSMEKNHTTPYAGLVFDIND 504
    Query: 492 XXXXXXXXXXXFVPQLQKDEHGSYLKPVTGNNLEADIKGEWLEGRLNASAAVYRARKNNL 551
               F PQ  +D  G YL P+TGNN E  +K +W+  RL  + A++R  ++N+
    Sbjct: 505 NWSTYASYTSIFQPQNDRDSSGKYLAPITGNNYELGLKSDWMNSRLTTTLAIFRIEQDNV 564
    Query: 552 ATAAGR---DQSGNTYYRAANQAKTHGWEIEVGGRITPEWQIQAGYSQSKPRDQDGSRLN 608
    A + G      +G T Y+A +   + G E E+ G IT  WQ+  G ++    D +G+ +N
    Sbjct: 565 AQSTGTPIPGSNGETAYKAVDGTVSKGVEFELNGAITDNWQLTFGATRYIAEDNEGNAVN 624
    Query: 609 PDSVPERSFKLFTAYHLAPEAPSGRTIGAGVRRQGETHTDPAALRIPNPAAKARAVANSR 668
    P ++P  + K+FT+Y L P  P   T+G GV  Q   +TD        P    RA
    Sbjct: 625 P-NLPRTTVKMFTSYRL-PVMPE-LTVGGGVNWQNRVYTDTV-----TPYGTFRA----E 672
    Query: 669 QKAYAVADIMARYRFNPRTELSLNVDNLFNKHYRTQPDRH-SYGALRTVNAAFTYRF 724
    Q +YA+ D+  RY+      L  NV+NLF+K Y T  +    YG  R  +   TY+F
    Sbjct: 673 QGSYALVDLFTRYQVTKNFSLQGNVNNLFDKTYDTNVEGSIVYGTPRNFSITGTYQF 729
  • Based on this analysis, it was predicted that these proteins from N. meningitidis and N. gonorrhoeae, and their epitopes, could be useful antigens for vaccines or diagnostics, or for raising antibodies.
  • ORF23-1 (77.5 kDa) was cloned in pET and pGex vectors and expressed in E. coli, as described above. The products of protein expression and purification were analyzed by SDS-PAGE. FIG. 15A shows the results of affinity purification of the His-fusion protein, and FIG. 15B shows the results of expression of the GST-fusion in E. coli. Purified His-fusion protein was used to immunise mice, whose sera were used for Western blot (FIG. 15C) and for ELISA (positive result). These experiments confirm that ORF23-1 is a surface-exposed protein, and that it is a useful immunogen.
  • Example 80
  • The following partial DNA sequence was identified in N. meningitidis <SEQ ID 673>:
  •   1 ATGCGCACGG CAGTGGTTTT GCTGTTGATC ATGCCGATGG
    CGGCTTCGTC
     51 GGCAATGATG CCGGAAATGG TGTGCGCGGG CGTGTCGCCG
    GGAACGGCAA
    101 TCATATCCAA GCCGACCGAA CAAACGGCGG TCATGGCTTC
    GAGTTTGTCC
    151 AGCGTCAgcA CGCCTGCTTC GGCGgcGgCa ATCATACCTT
    CGTCTTCGGA
    201 AACGGGGATA AACGcGCCAC TCAAACCCCC GACCGCGCTG
    GAAGCCATCA
    251 TGCCGCCTTT TTTCACGGCA TCGTTCAGCA ATGCCAAAGC
    TGCTGTTGTG
    301 CCGTGCGTAC CGCAGACGCT CAAGCCCATT TnTTCAAGAA
    TGCGTGCCAC
    351 TnAGTCGCCG ACGGGG..
  • This corresponds to the amino acid sequence <SEQ ID 674; ORF24>:
  •   1 MRTAVVLLLI MPMAASSAMM PEMVCAGVSP GTAIISKPTE
    QTAVMASSLS
     51 SVSTPASAAA IIPSSSETGI NAPLKPPTAL EAIMPPFFTA
    SFSNAKAAVV
    101 PCVPQTLKPI XSRMRATXSP TG..
  • Further work revealed the complete nucleotide sequence <SEQ ID 675>:
  •   1 ATGCGCACGG CAGTGGTTTT GCTGTTGATC ATGCCGATGG
    CGGCTTCGTC
     51 GGCAATGATG CCGGAAATGG TGTGCGCGGG CGTGTCGCCG
    GGAACGGCAA
    101 TCATATCCAA GCCGACCGAA CAAACGGCGG TCATGGCTTC
    GAGTTTGTCC
    151 AGCGTCAGCA CGCCTGCTTC GGCGGCGGCA ATCATACCTT
    CGTCTTCGGA
    201 AACGGGGATA AACGCGCCAC TCAAACCCCC GACCGCGCTG
    GAAGCCATCA
    251 TGCCGCCTTT TTTCACGGCA TCGTTCAGCA ATGCCAAAGC
    TGCTGTTGTG
    301 CCGTGCGTAC CGCAGACGCT CAAGCCCATT TCTTCAAGAA
    TGCGTGCCAC
    351 TGAGTCGCCG ACGGCGGGGG TCGGCGCCAG CGACAAGTCG
    AGAATACCAA
    401 ACGGGATATT CAGCATTTTT GAGGCTTCGC GGCCGATGAG
    TTCGCCCACG
    451 CGGGTAATTT TGAAAGCAGT TTTCTTCACT ACTTCCGCAA
    CTTCGGTCAA
    501 TGTCGTTGCA TCTGAATTTT CCAACGCGGC TTTTACGACA
    CCTGGGCCGG
    551 ATACGCCGAC ATTGATAACG GCATCCGCTT CGCCCGAACC
    ATGAAACGCG
    601 CCCGCCATAA ACGGGTTGTC TTCCACCGCG TTGCAGAACA
    CGACAATTTT
    651 AGCGCAGCCG AAACCTTCGG GCGTGATTTC CGCCGTGCGT
    TTGACGGTTT
    701 CGCCCGCCAG CTTGACCGCA TCCATATTGA TACCGGCACG
    CGTACTGCCG
    751 ATATTGATGG AGCTGCACAC AATATCGGTA GTCTTCATCG
    CTTCGGGAAT
    801 GGAGCGGATT AACACCTCAT CCGAAGGCGA CATCCCTTTT
    TGCACCAACG
    851 CGGAAAAACC GCCGATAAAA GACACACCGA TGGCTTTGGC
    AGCTTTATCC
    901 AAAGTTTGCG CCACGCTGAC GTAA
  • This corresponds to the amino acid sequence <SEQ ID 676; ORF24-1>:
  •   1 MRTAVVLLLI MPMAASSAMM PEMVCAGVSP GTAIISKPTE
    QTAVMASSLS
     51 SVSTPASAAA IIPSSSETGI NAPLKPPTAL EAIMPPFFTA
    SFSNAKAAVV
    101 PCVPQTLKPI SSRMRATESP TAGVGASDKS RIPNGIFSIF
    EASRPMSSPT
    151 RVILKAVFFT TSATSVNVVA SEFSNAAFTT PGPDTPTLIT
    ASASPEP*NA
    201 PAINGLSSTA LQNTTILAQP KPSGVISAVR LTVSPASLTA
    SILIPARVLP
    251 ILMELHTISV VFIASGMERI NTSSEGDIPF CTNAEKPPIK
    DTPMALAALS
    301 KVCATLT*
  • Computer analysis of this amino acid sequence gave the following results:
  • Homology with a Predicted ORF from N. meningitidis (Strain A)
  • ORF24 shows 96.4% identity over a 307 aa overlap with an ORF (ORF24a) from strain A of N. meningitidis:
  • Figure US20130064846A1-20130314-C00306
  • The complete length ORF24a nucleotide sequence <SEQ ID 677> is:
  •   1 ATGCGCACGG CAGTGGTTTT GCTGTTGATC ATGCCGATGG
    CGGCTTCGTC
     51 GGCAATGATG CCGGAAATGG TGTGCGCGGG TGTGTCGCCG
    GGAACGGCAA
    101 TCATATCCAA NCCGACCGAA CAAACGGCGG TCATCGCTTC
    GAGTTTATCC
    151 AACGTCAGCA CGCCTGCTTC GGCGGCGGCA ATCATACCTT
    CGTCTTCGGA
    201 NACGGGGATA AACGCGCCAC TCAAACCGCC AACCGCGCTC
    GAAGCCATCA
    251 TGCCGCCCTT TTTCACGGCA TCGTTCAGCA ATGCCAAAGC
    TGCTGTTGTG
    301 CCGTGCGTAC CGCAGACGCT CAAACCCATT TCTTCAAGAA
    TGCGCGCCAC
    351 CGAGTCGCCG ACGGCAGGGG TCGGTGCCAG CGACAAGTCG
    AGAATACCAA
    401 ACGGGATATT CAGCATTTTT GAGGCTTCGC GGCCGATGAG
    TTCGCCCACG
    451 CGGGTAATTT TGAAGGCGGT TTTCTTCACA ACTTCGGCAA
    CTTCGGTCAA
    501 TGTCGTTGCA TCCGAATTTT CCAACGCGGC TTTTACGACA
    CCCGGGCCGG
    551 ATACGCCGAC ATTAATCACA GCATCCGCTT CGCCTGAGCC
    GTGAAACGCG
    601 CCCGCCATAN ACGGGTTGTC TTCCNCCGCG TTGCAGAACA
    CGACGATTTT
    651 GGCGCAGCCG AAACCTTCTA GTGTGATTTC ANCCGTGCGT
    TTGATGGTTT
    701 CGCCCGCCAG TCTGACCGCG TCCATATTGA TACCGGCGCG
    CGTACTGCCG
    751 ATATTGATGG AGCTGCACAC GATATCAGTA GTCTTCATCG
    CTTCGGGAAT
    801 GGAACGGATN AACACCTCGT CAGAAGGCGA CATACCTTTT
    TGCACCAGCG
    851 CGGAAAAGCC GCCAATAAAA GACACGCCGA TGGCTTTGGC
    AGCCTTATCC
    901 AAAGTTTGCG CCACGCTGAC GTAA
  • This encodes a protein having amino acid sequence <SEQ ID 678>:
  •   1 MRTAVVLLLI MPMAASSAMM PEMVCAGVSP GTAIISXPTE
    QTAVIASSLS
     51 NVSTPASAAA IIPSSSXTGI NAPLKPPTAL EAIMPPFFTA
    SFSNAKAAVV
    101 PCVPQTLKPI SSRMRATESP TAGVGASDKS RIPNGIFSIF
    EASRPMSSPT
    151 RVILKAVFFT TSATSVNVVA SEFSNAAFTT PGPDTPTLIT
    ASASPEP*NA
    201 PAIXGLSSXA LQNTTILAQP KPSSVISXVR LMVSPASLTA
    SILIPARVLP
    251 ILMELHTISV VFIASGMERX NTSSEGDIPF CTSAEKPPIK
    DTPMALAALS
    301 KVCATLT*
  • It should be noted that this protein includes a stop codon at position 198.
  • ORF24a and ORF24-1 show 96.4% identity in 307 aa overlap:
  • Figure US20130064846A1-20130314-C00307
  • Homology with a Predicted ORF from N. gonorrhoeae
  • ORF24 shows 96.7% identity over a 121 aa overlap with a predicted ORF (ORF24ng) from N. gonorrhoeae:
  • Figure US20130064846A1-20130314-C00308
  • The complete length ORF24ng nucleotide sequence <SEQ ID 679> is:
  •   1 ATGCGCACGG CGGTGGTTTT GCTGTTGATC ATGCCGATGG
    CGGCTTCGTC
     51 GGCGATGATG CCGGAAATGG TGTGCGCGGG CGTGTCGCCG
    GGAACGGCAA
    101 TCATGTCCAA ACCAACGGAG CAGACGGCGG TCATGGCTTC
    GAGTTTGTCC
    151 AGCGTCAACA CGCCTGCCTC GGCGGCGGCA ATCATACCTT
    CGTCTTCGGA
    201 AACGGGGATA AACGCGCCGC TCAAACCGCC GACCGCGCTG
    GAAGCCATCA
    251 TGCCGCCCTT TTTCACGGCA TCGTTCAGCA ATGCCAAAGC
    TGCTGTTGTG
    301 CCGTGCGTAC CGCAGACGCT CAAGCCCATT TCTTCAAGAA
    TGCGCGCCAC
    351 CGAGTCGCCG ACGGCGGGGG TCGGTGCCAG CGACAAATCG
    AGAATGCCGA
    401 ACGGGATATT CAGCATTTTT GAGGCTTCGC GACCGATGAG
    TTCGCCCACG
    451 CGGGTGATTT TGAAAGCGGT TTTCTTCACG ACTTCGGCGA
    CCTCGGTCAG
    501 GCTGACCGCG TCCGAATTTT CCAGCGCGGC TTTGACCACG
    CCTGGACCGG
    551 ATACGCCGAC ATTAATCACA GCATCCGCTT CGCCCGAGCC
    GTGGAACGCA
    601 CCCGCCATAA ACGGATTGTC TTCCACCGCG TTGCAGAACA
    CGACGATTTT
    651 GGCGCAGCCG AAACCTTCGG GTGTGATTTC AGCCGTGCGT
    TTGATGGTTT
    701 CGCCTGCCAG CTTGACCGCA TCCATATTGA TACCGGCACG
    CGTGCTGCCG
    751 ATATTGATGG AGCTGCACAC GATATCGGTA GTTTTCATCG
    CTTCGGGAAC
    801 GGAACGGATC AACACCTCAT CCGAAGGCGA CATACCTTTT
    TGCACCAGCG
    851 CGGAAAAGCC GCCGATAAAG GACACGCCGA TGGCTTTGGC
    TGCCTTGTCC
    901 AAAGTCTGCG CCACGCTGAC ATAA
  • This encodes a protein having amino acid sequence <SEQ ID 680>:
  •   1 MRTAVVLLLI MPMAASSAMM PEMVCAGVSP GTAIMSKPTE
    QTAVMASSLS
     51 SVNTPASAAA IIPSSSETGI NAPLKPPTAL EAIMPPFFTA
    SFSNAKAAVV
    101 PCVPQTLKPI SSRMRATESP TAGVGASDKS RMPNGIFSIF
    EASRPMSSPT
    151 RVILKAVFFT TSATSVRLTA SEFSSAALTT PGPDTPTLIT
    ASASPEPWNA
    201 PAINGLSSTA LQNTTILAQP KPSGVISAVR LMVSPASLTA
    SILIPARVLP
    251 ILMELHTISV VFIASGTERI NTSSEGDIPF CTSAEKPPIK
    DTPMALAALS
    301 KVCATLT*
  • ORF24ng and ORF24-1 show 96.1% identity in 307 aa overlap:
  • Figure US20130064846A1-20130314-C00309
  • Based on this analysis, including the presence of a putative leader sequence (first 18 aa—double-underlined) and putative transmembrane domains (single-underlined) in the gonococcal protein, it is predicted that the proteins from N. meningitidis and N. gonorrhoeae, and their epitopes, could be useful antigens for vaccines or diagnostics, or for raising antibodies.
  • Example 81
  • The following partial DNA sequence was identified in N. meningitidis <SEQ ID 681>:
  •   1 ..ACCGACGTGC AAAAAGAGTT GGTCGGCGAA CAACGCAAGT
    GGGCGCAGGA
     51   AAAAATCAGC AACTGCCGAC AAGCCGCCGC GCAGGCAGAC
    CGGCAGGAAT
    101   ACGCCGAATA CCTCAAGCTG CAATGCGACA CGCGGATGAC
    GCGCGAACGG
    151   ATACAGTATC TTCGCGGCTA TTCCATCGAT TAG
  • This corresponds to the amino acid sequence <SEQ ID 682; ORF25>:
      • 1 . . . TDVQKELVGE QRKWAQEKIS NCRQAAAQAD RQEYAEYLKL QCDTRMTRER
      • 51 IQYLRGYSID *
  • Further work revealed the complete nucleotide sequence <SEQ ID 683>:
  •   1 ATGTATCGGA AACTCATTGC GCTGCCGTTT GCCCTGCTGC
    TTGCCGCTTG
     51 CGGCAGGGAA GAACCGCCCA AGGCATTGGA ATGCGCCAAC
    CCCGCCGTGT
    101 TGCAAGGCAT ACGCGGCAAT ATTCAGGAAA CGCTCACGCA
    GGAAGCGCGT
    151 TCTTTCGCGC GCGAAGACGG CAGGCAGTTT GTCGATGCCG
    ACAAAATTAT
    201 CGCCGCCGCC TACGGTTTGG CGTTTTCTTT GGAACACGCT
    TCGGAAACGC
    251 AGGAAGGCGG GCGCACGTTC TGTATCGCCG ATTTGAACAT
    TACCGTGCCG
    301 TCTGAAACGC TTGCCGATGC CAAGGCAAAC AGCCCCCTGT
    TGTACGGGGA
    351 AACTGCTTTG TCGGATATTG TGCGGCAGAA GACGGGCGGC
    AATGTCGAGT
    401 TTAAAGACGG CGTATTGACG GCAGCCGTCC GCTTCCTGCC
    CGTCAAAGAC
    451 GGTCAGACGG CATTTGTCGA CAACACGGTC GGTATGGCGG
    CGCAAACGCT
    501 GTCTGCCGCG CTGCTGCCTT ACGGCGTGAA GAGCATCGTG
    ATGATAGACG
    551 GCAAGGCGGT GAAAAAAGAA GACGCGGTCA GGATTTTGAG
    CGGAAAAGCC
    601 CGTGAAGAAG AACCGTCCAA ACCCACGCCC GAAGACATTT
    TGGAACACAA
    651 TGCCGCCGGC GGCGATGCGG GCGTACCCCA AGCCGCAGAA
    GGCGCGCCCG
    701 AACCGGAAAT CCTGCATCCT GACGACGGCG AGCGTGCCGA
    TACCGTTACC
    751 GTATCACGGG GCGAAGTGGA AGAGGCGCGC GTACAAAACC
    AGCGTGCGGA
    801 ATCCGAAATT ACCAAACTTT GGGGAGGACT CGATACCGAC
    GTGCAAAAAG
    851 AGTTGGTCGG CGAACAACGC AAGTGGGCGC AGGAAAAAAT
    CAGCAACTGC
    901 CGACAAGCCG CCGCGCAGGC AGACCGGCAG GAATACGCCG
    AATACCTCAA
    951 GCTGCAATGC GACACGCGGA TGACGCGCGA ACGGATACAG
    TATCTTCGCG
    1001  GCTATTCCAT CGATTAG
  • This corresponds to the amino acid sequence <SEQ ID 684; ORF25-1>:
  •   1 MYRKLIALPF ALLLAACGRE EPPKALECAN PAVLQGIRGN
    IQETLTQEAR
     51 SFAREDGRQF VDADKIIAAA YGLAFSLEHA SETQEGGRTF
    CIADLNITVP
    101 SETLADAKAN SPLLYGETAL SDIVRQKTGG NVEFKDGVLT
    AAVRFLPVKD
    151 GQTAFVDNTV GMAAQTLSAA LLPYGVKSIV MIDGKAVKKE
    DAVRILSGKA
    201 REEEPSKPTP EDILEHNAAG GDAGVPQAAE GAPEPEILHP
    DDGERADTVT
    251 VSRGEVEEAR VQNQRAESEI TKLWGGLDTD VQKELVGEQR
    KWAQEKISNC
    301 RQAAAQADRQ EYAEYLKLQC DTRMTRERIQ YLRGYSID*
  • Computer analysis of this amino acid sequence gave the following results:
  • Homology with a Predicted ORF from N. meningitidis (Strain A)
  • ORF25 shows 98.3% identity over a 60aa overlap with an ORF (ORF25a) from strain A of N. meningitidis:
  • Figure US20130064846A1-20130314-C00310
  • The complete length ORF25a nucleotide sequence <SEQ ID 685> is:
  •   1 ATGTATCGGA AACTCATTGC GCTGCCGTTT GCCCTGCTGC
    TTGCCGCTTG
     51 CGGCAGGGAA GAACCGCCCA AGGCATTGGA ATGCGCCAAC
    CCCGCCGTGT
    101 TGCAANGCAT ACGCNGCAAT ATTCAGGAAA CGCTCACGCA
    GGAAGCGCGT
    151 TCTTTCGCGC GCGAAGACNG CANGCAGTTT GTCGATGCCG
    ACNAAATTAT
    201 CGCCGCCGCC TANGNTNNGN NGNTNTCTTT GGAACACGCT
    TCGGAAACGC
    251 AGGAAGGCGG GCGCACGTTC TGTNTCGCCG ATTTGAACAT
    TACCGTGCCG
    301 TCTGAAACGC TTGCCGATGC CAAGGCAAAC AGCCCCCTGC
    TGTACGGGGA
    351 AACCGCTTTG TCGGATATTG TGCGGCAGAA GACGGGCGGC
    AATGTCGAGT
    401 TTAAAGACGG CGTATTGACG GCAGCCGTCC GCTTCCTACC
    CGTCAAAGAC
    451 GGTCAGANGG CATTTGTCGA CAACACGGTC GGTATGGCGG
    CGCAAACGCT
    501 GTCTGCCGCG TTGCTGCCTT ACGGCGTGAA GAGCATCGTG
    ATGATAGACG
    551 GCAAGGCGGT AAAAAAAGAA GACGCGGTCA GGATTNTGAG
    CNGANAAGCC
    601 CGTGAANAAG AACCGTCCAA ANCCNNGCCC GAAGACATTT
    TGGAACATAA
    651 TGCCGCCGGA GGGGATGCAG ACGTACCCCA AGCCGGAGAA
    GACGCGCCCG
    701 AACCGGAAAT CCTGCATCCT GACGACGGCG AGCGTGCCGA
    TACCGTTACC
    751 GTATCACGGG GCGAAGTGGA AGAGGCGCGN GTACAAAACC
    AGCGTGCGGA
    801 ATCCGAAATT ACCAAACTTT GGGGAGGACT CGATACCGAC
    GTGCAAAAAG
    851 AGTTGGTCGG CGAANAACGC AAGTGGGCGC AGGAAAAAAT
    CAGCAACTGC
    901 CGACAAGCCG CCGCGCAGGC AGACCGGCAG GAATACGCCG
    AATACCTCAA
    951 GCTGCAATGC GACACGCGGA TGACGCGCGA ACGGATACAG
    TATCTTCGCG
    1001  GCTATTCCAT CGATTAG
  • This encodes a protein having amino acid sequence <SEQ ID 686>:
  • 1 MYRKLIALPF ALLLAACGRE EPPKALECAN PAVLQXIRXN
    IQETLTQEAR
    51 SFAREDXXQF VDADXIIAAA XXXXXSLEHA SETQEGGRTF
    CXADLNITVP
    101 SETLADAKAN SPLLYGETAL SDIVRQKTGG NVEFKDGVLT
    AAVRFLPVKD
    151 GQXAFVDNTV GMAAQTLSAA LLPYGVKSIV MIDGKAVKKE
    DAVRIXSXXA
    201 REXEPSKXXP EDILEHNAAG GDADVPQAGE DAPEPEILHP
    DDGERADTVT
    251 VSRGEVEEAR VQNQRAESEI TKLWGGLDTD VQKELVGEXR
    KWAQEKISNC
    301 RQAAAQADRQ EYAEYLKLQC DTRMTRERIQ YLRGYSID*
  • ORF25a and ORF25-1 show 93.5% identity in 338 aa overlap:
  • Figure US20130064846A1-20130314-C00311
  • Homology with a Predicted ORF from N. gonorrhoeae
  • ORF25 shows 100% identity over a 60aa overlap with a predicted ORF (ORF25ng) from N. gonorrhoeae:
  • Figure US20130064846A1-20130314-C00312
  • The complete length ORF25ng nucleotide sequence <SEQ ID 687> is:
  • 1 ATGTATCGGA AACTCATTGC GCTGCCGTTT GCCCTGCTGC
    TTGCAGCGTG
    51 CGGCAGGGAA GAACCGCCCA AGGCGTTGGA ATGCGCCAAC
    CCCGCCGTGT
    101 TGCAGGACAT ACGCGGCAGT ATTCAGGAAA CGCTCACGCA
    GGAAGCGCGT
    151 TCTTTCGCGC GCGAAGACGG CAGGCAGTTT GTCGATGCCG
    ACAAAATTAT
    201 CGCCGCCGCC TACGGTTTGG CGTTTTCTTT GGAACACGCT
    TCGGAAACGC
    251 AGGAAGGCGG GCGCACGTTC TGTATCGCCG ATTTGAACAT
    TACCGTGCCG
    301 TCTGAAACGC TTGCCGATGC CGAGGCAAAC AGCCCCCTGC
    TGTATGGGGA
    351 AACGTCTTTG GCAGACATCG TGCAGCAGAA GACGGGCGGC
    AATGTCGAGT
    401 TTAAAGACGG CGTATTGACG GCAGCCGTCC GCTTCCTGCC
    CGCCAAAGAC
    451 GCTCGGACGG CATTTATCGA CAACACGGTC GGTATGGCGA
    CGCAAACGCT
    501 GTCTGCCGCG TTGCTGCCTT ACGGCGTGAA GAGCATCGTG
    ATGATAGACG
    551 GCAAGGCGGT GACAAAAGAA GACGCGGTCA GGGTTTTGAG
    CGGCAAAGCC
    601 CGTGAAGAAG AACCGTCCAA ACCCACCCCC GAAGACATTT
    TGGAACACAA
    651 TGCCGCCGGC GGCGATGCGG GCGTACCCCA AGCCGCAGAA
    GGCGCACCCG
    701 AACCCGAAAT CCTGCATCCC GACGACGTCG AGCGTGCCGA
    TACCGTTACC
    751 GTATCACGGG GCGAAGTGGA AGAGGCGCGC GTACAAAACC
    AACGTGCGGA
    801 ATCCGAAATT ACCAAACTTT GGGGAGGACT CGATACCGAC
    GTGCAAAAAG
    851 AGTTGGTCGG CGAACAGCGC AAGTGGGCGC AGGAAAAAAT
    CAGcaactgc
    901 cgACAAGCCG CCGCGCAGGC AGACCGGCAG GAATACGCCG
    AATACCTCAA
    951 GCTCCAATGC GACACGCGGA TGACGCGCGA ACggaTACAG
    TATCTTCGCG
    1001 GCTATTCCAT CGATTAG
  • This encodes a protein having amino acid sequence <SEQ ID 688>:
  • 1 MYRKLIALPF ALLLAACGRE EPPKALECAN PAVLQDIRGS
    IQETLTQEAR
    51 SFAREDGRQF VDADKIIAAA YGLAFSLEHA SETQEGGRTF
    CIADLNITVP
    101 SETLADAEAN SPLLYGETSL ADIVQQKTGG NVEFKDGVLT
    AAVRFLPAKD
    151 ARTAFIDNTV GMATQTLSAA LLPYGVKSIV MIDGKAVTKE
    DAVRVLSGKA
    201 REEEPSKPTP EDILEHNAAG GDAGVPQAAE GAPEPEILHP
    DDVERADTVT
    251 VSRGEVEEAR VQNQRAESEI TKLWGGLDTD VQKELVGEQR
    KWAQEKISNC
    301 RQAAAQADRQ EYAEYLKLQC DTRMTRERIQ YLRGYSID*
  • ORF25ng and ORF25-1 show 95.9% identity in 338 aa overlap:
  • Figure US20130064846A1-20130314-C00313
  • Based on this analysis, including the presence of a predicted prokaryotic membrane lipoprotein lipid attchment site (underlined) in the gonococcal protein, it was predicted that the proteins from N. meningitidis and N. gonorrhoeae, and their epitopes, could be useful antigens for vaccines or diagnostics, or for raising antibodies.
  • ORF25-1 (37 kDa) was cloned in pET and pGex vectors and expressed in E. coli, as described above. The products of protein expression and purification were analyzed by SDS-PAGE. FIG. 16A shows the results of affinity purification of the GST-fusion protein, and FIG. 16B shows the results of expression of the His-fusion in E. coli. Purified His-fusion protein was used to immunise mice, whose sera were used for Western blot (FIG. 16C), ELISA (positive result), and FACS analysis (FIG. 16D). These experiments confirm that ORF25-1 is a surface-exposed protein, and that it is a useful immunogen.
  • FIG. 16E shows plots of hydrophilicity, antigenic index, and AMPHI regions for ORF25-1.
  • Example 82
  • The following partial DNA sequence was identified in N. meningitidis <SEQ ID 689>
  • 1 ATGCAGCTGA TCGACTATTC ACATTCATTT TTCTCGGTTG
    TGCCACCCTT
    51 TTTGGCACTG GCACTTGCCG TCATTACCCG CCGCGTACTG
    CTGTCTTTAG
    101 GCATCGGTAT TCTGGwysGC GTTGCCTTTT TGGTCGGCGG
    CAACCCCGTC
    151 GACGGTCTGA CACACCTGAA AGACATGGTC GTCGGCTTGG
    CTTGGTCAGA
    201 CGsyGATTGG TCGCTGGGCA AACCAAAAAT CTTGGTTTTC
    CkGATACTTT
    251 TGGGTATTTT TACTTCCCTG CTGACCTACT CCGGCAGCAA
    T.........
                                 //
    851 .......... .......... .......... ........AC
    TTCGCTGGTA
    901 TTCGGCGGCA CTTGCGGCGT CTTTGCCGTC GTTCTCTGCA
    CGCTCGGCAC
    951 GATTAAAACC GCCGACTATC CCAAAGCCGT TTGGCAGGGT
    GCGAAATCTA
    1001 TGTTCGGCGC AATCGCCATT TTAATCCTCG CTTGGCTCAT
    CAGTACGGTT
    1051 GTCGGCGAAA TGCACACCGG CGATTACCTC TCCACACTGG
    TTGCGGGCAA
    1101 CATCCATCCC GGCTTCCTGC CCGTCATCCT CTTCCTGCTC
    GCCAGCGTGA
    1151 TGGCGTTTGC CACAGGCACA AGCTGGGGGA CGTTCGGCAT
    TATGCTGCCG
    1201 ATTGCCGCCG CCATGGCGGT CAAAGTCGAA CCCGCGCTGA
    TTATCCCGTG
    1251 TATGTCCGCA GTAATGGCGG GGGCGGTATG CGGCGACCAC
    TGCTCGCCCA
    1301 TTTCCGACAC GACCATCCTG TCGTCCACCG GCGCGCGCTG
    CAACCACATC
    1351 GACCACGTTA CCTCGCAACT GCCTTACGCC TTAACCGTTG
    CCGCCGCCGC
    1401 CGCATCGGGC TACCTCGCAT TGGGTCTGAC AAAATCCGCG
    CTGTTGGGCT
    1451 TTGGCACGAC AGGCATTGTA TTGGCGGTGC TGATTTTTCT
    GTTGAAAGAT
    1501 AAAAAA..
  • This corresponds to the amino acid sequence <SEQ ID 690; ORF26>:
  • 1 MQLIDYSHSF FSVVPPFLAL ALAVITRRVL LSLGIGILXX
    VAFLVGGNPV
    51 DGLTHLKDMV VGLAWSDXDW SLGKPKILVF XILLGIFTSL
    LTYSGSN...
                                 //
    251 .......... .......... .......... ..........
    ......TSLV
    301 FGGTCGVFAV VLCTLGTIKT ADYPKAVWQG AKSMFGAIAI
    LILAWLISTV
    351 VGEMHTGDYL STLVAGNIHP GFLPVILFLL ASVMAFATGT
    SWGTFGIMLP
    401 IAAAMAVKVE PALIIPCMSA VMAGAVCGDH CSPISDTTIL
    SSTGARCNHI
    451 DHVTSQLPYA LTVAAAAASG YLALGLTKSA LLGFGTTGIV
    LAVLIFLLKD
    501 KK..
  • Further work revealed the complete nucleotide sequence <SEQ ID 691>:
  • 1 ATGCAGCTGA TCGACTATTC ACATTCATTT TTCTCGGTTG
    TGCCACCCTT
    51 TTTGGCACTG GCACTTGCCG TCATTACCCG CCGCGTACTG
    CTGTCTTTAG
    101 GCATCGGTAT TCTGGTCGGC GTTGCCTTTT TGGTCGGCGG
    CAACCCCGTC
    151 GACGGTCTGA CACACCTGAA AGACATGGTC GTCGGCTTGG
    CTTGGTCAGA
    201 CGGCGATTGG TCGCTGGGCA AACCAAAAAT CTTGGTTTTC
    CTGATACTTT
    251 TGGGTATTTT TACTTCCCTG CTGACCTACT CCGGCAGCAA
    TCAGGCGTTT
    301 GCCGACTGGG CAAAACGGCA CATTAAAAAC CGGCGCGGCG
    CGAAAATGCT
    351 GACCGCCTGC CTCGTGTTCG TAACCTTTAT CGACGACTAT
    TTCCACAGTC
    401 TCGCCGTCGG TGCGATTGCC CGCCCCGTTA CCGACAAGTT
    TAAAGTTTCC
    451 CGCACCAAAC TCGCCTACAT CCTCGACTCC ACTGCCGCTC
    CTATGTGCGT
    501 GCTGATGCCC GTTTCAAGCT GGGGCGCGTC GATTATCGCC
    ACGCTTGCCG
    551 GACTGCTCGT TACCTACAAA ATCACCGAAT ACACGCCGAT
    GGGGACGTTT
    601 GTCGCCATGA GCCTGATGAA CTATTACGCA CTGTTTGCCC
    TGATTATGGT
    651 GTTCGTCGTC GCATGGTTTT CCTTCGACAT CGGCTCGATG
    GCACGTTTCG
    701 AACAAGCCGC GTTGAACGAA GCCCACGATG AAACTGCCGT
    TTCAGACGCT
    751 ACCAAAGGTC GTGTTTACGC ACTGATTATT CCCGTTTTGG
    CCTTAATCGC
    801 CTCAACGGTT TCCGCCATGA TCTACACCGG CGCGCAGGCA
    AGCGAAACCT
    851 TCAGCATTTT GGGGGCATTT GAAAACACGG ACGTAAACAC
    TTCGCTGGTA
    901 TTCGGCGGCA CTTGCGGCGT CCTTGCCGTC GTTCTCTGCA
    CGCTCGGCAC
    951 GATTAAAACC GCCGACTATC CCAAAGCCGT TTGGCAGGGT
    GCGAAATCTA
    1001 TGTTCGGCGC AATCGCCATT TTAATCCTCG CTTGGCTCAT
    CAGTACGGTT
    1051 GTCGGCGAAA TGCACACCGG CGATTACCTC TCCACACTGG
    TTGCGGGCAA
    1101 CATCCATCCC GGCTTCCTGC CCGTCATCCT CTTCCTGCTC
    GCCAGCGTGA
    1151 TGGCGTTTGC CACAGGCACA AGCTGGGGGA CGTTCGGCAT
    TATGCTGCCG
    1201 ATTGCCGCCG CCATGGCGGT CAAAGTCGAA CCCGCGCTGA
    TTATCCCGTG
    1251 TATGTCCGCA GTAATGGCGG GGGCGGTATG CGGCGACCAC
    TGCTCGCCCA
    1301 TTTCCGACAC GACCATCCTG TCGTCCACCG GCGCGCGCTG
    CAACCACATC
    1351 GACCACGTTA CCTCGCAACT GCCTTACGCC TTAACCGTTG
    CCGCCGCCGC
    1401 CGCATCGGGC TACCTCGCAT TGGGTCTGAC AAAATCCGCG
    CTGTTGGGCT
    1451 TTGGCACGAC AGGCATTGTA TTGGCGGTGC TGATTTTTCT
    GTTGAAAGAT
    1501 AAAAAACGCG CCAACGCCTG A
  • This corresponds to the amino acid sequence <SEQ ID 692; ORF26-1>:
  • 1 MQLIDYSHSF FSVVPPFLAL ALAVITRRVL LSLGIGILVG
    VAFLVGGNPV
    51 DGLTHLKDMV VGLAWSDGDW SLGKPKILVF LILLGIFTSL
    LTYSGSNQAF
    101 ADWAKRHIKN RRGAKMLTAC LVFVTFIDDY FHSLAVGAIA
    RPVTDKFKVS
    151 RTKLAYILDS TAAPMCVLMP VSSWGASIIA TLAGLLVTYK
    ITEYTPMGTF
    201 VAMSLMNYYA LFALIMVFVV AWFSFDI GSM ARFEQAALNE
    AHDETAVSDA
    251 TKGRVYALII PVLALIASTV SAMIYTGAQA SETFSILGAF
    ENTDVNTSLV
    301 FGGTCGVLAV VLCTLGTIKT ADYPKAVWQG AKSMFGAIAI
    LILAWLISTV
    351 VGEMHTGDYL STLVAGNIHP GFLPVILFLL ASVMAFATGT
    SWGTFGIMLP
    401 IAAAMAVKVE PALIIPCMSA VMAGAVCGDH CSPISDTTIL
    SSTGARCNHI
    451 DHVTSQLPYA LTVAAAAASG YLALGLTKSA LLGFGTTGIV
    LAVLIFLLKD
    501 KKRANA*
  • Computer analysis of this amino acid sequence gave the following results:
  • Homology with the Hypothetical Transmembrane Protein HI1586 of H. influenzae (Accession Number P44263)
  • ORF26 and HI1586 show 53% and 49% amino acid identity in 97 and 221 aa overlap at the N-terminus and C-terminus, respectively:
  • Orf26 1 MQLIDYSHSFFSVVPPFLALALAVITRRVXXXXXXXXXXXVAFLVGGNPVDGLTHLKDMV 60
    M+LID+S S +S+VP  LA+ LA+ TRRV              L          +L   V
    HI1586 14 MELIDFSSSVWSIVPALLAIILAIATRRVLVSLSAGIIIGSLMLSDWQIGSAFNYLVKNV 73
    Orf26 61 VGLAWSDXDWSLGKPKILVFXILLGIFTSLLTYSGSN 97
    V L ++D + +     I++F +LLG+ T+LLT SGSN
    HI1586 74 VSLVYADGEIN-SNMNIVLFLLLLGVLTALLTVSGSN 109
                                //
    Orf26 86 IFTSLLTYSGS--NTSLVFGGTCGVFAVVLCTL--GTIKTADYPKAVWQGAKSMFGXXXX 141
    +F+ L T+  +   TSLV GG C +    L  +    +   +Y ++   G KSM G
    HI1586 299 VFSVLGTFENTVVGTSLVVGGFCSIIISTLLIILDRQVSVPEYVRSWIVGIKSMSGAIAI 358
    Orf26 142 XXXXXXXSTVVGEMHTGDYLSTLVAGNIHPGFLPVILFLLASVMAFATGTSWGTFGIMLP 201
           + +VG+M TG YLS+LV+GNI   FLPVILF+L + MAF+TGTSWGTFGIMLP
    HI1586 359 LFFAWTINKIVGDMQTGKYLSSLVSGNIPMQFLPVILFVLGAAMAFSTGTSWGTFGIMLP 418
    Orf26 202 IAAAMAVKVEPALIIPCMSAVMAGAVCGDHCSPISDTTILSSTGARCNHIDHVTSQXXXX 261
    IAAAMA    P L++PC+SAVMAGAVCGDHCSP+SDTTILSSTGA+CNHIDHVT+Q
    HI1586 419 IAAAMAANAAPELLLPCLSAVMAGAVCGDHCSPVSDTTILSSTGAKCNHIDHVTTQLPYA 478
    Orf26 262 XXXXXXXXXXXXXXXXXKSALLGFGTTGIVLAVLIFLLKDK 302
                      S L GF  T + L V+IF +K +
    HI1586 479 ATVATATSIGYIVVGFTYSGLAGFAATAVSLIVIIFAVKKR 519

    Homology with a Predicted ORF from N. meningitidis (Strain A)
  • ORF26 shows 58.2% identity over a 502aa overlap with an ORF (ORF26a) from strain A of N. meningitidis:
  • Figure US20130064846A1-20130314-C00314
  • The complete length ORF26a nucleotide sequence <SEQ ID 693> is:
  • 1 ATGCAGCTGA TCGACTATTC ACATTCATTT TTCTCGGTTG
    TGCCACCCTT
    51 TTTGGCACTG GCACTTGCCG TCATTACCCG CCGCGTACTG
    CTGTCTTTAG
    101 GCATCGGTAT TCTGGTCGGC GTTGCCTTTT TGGTCGGCGG
    CAACCCCGTC
    151 GACGGTCTGA CACACCTGAA AGACATGGTC GTCGGCTTGG
    CTTGGTCAGA
    201 CGGCGATTGG TCGCTGGGCA AACCAAAANT CTTGGTTTTC
    CTGATACTTT
    251 TGGGTATTTT TACTTCCCTG CTGACCTACT CCGGCAGCAA
    TCAGGCGTTT
    301 GCCGACTGGG CAAAACGGCA CATTAAAAAC CGGCGCGGCG
    CGAAAATGCT
    351 GACCGCCTGC CTCGTGTTCG TAACCTTTAT CGACGACTAT
    TTCCACAGTC
    401 TCGCCGTCGG TGCGNTTGCC CGCCCCGTTA CCGACAAGTT
    TAAAGTTTCC
    451 CGCGCCAAAC TCGCCTACAT CCTCGACTCC ACTGCCGCGC
    CTATGTGCGT
    501 GCTGATGCCC GTTTCAAGCT GGGGCGCGTC GATTATCGCC
    ACGCTTGCCG
    551 GACTGCTCGT TACCTACAAA ATCACCGAAT ACACGCCGAT
    GGGGACGTTT
    601 GTCGCCATGA GCCTGATGAA CTATTACGCA CTGTTTGCCC
    TGATTATGGT
    651 GTTCGTCGTC GCATGGTTCT CCTTCGACAT CGGCTCGATG
    GCACGTTTCG
    701 AACAAGCCGC GTTGAACGAA GCCCACGATG AAACTGCCGT
    TTCAGACGGC
    751 AGCTGGGGCA GGGTTTACGC ATTGATTATT CCCGTTTTGG
    CCTTAATCGC
    801 CTCAACGGTT TCCGCCATGA TCTACACCGG TGCACAGGCA
    AGCGAAACCT
    851 TCAGCATTTT GGGTGCATTT GAAAATACGG ACGTGAACAC
    TTCGCTGGTA
    901 TTCGGCGGCA CTTGCGGCGT GCTTGCCGTC GTCCTCTGCA
    CGCTCGGCAC
    951 GATTAAAATC GCCGATTATC CCAAAGCCGT TTGGCAGGGT
    GCGAAATCCA
    1001 TGTTCGGCGC AATCGCCATT TTAATCCTTG CCTGGCTCAT
    CAGTACGGTT
    1051 GTCGGCGAAA TGCACACAGG CGACTACCTC TCCACGCTGG
    TTGCGGGCAA
    1101 CATCCATCCC GGCTTCCTGN CCGTCATCCT TTTCCTGCTC
    GCCAGCGTGA
    1151 TGGCGTTTGC CACAGGCACA AGCTGGGGGA CGTTCGGCAT
    CATGCTGCCG
    1201 ATTGCCGCCG CCATGGCGGT CAAAGTCGAT CCCTCACTGA
    TTATCCCGTG
    1251 TATGTCCGCC GTGATGGCGG GGGCGGTATG CGGCGACCAC
    TGCTCGCCCA
    1301 TTTCCGACAC GACCATCCTG TCGTCCACCG GCGCGCGCTG
    CAACCACATC
    1351 GACCACGTTA CNTCGCAACT GCCTTACGCC TTAACCGTTG
    CCGCCGCCGC
    1401 CGCATCGGGN TACCTCGCAT TGGGTCTGAC AAAATCCGCG
    CTGTTGGGTT
    1451 TTGGCANGAC AGGCATTGTA TTGGCGGTGC TGATTTTTCT
    GTTGAAAGAT
    1501 AAAAAACGCG CCAACGCCTG A
  • This encodes a protein having amino acid sequence <SEQ ID 694>:
  • 1 MQLIDYSHSF FSVVPPFLAL ALAVITRRVL LSLGIGILVG
    VAFLVGGNPV
    51 DGLTHLKDMV VGLAWSDGDW SLGKPKXLVF LILLGIFTSL
    LTYSGSNQAF
    101 ADWAKRHIKN RRGAKMLTAC LVFVTFIDDY FHSLAVGAXA
    RPVTDKFKVS
    151 RAKLAYILDS TAAPMCVLMP VSSWGASIIA TLAGLLVTYK
    ITEYTPMGTF
    201 VAMSLMNYYA LFALIMVFVV AWFSFDI GSM ARFEQAALNE
    AHDETAVSDG
    251 SWGRVYALII PVLALIASTV SAMIYTGAQA SETFSILGAF
    ENTDVNTSLV
    301 FGGTCGVLAV VLCTLGTIKI ADYPKAVWQG AKSMFGAIAI
    LILAWLISTV
    351 VGEMHTGDYL STLVAGNIHP GFLXVILFLL ASVMAFATGT
    SWGTFGIMLP
    401 IAAAMAVKVD PSLIIPCMSA VMAGAVCGDH CSPISDTTIL
    SSTGARCNHI
    451 DHVTSQLPYA LTVAAAAASG YLALGLTKSA LLGFGXTGIV
    LAVLIFLLKD
    501 KKRANA*
  • ORF26a and ORF26-1 show 97.8% identity in 506 aa overlap:
  • Figure US20130064846A1-20130314-C00315
  • Homology with a Predicted ORF from N. gonorrhoeae
  • ORF26 shows 94.8% and 99% identity in 97 and 206 aa overlap at the N-terminus and C-terminus, respectively, with a predicted ORF (ORF26ng) from N. gonorrhoeae:
  • Figure US20130064846A1-20130314-C00316
  • The complete length ORF26ng nucleotide sequence <SEQ ID 695> is:
  • 1 ATGCAGCTGA TTGACTATTC ACATTCATTT TTCTCGGTTG
    TGCCACCCTT
    51 TTTGGCACTG GCACTTGCCG TCATTACCCG CCGCGTACTG
    CTGTCTTTAG
    101 GCATCGGTAT TTTGGTCGGC GTTGCCTTTT TGGTCGGCGG
    CAACCCCGTC
    151 GACGGTCTGA CACACCTGAA AGACATGGTC GTCGGCTTGG
    CTTGGGCAGA
    201 CGGCGATTGG TCGCTGGGCA AACCAAAAAT CTTGGTTTTC
    CTGATACTTT
    251 TGGGCATTTT CACTTCACTG CTGACCTACT CCGGCAGCAA
    TCAGGCGTTT
    301 GCCGACTGGG CAAAACGGCA CATTAAAAAC CGGTGCGGCG
    CGAAAATGCT
    351 GACCGCCTGC CTCGTGTTCG TAACCTTTAT CGACGACTAT
    TTCCACAGCC
    401 TCGCCGTCGG TGCGATTGCC CGCCCCGTTA CCGACAAGTT
    TAAAGTTTCC
    451 CGCGCCAAAC TCGCCTACAT CCTCGACTCC ACTGCCTCGC
    CCATGTGCGT
    501 GCTGATGCCC GTTTCAAGCT GGGGCGCGTC GATTATCGCC
    ACGCTTGCCG
    551 GATTGCTCGT TACCTACAAA ATTACCGAAT ACACGCCGAT
    GGGGACGTTT
    601 GTCGCCATGA GCCTGATGAA CTATTACGCG CTGTTTGCCC
    TGATTATGGT
    651 ATTCGTCGTC GCATGGTTCT CCTTCGACAT CGGCTCGAtg
    gCGCGTTTCG
    701 AACAGGCTGC GTTGAACGAA gcccaggacg aaaccgccgc
    tTCAGACgCT
    751 ACCAAAGGTC GTGTTTACGC ATTGATTATT CCCGTTTTGG
    CCTTAATCGC
    801 CTCAACGGTT TCCGCCATGA TCTACACCGG CGCGCAGGCA
    AGCGAAACCT
    851 TCAGCATTTT GGGGGCATTT GAAAATACCG ACGTAAACAC
    TTCGCTGGTA
    901 TTCGGCGGCA CTTGCGGCGT GCTTGCCGTC GTCCTCTGCA
    CGTTCGGCAC
    951 GATTAAAACC GCCGATTATC CCAAAGCCGT GTGGCAGGGT
    GCGAAATCCA
    1001 TGTTCGGCGC AATCGCCATT TTAATCCTCG CCTGGCTCAT
    CAGTACGGTT
    1051 GTCGGCGAAA TGCACACGGG CGACTACCTC TCCACGCTGG
    TTGCGGGCAA
    1101 CATCCATCCC GGCTTCCTGC CCGTCATCCT CTTCCTGCTC
    GCCAGCGTGA
    1151 TGGCGTTTGC CACAGGCACA AGCTGGGGGA CGTTCGGCAT
    TATGCTGCCG
    1201 ATTGCCGCCG CCATGGCGGT CAAAGTCGAA CCCGCGCTGA
    TTAtcccGTG
    1251 TATGTCCGCA GTAATGGCGG GGGCGGTATG CGGCGACCAC
    TGTTCGCCCA
    1301 TCTCCGACAC GACCATCCTG TCGTCCACCG GCGCGCGCTG
    CAACCACATC
    1351 GACCACGTTA CCTCGCAACT GCCTTATGCC CTGACGGTTG
    CCGCCGCCGC
    1401 CGCATCGGGC TACCTCGCAT TGGGTCTGAC AAAATCCGCG
    CTGTTGGGCT
    1451 TTGGCACGAC CGGTATTGTA TTGGCGGTGC TGATTTTTCT
    GTTGAAAGAT
    1501 AAAAAACGCG CCGACGTTTG A
  • This encodes a protein having amino acid sequence <SEQ ID 696>:
  • 1 MQLIDYSHSF FSVVPPFLAL ALAVITRRVL LSLGIGILVG
    VAFLVGGNPV
    51 DGLTHLKDMV VGLAWADGDW SLGKPKILVF LILLGIFTSL
    LTYSGSNQAF
    101 ADWAKRHIKN RCGAKMLTAC LVFVTFIDDY FHSLAVGAIA
    RPVTDKFKVS
    151 RAKLAYILDS TASPMCVLMP VSSWGASIIA TLAGLLVTYK
    ITEYTPMGTF
    201 VAMSLMNYYA LFALIMVFVV AWFSFDI GSM ARFEQAALNE
    AQDETAASDA
    251 TKGRVYALII PVLALIASTV SAMIYTGAQA SETFSILGAF
    ENTDVNTSLV
    301 FGGTCGVLAV VLCTFGTIKT ADYPKAVWQG AKSMFGAIAI
    LILAWLISTV
    351 VGEMHTGDYL STLVAGNIHP GFLPVILFLL ASVMAFATGT
    SWGTFGIMLP
    401 IAAAMAVKVE PALIIPCMSA VMAGAVCGDH CSPISDTTIL
    SSTGARCNHI
    451 DHVTSQLPYA LTVAAAAASG YLALGLTKSA LLGFGTTGIV
    LAVLIFLLKD
    501 KKRADV*
  • ORF26ng and ORF26-1 show 98.4% identity in 505 aa overlap:
  • Figure US20130064846A1-20130314-C00317
  • In addition, ORF26 ng shows significant homology to a hypothetical H. influenzae protein:
  • sp|P44263|YF86_HAEIN HYPOTHETICAL PROTEIN HI1586 >gi|1074850|pir||C64037
    hypothetical
    protein HI1586 - Haemophilus influenzae (strain Rd KW20) >gi|1574427
    (U32832) H. influenzae predicted coding region HI1586 [Haemophilus
    influenzae] Length = 519
    Score = 538 bits (1370), Expect = e−152
    Identities = 280/507 (55%), Positives = 346/507 (68%), Gaps = 7/507 (1%)
    Query: 1 MQLIDYSHSFFSVVPPFLALALAVITRRXXXXXXXXXXXXXAFLVGGNPVDGLTHLKDMV 60
    M+LID+S S +S+VP  LA+ LA+ TRR               L          +L   V
    Sbjct: 14 MELIDFSSSVWSIVPALLAIILAIATRRVLVSLSAGIIIGSLMLSDWQIGSAFNYLVKNV 73
    Query: 61 VGLAWADGDWSLGKPKILVFLILLGIFTSLLTYSGSNQAFADWAKRHIKNRCGAKMLTAC 120
    V L +ADG+ +     I++FL+LLG+ T+LLT SGSN+AFA+WA+  IK R GAK+L A
    Sbjct: 74 VSLVYADGEIN-SNMNIVLFLLLLGVLTALLTVSGSNRAFAEWAQSRIKGRRGAKLLAAS 132
    Query: 121 LVFVTFIDDYFHSLAVGAIARPVTDKFKVSRAKLAYILDSTASPMCVLMPVSSWGASIIA 180
    LVFVTFIDDYFHSLAVGAIARPVTD+FKVSRAKLAYILDSTA+PMCV+MPVSSWGA II
    Sbjct: 133 LVFVTFIDDYFHSLAVGAIARPVTDRFKVSRAKLAYILDSTAAPMCVMMPVSSWGAYIIT 192
    Query: 181 TLAGLLVTYKITEYTPMGTFVAMSLMNYYALFALIMVFVVAWFSFDIGSMARFEQAALNE 240
     + GLL TY ITEYTP+G FVAMS MN+YA+F++IMVF VA+FSFDI SM R E+ AL
    Sbjct: 193 LIGGLLATYSITEYTPIGAFVAMSSMNFYAIFSIIMVFFVAYFSFDIASMVRHEKLALKN 252
    Query: 241 AQDETAASDATKGRVYALIIPVLALIASTVSAMIYTGAQA----SETFSILGAFENTDVN 296
     +D+      TKG+V  LI+P+L LI +TVS MIYTGA+A     + FS+LG FENT V
    Sbjct: 253 TEDQLEEETGTKGQVRNLILPILVLIIATVSMMIYTGAEALAADGKVFSVLGTFENTVVG 312
    Query: 297 TSLVFGGTCGVL--AVVLCTFGTIKTADYPKAVWQGAKSMFGXXXXXXXXXXXSTVVGEM 354
    TSLV GG C ++   +++     +   +Y ++   G KSM G           + +VG+M
    Sbjct: 313 TSLVVGGFCSIIISTLLIILDRQVSVPEYVRSWIVGIKSMSGAIAILFFAWTINKIVGDM 372
    Query: 355 HTGDYLSTLVAGNIHPGFLPVILFLLASVMAFATGTSWGTFGIMLPIAAAMAVKVEPALI 414
     TG YLS+LV+GNI   FLPVILF+L + MAF+TGTSWGTFGIMLPIAAAMA    P L+
    Sbjct: 373 QTGKYLSSLVSGNIPMQFLPVILFVLGAAMAFSTGTSWGTFGIMLPIAAAMAANAAPELL 432
    Query: 415 IPCMSAVMAGAVCGDHCSPISDTTILSSTGARCNHIDHVTSQXXXXXXXXXXXXXXXXXX 474
    +PC+SAVMAGAVCGDHCSP+SDTTILSSTGA+CNHIDHVT+Q
    Sbjct: 433 LPCLSAVMAGAVCGDHCSPVSDTTILSSTGAKCNHIDHVTTQLPYAATVATATSIGYIVV 492
    Query: 475 XXXKSALLGFGTTGIVLAVLIFLLKDK 501
        S L GF  T + L V+IF +K +
    Sbjct: 493 GFTYSGLAGFAATAVSLIVIIFAVKKR 519
  • Based on this analysis, it is predicted that these proteins from N. meningitidis and N. gonorrhoeae, and their epitopes, could be useful antigens for vaccines or diagnostics, or for raising antibodies.
  • Example 83
  • The following partial DNA sequence was identified in N. meningitidis <SEQ ID 697>:
  • 1 ..AAGCAATGGT ATGCCGACGN .AGTATCAAG ACGGAAATGG
    TTATGGTCAA
    51   CGATGAGCCT GCCAAAATTC TGACTTGGGA TGAAAGCGGC
    CGATTACTCT
    101   CGGAACTGTC TATCCGCCAC CATCAACGCA ACGGGGTGGT
    TTTGGAGTGG
    151   TATGAAGATG GTTCTAAAAA GAGCGAAGT. GTTTATCAGG
    ATGACAAGTT
    201   GGTCAGGAAA ACCCAGTGGG ATAAGGATGG TTATTTAATC
    GAACCCTGA
  • This corresponds to the amino acid sequence <SEQ ID 698; ORF27>:
  • 1 ..KQWYADXSIK TEMVMVNDEP AKILTWDESG RLLSELSIRH
    HQRNGVVLEW
    51   YEDGSKKSEX VYQDDKLVRK TQWDKDGYLI EP*
  • Further work revealed the complete nucleotide sequence <SEQ ID 699>:
  • 1 ATGAAAAAAT TATCTCGGAT TGTATTTTCA ACTGTCCTGT
    TGGGTTTTTC
    51 GGCCGCTTTG CCGGCGCAGA CCTATTCTGT TTATTTTAAT
    CAGAACGGAA
    101 AGCTGACGGC GACGATGTCT TCTGCCGCTT ATATCAGGCA
    ATATAGTGTG
    151 GTGGCGGGTA TTGCGCACGC GCAGGATTTT TATTATCCGT
    CGATGAAGAA
    201 ATATTCTGAA CCTTATATCG TTGCTTCAAC GCAAATCAAA
    TCTTTTGTGC
    251 CTACCCTGCA AAACGGTATG TTGATTTTGT GGCATTTTAA
    TGGTCAGAAA
    301 AAAATGGCGG GGGGCTTCAG CAAGGGTAAG CCGGACGGGG
    AGTGGGTCAA
    351 CTGGTATCCG AACGGTAAAA AATCTGCCGT TATGCCTTAT
    AAAAATGGCT
    401 TGAGTGAGGG TACGGGATAC CGCTATTACC GTAACGGCGG
    CAAGGAAAGC
    451 GAAATCCAGT TTAAGCAAAA TAAGGCAAAC GGCGTATGGA
    AGCAATGGTA
    501 TGCCGACGGC AGTATCAAGA CGGAAATGGT TATGGTCAAC
    GATGAGCCTG
    551 CCAAAATTCT GACTTGGGAT GAAAGCGGCC GATTACTCTC
    GGAACTGTCT
    601 ATCCGCCACC ATCAACGCAA CGGGGTGGTT TTGGAGTGGT
    ATGAAGATGG
    651 TTCTAAAAAG AGCGAAGCTG TTTATCAGGA TGACAAGTTG
    GTCAGGAAAA
    701 CCCAGTGGGA TAAGGATGGT TATTTAATCG AACCCTGA
  • This corresponds to the amino acid sequence <SEQ ID 700; ORF27-1>:
  • 1 MKKLSRIVFS TVLLGFSAAL PAQTYSVYFN QNGKLTATMS
    SAAYIRQYSV
    51 VAGIAHAQDF YYPSMKKYSE PYIVASTQIK SFVPTLQNGM
    LILWHFNGQK
    101 KMAGGFSKGK PDGEWVNWYP NGKKSAVMPY KNGLSEGTGY
    RYYRNGGKES
    151 EIQFKQNKAN GVWKQWYADG SIKTEMVMVN DEPAKILTWD
    ESGRLLSELS
    201 IRHHQRNGVV LEWYEDGSKK SEAVYQDDKL VRKTQWDKDG
    YLIEP*
  • Computer analysis of this amino acid sequence gave the following results:
  • Homology with a Predicted ORF from N. meningitidis (Strain A)
  • ORF27 shows 91.5% identity over a 82aa overlap with an ORF (ORF27a) from strain A of N. meningitidis:
  • Figure US20130064846A1-20130314-C00318
  • The complete length ORF27a nucleotide sequence <SEQ ID 701> is:
  • 1 ATGAAAAAAT TATCTCGGAT TGTATTTTCA ACTGTCCTGT
    TGGGTTTTTC
    51 GGCCGCTTTG CCGGCGCAGA NCTATTCTGT TTATTTTAAT
    CAGAACGGGA
    101 AACTGACGGC GACGNTGTCT TCTGCCGCNT ATATCAGGCA
    ATATAGTGTG
    151 GCGGAGGGTA TTGCGCACGC GCAGGANTTT TANTATCCGT
    CGATGAAGAA
    201 ATATTCCGAA CCTTATATCG TTGCTTCAAC GCAAATCAAA
    TCTTTTGTGC
    251 CTACCCTGCA AAACGGTATG TTGATTTTGT GGCATTTTAA
    NGGTCAGAAA
    301 AAAATGGCNG GGGGCTTCAG CAAGGGTAAG CCGGACGGGG
    AGTGGGTCAA
    351 CTGGTATCCG AACGGTAAAA AATCTGCCGT TATGCCTTAT
    AAAAATGGTT
    401 TGAGTGAAGG TACGGGGTNN CGCTATTACC GTAACGGCGG
    CAAGGAAAGC
    451 GAAATCCAGT TTAAACAGAA TAAGGCAAAC GGCGTATGGA
    AGCAATGGTA
    501 TGCCGACGGC AATATCAAAA CGGAAATGGT TATGGTCAAT
    GATGAGCCTG
    551 CCAAAATTCT GACATGGGAT GAAAGCGGTC GATTACTCTC
    GGAACTGTCT
    601 ATCCATCATC ATNAACGTAA TGGAGTAGTC TTAGAGTGGT
    ATGAAGATGG
    651 TTCTAAAAAG ANTGAAGCTG TTTATCAGGA TGATAAGTTG
    GTCAGGAAAA
    701 CCCAGTGGGA TAANGATGGT TATTTAATCG AACCCTGA
  • This encodes a protein having amino acid sequence <SEQ ID 702>:
  • 1 MKKLSRIVFS TVLLGFSAAL PAQXYSVYFN QNGKLTATXS
    SAAYIRQYSV
    51 AEGIAHAQXF XYPSMKKYSE PYIVASTQIK SFVPTLQNGM
    LILWHFXGQK
    101 KMAGGFSKGK PDGEWVNWYP NGKKSAVMPY KNGLSEGTGX
    RYYRNGGKES
    151 EIQFKQNKAN GVWKQWYADG NIKTEMVMVN DEPAKILTWD
    ESGRLLSELS
    201 IHHHXRNGVV LEWYEDGSKK XEAVYQDDKL VRKTQWDXDG
    YLIEP*
  • ORF27a and ORF27-1 show 94.7% identity in 245 aa overlap:
  • Figure US20130064846A1-20130314-C00319
  • Homology with a Predicted ORF from N. gonorrhoeae
  • ORF27 shows 96.3% identity over 82 aa overlap with a predicted ORF (ORF27ng) from N. gonorrhoeae:
  • Figure US20130064846A1-20130314-C00320
  • The complete length ORF27ng nucleotide sequence <SEQ ID 703> is:
  • 1 ATGAAGAAAT TATCTCGGAT TGTATTTTCA ATCGTACTGT
    TGGGTTTTTC
    51 GGCCGCTTTG CCGGCGCAGA CCTATTCTGT TTATTTTAAT
    CAGAACGGGA
    101 AACTGACGGC GACGATGTCT TCTGCCGCTT ATATCAGGCA
    ATATAGTGTG
    151 GCGGCGGGTA TCGCACACGC GCAGGATTTT TATTATCCGT
    CGATGAAGAA
    201 ATATTCCGAA CCTTATATCG TTGCTTCAAC GCAAATCAAA
    TCTTTTGTGC
    251 CTACCCTGCA AAACGGTATG TTGATTTTGT GGCATTTTAA
    TGGTCAGAAA
    301 AAAATGGCGG GGGGCTTCAG CAAGGGTAAG CCGGACGGGG
    AATGGGTCAA
    351 CTGGTATCCG AACGGTAAAA AATCTGCGGT TATGCCTTAT
    AAAAATGGCT
    401 TGAGTGAGGG TACGGGATAC CGTTATTACC GTAACGGCGG
    CAAGGAAAGC
    451 GAAATCCAGT TTAAGCAAAA TAAGGCGAAC GGCGTATGGA
    AGCAATGGTA
    501 TGCCGATGGA AGTATCAAGA CGGAAATGGT TATGGTCAAC
    GATGAGCCTG
    551 CCAAAATTCT GACTTGGGAT GAAAGCGGCC GATTACTTTC
    GGAACTGTCT
    601 ATCCGCCACC ATAAACGCAA CGGGGTGGTT TTGGAGTGGT
    ATGAAGATGG
    651 TTCTAAAAAG AGCGAGGCTG TTTATCAGGA TGACAAGTTG
    GTCAGGAAAA
    701 CCCAATGGGA TAAGGATGGT TATTTAATCG AACCCTGA
  • This encodes a protein having amino acid sequence <SEQ ID 704>:
  • 1 MKKLSRIVFS IVLLGFSAAL PAQTYSVYFN QNGKLTATMS
    SAAYIRQYSV
    51 AAGIAHAQDF YYPSMKKYSE PYIVASTQIK SFVPTLQNGM
    LILWHFNGQK
    101 KMAGGFSKGK PDGEWVNWYP NGKKSAVMPY KNGLSEGTGY
    RYYRNGGKES
    151 EIQFKQNKAN GVWKQWYADG SIKTEMVMVN DEPAKILTWD
    ESGRLLSELS
    201 IRHHKRNGVV LEWYEDGSKK SEAVYQDDKL VRKTQWDKDG
    YLIEP*
  • ORF27ng and ORF27-1 show 98.8% identity in 245 aa overlap:
  • Figure US20130064846A1-20130314-C00321
  • Based on this analysis, including the putative leader sequence in the gonococcal protein, it was predicted that the proteins from N. meningitidis and N. gonorrhoeae, and their epitopes, could be useful antigens for vaccines or diagnostics, or for raising antibodies.
  • ORF27-1 (24.5 kDa) was cloned in pET and pGex vectors and expressed in E. coli, as described above. The products of protein expression and purification were analyzed by SDS-PAGE. FIG. 17A shows the results of affinity purification of the GST-fusion protein, and FIG. 17B shows the results of expression of the His-fusion in E. coli. Purified GST-fusion protein was used to immunise mice, whose sera were used for ELISA, which gave a positive result, confirming that ORF27-1 is a surface-exposed protein and a useful immunogen.
  • Example 84
  • The following partial DNA sequence was identified in N. meningitidis <SEQ ID 705>:
  • 1 ATGAAATTTA CCAAGCACCC CGTCTGGGCA ATGGCGTTCC
    GCCCATTTTA
    51 TTCGCTGGCG GCTCTGTACG GCGCATTGTC CGTATTGCTG
    TGGGGTTTCG
    101 GCTACACGGG AACGCACkAG CTGTCCGGTT TCTATTGGCA
    CGCGCATGAg
    151 ATGATTTGGG GTTATGCCGG ACTGGTCGTC ATCGCCTTCC
    TGCTGACCGC
    201 CGTCGCCACT TGGACGGGGC AGCCGCCCAC GCGGGGCGGC
    GTaTCTGGTC
    251 GGCTTGACTA TCTTTTGGCT GGCTGCGCGG ATTGCCGCCT
    TTATCCCGGG
    301 TTGGGGTGCG TCGGCAAGCG GCATACTCGG TACGCTGTTT
    TTCTGGTACG
    351 GCGCGGTGTG CATGGCTTTG CCCGTTATCC GTTCGCAGAA
    TCAACGCAAC
    401 TATGTTgCCG TGTTCGCGCT GTTCGTCTTG GGCGGCACGC
    ATGCGGCGTT
    451 CCACGTCCAG CTGCACAACG GCAACCTAGG CGGACTCTTG
    AGCGGATTGC
    501 AGTCGGGCTT GGTGATG
  • This corresponds to the amino acid sequence <SEQ ID 706; ORF47>:
  • 1 MKFTKHPVWA MAFRPFYSLA ALYGALSVLL WGFGYTGTHX
    LSGFYWHAHE
    51 MIWGYAGLVV IAFLLTAVAT WTGQPPTRGG VLVGLTIFWL
    AARIAAFIPG
    101 WGASASGILG TLFFWYGAVC MALPVIRSQN QRNYVAVFAL
    FVLGGTHAAF
    151 HVQLHNGNLG GLLSGLQSGL VM
  • Further work revealed the complete nucleotide sequence <SEQ ID 707>:
  • 1 ATGAAATTTA CCAAGCACCC CGTCTGGGCA ATGGCGTTCC
    GCCCATTTTA
    51 TTCGCTGGCG GCTCTGTACG GCGCATTGTC CGTATTGCTG
    TGGGGTTTCG
    101 GCTACACGGG AACGCACGAG CTGTCCGGTT TCTATTGGCA
    CGCGCATGAG
    151 ATGATTTGGG GTTATGCCGG ACTGGTCGTC ATCGCCTTCC
    TGCTGACCGC
    201 CGTCGCCACT TGGACGGGGC AGCCGCCCAC GCGGGGCGGC
    GTTCTGGTCG
    251 GCTTGACTAT CTTTTGGCTG GCTGCGCGGA TTGCCGCCTT
    TATCCCGGGT
    301 TGGGGTGCGT CGGCAAGCGG CATACTCGGT ACGCTGTTTT
    TCTGGTACGG
    351 CGCGGTGTGC ATGGCTTTGC CCGTTATCCG TTCGCAGAAT
    CAACGCAACT
    401 ATGTTGCCGT GTTCGCGCTG TTCGTCTTGG GCGGCACGCA
    TGCGGCGTTC
    451 CACGTCCAGC TGCACAACGG CAACCTAGGC GGACTCTTGA
    GCGGATTGCA
    501 GTCGGGCTTG GTGATGGTGT CGGGTTTTAT CGGTCTGATT
    GGTACGCGGA
    551 TTATTTCGTT TTTTACGTCC AAACGCTTGA ATGTGCCGCA
    GATTCCCAGT
    601 CCGAAATGGG TGGCGCAGGC TTCGCTGTGG CTGCCCATGC
    TGACTGCCAT
    651 GCTGATGGCG CACGGTGTGT TGGCTTGGCT GTCTGCCGTT
    TTTGCCTTTG
    701 CGGCAGGTGT GATTTTTACC GTGCAGGTGT ACCGCTGGTG
    GTATAAACCC
    751 GTGTTGAAAG AGCCGATGCT GTGGATTCTG TTTGCCGGCT
    ATCTGTTTAC
    801 CGGATTGGGG CTGATTGCGG TCGGCGCGTC TTATTTCAAA
    CCCGCTTTCC
    851 TCAATCTGGG TGTGCATCTG ATCGGGGTCG GCGGTATCGG
    CGTGCTGACT
    901 TTGGGCATGA TGGCGCGTAC CGCGCTTGGT CATACGGGCA
    ATCCGATTTA
    951 TCCGCCGCCC AAAGCCGTTC CCGTTGCGTT TTGGCTGATG
    ATGGCGGCAA
    1001 CCGCCGTCCG TATGGTTGCC GTATTTTCTT CCGGCACTGC
    CTACACGCAC
    1051 AGCATCCGCA CCTCTTCGGT TTTGTTTGCA CTCGCGCTTT
    TGGTGTATGC
    1101 GTGGAAGTAT ATTCCTTGGC TGATTCGTCC GCGTTCGGAC
    GGCAGGCCCG
    1151 GTTGA
  • This corresponds to the amino acid sequence <SEQ ID 708; ORF47-1>:
  • 1 MKFTKHPVWA MAFRPFYSLA ALYGALSVLL WGFGYTGTHE
    LSGFYWHAHE
    51 MIWGYAGLVV IAFLLTAVAT WTGQPPTRGG VLVGLTIFWL
    AARIAAFIPG
    101 WGASASGILG TLFFWYGAVC MALPVIRSQN QRNYVAVFAL
    FVLGGTHAAF
    151 HVQLHNGNLG GLLSGLQSGL VMVSGFIGLI GTRIISFFTS
    KRLNVPQIPS
    201 PKWVAQASLW LPMLTAMLMA HGVLAWLSAV FAFAAGVIFT
    VQVYRWWYKP
    251 VLKEPMLWIL FAGYLFTGLG LIAVGASYFK PAFLNLGVHL
    IGVGGIGVLT
    301 LGMMARTALG HTGNPIYPPP KAVPVAFWLM MAATAVRMVA
    VFSSGTAYTH
    351 SIRTSSVLFA LALLVYAWKY IPWLIRPRSD GRPG*
  • Computer analysis of this amino acid sequence predicts a leader peptide and also gave the following results:
  • Homology with a Predicted ORF from N. meningitidis (Strain A)
  • ORF47 shows 99.4% identity over a 172aa overlap with an ORF (ORF47a) from strain A of N. meningitidis:
  • Figure US20130064846A1-20130314-C00322
  • The complete length ORF47a nucleotide sequence <SEQ ID 709> is:
  • 1 ATGAAATTTA CCAAGCACCC CGTTTGGGCA ATGGCGTTCC
    GCCCGTTTTA
    51 TTCACTGGCG GCTCTGTACG GCGCATTGTC CGTATTGCTG
    TGGGGTTTCG
    101 GCTACACGGG AACGCACGAG CTGTCCGGTT TCTATTGGCA
    CGCGCATGAG
    151 ATGATTTGGG GTTATGCCGG ACTGGTCGTC ATCGCCTTCC
    TGCTGACCGC
    201 CGTCGCCACT TGGACGGGGC AGCCGCCCAC GCGGGGCGGC
    GTTCTGGTCG
    251 GCTTGACTAT CTTTTGGCTG GCTGCGCGGA TTGCCGCCTT
    TATCCCGGGT
    301 TGGGGTGCGT CGGCAAGCGG CATACTCGGT ACGCTGTTTT
    TCTGGTACGG
    351 CGCGGTGTGC ATGGCTTTGC CCGTTATCCG TTCGCAGAAT
    CAACGCAATT
    401 ATGTTGCCGT GTTCGCGCTG TTCGTCTTGG GCGGTACGCA
    CGCGGCGTTC
    451 CACGTCCAGC TGCACAACGG CAACCTAGGC GGACTCTTGA
    GCGGATTGCA
    501 GTCGGGCTTG GTGATGGTGT CGGGTTTTAT CGGTCTGATT
    GGTACGCGGA
    551 TTATTTCGTT TTTTACGTCC AAACGGTTGA ATGTGCCGCA
    GATTCCCAGT
    601 CCGAAATGGG TGGCGCAGGC TTCGCTGTGG CTGCCCATGC
    TGACCGCCAT
    651 GCTGATGGCG CACGGCGTGA TGCCTTGGCT GTCGGCGGCT
    TTCGCGTTTG
    701 CGGCAGGTGT GATTTTTACC GTGCAGGTGT ACCGCTGGTG
    GTATAAGCCT
    751 GTGTTGAAAG AGCCGATGCT GTGGATTCTG TTTGCCGGCT
    ATCTGTTTAC
    801 CGGATTGGGG CTGATTGCGG TCGGCGCGTC TTATTTCAAA
    CCCGCTTTCC
    851 TCAATCTGGG TGTGCATCTG ATCGGGGTCG GCGGTATCGG
    CGTGCTGACT
    901 TTGGGCATGA TGGCGCGTAC CGCGCTCGGT CATACGGGCA
    ATCCGATTTA
    951 TCCGCCGCCC AAAGCCGTTC CCGTTGCGTT TTGGCTGATG
    ATGGCGGCAA
    1001 CCGCCGTCCG TATGGTTGCC GTATTTTCTT CCGGCACTGC
    CTACACGCAC
    1051 AGCATACGCA CCTCTTCGGT TTTGTTTGCA CTCGCGCTTT
    TGGTGTATGC
    1101 GTGGAAGTAT ATTCCTTGGC TGATTCGTCC GCGTTCGGAC
    GGCAGGCCCG
    1151 GTTGA
  • This encodes a protein having amino acid sequence <SEQ ID 710>:
  • 1 MKFTKHPVWA MAFRPFYSLA ALYGALSVLL WGFGYTGTHE
    LSGFYWHAHE
    51 MIWGYAGLVV IAFLLTAVAT WTGQPPTRGG VLVGLTIFWL
    AARIAAFIPG
    101 WGASASGILG TLFFWYGAVC MALPVIRSQN QRNYVAVFAL
    FVLGGTHAAF
    151 HVQLHNGNLG GLLSGLQSGL VMVSGFIGLI GTRIISFFTS
    KRLNVPQIPS
    201 PKWVAQASLW LPMLTAMLMA HGVMPWLSAA FAFAAGVIFT
    VQVYRWWYKP
    251 VLKEPMLWIL FAGYLFTGLG LIAVGASYFK PAFLNLGVHL
    IGVGGIGVLT
    301 LGMMARTALG HTGNPIYPPP KAVPVAFWLM MAATAVRMVA
    VFSSGTAYTH
    351 SIRTSSVLFA LALLVYAWKY IPWLIRPRSD GRPG*
  • ORF47a and ORF47-1 show 99.2% identity in 384 aa overlap:
  • Figure US20130064846A1-20130314-C00323
  • Homology with a Predicted ORF from N. gonorrhoeae
  • ORF47 shows 97.1% identity over 172 aa overlap with a predicted ORF (ORF47ng) from N. gonorrhoeae:
  • Figure US20130064846A1-20130314-C00324
  • The ORF47ng nucleotide sequence <SEQ ID 711> is predicted to encode a protein comprising amino acid sequence <SEQ ID 712>:
  • 1 MKFTKHPVWA MAFRPFYSLA ALYGALSVLL WGFGYTGTHE
    LSGFYWHAHE
    51 MIWGYAGLVV IAFLLTAVAT WTGQPPTRGG VLVGLTAFWL
    AARIAAFIPG
    101 WGAAASGILG TLFFWYGAVC MALPVIRSQN RRNYVAVFAI
    FVLGGTHAAF
    151 HVQLHNGNLG GLLSGLQSGL VMVWGFIGLI GMKIISFFTS
    KRLKLPQIPS
    201 PKWVAHASLW LPMLNAILMA HRVMPWLSAA FPFAAGVIFT
    VQVYAGGITP
    251 IEETSCGSVA GICYRLGNSS G
  • The predicted leader peptide and transmembrane domains are identical (except for an Ile/Ala substitution at residue 87 and an Leu/Ile substitution at position 140) to sequences in the meningococcal protein (see also Pseudomonas stutzeri orf396, accession number e246540):
  • TM segments in ORF47ng
    INTEGRAL Likelihood = −5.63 Transmembrane 52 - 68
    INTEGRAL Likelihood = −3.88 Transmembrane 169 - 185
    INTEGRAL Likelihood = −3.08 Transmembrane 82 - 98
    INTEGRAL Likelihood = −1.91 Transmembrane 134 - 150
    INTEGRAL Likelihood = −1.44 Transmembrane 107 - 123
    INTEGRAL Likelihood = −1.38 Transmembrane 227 - 243
  • Further work revealed the complete gonococcal DNA sequence <SEQ ID 713>:
  • 1 ATGAAATTTA CCAAACATCC CGTCTGGGCA ATGGCGTTCC
    GCCCGTTTTA
    51 TTCACTGGCG GCACTGTACG GCGCATTGTC CGTATTGCTG
    TGGGGTTTCG
    101 GCTACACGGG AACGCACGAG CTGTCCGGTT TCTATTGGCA
    CGCGCATGAG
    151 ATGATTTGGG GTTATGCCGG TCTCGTCGTC ATCGCCTTCC
    TGCTGACCGC
    201 CGTCGCCACT TGGACGGGAC AGCCGCCCAC GAGGGGCGGC
    GTTCTGGTCG
    251 GCTTGACCGC CTTTTGGCTG GCTGCGCGGA TTGCCGCCTT
    TATCCCGGGT
    301 TGGGGTGCGG CGGCAAGCGG CATACTCGGT ACGCTGTTTT
    TCTGGTACGG
    351 CGCGGTGTGC ATGGCTTTGC CCGTTATCCG TtcgCAAAAC
    CGGCGCAACT
    401 ATGtcgCCGT ATTCGCAATA TTTGTGCTGG GCGGTACGCA
    TGCGgcgTTC
    451 CACGtccAgc tGCACAACGG CAACCTAGGC GGACTCTTGA
    GCGGATTGCA
    501 GTCGGGCCTG GTTATGGTGT CGGGCTTTAT CGGCCTGATT
    GGGATGAGGA
    551 TTATTTCGTT TTTTACGTCC AAACGGTTGA ACGTGCCGCA
    GATTCCCAGT
    601 CCGAAATGGG TGGCGCAGGC TTCGCTGTGG CTACCCATGC
    TGACCGCCAT
    651 ACTGATGGCG CACGGCGTGA TGCCTTGGCT GTCGGCGGCT
    TTCGCGTTTG
    701 CGGCGGGCGT GATTTTTACC GTACAGGTGT ACCGCTGGTG
    GTATAAACCC
    751 GTATTGAAAG AACCGATGCT GTGGATTCTG TTTGCCGGCT
    ATCTGTTTAC
    801 CGGATTGGGG CTGATTGCGG TCGGCGCGTC TTATTTCAAA
    CCTGCCTTCC
    851 TCAATCTGGG CGTACATCTG ATCGGGGTCG GCGGTATCGG
    CGTGCTGACT
    901 TTGGGCATGA TGGCGCGTAC CGCGCTCGGT CATACGGGCA
    ATTCGATTTA
    951 TCCGCCGCCC AAAGCCGTTC CCGTTGCGTT TTGGCTGATG
    ATGGCGGCAA
    1001 CCGCCGTCCG TATGGTTGCC GTATTTTCTT CCGGCACTGC
    CTACACGCAC
    1051 AGCATCCGCA CGTCTTCGGT TTTGTTTGCA CTCGCGCTGC
    TGGTGTATGC
    1101 GTGGAAATAC ATTCCGTGGC TGATCCGTCC GCGTTCGGAC
    GGCAGGCCCG
    1151 GTTGA
  • This encodes a protein having amino acid sequence <SEQ ID 714; ORF47ng-1>:
  • 1 MKFTKHPVWA MAFRPFYSLA ALYGALSVLL WGFGYTGTHE
    LSGFYWHAHE
    51 MIWGYAGLVV IAFLLTAVAT WTGQPPTRGG VLVGLTAFWL
    AARIAAFIPG
    101 WGAAASGILG TLFFWYGAVC MALPVIRSQN RRNYVAVFAI
    FVLGGTHAAF
    151 HVQLHNGNLG GLLSGLQSGL VMVSGFIGLI GMRIISFFTS
    KRLNVPQIPS
    201 PKWVAQASLW LPMLTAILMAHGVMPWLSAA FAFAAGVIFT
    VQVYRWWYKP
    251 VLKEPMLWIL FAGYLFTGLG LIAVGASYFK PAFLNLGVHL
    IGVGGIGVLT
    301 LGMMARTALG HTGNSIYPPP KAVPVAFWLM MAATAVRMVA
    VFSSGTAYTH
    351 SIRTSSVLFA LALLVYAWKY IPWLIRPRSD GRPG*
  • ORF47ng-1 and ORF47-1 show 97.4% identity in 384 aa overlap:
  • Figure US20130064846A1-20130314-C00325
  • Furthermore, ORF47ng-1 shows significant homology to an ORF from Pseudomonas stutzeri:
  • gnl|PID|e246540 (Z73914) ORF396 protein [Pseudomonas stutzeri]
    Length = 396 Score = 155 bits (389), Expect = 5e−37
    Identities = 121/391 (30%), Positives = 169/391 (42%), Gaps = 21/391 (5%)
    Query: 7 PVWAMAFRPFYSLAALYGALSVLLWGFGYTGTHELSGFY-------WHAHEMIWGYAGLV 59
    P+W +AFRPF+   +LY  L++ LW   +TG     GF        WH HEM++G+A  +
    Sbjct: 14 PIWRLAFRPFFLAGSLYALLAIPLWVAAWTGLWP--GFQPTGGWLAWHRHEMLFGFAMAI 71
    Query: 60 VIAFLLTAVATWTGQPPTRGGVLVGLTAFWLAARIAAFIPGWGAAASGILGTLFFWYGAV 119
    V  FLLTAV TWTGQ    G  LVGL A WLAAR+  ++ G  AA    L  LF
    Sbjct: 72 VAGFLLTAVQTWTGQTAPSGNRLVGLAAVWLAARL-GWLFGLPAAWLAPLDLLFLVALVW 130
    Query: 120 CMALPVIRSQNRRNYVAVFAIFVLGGTHAAFXXXXXXXXXXXXXXXXXXXXXMVSGFIGL 179
     MA  +   + +RNY  V  + ++ G                          +V+  + L
    Sbjct: 131 MMAQMLWAVRQKRNYPIVVVLSLMLGADVLILTGLLQGNDALQRQGVLAGLWLVAALMAL 190
    Query: 180 IGMRIISFFTSKRLNVPQIPSP-KWVAQASLWLPMLTAILMAHGV----MPWLSAAFAFA 234
    IG R+I FFT + L       P  W+  A L    + A+L A GV     P L   F  A
    Sbjct: 191 IGGRVIPFFTQRGLGKVDAVKPWVWLDVALLVGTGVIALLHAFGVAMRPQPLLGLLFV-A 249
    Query: 235 AGVIFTVQVYRWWYKPVLKEPMLWILFAGYLFTGLGLIAVGASYF-KPAFXXXXXXXXXX 293
     GV   +++ RW+ K + K  +LW L    L+  +    +   +F   A
    Sbjct: 250 IGVGHLLRLMRWYDKGIWKVGLLWSLHVAMLWLVVAAFGLALWHFGLLAQSSPSLHALSV 309
    Query: 294 XXXXXXXXXMMARTALGHTGNSIYPPPKAVPVAFWLXXXXXXXXXXXXFSSGTAYTHSIR 353
             M+AR  LGHTG  +  P   +  AF L            F S       +
    Sbjct: 310 GSMSGLILAMIARVTLGHTGRPLQLPAGIIG-AFVL---FNLGTAARVFLSVAWPVGGLW 365
    Query: 354 TSSVLFALALLVYAWKYIPWLIRPRSDGRPG 384
     ++V + LA  +Y W+Y P L+  R DG PG
    Sbjct: 366 LAAVCWTLAFALYVWRYAPMLVAARVDGHPG 396
  • Based on this analysis, it is predicted that the proteins from N. meningitidis and N. gonorrhoeae, and their epitopes, could be useful antigens for vaccines or diagnostics, or for raising antibodies.
  • Example 85
  • The following partial DNA sequence was identified in N. meningitidis <SEQ ID 715>:
  • 1 ..ATGCCGTCTG AAGGTTCAGA CGGCmTCGGT GyCGGGGAAy
    CAGAAGyGGT
    51   AGCGCATGCC CAATGAGACT TCGTGGGTTT TGAAGCGGGT
    GTTTTCCAAG
    101   CGTCCCCAGT TGTGGTAACG GTATCCGGTG TCyAArGTCA
    GCTTGGGyGT
    151   GATGTCGAAa CCGACACCGG CGATGACACC AAGACCyAmG
    CTGCTGATrC
    201   TGTkGCTTTC GTGATAGGsA GGTTTGyTGG kmksAsyTTG
    TAyrATwkkG
    251   CCTssCwsTG kAGmGCCkTk CkyTGGTkkA swGrwArTAG
    TCGTGGTTTy
    301   TkTTyyCACC GAATGAACyT GATGTTTAAC GTGTCCGTAG
    GCGACGCGCG
    351   CGCCGATATA GGGTTTGAAT TTATCGTTGA GTTTGAAATC
    GTAAATGGCG
    401   GACAAGCCGA GAGAAGAAAC GGCGTGGAAG CTGCCGTTTC
    CCTGATGTTT
    451   TGTTTGGGTT TCTTTGTAGT TGTTGTTTAT CTCTTCAGTA
    ACTTTTTTAG
    501   TAGAAGAATT ACTTTCTTTC CATTTTCTGT AACTGGCATA
    ATCTGCCGCT
    551   ATTCTCCAGC CGCCGAAATC ..
  • This corresponds to the amino acid sequence <SEQ ID 716; ORF67>:
  • 1 ..MPSEGSDGXG XGEXEXVAHA QXDFVGFEAG VFQASPVVVT
    VSGVXXQLGX
    51   DVETDTGDDT KTXAADXVAF VIGRFXGXXL YXXAXXXXAX
    XWXXXXSRGF
    101   XXHRMNLMFN VSVGDARADI GFEFIVEFEI VNGGQAERRN
    GVEAAVSLMF
    151   CLGFFVVVVY LFSNFFSRRI TFFPFSVTGI ICRYSPAAEI
    ..
  • Computer analysis of this amino acid sequence gave the following results:
  • Homology with a Predicted ORF from N. gonorrhoeae
  • ORF67 shows 51.8% identity over 199 aa overlap with a predicted ORF (ORF67ng) from N. gonorrhoeae:
  • Figure US20130064846A1-20130314-C00326
  • The ORF67ng nucleotide sequence <SEQ ID 717> is predicted to encode a protein comprising amino acid sequence <SEQ ID 718>:
  • 1 MPSETVGSIV NVGVDESVGF SPPFPSIQHF YRFHRIHRIR
    LFRPPGPMQL
    51 NRHSHGSGNL GRGVWATVLS DKFPCGQVRI PACAGMTNFE
    IAVLSGMTVR
    101 VFYCARPAPV NGGRLKMPSE GSDGIGIGES EAVAHAQRGF
    VGFEAGVFQA
    151 SPVVVAVAGV QGQAGRDVYA HARHRAEAQA AAAVAFLIGV
    FLRMSVRINR
    201 NCCVSITRVG GKSTCYFFSR IDAVSDVSVG DARTDIGFEF
    VVEFEIVNGG
    251 QAERRNGVEC AVFLMFRLLV FYVKLVAAKS FIILSFQLFY
    VHGIFIVVPF
    301 PVTGIIRGDA PAAEVVADRH PGVDGMRTDV SEIIAYRAYF
    VFAWSGWFRI
    351 IVGNAFGGVG *
  • Based on the presence of a several putative transmembrane domains in the gonococcal protein, it is predicted that the proteins from N. meningitidis and N. gonorrhoeae, and their epitopes, could be useful antigens for vaccines or diagnostics, or for raising antibodies.
  • Example 86
  • The following partial DNA sequence was identified in N. meningitidis <SEQ ID 719>
  • 1 ATGTTTGCTT TTTTAGAAGC CTTTTTTGTC GAATACGGTT
    ATGCGGCTGT
    51 TTTTTTTGTA TTGGTCATCT GCGGTTTCGG CGTGCCGATT
    CCCGAGGATT
    101 TGACCTTGGT AACAGGCGGC GTGATTTCGG GTATGGGTTA
    TACCAATCCG
    151 CATATTATGT TTGCAGTCGG TATGCTCGGC GTATTGGTCG
    GGGACGGCAT
    201 CATGTTCGCC GCCGGACGAA TTTGGGGGCA GArArTCCTA
    rGGTTCArAC
    251 CTATTGCGsG CATCATGACG CCGrAACGTT ATGAGCAGGT
    TCAGGAAAAA
    301 TTCGACAAAT ACGGTAACTG GGTCTTATTT GTCGCCCGTT
    TCCTGCCCGG
    351 TTTGAGAACG GCCGTATTTG TTACAGCCGG TATCAGCCGC
    AAGGTTTCAT
    401 ACTTGCGTTT TATCATTATG GATGGACTGG CCGCA...
  • This corresponds to the amino acid sequence <SEQ ID 720; ORF78>:
  • 1 MFAFLEAFFV EYGYAAVFFV LVICGFGVPI PEDLTLVTGG
    VISGMGYTNP
    51 HIMFAVGMLG VLVGDGIMFA AGRIWGQXXL XFXPIAXIMT
    PXRYEQVQEK
    101 FDKYGNWVLF VARFLPGLRT AVFVTAGISR KVSYLRFIIM
    DGLAA...
  • Further work revealed the complete nucleotide sequence <SEQ ID 721>:
  • 1 ATGTTTGCTT TTTTAGAAGC CTTTTTTGTC GAATACGGTT
    ATGCGGCTGT
    51 TTTTTTTGTA TTGGTCATCT GCGGTTTCGG CGTGCCGATT
    CCCGAGGATT
    101 TGACCTTGGT AACAGGCGGC GTGATTTCGG GTATGGGTTA
    TACCAATCCG
    151 CATATTATGT TTGCAGTCGG TATGCTCGGC GTATTGGTCG
    GGGACGGCAT
    201 CATGTTCGCC GCCGGACGAA TTTGGGGGCA GAAAATCCTA
    AGGTTCAAAC
    251 CTATTGCGCG CATCATGACG CCGAAACGTT ATGAGCAGGT
    TCAGGAAAAA
    301 TTCGACAAAT ACGGTAACTG GGTCTTATTT GTCGCCCGTT
    TCCTGCCCGG
    351 TTTGAGAACG GCCGTATTTG TTACAGCCGG TATCAGCCGC
    AAGGTTTCAT
    401 ACTTGCGTTT TATCATTATG GATGGACTGG CCGCACTGAT
    TTCCGTCCCT
    451 ATTTGGATTT ATCTGGGCGA ATACGGTGCG CACAACATCG
    ATTGGCTGAT
    501 GGCGAAAATG CACAGCCTGC AATCGGGTAT TTTTGTTATC
    TTGGGTATAG
    551 GTGCGACCGT TGTCGCTTGG ATTTGGTGGA AAAAACGCCA
    ACGTATCCAG
    601 TTTTACCGCA GCAAATTGAA AGAAAAGCGG GCGCAACGCA
    AAGCCGCCAA
    651 GGCAGCCAAA AAAGCCGCGC AAAGCAAACA ATAA
  • This corresponds to the amino acid sequence <SEQ ID 722; ORF78-1>:
  • 1 MFAFLEAFFV EYGYAAVFFV LVICGFGVPI PEDLTLVTGG
    VISGMGYTNP
    51 HIMFAVGMLG VLVGDGIMFA AGRIWGQKIL RFKPIARIMT
    PKRYEQVQEK
    101 FDKYGNWVLF VARFLPGLRT AVFVTAGISR KVSYLRFIIM
    DGLAALISVP
    151 IWIYLGEYGA HNIDWLMAKM HSLQSGIFVI LGIGATVVAW
    IWWKKRQRIQ
    201 FYRSKLKEKR AQRKAAKAAK KAAQSKQ*
  • Computer analysis of this amino acid sequence predicts several transmembrane domains, and also gave the following results:
  • Homology with the dedA Homologue of H. influenzae (Accession Number P45280)
  • ORF78 and the dedA homologue show 58% aa identity in 144aa overlap:
  • Orf78: 4 FLEAFFVEYGYAAVFFVLVICGFGVPIPEDLTLVTGGVISGM--GYTNPHIMFAVGMLGV 61
    FL  FF EYGY AV FVL+ICGFGVPIPED+TLV+GGVI+G+     N H+M  V M+GV
    DedA: 20 FLIGFFTEYGYWAVLFVLIICGFGVPIPEDITLVSGGVIAGLYPENVNSHLMLLVSMIGV 79
    Orf78: 62 LVGDGIMFAAGRIWGQXXLXFXPIAXIMTPKRYEQVQEKFDKYGNWVLFVARFLPGLRTA 121
    L GD  M+  GRI+G   L F PI  I+T  R   V+EKF +YGN VLFVARFLPGLR
    DedA: 80 LAGDSCMYWLGRIYGTKILRFRPIRRIVTLQRLRMVREKFSQYGNRVLFVARFLPGLRAP 139
    Orf78: 122 VFVTAGISRKVSYLRFIIMDGLAA 145
    +++ +GI+R+VSY+RF+++D  AA
    DedA: 140 IYMVSGITRRVSYVRFVLIDFCAA 163

    Homology with a Predicted ORF from N. meningitidis (Strain A)
  • ORF78 shows 93.8% identity over a 145aa overlap with an ORF (ORF78a) from strain A of N. meningitidis:
  • Figure US20130064846A1-20130314-C00327
  • The complete length ORF78a nucleotide sequence <SEQ ID 723> is:
  • 1 ATGTTTGCCC TTTTGGAAGC CTTTTTTGTC GAATACGGCT
    ATGCGGCCGT
    51 GTTTTTCGTT TTGGTCATCT GCGGTTTCGG CGTGCCGATT
    CCCGAGGATT
    101 TGACCTTGGT AACAGGCGGC GTGATTTCGG GTATGGGTTA
    TACCAATCCG
    151 CATATTATGT TTGCAGTCGG TATGCTCGGC GTATTGGTCG
    GGGACGGCAT
    201 CATGTTCGCC GCCGGACGCA TCTGGGGGCA GAAAATCCTC
    AAGTTCAAAC
    251 CGATTGCGCG CATCATGACG CCGAAACGTT ACGCACAGGT
    TCAGGAAAAA
    301 TTCGACAAAT ACGGCAACTG GGTGTTATTT GTCGCTCGTT
    TCCTGCCCGG
    351 TTTGCGGACT GCCGTTTTCG TTACCGCCGG CATCAGCCGC
    AAAGTATCGT
    401 ATCTGCGCTT TCTGATTATG GACGGGCTTG CCGCGCTGAT
    TTCCGTGCCC
    451 GTTTGGATTT ACTTGGGCGA GTACGGCGCG CACAACATCG
    ATTGGCTGAT
    501 GGCGAAAATG CACAGCCTGC AATCCGGCAT CTTCATCGCA
    TTGGGCGTGC
    551 TGGCGGCGGC GCTGGCGTGG TTCTGGTGGC GCAAACGCCG
    ACATTATCAG
    601 CTTTACCGCG CACAATTGAG CGAAAAACGC GCCAAACGCA
    AGGCGGAAAA
    651 GGCAGCGAAA AAAGCGGCAC AGAAGCAGCA GTAA
  • This encodes a protein having amino acid sequence <SEQ ID 724>:
  • 1 MFALLEAFFV EYGYAAVFFV LVICGFGVPI PEDLTLVTGG
    VISGMGYTNP
    51 HIMFAVGMLG VLVGDGIMFA AGRIWGQKIL KFKPIARIMT
    PKRYAQVQEK
    101 FDKYGNWVLF VARFLPGLRT AVFVTAGISR KVSYLRFLIM
    DGLAALISVP
    151 VWIYLGEYGA HNIDWLMAKM HSLQSGIFIA LGVLAAALAW
    FWWRKRRHYQ
    201 LYRAQLSEKR AKRKAEKAAK KAAQKQQ*
  • ORF78a and ORF78-1 show 89.0% identity in 227 aa overlap:
  • Figure US20130064846A1-20130314-C00328
  • Homology with a Predicted ORF from N. gonorrhoeae
  • ORF78 shows 97.4% identity over 38 aa overlap with a predicted ORF (ORF78ng) from N. gonorrhoeae:
  • Figure US20130064846A1-20130314-C00329
  • The ORF78ng nucleotide sequence <SEQ ID 725> is predicted to encode a protein comprising amino acid sequence <SEQ ID 726>:
  • 1 ..YPVLFVARFL PGLRTAVFVT AGISRKVSYL RFLIMDGLAA
    LISVPVWIYL
    51   GEYGAHNIDW LMAKMHSLQS GIFIALGVLA AALAWF WWRK
    RRHYQLYRAQ
    101   LSEKRAKRKA EKAAKKAAQK QQ*
  • Further work revealed the complete gonococcal nucleotide sequence <SEQ ID 727>:
  • 1 atgtttgccc tttTggaagc CTTTTTTGTC GAAtacggCt
    atgcGGCCGT
    51 GTTTTTCGTT TTGGTCATCT GCGGTTTCGG CGTGCCGATT
    CCCGAAGATT
    101 TGACCTTGGT AACGGGCGGC GTGATTTCGG GTATGGGTTA
    TACCAATCCG
    151 CATATTATGT TTGCGGTCGG TATGCTCGGC GTGTTGGCGG
    GCGACGGCGT
    201 GATGTTTGCC GCCGGACGCA TCTGGGGGCA GAAAATCCTC
    AAGTTCAAAC
    251 CGATTGCGCG CATCATGACG CCGAAACGTT ACGCGCAGGT
    TCAGGAAAAA
    301 TTCGACAAAT ACGGCAACTG GGTTCTGTTT GTCGCCCGTT
    TCCTGCCGGG
    351 TTTGCGGACT GCCGTTTTCG TTACCGCCGG CATCAGCCGC
    AAAGTATCGT
    401 ATCTGCGCTT TCTGATTATG GACGGGCTGG CCGCGCTGAT
    TTCCGTGCCC
    451 GTTTGGATTT ACTTGGGCGA GTACGGCGCG CACAACATCG
    ATTGGCTGAT
    501 GGCGAAAATG CACAGCCTGC AATCGGGCAT CTTCATCGCA
    TTGGGCGTGC
    551 TGGCGGCGGC GCTGGCGTGG TTCTGGTGGC GCAAACGCCG
    ACATTATCAG
    601 CTTTACCGCG CACAATTGAG CGAAAAACGC GCCAAACGCA
    AGGCGGAAAA
    651 GGCAGCGAAA AAAGCGGCAC AGAAGCAGCA GTAa
  • This corresponds to the amino acid sequence <SEQ ID 728; ORF78ng-1>:
  • 1 MFALLEAFFV EYGYAAVFFV LVICGFGVPI PEDLTLVTGG
    VISGMGYTNP
    51 HIMFAVGMLG VLAGDGVMFA AGRIWGQKIL KFKPIARIMT
    PKRYAQVQEK
    101 FDKYGNWVLF VARFLPGLRT AVFVTAGISR KVSYLRFLIM
    DGLAALISVP
    151 VWIYLGEYGA HNIDWLMAKM HSLQSGIFIA LGVLAAALAW
    FWWRKRRHYQ
    201 LYRAQLSEKR AKRKAEKAAK KAAQKQQ*
  • ORF78ng-1 and ORF78-1 show 88.1% identity in 227 aa overlap:
  • Figure US20130064846A1-20130314-C00330
  • Furthermore, orf78ng-1 shows homology to the dedA protein from H. influenzae:
  • sp|P45280|YG29_HAEIN HYPOTHETICAL PROTEIN HI1629 >gi|1073983|pir||D64133
    dedA protein (dedA) homolog - Haemophilus influenzae (strain Rd KW20)
    >gi|1574476 (U32836) dedA protein (dedA) [Haemophilus influenzae]
    Length = 212 Score = 223 bits (563), Expect = 7e−58
    Identities = 108/182 (59%), Positives = 140/182 (76%), Gaps = 2/182 (1%)
    Query: 5 LEAFFVEYGYAAVFFVLVICGFGVPIPEDLTLVTGGVISGM--GYTNPHIMFAVGMLGVL 62
    L  FF EYGY AV FVL+ICGFGVPIPED+TLV+GGVI+G+     N H+M  V M+GVL
    Sbjct: 21 LIGFFTEYGYWAVLFVLIICGFGVPIPEDITLVSGGVIAGLYPENVNSHLMLLVSMIGVL 80
    Query: 63 AGDGVMFAAGRIWGQKILKFKPIARIMTPKRYAQVQEKFDKYGNWVLFVARFLPGLRTAV 122
    AGD  M+  GRI+G KIL+F+PI RI+T +R   V+EKF +YGN VLFVARFLPGLR  +
    Sbjct: 81 AGDSCMYWLGRIYGTKILRFRPIRRIVTLQRLRMVREKFSQYGNRVLFVARFLPGLRAPI 140
    Query: 123 FVTAGISRKVSYLRFLIMDGLAALISVPVWIYLGEYGAHNIDWLMAKMHSLQSGIFIALG 182
    ++ +GI+R+VSY+RF+++D  AA+ISVP+WIYLGE GA N+DWL  ++   Q  I+I +G
    Sbjct: 141 YMVSGITRRVSYVRFVLIDFCAAIISVPIWIYLGELGAKNLDWLHTQIQKGQIVIYIFIG 200
    Query: 183 VL 184
     L
    Sbjct: 201 YL 202
  • Based on this analysis, including the presence of putative transmembrane domains, it is predicted that these proteins from N. meningitidis and N. gonorrhoeae, and their epitopes, could be useful antigens for vaccines or diagnostics, or for raising antibodies.
  • Example 87
  • The following partial DNA sequence was identified in N. meningitidis <SEQ ID 729>:
  • 1 ATGAAAAAAT TATTGGCGGC CGTGATGATG GCAGGTTTGG
    CAGGCGCGGT
    51 TTCCGCCGCC GGAGTCCACG TTGAGGACGG CTGGGCGCGC
    ACCACCGTCG
    101 AAGGTATGAA AATAGGCGGC GCGTTCATGA AAATCCACAA
    CGACGAAGCC
    151 AAACAAGACT TTTTGCTCGG CGGAAGCAGC CCCGTTGCCG
    ACCGCGTCGA
    201 AGTGCATACC CACATCAACG ACAACGGCGT GATGCGGATG
    CGCGAAGTCG
    251 AAGGCGGCGT GCCTTTGGAA GCGAAATCCG TTACCGAACT
    CAAACCCGGC
    301 AGCTATCATG TGATGTTTAT GGGTTTGAAA AAACAATTAA
    AAGAGGGCGA
    351 TAAAATTCCC GTTACCCTGA AATTTAAAAA CGCCAAAGCG
    CAAACCGTCC
    401 AACTGGAAGT CAAAATCGCG CCGATGCCGG CAATGAACCA
    C...
  • This corresponds to the amino acid sequence <SEQ ID 730; ORF79>:
  • 1 MKKLLAAVMM AGLAGAVSAA GVHVEDGWAR TTVEGMKIGG
    AFMKIHNDEA
    51 KQDFLLGGSS PVADRVEVHT HINDNGVMRM REVEGGVPLE
    AKSVTELKPG
    101 SYHVMFMGLK KQLKEGDKIP VTLKFKNAKA QTVQLEVKIA
    PMPAMNH..
  • Further work revealed the complete nucleotide sequence <SEQ ID 731>:
  • 1 ATGAAAAAAT TATTGGCGGC CGTGATGATG GCAGGTTTGG
    CAGGCGCGGT
    51 TTCCGCCGCC GGAGTCCACG TTGAGGACGG CTGGGCGCGC
    ACCACCGTCG
    101 AAGGTATGAA AATAGGCGGC GCGTTCATGA AAATCCACAA
    CGACGAAGCC
    151 AAACAAGACT TTTTGCTCGG CGGAAGCAGC CCCGTTGCCG
    ACCGCGTCGA
    201 AGTGCATACC CACATCAACG ACAACGGCGT GATGCGGATG
    CGCGAAGTCG
    251 AAGGCGGCGT GCCTTTGGAA GCGAAATCCG TTACCGAACT
    CAAACCCGGC
    301 AGCTATCATG TGATGTTTAT GGGTTTGAAA AAACAATTAA
    AAGAGGGCGA
    351 TAAAATTCCC GTTACCCTGA AATTTAAAAA CGCCAAAGCG
    CAAACCGTCC
    401 AACTGGAAGT CAAAATCGCG CCGATGCCGG CAATGAACCA
    CGGTCATCAC
    451 CACGGCGAAG CGCATCAGCA CTAA
  • This corresponds to the amino acid sequence <SEQ ID 732; ORF79-1>:
  • 1 MKKLLAAVMM AGLAGAVSAA GVHVEDGWAR TTVEGMKIGG
    AFMKIHNDEA
    51 KQDFLLGGSS PVADRVEVHT HINDNGVMRM REVEGGVPLE
    AKSVTELKPG
    101 SYHVMFMGLK KQLKEGDKIP VTLKFKNAKA QTVQLEVKIA
    PMPAMNHGHH
    151 HGEAHQH*
  • Computer analysis of this amino acid sequence revealed a putative leader peptide and also gave the following results:
  • Homology with a Predicted ORF from N. meningitidis (Strain A)
  • ORF79 shows 94.6% identity over a 147aa overlap with an ORF (ORF79a) from strain A of N. meningitidis:
  • Figure US20130064846A1-20130314-C00331
  • The complete length ORF79a nucleotide sequence <SEQ ID 733> is:
  • 1 ATGAAANAAC TATTGGCAGC CGTGATGATG GCAGGTTTGG
    CAGGCGCGGT
    51 TTCCGCCGCC GGAATCCACG TTGAGGACGG CTGGGCGCGC
    ACCACCGTCG
    101 AAGGTATGAA AATGGGCGGC GCGTTCATGA AAATCCACAA
    CGACGAAGCC
    151 AAACAAGACT TTTTGCTCGG CGGAAGCAGC CCTGTTGCCG
    ACCGCGTCGA
    201 AGTGCATACC CATATCAATG ATAACGGTGT GATGCGGATG
    CGCGAAGTCG
    251 AAGGCGGCGT GCCTTTGGAG GCGAAATCCG TTACCGAACT
    CAAACCCGGC
    301 AGCTATCATG TCATGTTTAT GGGTNTGAAA AAACAATTAA
    AAGANGGCGA
    351 CAAGATTCCC GTTACCCTGA AATTTAAAAA CGCCAAAGCA
    CAAACCGTCC
    401 AACTGGAAGT CAAAACCGCG CCGATGTCGG CAATGGACCA
    CGGTCATCAC
    451 CACGGCGAAG CGCATCAGCA CTAA
  • This encodes a protein having amino acid sequence <SEQ ID 734>:
  • 1 MKXLLAAVMM AGLAGAVSAA GIHVEDGWAR TTVEGMKMGG
    AFMKIHNDEA
    51 KQDFLLGGSS PVADRVEVHT HINDNGVMRM REVEGGVPLE
    AKSVTELKPG
    101 SYHVMFMGXK KQLKXGDKIP VTLKFKNAKA QTVQLEVKTA
    PMSAMDHGHH
    151 HGEAHQH*
  • ORF79a and ORF79-1 show 94.9% identity in 157 aa overlap:
  • Figure US20130064846A1-20130314-C00332
  • Homology with a Predicted ORF from N. gonorrhoeae
  • ORF79 shows 96.1% identity over 76 aa overlap with a predicted ORF (ORF79ng) from N. gonorrhoeae:
  • Figure US20130064846A1-20130314-C00333
  • An ORF79ng nucleotide sequence <SEQ ID 735> was predicted to encode a protein comprising amino acid sequence <SEQ ID 736>:
  • 1 ..INDNGVMRMR EVKGGVPLEA KSVTELKPGS YHVMFMGLKK
    QLKEGDKIPV
    51   TLKFKNAKAQ TVQLEVKTAP MSAMNHGHHH GEAHQH*
  • Further work revealed the complete gonococcal DNA sequence <SEQ ID 737>:
  • 1 ATGAAAAAAT TATTGGCAGC CGTGATGATG GCAGGTTTGG
    CAGGCGCGGT
    51 TTccgccgCc GGagTccAtG TCGAggACGG CTGGGCGCGc
    accaCTGtcg
    101 aaggtATgaa aatggGCGGC GCgttCATga aaATCCACAA
    CGACGaaGcc
    151 atacaaGACt ttgtgcTCgg CGGaagcatg cccgttgccg
    accgcGTCGA
    201 AGTGCAtaca cacATCAACG ACAACGGCGT GATGCGTATG
    CGCGAAGTCA
    251 AAGGCGGCGT GCCTTTGGAG GCGAAATCCG TTACCGAACT
    CAAACCCGGC
    301 AGCTATCACG TGATGTTTAT GGGTTTGAAA AAACAACTGA
    AAGAGGGCGA
    351 CAAGATTCCC GTTACCCTGA AATTTAAAAA CGCCAAAGCG
    CAAACCGTCC
    401 AACTGGAAGT CAAAACCGCG CCGATGTCGG CAATGAACCA
    CGGTCATCAC
    451 CACGGCGAAG CGCATCAGCA CTAA
  • This corresponds to the amino acid sequence <SEQ ID 738; ORF79ng-1>:
  • 1 MKKLLAAVMM AGLAGAVSAA GVHVEDGWAR TTVEGMKMGG
    AFMKIHNDEA
    51 IQDFVLGGSM PVADRVEVHT HINDNGVMRM REVKGGVPLE
    AKSVTELKPG
    101 SYHVMFMGLK KQLKEGDKIP VTLKFKNAKA QTVQLEVKTA
    PMSAMNHGHH
    151 HGEAHQH*
  • ORF79ng-1 and ORF79-1 show 95.5% identity in 157 aa overlap:
  • Figure US20130064846A1-20130314-C00334
  • Furthermore, ORF79ng-1 shows significant homology to a protein from Aquifex aeolicus:
  • gi|2983695 (AE000731) putative protein [Aquifex aeolicus] Length = 151
    Score = 63.6 bits (152), Expect = 6e−10
    Identities = 38/114 (33%), Positives = 58/114 (50%), Gaps = 1/114 (0%)
    Query: 24 VEDGWARTTVEGMKMGGAFMKIHNDEAIQDFVLGGSMPVADRVEVHTHINDNGVMRMREV 83
    V+  W      G       M I N+    D+++G    +A RVE+H  + +N V +M
    Sbjct: 27 VKHPWVMEPPPGPNTTMMGMIIVNEGDEPDYLIGAKTDIAQRVELHKTVIENDVAKMVPQ 86
    Query: 84 KGGVPLEAKSVTELKPGSYHVMFMGLKKQLKEGDKIPVTLKFKNAKAQTVQLEV 137
    +  + +  K   E K   YHVM +GLKK++KEGDK+ V L F+ +   TV+  V
    Sbjct: 87 ER-IEIPPKGKVEFKHHGYHVMIIGLKKRIKEGDKVKVELIFEKSGKITVEAPV 139
  • Based on this analysis, it is predicted that the proteins from N. meningitidis and N. gonorrhoeae, and their epitopes, could be useful antigens for vaccines or diagnostics, or for raising antibodies.
  • ORF79-1 (15.6 kDa) was cloned in the pET vector and expressed in E. coli, as described above. The products of protein expression and purification were analyzed by SDS-PAGE. FIG. 18A shows the results of affinity purification of the His-fusion protein. Purified His-fusion protein was used to immunise mice, whose sera were used for ELISA (positive result) and FACS analysis (FIG. 18B) These experiments confirm that ORF79-1 is a surface-exposed protein, and that it is a useful immunogen.
  • Example 88
  • The following DNA sequence, believed to be complete, was identified in N. meningitidis <SEQ ID 739>:
  • 1 ATGACGGTAA CTGCGGCCGA AGGCGGCAAA GCTGCCAAGG
    CGTTAAAAAA
    51 ATATCTGATT ACGGGCATTT TGGTCTGGCT GCCGATTGCG
    GTAACGGTTT
    101 GGGTGGTTTC CTATATCGTT TCCGCGTCCG ATCAGCTCGT
    CAACCTGCTG
    151 CCGAAGCAAT GGCGGCCGCA ATATGTTTTG GGGTTTAATA
    TCCCGGGGCT
    201 GGGCGTTATC GTTGCCATTG CCGTATTGTT TGTAACCGGA
    TTGTTTGCCG
    251 CCAACGTATT GGGTCGGCAG ATCCTCGCCG CGTGGGACAG
    CCTGTTGGGG
    301 CGGATTCCGG TTGTGAAAtC CATCTATTCG AGTGTGAAAA
    AAGTATCCGA
    351 ATacgTGCTG TCCGACAGCA GCCGTTCGTT TAAAACGCCG
    GTACTCGTGC
    401 CGTTTCCCCA GCCCGGTATT TGGACGATyG CTTTCGTGTC
    AGGGCAGGTG
    451 TCGAATGCGG TTAAGGCCGC ATTGCCGAAs GACGGCGATT
    ATCTTTCCGT
    501 GTATGTTCCG ACCACGCCGA ATCCGACCGG CGGTTACTAT
    ATTATGGTAA
    551 AGAAAAGCGA TGTGCGCGAA CTCGATATGA GCGTGGACGA
    AsCATTGAAA
    601 TATGTGATTT CGCTGGGTAT GGTCATCCCT GACGACCTGC
    CCGTCAAAAC
    651 ATTGGCAsGA CCTATGCCGT CTGAAAAGGC GGATTTGCCC
    GAACAACAAT
    701 AA
  • This corresponds to the amino acid sequence <SEQ ID 740; ORF98>:
  • 1 MTVTAAEGGK AAKALKKYLI TGILVWLPIA VTVWVVSYIV
    SASDQLVNLL
    51 PKQWRPQYVL GFNIPGLGVI VAIAVLFVTG LFAANVLGRQ
    ILAAWDSLLG
    101 RIPVVKSIYS SVKKVSEYVL SDSSRSFKTP VLVPFPQPGI
    WTIAFVSGQV
    151 SNAVKAALPX DGDYLSVYVP TTPNPTGGYY IMVKKSDVRE
    LDMSVDEXLK
    201 YVISLGMVIP DDLPVKTLAX PMPSEKADLP EQQ*
  • Further work revealed the complete nucleotide sequence <SEQ ID 741>:
  • 1 ATGACGGAAC nTGCGGCCGA AGGCGGCAAA GCTGCCAArG
    CGTTAAAAAA
    51 ATATCTGATT ACGGGCATTT TGGTCTGGCT GCCGATTGCG
    GTAACGGTTT
    101 GGGTGGTTTC CTATATCGTT TCCGCGTCCG ATCAGCTCGT
    CAACCTGCTG
    151 CCGAAGCAAT GGCGGCCGCA ATATGTTTTG GGGTTTAATA
    TCCCGGGGCT
    201 GGGCGTTATC GTTGCCATTG CCGTATTGTT TGTAACCGGA
    TTGTTTGCCG
    251 CCAACGTATT GGGTCGGCAG ATCCTCGCCG CGTGGGACAG
    CCTGTTGGGG
    301 CGGATTCCGG TTGTGAAATC CATCTATTCG AGTGTGAAAA
    AAGTATCCGA
    351 ATCGCTGCTG TCCGACAGCA GCCGTTCGTT TAAAACGCCG
    GTACTCGTGC
    401 CGTTTCCCCA GCCCGGTATT TGGACGATTG CTTTCGTGTC
    AGGGCAGGTG
    451 TCGAATGCGG TTAAGGCCGC ATTGCCGAAG GACGGCGATT
    ATCTTTCCGT
    501 GTATGTTCCG ACCACGCCGA ATCCGACCGG CGGTTACTAT
    ATTATGGTAA
    551 AGAAAAGCGA TGTGCGCGAA CTCGATATGA GCGTGGACGA
    AGCATTGAAA
    601 TATGTGATTT CGCTGGGTAT GGTCATCCCT GACGACCTGC
    CCGTCAAAAC
    651 ATTGGCAGGA CCTATGCCGT CTGAAAAGGC GGATTTGCCC
    GAACAACAAT
    701 AA
  • This corresponds to the amino acid sequence <SEQ ID 742; ORF98-1>:
  • 1 MTEXAAEGGK AAKALKKYLI TGILVWLPIA VTVWVVSYIV
    SASDQLVNLL
    51 PKQWRPQYVL GFNIPGLGVI VAIAVLFVTG LFA ANVLGRQ
    ILAAWDSLLG
    101 RIPVVKSIYS SVKKVSESLL SDSSRSFKTP VLVPFPQPGI
    WTIAFVSGQV
    151 SNAVKAALPK DGDYLSVYVP TTPNPTGGYY IMVKKSDVRE
    LDMSVDEALK
    201 YVISLGMVIP DDLPVKTLAG PMPSEKADLP EQQ*
  • Computer analysis of this amino acid sequence gave the following results:
  • Homology with a Predicted ORF from N. meningitidis (Strain A)
  • ORF98 shows 96.1% identity over a 233aa overlap with an ORF (ORF98a) from strain A of N. meningitidis:
  • Figure US20130064846A1-20130314-C00335
  • The complete length ORF98a nucleotide sequence <SEQ ID 743> is:
  • 1 ATGACGGAAC CTGCGGCCGA AGGCGGCAAA GCTGCCAAGG
    CGTTAAAAAA
    51 ATATCTGATT ACGGGCATTT TGGTCTGGCT GCCGATTGCG
    GTAACGGTTT
    101 GGGTGGTTTC CTATATCGTT TCCGCGTCCG ATCAGCTCGT
    CAACCTGCTG
    151 CCGAAGCAAT GGCGGCCGCA ATATGTTTTG GGGTTTAATA
    TCCCGGGGCT
    201 GGGCGTTATC GTTGCCATTG CCGTATTGTT TGTAACCGGA
    TTATTTGCCG
    251 CAAACGTATT GGGCCGGCAG ATTCTTGCCG CGTGGGACAG
    CTTGTTGGGG
    301 CGGATTCCGG TTGTGAAGTC CATCTATTCG AGTGTGAAAA
    AAGTATCCGA
    351 NTCGTTGCTG TCCGACAGCA GCCGTTCGTT TAAAACACCA
    GTACTCGTGC
    401 CGTTTCCCCA ATCGGGTATT TGGACAATCG CATTCGTGTC
    CGGTCAGGTG
    451 TCGAATGCGG TTAAGGCCGC ATTGCCGAAG GACGGCGATT
    ATCTTTCCGT
    501 GTATGTTCCG ACCACGCCGA ATCCGACCGG CGGTTACTAT
    ATTATGGTAA
    551 AGAAAAGCGA TGTGCGCGAA CTCGATATGA GCGTGGACGA
    AGCGTTGAAA
    601 TATGTGATTT CGCTGGGTAT GGTCATCCCT GACGACCTGC
    CCGTCAAAAC
    651 ATTGGCAGGA CCTATGCCGT CTGAAAAGGC GGATTTGCCC
    GAACAACAAT
    701 AA
  • This encodes a protein having amino acid sequence <SEQ ID 744>:
  • 1 MTEPAAEGGK AAKALKKYLI TGILVWLPIA VTVWVVSYIV
    SASDQLVNLL
    51 PKQWRPQYVL GFNIPGLGVI VAIAVLFVTG LFA ANVLGRQ
    ILAAWDSLLG
    101 RIPVVKSIYS SVKKVSXSLL SDSSRSFKTP VLVPFPQSGI
    WTIAFVSGQV
    151 SNAVKAALPK DGDYLSVYVP TTPNPTGGYY IMVKKSDVRE
    LDMSVDEALK
    201 YVISLGMVIP DDLPVKTLAG PMPSEKADLP EQQ*
  • ORF98a and ORF98-1 show 98.7% identity in 233 aa overlap:
  • Figure US20130064846A1-20130314-C00336
  • Homology with a Predicted ORF from N. gonorrhoeae
  • ORF98 shows 95.3% identity over a 233 aa overlap with a predicted ORF (ORF98ng) from N. gonorrhoeae:
  • Figure US20130064846A1-20130314-C00337
  • The complete length ORF98ng nucleotide sequence <SEQ ID 745> is predicted to encode a protein having amino acid sequence <SEQ ID 746>:
  • 1 MTEPAAEGGK AAKALKKYLI TGILVWLPIA VTVWVVSYIV
    SASDQLVNLL
    51 PKQWRPQYVL GFNIPGLGVI VAIAVLFVTG LFA ANVLGRQ
    ILAAWDSLLX
    101 RIPVVKSIYS SVKKVSESLL SDSSRSFKTP VLVPFPQSGI
    WTIAFVSGQV
    151 SNAVKAALPQ DGDYLSVYVP TTPNPTGGYY IMVKKSDVRE
    LDMSVDEALK
    201 YVISLGMVIP DDLPVKTLAG PMPPEKAELP EQQ*
  • Further work revealed the complete nucleotide sequence <SEQ ID 747>:
  • 1 ATGACGGAAC CTGCGGCCGA AGGCGGCAAA GCTGCCAAGG
    CGTTAAAAAA
    51 ATATCTGATT ACAGGCATTT TGGTCTGGCT GCCGATTGCG
    GTAACGGTTT
    101 GGGTGGTTTC CTATATCGTT TCCGCGTCCG ACCAGCTTGT
    CAACCTGCTG
    151 CCGAAGCAAT GGCGGCCGCA ATATGTTTTG GGGTTTAATA
    TCCCCGGGCT
    201 CGGCGTTATT GTTGCCATTG CCGTATTGTT TGTAACCGGA
    TTATTTGCCG
    251 CAAACGTGTT GGGCCGGCAG ATTCTTGCCG CGTGGGACAG
    CCTGTTgggg
    301 cggaTTCCGG TTGTCAAATC CATCTATTCG AGTGTGAAAA
    AAGTATCCGA
    351 ATCGCTGCTG TCCGACAGCA GCCGTTCGTT TAAAACGCCG
    GTACTCGTGC
    401 CGTTTCCCCA ATCGGGTATT TGGACAATCG CATTCGTGTC
    CGGTCAGGTG
    451 TCGAATGCGG TTAAGGCCGC ATTGCCGCAG GATGGCGATT
    ATCTTTCCGT
    501 GTATGTCCCG ACCACGCCCA ACCCGACCGG CGGTTACTAT
    ATTATGGTAA
    551 AGAAAAGCGA TGTGCGCGAA CTCGATATGA GCGTGGACGA
    AGCGTTGAAA
    601 TATGTGATTT CGCTGGGTAT GGTCATCCCT GACGACCTGC
    CCGTCAAAAC
    651 ATTGGCAGGA CCTATGCCGC CTGAAAAGGC GGAGTTGCCC
    GAACAACAAT
    701 AA
  • This corresponds to the amino acid sequence <SEQ ID 748; ORF98ng-1>:
  • 1 MTEPAAEGGK AAKALKKYLI TGILVWLPIA VTVWVVSYIV
    SASDQLVNLL
    51 PKQWRPQYVL GFNIPGLGVI VAIAVLFVTG LFA ANVLGRQ
    ILAAWDSLLG
    101 RIPVVKSIYS SVKKVSESLL SDSSRSFKTP VLVPFPQSGI
    WTIAFVSGQV
    151 SNAVKAALPQ DGDYLSVYVP TTPNPTGGYY IMVKKSDVRE
    LDMSVDEALK
    201 YVISLGMVIP DDLPVKTLAG PMPPEKAELP EQQ*
  • ORF98ng-1 and ORF98-1 show 97.9% identity in 233 aa overlap:
  • Figure US20130064846A1-20130314-C00338
  • Based on this analysis, including the fact that the putative transmembrane domains in the gonococcal protein are identical to the sequences in the meningococcal protein, it is predicted that the proteins from N. meningitidis and N. gonorrhoeae, and their epitopes, could be useful antigens for vaccines or diagnostics, or for raising antibodies.
  • Example 89
  • The following partial DNA sequence was identified in N. meningitidis <SEQ ID 749>:
  • 1 ATgAAAACGG TAGTCTGGAT TGTCGTCCTG TTTGCCGCCG
    CCGTCGGACT
    51 GGCGCTGGCT TCGGGCATTT ACACCGGCGA CGTGTATATC
    GTACTCGGAC
    101 AGACCATGCT CAGAATCAAC CTGCACGCCT TTGTGTTAGG
    TTCGCTGATT
    151 GCCGTCGTGG TGTGGTATTT CTTGTTTAAA TTCATTATCG
    GsGgTACTCA
    201 ATATCCCCGA AAAGATGCAG CGTTTCGGTT CGGCnCGTAA
    AGGCCkCAAG
    251 ssCGsGCTTG CCTTGAACAA GGCGGGTTTG GCGTATTTTG
    AAGGGCGTTT
    301 TGAAAAGGCG GAACTAGAAG CCTCACGCGT GTTGGTCAAC
    AAAGtAGGCC
    351 GaGAGACAAC CGGACTTTGG CATTGATGCT GrGCGCGCAC
    GCCGCCGGAC
    401 AGATGGAAAA CATCGAssTG CGCGACCGTT ATCTTGCGGA
    AATCGCCAAA
    451 CTGCCGGAAA AACAGCAGCT TTCCCGTTAT CTTTTGTTGG
    CGGAATCGGC
    501 GTTGAACCGG CGCGATTACG AAGCGGCGGA AGCCAATCTT
    CATGCGGCGG
    551 CGAAGATGAA TGCCAACCTT ACGCGCCTCG TGCGTCTGCA
    .ATTCGTTAC
    601 GCTTTCGACA GGGGCGACGC GTTGCAGGTT CTGGCAAAAA
    CCGAAAAACT
    651 TTCCAAGGCG GGCGCGTTGG GCAAATCGGA AATGGAACGG
    TATCAAAATT
    701 GGGCATATCC GTCGCCAGCT GGCGGATGCT GCCGATGCCG
    CCGCTTTGAA
    751 AACCTGCCTG AAGCGGATTC CCGACAGCCT CAAAAACGGG
    GAATTGAGCG
    801 TATCGGTTGC GGAAAAGTAC GAACGTTTGG GACTGTATGC
    CGATGCGGTC
    851 AAATGGGTCA AACAGCATTA TCCGCAsAAC CGCCGCCCCG
    AGCTTTTGGA
    901 AGCCTTTGTC GAAAGCGTGC GCTTTTTGGG CGAGCGCGAA
    CAGCAGAAAG
    951 CCATCGATTT TGCCGATGCT TGGCTGAAAG AACAGCCCGA
    TAACGCGCTT
    1001 CTGCTGATGT ATCTCGGTCG GCTCGCCTTC GGCCGCAAAC
    TTTGGGGCAA
    1051 GGCAAAAGGC TACCTTGAAG CGAGCATTGC ATTAAAGCCG
    AGTATTTCCG
    1101 CGCGTTTGGT TCTAACAAAG GTTTTCGACG AAATCGGAGA
    ACCGCAGAAG
    1151 GCGGAGGCGC AC...
  • This corresponds to the amino acid sequence <SEQ ID 750; ORF100>:
  • 1 MKTVVWIVVL FAAAVGLALA SGIYTGDVYI VLGQTMLRIN
    LHAFVLGSLI
    51 AVVVWYFLFK FIIGVLNIPE KMQRFGSARK GXKXXLALNK
    AGLAYFEGRF
    101 EKAELEASRV LVNKVGRDNR TLALMLXAHA AGQMENIXXR
    DRYLAEIAKL
    151 PEKQQLSRYL LLAESALNRR DYEAAEANLH AAAKMNANLT
    RLVRLXIRYA
    201 FDRGDALQVL AKTEKLSKAG ALGKSEMERY QNWAYRRQLA
    DAADAAALKT
    251 CLKRIPDSLK NGELSVSVAE KYERLGLYAD AVKWVKQHYP
    XNRRPELLEA
    301 FVESVRFLGE REQQKAIDFA DAWLKEQPDN ALLLMYLGRL
    AFGRKLWGKA
    351 KGYLEASIAL KPSISARLVL TKVFDEIGEP QKAEAH...
  • Further work revealed the complete nucleotide sequence <SEQ ID 751>:
  • 1 ATGAAAACGG TAGTCTGGAT TGTCGTCCTG TTTGCCGCCG
    CCGTCGGACT
    51 GGCGCTGGCT TCGGGCATTT ACACCGGCGA CGTGTATATC
    GTACTCGGAC
    101 AGACCATGCT CAGAATCAAC CTGCACGCCT TTGTGTTAGG
    TTCGCTGATT
    151 GCCGTCGTGG TGTGGTATTT CTTGTTTAAA TTCATTATCG
    GCGTACTCAA
    201 TATCCCCGAA AAGATGCAGC GTTTCGGTTC GGCGCGTAAA
    GGCCGCAAGG
    251 CCGCGCTTGC CTTGAACAAG GCGGGTTTGG CGTATTTTGA
    AGGGCGTTTT
    301 GAAAAGGCGG AACTAGAAGC CTCACGCGTG TTGGTCAACA
    AAGAGGCCGG
    351 AGACAACCGG ACTTTGGCAT TGATGCTGGG CGCGCACGCC
    GCCGGACAGA
    401 TGGAAAACAT CGAGCTGCGC GACCGTTATC TTGCGGAAAT
    CGCCAAACTG
    451 CCGGAAAAAC AGCAGCTTTC CCGTTATCTT TTGTTGGCGG
    AATCGGCGTT
    501 GAACCGGCGC GATTACGAAG CGGCGGAAGC CAATCTTCAT
    GCGGCGGCGA
    551 AGATGAATGC CAACCTTACG CGCCTCGTGC GTCTGCAACT
    TCGTTACGCT
    601 TTCGACAGGG GCGACGCGTT GCAGGTTCTG GCAAAAACCG
    AAAAACTTTC
    651 CAAGGCGGGC GCGTTGGGCA AATCGGAAAT GGAACGGTAT
    CAAAATTGGG
    701 CATACCGCCG CCAGCTGGCG GATGCTGCCG ATGCCGCCGC
    TTTGAAAACC
    751 TGCCTGAAGC GGATTCCCGA CAGCCTCAAA AACGGGGAAT
    TGAGCGTATC
    801 GGTTGCGGAA AAGTACGAAC GTTTGGGACT GTATGCCGAT
    GCGGTCAAAT
    851 GGGTCAAACA GCATTATCCG CACAACCGCC GCCCCGAGCT
    TTTGGAAGCC
    901 TTTGTCGAAA GCGTGCGCTT TTTGGGCGAG CGCGAACAGC
    AGAAAGCCAT
    951 CGATTTTGCC GATGCTTGGC TGAAAGAACA GCCCGATAAC
    GCGCTTCTGC
    1001 TGATGTATCT CGGTCGGCTC GCCTACGGCC GCAAACTTTG
    GGGCAAGGCA
    1051 AAAGGCTACC TTGAAGCGAG CATTGCATTA AAGCCGAGTA
    TTTCCGCGCG
    1101 TTTGGTTCTA GCAAAGGTTT TCGACGAAAT CGGAGAACCG
    CAGAAGGCGG
    1151 AGGCGCAGCG CAACTTGGTT TTGGAAGCCG TCTCCGATGA
    CGAACGTCAC
    1201 GCAGCGTTAG AGCAGCATAG CTGA
  • This corresponds to the amino acid sequence <SEQ ID 752; ORF100-1>:
  • 1 MKTVVWIVVL FAAAVGLALA SGIYTGDVYI VLGQTMLRIN
    LHAFVLGSLI
    51 AVVVWYFLFK FIIGVLNIPE KMQRFGSARK GRKAALALNK
    AGLAYFEGRF
    101 EKAELEASRV LVNKEAGDNR TLALMLGAHA AGQMENIELR
    DRYLAEIAKL
    151 PEKQQLSRYL LLAESALNRR DYEAAEANLH AAAKMNANLT
    RLVRLQLRYA
    201 FDRGDALQVL AKTEKLSKAG ALGKSEMERY QNWAYRRQLA
    DAADAAALKT
    251 CLKRIPDSLK NGELSVSVAE KYERLGLYAD AVKWVKQHYP
    HNRRPELLEA
    301 FVESVRFLGE REQQKAIDFA DAWLKEQPDN ALLLMYLGRL
    AYGRKLWGKA
    351 KGYLEASIAL KPSISARLVL AKVFDEIGEP QKAEAQRNLV
    LEAVSDDERH
    401 AALEQHS*
  • Computer analysis of this amino acid sequence gave the following results:
  • Homology with a Predicted ORF from N. meningitidis (Strain A)
  • ORF100 shows 93.5% identity over a 386aa overlap with an ORF (ORF100a) from strain A of N. meningitidis:
  • Figure US20130064846A1-20130314-C00339
  • The complete length ORF100a nucleotide sequence <SEQ ID 753> is:
  • 1 ATGAAAACGG TAGTCTGGAT TGTCGTCCTG TTTGCCGCCG
    CNNTCGGGCT
    51 GGCATTGGCG TCGGGCATTN ACACCGGCGA CGTGTATATC
    GTACTCGGAC
    101 AGACCATGCT CAGAATCAAC CTGCACGCCT TTGTGTTAGG
    TTCGCTGATT
    151 GCCGTCGTGG TGTGGTATTT CCTGTTCAAA TTCATCATCG
    GCGTACTCAA
    201 TANCCCCGAA AAGATGCAGC GTTTCGGTTC GGCGCGTAAA
    GGCCGCAAGG
    251 CCGCGCTTGC TTTGAACAAG GCGGGTTTGG CGTATTTTGA
    AGGGCGTTTT
    301 GAAAAGGCGG AACTTGAAGC CTCGCGCGTA TTGGGAAACA
    AAGAGGCGGG
    351 GGATAACCGG ACTTTGGCAT TGATGTTGGG CGCACATGCC
    GCCGGGCAGA
    401 TGGAAAACAT CGAGCTGCGC GACCGTTATC TTGCGGAAAT
    CGCCAAACTG
    451 CCGGAAAAGC AGCAGCTTTC CCGTTATCTT TTGTTGGCGG
    AATCGGCGTT
    501 GAACCGGCGC GATTACGAAG CGGCGGAAGC CAATCTTCAT
    GCGGCGGCGA
    551 AGATGAATGC CAACCTTACG CGCCTCGTGC GTCTGCAACT
    TCGTTACGCT
    601 TTCGACAGGG GCGACGCGTT GCAGGTTCTG GCAAAAACCG
    AAAAANTTTC
    651 CAAGGCGGGC GCGTNGGGCA AATCGGAAAT GGAACGGTAT
    CAAAATTGGG
    701 CATACCGCCG CCAGCTGNCG GATGCTGCCG ATGCCGCCGC
    TTTGAAAACC
    751 TGCCTGAAGC GGATTCCCGA CAGCCTCAAA AACGGGGAAT
    TGAGCGTATC
    801 GGTTGCGGAA AAGTACGAAC GTTTGGGACT GTATGCCGAT
    GCGGTCAAAT
    851 GGGTCAAACA GCATTATCCG CACAACCGCC GACCCGAACT
    TTTGGAAGCN
    901 TTTGTCGAAA GCGTGCGCTT TTTGGGCGAA CGCGATCAGC
    AGAAAGCCAT
    951 CGATTTTGCC GATGCTTGGC TGAAAGAACA GCCCGATAAT
    GCGCTTCTGC
    1001 TGANGTATCT CGGTCGGCTC GCCTACGGCC GCAAACTTTG
    GGGCAAGGCA
    1051 AAAGGCTACC TTGAAGCGAG CATTGCATTA AAGCCGAGTA
    TTTCCGCGCG
    1101 TTTGGTTCTG GCAAAGGTTT TTGACGAAAC CGGAGAACCG
    CAGAAGGCGG
    1151 AGGCGCAGCG CAACTTGGTT TTGGCAAGCG TTGCCGAGGA
    AAACCGNCCT
    1201 TCCGCCGAAA CCCATTGA
  • This encodes a protein having amino acid sequence <SEQ ID 754>:
  • 1 MKTVVWIVVL FAAAXGLALA SGIXTGDVYI VLGQTMLRIN
    LHAFVLGSLI
    51 AVVVWYFLFK FIIGVLNXPE KMQRFGSARK GRKAALALNK
    AGLAYFEGRF
    101 EKAELEASRV LGNKEAGDNR TLALMLGAHA AGQMENIELR
    DRYLAEIAKL
    151 PEKQQLSRYL LLAESALNRR DYEAAEANLH AAAKMNANLT
    RLVRLQLRYA
    201 FDRGDALQVL AKTEKXSKAG AXGKSEMERY QNWAYRRQLX
    DAADAAALKT
    251 CLKRIPDSLK NGELSVSVAE KYERLGLYAD AVKWVKQHYP
    HNRRPELLEA
    301 FVESVRFLGE RDQQKAIDFA DAWLKEQPDN ALLLXYLGRL
    AYGRKLWGKA
    351 KGYLEASIAL KPSISARLVL AKVFDETGEP QKAEAQRNLV
    LASVAEENRP
    401 SAETH*
  • ORF100a and ORF100-1 show 95.1% identity in 406 aa overlap:
  • Figure US20130064846A1-20130314-C00340
  • Homology with a Predicted ORF from N. gonorrhoeae
  • ORF100 shows 93.3% identity over a 386 aa overlap with a predicted ORF (ORF100ng) from N. gonorrhoeae:
  • Figure US20130064846A1-20130314-C00341
  • The complete length ORF100ng nucleotide sequence <SEQ ID 755> is:
  • 1 ATGAAAACGG TAGTCTGGAT TGTTGTCCTG TTTGCCGCCG
    CCGTCGGACT
    51 GGCGCTGGCT TCGGGCATTT ACACCGGCGA CGTGTATATC
    GTACTCGGAC
    101 AGACCATGCT CAGAATCAAC CTGCACGCCT TTGTGTTAGG
    TTCGCTGATT
    151 GCCGTCGTGG TGTGGTATTT CCTGTTTAAA TTCATCATCG
    GCGTACTCAA
    201 TATCCCCGAA AATATGCGGC GTTCCGGTTC GGCGCGGAAA
    GGCCGCAAGG
    251 CCGCGCTTGC CTTGAATAAG GCGGGTTTGG CGTATTTCGA
    AGGGCGTTTT
    301 GAAAAGGCGG AACTCGAAGC CTCTCGAGTG TTGGGCAACA
    AAGAGGCCGG
    351 AGACAACCGG ACTTTGGCAT TGATGCTGGG CGCGCACGCG
    GCAGGACAGA
    401 TGGAAAATAT CGAGCTGCGC GACCGTTATC TTGCGGAAAT
    CGCCAAACTG
    451 CCGGAAAAAC AGCAGCTTTC CCGCTATCTT CTGCTGGCGG
    AATCGGCGTT
    501 AAACCGGCGC GATTACGAAG CGGCGGAAGC CAATCTTCAT
    GCGGCGGCGA
    551 AGATGAATGC CAACCTTACG CGCCTCGTGC GTCTGCAACT
    TCGTTACGCC
    601 TTCGATCGGG GCGATGCGTT GCAGGTTCTG GCAAAAaccG
    AAAAACTTTC
    651 CAAGGCGGGC GCGTTGGGCA AATCGGAAAT GGAACGGTAT
    CAAAATTGGG
    701 CATACCGCCG CCAGATGGCG GATGCTGCCG ATGCCGCCGC
    TTTGAAAACC
    751 TGCCTGAAGC GGATTCCCGA CAGCCTCAAA AACGGGGAAT
    TGagcGTATC
    801 GGTTGCGGAA AAGTACGAAC GTTTGGGACT GTATGCCGAT
    GCGGTCAAAT
    851 GGGTCAAACA GCATTATCCG CACAACCGCC GCCCCGAGCT
    TTTGGAAGCC
    901 TTTGTCGAAA GCGTGCGCTT TTTGGGCGAG CGCGAACAGC
    AGAAAGCCAT
    951 CGATTTTGCC GATTCTTGGC TGAAAGAACA GCCCGATAAC
    GCGCTTCTGC
    1001 TGATGTATCT CGGCCGGCTC GCCTACGGCC GCAAACTTTG
    GGGTAAGGCA
    1051 AAAGGCTACC TTGAAGCGAG TATTGCACTG AAGCCGAGTA
    TTCCGGCGCG
    1101 TTTGGTGTTG GCAAAGGTTT TTGACGAAAC CGCACAGTCG
    CAAAAAGCCG
    1151 AAGCACAGCG CAACTTGGTT TTGGCAAGCG TTGCCGGGGA
    AAACCGCCCT
    1201 TCCGCCGAAA CCCGTTGA
  • This encodes a protein having amino acid sequence <SEQ ID 756>:
  • 1 MKTVVWIVVL FAAAVGLALA SGIYTGDVYI VLGQTMLRIN
    LHAFVLGSLI
    51 AVVVWYFLFK FIIGVLNIPE NMRRSGSARK GRKAALALNK
    AGLAYFEGRF
    101 EKAELEASRV LGNKEAGDNR TLALMLGAHA AGQMENIELR
    DRYLAEIAKL
    151 PEKQQLSRYL LLAESALNRR DYEAAEANLH AAAKMNANLT
    RLVRLQLRYA
    201 FDRGDALQVL AKTEKLSKAG ALGKSEMERY QNWAYRRQMA
    DAADAAALKT
    251 CLKRIPDSLK NGELSVSVAE KYERLGLYAD AVKWVKQHYP
    HNRRPELLEA
    301 FVESVRFLGE REQQKAIDFA DSWLKEQPDN ALLLMYLGRL
    AYGRKLWGKA
    351 KGYLEASIAL KPSIPARLVL AKVFDETAQS QKAEAQRNLV
    LASVAGENRP
    401 SAETR*
  • ORF100ng and ORF100-1 show 95.3% identity in 402 aa overlap:
  • Figure US20130064846A1-20130314-C00342
  • Based on this analysis, including the presence of a putative leader sequence, a putative transmembrane domain, and a RGD motif, it is predicted that the proteins from N. meningitidis and N. gonorrhoeae, and their epitopes, could be useful antigens for vaccines or diagnostics, or for raising antibodies.
  • Example 90
  • The following DNA sequence, believed to be complete, was identified in N. meningitidis <SEQ ID 757>
  • 1 ATGATGTTTT CTTGGTTCAA GCTGTTTCAC TTGTTTTTTG
    TCATTTCGTG
    51 GTTTGCAGGG CTGTTTTACC TGCCGAGGAT TTTCGTCAAT
    ATGGCGATGA
    101 TTGATGTGCC GCGCGGCAAT CCCGAGTATG TGCGTCTGTC
    GGGCATGGCG
    151 GTGCGGCTGT ACCGTTTTAT GTCGCCGTTG GGCTTCGGCG
    CGGTCGTGTT
    201 CGGCGCGGCG ATACCGTTTG CCGCCGGCTG GTGGGGCAGC
    GGCTGGGTAC
    251 ACGTCAAACT GTGTTTGGGC TTGATGCTCT TGGCTTACCA
    GTTGTATTGC
    301 GGCGTGCTGC TGCGCCGTTT TCAGGATTAC AGCAATGCTT
    TTTCACACCG
    351 CTGGTACCGC GTGTTCAACG AAATCCCCGT GCTGCTGATG
    GTTGCCGCGC
    401 TGTATsTGGT CGTGTTCAAA CCGTTTTGA
  • This corresponds to the amino acid sequence <SEQ ID 758; ORF102>:
  • 1 MMFSWFKLFH LFFVISWFAG LFYLPRIFVN MAMIDVPRGN
    PEYVRLSGMA
    51 VRLYRFMSPL GFGAVVFGAA IPFAAGWWGS GWVHVKLCLG
    LMLLAYQLYC
    101 GVLLRRFQDY SNAFSHRWYR VFNEIPVLLM VAALYXVVFK
    PF*
  • Further work revealed the complete nucleotide sequence <SEQ ID 759>:
  • 1 ATGATGTTTT CTTGGTTCAA GCTGTTTCAC TTGTTTTTTG
    TCATTTCGTG
    51 GTTTGCAGGG CTGTTTTACC TGCCGAGGAT TTTCGTCAAT
    ATGGCGATGA
    101 TTGATGTGCC GCGCGGCAAT CCCGAGTATG TGCGTCTGTC
    GGGCATGGCG
    151 GTGCGGCTGT ACCGTTTTAT GTCGCCGTTG GGCTTCGGCG
    CGGTCGTGTT
    201 CGGCGCGGCG ATACCGTTTG CCGCCGGCTG GTGGGGCAGC
    GGCTGGGTAC
    251 ACGTCAAACT GTGTTTGGGC TTGATGCTCT TGGCTTACCA
    GTTGTATTGC
    301 GGCGTGCTGC TGCGCCGTTT TCAGGATTAC AGCAATGCTT
    TTTCACACCG
    351 CTGGTACCGC GTGTTCAACG AAATCCCCGT GCTGCTGATG
    GTTGCCGCGC
    401 TGTATCTGGT CGTGTTCAAA CCGTTTTGA
  • This corresponds to the amino acid sequence <SEQ ID 760; ORF102-1>:
  • 1 MMFSWFKLFH LFFVISWFAG LFYLPRIFVN MAMIDVPRGN
    PEYVRLSGMA
    51 VRLYRFMSPL GFGAVVFGAA IPFAAG WWGS GWVHVKLCLG
    LMLLAYQLYC
    101 GVLLRRFQDY SNAFSHRWYR VFNEIPVLLM VAALYLVVFK
    PF*
  • Computer analysis of this amino acid sequence gave the following results:
  • Homology with HP1484 Hypothetical Integral Membrane Protein of H. pylori (Accession Number AE000647)
  • ORF102 and HP1484 show 33% aa identity in 143aa overlap:
  • orf102 3 FSWFKLFHLFFVISWFAGLFYLPRIFVNMAMIDVPRGNPEYVRLSGMAVRLYRFMSPLGF 62
    F W K FH+  VISW A LFYLPR+FV  A     +     V++     +LY F++
    HP1484
    8 FLWVKAFHVIAVISWMAALFYLPRLFVYHAENAHKKEFVGVVQIQEK--KLYSFIASPAM 65
    orf102 63 GAVVFGAAIPFAAG---WWGSGWVHVKLCLGLMLLAYQLYCGVLLRRFQDYSNAFSHRWY 119
    G  +    +        +   GW+H KL L ++LLAY  YC   +R  +      + R+Y
    HP1484 66 GFTLITGILMLLIEPTLFKSGGWLHAKLALVVLLLAYHFYCKKCMRELEKDPTRRNARFY 125
    orf102 120 RVFNEIPXXXXXXXXXXXXFKPF 142
    RVFNE P             KPF
    HP1484 126 RVFNEAPTILMILIVILVVVKPF 148

    Homology with a Predicted ORF from N. meningitidis (Strain A)
  • ORF102 shows 99.3% identity over a 142aa overlap with an ORF (ORF102a) from strain A of N. meningitidis:
  • Figure US20130064846A1-20130314-C00343
  • The complete length ORF102a nucleotide sequence <SEQ ID 761> is:
  • 1 ATGATGTTTT CTTGGTTCAA GCTGTTTCAC TTGTTTTTTG
    TCATTTCGTG
    51 GTTTGCAGGG CTGTTTTACC TGCCGAGGAT TTTCGTCAAT
    ATGGCGATGA
    101 TTGATGTGCC GCGCGGCAAT CCCGAGTATG TGCGTCTGTC
    GGGCATGGCG
    151 GTGCGGCTGT ACCGTTTTAT GTCGCCGTTG GGCTTCGGCG
    CGGTCGTGTT
    201 CGGCGCGGCG ATACCGTTTG CCGCCGGCTG GTGGGGCAGC
    GGCTGGGTAC
    251 ACGTCAAACT GTGTTTGGGC TTGATGCTCT TGGCTTACCA
    GTTGTATTGC
    301 GGCGTGCTGC TGCGCCGTTT TCAGGATTAC AGCAATGCTT
    TTTCACACCG
    351 CTGGTACCGC GTGTTCAACG AAATCCCCGT GCTGCTGATG
    GTTGCCGCGC
    401 TGTATCTGGT CGTGTTCAAA CCGTTTTGA
  • This encodes a protein having amino acid sequence <SEQ ID 762>:
  • 1 MMFSWFKLFH LFFVISWFAG LFYLPRIFVN MAMIDVPRGN
    PEYVRLSGMA
    51 VRLYRFMSPL GFGAVVFGAA IPFAAG WWGS GWVHVKLCLG
    LMLLAYQLYC
    101 GVLLRRFQDY SNAFSHRWYR VFNEIPVLLM VAALYLVVFK
    PF*
  • ORF102a and ORF102-1 show complete identity in 142 aa overlap:
  • Figure US20130064846A1-20130314-C00344
  • Homology with a Predicted ORF from N. gonorrhoeae
  • ORF102 shows 97.9% identity over a 142 aa overlap with a predicted ORF (ORF102ng) from N. gonorrhoeae:
  • Figure US20130064846A1-20130314-C00345
  • The complete length ORF102ng nucleotide sequence <SEQ ID 763> is:
  • 1 ATGATGTTTT CTTGGTTCAA GCTGTTTCAC TTGTTTTTTG
    TCATTTCGTG
    51 GTTTGCAGGG CTGTTTTACC TGCCGAGGAT TTTCGTCAAT
    ATGGCGATGA
    101 TTGATGCGCC GCGCGGCAAT CCCGAGTATG TGCGCCTGTC
    GGGGATGGCG
    151 GTGCGGTTGT ACCGTTTTAT GTCGCCTTTG GGTTTCGGCG
    CGGTCGTGTT
    201 CGGCGCGGCG ATACCGTTTG CCGCcggccg GTGGGGCagc
    ggctggGTTC
    251 ACGTCAAACT GTGTTTGGGC TTGATGCTCT TGGCTTATCA
    GTTGTATTGC
    301 GGCGTGCTGC TGCGCCGTTT TCAGGATTAC AGCAATGCTT
    TTTCACACCG
    351 CTGGTACCGC GTGTTCAAcg aAATCCCCGT GCTGCTGATG
    GTTGCCGCGC
    401 TGTATCTGGT CGTGTTCAAA CCGTTTTGA
  • This encodes a protein having amino acid sequence <SEQ ID 764>:
  • 1 MMFSWFKLFH LFFVISWFAG LFYLPRIFVN MAMIDAPRGN
    PEYVRLSGMA
    51 VRLYRFMSPL GFGAVVFGAA IPFAAG RWGS GWVHVKLCLG
    LMLLAYQLYC
    101 GVLLRRFQDY SNAFSHRWYR VFNEIPVLLM VAALYLVVFK
    PF*
  • ORF102ng and ORF102-1 show 98.6% identity in 142 aa overlap:
  • Figure US20130064846A1-20130314-C00346
  • In addition, ORF102ng shows significant homology to a membrane protein from H. pylori:
  • gi|2314656 (AE000647) conserved hypothetical integral membrane protein
    [Helicobacter pylori] Length = 148
    Score = 79.2 bits (192), Expect = 1e−14
    Identities = 50/147 (34%), Positives = 68/147 (46%), Gaps = 13/147 (8%)
    Query: 3 FSWFKLFHLFFVISWFAGLFYLPRIFVNMAMIDAPRGNPEYVRLSGMAVRLYRFMSPLGF 62
    F W K FH+  VISW A LFYLPR+FV  A     +     V++     +LY F++
    Sbjct: 8 FLWVKAFHVIAVISWMAALFYLPRLFVYHAENAHKKEFVGVVQIQEK--KLYSFIASPAM 65
    Query: 63 GAVVFGAAIP-------FAAGRWGSGWVHVKLCLGLMLLAYQLYCGVLLRRFQDYSNAFS 115
    G  +    +        F +G    GW+H KL L ++LLAY  YC   +R  +      +
    Sbjct: 66 GFTLITGILMLLIEPTLFKSG----GWLHAKLALVVLLLAYHFYCKKCMRELEKDPTRRN 121
    Query: 116 HRWYRVFNEIPXXXXXXXXXXXXFKPF 142
     R+YRVFNE P             KPF
    Sbjct: 122 ARFYRVFNEAPTILMILIVILVVVKPF 148
  • Based on this analysis, it is predicted that these proteins from N. meningitidis and N. gonorrhoeae, and their epitopes, could be useful antigens for vaccines or diagnostics, or for raising antibodies.
  • Example 91
  • The following partial DNA sequence was identified in N. meningitidis <SEQ ID 765>:
  •   1  ATGGCAAAAA TGATGAAATG GGCGGCTGTT GCGGCGGTCG CGGCGGCAGC
     51  GGTTTGGGGC GGATGGTCTT AACTGAAGCC CGAGCCGCAC GTGCTTGATA
    101  TTACGGAAAC GGTCAGGCGC GGC // .....
    //.. ATTTCGTTTA CGATTTTGTC CGAACCGGAT ACGCCGATTA AGGCGAAGCT
     51  CGACAGCGTC GACCCCGGGC TGACCACGAT GTCGTCGGGC GGTTACAACA
    101  GCAGTACGGA TACGGCTTCC AATGCGGTCT ACTATTATGC CCGTTCGTTT
    151  GTGCCGAATC CGGACGGCAA ACTCGCCACG GGGATGACGA CGCAGAATAC
    201  GGTTGAAATC GACGGCGTGA AAAATGTGCT GATTATTCCG TCGCTGACCG
    251  TGAAAAATCG CGGCGGCAAG GCGTTTGTGC GCGTGTTGGG TGCGGACGGC
    301  AAGGCGGCGG AACGCGAAAT CCGGACCGGT ATGAGAGACA GTATGAATAC
    351  CGAAGTAAAA AGCGGGTTGA AAGAGGGGGA CAAAGTGGTC ATCTCCGAAA
    401  TAACCGCCGC CGAGCAACAG GAAAGCGGCG AACGCGCCCT AGGCGGCCCG
    451  CCGCGCCGAT AA
  • This corresponds to the amino acid sequence <SEQ ID 766; ORF85>:
  • 1 MAKMMKWAAV AAVAAAAVWG GWS.LKPEPH VLDITETVRR
    G.........
    51 .......... .......... .......... ..........
    ..........
    101 .......... .......... .......... ..........
    ..........
    151 .......... .......... .......... ..........
    ..........
    201 .......... .......... .......... .........I
    SFTILSEPDT
    251 PIKAKLDSVD PGLTTMSSGG YNSSTDTASN AVYYYARSFV
    PNPDGKLATG
    301 MTTQNTVEID GVKNVLIIPS LTVKNRGGKA FVRVLGADGK
    AAEREIRTGM
    351 RDSMNTEVKS GLKEGDKVVI SEITAAEQQE SGERALGGPP
    RR*
  • Further work revealed the further partial nucleotide sequence <SEQ ID 767>:
  • 1 ..GTATCGGTCG GCGCGCAGGC ATCGGGGCAG ATTAAGATAC
    TTTATGTCAA
    51   ACTCGGGCAA CAGGTTAAAA AGGGCGATTT GATTGCGGAA
    ATCAATTCGA
    101   CCTCGCAGAC CAATACGCTC AATACGGAAA AATCCAAGTT
    GGAAACGTAT
    151   CAGGCGAAGC TGGTGTCGGC ACAGATTGCA TTGGGCAGCG
    CGGAGAAGAA
    201   ATATAAGCGT CAGGCGGCGT TATGGAAGGA AAACGCGACT
    TCCAAAGAGG
    251   ATTTGGAAAG CGCGCAGGAT GCGTTTGCCG CCGCCAAAGC
    CAATGTTGCC
    301   GAGCTGAAGG CTTTAATCAG ACAGAGCAAA ATTTCCATCA
    ATACCGCCGA
    351   GTCGGAATTG GGCTACACGC GCATTACCGC AACGATGGAC
    GGCACGGTGG
    401   TGGCGATTCT CGTGGAAGAG GGGCAGACTG TGAACGCGGC
    GCAGTCTACG
    451   CCGACGATTG TCCAATTGGC GAATCTGGAT ATGATGTTGA
    ACAAAATGCA
    501   GATTGCCGAG GGCGATATTA CCAAGGTGAA GGCGGGGCAG
    GATATTTCGT
    551   TTACGATTTT GTCCGAACCG GATACGCCGA TTAAGGCGAA
    GCTCGACAGC
    601   GTCGACCCCG GGCTGACCAC GATGTCGTCG GGCGGTTACA
    ACAGCAGTAC
    651   GGATACGGCT TCCAATGCGG TCTACTATTA TGCCCGTTCG
    TTTGTGCCGA
    701   ATCCGGACGG CAAACTCGCC ACGGGGATGA CGACGCAGAA
    TACGGTTGAA
    751   ATCGACGGCG TGAAAAATGT GCTGATTATT CCGTCGCTGA
    CCGTGAAAAA
    801   TCGCGGCGGC AAGGCGTTTG TGCGCGTGTT GGGTGCGGAC
    GGCAAGGCGG
    851   CGGAACGCGA AATCCGGACC GGTATGAGAG ACAGTATGAA
    TACCGAAGTA
    901   AAAAGCGGGT TGAAAGAGGG GGACAAAGTG GTCATCTCCG
    AAATAACCGC
    951   CGCCGAGCAA CAGGAAAGCG GCGAACGCGC CCTAGGCGGC
    CCGCCGCGCC
    1001   GATAA
  • This corresponds to the amino acid sequence <SEQ ID 768; ORF85-1>:
  • 1 ..VSVGAQASGQ IKILYVKLGQ QVKKGDLIAE INSTSQTNTL
    NTEKSKLETY
    51   QAKLVSAQIA LGSAEKKYKR QAALWKENAT SKEDLESAQD
    AFAAAKANVA
    101   ELKALIRQSK ISINTAESEL GYTRITATMD GTVVAILVEE
    GQTVNAAQST
    151   PTIVQLANLD MMLNKMQIAE GDITKVKAGQ DISFTILSEP
    DTPIKAKLDS
    201   VDPGLTTMSS GGYNSSTDTA SNAVYYYARS FVPNPDGKLA
    TGMTTQNTVE
    251   IDGVKNVLII PSLTVKNRGG KAFVRVLGAD GKAAEREIRT
    GMRDSMNTEV
    301   KSGLKEGDKV VISEITAAEQ QESGERALGG PPRR*
  • Computer analysis of this amino acid sequence gave the following results:
  • Homology with a Predicted ORF from N. meningitidis (Strain A)
  • ORF85 shows 87.8% identity over a 41 aa overlap and 99.3% identity over a 153aa overlap with an ORF (ORF85a) from strain A of N. meningitidis:
  • Figure US20130064846A1-20130314-C00347
  • The complete length ORF85a nucleotide sequence <SEQ ID 769> is:
  • 1 ATGGCAAAAA TGATGAAATG GGCGGCTGTT GCGGCGGTCG
    CGGCGGCAGC
    51 GGTTTGGGGC GGATGGTCTT ATCTGAAGCC CGAGCCGCAG
    GCTGCTTATA
    101 TTACGGAAAC GGTCAGGCGC GGCGACATCA GCCGGACGGT
    TTCTGCAACA
    151 GGGGAGATTT CGCCGTCCAA CCTGGTATCG GTCGGCGCGC
    AGGCATCGGG
    201 GCAGATTAAG AAACTTTATG TCAAACTCGG GCAACAGGTT
    AAAAAGGGCG
    251 ATTTGATTGC GGAAATCAAT TCGACCTCGC AGACCAATAC
    GCTCAATACG
    301 GAAAAATCCA AATTGGAAAC GTATCAGGCG AAGCTGGTGT
    CGGCACAGAT
    351 TGCATTGGGC AGCGCGGAGA AGAAATATAA GCGTCAGGCG
    GCGTTGTGGA
    401 AGGATGATGC GACCGCTAAA GAAGATTTGG AAAGCGCACA
    GGATGCGCTT
    451 GCCGCCGCCA AAGCCAATGT TGCCGAGCTG AAGGCTCTAA
    TCAGACAGAG
    501 CAAAATTTCC ATCAATACCG CCGAGTCGGA ATTGGGCTAC
    ACGCGCATTA
    551 CCGCAACGAT GGACGGCACG GTGGTGGCGA TTCTCGTGGA
    AGAGGGGCAG
    601 ACTGTGAACG CGGCGCAGTC TACGCCGACG ATTGTCCAAT
    TGGCGAATCT
    651 GGATATGATG TTGAACAAAA TGCAGATTGC CGAGGGCGAT
    ATTACCAAGG
    701 TGAAGGCGGG GCAGGATATT TCGTTTACGA TTTTGTCCGA
    ACCGGATACG
    751 CCGATTAAGG CGAAGCTCGA CAGCGTCGAC CCCGGGCTGA
    CCACGATGTC
    801 GTCGGGCGGC TACAACAGCA GTACGGATAC GGCTTCCAAT
    GCGGTCTACT
    851 ATTATGCCCG TTCGTTTGTG CCGAATCCGG ACGGCAAACT
    CGCCACGGGG
    901 ATGACGACGC AGAATACGGT TGAAATCGAC GGTGTGAAAA
    ATGTGCTGAT
    951 TATTCCGTCG CTGACCGTGA AAAATCGCGG CGGCAGGGCG
    TTTGTGCGCG
    1001 TGTTGGGTGC AGACGGCAAG GCGGCGGAAC GCGAAATCCG
    GACCGGTATG
    1051 AGAGACAGTA TGAATACCGA AGTAAAAAGC GGGTTGAAAG
    AGGGGGACAA
    1101 AGTGGTCATC TCCGAAATAA CCGCCGCCGA GCAGCAGGAA
    AGCGGCGAAC
    1151 GCGCCCTAGG CGGCCCGCCG CGCCGATAA
  • This encodes a protein having amino acid sequence <SEQ ID 770>:
  • 1 MAKMMKWAAV AAVAAAAVWG GWSYLKPEPQ AAYITETVRR
    GDISRTVSAT
    51 GEISPSNLVS VGAQASGQIK KLYVKLGQQV KKGDLIAEIN
    STSQTNTLNT
    101 EKSKLETYQA KLVSAQIALG SAEKKYKRQA ALWKDDATAK
    EDLESAQDAL
    151 AAAKANVAEL KALIRQSKIS INTAESELGY TRITATMDGT
    VVAILVEEGQ
    201 TVNAAQSTPT IVQLANLDMM LNKMQIAEGD ITKVKAGQDI
    SFTILSEPDT
    251 PIKAKLDSVD PGLTTMSSGG YNSSTDTASN AVYYYARSFV
    PNPDGKLATG
    301 MTTQNTVEID GVKNVLIIPS LTVKNRGGRA FVRVLGADGK
    AAEREIRTGM
    351 RDSMNTEVKS GLKEGDKVVI SEITAAEQQE SGERALGGPP
    RR*
  • ORF85a and ORF85-1 show 98.2% identity in 334 aa overlap:
  • Figure US20130064846A1-20130314-C00348
  • FIG. 19D shows plots of hydrophilicity, antigenic index, and AMPHI regions for ORF85a.
  • Homology with a Predicted ORF from N. gonorrhoeae
  • ORF85 shows a high degree of identity with a predicted ORF (ORF85ng) from N. gonorrhoeae:
  • Figure US20130064846A1-20130314-C00349
  • The complete length ORF85ng nucleotide sequence <SEQ ID 771> is:
  • 1 ATGGCAAAAA TGATGAAATG GGCGGCTGTT GCGGCGGTCG
    CGGCGGCaac
    51 GGTTTGGGGC GGATGGTCTT ATCTGAAGCC CGAACCGCAG
    GCTGCTTATA
    101 TTACGGAaac ggTCAGGCGC GGCGATATCA GCCGGACGGT
    TTCCGCGACG
    151 GgcgAGATTT CGCCGTCCAA CCTGGTATCG GTCGGCGCGC
    AGGCTTCGGG
    201 GCAGATTAAA AAGCTTTATG TCAAACTCGG GCAACAGGTC
    AAAAAGGGCG
    251 ATTTGATTGC GGAAATCAAT TCGACCACGC AGACCAACAC
    GATCGATATG
    301 GAAAAATCCA AATTGGAAAC GTATCAGGCG AAGCTGGTGT
    CGGCACAGAT
    351 TGCATTGGGC AGCGCGGAGA AGAAATATAA GCGTCAGGCG
    GCGTTGTGGA
    401 AGGATGATGC GACCTCTAAA GAAGATTTGG AAAGCGCGCA
    GGATGCGCTT
    451 GCCGCCGCCA AAGCCAATGT TGCCGAGTTG AAGGCTTTAA
    TCAGACAGAG
    501 CAAAATTTCC ATCAATACCG CCGAGTCGGA TTTGGGCTAC
    ACGCGCATTA
    551 CCGCGACGAT GGACGGCACG GTGGTGGCGA TTCCCGTGGA
    AGAGGGGCAG
    601 ACTGTGAACG CGGCGCAGTC TACGCCGACG ATTGTCCAAT
    TGGCGAATCT
    651 GGATATGATG TTGAACAAAA TGCAGATTGC CGAGGGCGAT
    ATTACCAAGG
    701 TGAAGGCGGG GCAGGATATT TCGTTTACGA TTTTGTCCGA
    ACCGGATACG
    751 CCGATTAAGG CGAAGCTCGA CAGCGTCGAC CCCGGGCTGA
    CCACGATGTC
    801 GTCGGGCGGC TACAACAGCA GTACGGATAC GGCTTCCAAT
    GCGGTCTATT
    851 ATTATGCCCG TTCGTTTGTG CCGAATCCGG ACGGCAAACT
    CGCCACGGGG
    901 ATGACGACGC AGAATACGGT TGAAATCGAC GGTGTGAAAA
    ATGTGTTGCT
    951 TATTCCGTCG CTGACCGTGA AAAATCGCGG CGGCAAGGCG
    TTCGTACGCG
    1001 TGTTGGGTGC GGACGGCAAG GCAGTGGAAC GCGAAATCCG
    GACCGGTATG
    1051 AAAGACAGTA TGAATACCGA AGTGAAAAGC GGGTTGAAAG
    AGGGGGACAA
    1101 AGTGGTCATC TCCGAAATAA CCGCCGCCGA GCAGCAGGAA
    AGCGGCGAAC
    1151 GCGCCCTAGG CGGCCCGCCG CGCCGATAA
  • This encodes a protein having amino acid sequence <SEQ ID 772>:
  • 1 MAKMMKWAAV AAVAAAAVWG GWSYLKPEPQ AAYITEAVRR
    GDISRTVSAT
    51 GEISPSNLVS VGAQASGQIK KLYVKLGQQV KKGDLIAEIN
    STTQTNTIDM
    101 EKSKLETYQA KLVSAQIALG SAEKKYKRQA ALWKDDATSK
    EDLESAQDAL
    151 AAAKANVAEL KALIRQSKIS INTAESDLGY TRITATMDGT
    VVAIPVEEGQ
    201 TVNAAQSTPT IVQLANLDMM LNKMQIAEGD ITKVKAGQDI
    SFTILSEPDT
    251 PIKAKLDSVD PGLTTMSSGG YNSSTDTASN AVYYYARSFV
    PNPDGKLATG
    301 MTTQNTVEID GVKNVLLIPS LTVKNRGGKA FVRVLGADGK
    AVEREIRTGM
    351 KDSMNTEVKS GLKEGDKVVI SEITAAEQQE SGERALGGPP
    RR*
  • ORF85ng and ORF85-1 show 96.1% identity in 334 aa overlap:
  • Figure US20130064846A1-20130314-C00350
  • In addition, ORF85ng shows significant homology to an E. coli membrane fusion protein:
  • gi|1787104 (AE000189) o380; 27% identical (27 gaps) to 332 residues from
    membrane fusion protein precursor, MTRC_NEIGO SW: P43505 (412 aa)
    [Escherichia coli] Length = 380
    Score = 193 bits (485), Expect = 2e−48
    Identities = 120/345 (34%), Positives = 182/345 (51%), Gaps = 13/345 (3%)
    Query: 29 PQAAYITETVRRGDISRTVSATGEISPSNLVSVGAQASGQIKKLYVKLGQQVKKGDLIAE 88
    P   Y T  VR GD+ ++V ATG++     V VGAQ SGQ+K L V +G +VKK  L+
    Sbjct: 41 PVPTYQTLIVRPGDLQQSVLATGKLDALRKVDVGAQVSGQLKTLSVAIGDKVKKDQLLGV 100
    Query: 89 INSTTQTNTIDMEKSKLETYQAKLVSAQIALGSAEKKYKRQAALWKDDATSKEXXXXXXX 148
    I+     N I   ++ L   +A+   A+  L  A   Y RQ  L +  A S++
    Sbjct: 101 IDPEQAENQIKEVEATLMELRAQRQQAEAELKLARVTYSRQQRLAQTKAVSQQDLDTAAT 160
    Query: 149 XXXXXXXXXXXXXXXIRQSKISINTAESDLGYTRITATMDGTVVAIPVEEGQTVNAAQST 208
                   I++++ S++TA+++L YTRI A M G V  I   +GQTV AAQ
    Sbjct: 161 EMAVKQAQIGTIDAQIKRNQASLDTAKTNLDYTRIVAPMAGEVTQITTLQGQTVIAAQQA 220
    Query: 209 PTIVQLANLDMMLNKMQIAEGDITKVKAGQDISFTILSEPDTPIKAKLDSVDPGLTTMSS 268
    P I+ LA++  ML K Q++E D+  +K GQ   FT+L +P T  + ++  V P
    Sbjct: 221 PNILTLADMSAMLVKAQVSEADVIHLKPGQKAWFTVLGDPLTRYEGQIKDVLP------- 273
    Query: 269 GGYNSSTDTASNAVYYYARSFVPNPDGKLATGMTTQNTVEIDGVKNVLLIPSLTVKNRGG 328
         + +  ++A++YYAR  VPNP+G L   MT Q  +++  VKNVL IP   + +  G
    Sbjct: 274 -----TPEKVNDAIFYYARFEVPNPNGLLRLDMTAQVHIQLTDVKNVLTIPLSALGDPVG 328
    Query: 329 KAFVRV-LGADGKAVEREIRTGMKDSMNTEVKSGLKEGDKVVISE 372
        +V L  +G+  ERE+  G ++  + E+  GL+ GD+VVI E
    Sbjct: 329 DNRYKVKLLRNGETREREVTIGARNDTDVEIVKGLEAGDEVVIGE 373
  • Based on this analysis, it was predicted that the proteins from N. meningitidis and N. gonorrhoeae, and their epitopes, could be useful antigens for vaccines or diagnostics, or for raising antibodies.
  • ORF85-1 (40.4 kDa) was cloned in the pGex vectors and expressed in E. coli, as described above. The products of protein expression and purification were analyzed by SDS-PAGE. FIG. 19A shows the results of affinity purification of the GST-fusion protein. Purified GST-fusion protein was used to immunise mice, whose sera were used for Western blot (FIG. 19B), FACS analysis (FIG. 19C), and ELISA (positive result). These experiments confirm that ORF85-1 is a surface-exposed protein, and that it is a useful immunogen.
  • Example 92
  • The following partial DNA sequence was identified in N. meningitidis <SEQ ID 773>:
  • 1 ..ATTCCCGCCA CGATGACATT TGAACGCAGC GGCAATGCTT
    ACAAAATCGT
    51   TTCGACGATT AAAGTGCCGC TATACAATAT CCGTTTCGAG
    TCCGGCGGTA
    101   CGGTTGTCGG CAATACCCTG CACCCTACCT ACTATAGAGA
    CATACGCAGG
    151   GGCAAACTGT ATGCGGAAgc CAAATTCGCC GACgGcAGCG
    TAACTTACGG
    201   CAAAGCGGGC GAGAGCAAAA CCGAGCAAAG CCCCAAGGCT
    ATGGATTTGT
    251   TCACGCTTGC CTGGCAGTTG GCGGCAAATG ACGCGAAACT
    CCCCCCGGGG
    301   CTGAAAATCA CCAACGGCAA AAAACTTTAT TCCGTCGGCG
    GTTTGAATAA
    351   GGCGGGTACA GGAAAATACA GCATAGGCGG CGTGGAAACC
    GAAGTCGTCA
    401   AATATCGGGT GCGGCGCGGC GACGATGCGG TAATGTATTT
    cTTCGCACCG
    451   TCCCTGAACA ATATTCCGGC ACAAATCGGC TATACCGACG
    ACGGCAAAAC
    501   CTATACGCTG AAACTCAAAT CGGTGCAGAT CAACGGCCAG
    GCAGCCAAAC
    551   CGTAA
  • This corresponds to the amino acid sequence <SEQ ID 774; ORF120>:
  • 1 ..IPATMTFERS GNAYKIVSTI KVPLYNIRFE SGGTVVGNTL
    HPTYYRDIRR
    51   GKLYAEAKFA DGSVTYGKAG ESKTEQSPKA MDLFTLAWQL
    AANDAKLPPG
    101   LKITNGKKLY SVGGLNKAGT GKYSIGGVET EVVKYRVRRG
    DDAVMYFFAP
    151   SLNNIPAQIG YTDDGKTYTL KLKSVQINGQ AAKP*
  • Further work revealed the complete nucleotide sequence <SEQ ID 775>:
  • 1 ATGATGAAGA CTTTTAAAAA TATATTTTCC GCCGCCATTT
    TGTCCGCCGC
    51 CCTGCCGTGC GCGTATGCGG CAGGGCTGCC CCAATCCGCC
    GTGCTGCACT
    101 ATTCCGGCAG CTACGGCATT CCCGCCACGA TGACATTTGA
    ACGCAGCGGC
    151 AATGCTTACA AAATCGTTTC GACGATTAAA GTGCCGCTAT
    ACAATATCCG
    201 TTTCGAGTCC GGCGGTACGG TTGTCGGCAA TACCCTGCAC
    CCTACCTACT
    251 ATAGAGACAT ACGCAGGGGC AAACTGTATG CGGAAGCCAA
    ATTCGCCGAC
    301 GGCAGCGTAA CTTACGGCAA AGCGGGCGAG AGCAAAACCG
    AGCAAAGCCC
    351 CAAGGCTATG GATTTGTTCA CGCTTGCCTG GCAGTTGGCG
    GCAAATGACG
    401 CGAAACTCCC CCCGGGGCTG AAAATCACCA ACGGCAAAAA
    ACTTTATTCC
    451 GTCGGCGGTT TGAATAAGGC GGGTACAGGA AAATACAGCA
    TAGGCGGCGT
    501 GGAAACCGAA GTCGTCAAAT ATCGGGTGCG GCGCGGCGAC
    GATGCGGTAA
    551 TGTATTTCTT CGCACCGTCC CTGAACAATA TTCCGGCACA
    AATCGGCTAT
    601 ACCGACGACG GCAAAACCTA TACGCTGAAA CTCAAATCGG
    TGCAGATCAA
    651 CGGCCAGGCA GCCAAACCGT AA
  • This corresponds to the amino acid sequence <SEQ ID 776; ORF120-1>:
  • 1 MMKTFKNIFS AAILSAALPC AYAAGLPQSA VLHYSGSYGI
    PATMTFERSG
    51 NAYKIVSTIK VPLYNIRFES GGTVVGNTLH PTYYRDIRRG
    KLYAEAKFAD
    101 GSVTYGKAGE SKTEQSPKAM DLFTLAWQLA ANDAKLPPGL
    KITNGKKLYS
    151 VGGLNKAGTG KYSIGGVETE VVKYRVRRGD DAVMYFFAPS
    LNNIPAQIGY
    201 TDDGKTYTLK LKSVQINGQA AKP*
  • Computer analysis of this amino acid sequence gave the following results:
  • Homology with a Predicted ORF from N. meningitidis (Strain A)
  • ORF120 shows 92.4% identity over a 184aa overlap with an ORF (ORF120a) from strain A of N. meningitidis:
  • Figure US20130064846A1-20130314-C00351
  • The complete length ORF120a nucleotide sequence <SEQ ID 777> is:
  • 1 ATGATGAAGA CTTTTAAAAA TATATTTTCC GCCGCCATTT
    TGTCCGCCGC
    51 CCTGCCGTGC GCGTATGCGG CAGGGCTGCC CNAATCCGCC
    GTGCTGCACT
    101 ATTCCGGCAG CTACGGCATT CCCGCCACNA NNANNTNNGN
    ACNNNGNGNC
    151 AATGCTTNCA AAATCGTTTC GACGATTAAA GTGCCGCTAT
    ACAATATCCG
    201 TTTCGAGTCC GGCGGTACGG TTGTCGGCAA TACCCTGCAC
    CCTACCTACT
    251 ATAGAGACAT ACGCAGGGGC AAACTGTATG CGGAAGCCAA
    ATTCGCCGAC
    301 GGCAGCGTAA CCTACGGCAA AGCGGNNNNN ANCNNNNNNG
    NGCAAAGCCC
    351 CAAGGCTATG GATTTGTTCA CGCTTGCNTG GCAGTTGGCG
    GCAAATGACG
    401 CGAAACTCCC CCCGGGGCTG AAAATCACCA ACGGCAAAAA
    ACTTTATTCC
    451 GTCGGCGGTT TGAATAAGGC GGGTACAGGA AAATACAGCA
    TAGGCGGCGT
    501 GGAAACCGAA GTCGTCAAAT ATCGGGTGCG GCGCGGCGAC
    GATGCGGTAA
    551 TGTATTTCTT CGCACCGTCC CTGAACAATA TTCCGGCACA
    AATCGGCTAT
    601 ACCGACGACG GCAAAACCTA TACGCTGAAA CTCAAATCGG
    TGCAGATCAA
    651 CGGCCAGGCA GCCAAACCGT AA
  • This encodes a protein having amino acid sequence <SEQ ID 778>:
  • 1 MMKTFKNIFS AAILSAALPC AYAAGLPXSA VLHYSGSYGI
    PATXXXXXXX
    51 NAXKIVSTIK VPLYNIRFES GGTVVGNTLH PTYYRDIRRG
    KLYAEAKFAD
    101 GSVTYGKAXX XXXXQSPKAM DLFTLAWQLA ANDAKLPPGL
    KITNGKKLYS
    151 VGGLNKAGTG KYSIGGVETE VVKYRVRRGD DAVMYFFAPS
    LNNIPAQIGY
    201 TDDGKTYTLK LKSVQINGQA AKP*
  • ORF120a and ORF120-1 show 93.3% identity in 223 aa overlap:
  • Figure US20130064846A1-20130314-C00352
  • Homology with a Predicted ORF from N. gonorrhoeae
  • ORF120 shows 97.8% identity over 184 aa overlap with a predicted ORF (ORF120ng) from N. gonorrhoeae:
  • Figure US20130064846A1-20130314-C00353
  • The complete length ORF120ng nucleotide sequence <SEQ ID 779> is:
  • 1 ATGATGAAGA CTTTTAAAAA TATATTTTCC GCCGCCATTT
    TGTCCGCCGC
    51 CCTGCCGTGC GCGTATGCGG CAAGGCTACC CCAATCCGCC
    GTGCTGCACT
    101 ATTCCGGCAG CTACGGCATT CCCGCCACGA TGACATTTGA
    ACGCAGCGGC
    151 AATGCTTACA AAATCGTTTC GACGATTAAA GTGCCGCTAT
    ACAATATCCG
    201 TTTCGAATCC GGCGGTACGG TTGTCGGCAA TACCCTGCAC
    CCTGCCTACT
    251 ATAAAGACAT ACGCAGGGGC AAACTGTATG CGGAAGCCAA
    ATTCGCCGAC
    301 GGCAGCGTAA CCTACGGCAA AGCGGGCGAG AGCAAAACCG
    AGCAAAGCCC
    351 CAAGGCTATG GATTTGTTCA CGCTTGCCTG GCAGTTGGCG
    GCAAATGACG
    401 CGAAACTCCC CCCGGGTCTG AAAATCACCA ACGGCAAAAA
    ACTTTATTCC
    451 GTCGGCGGCC TGAATAAGGC GGGTACGGGA AAATACAGCA
    TaggCGGCGT
    501 GGAAACCGAA GTCGTCAAAT ATCGGGTGCG GCGCGGCGAC
    GATACGGTAA
    551 CGTATTTCTT CGCACCGTCC CTGAACAATA TTCCGGCACA
    AATCGGCTAT
    601 ACCGACGACG GCAAAACCTA TACGCTGAAG CTCAAATCGG
    TGCAGATCAA
    651 CGGACAGGCC GCCAAACCGT AA
  • This encodes a protein having amino acid sequence <SEQ ID 780>:
  • 1 MMKTFKNIFS AAILSAALPC AYAARLPQSA VLHYSGSYGI
    PATMTFERSG
    51 NAYKIVSTIK VPLYNIRFES GGTVVGNTLH PAYYKDIRRG
    KLYAEAKFAD
    101 GSVTYGKAGE SKTEQSPKAM DLFTLAWQLA ANDAKLPPGL
    KITNGKKLYS
    151 VGGLNKAGTG KYSIGGVETE VVKYRVRRGD DTVTYFFAPS
    LNNIPAQIGY
    201 TDDGKTYTLK LKSVQINGQA AKP*
  • In comparison with ORF120-1, ORF120ng shows 97.8% identity in 223 aa overlap:
  • Figure US20130064846A1-20130314-C00354
  • This analysis, including the presence of a putative leader sequence in the gonococcal protein suggests that the proteins from N. meningitidis and N. gonorrhoeae, and, their epitopes, could be useful antigens for vaccines or diagnostics, or for raising antibodies.
  • Example 93
  • The following partial DNA sequence was identified in N. meningitidis <SEQ ID 781>:
  • 1 ATGTATCGGA GGAAAGGGCG GGGCATCAAG CCGTGGATGG
    GTGCCGGTGC
    51 .GCGTTTGCC GCCTTGGTCT GGCTGGTTTT CGCGCTCGGC
    GATACTTTGA
    101 CTCCGTTTGC GGTTGCGGCG GTGCTGGCGT ATGTATTGGA
    CCCTTTGGTC
    151 GAATGGTTGC AGAAAAAGGG TTTGAACCGT GCATCCGCTT
    CGATGTCTGT
    201 GATGGTGTTT TCCTTGATTT TGTTGTTGGC ATTATTGTTG
    ATTATCGTCC
    251 CTATGCTGGT CGGGCAGTTC AACAATTTGG CATCGCGCCT
    GCCCCAATTA
    301 ATCGGTTTTA TGCAGAACAC GCTGCTGCCG TGGTTGAAAA
    ATACAATCGG
    351 CGGATATGTG GAAATCGATC AGGCATCTAT TATTGCGTGG
    CTTCAGGCGC
    401 ATACGGGAGA GTTGAGCAAC GCGCTTAAGG CGTGGTTTCC
    CGTTTTGATG
    451 AGGCAGGGCG GCAATATT..
  • This corresponds to the amino acid sequence <SEQ ID 782; ORF121>:
  • 1 MYRRKGRGIK PWMGAGXAFA ALVWLVFALG DTLTPFAVAA
    VLAYVLDPLV
    51 EWLQKKGLNR ASASMSVMVF SLILLLALLL IIVPMLVGQF
    NNLASRLPQL
    101 IGFMQNTLLP WLKNTIGGYV EIDQASIIAW LQAHTGELSN
    ALKAWFPVLM
    151 RQGGNI..
  • Further work revealed the complete nucleotide sequence <SEQ ID 783>:
  • 1 ATGTATCGGA GGAAAGGGCG GGGCATCAAG CCGTGGATGG
    GTGCCGGTGC
    51 GGCGTTTGCC GCCTTGGTCT GGCTGGTTTT CGCGCTCGGC
    GATACTTTGA
    101 CTCCGTTTGC GGTTGCGGCG GTGCTGGCGT ATGTATTGGA
    CCCTTTGGTC
    151 GAATGGTTGC AGAAAAAGGG TTTGAACCGT GCATCCGCTT
    CGATGTCTGT
    201 GATGGTGTTT TCCTTGATTT TGTTGTTGGC ATTATTGTTG
    ATTATCGTCC
    251 CTATGCTGGT CGGGCAGTTC AACAATTTGG CATCGCGCCT
    GCCCCAATTA
    301 ATCGGTTTTA TGCAGAACAC GCTGCTGCCG TGGTTGAAAA
    ATACAATCGG
    351 CGGATATGTG GAAATCGATC AGGCATCTAT TATTGCGTGG
    CTTCAGGCGC
    401 ATACGGGAGA GTTGAGCAAC GCGCTTAAGG CGTGGTTTCC
    CGTTTTGATG
    451 AGGCAGGGCG GCAATATTGT CAGCAGTATC GGCAACCTGC
    TGCTGCTTCC
    501 CTTGCTGCTT TACTATTTCC TGCTGGATTG GCAGCGGTGG
    TCGTGCGGCA
    551 TTGCCAAACT GGTTCCGAgG CGTTTTGCCG GTGCTTATAC
    GCGCATTACA
    601 GGCAATTTGA ACGAGGTATT GGGCGAATTT TTGCGCGGGC
    AGCTTCTGGT
    651 AATGCTGATT ATGGGCTTGG TTTACGGTTT GGGATTGGTG
    CTGGTCGGGC
    701 TGGATTCGGG GTTTGCCATC GGTATGCTTG CCGGTATTTT
    GGTGTTTGTC
    751 CCTTATCTCG GGGCGTTTAC GGGATTGCTG CTTGCCACCG
    TCGCCGCCTT
    801 GCTCCAGTTC GGTTCGTGGA ACGGCATCCT ATCGGTTTGG
    GCGGTTTTTG
    851 CCGTAGGACA GTTTCTCGAA AGTTTTTTCA TTACGCCGAA
    AATCGTGGGA
    901 GACCGTATCG GGCTGTCGCC GTTTTGGGTT ATCTTTTCGC
    TGATGGCGTT
    951 CGGGCAGCTG ATGGGCTTTG TCGGAATGTT GGCGGGATTG
    CCTTTGGCCG
    1001 CCGTAACCTT GGTCTTGCTT CGCGAGGGCG TGCAGAAATA
    TTTTGCCGGC
    1051 AGTTTTTACC GGGGCAGGTA G
  • This corresponds to the amino acid sequence <SEQ ID 784; ORF121-1>:
  • 1 MYRRKGRGIK PWMGAGAAFA ALVWLVFALG DTLTPFAVAA
    VLAYVLDPLV
    51 EWLQKKGLNR ASASMSVMVF SLILLLALLL IIV PMLVGQF
    NNLASRLPQL
    101 IGFMQNTLLP WLKNTIGGYV EIDQASIIAW LQAHTGELSN
    ALKAWFPVLM
    151 RQGGNIVSSI GNLLLLPLLL YYFLLDWQRW SCGIAKLVPR
    RFAGAYTRIT
    201 GNLNEVLGEF LRGQLLVMLI MGLVYGLGLV LV GLDSGFAI
    GMLAGILVFV
    251 PYLGAFTGLL LATVAALLQF GSWNGILSVW AVFAVGQFLE
    SFFITPKIVG
    301 DRIGLSPFWV IFSLMAFGQL MGFVGMLAGL PLAAVTLVLL
    REGVQKYFAG
    351 SFYRGR*
  • Computer analysis of this amino acid sequence gave the following results:
  • Homology with a Predicted ORF from N. meningitidis (Strain A)
  • ORF121 shows 98.7% identity over a 156aa overlap with an ORF (ORF121a) from strain A of N. meningitidis:
  • Figure US20130064846A1-20130314-C00355
  • The complete length ORF121a nucleotide sequence <SEQ ID 785> is:
  • 1 ATGTATCGGA GGAAAGGGCG GGGCATCAAG CCGTGGATGG
    ATGCCGGTGC
    51 GGCGTTTGCC GCCTTGGTCT GGCTGGTTTT CGCGCTCGGC
    GATACTTTGA
    101 CTCCGTTTGC GGTTGCGGCG GTGCTGGCGT ATGTATTGGA
    CCCTTTGGTC
    151 GAATGGTTGC AGAAAAAGGG TTTGAACCGT GCATCCGCTT
    CGATGTCTGT
    201 GATGGTGTTT TCCTTGATTT TGTTGTTGGC ATTATTGTTG
    ATTATTGTCC
    251 CTATGCTGGT CGGGCAGTTC AACAATTTGG CATCGCGCCT
    GCCCCAATTA
    301 ATCGGTTTTA TGCAGAACAC GCTGCTGCCG TGGTTGAAAA
    ATACAATCGG
    351 CGGATATGTG GAAATCGATC AGGCATCTAT TATTGCGTGG
    CTTCAGGCGC
    401 ATACGGGCGA GTTGAGCAAC GCGCTTAAGG CGTGGTTTCC
    CGTTTTGATG
    451 AGGCAGGGCG GCAATATTGT CAGCAGTATC GGCAACCTGC
    TGCTGCTTCC
    501 CTTGCTGCTT TACTATTTCC TGCTGGATTG GCAGCGGTGG
    TCGTGCGGCA
    551 TTGCCAAACT GGTTCCGAGG CGTTTTGCCG GTGCTTATAC
    GCGCATTACA
    601 GGCAATTTGA ACGAGGTATT GGGCGAATTT TTGCGCGGGC
    AGCTTCTGGT
    651 GATGCTGATT ATGGGTTTGG TTTACGGCTT GGGGTTGGTG
    CTGGTCGGGC
    701 TGGATTCGGG GTTTGCAATC GGTATGGTTG CCGGTATTTT
    GGTTTTTGTT
    751 CCCTATTTGG GCGCGTTTAC AGGACTGCTG CTGGCAACCG
    TCGCCGCCTT
    801 GCTCCAGTTC GGTTCGTGGA ACGGCATCTT GGCTGTTTGG
    GCGGTTTTTG
    851 CCGTAGGACA GTTTCTCGAA AGTTTTTTCA TTACGCCGAA
    AATCGTGGGA
    901 GACCGTATCG GCCTGTCGCC GTTTTGGGTT ATCTTTTCGC
    TGATGGCGTT
    951 CGGGCAGCTG ATGGGCTTTG TCGGAATGTT GGCCGGATTG
    CCTTTGGCCG
    1001 CCGTAACCTT GGTCTTGCTT CGCGAGGGCG TGCAGAAATA
    TTTTGCCGGC
    1051 AGTTTTTACC GGGGCAGGTA G
  • This encodes a protein having amino acid sequence <SEQ ID 786>:
  • 1 MYRRKGRGIK PWMDAGAAFA ALVWLVFALG DTLTPFAVAA
    VLAYVLDPLV
    51 EWLQKKGLNR ASASMSVMVF SLILLLALLL IIV PMLVGQF
    NNLASRLPQL
    101 IGFMQNTLLP WLKNTIGGYV EIDQASIIAW LQAHTGELSN
    ALKAWFPVLM
    151 RQGGNIVSSI GNLLLLPLLL YYFLLDWQRW SCGIAKLVPR
    RFAGAYTRIT
    201 GNLNEVLGEF LRGQLLVMLI MGLVYGLGLV LV GLDSGFAI
    GMVAGILVFV
    251 PYLGAFTGLL LATVAALLQF GSWNGILAVW AVFAVGQFLE
    SFFITPKIVG
    301 DRIGLSPFWV IFSLMAFGQL MGFVGMLAGL PLAAVTLVLL
    REGVQKYFAG
    351 SFYRGR*
  • ORF121a and ORF121-1 show 99.2% identity in 356 aa overlap:
  • Figure US20130064846A1-20130314-C00356
  • Homology with a Predicted ORF from N. gonorrhoeae
  • ORF121 shows 97.4% identity over a 156 aa overlap with a predicted ORF (ORF121ng) from N. gonorrhoeae:
  • Figure US20130064846A1-20130314-C00357
  • An ORF121ng nucleotide sequence <SEQ ID 787> was predicted to encode a protein having amino acid sequence <SEQ ID 788>:
  • 1 MYRRKGRGIK PWMGAGAAFA ALVWLVYALG DTLTPFAVAA
    VLAYVLDPLV
    51 EWLQKKGLNR ASASMSVMVF SLILLLALLL IIV PMLVGQF
    NNLASRLPQL
    101 IGFMQNTLLP WLKNTIGGYV EIDQASIIAW FQAHTGELSN
    ALKAWFPVLM
    151 KQGGNIVSTI GNLLLPPLLL YYFLLDWHRW SCGIPKLVPR
    RFAGAYTRIT
    201 GNLNKVWGKF LRGQLLGETE RGAVVCRVGR ECWEGGGARS
    RPSDDGWPRW
    251 GGG*
  • Further work revealed the following gonoccocal DNA sequence <SEQ ID 789>:
  • 1 ATGTATCGGA GAAAAGGACG GGGCATCAAG CCGTGGATGG
    GTGCCGGCGC
    51 GGCGTTTGCC GCCTTGGTCT GGCTGGTTTA CGCGCTCGGC
    GATACTTTGA
    101 CTCCGTTTGC GGTTGCGGCG GTGCTGGCGT ATGTGTTGGA
    CCCTTTGGTC
    151 GAATGGTTGC AGAAAAAGGG TTTGAACCGT GCATCCGCTT
    CGATGTCTGT
    201 GATGGTGTTT TCCTTGATTT TGTTGTTGGC ATTATTGTTG
    ATTATTGTCC
    251 CTATGCTGGT CGGGCAGTTC AATAATTTGG CATCTCGCCT
    GCCCCAATTA
    301 ATCGGTTTTA TGCAGAACAC GCTGCTGCCG TGGTTGAAAA
    ATACAATCGG
    351 CGGATATGTG GAAATCGATC AGGCATCTAT TATTGCGTGG
    TTTCAGGCGC
    401 ATACGGGCGA GTTGAGCAAC GCGCTTAAGG CGTGGTTTCC
    CGTTTTGATG
    451 AAACAGGGCG GCAATATTGT CAGCAGTATC GGCAACCTGC
    TGCTGCCGCC
    501 CTTGCTGCTT TACTATTTCC TGCTGGATTG GCAGCGGTGG
    TCGTGCGGCA
    551 TCGCCAAACT GGTTCCGAGG CGTTTTGCCG GTGCTTATAC
    GCGCATTACG
    601 GGTAATTTGA ACGAGGTATT GGGCGAATTT TTGCGCGGTC
    AGCTTCTGGT
    651 GATGCTGATT ATGGGCTTGG TTTACGGTTT GGGATTGATG
    CTAGTCGGAC
    701 TGGATTCGGG ATTTGCCATC GGTATGGTTG CCGGTATTTT
    GGTGTTTGTC
    751 CCCTATTTGG GTGCGTTTAC GGGATTGCTG CTTGCCACTG
    TTGCAGCCTT
    801 GCTCCAGTTC GGTTCGTGGA ACGGAATCTT GGCTGTTTGG
    GCGGTTTTTG
    851 CCGTCGGTCA GTTTCTCGAA AGTTTTTTCA TTACGCCGAA
    AATTGTAGGA
    901 GACCGTATCG GCCTGTCGCC GTTTTGGGTT ATCTTTTCGC
    TGATGGCGTT
    951 CGGAGAGCTG ATGGGCTTTG TCGGAATGTT GGCCGGATTG
    CCTTTGGCCG
    1001 CCGTAACCTT GGTCTTGCTT CGCGAGGGCG CGCAGAAATA
    TTTTGCCGGC
    1051 AGTTTTTACC GGGGCAGGTA G
  • This corresponds to the amino acid sequence <SEQ ID 790; ORF121ng-1>:
  • 1 MYRRKGRGIK PWMGAGAAFA ALVWLVYALG DTLTPFAVAA
    VLAYVLDPLV
    51 EWLQKKGLNR ASASMSVMVF SLILLLALLL IIV PMLVGQF
    NNLASRLPQL
    101 IGFMQNTLLP WLKNTIGGYV EIDQASIIAW FQAHTGELSN
    ALKAWFPVLM
    151 KQGGNIVSSI GNLLLPPLLL YYFLLDWQRW SCGIAKLVPR
    RFAGAYTRIT
    201 GNLNEVLGEF LRGQLLVMLI MGLVYGLGLM LV GLDSGFAI
    GMVAGILVFV
    251 PYLGAFTGLL LATVAALLQF GSWNGILAVW AVFAVGQFLE
    SFFITPKIVG
    301 DRIGLSPFWV IFSLMAFGEL MGFVGMLAGL PLAAVTLVLL
    REGAQKYFAG
    351 SFYRGR*
  • ORF121ng-1 and ORF121-1 show 97.5% identity in 356 aa overlap:
  • Figure US20130064846A1-20130314-C00358
  • In addition, ORF121ng-1 shows homology to a permease from H. influenzae:
  • sp|P43969|PERM_HAEIN PUTATIVE PERMEASE PERM HOMOLOG Length = 349
    Score = 69.9 bits (168), Expect = 2e−11
    Identities = 67/317 (21%), Positives = 120/317 (37%), Gaps = 7/317 (2%)
    Query: 26 VYALGDTLTPFAVAAVLAYVLDPLVEWL-QKKGLNRASASMSVMVFSXXXXXXXXXXXVP 84
    +Y  GD + P  +A VL+Y+L+  + +L Q     R  A++ +               VP
    Sbjct: 32 IYFFGDLIAPLLIALVLSYLLEIPINFLNQYLKCPRMLATILIFGSFIGLAAVFFLVLVP 91
    Query: 85 MLVGQFNNLASRLPQLIGFMQNTLLPWLKNTIGGYVE-IDQASIIAWFQAHTGELSNALK 143
    ML  Q  +L S LP +     N    WL N    Y E ID + + + F +   ++    +
    Sbjct: 92 MLWNQTISLLSDLPAMF----NKSNEWLLNLPKNYPELIDYSMVDSIFNSVREKILGFGE 147
    Query: 144 AWFPVLMKQGGNIVSSIGNXXXXXXXXXXXXXDWQRWSCGIAKLVPRRFAGAYTRITGNL 203
    +   + +    N+VS                 D      G+++ +P+    A+ R    +
    Sbjct: 148 SAVKLSLASIMNLVSLGIYAFLVPLMMFFMLKDKSELLQGVSRFLPKNRNLAFXRWK-EM 206
    Query: 204 NEVLGEFLRGQXXXXXXXXXXXXXXXXXXXXDSGFAIGMVAGILVFVPYXXXXXXXXXXX 263
     + +  ++ G+                    +    +    G+ V VPY
    Sbjct: 207 QQQISNYINGKLLEILIVTLITYIIFLIFGLNYPLLLAFAVGLSVLVPYIGAVIVTIPVA 266
    Query: 264 XXXXXQFGSWNGILAVWAVFAVGQFLESFFITPKIVGDRIGLSPFWVIFSLMAFGELMGF 323
         QFG       +   FAV Q L+   + P +  + + L P  +I S++ FG L GF
    Sbjct: 267 LVALFQFGISPTFWYIIIAFAVSQLLDGNLLVPYLFSEAVNLHPLIIIISVLIFGGLWGF 326
    Query: 324 VGMLAGLPLAAVTLVLL 340
     G+   +PLA +   ++
    Sbjct: 327 WGVFFAIPLATLVKAVI 343
  • Based on this analysis, including the presence of a putative leader sequence and transmembrane domains in the two proteins, it is predicted that the proteins from N. meningitidis and N. gonorrhoeae, and their epitopes, could be useful antigens for vaccines or diagnostics, or for raising antibodies.
  • Example 94
  • The following partial DNA sequence was identified in N. meningitidis <SEQ ID 791>:
  • 1 ..ACTGCTTTTT CGGCGGCGCT GCGCTTGAGT CCATCATGAC
    TCGTCATATT
    51   TTTGTCCTTT GGGAAACCGT ATCAACAAAC AGCCGCCATC
    TTAACATTTT
    101   TTTGCACGTC CTGCCCGCCG CGTTCAAATG CGTACCAGCA
    ATACCGCCGC
    151   CTGCGCCTCT ATGCCTTCCA TCCGCCCGAG ATAGCCGAGT
    TTTTCGTTGG
    201   TTTTGCCTTT GATGTTGACG CACGAAATGT CTATGCCCAA
    ATCGGCGGCG
    251   ATGTTGGCAC GCATTTGCGG AATGTGCGGC GCGAGTGTGG
    GTTTCTGTGC
    301   AATCACGGTC GTATCGACAT TGACCGCCTG CCAACCCTGC
    GCCTGAACGC
    351   TTTGATACGC CGCACGCAAA AGGACGCGGC TGTCCGCATC
    TTTGAACTCT
    401   GCGGCGGTGT CGGGGAAATG GCTGCCGATA TCGCCCAAAC
    CTGCCGCACC
    451   GAGCAGCGCG TCGGTAACGG CGTGCAGCAG CGCATCGGCA
    TCGGAGTGTC
    501   CGAGCAGCCC TTTTTCAAAT GGGATTTCAA CTCCGCCAAG
    TATCAG..
  • This corresponds to the amino acid sequence <SEQ ID 792; ORF122>:
  • 1 ..TAFSAALRLS PSXLVIFLSF GKPYQQTAAI LTFFCTSCPP
    RSNAYQQYRR
    51   LRLYAFHPPE IAEFFVGFAF DVDARNVYAQ IGGDVGTHLR
    NVRRECGFLC
    101   NHGRIDIDRL PTLRLNALIR RTQKDAAVRI FELCGGVGEM
    AADIAQTCRT
    151   EQRVGNGVQQ RIGIGVSEQP FFKWDFNSAK YQ..
  • Further work revealed the complete nucleotide sequence <SEQ ID 793>:
  • 1 ATATCGTACT GGGCAAGCAG TTCGCCGGAT TTTTTGGAAG
    TAGATACCGC
    51 GCCTTTGATT TTTTTGCCGC TCTTACCCAA GGCTTCGATG
    AAAAAGTTGA
    101 TGGTCGAGCC GGTACCGATG CCGATATATT CATTTTCGGG
    TACGAATTCG
    151 ACTGCTTTTT CGGCGGCGAT GCGCTTGAGT TCGTCTTGTG
    TCGTCATATT
    201 TTTGTCCTTT GGGAAACCGT ATCAACAAAC AGCCGCCATC
    TTAACATTTT
    251 TTTGCACGTC CTGCCCGCCG CGTTCAAATG CGTACCAGCA
    ATACCGCCGC
    301 CTGCGCCTCT ATGCCTTCCA TCCGCCCGAG ATAGCCGAGT
    TTTTCGTTGG
    351 TTTTGCCTTT GATGTTGACG CACGAAATGT CTATGCCCAA
    ATCGGCGGCG
    401 ATGTTGGCAC GCATTTGCGG AATGTGCGGC GCGAGTTTGG
    GTTTCTGTGC
    451 AATCACGGTC GTATCGACAT TGACCGCCTG CCAACCCTGC
    GCCTGAACGC
    501 TTTGATACGC CGCACGCAAA AGGACGCGGC TGTCCGCATC
    TTTGAACTCT
    551 GCGGCGGTGT CGGGGAAATG GCTGCCGATA TCGCCCAAAC
    CTGCCGCACC
    601 GAGCAGCGCG TCGGTAACGG CGTGCAGCAG CGCATCGGCA
    TCGGAGTGTC
    651 CGAGCAGCCC TTTTTCAAAT GGGATTTCAA CTCCGCCAAG
    TATCAGCTTT
    701 CTGCCTTCGG TCAGTTGGTG GACATCGTAG CCCTGTCCGA
    TACGGATGTT
    751 CGTCATCGTT TGTGTTCCTG A
  • This corresponds to the amino acid sequence <SEQ ID 794; ORF122-1>:
  • 1 ISYWASSSPD FLEVDTAPLI FLPLLPKASM KKLMVEPVPM
    PIYSFSGTNS
    51 TAFSAAMRLS SSCVVIFLSF GKPYQQTAAI LTFFCTSCPP
    RSNAYQQYRR
    101 LRLYAFHPPE IAEFFVGFAF DVDARNVYAQ IGGDVGTHLR
    NVRREFGFLC
    151 NHGRIDIDRL PTLRLNALIR RTQKDAAVRI FELCGGVGEM
    AADIAQTCRT
    201 EQRVGNGVQQ RIGIGVSEQP FFKWDFNSAK YQLSAFGQLV
    DIVALSDTDV
    251 RHALCS*
  • Computer analysis of this amino acid sequence gave the following results:
  • Homology with a Predicted ORF from N. meningitidis (Strain A)
  • ORF122 shows 94.0% identity over a 182aa overlap with an ORF (ORF122a) from strain A of N. meningitidis:
  • Figure US20130064846A1-20130314-C00359
  • The complete length ORF122a nucleotide sequence <SEQ ID 795> is:
  • 1 ATATCATATT GGGCAAGCAG TTCACTGGAT TTTTTGGAAG
    TAGATACCGC
    51 GCCTTTGATT TTTTTGCCGC TCTTACCCAA GGCTTCGATG
    AAAAAGTTGA
    101 TGGTCGAACC GGTACCGATG CCGATGTATT CGTTTTCGGG
    TACGAATTCG
    151 ACTGCNTTTT CGGCGGCGAT GCGCTTGAGT TCGTCTTGTG
    TCGTCATATT
    201 TTTGTCCTTT GGGAAACCGT ATCAACAAAC AGCCGCCATC
    TTAACATTTT
    251 TTNNNACGTC CTGCCCGCCG CGTTCAAATC CTTACCAGCA
    ATACCGCCGC
    301 CTGCGACTCT ATGCCTTCCA TGCGCCCGAG ATAACCGAGT
    TTTTCGTTGG
    351 TTTTGCCTTT GANGTTGACG CACGAAATGT CTATGCCCAA
    ATCGGCGGCG
    401 ATGTTGGCAC GCATTTGCGG AATATGCGGC GCGAGTTTGG
    GTTTCTGTGC
    451 AATCACGGTC GTATCGACAT TGACCGCCTG CCAACCCTGC
    GCCTGAACGC
    501 TTTGATACGC CGCACGCAAA AGGACGCGGC TGTCCGCATC
    TTTGAACTCT
    551 GCGGCGGTGT CGGGGAAATG GCTGCCGATA TCGCCCAAAC
    CTGCCGCACC
    601 GAGCAGCGCG TCGGTAACGG CGTGCAGCAG CGCATCGGCA
    TCGGAGTGTC
    651 CGAGCAGCCC TTTTTCAAAT GGGATTTCAA CTCCGCCAAG
    TATCAGCTTT
    701 CTGCCTTCGG TCAGTTGGTG GACATCGTAG CCCTGTCCGA
    TACGGATGTT
    751 CGTCATCGTT TGTGTTCCTG A
  • This encodes a protein having amino acid sequence <SEQ ID 796>:
  • 1 ISYWASSSLD FLEVDTAPLI FLPLLPKASM KKLMVEPVPM
    PMYSFSGTNS
    51 TAFSAAMRLS SSCVVIFLSF GKPYQQTAAI LTFFXTSCPP
    RSNPYQQYRR
    101 LRLYAFHAPE ITEFFVGFAF XVDARNVYAQ IGGDVGTHLR
    NMRREFGFLC
    151 NHGRIDIDRL PTLRLNALIR RTQKDAAVRI FELCGGVGEM
    AADIAQTCRT
    201 EQRVGNGVQQ RIGIGVSEQP FFKWDFNSAK YQLSAFGQLV
    DIVALSDTDV
    251 RHRLCS*
  • ORF122a and ORF122-1 show 96.9% identity in 256 aa overlap:
  • Figure US20130064846A1-20130314-C00360
  • Homology with a Predicted ORF from N. gonorrhoeae
  • ORF122 shows 89.6% identity over a 182 aa overlap with a predicted ORF (ORF122ng) from N. gonorrhoeae:
  • Figure US20130064846A1-20130314-C00361
  • The complete length ORF122ng nucleotide sequence <SEQ ID 797> is:
  • 1 ATGTCGTACC GGGCAAGCAG TTCGCCGGAT TTTTTGGAGG
    TTGAAACCGC
    51 GCCTTTGATT TTTTTACCGC TTTTGCCCAA GGCTTCGATG
    AAGAAATTGa
    101 tgGTCGAACC GgtaCCGATG CCGATGTATT CGTTTTCGGG
    TACGAATTCG
    151 ACTGCTTTTT CGGCGGCGAT GCGCttgAgt TCgtcttgcg
    TcgTCATATT
    201 TTTAtccttt gGGAAaccct atcaAcaAAc agccgccatC
    TTAACATTTT
    251 TTTGCACGtc ctggccgccg cgttcaAATc cgtaccaGca
    ataccgccgc
    301 ctgcgcctCT AtgcCTTCCA TCCGCCCGAG ATAGCCGAGT
    TTTTCGTTGG
    351 TTTTGCCTTT GATatTGACG CACGAAATAT CGatacCCAa
    atcggcgGCG
    401 ATGTTGGCAC GCATTTGCGG AATGTGCGGT GCGAGTTTGG
    GTTTCTGTGC
    451 AATCACGGTC GTATCGACAT TGACCACCTG CCAACCCTGC
    GCCTGAACGC
    501 TTTGATACGC CGCACGCAAA AGGACGCGGC TGTCCGCATC
    TTTGAACTCT
    551 GCGGCGGTGT CGGGAAAATG GCTGCCGATG TCGCCCAAAC
    CTGCCGCACC
    601 GAGCAGCgcg tcggtaaCGG CGTGCAGCAG cgcgTcgGCA
    TCCGAATGCC
    651 CGAGCAGCCC TTTTTCAAAT GGGATTTCAA CTCCGCCAAG
    TATCAGCTTT
    701 CTGCCTTCGG TCAATTGGTG GACATCGTAG CCCTGTCCGA
    TACGGATATT
    751 CGTCATCGTT TGTGTTCCTG A
  • This encodes a protein having amino acid sequence <SEQ ID 798>:
  • 1 MSYRASSSPD FLEVETAPLI FLPLLPKASM KKLMVEPVPM
    PMYSFSGTNS
    51 TAFSAAMRLS SSCVVIFLSF GKPYQQTAAI LTFFCTSWPP
    RSNPYQQYRR
    101 LRLYAFHPPE IAEFFVGFAF DIDARNIDTQ IGGDVGTHLR
    NVRCEFGFLC
    151 NHGRIDIDHL PTLRLNALIR RTQKDAAVRI FELCGGVGKM
    AADVAQTCRT
    201 EQRVGNGVQQ RVGIRMPEQP FFKWDFNSAK YQLSAFGQLV
    DIVALSDTDI
    251 RHRLCS*
  • ORF122ng and ORF122-1 show 92.6% identity in 256 aa overlap:
  • Figure US20130064846A1-20130314-C00362
  • Based on this analysis, it is predicted that the proteins from N. meningitidis and N. gonorrhoeae, and their epitopes, could be useful antigens for vaccines or diagnostics, or for raising antibodies.
  • Example 95
  • The following partial DNA sequence was identified in N. meningitidis <SEQ ID 799>:
  • 1 ..GCCGGCGCGA GTGCGAACAA CATTTCCGCG CGTTTTGCGG
    AAACACCCGT
    51   CGCTGTCAGC GTTACCCTGA TCGGCACGGT ACTTGCCGTC
    ATGCTGCCCG
    101   TTACCGAATA TGAAAACTTC CTGCTGCTTA TCGGCTCGGT
    ATTTGCGCCG
    151   ATGGGGCGGA TTTTGATTGC CGACTTTTTC GTCTTGAAAC
    GGCGTGA
  • This corresponds to the amino acid sequence <SEQ ID 800; ORF125>:
  • 1 ..AGASANNISA RFAETPVAVS VTLIGTVLAV MLPVTEYENF
    LLLIGSVFAP
    51   MGGFDCRLFR LETA*
  • Further work revealed the complete nucleotide sequence <SEQ ID 801>:
  • 1 ATGTCGGGCA ATGCCTCCTC TCCTTCATCT TCCTCCGCCA
    TCGGGCTGAT
    51 TTGGTTCGGC GCGGCGGTAT CGATTGCCGA AATCAGCACG
    GGTACGCTGC
    101 TTGCGCCTTT GGGCTGGCAG CGCGGTCTGG CGGCTCTACT
    TTTGGGTCAT
    151 GCCGTCGGCG GCGCGCTGTT TTTTGCGGCG GCGTATATCG
    GCGCACTGAC
    201 CGGACGCAGC TCGATGGAAA GCGTGCGCCT GTCGTTCGGC
    AAACGCGGTT
    251 CAGTGCTGTT TTCCGTGGCG AATATGCTGC AACTGGCCGG
    CTGGACGGCG
    301 GTGATGATTT ACGCCGGCGC AACGGTCAGC TCCGCTTTGG
    GCAAAGTGTT
    351 GTGGGACGGC GAATCTTTTG TCTGGTGGGC ATTGGCAAAC
    GGCGCGCTGA
    401 TTGTGCTGTG GCTGGTTTTC GGCGCACGCA AAACAGGCGG
    GCTGAAAACC
    451 GTTTCGATGC TGCTGATGCT GTTGGCGGTT CTGTGGCTGA
    GTGCCGAAGT
    501 CTTTTCCACG GCAGGCAGCA CCGCCGCACA GGTTTCAGAC
    GGCATGAGTT
    551 TCGGAACGGC AGTCGAGCTG TCCGCCGTGA TGCCGCTTTC
    CTGGCTGCCG
    601 CTTGCCGCCG ACTACACGCG CCACGCGCGC CGCCCGTTTG
    CGGCAACCCT
    651 GACGGCAACG CTCGCCTACA CGCTGACCGG CTGCTGGATG
    TATGCCTTGG
    701 GTTTGGCAGC GGCGTTGTTC ACCGGAGAAA CCGACGTGGC
    AAAAATCCTG
    751 CTGGGCGCAG GTTTGGGTGC GGCAGGCATT TTGGCGGTCG
    TCCTCTCCAC
    801 CGTTACCACA ACGTTTCTCG ATGCCTATTC CGCCGGCGCG
    AGTGCGAACA
    851 ACATTTCCGC GCGTTTTGCG GAAACACCCG TCGCTGTCGG
    CGTTACCCTG
    901 ATCGGCACGG TACTTGCCGT CATGCTGCCC GTTACCGAAT
    ATGAAAACTT
    951 CCTGCTGCTT ATCGGCTCGG TATTTGCGCC GATGGCGGCG
    GTTTTGATTG
    1001 CCGACTTTTT CGTCTTGAAA CGGCGTGAGG AGATTGAAGG
    CTTTGACTTT
    1051 GCCGGACTGG TTCTGTGGCT TGCGGGCTTC ATCCTCTACC
    GCTTCCTGCT
    1101 CTCGTCCGGC TGGGAAAGCA GCATCGGTCT GACCGCCCCC
    GTAATGTCTG
    1151 CCGTTGCCAT TGCCACCGTA TCGGTACGCC TTTTCTTTAA
    AAAAACCCAA
    1201 TCTTTACAAA GGAACCCGTC ATGA
  • This corresponds to the amino acid sequence <SEQ ID 802; ORF125-1>:
  • 1 MSGNASSPSS SSAIGLIWFG AAVSIAEIST GTLLAPLGWQ
    RGLAALLLGH
    51 AVGGALFFAA AYIGALTGRS SMESVRLSFG KRGSVLFSVA
    NMLQLAGWTA
    101 VMIYAGATVS SALGKVLWDG ESFVWWALAN GALIVLWLVF
    GARKTGGLKT
    151 VSMLLMLLAV LWLSAEVFST AGSTAAQVSD GMSFGTAVEL
    SAVMPLSWLP
    201 LAADYTRHAR RPFAATLTAT LAYTLTGCWM YALGLAAALF
    TGETDVAKIL
    251 LGAGLGAAGI LAVVLSTVTT TFLDAYSAGA SANNISARFA
    ETPVAVGVTL
    301 IGTVLAVMLP VTEYENFLLL IGSVFAPMAA VLIADFFVLK
    RREEIEGFDF
    351 AGLVLWLAGF ILYRFLLSSG WESSIGLTAP VMSAVAIATV
    SVRLFFKKTQ
    401 SLQRNPS*
  • Computer analysis of this amino acid sequence gave the following results:
  • Homology with a Predicted ORF from N. meningitidis (Strain A)
  • ORF125 shows 76.5% identity over a 51 as overlap with an ORF (ORF125a) from strain A of N. meningitidis:
  • Figure US20130064846A1-20130314-C00363
  • The ORF125a partial nucleotide sequence <SEQ ID 803> is:
  • 1 ATGTCGGGCA ATGCCTCCTC TCNTTCATCT TCCGCCGCCA
    TCGGGCTGAT
    51 TTGGTTCGGC GCGGCGGTAT CGATTGCCGA AATCAGCACG
    GGTACACTGC
    101 TTGCGCCTTT GGGCTGGCAG CGCGGTCTGG CNGCTCTGCT
    TTTGGGTCAT
    151 GCCGTCGGCG GCGCGCTGTT TTTTGCGGCG GCGTATATCG
    GCGCACTGAC
    201 CGGACNCANC TCGATGGAAA GCGTGCGCCT GTCGTTCGGC
    AAACGCGGTT
    251 CAGTGCTGTT TTCCGTGGCG AATATGCTGC AACTGGCCGG
    CTGGACGGCG
    301 GTGATGATTT ACGCCGGCGC AACGGTCAGC TCCGCTTTGG
    GCAAAGTGTT
    351 GTGGGACGGC GAATCTTTTG TCTGGTGGGC ATTGGCAAAC
    GGCGCGCTGA
    401 TTGTGCTGTG GCTGGTTTTC GGCGCACGCA AAACAGGCGG
    GCTGAAAACC
    451 GTTTCGATGC TGCTGATGCT GTTGGCGGTT CTGTGGCTGA
    GTGCCGAANT
    501 NTTTTCCACG GCAGGCAGCA CCGCCGCANN GGTNNCAGAC
    GGCATGAGTT
    551 TCGGAACGGC AGTCGAGCTG TCCGCCGTNA TGCCGCTTTC
    TTGGCTGCCG
    601 CTGGCCGCCG ACTACACGCG CCACGCGCGC CGCCCGTTTG
    CGGCAACCCT
    651 GACGGCAACG CTCGCCTACA CGCTGACCGG CTGCTGGATG
    TATGCCTTGG
    701 GTTTGGCAGC GGCGTTGTTC ACCGGAGAAA CCGACGTGGC
    AAAAATCCTG
    751 CTGGGCGCAG GTTTGGGTGC GGCAGGCATT TTGGCGGTCG
    TCCTGTCGAC
    801 CGTTACCACC ACTTTTCTCG ATGCNTACTC CGCCGGCGTA
    AGTGCCAACA
    851 ATATTTCCGC CAAACTTTCG GAAATACCNA TCGCCGTTGC
    CGTCGCCGTT
    901 GTCGGCACAC TGCTTGCCGT CCTCCTGCCC GTTACCGAAT
    ATGAAAACTT
    951 CCTGCTGCTT ATCGGCTCGG TATTTGCGCC GATGGCGGCG
    GTTTTGATTG
    1001 CCGACTTTTT CGTCTTGAAA CGGCGTGAGG AGATTGAAGG
    C..
  • This encodes a protein having the partial amino acid sequence <SEQ ID 804>:
  • 1 MSGNASSXSS SAAIGLIWFG AAVSIAEIST GTLLAPLGWQ
    RGLAALLLGH
    51 AVGGALFFAA AYIGALTGXX SMESVRLSFG KRGSVLFSVA
    NMLQLAGWTA
    101 VMIYAGATVS SALGKVLWDG ESFVWWALAN GALIVLWLVF
    GARKTGGLKT
    151 VSMLLMLLAV LWLSAEXFST AGSTAAXVXD GMSFGTAVEL
    SAVMPLSWLP
    201 LAADYTRHAR RPFAATLTAT LAYTLTGCWM YALGLAAALF
    TGETDVAKIL
    251 LGAGLGAAGI LAVVLSTVTT TFLDAYSAGV SANNISAKLS
    EIPIAVAVAV
    301 VGTLLAVLLP VTEYENFLLL IGSVFAPMAA VLIADFFVLK
    RREEIEG..
  • ORF125a and ORF125-1 show 94.5% identity in 347 aa overlap:
  • Figure US20130064846A1-20130314-C00364
  • Homology with a Predicted ORF from N. gonorrhoeae
  • ORF125 shows 86.2% identity over a 65aa overlap with a predicted ORF (ORF125ng) from N. gonorrhoeae:
  • Figure US20130064846A1-20130314-C00365
  • An ORF125ng nucleotide sequence <SEQ ID 805> was predicted to encode a protein having amino acid sequence <SEQ ID 806>:
  • 1 MSGNASSPSS SAAIGLVWFG AAVSIAEIST GTLLAPLGWQ
    RGLAALLLGH
    51 AVGGALFFAA AYIGALTGRS SMESVRLSFG KCGSVLFSVA
    NMLQLAGWTA
    101 VMIYVGATVS SALGKVLWDG ESFVWWALAN GALIVLWLVF
    GARRTGGLKT
    151 VSMLLMLLAV LWLSVEVFAS SGTNAAPAVS DGMTFGTAVE
    LSAVMPLSWL
    201 PLAADYTRQA RRPFAATLTA TLAYTLTGCW MYALGLAAAL
    FTGETDVAKI
    251 LLGAGLGITG ILAVVLSTVT TTFLDTYSAG ASANNISARF
    AEIPVAVGVT
    301 LIRTVLAVML PVTEYKNFLL LIRSVFGPMA GGFDCRLFCL
    KTA*
  • Further work revealed the following gonococcal DNA sequence <SEQ ID 807>:
  • 1 ATGTCGGGCA ATGCCTCCTC TCCTTCATCT TCCGCCGCCA
    TCGGGCTGGT
    51 TTGGTTCGGC GCGGCGGTAT CGATTGCCGA AATCAGCACG
    GGTACGCTGC
    101 TCGCCCCCTT GGGCTGGCAG CGCGGTCTGG CGGCCCTGCT
    TTTGGGTCAT
    151 GCCGTCGGCG GCGCGCTGTT TTTTGCGGCG GCGTATATCG
    GCGCACTGAC
    201 CGGACGCAGC TCGATGGAAA GTGTGCGCCT GTCGTTCGGC
    AAATGCGGTT
    251 CAGTGCTGTT TTCCGTGGCG AATATGCTGC AACTGGCCGG
    CTGGACGGCG
    301 GTGATGATTT ACGTCGGCGC AACGGTCAGC TCCGCTTTGG
    GCAAAGTGTT
    351 GTGGGACGGC GAATCCTTTG TCTGGTGGGC ATTGGCAAAC
    GGCGCACTGA
    401 TCGTGCTGTG GCTGGTTTTC GGCGCACGCA GAACGGGCGG
    GCTGAAAACC
    451 GTTTCGATGC TGCTGATGCT GCTTGCCGTG TTGTGGTTGA
    GCGTCGAAGT
    501 GTTCGCTTCG TCCGGCACAA ACGCCGCGCC CGCCGTTTCA
    GACGGCATGA
    551 CCTTCGGAAC GGCAGTCGAA CTGTCCGCCG TCATGCCGCT
    TTCCTGGCTG
    601 CCGCTGGCCG CCGACTACAC GCGCCAAGCA CGCCGCCCGT
    TTGCGGCAAC
    651 CCTGACGGCA ACGCTCGCCT ATACGCTGAC GGGCTGCTGG
    ATGTATGCCT
    701 TGGGTTTGGC GGCGGCTCTG TTTACCGGAG AAACCGACGT
    GGCGAAAATC
    751 CTGTTGGGCG CGGGCTTGGG CATAACGGGC ATTCTGGCAG
    TCGTCCTCTC
    801 CACCGTTACC ACAACGTTTC TCGATACCTA TTCCGCCGGC
    GCGAGTGCGA
    851 ACAACATTTC CGCGCGTTTT GCGGAAATAC CCGTCGCTGT
    CGGCGTTACC
    901 CTGATCGGCA CGGTGCTTGC CGTCATGCTG CCCGTTACCG
    AATATAAAAA
    951 CTTCCTGCTG CTTATCGGCT CGGTATTTGC GCCGATGGCG
    GCGGTTTTGA
    1001 TTGCCGACTT TTTCGTCTTA AAACGGCGTG AGGAGATTGA
    AGGCTTTGAC
    1051 TTTGCCGGAC TGGTTCTGTG GCTGGCAGGC TTCATCCTCT
    ACCGCTTCCT
    1101 GCTCTCGTCC GGTTGGGAAA GCAGCATCGG TCTGACCGCC
    CCCGTAATGT
    1151 CTGCCGTTGC CATTGCCACC GTATCGGTAC GCCTTTTCTT
    TAAAAAAACC
    1201 CAATCTTTAC AAAGGAACCC GTCATGA
  • This corresponds to the amino acid sequence <SEQ ID 808; ORF125ng-1>:
  • 1 MSGNASSPSS SAAIGLVWFG AAVSIAEIST GTLLAPLGWQ
    RGLAALLLGH
    51 AVGGALFFAA AYIGALTGRS SMESVRLSFG KCGSVLFSVA
    NMLQLAGWTA
    101 VMIYVGATVS SALGKVLWDG ESFVWWALAN GALIVLWLVF
    GARRTGGLKT
    151 VSMLLMLLAV LWLSVEVFAS SGTNAAPAVS DGMTFGTAVE
    LSAVMPLSWL
    201 PLAADYTRQA RRPFAATLTA TLAYTLTGCW MYALGLAAAL
    FTGETDVAKI
    251 LLGAGLGITG ILAVVLSTVT TTFLDTYSAG ASANNISARF
    AEIPVAVGVT
    301 LIGTVLAVML PVTEYKNFLL LIGSVFAPMA AVLIADFFVL
    KRREEIEGFD
    351 FAGLVLWLAG FILYRFLLSS GWESSIGLTA PVMSAVAIAT
    VSVRLFFKKT
    401 QSLQRNPS*
  • ORF125ng-1 and ORF125-1 show 95.1% identity in 408 aa overlap:
  • Figure US20130064846A1-20130314-C00366
  • Based on this analysis, including the presence of putative leader sequence and transmembrane domains in the gonococcal protein, it is predicted that the proteins from N. meningitidis and N. gonorrhoeae, and their epitopes, could be useful antigens for vaccines or diagnostics, or for raising antibodies.
  • Example 96
  • The following partial DNA sequence was identified in N. meningitidis <SEQ ID 809>:
  • 1 ATGACCCGTA TCGCCATCCT CGGCGGCGGC CTCTCGGGAA
    GGCTGACCGC
    51 GTTGCAGCTT GCAGAACAAG GTTATCAGAT TGCACTTTTC
    GATAAAAGCT
    101 GCCGCCGGGG CGAACACGCC GCCGCCTATG TAGCCGCCGC
    CATGCTCGCG
    151 CCTGCAGCGG A.ACGGTCGA AGCCACGCCC GAAGTGGTCA
    GGCTGGGCAG
    201 GCAGAGCATC CCGCTTTGGC GCGGCATCCG ATGCCGTCTG
    AACACGCACA
    251 CGATGATGCA GGAAAACGGC AGCCTGATTG TATGGCACGG
    GCAGGACAAG
    301 CCATTATCCA GCGAGTTCGT CCGCCATCTC AAACGCGGCG
    GCGT.ACGGA
    351 TGACGAAATC GTCCGTTGGC GCGCCGACGA CATCGCCGAA
    CGCGAACCGC
    401 AACTCGGCGG ACGTTTTTAA GACGGCATCT ACCTGCCGAC
    CGAAGC.CAG
    451 CTCGACGGGC GGCAATTATA GTCTGCACTT GCCGACGCTT
    TGGACGAACT
    501 GAACGTCCCC TGCCATTGGG AACACGAATG CGTCCCCGAA
    GCCTGCAAG..
  • This corresponds to the amino acid sequence <SEQ ID 810; ORF126>:
  • 1 MTRIAILGGG LSGRLTALQL AEQGYQIALF DKSCRRGEHA
    AAYVAAAMLA
    51 PAAXTVEATP EVVRLGRQSI PLWRGIRCRL NTHTMMQENG
    SLIVWHGQDK
    101 PLSSEFVRHL KRGGXTDDEI VRWRADDIAE REPQLGGRFX
    DGIYLPTEXQ
    151 LDGRQLXSAL ADALDELNVP CHWEHECVPE ACK...
  • Further work revealed the complete nucleotide sequence <SEQ ID 811>:
  • 1 ATGACCCGTA TCGCCATCCT CGGCGGCGGC CTCTCGGGAA
    GGCTGACCGC
    51 GTTGCAGCTT GCAGAACAAG GTTATCAGAT TGCACTTTTC
    GATAAAGGCT
    101 GCCGCCGGGG CGAACACGCC GCCGCCTATG TTGCCGCCGC
    CATGCTCGCG
    151 CCTGCGGCGG AAGCGGTCGA AGCCACGCCC GAAGTGGTCA
    GGCTGGGCAG
    201 GCAGAGCATC CCGCTTTGGC GCGGCATCCG ATGCCGTCTG
    AACACGCACA
    251 CGATGATGCA GGAAAACGGC AGCCTGATTG TGTGGCACGG
    GCAGGACAAG
    301 CCATTATCCA GCGAGTTCGT CCGCCATCTC AAACGCGGCG
    GCGTAGCGGA
    351 TGACGAAATC GTCCGTTGGC GCGCCGACGA CATCGCCGAA
    CGCGAACCGC
    401 AACTCGGCGG ACGTTTTTCA GACGGCATCT ACCTGCCGAC
    CGAAGGCCAG
    451 CTCGACGGGC GGCAAATATT GTCTGCACTT GCCGACGCTT
    TGGACGAACT
    501 GAACGTCCCC TGCCATTGGG AACACGAATG CGTCCCCGAA
    GGCCTGCAAG
    551 CCCAATACGA CTGGCTGATC GACTGCCGCG GCTACGGCGC
    AAAAACCGCG
    601 TGGAACCAAT CCCCCGAGCA CACCAGCACC CTGCGCGGCA
    TACGCGGCGA
    651 AGTGGCGCGG GTTTACACAC CCGAAATCAC GCTCAACCGC
    CCCGTGCGTC
    701 TGCTCCATCC GCGTTATCCG CTCTACATCG CCCCGAAAGA
    AAACCACGTC
    751 TTCGTCATCG GCGCGACCCA AATCGAAAGC GAAAGCCAAG
    CCCCCGCCAG
    801 CGTGCGTTCA GGGTTGGAAC TCTTGTCCGC ACTCTATGCC
    ATCCACCCCG
    851 CCTTCGGCGA AGCCGACATC CTCGAAATCG CCACCGGCCT
    GCGCCCCACG
    901 CTCAACCACC ACAACCCCGA AATCCGTTAC AACCGCGCCC
    GACGCCTGAT
    951 TGAAATCAAC GGCCTTTTCC GCCACGGTTT CATGATCTCC
    CCCGCCGTAA
    1001 CCGCCGCCGC CGCCAGATTG GCAGTGGCAC TGTTTGACGG
    AAAAGACGCG
    1051 CCCGAACGCG ATAAAGAAAG CGGTTTGGCG TATATCCGAA
    GACAAGATTA
    1101 A
  • This corresponds to the amino acid sequence <SEQ ID 812; ORF126-1>:
  • 1 MTRIAILGGG LSGRLTALQL AEQGYQIALF DKGCRRGEHA
    AAYVAAAMLA
    51 PAAEAVEATP EVVRLGRQSI PLWRGIRCRL NTHTMMQENG
    SLIVWHGQDK
    101 PLSSEFVRHL KRGGVADDEI VRWRADDIAE REPQLGGRFS
    DGIYLPTEGQ
    151 LDGRQILSAL ADALDELNVP CHWEHECVPE GLQAQYDWLI
    DCRGYGAKTA
    201 WNQSPEHTST LRGIRGEVAR VYTPEITLNR PVRLLHPRYP
    LYIAPKENHV
    251 FVIGATQIES ESQAPASVRS GLELLSALYA IHPAFGEADI
    LEIATGLRPT
    301 LNHHNPEIRY NRARRLIEIN GLFRHGFMIS PAVTAAAARL
    AVALFDGKDA
    351 PERDKESGLA YIRRQD*
  • Computer analysis of this amino acid sequence gave the following results:
  • Homology with a Predicted ORF from N. meningitidis (Strain A)
  • ORF126 shows 90.0% identity over a 180aa overlap with an ORF (ORF126a) from strain A of N. meningitidis:
  • Figure US20130064846A1-20130314-C00367
  • The complete length ORF126a nucleotide sequence <SEQ ID 813> is:
  • 1 ATGACCCGTA TCGCCATCCT CGGCGGCGGC CTCTCNGGAA
    GGCTGACCGC
    51 ACTGCAGCTT GCAGAACAAG GTTATCAGAT TGCACTTTTC
    GATAAAGGCT
    101 GCCGCCGGGG CGAACACGCC GCCGCCTATG TTGCCGCCGC
    CATGCTCGCG
    151 CCTGCGGCGG AAGCGGTCGA AGCCACGCCT GAAGTGGTCA
    GGCTGGGCAG
    201 GCAGANCATC CCGCTTTGGC GCGGCATCCG ATGCCATCTG
    AAAACGCCTG
    251 CCATGATGCA NGAAAACGGC AGCCTGATTG TGTGGCACGG
    GCAGGACAAA
    301 CCTTTATCCA ACGAGTTCGT CCGCCATCTC AAACGCGGCG
    GCGTAGCGGA
    351 TGACNAAATC GTCCGTTGGC GCGCCGACGA CATCGCCGAA
    CGCGAACCGC
    401 AACTCGGCGG ACGTTTTTCA GACGGCATCT ACCTGCCGAC
    CGAAGGCCAG
    451 CTCGACGGGC GGCAAATATT GTCTGCACTT GCCGACGCTT
    TGGACGAACT
    501 GAACGTCCCC TGCCATTGGG AACACGAATG TGCCCCCGAA
    GACTTGCAAG
    551 CCCAATACGA CTGGCTGATC GACTGCCGCG GCTACGGCGC
    AAAAACCGCG
    601 TGGAACCAAT CCCCCGANNA NACCAGCACC CTGCGCGGCA
    TACGCGGCGA
    651 AGTGGCGCGG GTTTACACAC CCGAAATCAC GCTCAACCGC
    CCCGTGCGCC
    701 TGCTACACCC GCGCTATCCG CTNTACATCG CCCCGAAAGA
    AAACCNCGTC
    751 TTCGTCATCG GCGCGACCCA AATCGAAAGC GAAAGCCAAG
    CACCTGCCAG
    801 CGTGCGTTCC GGGCTGGAAC TCTTATCCGC ACTCTATGCC
    GTCCACCCCG
    851 CCTTCGGCGA AGCCGACATC CTCGAAATCG CCACCGGCCT
    GCGCCCCACG
    901 CTCAATCACC ACAACCCCGA AATCCGTTAC AACCGCGCCC
    GACGCCTGAT
    951 TGAAATCAAC GGCCTTTTCC GCCACGGTTT CATGATCTCC
    CCCGCCGTAA
    1001 CCGCCGCCGC CGTCAGATTG GCAGTGGCAC TGTTTGACGG
    AAAAGANGCG
    1051 CCCGAACGCG ATGAAGAAAG CGGTTTGGCG TATATCCGAA
    GACAAGATTA
    1101 A
  • This encodes a protein having amino acid sequence <SEQ ID 814>:
  • 1 MTRIAILGGG LSGRLTALQL AEQGYQIALF DKGCRRGEHA
    AAYVAAAMLA
    51 PAAEAVEATP EVVRLGRQXI PLWRGIRCHL KTPAMMXENG
    SLIVWHGQDK
    101 PLSNEFVRHL KRGGVADDXI VRWRADDIAE REPQLGGRFS
    DGIYLPTEGQ
    151 LDGRQILSAL ADALDELNVP CHWEHECAPE DLQAQYDWLI
    DCRGYGAKTA
    201 WNQSPXXTST LRGIRGEVAR VYTPEITLNR PVRLLHPRYP
    LYIAPKENXV
    251 FVIGATQIES ESQAPASVRS GLELLSALYA VHPAFGEADI
    LEIATGLRPT
    301 LNHHNPEIRY NRARRLIEIN GLFRHGFMIS PAVTAAAVRL
    AVALFDGKXA
    351 PERDEESGLA YIRRQD*
  • ORF126a and ORF126-1 show 95.4% identity in 366 aa overlap:
  • Figure US20130064846A1-20130314-C00368
  • Homology with a Predicted ORF from N. gonorrhoeae
  • ORF126 shows 90% identity over a 180 aa overlap with a predicted ORF (ORF126ng) from N. gonorrhoeae:
  • Figure US20130064846A1-20130314-C00369
  • An ORF126ng nucleotide sequence <SEQ ID 815> was predicted to encode a protein having amino acid sequence <SEQ ID 816>:
  • 1 MTRIAVLGGG LSGRLTALQL AEQGYQIELF DKGTRQGEHA
    AAYVAAAMLA
    51 PAAEAVEATP EVIRLGRQSI PLWRGIRCRL NTLTMMQENG
    SLIVWHGQDK
    101 PLSSEFVRHL KRGGVADDEI VRWRADEIAE REPQLGGRFS
    DGIYLPTEGQ
    151 LDGRQILSAL ADALDELNVP CHWEHECAPQ DLQAQYDWVI
    DCRGYGAKTA
    201 WNQSPEHTST LRGIRGEVRG FTRPKSRSTA PCACCTRAIR
    STSPRKKTTS
    251 SSSARPKSKA KAKPPPAYVP GWNSYPRSMP STPPSAKPTS
    SKWRPGLRPT
    301 LNHHNPEIRY SRERRLIEIN GLFRHGFMIS PAVTAAAVRL
    AVALFDGKDA
    351 PERDEESGLA YIGRQD*
  • Further work revealed the following gonococcal DNA sequence <SEQ ID 817>:
  • 1 ATGACCCGTA TCGCCGTCCT CGGAGGCGGC CTTTCCGGAA
    GGCTGACCGC
    51 ATTGCAGCTT GCAGAACAAG GTTATCAGAT TGAACTTTTC
    GACAAGGGCA
    101 CCCGCCAAGG CGAACACGCC GCCGCCTATG TTGCCGCCGC
    GATGCTCGCG
    151 CCTGCGGCGG AAGCGGTCGA GGCAACGCCC GAAGTCATCA
    GGCTGGGCAG
    201 GCAGAGCATT CCGCTTTGGC GCGGCATCCG ATGCCGTCTG
    AACACGCTCA
    251 CGATGATGCA GGAAAACGGC AGCCTGATTG TGTGGCACGG
    GCAGGACAAG
    301 CCATTATCCA GCGAGTTCGT CCGCCATCTC AAACGCGGCG
    GCGTAGCGGA
    351 TGACGAAATC GTCCGTTGGC GCGCCGATGA AATCGCCGAA
    CGCGAACCGC
    401 AACTCGGCGG ACGTTTTTCA GACGGCATCT ACCTGCCGAC
    CGAAGGCCAG
    451 CTCGACGGGC GGCAAATATT GTCTGCACTT GCCGACGCTT
    TGGACGAACT
    501 GAACGTCCCT TGCCATTGGG AACACGAATG CGCCCCCCAA
    GACCTGCAAG
    551 CCCAATACGA CTGGGTAATC GACTGCCGGG GCTACGGCGC
    GAAAACCGCG
    601 TGGAACCAAT CCCCCGAGCA CACCAGCACC TTGCGCGGCA
    TACGCGGCGA
    651 AGTGGCGCGG GTTTACACGC CCGAAATCAC GCTCAACCGC
    CCCGTGCGCC
    701 TGCTGCACCC GCGCTATCCG CTCTACATCG CCCCGAAAGA
    AAACCACGTC
    751 TTCGTCATCG GCGCGACCCA AATCGAAAGC GAAAGCCAAG
    CCCCCGCCAG
    801 CGTACGTTCC GGGCTGGAAC TCTTATCCGC GCTCTATGCC
    GTCCACCCCG
    851 CCTTCGGCGA AGCCGACATC CTCGAAATCG CCGCCGGCCT
    GCGCCCCACG
    901 CTCAACCACC ACAACCCCGA AATCCGCTAC AGCCGCGAAC
    GCCGCCTCAT
    951 CGAAATCAAC GGCCTTTTCC GGCACGGCTT TATGATTTCC
    CCCGCCGTAA
    1001 CCGCCGCCGC CGTCAGATTG GCAGTGGCAC TGTTTGACGG
    AAAAGACGCG
    1051 CCCGAACGTG ATGAAGAAAG CGGTTTGGCG TATATCGGAA
    GACAAGATTA
    1101 A
  • This corresponds to the amino acid sequence <SEQ ID 818; ORF126ng-1>:
  • 1 MTRIAVLGGG LSGRLTALQL AEQGYQIELF DKGTRQGEHA
    AAYVAAAMLA
    51 PAAEAVEATP EVIRLGRQSI PLWRGIRCRL NTLTMMQENG
    SLIVWHGQDK
    101 PLSSEFVRHL KRGGVADDEI VRWRADEIAE REPQLGGRFS
    DGIYLPTEGQ
    151 LDGRQILSAL ADALDELNVP CHWEHECAPQ DLQAQYDWVI
    DCRGYGAKTA
    201 WNQSPEHTST LRGIRGEVAR VYTPEITLNR PVRLLHPRYP
    LYIAPKENHV
    251 FVIGATQIES ESQAPASVRS GLELLSALYA VHPAFGEADI
    LEIAAGLRPT
    301 LNHHNPEIRY SRERRLIEIN GLFRHGFMIS PAVTAAAVRL
    AVALFDGKDA
    351 PERDEESGLA YIGRQD*
  • ORF126ng-1 and ORF126-1 show 95.1% identity in 366 aa overlap:
  • Figure US20130064846A1-20130314-C00370
  • Furthermore, ORF126ng-1 shows homology to a putative Rhizobium oxidase flavoprotein:
  • gi|2627327 (AF004408) putative amino acid oxidase
    flavoprotein [Rhizobium etli]
    Length = 327
    Score = 169 bits (423), Expect = 3e−41
    Identities = 112/329 (34%), Positives = 163/329 (49%), Gaps = 25/329 (7%)
    Query: 3 RIAVLGGGLSGRLTALQLAEQGYQIELFDKGTRQGEHXXXXXXXXXXXXXXXXXXXXXXX 62
    RI V G G++G   A QL   G+++ L ++    G
    Sbjct: 2 RILVNGAGVAGLTVAWQLYRHGFRVTLAERAGTVGA-GASGFAGGMLAPWCERESAEEPV 60
    Query: 63 IRLGRQSIPLWRGIRCRLNTLTMMQENGSLIVWHGQDKPLSSEFVRHLKRGGVADDEIVR 122
    + LGR +   W            +   G+L+V  G+D      F R    G    DE+
    Sbjct: 61 LTLGRLAADWWEAA-----LPGHVHRRGTLVVAGGRDTGELDRFSRRTS-GWEWLDEVA- 113
    Query: 123 WRADEIAEREPQLGGRFSDGIYLPTEGQLDGRQILSALADALDELNVPCHWEHECAPQDL 182
         IA  EP L GRF   ++   E  LD RQ L+ALA  L++  +           +
    Sbjct: 114 -----IAALEPDLAGRFRRALFFRQEAHLDPRQALAALAAGLEDARMRLTLG---VVGES 165
    Query: 183 QAQYDWVIDCRGYGAKTAWNQSPEHTSTLRGIRGEVARVYTPEITLNRPVRLLHPRYPLY 242
       +D V+DC G                LRG+RGE+  V T E++L+RPVRLLHPR+P+Y
    Sbjct: 166 DVDHDRVVDCTGAA-------QIGRLPGLRGVRGEMLCVETTEVSLSRPVRLLHPRHPIY 218
    Query: 243 IAPKENHVFVIGATQIESESQAPASVRSGLELLSALYAVHPAFGEADILEIAAGLRPTLN 302
    I P++ + F++GAT IES+   P + RS +ELL+A YA+HPAFGEA + E  AG+RP
    Sbjct: 219 IVPRDKNRFMVGATMIESDDGGPITARSLMELLNAAYAMHPAFGEARVTETGAGVRPAYP 278
    Query: 303 HHNPEIRYSRERRLIEINGLFRHGFMISP 331
     + P  R ++E R + +NGL+RHGF+++P
    Sbjct: 279 DNLP--RVTQEGRTLHVNGLYRHGFLLAP 305
  • This analysis suggests that the proteins from N. meningitidis and N. gonorrhoeae, and their epitopes, could be useful antigens for vaccines or diagnostics, or for raising antibodies.
  • Example 97
  • The following DNA sequence, believed to be complete, was identified in N. meningitidis <SEQ ID 819>:
  • 1 ATGACTGATA ATCGGGGGTT TACGCTGGTT GAATTAATAT
    CAGTGGTCTT
    51 GATATTGTCT GTACTTGCTT TAATTGTTTA TCCGAGCTAT
    CGCAATTATG
    101 TTGAGAAAGC AAAGATAAAT GCAGTGCGGG CAGCCTTGTT
    AGAAAATGCA
    151 CATTTTATGG AAAAGTTTTA TCTGCAGAAT GGGAGGTTTA
    AACAAACATC
    201 TACCAAGTGG CCAAGTTTGC CGATTAAAGA GGCAGAAGGC
    TTTTGTATCC
    251 GTTTGAATGG AATCGtCGCG CGGG..GCTT TAGACAGTAA
    ATTCATGTTG
    301 AAGGCGGTAG CCATAGATAA AGATAAAAAT CCTTTTATTA
    TTAAGATGAA
    351 TGAAAATCTA GTAACCTTTA aTTTGCAAGA AGTCCGCCAG
    TTCGTGTAGT
    401 GACGGGCTGG ATTATTTTAA AGGAAATGAT AAGGACTGCA
    AGTTACTTAA
    451 GTAG
  • This corresponds to the amino acid sequence <SEQ ID 820; ORF127>:
  • 1 MTDNRGFTLV ELISVVLILS VLALIVYPSY RNYVEKAKIN
    AVRAALLENA
    51 HFMEKFYLQN GRFKQTSTKW PSLPIKEAEG FCIRLNGIVA
    RXALDSKFML
    101 KAVAIDKDKN PFIIKMNENL VTFICKKSAS SCSDGLDYFK
    GNDKDCKLLK
    151 *
  • Further work revealed the following DNA sequence <SEQ ID 821>:
  • 1 ATGACTGATA ATCGGGGGTT TACGCTGGTT GAATTAATAT
    CAGTGGTCTT
    51 GATATTGTCT GTACTTGCTT TAATTGTTTA TCCGAGCTAT
    CGCAATTATG
    101 TTGAGAAAGC AAAGATAAAT GCAGTGCGGG CAGCCTTGTT
    AGAAAATGCA
    151 CATTTTATGG AAAAGTTTTA TCTGCAGAAT GGGAGGTTTA
    AACAAACATC
    201 TACCAAGTGG CCAAGTTTGC CGATTAAAGA GGCAGAAGGC
    TTTTGTATCC
    251 GTTTGAATGG AATCGCGCGC GGGGCTTTAG ACAGTAAATT
    CATGTTGAAG
    301 GCGGTAGCCA TAGATAAAGA TAAAAATCCT TTTATTATTA
    AGATGAATGA
    351 AAATCTAGTA ACCTTTATTT GCAAGAAGTC CGCCAGTTCG
    TGTAGTGACG
    401 GGCTGGATTA TTTTAAAGGA AATGATAAGG ACTGCAAGTT
    ACTTAAGTAG
  • This corresponds to the amino acid sequence <SEQ ID 822; ORF127-1>:
  • 1 MTDNRGFTLV ELISVVLILS VLALIVYPSY RNYVEKAKIN
    AVRAALLENA
    51 HFMEKFYLQN GRFKQTSTKW PSLPIKEAEG FCIRLNGIAR
    GALDSKFMLK
    101 AVAIDKDKNP FIIKMNENLV TFICKKSASS CSDGLDYFKG
    NDKDCKLLK*
  • Computer analysis of this amino acid sequence gave the following results:
  • Homology with a Predicted ORF from N. meningitidis (Strain A)
  • ORF127 shows 98.0% identity over a 150aa overlap with an ORF (ORF127a) from strain A of N. meningitidis:
  • Figure US20130064846A1-20130314-C00371
  • The complete length ORF127a nucleotide sequence <SEQ ID 823> is:
  • 1 ATGACTGATA ATCGGGGGTT TACGCTGGTT GAATTAATAT
    CAGTGGTCTT
    51 GATATTGTCT GTACTTGCTT TAATTGTTTA TCCGAGCTAT
    CGCAATTATG
    101 TTGAGAAAGC AAAGATAAAT ACAGTGCGGG CAGCCTTGTT
    AGAAAATGCA
    151 CATTTTATGG AAAAGTTTTA TCTGCAGAAT GGGAGATTTA
    AACAAACATC
    201 TACCAAATGG CCAAGTTTGC CGATTAAAGA GGCAGAAGGC
    TTTTGTATCC
    251 GTTTGAATGG AATCGCGCGC GGGGCCTTAG ACAGTAAATT
    CATGTTGAAG
    301 GCGGTAGCCA TAGATAAAGA TAAAAATCCT TTTATTATTA
    AGATGAATGA
    351 AAATCTAGTA ACCTTTATTT GCAAGAAGTC CGCCAGTTCG
    TGTAGTGACG
    401 GGCTGGATTA TTTTAAAGGA AATGATAAGG ACTGCAAGTT
    ACTTAAGTAG
  • This encodes a protein having amino acid sequence <SEQ ID 824>:
  • 1 MTDNRGFTLV ELISVVLILS VLALIVYPSY RNYVEKAKIN
    TVRAALLENA
    51 HFMEKFYLQN GRFKQTSTKW PSLPIKEAEG FCIRLNGIAR
    GALDSKFMLK
    101 AVAIDKDKNP FIIKMNENLV TFICKKSASS CSDGLDYFKG
    NDKDCKLLK*
  • ORF127a and ORF127-1 show 99.3% identity in 149 aa overlap:
  • Figure US20130064846A1-20130314-C00372
  • Homology with a Predicted ORF from N. gonorrhoeae
  • ORF127 shows 97.3% identity over a 150 aa overlap with a predicted ORF (ORF127ng) from N. gonorrhoeae:
  • Figure US20130064846A1-20130314-C00373
  • The complete length ORF127ng nucleotide sequence <SEQ ID 825> is:
  • 1 ATGACTGATA ATCGGGGGTT TACACTGGTT GAATTAATAT
    CAGTGGTCTT
    51 GATATTGTCT GTACTTGCTT TAATTGTTTA TCCGAGCTAT
    CGCAATTATG
    101 TTGAGAAAGC AAAGATAAAT GCAGTGCGGG CAGCCTTGTT
    AGAAAATGCA
    151 CATTTTATGG AAAAGTTTTA TCTGCAGAAT GGGAGATTTA
    AACAAACATC
    201 TACCAAATGG CCAAGTTTGC CGATTAAAGA GGCAGAAGGC
    TTTTGTATCC
    251 GTTTGAATGG AATCGCGCGC GGGGCTTTAG ACAGTAAATT
    CATGTTGAAG
    301 GCGGTAGCCA TAGATAAAGA TAAAAATCCT TTTATTATTA
    AGATGAATGA
    351 AAATCTAGTA ACCTTTATTT GCAAGAAGTC CGCCAGTTCG
    TGTAGTGACG
    401 GGCTGGATTA TTTTAAAGGA AATGATAAGG ACTGCAAGTT
    ACTTAAGTAG
  • This encodes a protein having amino acid sequence <SEQ ID 826>:
  • 1 MTDNRGFTLV ELISVVLILS VLALIVYPSY RNYVEKAKIN
    AVRAAFLENA
    51 HFMEKFYLQN GRFKQTSTKW PSLPIKEAEG FCIRLNGIAR
    GALDSKFMLK
    101 AVAIDKDKNP FIIKMNENLV TFICKKSASS CSDRLDYFKG
    NDKDCKLLK*
  • ORF127ng and ORF127-1 show 100.0% identity in 149 aa overlap:
  • Figure US20130064846A1-20130314-C00374
  • This analysis, including the fact that the predicted transmembrane domain is shared by the meningococcal and gonococcal proteins, suggests that the proteins from N. meningitidis and N. gonorrhoeae, and their epitopes, could be useful antigens for vaccines or diagnostics, or for raising antibodies.
  • Example 98
  • The following partial DNA sequence was identified in N. meningitidis <SEQ ID 827>
  • 1 ..GTGTCGCTGG CTTCGGTGAT TGCCTCTCAA ATCTTCCTTT
    ACGAAGATTT
    51   CAACCAAATG CGGAAAACCCGTGGAGCTAT CTGCGGTTTT
    CTTGTCCAAT
    101   ATTTATCTGG GGTTTCAGCA GGGGTATTTC GATTTGAGTG
    CCGACGAGAA
    151   CCCCGTACTG CATATCTGGT CTTTGGCAGT AGAGGAACAG
    TATTACCTCC
    201   TGTATCCCCT TTTGCTGATA TTTTGCTGCA AAAAAACCAA
    ATCGCTACGG
    251   GTGCTGCGTA ACATCAGCAT CATCCTGTTT TTGATTTTGA
    CTGCCTCATC
    301   GTTTTTGCCA AGCGGGTTTT ATACCGACAT CCTCAACCAA
    CCCAATACTT
    351   ATTACCTTTC GACACTGAGG TTTCCCGAGC TGTTGGCAGG
    TTCGCTGCTG
    401   GCGGTTTACG GGCAAACGCA AAACGGCAGA CGGCAAACAG
    CAAATGGAAA
    451   ACGGCAGTTG CTTTCATCAC TCTGCTTCGG CGCATTGCTT
    GCCTGCCTGT
    501   TCGTGATTGA CAAACACAAT CCGTTTATCC CGGGAATGAC
    CCTGCTCCTT
    551   CCCTGCCTGC TGACGGCACT GCTTATCCGG AGTATGCAAT
    ACGGGACACT
    601   TCCGACCCGC ATCCTGTCGG CAAGCCCCAT CGTATTTGTC
    GGCAAAATCT
    651   CTTATTCCCT ATACCTGTAC CATTGGATTT TTATTGCTTT
    CGCTCCGCTC
    701   ATTAGAGGCG GGAAACAGCT CGGACTGCCT GCCG..
  • This corresponds to the amino acid sequence <SEQ ID 828; ORF128>:
  • 1 ..VSLASVIASQ IFLYEDFNQM RKTVELSAVF LSNIYLGFQQ
    GYFDLSADEN
    51   PVLHIWSLAV EEQYYLLYPL LLIFCCKKTK SLRVLRNISI
    ILFLILTASS
    101   FLPSGFYTDI LNQPNTYYLS TLRFPELLAG SLLAVYGQTQ
    NGRRQTANGK
    151   RQLLSSLCFG ALLACLFVID KHNPFIPGMT LLLPCLLTAL
    LIRSMQYGTL
    201   PTRILSASPI VFVGKISYSL YLYHWIFIAF APLIRGGKQL
    GLPA..
  • Further work revealed the complete nucleotide sequence <SEQ ID 829>:
  • 1 ATGCAAGCTG TCCGATACAG ACCGGAAATT GACGGATTGC
    GGGCCGTCGC
    51 CGTGCTATCC GTCATGATTT TCCACCTGAA TAACCGCTGG
    CTGCCCGGAG
    101 GATTCCTGGG GGTGGACATT TTCTTTGTCA TCTCAGGATT
    CCTCATTACC
    151 GGCATCATTC TTTCTGAAAT ACAGAACGGT TCTTTTTCTT
    TCCGGGATTT
    201 TTATACCCGC AGGATTAAGC GGATTTATCC TGCCTTTATT
    GCGGCCGTGT
    251 CGCTGGCTTC GGTGATTGCC TCTCAAATCT TCCTTTACGA
    AGATTTCAAC
    301 CAAATGCGGA AAACCGTGGA GCTTTCTGCG GTTTTCTTGT
    CCAATATTTA
    351 TCTGGGGTTT CAGCAGGGGT ATTTCGATTT GAGTGCCGAC
    GAGAACCCCG
    401 TACTGCATAT CTGGTCTTTG GCAGTAGAGG AACAGTATTA
    CCTCCTGTAT
    451 CCCCTTTTGC TGATATTTTG CTGCAAAAAA ACCAAATCGC
    TACGGGTGCT
    501 GCGTAACATC AGCATCATCC TGTTTTTGAT TTTGACTGCC
    TCATCGTTTT
    551 TGCCAAGCGG GTTTTATACC GACATCCTCA ACCAACCCAA
    TACTTATTAC
    601 CTTTCGACAC TGAGGTTTCC CGAGCTGTTG GCAGGTTCGC
    TGCTGGCGGT
    651 TTACGGGCAA ACGCAAAACG GCAGACGGCA AACAGCAAAT
    GGAAAACGGC
    701 AGTTGCTTTC ATCACTCTGC TTCGGCGCAT TGCTTGCCTG
    CCTGTTCGTG
    751 ATTGACAAAC ACAATCCGTT TATCCCGGGA ATGACCCTGC
    TCCTTCCCTG
    801 CCTGCTGACG GCACTGCTTA TCCGGAGTAT GCAATACGGG
    ACACTTCCGA
    851 CCCGCATCCT GTCGGCAAGC CCCATCGTAT TTGTCGGCAA
    AATCTCTTAT
    901 TCCCTATACC TGTACCATTG GATTTTTATT GCTTTCGCCC
    ATTACATTAC
    951 AGGCGACAAA CAGCTCGGAC TGCCTGCCGT ATCGGCGGTT
    GCCGCGTTGA
    1001 CGGCCGGATT TTCCCTGTTG AGTTATTATT TGATTGAACA
    GCCGCTTAGA
    1051 AAACGGAAGA TGACCTTCAA AAAGGCATTT TTCTGCCTCT
    ATCTCGCCCC
    1101 GTCCCTGATA CTTGTCGGTT ACAACCTGTA CGCAAGGGGG
    ATATTGAAAC
    1151 AGGAACACCT CCGCCCGTTG CCCGGCGCGC CCCTTGCTGC
    GGAAAATCAT
    1201 TTTCCGGAAA CCGTCCTGAC CCTCGGCGAC TCGCACGCCG
    GACACCTGAG
    1251 GGGGTTTCTG GATTATGTCG GCAGCCGGGA AGGGTGGAAA
    GCCAAAATCC
    1301 TGTCCCTCGA TTCGGAGTGT TTGGTTTGGG TAGATGAGAA
    GCTGGCAGAC
    1351 AACCCGTTAT GTCGAAAATA CCGGGATGAA GTTGAAAAAG
    CCGAAGCCGT
    1401 TTTCATTGCC CAATTCTATG ATTTGAGGAT GGGCGGCCAG
    CCTGTGCCGA
    1451 GATTTGAAGC GCAATCCTTC CTAATACCCG GGTTCCCAGC
    CCGATTCAGG
    1501 GAAACCGTCA AAAGGATAGC CGCCGTCAAA CCCGTCTATG
    TTTTTGCAAA
    1551 CAACACATCA ATCAGCCGTT CGCCCCTGAG GGAGGAAAAA
    TTGAAAAGAT
    1601 TTGCCGCAAA CCAATATCTC CGCCCCATTC AGGCTATGGG
    CGACATCGGC
    1651 AAGAGCAATC AGGCGGTCTT TGATTTGATT AAAGATATTC
    CCAATGTGCA
    1701 TTGGGTGGAC GCACAAAAAT ACCTGCCCAA AAACACGGTC
    GAAATATACG
    1751 GCCGCTATCT TTACGGCGAC CAAGACCACC TGACCTATTT
    CGGTTCTTAT
    1801 TATATGGGGC GGGAATTCCA CAAACACGAA CGCCTGCTTA
    AATCTTCCCA
    1851 CGGCGGCGCA TTGCAGTAG
  • This corresponds to the amino acid sequence <SEQ ID 830; ORF128-1>:
  • 1 MQAVRYRPEI DGLRAVAVLS VMIFHLNNRW LPGGFLGVDI
    FFVISGFLIT
    51 GIILSEIQNG SFSFRDFYTR RIKRIYPAFI AAVSLASVIA
    SQIFLYEDFN
    101 QMRKTVELSA VFLSNIYLGF QQGYFDLSAD ENPVLHIWSL
    AVEEQYYLLY
    151 PLLLIFCCKK TKSLRVLRNI SIILFLILTA SSFLPSGFYT
    DILNQPNTYY
    201 LSTLRFPELL AGSLLAVYGQ TQNGRRQTAN GKRQLLSSLC
    FGALLACLFV
    251 IDKHNPFIPG MTLLLPCLLT ALLIRSMQYG TLPTRILSAS
    PIVFVGKISY
    301 SLYLYHWIFI AFAHYITGDK QLG LPAVSAV AALTAGFSLL
    SYYLIEQPLR
    351 KRKMTFKKAF FCLYLAPSLI LVGYNLYARG ILKQEHLRPL
    PGAPLAAENH
    401 FPETVLTLGD SHAGHLRGFL DYVGSREGWK AKILSLDSEC
    LVWVDEKLAD
    451 NPLCRKYRDE VEKAEAVFIA QFYDLRMGGQ PVPRFEAQSF
    LIPGFPARFR
    501 ETVKRIAAVK PVYVFANNTS ISRSPLREEK LKRFAANQYL
    RPIQAMGDIG
    551 KSNQAVFDLI KDIPNVHWVD AQKYLPKNTV EIYGRYLYGD
    QDHLTYFGSY
    601 YMGREFHKHE RLLKSSHGGA LQ*
  • Computer analysis of this amino acid sequence gave the following results:
  • Homology with Hypothetical Integral Membrane Protein H10392 of H. influenzae (Accession Number U32723)
  • ORF128 and HI0392 show 52% aa identity in 180aa overlap:
  • Orf128: 1 VSLASVIASQIFLYEDFNQMRKTVELSAVFLSNIYLGFQQGYFDLSADENPVLHIWSLAV 60
    ++L S IAS IF+Y DFN++RKT+EL+  FLSN YLG  QGYFDLSA+ENPVLHIWSLAV
    HI0392: 46 MALVSFIASAIFIYNDFNKLRKTIELAIAFLSNFYLGLTQGYFDLSANENPVLHIWSLAV 105
    Orf128: 61 EEQXXXXXXXXXIFCCKKTKSLRVLRNISIILFLILTASSFLPSGFYTDILNQPNTYYLS 120
    E Q         I   KK + ++VL  I++ILF IL A+SF+ + FY ++L+QPN YYLS
    HI0392: 106 EGQYYLIFPLILILAYKKFREVKVLFIITLILFFILLATSFVSANFYKEVLHQPNIYYLS 165
    Orf128: 121 TLRFPELLAGSLLAVYGQTQNGRRQTANGKRQLLSSLCFGALLACLFVIDKHNPFIPGMT 180
     LRFPELL GSLLA+Y    N + Q +     +L+ L    L +CLF+++ +  FIPG+T
    HI0392: 166 NLRFPELLVGSLLAIYHNLSN-KVQLSKQVNNILAILSTLLLFSCLFLMNNNIAFIPGIT 224

    Homology with a Predicted ORF from N. meningitidis (Strain A)
  • ORF128 shows 98.0% identity over a 244aa overlap with an ORF (ORF128a) from strain A of N. meningitidis:
  • Figure US20130064846A1-20130314-C00375
  • The complete length ORF128a nucleotide sequence <SEQ ID 831> is:
  • 1 ATGCAAGCTG TCCGATACAG ACCGGAAATT GACGGATTGC
    GGGCCGTCGC
    51 CGTGCTATCC GTCATGATTT TCCACCTGAA TAACCGCTGG
    CTGCCCGGAG
    101 GATTCCTGGG GGTGGACATT TTCTTTGTCA TCTCAGGATT
    CCTCATTACC
    151 GGCATCATTC TTTCTGAAAT ACAGAACGGT TCTTTTTCTT
    TCCGGGATTT
    201 TTATACCCGC AGGATTAAGC GGATTTATCC TGCTTTTATT
    GCGGCCGTGT
    251 CGCTGGCTTC GGTGATTGCC TCTCAAATCT TCCTTTACGA
    AGATTTCAAC
    301 CAAATGCGGA AAACCGTGGA GCTTTCTGCG GTTTTCTTGT
    CCAATATTTA
    351 TCTGGGGTTT CAGCAGGGGT ATTTCGATTT GAGTGCCGAC
    GAGAACCCCG
    401 TACTGCATAT CTGGTCTTTG GCAGTAGAGG AACAGTATTA
    CCTCCTGTAT
    451 CCTCTTTTGC TGATATTTTG CTGCAAAAAA ACAAAATCGC
    TACGGGTGCT
    501 GCGTAACATC AGCATCATCC TATTTCTGAT TTTGACTGCC
    ACATCGTTTT
    551 TGCCAAGCGG GTTTTATACC GATATTCTCA ACCAACCCAA
    TACTTATTAC
    601 CTTTCGACAC TGAGGTTTCC CGAGCTGTTG GCAGGTTCGC
    TGCTGGCGGT
    651 TTACGGGCAA ACGCAAAACG GCAGACGGCA AACAGCAAAT
    GGAAAACGGC
    701 AGTTGCTTTC ATCACTCTGC TTCGGCGCAT TGCTTGCCTG
    CCTGTTCGTG
    751 ATTGACAAAC ACAATCCGTT TATCCCGGGA ATGACCCTGC
    TCCTTCCCTG
    801 CCTGCTGACG GCACTGCTTA TCCGGAGTAT GCAATACGGG
    ACACTTCCGA
    851 CCCGCATCCT GTCGGCAAGC CCCATCGTAT TTGTCGGCAA
    AATCTCTTAT
    901 TCCCTATACC TGTACCATTG GATTTTTATT GCTTTCGCCC
    ATTACATTAC
    951 AGGCGACAAA CAGCTCGGAC TGCCTGCCGT ATCGGCGGTT
    GCCGCGTTGA
    1001 CGGCCGGATT TTCCCTGTTG AGTTATTATT TGATTGAACA
    GCCGCTTAGA
    1051 AAACGGAAGA TGACCTTCAA AAAGGCATTT TTCTGCCTCT
    ATCTCGCCCC
    1101 GTCCCTGATA CTTGTCGGTT ACAACCTGTA CGCAAGGGGG
    ATATTGAAAC
    1151 AGGAACACCT CCGCCCGTTG CCCGGCGCGC CCCTTGCTGC
    GGAAAATCAT
    1201 TTTCCGGAAA CCGTCCTGAC CCTCGGCGAC TCGCACGCCG
    GACACCTGCG
    1251 GGGGTTTCTG GATTATGTCG GCAGCCGGGA AGGGTGGAAA
    GCCAAAATCC
    1301 TGTCCCTCGA TTCGGAGTGT TTGGTTTGGG TAGATGAGAA
    GCTGGCAGAC
    1351 AACCCGTTAT GTCGAAAATA CCGGGATGAA GTTGAAAAAG
    CCGAAGCCGT
    1401 TTTCATTGCC CAATTCTATG ATTTGAGGAT GGGCGGCCAG
    CCCGTGCCGA
    1451 GATTTGAAGC GCAATCCTTC CTAATACCCG GGTTCCCAGC
    CCGATTCAGG
    1501 GAAACCGTCA AAAGGATAGC CGCCGTCAAA CCCGTCTATG
    TTTTTGCAAA
    1551 CAACACATCA ATCAGCCGTT CGCCCCTGAG GGAGGAAAAA
    TTGAAAAGAT
    1601 TTGCCGCAAA CCAATATCTC CGCCCCATTC AGGCTATGGG
    CGACATCGGC
    1651 AAGAGCAATC AGGCGGTCTT TGATTTGATT AAAGATATTC
    CCAATGTGCA
    1701 TTGGGTGGAC GCACAAAAAT ACCTGCCCAA AAACACGGTC
    GAAATATACG
    1751 GCCGCTATCT TTACGGCGAC CAAGACCACC TGACCTATTT
    CGGTTCTTAT
    1801 TATATGGGGC GGGAATTTCA CAAACACGAA CGCCTGCTTA
    AATCTTCTCG
    1851 CGACGGCGCA TTGCAGTAG
  • This encodes a protein having amino acid sequence <SEQ ID 832>:
  • 1 MQAVRYRPEI DGLRAVAVLS VMIFHLNNRW LPGGFLGVDI
    FFVISGFLIT
    51 GIILSEIQNG SFSFRDFYTR RIKRIYPAFI AAVSLASVIA
    SQIFLYEDFN
    101 QMRKTVELSA VFLSNIYLGF QQGYFDLSAD ENPVLHIWSL
    AVEEQYYLLY
    151 PLLLIFCCKK TKSLRVLRNI SIILFLILTA TSFLPSGFYT
    DILNQPNTYY
    201 LSTLRFPELL AGSLLAVYGQ TQNGRRQTAN GKRQLLSSLC
    FGALLACLFV
    251 IDKHNPFIPG MTLLLPCLLT ALLIRSMQYG TLPTRILSAS
    PIVFVGKISY
    301 SLYLYHWIFI AFAHYITGDK QLGLPAVSAV AALTAGFSLL
    SYYLIEQPLR
    351 KRKMTFKKAF FCLYLAPSLI LVGYNLYARG ILKQEHLRPL
    PGAPLAAENH
    401 FPETVLTLGD SHAGHLRGFL DYVGSREGWK AKILSLDSEC
    LVWVDEKLAD
    451 NPLCRKYRDE VEKAEAVFIA QFYDLRMGGQ PVPRFEAQSF
    LIPGFPARFR
    501 ETVKRIAAVK PVYVFANNTS ISRSPLREEK LKRFAANQYL
    RPIQAMGDIG
    551 KSNQAVFDLI KDIPNVHWVD AQKYLPKNTV EIYGRYLYGD
    QDHLTYFGSY
    601 YMGREFHKHE RLLKSSRDGA LQ*
  • ORF128a and ORF128-1 show 99.5% identity in 622 aa overlap:
  • Figure US20130064846A1-20130314-C00376
  • Homology with a Predicted ORF from N. gonorrhoeae
  • ORF128 shows 93.4% identity over 244 aa overlap with a predicted ORF (ORF128ng) from N. gonorrhoeae:
  • Figure US20130064846A1-20130314-C00377
  • The complete length ORF128ng nucleotide sequence <SEQ ID 833> is:
  • 1 ATGCAAGCTG TCCGATACAG GCCTGAAATT GACGGATTGC
    GGGCCGTCGC
    51 CGTGCTATCC GTCATTATTT TCCACCTGAA TAACCGCTGG
    CTGCCCGGAG
    101 GATTCCTGGG GGTGGACATT TTCTTTGTCA TCTCGGGATT
    CCTCATTACC
    151 AACATCATTC TTTCTGAAAT ACAGAACGGT TCTTTTTCTT
    TCCGGGATTT
    201 TTATACCCGC AGGATTAAGC GGATTTATCC TGCTTTTATT
    GCGGCCGTGT
    251 CCCTGGCTTC GGTGATTGCT TCTCAAATCT TCCTTTACGA
    AGATTTCAAC
    301 CAAATGAGGA AAACCATAGA GCTTTCTACG GTTTTTTTGT
    CCAATATTTA
    351 TTTGGGGTTC CGATTGGGGT ATTTCGATTT GAGTGCCGAC
    GAGAACCCCG
    401 TACTGCATAT CTGGTCTTTG GCGGTAGAGG AACAGTATTA
    CCTCCTGTAT
    451 CCTCTTTTGC TGATATTCTG TTACAAAAAA ACCAAATCAC
    TACGGGTGCT
    501 GCGTAATATC AGCATCATCC TGTTTCTGAT TTTGACCGCA
    TCATCGTTTT
    551 TGCCGGCCGG GTTTTATACC GACATCCTCA ACCAACCcaa
    TACTTATTAC
    601 CTTTCGACAC TGAGGTTTCC CGAGCTGTTG GTGGGTTCGC
    TGTTGGCGGT
    651 TTACGGGCAA ACGCAAAACG GCAGACGGCA AACAGAAAAT
    GGAAAACGGC
    701 AGTTGCTTTC ATTACTCTGT TTCGGCGCat tgCTTGTCTG
    CCTGTTCGTG
    751 ATCGACAAAC ACGATCCGTT TATCCCGGGA ATAACCCTGC
    TCCTTCCCTG
    801 CCTGCTGACG GCGCTGCTTA TCCGGAGTAT GCAATACGGG
    ACACTTCCGA
    851 CCCGCATCCT GTCGGCAAGC CCCATCGTAT TTGTCGGCAA
    AATCTCTTAT
    901 TCCCTATACC TGTACCATTG GATTTTTATT GCCTTCGCCC
    ATTACATTAC
    951 AGGCGACAAA CAGCTCGGAC TGCCTGCCGT ATCGGCGGTT
    GCCGCGTTGA
    1001 CGGCCGGATT TTCCCTGTTG AGCTATTATT TGATTGAACA
    GCCGCTTAGA
    1051 AAACGGAAGA TGACCTTCAA AAAGGCATTT TTCTGCCTTT
    ATCTCGCCCC
    1101 GTCCCTGATG CTTGTCGGTT ACAACCTGTA TTCAAGAGGG
    ATATTGAAAC
    1151 AGGAACACCT CCGCCCGCTG CCCGGCACGC CCGTTGCTGC
    GGAAAATAAT
    1201 TTTCCGGAAA CCGTCTTGAC CCTCGGCGAC TCGCACGCCG
    GACACCTGCG
    1251 GGGGTTTCTG GATTATGTCG GCGGCAGGGA AGGGTGGAAA
    GCTAAAATCC
    1301 TGTCCCTCGA TTCGGAGTGT TTGGTTTGGG TGGATGAGAA
    GCTGGCAGAC
    1351 AACCCGTTGT GCCGAAAATA CCGGGATGAA GTTGAAAAAG
    CCGAAGCTGT
    1401 TTTCATTGCC CAATTCTATG ATTTGAGGAT GGGCGGCCAG
    CCCGTGCCGA
    1451 GATTTGAAGC GCAATCCTTC CTGATACCCG GGTTCAAAGC
    CCGATTCAGG
    1501 GAAACCGTCA AGAGGATAGC CGCCGTCAAA CCTGTATATG
    TTTTTGCAAA
    1551 CAATACATCA ATCAGCCGTT CTCCCTTGAG GGAGGAAAAA
    TTGAAAAGAT
    1601 TTGCTATAAA CCAATACCTC CGGCCTATTC GGGCTATGGG
    CGACATCGGC
    1651 AAGAGCAATC AGGCGGTCTT TGATTTGGTT AAAGATATTC
    CCAATGTGCA
    1701 TTGGGTGGAC GCACAAAAAT ACCTGCCCAA AAACACGGTC
    GAAATACACG
    1751 GACGCTATCT TTACGGCGAC CAAGACCACC TGACCTATTT
    CGGTTCTTAT
    1801 TATATGGGGC GGGAATTTCA CAAACACGAA CGCCTGCTCA
    AGCATTCCCG
    1851 AGGCGGCGCA TTGCAGTAG
  • This encodes a protein having amino acid sequence <SEQ ID 834>:
  • 1 MQAVRYRPEI DGLRAVAVLS VIIFHLNNRW LPGGFLGVDI
    FFVISGFLIT
    51 NIILSEIQNG SFSFRDFYTR RIKRIYPAFI AAVSLASVIA
    SQIFLYEDFN
    101 QMRKTIELST VFLSNIYLGF RLGYFDLSAD ENPVLHIWSL
    AVEEQYYLLY
    151 PLLLIFCYKK TKSLRVLRNI SIILFLILTA SSFLPAGFYT
    DILNQPNTYY
    201 LSTLRFPELL VGSLLAVYGQ TQNGRRQTEN GKRQLLSLLC
    FGALLVCLFV
    251 IDKHDPFIPG ITLLLPCLLT ALLIRSMQYG TLPTRILSAS
    PIVFVGKISY
    301 SLYLYHWIFI AFAHYITGDK QLGLPAVSAV AALTAGFSLL
    SYYLIEQPLR
    351 KRKMTFKKAF FCLYLAPSLM LVGYNLYSRG ILKQEHLRPL
    PGTPVAAENN
    401 FPETVLTLGD SHAGHLRGFL DYVGGREGWK AKILSLDSEC
    LVWVDEKLAD
    451 NPLCRKYRDE VEKAEAVFIA QFYDLRMGGQ PVPRFEAQSF
    LIPGFKARFR
    501 ETVKRIAAVK PVYVFANNTS ISRSPLREEK LKRFAINQYL
    RPIRAMGDIG
    551 KSNQAVFDLV KDIPNVHWVD AQKYLPKNTV EIHGRYLYGD
    QDHLTYFGSY
    601 YMGREFHKHE RLLKHSRGGA LQ*
  • ORF128ng and ORF128-1 show 95.7% identity in 622 aa overlap:
  • Figure US20130064846A1-20130314-C00378
  • In addition, ORF218ng shows homology to a hypothetical H. influenzae protein:
  • sp|P43993|Y392_HAEIN HYPOTHETICAL PROTEIN HI0392 >gi|1074385|pir||B64007
    hypothetical protein HI0392 - Haemophilus influenzae (strain Rd KW20)
    >gi|1573364 (U32723) H. influenzae predicted coding region HI0392
    [Haemophilus influenzae] Length = 245
    Score = 239 bits (604), Expect = 3e−62
    Identities = 124/225 (55%), Positives = 152/225 (67%), Gaps = 1/225 (0%)
    Query: 38 VDIFFVISGFLITNIILSEIQNGSFSFRDFYTRRIKRIYPXXXXXXXXXXXXXXXXFLYE 97
    +DIFFVISGFLIT II++EIQ  SFS + FYTRRIKRIYP                F+Y
    Sbjct: 1 MDIFFVISGFLITGIIITEIQQNSFSLKQFYTRRIKRIYPAFITVMALVSFIASAIFIYN 60
    Query: 98 DFNQMRKTIELSTVFLSNIYLGFRLGYFDLSADENPVLHIWSLAVEEQXXXXXXXXXIFC 157
    DFN++RKTIEL+  FLSN YLG   GYFDLSA+ENPVLHIWSLAVE Q         I
    Sbjct: 61 DFNKLRKTIELAIAFLSNFYLGLTQGYFDLSANENPVLHIWSLAVEGQYYLIFPLILILA 120
    Query: 158 YKKTKSLRVLRNISIILFLILTASSFLPAGFYTDILNQPNTYYLSTLRFPELLVGSLLAV 217
    YKK + ++VL  I++ILF IL A+SF+ A FY ++L+QPN YYLS LRFPELLVGSLLA+
    Sbjct: 121 YKKFREVKVLFIITLILFFILLATSFVSANFYKEVLHQPNIYYLSNLRFPELLVGSLLAI 180
    Query: 218 YGQTQNGRRQTENGKRQLLSLLCFGALLVCLFVIDKHDPFIPGIT 262
    Y    N + Q       +L++L    L  CLF+++ +  FIPGIT
    Sbjct: 181 YHNLSN-KVQLSKQVNNILAILSTLLLFSCLFLMNNNIAFIPGIT 224
  • This analysis, including the identification of several putative transmembrane domains, suggests that these proteins from N. meningitidis and N. gonorrhoeae, and their epitopes, could be useful antigens for vaccines or diagnostics, or for raising antibodies.
  • Example 99
  • The following partial DNA sequence was identified in N. meningitidis <SEQ ID 835>:
  • 1 ..ATTATTTACG AATACCGCTG GATGTTTCTT TACGGCGCAC
    TGACGACCTT
    51   GGGGCTGACG GTCGTGGCAA C.GCGGGCGG TTCGGTATTG
    GGTCTGTTGT
    101   TGGCGTTGGC GCGCCTGATT CACTTGGAAA AAGCCGGTGC
    GCCGATGCGC
    151   GTGCTGGCGT GGGCGTTGCG TAAAGTTTCG CTGCTGTATG
    TTACGCTGTT
    201   CCGGGGTACG CCGCTGTTTG TGCAGATTGT GATTTGGGCG
    TATGTGTGGT
    251   TTCCGTTTTT CGTC..
  • This corresponds to the amino acid sequence <SEQ ID 836; ORF129>:
  • 1 ..IIYEYRWMFL YGALTTLGLT VVAXAGGSVL GLLLALARLI
    HLEKAGAPMR
    51   VLAWALRKVS LLYVTLFRGT PLFVQIVIWA YVWFPFFV..
  • Further work revealed the complete nucleotide sequence <SEQ ID 837>:
  • 1 ATGGATTTTC GTTTTGACAT TATTTACGAA TACCGCTGGA
    TGTTTCTTTA
    51 CGGCGCACTG ACGACCTTGG GGCTGACGGT CGTGGCAACG
    GCGGGCGGTT
    101 CGGTATTGGG TCTGTTGTTG GCGTTGGCGC GCCTGATTCA
    CTTGGAAAAA
    151 GCCGGTGCGC CGATGCGCGT GCTGGCGTGG GCGTTGCGTA
    AAGTTTCGCT
    201 GCTGTATGTT ACGCTGTTCC GGGGTACGCC GCTGTTTGTG
    CAGATTGTGA
    251 TTTGGGCGTA TGTGTGGTTT CCGTTTTTCG TCCATCCTTC
    AGACGGCATT
    301 TTGGTCAGCG GCGAGGCGGC AATCGCGCTG CGTCGCGGAT
    ACGGGCCGCT
    351 GATTGCCGGT TCTTTGGCAC TGATCGCCAA CTCGGGGGCG
    TATATCTGTG
    401 AGATTTTCCG CGCGGGCATC CAGTCTATAG ACAAAGGACA
    GATGGAGGCG
    451 GCGCGTTCTT TGGGGCTGAC CTATCCGCAG GCGATGCGCT
    ATGTGATTCT
    501 GCCGCAGGCA TTGCGCCGCA TGCTGCCGCC TTTGGCGAGC
    GAGTTCATCA
    551 CGCTCTTGAA AGACAGCTCG CTGCTGTCGG TCATTGCTGT
    GGCGGAGTTG
    601 GCGTATGTTC AGAATACGAT TACGGGCCGG TATTCGGTTT
    ATGAAGAACC
    651 GCTTTACACC GTCGCCCTGA TTTATCTGTT GATGACGACT
    TTCTTAGGCT
    701 GGATATTCCT GCGTTTGGAA AAACGTTACA ATCCGCAACA
    CCGCTGA
  • This corresponds to the amino acid sequence <SEQ ID 838; ORF129-1>:
  • 1 MDFRFDIIYE YRWMFLYGAL TTLGLTVVAT AGGSVLGLLL
    ALARLIHLEK
    51 AGAPMRVLAW ALRKVSLLYV TLFRGTPLFV QIVIWAYVWF
    PFFV HPSDGI
    101 LVSGEAAIAL RRGYGPLIAG SLALIANSGA YICEIFRAGI
    QSIDKGQMEA
    151 ARSLGLTYPQ AMRYVILPQA LRRMLPPLAS EFITLLKDSS
    LLSVIAVAEL
    201 AYVQNTITGR YSVYEEPLYT VALIYLLMTT FLGWIFLRLE
    KRYNPQHR*
  • Computer analysis of this amino acid sequence gave the following results:
  • Homology with a Predicted ORF from N. meningitidis (Strain A)
  • ORF129 shows 98.9% identity over a 88aa overlap with an ORF (ORF129a) from strain A of N. meningitidis:
  • Figure US20130064846A1-20130314-C00379
  • The complete length ORF129a nucleotide sequence <SEQ ID 839> is:
  • 1 ATGGATTTTC GTTTTGACAT TATTTACGAA TACCGCTGGA
    TGTTTCTTTA
    51 CGGCGCACTG ACGACCTTGG GGCTGACGGT CGTGGCGACG
    GCGGGCGGTT
    101 CGGTATTGGG TCTGTTGTTG GCGTTGGCGC GCCTGATTCA
    CTTGGAAAAA
    151 GCCGGTGCGC CGATGCGCGT GCTGGCGTGG GCGTTGCGTA
    AGGTTTCGCT
    201 GCTGTATGTT ACGCTGTTCC GGGGTACGCC GCTGTTTGTG
    CAGATTGTGA
    251 TTTGGGCGTA TGTGTGGTTT CCGTTTTTCG TCCATCCTTC
    AGACGGCATT
    301 TTGGTTAGCG GCGAGGCGGC AATCGCGCTG CGTCGCGGAT
    ACGGGCCGCT
    351 GATTGCCGGT TCTTTGGCAC TGATCGCCAA CTCGGGGGCG
    TATATCTGTG
    401 AGATTTTCCG CGCGGGCATC CAGTCTATAG ACAAAGGACA
    GATGGAGGCG
    451 GCGCGTTCTT TGGGGCTGAC CTATCCGCAG GCGATGCGCT
    ATGTGATTCT
    501 GCCGCAGGCA TTGCGCCGTA TGCTGCCGCC TTTGGCGAGC
    GAGTTCATCA
    551 CGCTCTTGAA AGACAGCTCG CTGCTGTCGG TCATTGCTGT
    GGCGGAGTTG
    601 GCGTATGTTC AGAATACGAT TACGGGCCGG TATTCGGTTT
    ATGAAGAACC
    651 GCTTTACACC GTCGCCCTGA TTTATCTGTT GATGACGACT
    TTCTTAGGCT
    701 GGATATTCCT GCGTTTGGAA AAACGTTACA ATCCGCAACA
    CCGCTGA
  • This encodes a protein having amino acid sequence <SEQ ID 840>:
  • 1 MDFRFDIIYE YRWMFLYGAL TTLGLTVVAT AGGSVLGLLL
    ALARLIHLEK
    51 AGAPMRVLAW ALRKVSLLYV TLFRGTPLFV QIVIWAYVWF
    PFFVHPSDGI
    101 LVSGEAAIAL RRGYGPLIAG SLALIANSGA YICEIFRAGI
    QSIDKGQMEA
    151 ARSLGLTYPQ AMRYVILPQA LRRMLPPLAS EFITLLKDSS
    LLSVIAVAEL
    201 AYVQNTITGR YSVYEEPLYT VALIYLLMTT FLGWIFLRLE
    KRYNPQHR*
  • ORF129a and ORF129-1 show 100.0% identity in 248 aa overlap:
  • Figure US20130064846A1-20130314-C00380
  • Homology with a Predicted ORF from N. gonorrhoeae
  • ORF129 shows 98.9% identity over a 88 aa overlap with a predicted ORF (ORF129ng) from N. gonorrhoeae:
  • Figure US20130064846A1-20130314-C00381
  • An ORF129ng nucleotide sequence <SEQ ID 841> was predicted to encode a protein having amino acid sequence <SEQ ID 842>:
  • 1 MDFRFDIIYE YRWMFLYGAL TTLGLTVVAT AGGSVLGLLL
    ALARLIHLEK
    51 AGAPMRVLAW ALRKVSLLYV TLFRGTPLFV QIVIWAYVWF
    PFFVILHTAF
    101 LGNAMRQSRR VPDKGRWIAG SLELNCQPRG RKTRGEFPPG
    ESNLGTEPRN
    151 PLSMGQRRFP GCENWYPPQN FIKK*
  • Further work revealed the following gonococcal sequence <SEQ ID 843>:
  • 1 ATGGATTTTc gtTTTGACAT TATTTAcgaA TACCGCTGGA
    TGTTTCTTTA
    51 CGGCGCACTG Acgaccttgg ggctgacggt cgtggcgacg
    gCGGGCGGTT
    101 CGGtattggG TCTGTTGTTG GCGTTGGCGC GCCTGATTCA
    CTTGGAAAAA
    151 GCCGGTGCGC CGATGCGCGT GCTGGCGTGG GCGTTGCGTA
    AGGTTTCGCT
    201 GCTGTACGTT ACCCTGTTCC GGGGTACGCC GCTGTTTGTG
    CAGATTGTGA
    251 TTTGGGCGTA TGTGTGGTTT CCGTTTTTCG TCCATCCTTC
    AGACGGCATT
    301 TTGGTCAGCG GCGAGGCGGC AATCGCGCTG CGTCGCGGAT
    ACGGGCCGCT
    351 GATTGCCGGT TCTTTGGCAC TGATCGCCAA CTCGGGGGCG
    TATATCTGTG
    401 AGATTTTCCG CGCGGGCATC CAGTCTATAG ACAAAGGACA
    GATGGAGGCG
    451 GCGTGTTCTT TGGGACTGAC CTATCCGCAG GCGATGCGCT
    ATGTGATTCT
    501 GCCGCAGGCA TTGCGCCGTA TGCTGCCGCC TTTGGCGAGC
    GAGTTCATCA
    551 CGCTCTTGAA AGACAGCTCG CTGCTGTCGG TCATTGCTGT
    GGCGGAGTTG
    601 GCGTATGTTC AGAATACGAT TACGGGCCGG TATTCGGTTT
    ATGAAGAACC
    651 GCTTTACACC GCCGCCCTGA TTTATCTGTT GATGACGACT
    TTCTTAGGCT
    701 GGATATTCCT GCGTTTGGAA AAACGTTACA ATCCGCAACA
    CCGCTGA
  • This corresponds to the amino acid sequence <SEQ ID 844; ORF129ng-1>:
  • 1 MDFRFDIIYE YRWMFLYGAL TTLGLTVVAT AGGSVLGLLL
    ALARLIHLEK
    51 AGAPMRVLAW ALRKVSLLYV TLFRGTPLFV QIVIWAYVWF
    PFFVHPSDGI
    101 LVSGEAAIAL RRGYGPLIAG SLALIANSGA YICEIFRAGI
    QSIDKGQMEA
    151 ARSLGLTYPQ AMRYVILPQA LRRMLPPLAS EFITLLKDSS
    LLSVIAVAEL
    201 AYVQNTITGR YSVYEEPLYT VALIYLLMTT FLGWIFLRLE
    KRYNPQHR*
  • ORF129ng-1 and ORF129-1 show 99.2% identity in 248 aa overlap:
  • Figure US20130064846A1-20130314-C00382
  • In addition, ORF129ng-1 is homologous to an ABC transporter from A. fulgidus:
  • 2650409(AE001090) glutamine ABC transporter, permease protein (glnP)
    [Archaeoglobus fulgidus] Length = 224
    Score = 132 bits (329), Expect = 2e−30
    Identities = 86/178 (48%), Positives = 103/178 (57%), Gaps = 18/178 (10%)
    Query: 65 VSLLYVTLFRGTPLFVQIVIWAYVWFPFFVHPSDGILVSGEAAIALRRGYGPLIAGSLAL 124
    +S  YV + RGTPL VQI+I       +F  P+ GI +  E A            G +AL
    Sbjct: 58 ISTAYVEVIRGTPLLVQILI------VYFGLPAIGINLQPEPA------------GIIAL 99
    Query: 125 IANSGAYICEIFRAGIQSIDKGQMEAACSLGLTYPQAMRYVILPQALRRMLPPLASEFIT 184
       SGAYI EI RAGI+SI  GQMEAA SLG+TY QAMRYVI PQA R +LP L +EFI
    Sbjct: 100 SICSGAYIAEIVRAGIESIPIGQMEAARSLGMTYLQAMRYVIFPQAFRNILPALGNEFIA 159
    Query: 185 LLKDSSLLSVIAVAELAYVQNTITGRYSVYEEPLYTAALIYLLMTTFLGWIFLRLEKR 242
    LLKDSSLLSVI++ EL  V   I         P    AL YL+MT  L  +    +K+
    Sbjct: 160 LLKDSSLLSVISIVELTRVGRQIVNTTFNAWTPFLGVALFYLMMTIPLSRLVAYSQKK 217
  • This analysis, including the identification of transmembrane domains in the two proteins, suggests that the proteins from N. meningitidis and N. gonorrhoeae, and their epitopes, could be useful antigens for vaccines or diagnostics, or for raising antibodies.
  • Example 100
  • The following partial DNA sequence was identified in N. meningitidis <SEQ ID 845>:
  • 1 ..CTGAAAGAAT GCCGTCTGAA AGACCCTGTT TTTATTCCAA
    ATATCGTTTA
    51   TAAGAACATC GCCATTACTT TCCTGCTCTT GCACGCCGCC
    GCCGAACTTT
    101   GGCTGCCCGC GCAAACCGCC GGTTTTACCG CGCTCGCCGT
    CGGCTTCATC
    151   CTGCTCGCCA AGCTGCGTGA gCTTCACCAT CACGAACTCT
    TACGTAAACA
    201   cTACGTCCGC ACTTATTACy TGCTCCAACT CTTTGCCGCC
    GCAGgcTAgT
    251   TTGTGGACAG GCGCGGCGwA ATTACAAAAC CTGCCCGCyT
    CCGCGCCCCT
    301   GCACCTGATT ACCCTCGGCG GCATGATGGG CGGCGTGATG
    ATGGTGTGGc
    351   TGACCGCCGG ACTGTGGCAC AGCGGCTTTA CCAAACTCGA
    CTACCCCAAA
    401   CTCTGCCGCA TTGCCGTCCC CATCCTTTTC GCCGCCGCCG
    TCTCGCGCGC
    451   TTTCTTGrTG AACGTGAACC CGrTATTTTT CATTACCGTT
    CCTGCGATTC
    501   TGACCGCCGC CGTATTCGTA CTGTATCTTT TCrCGTTTAT
    ACCGATATTT
    551   CGGGCGAATG CGTTTACAGA CGATCCGGAr TAr
  • This corresponds to the amino acid sequence <SEQ ID 846; ORF130>:
  • 1 ..LKECRLKDPV FIPNIVYKNI AITFLLLHAA AELWLPAQTA
    GFTALAVGFI
    51   LLAKLRELHH HELLRKHYVR TYYLLQLFAA AGSLWTGAAX
    LQNLPASAPL
    101   HLITLGGMMG GVMMVWLTAG LWHSGFTKLD YPKLCRIAVP
    ILFAAAVSRA
    151   FLXNVNPXFF ITVPAILTAA VFVLYLFXFI PIFRANAFTD
    DPE*
  • Further work revealed the complete nucleotide sequence <SEQ ID 847>:
  • 1 ATGCGGCCGT TTTTCGTCGG CGCGGCGGTG CTTGCCATAC
    TCGGTGCGCT
    51 GGTGTTTTTC ATCAACCCCG GTGCCATCGT CCTGCACCGC
    CAAATTTTCT
    101 TGGAACTTAT GCTGCCGGCG GCATACGGCG GTTTTTTGAC
    TGCGGCTTTG
    151 TTGGACTGGA CGGGTTTTTC GGGTAACCTG AAACCTGTCG
    CGACTTTGAT
    201 GGCGGCATTA TTGCTCGCCG CATCCGCTAT ACTGCCCTTT
    TCGCCGCAAA
    251 CTGCCTCGTT TTTCGTCGCC GCCTATTGGC TGGTGTTGCT
    GCTGTTCTGC
    301 GCCCGGCTGA TTTGGCTAGA CCGAAACACC GACAACTTCG
    CCCTGCTAAT
    351 GTTACTTGCC GCGTTCACTG TTTTTCAGAC GGCATATGCC
    GTCAGCGGCG
    401 ATTTGAACCT GTTGCGCGCG CAAGTGCATC TAAATATGGC
    GGCGGTGATG
    451 TTCGTATCCG TGCGCGTCAG TATTCTTTTG GGCGCGGAAG
    CCCTGAAAGA
    501 ATGCCGTCTG AAAGACCCTG TTTTTATTCC AAATATCGTT
    TATAAAAACA
    551 TCGCCATTAC TTTCCTGCTC TTGCACGCCG CCGCCGAACT
    TTGGCTGCCC
    601 GCGCAAACCG CCGGTTTTAC CGCGCTCGCC GTCGGCTTCA
    TCCTGCTCGC
    651 CAAGCTGCGT GAGCTTCACC ATCACGAACT CTTACGTAAA
    CACTACGTCC
    701 GCACTTATTA CCTGCTCCAA CTCTTTGCCG CCGCAGGCTA
    TTTGTGGACA
    751 GGCGCGGCGA AATTACAAAA CCTGCCCGCC TCCGCGCCCC
    TGCACCTGAT
    801 TACCCTCGGC GGCATGATGG GCGGCGTGAT GATGGTGTGG
    CTGACCGCCG
    851 GACTGTGGCA CAGCGGCTTT ACCAAACTCG ACTACCCCAA
    ACTCTGCCGC
    901 ATTGCCGTCC CCATCCTTTT CGCCGCCGCC GTCTCGCGCG
    CTTTCTTGAT
    951 GAACGTGAAC CCGATATTTT TCATTACCGT TCCTGCGATT
    CTGACCGCCG
    1001 CCGTATTCGT ACTGTATCTT TTCACGTTTA TACCGATATT
    TCGGGCGAAT
    1051 GCGTTTACAG ACGATCCGGA ATAA
  • This corresponds to the amino acid sequence <SEQ ID 848; ORF130-1>:
  • 1 MRPFFVGAAV LAILGALVFF INPGAIVLHR QIFLELMLPA
    AYGGFLTAAL
    51 LDWTGFSGNL KPVATLMAAL LLAASAILP F SPQTASFFVA
    AYWLVLLLFC
    101 ARLIWLDRNT DNFALLMLLA AFTVFQTAYA VSGDLNLLRA
    QVHLNMAAVM
    151 FVSVRVSILL GAEALKECRL KDPVFIPNIV YKNIAITFLL
    LHAAAELWLP
    201 AQTAGFTALA VGFILLAKLR ELHHHELLRK HYVRTYYLLQ
    LFAAAGYLWT
    251 GAAKLQNLPA SAPLHLITLG GMMGGVMMVW LTAGLWHSGF
    TKLDYPKLCR
    301 IAVPILFAAA VSRAFLMNVN PIFFITVPAI LTAAVFVLYL
    FTFIPIFRAN
    351 AFTDDPE*
  • Computer analysis of this amino acid sequence gave the following results:
  • Homology with a Predicted ORF from N. meningitidis (Strain A)
  • ORF130 shows 94.3% identity over a 193aa overlap with an ORF (ORF130a) from strain A of N. meningitidis:
  • Figure US20130064846A1-20130314-C00383
  • The complete length ORF130a nucleotide sequence <SEQ ID 849> is:
  • 1 ATGCGGCCGT TTTTCGTCGG CGCGGCGGTG CTTGCCATAC
    TCGGTGCGCT
    51 GGTGTTTTTC ATCAACCCCG GTGCCATCGT CCTGCACCGC
    CAAATTTTCT
    101 TGGAACTTAT GCTGCCGGCG GCATACGGCG GTTTTTTGAC
    TGCGGCTTTG
    151 TTGGACTGGA CGGGTTTTTC GGGTAACCTG AAACCTGTCG
    CGACTTTGAT
    201 GGCGGCATTA TTGCTCGCCG CATCCGCTAT ACTGCCCTTT
    TCGCCGCAAA
    251 CTGCCTCGTT TTTCGTCGCC GCCTATTGGC TGGTGTTGCT
    GCTGTTCTGC
    301 GCCCGGCTGA TTTGGCTAGA CCGAAACACC GACAACTTCG
    CCCTGCTAAT
    351 GTTACTTGCC GCGTTCACTG TTTTTCAGAC GGCATATGCC
    GTCAGCGGCG
    401 ATTTGAACCT GTTGCGCGCG CAAGTGCATC TAAATATGGC
    GGCGGTGATG
    451 TTCGTATCCG TGCGCGTCAG TATTCTTTTG GGCGCGGAAG
    CCCTGAAAGA
    501 ATGCCGTCTG AAAGACCCAG TATTCATCCC CAATGTCGTC
    TATAAAAACA
    551 TCGCCATTAC CTTCCTGCTC CTGCACGCCG CCGCCGAACT
    TTGGCTGCCT
    601 GCGCAAACCG CCGGTTTTAC CTCGCTCGCC GTCGGCTTTA
    TCCTGCTTGC
    651 CAAGCTGCGT GAGCTTCACC ATCACGAACT CCTGCGCAAA
    CACTACGTCC
    701 GCACTTATTA CCTGCTCCAA CTCTTTGCCG CCGCAGGCTA
    TTTGTGGACA
    751 GGCGCGGCGA AATTACAAAA CCTGCCCGCC TCCGCGCCCC
    TGCACCTGAT
    801 TACCCTCGGT GGCATGATGG GCAGCGTGAT GATGGTGTGG
    CTGACTGCCG
    851 GACTGTGGCA CAGCGGCTTT ACCAAGCTCG ACTACCCGAA
    ACTCTGCCGC
    901 ATCGCCGTCC CCATCCTNTT CGCCGCCGCC GTTTCGCGCG
    CTGTTTTAAT
    951 GAACGTAAAC CCGATATTCT TCATCACCGT CCCCGCAATT
    CTGACCGCCG
    1001 CCGTGTTCGT GCTTTACCTG CTGACATTCG TACCGATCTT
    TCGGGCGAAC
    1051 GCGTTTACAG ACGATCCGGA ATAA
  • This encodes a protein having amino acid sequence <SEQ ID 850>:
  • 1 MRPFFVGAAV LAILGALVFF INPGAIVLHR QIFLELMLPA
    AYGGFLTAAL
    51 LDWTGFSGNL KPVATLMAAL LLAASAILP F SPQTASFFVA
    AYWLVLLLFC
    101 ARLIWLDRNT DNFALLMLLA AFTVFQTAYA VSGDLNLLRA
    QVHLNMAAVM
    151 FVSVRVSILL GAEALKECRL KDPVFIPNVV YKNIAITFLL
    LHAAAELWLP
    201 AQTAGFTSLA VGFILLAKLR ELHHHELLRK HYVRTYYLLQ
    LFAAAGYLWT
    251 GAAKLQNLPA SAPLHLITLG GMMGSVMMVW LTAGLWHSGF
    TKLDYPKLCR
    301 IAVPILFAAA VSRAVLMNVN PIFFITVPAI LTAAVFVLYL
    LTFVPIFRAN
    351 AFTDDPE*
  • ORF130a and ORF130-1 show 98.3% identity in 357 aa overlap:
  • Figure US20130064846A1-20130314-C00384
  • Homology with a Predicted ORF from N. gonorrhoeae
  • ORF130 shows 91.7% identity over a 193 aa overlap with a predicted ORF (ORF130ng) from N. gonorrhoeae:
  • Figure US20130064846A1-20130314-C00385
  • An ORF130ng nucleotide sequence <SEQ ID 851> was predicted to encode a protein having amino acid sequence <SEQ ID 852>:
  • 1 MNKFFTHPMR PFFVGAAVLA ILGALVFFHQ PRRYHPAPPN
    FLGTYAAGCI
    51 RRFFDYRFVG PDGFFRQPET CRYFDGGVVA CCGCFIAVFT
    ATCRIFRRRL
    101 LAGVAAVLRL ADLARRQHRT LRSVDVTAAF TVFQTAYAVS
    GDLNLLRAQV
    151 HLNMAAVMFV SVRVSVLLGT ETLKECRLKD PVFIPNVIYK
    NIAITLLLHA
    201 AAELWLPAQT AGFTALAVGF ILLAKL RELH HHELLRKHYV
    RTYYLLQLFA
    251 AAGYLWTGAA KLQNLPASAP LHLITLGGMT GGVMMVWLTA
    GLWHSGFTKL
    301 DYPKLCRIAV SILFASAVSR AVLMNVNPIF FITVPEILTA
    AVFMLYLLTF
    351 VPIFRANAFT DDPE*
  • Further work revealed the following gonococcal DNA sequence <SEQ ID 853>:
  • 1 ATGCGCCCGT TTTTCGTCGG TGCGGCAGTA CTTGCCATAC
    TCGGTGCGTT
    51 GGTGTTTTTT ATCAACCCCG GCGCTATCAT CCTGCACCGC
    CAAATTTTCT
    101 TGGAACTTAT GCTGCCGGCT GCATACGGCG GTTTTTTGAC
    TACCGCTTTG
    151 TTGGACCGGA CGGGTTTTTC AGGCAACCTG AAACCTGCCG
    CTACTTTGAT
    201 GGCGGTGTTG TTGCTTGTTG CGGCTGTTTT ATTGCCGTTT
    TTACCGCAAC
    251 TTGCCGCATT TTTCGTCGCC GCCTATTGGC TGGTGTTGCT
    GCTGTTCTGC
    301 GCCTGGCTGA TTTGGCTCGA CCGCAACACC GACAACTTCG
    CTCTGTTGAT
    351 GTTACTTGCC GCATTTACCG TTTTTCAGAC GGCCTATGCC
    GTCAGCGGCG
    401 ATTTGAACTT ACTGCGCGCG CAAGTGCATT TGAATATGGC
    GGCGGTCATG
    451 TTCGTATCCG TCCGCGTCAG CGTCCTTTTG GGCACGGAAA
    CCCTGAAAGA
    501 ATGCCGTCTG AAAGACCCCG TATTCATCCC CAACGTTATC
    TATAAAAACA
    551 TCGCCATCAC CCTGCTGCTG CACGCCGCCG CCGAACTTTG
    GCTGCCCGCG
    601 CAAACCGCCG GTTTTACTGC GCTTGCCGTC GGCTTCATCC
    TGCTCGCCAA
    651 GCTGCGCGAA CTGCACCATC ACGAACTCTT ACGCAAACAC
    TACGTCCGCA
    701 CTTATTACCT GCTCCAGCTC TTTGCCGCCG CAGGTTATCT
    GTGGACAGGC
    751 GCGGCGAAAC TGCAAAACCT GCCCGCCTCC GCGCCCCTGC
    ACCTGATTAC
    801 CCTCGGCGGC ATGACGGGTG GCGTGATGAT GGTGTGGCTG
    ACTGCCGGAC
    851 TGTGGCACAG CGGCTTTACC AAACTCGACT ACCCGAAACT
    CTGCCGCATC
    901 GCCGTCTCCA TCCTTTTCGC CTCCGCCGTT TCGCGCGCTG
    TTTTAATGAA
    951 CGTGAATCCG ATATTCTTCA TCACCGTTCC CGAGATTCTG
    ACCGCCGCCG
    1001 TGTTCATGCT TTACCTGCTG ACGTTCGTAC CGATTTTTCG
    AGCGAACGCG
    1051 TTTACAGACG ATCCGGAATA A
  • This corresponds to the amino acid sequence <SEQ ID 854; ORF130ng-1>:
  • 1 MRPFFVGAAV LAILGALVFF INPGAIILHR QIFLELMLPA
    AYGGFLTTAL
    51 LDRTGFSGNL KPAATLMAVL LLVAAVLLPF L PQLAAFFVA
    AYWLVLLLFC
    101 AWLIWLDRNT DNFALLMLLA AFTVFQTAYA VSGDLNLLRA
    QVHLNMAAVM
    151 FVSVRVSVLL GTETLKECRL KDPVFIPNVI YKNIAITLLL
    HAAAELWLPA
    201 QTAGFTALAV GFILLAKLRE LHHHELLRKH YVRTYYLLQL
    FAAAGYLWTG
    251 AAKLQNLPAS APLHLITLGG MTGGVMMVWL TAGLWHSGFT
    KLDYPKLCRI
    301 AVSILFASAV SRAVLMNVNP IFFITVPEIL TAAVFMLYLL
    TFVPIFRANA
    351 FTDDPE*
  • ORF130ng-1 and ORF130-1 show 92.4% identity in 357 aa overlap:
  • Figure US20130064846A1-20130314-C00386
  • Based on this analysis, it is predicted that the proteins from N. meningitidis and N. gonorrhoeae, and their epitopes, could be useful antigens for vaccines or diagnostics, or for raising antibodies.
  • Example 101
  • The following partial DNA sequence was identified in N. meningitidis <SEQ ID 855>:
  • 1 ATGGAAATTC GGGCAATAAA ATATACGGCA ATGGCTGCGT
    TGCTTGCATT
    51 TACGGTTGCA GGCTGCCGGC TGGCGGGGTG GTATGAGTGT
    TCGTCCCTCA
    101 CCGGCTGGTG TAAGCCGAGA AAACCGGCTG CCATCGATTT
    TTGGGATATT
    151 GGCGGCGAGA GTCCGCCGTC TTTAGGGGAC TACGAGATAC
    CGCTTTCAGA
    201 CGGCAATAGT TCCGTCAGGG CAAACGAATA TGAATCCGCA
    CAACAATCTT
    251 ACTTTTACAG GAAAATAGGG AAGTTTGAAG C.TGCGGGCT
    GGATTGGCGT
    301 ACGCGTGACG GCAAACCTTT GATTGAGACG TTCAAACAGG
    GAGGATTTGA
    351 CTGCTTGGAA AAG..
  • This corresponds to the amino acid sequence <SEQ ID 856; ORF131>:
  • 1 MEIRAIKYTA MAALLAFTVA GCRLAGWYEC SSLTGWCKPR
    KPAAIDFWDI
    51 GGESPPSLGD YEIPLSDGNS SVRANEYESA QQSYFYRKIG
    KFEXCGLDWR
    101 TRDGKPLIET FKQGGFDCLE K..
  • Further work revealed the complete nucleotide sequence <SEQ ID 857>:
  • 1 ATGGAAATTC GGGCAATAAA ATATACGGCA ATGGCTGCGT
    TGCTTGCATT
    51 TACGGTTGCA GGCTGCCGGC TGGCGGGGTG GTATGAGTGT
    TCGTCCCTCA
    101 CCGGCTGGTG TAAGCCGAGA AAACCGGCTG CCATCGATTT
    TTGGGATATT
    151 GGCGGCGAGA GTCCGCCGTC TTTAGGGGAC TACGAGATAC
    CGCTTTCAGA
    201 CGGCAATCGT TCCGTCAGGG CAAACGAATA TGAATCCGCA
    CAACAATCTT
    251 ACTTTTACAG GAAAATAGGG AAGTTTGAAG CCTGCGGGCT
    GGATTGGCGT
    301 ACGCGTGACG GCAAACCTTT GATTGAGACG TTCAAACAGG
    GAGGATTTGA
    351 CTGCTTGGAA AAGCAGGGGT TGCGGCGCAA CGGTCTGTCC
    GAGCGCGTCC
    401 GATGGTAA
  • This corresponds to the amino acid sequence <SEQ ID 858; ORF131-1>:
  • 1 MEIRAIKYTA MAALLAFTVA GCRLAGWYEC SSLTGWCKPR
    KPAAIDFWDI
    51 GGESPPSLGD YEIPLSDGNR SVRANEYESA QQSYFYRKIG
    KFEACGLDWR
    101 TRDGKPLIET FKQGGFDCLE KQGLRRNGLS ERVRW*
  • Computer analysis of this amino acid sequence gave the following results:
  • Homology with a Predicted ORF from N. meningitidis (Strain A)
  • ORF131 shows 95.0% identity over a 121 aa overlap with an ORF (ORF131a) from strain A of N. meningitidis:
  • Figure US20130064846A1-20130314-C00387
  • The complete length ORF131a nucleotide sequence <SEQ ID 859> is:
  • 1 ATGGAAATTC GGGCAATAAA ATATACGGCA ATGGCTGCGT
    TGCTTGCATT
    51 TACGGTTGCA GGCTGCCGGT TGGCAGGTTG GTATGAGTGT
    TCGTCCCTGT
    101 CCGGCTGGTG TAAGCCGAGA AAACCTGCCG CCATCGATTT
    TTGGGATATT
    151 GGCGGCGAGA GTCCTCCGTC TTTAGAGGAC TACGAGATAC
    CGCTTTCAGA
    201 CGGCAATCGT TCCGTCAGGG CAAACGAATA TGAATCCGCA
    CAACAATCTT
    251 ACTTTTACAG GAAAATAGGG AAGTTTGAAG CCTGCGGGTT
    GGATTGGCGT
    301 ACGCGTGACG GCAAACCTTT GATTGAGACG TTCAAACAGG
    AAGGTTTTGA
    351 TTGTTTGAAA AAGCAGGGGT TGCGGCGCAA CGGTCTGTCC
    GAGCGCGTCC
    401 GATGGTAA
  • This encodes a protein having amino acid sequence <SEQ ID 860>:
  • 1 MEIRAIKYTA MAALLAFTVA GCRLAGWYEC SSLSGWCKPR
    KPAAIDFWDI
    51 GGESPPSLED YEIPLSDGNR SVRANEYESA QQSYFYRKIG
    KFEACGLDWR
    101 TRDGKPLIET FKQEGFDCLK KQGLRRNGLS ERVRW*
  • ORF131a and ORF131-1 show 97.0% identity in 135 aa overlap:
  • Figure US20130064846A1-20130314-C00388
  • Homology with a Predicted ORF from N. gonorrhoeae
  • ORF131 shows 89.3% identity over 121 aa overlap with a predicted ORF (ORF131ng) from N. gonorrhoeae:
  • Figure US20130064846A1-20130314-C00389
  • A complete length ORF131ng nucleotide sequence <SEQ ID 861> was predicted to encode a protein having amino acid sequence <SEQ ID 862>:
  • 1 MEIRVIKYTA TAALFAFTVA GCRLAGWYEC LSLSGWCKPR
    KPAAIDFWDI
    51 GGESPLSLED YEIPLSDGNR SVRANEYESA QKSYFYRKIG
    KFEACGLDWR
    101 TRDGKPLVER FKQEGFDCLE KQGLRRNGLS ERVRW*
  • Further work revealed the following gonococcal DNA sequence <SEQ ID 863>:
  • 1 ATGGAAATTC GGGTAATAAA ATATACGGCA ACGGCTGCGT
    TGTTTGCATT
    51 TACGGTTGCA GGCTGCCGGC TGGCGGGGTG GTATGAGTGT
    TCGTCCTTGT
    101 CCGGCTGGTG TAAGCCGAGA AAACCTGCCG CCATCGATTT
    TTGGGATATT
    151 GGCGGCGAGA GtccgctGTC TTTAGAGGAC TACGAGATAC
    CGCTTTCAGA
    201 CGGCAATCGT TCCGTCAGGG CAAACGAATA TGAATCCGCG
    CAAAAATCTT
    251 ACTTTTATAG GAAAATAGGG AAGTTTGAAG CCTGCGGGTT
    GGATTGGCGT
    301 ACGCGTGACG GCAAACCTTT GGTTGAGAGG TTCAAACAGG
    AAGGTTTCGA
    351 CTGTTTGGAA AAGCAGGGGT TGCGGCGCAA CGGCCTGTCC
    GAGCGCGTCC
    401 GATGGTAA
  • This corresponds to the amino acid sequence <SEQ ID 864; ORF131ng-1>:
  •   1 MEIRVIKYTA TAALFAFTVA GCRLAGWYEC SSLSGWCKPR
    KPAAIDFWDI
     51 GGESPLSLED YEIPLSDGNR SVRANEYESA QKSYFYRKIG
    KFEACGLDWR
    101 TRDGKPLVER FKQEGFDCLE KQGLRRNGLS ERVRW*
  • ORF131ng-1 and ORF131-1 show 92.6% identity in 135 aa overlap:
  • Figure US20130064846A1-20130314-C00390
  • Based on the presence of a predicted prokaryotic membrane lipoprotein lipid attachment site, it is predicted that the proteins from N. meningitidis and N. gonorrhoeae, and their epitopes, could be useful antigens for vaccines or diagnostics, or for raising antibodies.
  • Example 102
  • The following partial DNA sequence was identified in N. meningitidis <SEQ ID 865>
  •   1 ATGAAACACA TCCATATTAT CGGTATCGGC GGCACGTTTA
    TGGGCGGGCT
     51 TGCCGCCATT GCCAAAGAAG CGGGGTTTGA AGTCAGCGGT
    TGCGACGCGA
    101 AGATGTATCC GCCGATGAGC ACCCAGCTCG AAGCCTTGGG
    TATAGACGTG
    151 TATGAAGGCT TCGATGCCGC TCAGTTGGAC GAATTTAAAG
    CCGACGTTTA
    201 CGTTATCGGC AATGTCGCCA AGCGCGGGAT GGATGTGGTT
    GAAGCGATTT
    251 TGAACCTCGG CCTGCCtTAT ATtTcCGGCC CGCAATGGCT
    GTCGGAAAAC
    301 GTGCTGCACC ATCATTGGGT ACTCGGTGTG GCGGGGACgC
    ACGGCAAAAC
    351 GACCACCGCC TCCATGCTCG CATGGGTCTT GGAATATgCC
    GGCCTCGCGC
    401 CGGGCTTCCT TATtGGCGGC GTACC.GGAA AATttCGGCG
    TTTCCGCCCG
    451 CCTGCCGCAA ACGCCGCGCC AAGACCCGAA CAGCCAATCG
    CCGTTTTTcG
    501 TCATCGAAGC CGACGAATAC GACACCGCCT TTtTCGACAA
    ACGTTCTAAA
    551 TtCGTGCATT ACCGTCCGCG TACCGCCGTG TTGAACAATC
    TGGAATTCGA
    601 CCACGCCGAC ATCTTTGCCG ACTTGGGCGC GATACAGACc
    CAGTTCCACT
    651 ACCTCGTGCG TACCGTGCCG TCTGAAGGCT TAATCGTCTG
    CAACGGACGG
    701 CAGCAAAGCC TGCAAGATAC TTTGGACAAA GGCTGCTGGA
    CGCCGGTGGA
    751 AAAATTCGGC ACGGAACACG GCTGGCA..
  • This corresponds to the amino acid sequence <SEQ ID 866; ORF132>:
  •   1 MKHIHIIGIG GTFMGGLAAI AKEAGFEVSG CDAKMYPPMS
    TQLEALGIDV
     51 YEGFDAAQLD EFKADVYVIG NVAKRGMDVV EAILNLGLPY
    ISGPQWLSEN
    101 VLHHHWVLGV AGTHGKTTTA SMLAWVLEYA GLAPGFLIGG
    VXGKFRRFRP
    151 PAANAAPRPE QPIAVFRHRS RRIRHRLFRQ TFXIRALPSA
    YRRVEQSGIR
    201 PRRHLCRLGR DTDPVPLPRA YRAVXRLNRL QRTAAKPARY
    FGQRLLDAGG
    251 KIRHGTRLA..
  • Further work revealed the complete nucleotide sequence <SEQ ID 867>:
  • 1 ATGAAACACA TCCATATTAT CGGTATCGGC GGCACGTTTA
    TGGGCGGGCT
    51 TGCCGCCATT GCCAAAGAAG CGGGGTTTGA AGTCAGCGGT
    TGCGACGCGA
    101 AGATGTATCC GCCGATGAGC ACCCAGCTCG AAGCCTTGGG
    TATAGACGTG
    151 TATGAAGGCT TCGATGCCGC TCAGTTGGAC GAATTTAAAG
    CCGACGTTTA
    201 CGTTATCGGC AATGTCGCCA AGCGCGGGAT GGATGTGGTT
    GAAGCGATTT
    251 TGAACCTCGG CCTGCCTTAT ATTTCCGGCC CGCAATGGCT
    GTCGGAAAAC
    301 GTGCTGCACC ATCATTGGGT ACTCGGTGTG GCGGGGACGC
    ACGGCAAAAC
    351 GACCACCGCC TCCATGCTCG CATGGGTCTT GGAATATGCC
    GGCCTCGCGC
    401 CGGGCTTCCT TATTGGCGGC GTACCGGAAA ATTTCGGCGT
    TTCCGCCCGC
    451 CTGCCGCAAA CGCCGCGCCA AGACCCGAAC AGCCAATCGC
    CGTTTTTCGT
    501 CATCGAAGCC GACGAATACG ACACCGCCTT TTTCGACAAA
    CGTTCTAAAT
    551 TCGTGCATTA CCGTCCGCGT ACCGCCGTGT TGAACAATCT
    GGAATTCGAC
    601 CACGCCGACA TCTTTGCCGA CTTGGGCGCG ATACAGACCC
    AGTTCCACTA
    651 CCTCGTGCGT ACCGTGCCGT CTGAAGGCTT AATCGTCTGC
    AACGGACGGC
    701 AGCAAAGCCT GCAAGATACT TTGGACAAAG GCTGCTGGAC
    GCCGGTGGAA
    751 AAATTCGGCA CGGAACACGG CTGGCAGGCC GGCGAAGCCA
    ATGCCGACGG
    801 CTCGTTCGAC GTGTTGCTCG ACGGCAAAAC CGCCGGACGC
    GTCAAATGGG
    851 ATTTGATGGG CAGGCACAAC CGCATGAACG CGCTCGCCGT
    CATTGCCGCC
    901 GCGCGTCATG TCGGTGTCGA TATTCAGACC GCCTGCGAAG
    CCTTGGGCGC
    951 GTTTAAAAAC GTCAAACGCC GGATGGAAAT CAAAGGCACG
    GCAAACGGCA
    1001 TCACCGTTTA CGACGACTTC GCCCACCACC CGACCGCCAT
    CGAAACCACG
    1051 ATTCAAGGTT TGCGCCAACG CGTCGGCGGC GCGCGCATCC
    TCGCCGTCCT
    1101 CGAACCGCGT TCCAACACGA TGAAGCTGGG CACGATGAAG
    TCCGCCCTGC
    1151 CTGTAAGCCT CAAAGAAGCC GACCAAGTGT TCTGCTACGC
    CGGCGGCGTG
    1201 GACTGGGACG TCGCCGAAGC CCTCGCGCCT TTGGGCGGCA
    GGCTGAACGT
    1251 CGGCAAAGAC TTCGATGCCT TCGTTGCCGA AATCGTGAAA
    AACGCCGAAG
    1301 TAGGCGACCA TATTTTGGTG ATGAGCAACG GCGGTTTCGG
    CGGAATACAC
    1351 GGAAAGCTGC TGGAAGCTTT GAGATAG
  • This corresponds to the amino acid sequence <SEQ ID 868; ORF132-1>:
  •   1 MKHIHIIGIG GTFMGGLAAI AKEAGFEVSG CDAKMYPPMS
    TQLEALGIDV
     51 YEGFDAAQLD EFKADVYVIG NVAKRGMDVV EAILNLGLPY
    ISGPQWLSEN
    101 VLHHHWVLGV AGTHGKTTTA SMLAWVLEYA GLAPGFLIGG
    VPENFGVSAR
    151 LPQTPRQDPN SQSPFFVIEA DEYDTAFFDK RSKFVHYRPR
    TAVLNNLEFD
    201 HADIFADLGA IQTQFHYLVR TVPSEGLIVC NGRQQSLQDT
    LDKGCWTPVE
    251 KFGTEHGWQA GEANADGSFD VLLDGKTAGR VKWDLMGRHN
    RMNALAVIAA
    301 ARHVGVDIQT ACEALGAFKN VKRRMEIKGT ANGITVYDDF
    AHHPTAIETT
    351 IQGLRQRVGG ARILAVLEPR SNTMKLGTMK SALPVSLKEA
    DQVFCYAGGV
    401 DWDVAEALAP LGGRLNVGKD FDAFVAEIVK NAEVGDHILV
    MSNGGFGGIH
    451 GKLLEALR*
  • Computer analysis of this amino acid sequence gave the following results:
  • Homology with the Hypothetical o457 Protein of E. coli (Accession Number U14003)
  • ORF132 and o457 show 58% aa identity in 140 aa overlap:
  • Orf132: 4 IHIIGIGGTFMGGLAAIAKEAGFEVSGCDAKMYPPMSTQLEALGIDVYEGFDAAQLDEFK  63
    IHI+GI GTFMGGLA +A++ G EV+G DA +YPPMST LE  GI++ +G+DA+QL+  +
    o457: 3 IHILGICGTFMGGLAMLARQLGHEVTGSDANVYPPMSTLLEKQGIELIQGYDASQLEP-Q  61
    Orf132: 64 ADVYVIGNVAKRGMDVVEAILNLGLPYISGPQWLSENVLHHHWVLGVAGTHGKTTTASML 123
     D+ +IGN   RG   VEA+L   +PY+SGPQWL + VL   WVL VAGTHGKTTTA M
    o457: 62 PDLVIIGNAMTRGNPCVEAVLEKNIPYMSGPQWLHDFVLRDRWVLAVAGTHGKTTTAGMA 121
    Orf132: 124 AWVLEYAGLAPGFLIGGVXG 143
     W+LE  G  PGF+IGGV G
    o457: 122 TWILEQCGYKPGFVIGGVPG 141

    Homology with a Predicted ORF from N. meningitidis (Strain A)
  • ORF132 shows 74.6% identity over a 189aa overlap with an ORF (ORF132a) from strain A of N. meningitidis:
  • Figure US20130064846A1-20130314-C00391
  • The complete length ORF132a nucleotide sequence <SEQ ID 869> is:
  •    1 ATGAAACACA TCCACATTAT CGGTATCGGC GGCACGTTTA TGGGTGGGAT
      51 TGCCGCCATT GCCAAAGAAG CAGGGTTTGA ANTCAGCGGT TGCGATGCGA
     101 AGATGTATCC GCCGATGAGC ACCCAGCTCG AAGCCTTGGG CATAGGCGTG
     151 TATGAAGGCT TCGACACCGC GCAGTTGGAC GAATTTAAAG CCGACGTTTA
     201 CGTTATCGGC AATGTCGCCA AGCGCGGGAT GGATGTGGTT GAAGCGATTT
     251 TGAACCGTGG GCTGCCTTAT ATTTCCGGCC CGCAATGGCT GGCTGAAAAC
     301 NTGCTGCACC ATCATTGGNN ACTCGGCGTG GCGGNGACGC ACGGCAAAAC
     351 GACCACCGCG TCTATGCTCG CGTGGGTTTT GGAATATGCC GGACTCGCAC
     401 CGGGCTTCNT TATCGGCGGC GTACCGGAAA ACTTCAGCGT TTCCGCCCGC
     451 CTGCCGCAAA CGCCGCGCCA AGACCCGAAC AGCCAATCGC CGTTTTTCGT
     501 CATTGAAGCC GACGAATACG ACACCGCGTT TTTCGACAAA CGCTCCAAAT
     551 TCGTGCATTA CCGTCCGCGT ACCGCCGTGT TGAACAATCT GGAATTCGAC
     601 CACGCCGACA TCTTCGCCGA TTTGGGCGCG ATACAGACCC AGTTCCACCA
     651 CCTCGTGCGT ACCGTGCCGT CTGAAGGCCT CATCGTCTGC AACGGACGGC
     701 AGCAAAGCCT GCAAGACACT TTGGACAAAG GCTGCTGGAC GCCGGTGGAA
     751 AAATTCGGCA CGGAACACGG CTGGCAGGCC GGCGAAGCCA ATGCCGATGG
     801 CTCGTTCGAC GTGTTGCTTG ACGGCAAAAA AGCCGGACAC GTCGCTTGGA
     851 GTTTGATGGG CGGACACAAC CGCATGAACG CGCTCGCNGT CATCGCCGCC
     901 GCGCGTCATG CCGGAGTNGA CATTCAGACG GCCTGCGAAG CCTTGAGCAC
     951 GTTTAAAAAC GTCAAACGCC GCATGGAAAT CAAAGGCACG GCAAACGGTA
    1001 TCACCGTTTA CGACGACTTC GCCCACCATC CGACCGCTAT CGAAACCACG
    1051 ATTCAAGGTT TGCGCCAGCG CGTCGGCGGC GCGCGCATCC TCGCCGTCCT
    1101 CGAACCGCGT TCCAATACGA TGAAGCTGGG TACGATGAAA GCCGCCCTGC
    1151 CCGCAAGCCT CAAAGAAGCC GACCAAGTGT TCTGNTACGC CGGCGGCGCG
    1201 GACTGGGACG TTGCCGAAGC CCTCGCGCCT TTGGGCGGCA GGCTGCACGT
    1251 CGGCAAAGAC TTCGATGCCT TCGTTGCCGA AATCGTGAAA AACGCCGAAG
    1301 CAGGCGACCA TATTTTGGTG ATGAGCAACG GCGGTTTCGG CGGAATACAC
    1351 ACCAAACTGC TGGACGCTTT GAGATAG
  • This encodes a protein having-amino acid sequence <SEQ ID 870>:
  •   1 MKHIHIIGIG GTFMGGIAAI AKEAGFEXSG CDAKMYPPMS TQLEALGIGV
     51 YEGFDTAQLD EFKADVYVIG NVAKRGMDVV EAILNRGLPY ISGPQWLAEN
    101 XLHHHWXLGV AXTHGKTTTA SMLAWVLEYA GLAPGFXIGG VPENFSVSAR
    151 LPQTPRQDPN SQSPFFVIEA DEYDTAFFDK RSKFVHYRPR TAVLNNLEFD
    201 HADIFADLGA IQTQFHHLVR TVPSEGLIVC NGRQQSLQDT LDKGCWTPVE
    251 KFGTEHGWQA GEANADGSFD VLLDGKKAGH VAWSLMGGHN RMNALAVIAA
    301 ARHAGVDIQT ACEALSTFKN VKRRMEIKGT ANGITVYDDF AHHPTAIETT
    351 IQGLRQRVGG ARILAVLEPR SNTMKLGTMK AALPASLKEA DQVFXYAGGA
    401 DWDVAEALAP LGGRLHVGKD FDAFVAEIVK NAEAGDHILV MSNGGFGGIH
    451 TKLLDALR*
  • ORF132a and ORF132-1 show 93.9% identity in 458 aa overlap:
  • Figure US20130064846A1-20130314-C00392
  • Homology with a Predicted ORF from N. gonorrhoeae
  • ORF132 shows 89.6% identity over 259 aa overlap with a predicted ORF (ORF132ng) from N. gonorrhoeae:
  • Figure US20130064846A1-20130314-C00393
  • An ORF132ng nucleotide sequence <SEQ ID 871> was predicted to encode a protein having amino acid sequence <SEQ ID 872>:
  •   1 MKHIHIIGIG GTFMGGIAAI AKEAGFKVSG CDAKMYPPMS
    TQLEALGIGV
     51 HEGFDAAQLE EFQADIYVIG NVARRGMDVV EAILNRGLPY
    ISGPQWLAEN
    101 VLHHHWVLGV AGTHGKTTTA SMLAWVLEYA GLAPGFLIGG
    VPGKFRRFRP
    151 PTANAASRPE QQIAVFRHRS RRIRHRLFRQ TLQIRALSPA
    YRRVEQSGIR
    201 PRRHLRRLGR DTDPVPPPRA HRTIRRPHRL QRTAAKPARY
    FGQRLLDAGG
    251 KIRHRTRLAD W*
  • Further work revealed the following gonococcal DNA sequence <SEQ ID 873>:
  • 1 ATGAAACACA TCCACATTAT CGGTATCGGC GGCACGTTTA
    TGGGCGGGAT
    51 TGCCGCCATT GCCAAAGAAG CCGGGTTCAA AGTCAGCGGT
    TGCGACGCGA
    101 AGATGTATCC GCCGATGAGC ACCCAGCTCG AAGCCTTGGG
    CATAGGCGTA
    151 CACGAAGGCT TCGATGCCGC GCAGTTGGAA GAATTTCAAG
    CCGATATTTA
    201 CGTCATCGGC AATGTCGCCA GGCGCGGGAT GGATGTGGTC
    GAGGCGATTT
    251 TGAACCGTGG GCTGCCTTAT ATTTCCGGCC CGCAATGGCT
    GGCTGAAAac
    301 GTGCtgcacc atcaTTGGgt ACTCGGCGTG GcagggaCGC
    ACGGcaaAac
    351 gaccaCcGcg tCCATGCTCG CCTGGGTCTT GGAATATGCC
    GGACTCGCGC
    401 CGGGCTTCCT CATCGGCGGt gtaccggaAA ATTTCGGCGT
    TTCCGCCCGC
    451 CTACCGCAAA CGCCGCGTCA AGACCCGAAC AGCAAATCGC
    CGTTTTTCGT
    501 CATCGAAGCC GACGAATACG ACACCGCCTT TTTCGACAAA
    CGCTCCAAAT
    551 TCGTGCATTA TCGCCCGCGT ACCGCCGTGT TGAACAATCT
    GGAATTCGAC
    601 CACGCCGACA TCTTCGCCGA CTTGGGCGCG ATACAGACCC
    AGTTCCACCA
    651 CCTCGTGCGC ACCGTACCAT CCGAAGGCCT CATCGTCTGC
    AACGGACAGC
    701 AGCAAAGCCT GCAAGATACT TTGGACAAAG GCTGCTGGAC
    GCCGGTGGAA
    751 AAATTCGGCA CCGGACACGG CTGGCAGATT GGTGAAGTCA
    ATGCCGACGG
    801 CTCGTTCGAC GTATTGCTTG ACGGCAAAAA AGCCGGACAC
    GTCGCATGGG
    851 ATTTGATGGG CGGACACAAC CGCATGAACG CGCTCGCCGT
    CATCGCTGCC
    901 GCACGCCATG CCGGAGTCGA TGTTCAGACG GCCTGCGAAG
    CCTTGGGTGC
    951 GTTTAAAAAC GTCAAACGCC GCATGGAAAT CAAAGGCACG
    GCAAACGGCA
    1001 TCACCGTTTA CGACGATTTC GCCCACCACC CGACCGCCAT
    CGAAACCACG
    1051 ATTCAAGGTT TGCGCCAACG TGTCGGCGGC GCGCGCATCC
    TCGCCGTCCT
    1101 CGAGCCGCGT TCCAACACCA TGAAACTCGG CACGATGAAG
    TCCGCCCTGC
    1151 CCGCAAGCCT CAAAGAAGCC GACCAAGTGT TCTGCTACGC
    CGGCGGCGCG
    1201 GACTGGGACG TTGCCGAAGC CCTCGCGCCT TTGGGCTGCA
    GGCTGCGCGT
    1251 CGGTAAAGAT TTCGATACCT TCGTTGCCGA AATTGTGAAA
    AACGCCCGAA
    1301 CCGGCGACCA TATTTTGGTG ATGAGCAACG GCGGTTTCGG
    CGGAATACAC
    1351 ACCAAACTGC TGGACGCTTT GAGATAG
  • This corresponds to the amino acid sequence <SEQ ID 874; ORF132ng-1>:
  •   1 MKHIHIIGIG GTFMGGIAAI AKEAGFKVSG CDAKMYPPMS
    TQLEALGIGV
     51 HEGFDAAQLE EFQADIYVIG NVARRGMDVV EAILNRGLPY
    ISGPQWLAEN
    101 VLHHHWVLGV AGTHGKTTTA SMLAWVLEYA GLAPGFLIGG
    VPENFGVSAR
    151 LPQTPRQDPN SKSPFFVIEA DEYDTAFFDK RSKFVHYRPR
    TAVLNNLEFD
    201 HADIFADLGA IQTQFHHLVR TVPSEGLIVC NGQQQSLQDT
    LDKGCWTPVE
    251 KFGTGHGWQI GEVNADGSFD VLLDGKKAGH VAWDLMGGHN
    RMNALAVIAA
    301 ARHAGVDVQT ACEALGAFKN VKRRMEIKGT ANGITVYDDF
    AHHPTAIETT
    351 IQGLRQRVGG ARILAVLEPR SNTMKLGTMK SALPASLKEA
    DQVFCYAGGA
    401 DWDVAEALAP LGCRLRVGKD FDTFVAEIVK NARTGDHILV
    MSNGGFGGIH
    451 TKLLDALR*
  • ORF132ng-1 and ORF132-1 show 93.2% identity in 458 aa overlap:
  • Figure US20130064846A1-20130314-C00394
  • In addition, ORF132ng-1 is homologous to a hypothetical E. coli protein:
  • pir||S556459 hypothetical protein o457 - Escherichia coli >gi|537075 (U14003)
    ORF_o457 [Escherichia coli] >gi|1790660 (AE000494). hypothetical 48.5 kD protein
    in fbp-pmba intergenic region [Escherichia coli] Length = 457
    Score = 474 bits (1207), Expect = e−133
    Identities = 249/439 (56%), Positives = 294/439 (66%), Gaps = 13/439 (2%)
    Query:  22 KEAGFKVSGCDAKMYPPMSTQLEALGIGVHEGFDAAQLEEFQADIYVIGNVARRGMDVVE  81
               ++ G +V+G DA +YPPMST LE  GI + +G+DA+QLE  Q D+ +IGN   RG    VE
    Sbjct:  21 RQLGHEVTGSDANVYPPMSTLLEKQGIELIQGYDASQLEP-OPDLVIIGNAMTRGNPCVE  79
    Query:  82 AILNRGLPYISGPQWLAENVLHHHWVLGVAGTHGKTTTASMLAWVLEYAGLAPGFLIGGV 141
               A+L  ++PY+SGPQWL  +VL   WVL VAGTHGKTTTA M  W+LE  G   PGF+IGGV
    Sbjct:  80 AVLEKNIPYMSGPQWLHDFVLADRWVLAVAGTHGKTTTAGMATWILEQCGYKPGFVIGGV 139
    Query: 142 PENFGVSARLPQTPRQDPNSKSPFFVIEADEYDTAFFDKRSKFVHYRPRTAVLNNLEFDH 201
               P NF VSA L          +S FFVIEADEYD AFFDKRSKFVHY PRT +LNNLEFDH
    Sbjct: 140 PGNFEVSAHL---------GESDFFVIEADEYDCAFFDKRSKFVHYCPRTLILNNLEFDH 190
    Query: 202 ADIFADLGAIQTQFHHLVRTVPSEGLIVCNGQQQSLQDTLDKGCWTPVEKFGTGHGWQIG 261
               ADIF DL AIQ QFHHLVR VP +G I+      +L+ T+  GCW+  E  G     WQ
    Sbjct: 191 ADIFDDLKAIQKQFHHLVRIVPGOGRIIWPENDINLKQTMAMGCWSEQELVGEQGHWQAK 250
    Query: 262 EVNADGS-FDVLLDGKKAGHVAWDLMGGHNRMNALAVIAAARHAGVDVQTACEALGAFKN 320
               ++  D S ++VLLDG+K G V W L+G HN  N L  IAAARH GV    A   ALG+FN
    Sbjct: 251 KLTTDASEWEVLLDGEKVGEVKWSLVGEHNMHNGLMAIAAARHVGVAPADAANALGSFIN 310
    Query: 321 VKRRMEIKGTANGITVYDDFAHHPTAIETTIQGLRQRVGG-ARILAVLEPRSNTMKLGTM 379
                +RR+E++G ANG+TVYDDFAHHPTAI  T+  LR +VGG  ARI+AVLEPRSNTMK+G
    Sbjct: 311 ARRRLELRGEANGVTVYDDFAHHPTAILATLAALRGKVGGTARIIAVLEPRSNTMKMGIC 370
    Query: 380 KSALPASLKEADQVF-CYAGGADWDVAEALAPLGCRLRVGKDFDTFVAEIVKNARTGDHI 438
               K  L  SL  AD+VF        W VAE             D DT    +VK A+ GDHI
    Sbjct: 371 KDDLAPSLGRADEVFLLQPAHIPWQVAEVAEACVQPAHWSGDVDTLADMVVKTAQPGDHI 430
    Query: 439 LVMSNGGFGGIHTKLLDAL                                          457
               LVMSNGGFGGIH KLLD L
    Sbjct: 931 LVMSNGGFGGIHQKLLDGL                                          999
  • Based on this analysis, it was predicted that these proteins from N. meningitidis and N. gonorrhoeae, and their epitopes, could be useful antigens for vaccines or diagnostics, or for raising antibodies.
  • ORF132-1 (26.4 kDa) was cloned in pET and pGex vectors and expressed in E. coli, as described above. The products of protein expression and purification were analyzed by SDS-PAGE. FIG. 20A shows the results of affinity purification of the His-fusion protein, and FIG. 20B shows the results of expression of the GST-fusion in E. coli. Purified His-fusion protein was used to immunise mice, whose sera were used for FACS analysis (FIG. 20C) and ELISA (positive result). These experiments confirm that ORF132 is a surface-exposed protein, and that it is a useful immunogen.
  • Example 103
  • The following partial DNA sequence was identified in N. meningitidis <SEQ ID 875>
  •    1 ..CCGGGCTATT ACGGCTCGGA TGACGAATTT AAGCGGGCAT TCGGAGAAAA
      51   CTCGCCGACA TmCAAGAAAC ATTGCAACCG GAGCTGCGGG ATTTATGAAC
     101   CCGTATTGAA AAAATACGGC AAAAAGCGCG CCAACAACCA TTCGGTCAGC
     151   ATTAGTGCGG ACTTCGGCGA TTATTTCATG CCGTTCGCCA GCTATTCGCG
     201   CACACACCGT ATGCCCAACA TCCAAGAAAT GTATTTTTCC CAAATCGGCG
     251   ACTCCGGCGT TCACACCGCC TTAAAACCAG AGCGCGCAAA CACTTGGCAA
     301   TTTGGCTTCr ATACCTATAA AAAAGGATTG TTAAAACAAG ATGATACATT
     351   AGGATTAAAA CTGGTCGGCT ACCGCAGCCG CATCGACAAC TACATCCACA
     401   ACGTTTACGG GAAATGGTGG GATTTGAACG GGGATATTCC GAGCTGGGTC
     451   AGCAGCACCG GGCTTGCCTA CACCATCCAA CATCGCrATT TCAwAGACAA
     501   AGTGCATCAA nnnnnnnnnn nnnnnnnnnn nnnnTACGAT TATGGGCGTT
     551   TTTTCACCAA CCTTTCTTAC GCCTATCAAA AAAGCACGCA ACCGACCAAC
     601   TTCAGCGATG CGAGCGAATC GCCCAACAAT GCGTCCAAAG AAGACCAACT
     651   CAAACAAGGT TATGGGTTGA GCAGGGTTTC CGCCCTGCCG CGAGATTACG
     701   GACGTTTGGA AGTCGGTACG CGCTGGTTGG GCAACAAACT GACTTTGGGC
     751   GGCGCGATGC GCTATTTCGG CAAGAGCATC CGCGCGACGG CTGAAGAACG
     801   CTATATCGAC GGCACCAACG GGGGAAATAC CAGCAATTTC CGGCAACTGG
     851   GCAAGCGTTC CATCAAACAA ACCGAAACTC TTGCCCGCCA GCCTTTGATT
     901   TTwGATTTTa ACGCCGCTTA CGAGCCGAAG AAAAACCTTA TTTTCCGCGC
     951   CGAAGTCAAA AATCTGTTCG ACAGGCGTTA TATCGATCCG CTCGATGCGG
    1001   GCAATGATGC GGCAAC.GAG CGTTATTACA GCTCGTTCGA CCCGAAAGAC
    1051   AAGGACrrAG ACGTAACGTG TAATGCTGAT AAAACGTTGT GCaACGGCAA
    1101   ATACGGCGGC ACAAGCAAAA GCGTATTGAC CAATTTTGCA CGCGGACGCA
    1151   CCTTTTTgAT GACGATGAGC TACAAGTTTT AA
  • This corresponds to the amino acid sequence <SEQ ID 876; ORF133>:
  •   1 ..PGYYGSDDEF KRAFGENSPT XKKHCNRSCG IYEPVLKKYG
    KKRANNHSVS
     51   ISADFGDYFM PFASYSRTHR MPNIQEMYFS QIGDSGVHTA
    LKPERANTWQ
    101   FGFXTYKKGL LKQDDTLGLK LVGYRSRIDN YIHNVYGKWW
    DLNGDIPSWV
    151   SSTGLAYTIQ HRXFXDKVHQ XXXXXXXXYD YGRFFTNLSY
    AYQKSTQPTN
    201   FSDASESPNN ASKEDQLKQG YGLSRVSALP RDYGRLEVGT
    RWLGNKLTLG
    251   GAMRYFGKSI RATAEERYID GTNGGNTSNF RQLGKRSIKQ
    TETLARQPLI
    301   XDFNAAYEPK KNLIFRAEVK NLFDRRYIDP LDAGNDAAXE
    RYYSSFDPKD
    351   KDXDVTCNAD KTLCNGKYGG TSKSVLTNFA RGRTFLMTMS
    YKF*
  • Further work revealed the further partial DNA sequence <SEQ ID 877>:
  • 1 GAGGCGCAGA TACAGGTTTT GGAAGATGTG CACGTCAAGG
    CGAAGCGCGT
    51 ACCGAAAGAC AAAAAAGTGT TTACCGATGC GCGTGCCGTA
    TCGACCCGTC
    101 AGGATATATT CAAATCCAGC GAAAACCTCG ACAACATCGT
    ACGCAGCATC
    151 CCCGGTGCGT TTACACAGCA AGATAAAAGC TCGGGCATTG
    TGTCTTTGAA
    201 TATTCGCGGC GACAGCGGGT TCGGGCGGGT CAATACGATG
    GTGGACGGCA
    251 TCACGCAGAC CTTTTATTCG ACTTCTACCG ATGCGGGCAG
    GGCAGGCGGT
    301 TCATCTCAAT TCGGTGCATC TGTCGACAGC AATTTTATTG
    CCGGACTGGA
    351 TGTCGTCAAA GGCAGCTTCA GCGGCTCGGC AGGCATCAAC
    AGCCTTGCCG
    401 GTTCGGCGAA TCTGCGGACT TTAGGCGTGG ATGACGTCGT
    TCAGGGCAAT
    451 AATACCTACG GCCTGCTGCT AAAAGGTCTG ACCGGCACCA
    ATTCAACCAA
    501 AGGTAATGCG ATGGCGGCGA TAGGTGCGCG CAAATGGCTG
    GAAAGCGGAG
    551 CATCTGTCGG TGTGCTTTAC GGGCACAGCA GGCGCAGCGT
    GGCGCAAAAT
    601 TACCGCGTGG GCGGCGGCGG GCAGCACATC GGAAATTTTG
    GCGCGGAATA
    651 TTTGGAACGG CGCAAGCAGC GATATTTTGT ACAAGAGGGT
    GCTTTGAAAT
    701 TCAATTCCGA CAGCGGAAAA TGGGAGCGGG ATTTACAAAG
    GCAACAGTGG
    751 AAATACAAGC CGTATAAAAA TTACAACAAC CAAGAACTAC
    AaAAATACAT
    801 CGAAGAGCAT GACAAAAGCT GGCGGGAAAA CCTg.CaCCG
    CAATACGACA
    851 TTACCCCCAT CGATCCGTCC AGCCTGAAGC AGCAGTCGGC
    AGGCAATCTG
    901 TTTAAATTGG AATACGACGG CGTATTCAAT AAATACACGG
    CGCAATTTCG
    951 CGATTTAAAC ACCAAAATCG GCAGCCGCAA AATCATCAAC
    CGCAATTATC
    1001 AGTTCAATTA CGGTTTGTCT TTGAACCCGT ATACCAACCT
    CAATCTGACC
    1051 GCAGCCTACA ATTCGGGCAG GCAGAAATAT CCGAAAGGGT
    CGAAGTTTAC
    1101 AGGCTGGGGG CTTTTAAAGG ATTTTGAAAC CTACAACAAC
    GCGAAAATCC
    1151 TCGACCTCAA CAACACCGCC ACCTTCCGGC TGCCCCGCGA
    AACCGAGTTG
    1201 CAAACCACTT TGGGCTTCAA TTATTTCCAC AACGAATACG
    GCAAAAACCG
    1251 CTTTCCTGAA GAATTGGGGC TGTTTTTCGA CGGTCCTGAT
    CAGGACAACG
    1301 GGCTTTATTC CTATTTGGGG CGGTTTAAGG GCGATAAAGG
    GCTGCTGCCC
    1351 CAAAAATCAA CCATTGTCCA ACCGGCCGGC AGCCAATATT
    TCAACACGTT
    1401 CTACTTCGAT GCCGCGCTCA AAAAAGACAT TTACCGCTTA
    AACTACAGCA
    1451 CCAATACCGT CGGCTACCGT TTCGGCGGCG AATATACGGG
    CTATTACGGC
    1501 TCGGATGACG AATTTAAGCG GGCATTCGGA GAAAACTCGC
    CGACATACAA
    1551 GAAACATTGC AACCGGAGCT GCGGGATTTA TGAACCCGTA
    TTGAAAAAAT
    1601 ACGGCAAAAA GCGCGCCAAC AACCATTCGG TCAGCATTAG
    TGCGGACTTC
    1651 GGCGATTATT TCATGCCGTT CGCCAGCTAT TCGCGCACAC
    ACCGTATGCC
    1701 CAACATCCAA GAAATGTATT TTTCCCAAAT CGGCGACTCC
    GGCGTTCACA
    1751 CCGCCTTAAA ACCAGAGCGC GCAAACACTT GGCAATTTGG
    CTTCAATACC
    1801 TATAAAAAAG GATTGTTAAA ACAAGATGAT ACATTAGGAT
    TAAAACTGGT
    1851 CGGCTACCGC AGCCGCATCG ACAACTACAT CCACAACGTT
    TACGGGAAAT
    1901 GGTGGGATTT GAACGGGGAT ATTCCGAGCT GGGTCAGCAG
    CACCGGGCTT
    1951 GCCTACACCA TCCAACATCG CAATTTCAAA GACAAAGTGC
    ACAAACACGG
    2001 TTTTGAGTTG GAGCTGAATT ACGATTATGG GCGTTTTTTC
    ACCAACCTTT
    2051 CTTACGCCTA TCAAAAAAGC ACGCAACCGA CCAACTTCAG
    CGATGCGAGC
    2101 GAATCGCCCA ACAATGCGTC CAAAGAAGAC CAACTCAAAC
    AAGGTTATGG
    2151 GTTGAGCAGG GTTTCCGCCC TGCCGCGAGA TTACGGACGT
    TTGGAAGTCG
    2201 GTACGCGCTG GTTGGGCAAC AAACTGACTT TGGGCGGCGC
    GATGCGCTAT
    2251 TTCGGCAAGA GCATCCGCGC GACGGCTGAA GAACGCTATA
    TCGACGGCAC
    2301 CAACGGGGGA AATACCAGCA ATTTCCGGCA ACTGGGCAAG
    CGTTCCATCA
    2351 AACAAACCGA AACTCTTGCC CGCCAGCCTT TGATTTTTGA
    TTTTTACGCC
    2401 GCTTACGAGC CGAAGAAAAA CCTTATTTTC CGCGCCGAAG
    TCAAAAATCT
    2451 GTTCGACAGG CGTTATATCG ATCCGCTCGA TGCGGGCAAT
    GATGCGGCAA
    2501 CGCAGCGTTA TTACAGCTCG TTCGACCCGA AAGACAAGGA
    CGAAGACGTA
    2551 ACGTGTAATG CTGATAAAAC GTTGTGCAAC GGCAAATACG
    GCGGCACAAG
    2601 CAAAAGCGTA TTGACCAATT TTGCACGCGG ACGCACCTTT
    TTGATGACGA
    2651 TGAGCTACAA GTTTTAA
  • This corresponds to the amino acid sequence <SEQ ID 878; ORF133-1>:
  •   1 EAQIQVLEDV HVKAKRVPKD KKVFTDARAV STRQDIFKSS
    ENLDNIVRSI
     51 PGAFTQQDKS SGIVSLNIRG DSGFGRVNTM VDGITQTFYS
    TSTDAGRAGG
    101 SSQFGASVDS NFIAGLDVVK GSFSGSAGIN SLAGSANLRT
    LGVDDVVQGN
    151 NTYGLLLKGL TGTNSTKGNA MAAIGARKWL ESGASVGVLY
    GHSRRSVAQN
    201 YRVGGGGQHI GNFGAEYLER RKQRYFVQEG ALKFNSDSGK
    WERDLQRQQW
    251 KYKPYKNYNN QELQKYIEEH DKSWRENLXP QYDITPIDPS
    SLKQQSAGNL
    301 FKLEYDGVFN KYTAQFRDLN TKIGSRKIIN RNYQFNYGLS
    LNPYTNLNLT
    351 AAYNSGRQKY PKGSKFTGWG LLKDFETYNN AKILDLNNTA
    TFRLPRETEL
    401 QTTLGFNYFH NEYGKNRFPE ELGLFFDGPD QDNGLYSYLG
    RFKGDKGLLP
    451 QKSTIVQPAG SQYFNTFYFD AALKKDIYRL NYSTNTVGYR
    FGGEYTGYYG
    501 SDDEFKRAFG ENSPTYKKHC NRSCGIYEPV LKKYGKKRAN
    NHSVSISADF
    551 GDYFMPFASY SRTHRMPNIQ EMYFSQIGDS GVHTALKPER
    ANTWQFGFNT
    601 YKKGLLKQDD TLGLKLVGYR SRIDNYIHNV YGKWWDLNGD
    IPSWVSSTGL
    651 AYTIQHRNFK DKVHKHGFEL ELNYDYGRFF TNLSYAYQKS
    TQPTNFSDAS
    701 ESPNNASKED QLKQGYGLSR VSALPRDYGR LEVGTRWLGN
    KLTLGGAMRY
    751 FGKSIRATAE ERYIDGTNGG NTSNFRQLGK RSIKQTETLA
    RQPLIFDFYA
    801 AYEPKKNLIF RAEVKNLFDR RYIDPLDAGN DAATQRYYSS
    FDPKDKDEDV
    851 TCNADKTLCN GKYGGTSKSV LTNFARGRTF LMTMSYKF*
  • Computer analysis of this amino acid sequence gave the following results:
  • Homology with the Probable TonB-Dependent Receptor HI121 of H. influenzae (Accession Number U32801)
  • ORF133 and HI121 show 57% aa identity in 363aa overlap:
  • Figure US20130064846A1-20130314-C00395
  • Homology with a Predicted ORF from N. meningitidis (Strain A)
  • ORF133 shows 90.8% identity over a 392aa overlap with an ORF (ORF133a) from strain A of N. meningitidis:
  • Figure US20130064846A1-20130314-C00396
  • A partial ORF133a nucleotide sequence <SEQ ID 879> is:
  • 1 AAAGACAAAA AAGTGTTTAC CGATGCGCGT GCCGTATCGA
    CCCGTCAGGA
    51 TATATTCAAA TCCANCGAAA ACCTCGACAA CATCGTACGC
    ANCATCCCCG
    101 GTGCGTTTAC ACANCAANAT AAAAGCTCGG GCNTTGTGTC
    TTTGAATATT
    151 CGCNGCGACA GCGGGTTCGG GCGGGTCAAT ACNATGGTNG
    ACGGCATCAC
    201 NCANACCTTT TATTCGACTT CTACCGATGC GGGCAGGGCA
    GGCGGTTCAT
    251 CTCAATTCGG TGCATCTGTC GACAGCAATT TTATNGCCGG
    ACTGGATGTC
    301 GTCAAAGGCA GCTTCAGCGG CTCGGCAGGC ATCAACAGCC
    TTGCCGGTTC
    351 GGCGAATCTG CGGACTTTAN GCGTGGATGA TGTCGTTCAG
    GGCAATANTA
    401 CNTACGGCCT GCTGCTAAAA GGTCTGACCG GCACCAATTC
    AACCAAAGGT
    451 AATGCGATGG CGGCGATAGG TGCGCGCAAA TGGCTGGAAA
    GCGGAGCATC
    501 TGTCGGTGTG CTTTACGGGC ACAGCAGGCG CAGCGTGGCG
    CAAAATTACC
    551 GCGTGGGCGG CGGCGGGCAG CACATCGGAA ATTTTGGCGC
    GGAATATCTG
    601 GAACGACGCA AGCAACGATA TTTTGAGCAA GAAGGCGGGT
    TGAAATTCAA
    651 TTCCAACAGC GGAAAATGGG AGCGGGATTT CCAAAAGTCG
    TACTGGAAAA
    701 CCAAGTGGTA TCAAAAATAC GATGCCCCCC AAGAACTGCA
    AAAATACATC
    751 GAAGGTCATG ATAAAAGCTG GCGGGAAAAC CTGGCGCCGC
    AATACGACAT
    801 CACCCCCATC GATCCGTCCA GCCTGAAGCN GCAGTCGGCA
    GGCAACCTGT
    851 TTAAATTGGA ATACGACGGC GTATTCAATA AATACACGGC
    GCAATTTCGC
    901 GATTTAAACA CCAAAATCGG CAGCCGCAAA ATCATCAACC
    GCAATTATCA
    951 ATTCAATTAC GGTTTGTCTT TGAACCCGTA TACCAACCTC
    AATCTGACCG
    1001 CAGCCTACAA TTCGGGCAGG CAGAAATATC CGAAAGGGTC
    GAAGTTTACA
    1051 GGCTGGGGGC TTTTNAAAGA TTTTGAAACC TACAACAACG
    CAAAAATCCT
    1101 CGACCTCANC AACACCTCCA CCTTCCGGCT GCCCCGTGAA
    ACCGAGTTGC
    1151 AAACCACTTT GGGCTTCAAT TATTTCCACA ACGAATACGG
    CAAAAACCGC
    1201 TTTCCTGAAG AATTGGGGCT GTTTTTCGAC GGTCCGGATC
    ANGACAACGG
    1251 GCTTTATTCC TATTTGGGGC GGTTTAAGGG CGATAAAGGG
    CTGCTGCCCC
    1301 AAAAATCAAC CATTGTCCAA CCGGCCGGCA GCCAATATTT
    CAACACGTTC
    1351 TACTTCGATG CCGCGCTCAA AAAAGACATT TACCGCTTAA
    ACTACAGCAC
    1401 CAATACCGTC GGCTACCGTT TCGGCGGCNA ATATACGGGC
    TATTACNGCT
    1451 CGGATGACGA ATTTAAGCGG GCATTCGGAG AAAACTCGCC
    GACATACANG
    1501 AAACATTGCA ACCAGAGCTG CGGAATTTAT GAACCCGTAT
    TGAAAAAATA
    1551 CGGCAAAAAG CGCGCCAACA ACCATTCGGT CAGCATTAGT
    GCGGACTTCG
    1601 GCGATTATTT CATGCCGTTC GCCAGCTATT CGCGCACACA
    CCGTATGCCC
    1651 AACATCCAAG AAATGTATTT TTCCCAAATC GGCGACTCCG
    GCGTTCACAC
    1701 CGCCTTAAAA CCAGAGCGCG CAAACACTTG GCAATTTGGC
    TTCAATACCT
    1751 ATAAAAAAGG ATTGTTAAAA CAAGATGATA TATTAGGATT
    AAAACTGGTC
    1801 GGCTACCGCA GCCGCATCGA CNACTACATC CACAACGTTT
    ACGGGAAATG
    1851 GTGGGATTTG AACGGGAATA TTCCGAGCTG GGTCAGCAGC
    ACCGGGCTTG
    1901 CCTACACCAT CCAACACCGC AATTTCAAAG ACAAAGTGCA
    CAAACACGGT
    1951 TTTGAGTTGG AGCTGAATTA CGATTATNGG CGTTTTTTCA
    CCAACCTTTC
    2001 TTACGCCTAT CAAAAAAGCA CGCAACCGAC CAACTTCAGC
    GATGCGAGCG
    2051 AATCGCCCAA CAATGCGTCC AAAGAAGACC AACTCAAACA
    AGGTTATGGG
    2101 TTGAGCAGGG TTTCCGCCCT GCCGCGAGAT TACGGACGTT
    TGGAAGTCGG
    2151 TACGCGCTGG TTGGGCAACA AACTGACTTT GGGCGGCGCG
    ATGCGCTATT
    2201 TCGGCAAGAG CATCCGCGCG ACGGCTGAAG AACGCTATAT
    CGACGNCACC
    2251 AATGGGGNAN NTACCAGCAA TTTCCGGCAA CTGGGCAAGC
    GTTCCATCAN
    2301 ACAAACCGAA ACCCTTGCCC GCCAGCCTTT GATTTTTGAT
    TTNTACGCCG
    2351 CTTACGAGCC GAAGAAAAAN CTTATTTTCC GCGCCGAAGT
    CAAAAATCTG
    2401 TTCGACAGGC GTTATATCGA TCCGCTCGAT GCGGGCAATG
    ATGCGGCAAC
    2451 GCAGCGTTAT TACAGTTCGT TCGACCCGAA AGACAAGGAC
    GAAGAAGTAA
    2501 CGTGTAATGA TGATAACACG TTATGCAACG GCAAATACGG
    CGGCACAAGC
    2551 AAAAGCGTAT TGACCAATTT TGCACGCGGA CNCACCTTTT
    TGATAACGAT
    2601 GAGCTACAAG TTTTAA
  • This encodes a protein having (partial) amino acid sequence <SEQ ID 880>:
  •   1 KDKKVFTDAR AVSTRQDIFK SXENLDNIVR XIPGAFTXQX
    KSSGXVSLNI
     51 RXDSGFGRVN TMVDGITXTF YSTSTDAGRA GGSSQFGASV
    DSNFXAGLDV
    101 VKGSFSGSAG INSLAGSANL RTLXVDDVVQ GNXTYGLLLK
    GLTGTNSTKG
    151 NAMAAIGARK WLESGASVGV LYGHSRRSVA QNYRVGGGGQ
    HIGNFGAEYL
    201 ERRKQRYFEQ EGGLKFNSNS GKWERDFQKS YWKTKWYQKY
    DAPQELQKYI
    251 EGHDKSWREN LAPQYDITPI DPSSLKXQSA GNLFKLEYDG
    VFNKYTAQFR
    301 DLNTKIGSRK IINRNYQFNY GLSLNPYTNL NLTAAYNSGR
    QKYPKGSKFT
    351 GWGLXKDFET YNNAKILDLX NTSTFRLPRE TELQTTLGFN
    YFHNEYGKNR
    401 FPEELGLFFD GPDXDNGLYS YLGRFKGDKG LLPQKSTIVQ
    PAGSQYFNTF
    451 YFDAALKKDI YRLNYSTNTV GYRFGGXYTG YYXSDDEFKR
    AFGENSPTYX
    501 KHCNQSCGIY EPVLKKYGKK RANNHSVSIS ADFGDYFMPF
    ASYSRTHRMP
    551 NIQEMYFSQI GDSGVHTALK PERANTWQFG FNTYKKGLLK
    QDDILGLKLV
    601 GYRSRIDXYI HNVYGKWWDL NGNIPSWVSS TGLAYTIQHR
    NFKDKVHKHG
    651 FELELNYDYX RFFTNLSYAY QKSTQPTNFS DASESPNNAS
    KEDQLKQGYG
    701 LSRVSALPRD YGRLEVGTRW LGNKLTLGGA MRYFGKSIRA
    TAEERYIDXT
    751 NGXXTSNFRQ LGKRSIXQTE TLARQPLIFD XYAAYEPKKX
    LIFRAEVKNL
    801 FDRRYIDPLD AGNDAATQRY YSSFDPKDKD EEVTCNDDNT
    LCNGKYGGTS
    851 KSVLTNFARG XTFLITMSYK F*
  • ORF133a and ORF133-1 show 94.3% identity in 871 aa overlap:
  • Figure US20130064846A1-20130314-C00397
    Figure US20130064846A1-20130314-C00398
  • Homology with a Predicted ORF from N. gonorrhoeae
  • ORF133 shows 92.3% identity over 392 aa overlap with a predicted ORF (ORF133ng) from N. gonorrhoeae:
  • Figure US20130064846A1-20130314-C00399
  • The complete length ORF133ng nucleotide sequence <SEQ ID 881> is predicted to encode a protein having amino acid sequence <SEQ ID 882>:
  •   1 MRSSFRLKPI CFYLMGVMLY HHSYAEDAGR AGSEAQIQVL
    EDVHVKAKRV
     51 PKDKKVFTDA RAVSTRQDVF KSGENLDNIV RSIPGAFTQQ
    DKSSGIVSLN
    101 IRGDSGFGRV NTMVDGITQT FYSTSTDAGR AGGSSQFGAS
    VDSNFIAGLD
    151 VVKGSFSGSA GINSLAGSAN LRTLGVDDVV QGNNTYGLLL
    KGLTGTNSTK
    201 GNAMAAIGAR KWLESGASVG VLYGHSRRGV AQNYRVGGGG
    QHIGNFGEEY
    251 LERRKQQYFV QEGGLKFNAG SGKWERDLQR QYWKTKWYKK
    YEDPQELQKY
    301 IEEHDKSWRE NLAPQYDITP IDPSGLKQQS AGNLLNLEYD
    GVFNKYTAQF
    351 RDLNTRIGSR KIINRNYQFN YGLSLNPYTN LNLTAAYNSG
    RQKYPKGAKF
    401 TGWGLLKDFE TYNNAKILDL NNTATFRLPR ETELQTTLGF
    NYFHNEYGKN
    451 RFPEELGLFF DGPDQDNGLY SYLGRFKGDK GLLPQKSTIV
    QPAGSQYFNT
    501 FYFDAALKKD IYRLNYSTNA INYRFGGEYT GYYGSENEFK
    RAFGENSPAY
    551 KEHCDPSCGL YEPVLKKYGK KRANNHSVSI SADFGDYFMP
    FAGYSRTHRM
    601 PNIQEMYFSQ IGDSGVHTAL KPERANTWQF GFNTYKKGLL
    KQDDILGLKL
    651 VGYRSRIDNY IHNVYGKWWD LNGDIPSWVG STGLAYTIRH
    RNFKDKVHKH
    701 GFELELNYDY GRFFTNLSYA YQKSTQPTNF SDASESPNNA
    SKEDQLKQGY
    751 GLSRVSALPR DYGRLEVGTR WLGNKLTLGG AMRYFGKSIR
    ATAEERYIDG
    801 TNGGNTSNVR QLGKRSIKQT ETLARQPLIF DFYAAYEPKK
    NLIFRAEVKN
    851 LFDRRYIDPL DAGNDAATQR YYSSFDPKDK DEDVTCNADK
    TLCNGKYGGT
    901 SKSVLTNFAR GRTFLMTMSY KF*
  • A variant was also identified, being encoded by the gonococcal DNA sequence <SEQ ID 883>:
  •    1 ATGAGATCTT CTTTCCGGTT GAAGCCGATT TGTTTTTATC TTATGGGTGT
      51 TATGCTATAT CATCATAGTT ATGCCGAAGA TGCAGGGCGC GCGGGCAGCG
     101 AGGCGCAGAT ACAGGTTTTG GAAGATGTGC ACGTCAAGGC GAAGCGCGTA
     151 CCGAAAGACA AAAAAGTGTT TACCGATGCG CGTGCCGTAT CGACCCGTca
     201 gGATGTGTTC AAATCCGGCG AAAACCTCGA CAACATCGTA CGCAGCATAC
     251 CCGGTGCGTT TACACAGCAA GATAAAAGCT CGGGCATTGT GTCTTTGAAT
     301 ATTCCCGGCG ACAGCGGGTT CGGGCGGGTC AATACGATGG TGGACGGCAT
     351 CACGCAGACC TTTTATTCGA CTTCTACCGA TGCGGGCAGG GCAGGCGGTT
     401 CATCTCAATT CGGTGCATCT GTCGACAGCA ATTTTATTGC CGGACTGGAT
     451 GTCGTCAAAG GCAGCTTCAG CGGCTCGGCA GGCATCAACA GCCTTGCCGG
     501 TTCGGCGAAT CTGCGGACTT TAGGCGTGGA TGACGTCGTT CAGGGCAATA
     551 ATACCTACGG CCTGCTGCTA AAAGGTCTGA CCGGCACCAA TTCAACCAAA
     601 GGTAATGCGA TGGCGGCGAT AGGTGCGCGC AAATGGCTGG AAAGCGGAGC
     651 GTCTGTCGGT GTGCTTTACG GGCACAGCAG GCGCGGCGTG GCGCAAAATT
     701 ACCGCGTGGG CGGCGGCGGG CAGCACATCG GAAATTTTGG TGAAGAATAT
     751 CTGGAACGGC GCAAACAGCA ATATTTTGTA CAAGAGGGTG GTTTGAAATT
     801 CAATGCCGGC AGCGGAAAAT GGGAACGGGA TTTGCAAAGG CAATACTGGA
     851 AAACAAAGTG GTATAAAAAA TACGAAGACC CCCAAGAACT GCAAAAATAC
     901 ATCGAAGAGC ATGATAAAAG CTGGCGGGAA AACCTGGCGC CGCAATACGA
     951 CATCACCCCC ATCGATCCGT CCGGCCTGAA GCAGCAGTCG GCAGGCAATC
    1001 TGTTTAAATT GGAATACGAC GGCGTATTCA ATAAATACAC GGCGCAATTT
    1051 CGCGATTTAA ACACCAGAAT CGGCAGCCGC AAAATCATCA ACCGCAATTA
    1101 TCAATTCAAT TACGGTTTGT CTTTGAACCC GTATACCAAC CTCAATCTGA
    1151 CCGCAGCCTA CAATTCGGGC AGGCAGAAAT ATCCGAAAGG GGCGAAGTTT
    1201 ACAGGCTGGG GGCTTTTAAA AGATTTTGAA ACCTACAACA ACGCGAAAAT
    1251 CCTCGACCTC AACAACACCG CCACCTTCCG GCTGCCCCGC GAAACCGAGT
    1301 TGCAAACCAC TTTGGGCTTC AATTATTTCC ACAACGAATA CGGCAAAAAC
    1351 CGCTTTCCTG AAGAATTGGG GCTGTTTTTC GACGGTCCTG ATCAGGACAA
    1401 CGGGCTTTAT TCCTATTTGG GGCGGTTTAA GGGCGATAAA GGGCTGTTGC
    1451 CTCAAAAATC AACCATTGTC CAACCGGCCG GCAGCCAATA TTTCAACACG
    1501 TTCTACTTCG ATGCCGCGCT CAAAAAAGAC ATTTACCGCT TAAACTACAG
    1551 CACCAATGCA ATCAACTACC GTTTCGGCGG CGAATATACG GGCTATTACG
    1601 GCTCGGAAAA CGAATTTAAG CGGGCATTCG GAGAAAACTC GCCGGCATAC
    1651 AAGGAACATT GCGACCCGAG CTGCGGGCTT TATGAACCCG TATTGAAAAA
    1701 ATACGGCAAA AAGCGCGCCA ACAACCATTC GGTCAGCATT AGTGCGGACT
    1751 TCGGCGATTA TTTCATGCCG TTCGCCGGCT ATTCGCGCAC ACACCGTATG
    1801 CCCAACATCC AAGAAATGTA TTTTTCCCAA ATCGGCGACT CCGGCGTTCA
    1851 CACCGCCTTA AAACCAGAGC GCGCAAACAC TTGGCAATTT GGCTTCAATA
    1901 CCTATAAAAA AGGATTGTTA AAACAAGATG ATATATTAGG ATTGAAACTG
    1951 GTCGGCTACC GCAGCCGCAT TGACAACTAC ATCCACAACG TTTACGGGAA
    2001 ATGGTGGGAT TTGAACGGGG ATATTCCGAG CTGGGTCGGC AGCACCGGGC
    2051 TTGCCTACAC CATCCGACAC CGCAATTTCA AAGACAAAGT GCACAAACAC
    2101 GGTTTTGAGC TGGAGCTGAA TTACGATTAT GGGCGTTTTT TCACCAACCT
    2151 TTCTTACGCC TATCAAAAAA GCACGCAACC GACCAATTTC AGCGATGCGA
    2201 GCGAATCGCC CAACAATGCC tccaaAGAAG ACCAACTCAA ACAAGGTTAT
    2251 GGGCTGAGCA GGGTTTCCGC CCTGCCGCGA GATTACGGAC GTTTGGAAGT
    2301 CGGTACGCGC TGGTTGGGCA ACAAACTGAC TTTGGGCGGC GCGAtgCGCT
    2351 ATTTCGGCAA GAGCATCCGC GCGACGGCTG AAGAACGCTA TATCGACGGC
    2401 ACCAACGGGG GAAATACCAG CAATGTCCGG CAACTGGGCA AGCGTTCCAT
    2451 CAAACAAACC GAAACCCTTG CCCGACAGCC TTTGATTTTT GATTTTTACG
    2501 CCGCTTACGA GCCGAAGAAA AACCTTATTT TCCGCGCCGA AGTCAAAAAC
    2551 CTGTTCGACA GGCGTTATAT CGATCCGCTC GATGCGGGCA ATGATGCGGC
    2601 AACGCAGCGT TATTACAGCT CGTTCGACCC GAAAGACAAG GACGAAGACG
    2651 TAACGTGTAA TGCTGATAAA ACGTTGTGCA ACGGCAAATA CGGCGGCACA
    2701 AGCAAAAGCG TATTGACCAA TTTCGCACGC GGACGCACCT TCTTGATGAC
    2751 GATGAGCTAC AAGTTTTAA
  • This corresponds to the amino acid sequence <SEQ ID 884; ORF133ng-1>:
  •   1 MRSSFRLKPI CFYLMGVMLY HHSYAEDAGR AGSEAQIQVL EDVHVKAKRV
     51 PKDKKVFTDA RAVSTRQDVF KSGENLDNIV RSIPGAFTQQ DKSSGIVSLN
    101 IRGDSGFGRV NTMVDGITQT FYSTSTDAGR AGGSSQFGAS VDSNFIAGLD
    151 VVKGSFSGSA GINSLAGSAN LRTLGVDDVV QGNNTYGLLL KGLTGTNSTK
    201 GNAMAAIGAR KWLESGASVG VLYGHSRRGV AQNYRVGGGG QHIGNFGEEY
    251 LERRKQQYFV QEGGLKFNAG SGKWERDLQR QYWKTKWYKK YEDPQELQKY
    301 IEEHDKSWRE NLAPQYDITP IDPSGLKQQS AGNLFKLEYD GVFNKYTAQF
    351 RDLNTRIGSR KIINRNYQFN YGLSLNPYTN LNLTAAYNSG RQKYPKGAKF
    401 TGWGLLKDFE TYNNAKILDL NNTATFRLPR ETELQTTLGF NYFHNEYGKN
    451 RFPEELGLFF DGPDQDNGLY SYLGRFKGDK GLLPQKSTIV QPAGSQYFNT
    501 FYFDAALKKD IYRLNYSTNA INYRFGGEYT GYYGSENEFK RAFGENSPAY
    551 KEHCDPSCGL YEPVLKKYGK KRANNHSVSI SADFGDYFMP FAGYSRTHRM
    601 PNIQEMYFSQ IGDSGVHTAL KPERANTWQF GFNTYKKGLL KQDDILGLKL
    651 VGYRSRIDNY IHNVYGKWWD LNGDIPSWVG STGLAYTIRH RNFKDKVHKH
    701 GFELELNYDY GRFFTNLSYA YQKSTQPTNF SDASESPNNA SKEDQLKQGY
    751 GLSRVSALPR DYGRLEVGTR WLGNKLTLGG AMRYFGKSIR ATAEERYIDG
    801 TNGGNTSNVR QLGKRSIKQT ETLARQPLIF DFYAAYEPKK NLIFRAEVKN
    851 LFDRRYIDPL DAGNDAATQR YYSSFDPKDK DEDVTCNADK TLCNGKYGGT
    901 SKSVLTNFAR GRTFLMTMSY KF*
  • ORF133ng-1 and ORF133-1 show 96.2% identity in 889 aa overlap:
  • Figure US20130064846A1-20130314-C00400
    Figure US20130064846A1-20130314-C00401
  • In addition, ORF133ng-1 is homologous to a TonB-dependent receptor in H. influenzae:
  • sp|P45114|YC17_HAEIN PROBABLE TONB-DEPENDENT RECEPTOR HI1217 PRECURSOR
    >gi|1075372|pir||G64110 transferrin binding protein 1 precursor (tbp1)
    homolog - Haemophilus influenzae (strain Rd KW20) >gi|1574147 (U32801)
    transferrin binding protein 1 precursor (tbp1) [Haemophilus influenzae]
    Length = 913
    Score = 930 bits (2377), Expect = 0.0
    Identities = 476/921 (51%), Positives = 619/921 (66%), Gaps = 72/921 (7%)
    Query: 38 QVLEDVHVKAKRVPKDKKVFTDARAVSTRQDVFKSGENLDNIVRSIPGAFTQQDKSSGIV 97
    + L  + V  K +  DKK FT+A+A STR++VFK  + +D ++RSIPGAFTQQDK SG+V
    Sbjct: 29 ETLGQIDVVEKVISNDKKPFTEAKAKSTRENVFKETQTIDQVIRSIPGAFTQQDKGSGVV 88
    Query: 98 SLNIRGDSGFGRVNTMVDGITQTFYSTSTDAGRAGGSSQFGASVDSNFIAGLDVVKGSFS 157
    S+NIRG++G GRVNTMVDG+TQTFYST+ D+G++GGSSQFGA++D NFIAG+DV K +FS
    Sbjct: 89 SVNIRGENGLGRVNTMVDGVTQTFYSTALDSGQSGGSSQFGAAIDPNFIAGVDVNKSNFS 148
    Query: 158 GSAGINSLAGSANLRTLGVDDVVQXXXXXXXXXXXXXXXXXXXXXAMAAIGARKWLESGA 217
    G++GIN+LAGSAN RTLGV+DV+                       M     RKWL++G
    Sbjct: 149 GASGINALAGSANFRTLGVNDVITDDKPFGIILKGMTGSNATKSNFMTMAAGRKWLDNGG 208
    Query: 218 SVGVLYGHSRRGVAQNYRVGGGGQHIGNFGEEYLERRKQQYFVQEGGLKFNAGSGKWERD 277
     VGV+YG+S+R V+Q+YR+ GGG+ + + G++ L + K+ YF +  G   N   G+W  D
    Sbjct: 209 YVGVVYGYSQREVSQDYRI-GGGERLASLGQDILAKEKEAYF-RNAGYILNP-EGQWTPD 265
    Query: 278 LQRQYWK-----------TKWY--------------------KKYEDPQELQK---YIEE 303
    L +++W              +Y                    KK +D ++LQK    IEE
    Sbjct: 266 LSKKHWSCNKPDYQKNGDCSYYRIGSAAKTRREILQELLTNGKKPKDIEKLQKGNDGIEE 325
    Query: 304 HDKSWRENLAPQYDITPIDPSGLKQQSAGNLFKLEYDGVFNKYTAQFRDLNTRIGSRKII 363
     DKS+  N   QY + PI+P  L+ +S  +L K EY        AQ R L+ +IGSRKI
    Sbjct: 326 TDKSFERN-KDQYSVAPIEPGSLQSRSRSHLLKFEYGDDHQNLGAQLRTLDNKIGSRKIE 384
    Query: 364 NRNYQFNYGLSLNPYTNLNLTAAYNSGRQKYPKGAKFTGWGLLKDFETYNNAKILDLNNT 423
    NRNYQ NY  + N Y +LNL AA+N G+  YPKG  F GW +     T N A I+D+NN+
    Sbjct: 385 NRNYQVNYNFNNNSYLDLNLMAAHNIGKTIYPKGGFFAGWQVADKLITKNVANIVDINNS 444
    Query: 424 ATFRLPRETELQTTLGFNYFHNEYGKNRFPEELGLFFDGPDQDNGLYSY--LGRFKGDKG 481
     TF LP+E +L+TTLGFNYF NEY KNRFPEEL LF++    D GLYS+   GR+ G K
    Sbjct: 445 HTFLLPKEIDLKTTLGFNYFTNEYSKNRFPEELSLFYNDASHDQGLYSHSKRGRYSGTKS 504
    Query: 482 LLPQKSTIVQPAGSQYFNTFYFDAALKKDIYRLNYSTNAINYRFGGEYTGYYGSENEFKR 541
    LLPQ+S I+QP+G Q F T YFD AL K IY LNYS N  +Y F GEY GY
    Sbjct: 505 LLPQRSVILQPSGKQKFKTVYFDTALSKGIYHLNYSVNFTHYAFNGEYVGY--------- 555
    Query: 542 AFGENSPAYKEHCDPSCGLYEPVLKKYGKKRANNHSVSISADFGDYFMPFAGYSRTHRMP 601
       EN+   +        + EP+L K G K+A NHS ++SA+  DYFMPF  YSRTHRMP
    Sbjct: 556 ---ENTAGQQ--------INEPILHKSGHKKAFNHSATLSAELSDYFMPFFTYSRTHRMP 604
    Query: 602 NIQEMYFSQIGDSGVHTALKPERANTWQFGFNTYKKGLLKQDDILGLKLVGYRSRIDNYI 661
    NIQEM+FSQ+ ++GV+TALKPE+++T+Q GFNTYKKGL  QDD+LG+KLVGYRS I NYI
    Sbjct: 605 NIQEMFFSQVSNAGVNTALKPEQSDTYQLGFNTYKKGLFTQDDVLGVKLVGYRSFIKNYI 664
    Query: 662 HNVYGKWWDLNGDIPSWVGSTGLAYTIRHRNFKDKVHKHGFELELNYDYGRFFTNLSYAY 721
    HNVYG WW     +P+W  S G  YTI H+N+K  V K G ELE+NYD GRFF N+SYAY
    Sbjct: 665 HNVYGVWW--RDGMPTWAESNGFKYTIAHQNYKPIVKKSGVELEINYDMGRFFANVSYAY 722
    Query: 722 QKSTQPTNFSDASESPNNASKEDQLKQGYGLSRVSALPRDYGRLEVGTRWLGNKLTLGGA 781
    Q++ QPTN++DAS  PNNAS+ED LKQGYGLSRVS LP+DYGRLE+GTRW   KLTLG A
    Sbjct: 723 QRTNQPTNYADASPRPNNASQEDILKQGYGLSRVSMLPKDYGRLELGTRWFDQKLTLGLA 782
    Query: 782 MRYFGKSIRATAEERYIDGTNGGNTSNVRQLGKRSIKQTETLARQPLIFDFYAAYEPKKN 841
    RY+GKS RAT EE YI+G+     + +R+    ++K+TE + +QP+I D + +YEP K+
    Sbjct: 783 ARYYGKSKRATIEEEYINGSR-FKKNTLRRENYYAVKKTEDIKKQPIILDLHVSYEPIKD 841
    Query: 842 LIFRAEVKNLFDRRYIDPLDAGNDAATQRYYSSFDPKDKDEDVTCNADKTLCNGKYGGTS 901
    LI +AEV+NL D+RY+DPLDAGNDAA+QRYYSS      +  + C  D + C    GG+
    Sbjct: 842 LIIKAEVQNLLDKRYVDPLDAGNDAASQRYYSSL-----NNSIECAQDSSAC----GGSD 892
    Query: 902 KSVLTNFARGRTFLMTMSYKF 922
    K+VL NFARGRT++++++YKF
    Sbjct: 893 KTVLYNFARGRTYILSLNYKF 913
  • The underlined motif in the gonococcal protein (also present in the meningococcal protein) is predicted to be an ATP/GTP-binding site motif A (P-loop), and the analysis suggests that these proteins from N. meningitidis and N. gonorrhoeae, and their epitopes, could be useful antigens for vaccines or diagnostics, or for raising antibodies.
  • Example 104
  • The following partial DNA sequence was identified in N. meningitidis <SEQ ID 885>
  • 1 ATGAACCTGA TTTCACGTTA CATCATCCGT CAAATGGCGG
    TTATGGCGGT
    51 TTACGCGCTC CTTGCCTTCC TCGCTTTGTA CAGCTTTTTT
    GAAATCCTGT
    101 ACGAAACCGG CAACCTCGGC AAAGGCAGTT ACGGCATATG
    GGAAATGCTG
    151 GGCTACACCG CCCTCAAAAT GCCCGCCCGC GCCTACGAAC
    TGATTCCCCT
    201 CGCCGTCCTT ATCGGCGGAC TGGTCTCCCT CAGCCAGCTT
    GCCGCCGGCA
    251 GCGAACTGAC CGTCATCAAA GCCAGCGGCA TGAGCACCAA
    AAAGCTGCTG
    301 TTGATTCTGT CGCAGTTCGG TTTTATTTTT GCTATTGCCA
    CCGTCGCGCT
    351 CGGCGAATGG GTTGCGCCCA CACTGAGCCA AAAAGCCGAA
    AACATCAAAG
    401 CCGCCGCCAT CAACGGCAAA ATCAGCACCG GCAATACCGG
    CCTTTGGCTG
    451 AAAGAAAAAA ACAGCGTGAT CAATGTGCGC GAAATGTTGC
    CCGACCAT..
  • This corresponds to the amino acid sequence <SEQ ID 886; ORF112>:
  • 1 MNLISRYIIR QMAVMAVYAL LAFLALYSFF EILYETGNLG
    KGSYGIWEML
    51 GYTALKMPAR AYELIPLAVL IGGLVSLSQL  AAGSELTVIK
    ASGMSTKKLL
    101 LILSQFGFIF AIATVALGEW VAPTLSQKAE NIKAAAINGK
    ISTGNTGLWL
    151 KEKNSVINVR EMLPDH...
  • Further work revealed further partial nucleotide sequence <SEQ ID 887>:
  • 1 ATGAACCTGA TTTCACGTTA CATCATCCGT CAAATGGCGG
    TTATGGCGGT
    51 TTACGCGCTC CTTGCCTTCC TCGCTTTGTA CAGCTTTTTT
    GAAATCCTGT
    101 ACGAAACCGG CAACCTCGGC AAAGGCAGTT ACGGCATATG
    GGAAATGCTG
    151 gGCTACACCG CCCTCAAAAT GCCCGCCCGC GCCTACGAAC
    TGATTCCCCT
    201 CGCCGTCCTT ATCGGCGGAC TGGTCTCCCT CAGCCAGCTT
    GCCGCCGGCA
    251 GCGAACTGAC CGTCATCAAA GCCAGCGGCA TGAGCACCAA
    AAAGCTGCTG
    301 TTGATTCTGT CGCAGTTCGG TTTTATTTTT GCTATTGCCA
    CCGTCGCGCT
    351 CGGCGAATGG GTTGCGCCCA CACTGAGCCA AAAAGCCGAA
    AACATCAAAG
    401 CCGCCGCCAT CAACGGCAAA ATCAGCACCG GCAATACCGG
    CCTTTGGCTG
    451 AAAGAAAAAA ACAGCrTkAT CAATGTGCGC GAAATGTTGC
    CCGACCATAC
    501 GCTTTTGGGC ATCAAAATTT GGGCGCGCAA CGATAAAAAC
    GAATTGGCAG
    551 AGGCAGTGGA AGCCGATTCC GCCGTTTTGA ACAGCGACGG
    CAGTTGGCAG
    601 TTGAAAAACA TCCGCCGCAG CACGCTTGGC GAAGACAAAG
    TCGAGGTCTC
    651 TATTGCGGCT GAAGAAAACT GGCCGATTTC CGTCAAACGC
    AACCTGATGG
    701 ACGTATTGCT CGTCAAACCC GACCAAATGT CCGTCGGCGA
    ACTGACCACC
    751 TACATCCGCC ACCTCCAAAA CAACAGCCAA AACACCCGAA
    TCTACGCCAT
    801 CGCATGGTGG CGCAAATTGG TTTACCCCGC CGCAGCCTGG
    GTGATGGCGC
    851 TCGTCGCCTT TGCCTTTACC CCGCAAACCA CCCGCCACGG
    CAATATGGGC
    901 TTAAAACTCT TCGGCGGCAT CTGTsTCGGA TTGCTGTTCC
    ACCTTGCCGG
    951 ACGGCTCTTT GGGTTTACCA GCCAACTCGG...
  • This corresponds to the amino acid sequence <SEQ ID 888; ORF112-1>:
  • 1 MNLISRYIIR QMAVMAVYAL LAFLALYSFF EILYETGNLG
    KGSYGIWEML
    51 GYTALKMPAR AYELIPLAVL IGGLVSLSQL  AAGSELTVIK
    ASGMSTKKLL
    101 LILSQFGFIF AIATVALGEW VAPTLSQKAE NIKAAAINGK
    ISTGNTGLWL
    151 KEKNSXINVR EMLPDHTLLG IKIWARNDKN ELAEAVEADS
    AVLNSDGSWQ
    201 LKNIRRSTLG EDKVEVSIAA EENWPISVKR NLMDVLLVKP
    DQMSVGELTT
    251 YIRHLQNNSQ NTRIYAIAWW RKLVYPAAAW VMALVAFAFT
    PQTTRHGNMG
    301 LKLFGGICXG LLFHLAGRLF GFTSQL...
  • Computer analysis of this amino acid sequence predicts two transmembrane domains and gave the following results:
  • Homology with a Predicted ORF from N. meningitidis (Strain A)
  • ORF112 shows 96.4% identity over a 166aa overlap with an ORF (ORF112a) from strain A of N. meningitidis:
  • Figure US20130064846A1-20130314-C00402
  • The ORF112a nucleotide sequence <SEQ ID 889> is:
  • 1 ATGAACCTGA TTTCACGTTA CATCATCCGT CAAATGGCGG
    TTATGGCGGT
    51 TTACGCGCTC CTTGCCTTCC TCGCTTTGTA CAGCTTTTTT
    GAAATCCTGT
    101 ACGAAACCGG CAACCTCGGC AAAGGCAGTT ACGGCATATG
    GGAAATGNTG
    151 GGNTACACCG CCCTCAAAAT GNCCGCCCGC GCCTACGAAC
    TGATGCCCCT
    201 CGCCGTCCTT ATCGGCGGAC TGGTCTCTNT CAGCCAGCTT
    GCCGCCGGCA
    251 GCGAACTGAN CGTCATCAAA GCCAGCGGCA TGAGCACCAA
    AAAGCTGCTG
    301 TTGATTCTGT CGCAGTTCGG TTTTATTTTT GCTATTGCCA
    CCGTCGCGCT
    351 CGGCGAATGG GTTGCGCCCA CACTGAGCCA AAAAGCCGAA
    AACATCAAAG
    401 CCGCGGCCAT CAACGGCAAA ATCAGTACCG GCAATACCGG
    CCTTTGGCTG
    451 AAAGAAAAAA ACAGCATTAT CAATGTGCGC GAAATGTTGC
    CCGACCATAC
    501 CCTGCTGGGC ATTAAAATCT GGGCCCGCAA CGATAAAAAC
    GAACTGGCAG
    551 AGGCAGTGGA AGCCGATTCC GCCGTTTTGA ACAGCGACGG
    CAGTTGGCAG
    601 TTGAAAAACA TCCGCCGCAG CACGCTTGGC GAAGACAAAG
    TCGAGGTCTC
    651 TATTGCGGCT GAAGAAAANT GGCCGATTTC CGTCAAACGC
    AACCTGATGG
    701 ACGTATTGCT CGTCAAACCC GACCAAATGT CCGTCGGCGA
    ACTGACCACC
    751 TACATCCGCC ACCTCCAAAN NNACAGCCAA AACACCCGAA
    TCTACGCCAT
    801 CGCATGGTGG CGCAAATTGG TTTACCCCGC CGCAGCCTGG
    GTGATGGCGC
    851 TCGTCGCCTT TGCCTTTACC CCGCAAACCA CCCGCCACGG
    CAATATGGGC
    901 TTAAAANTCT TCGGCGGCAT CTGTCTCGGA TTGCTGTTCC
    ACCTTGCCGG
    951 NCGGCTCTTC NGGTTTACCA GCCAACTCTA CGGCATCCCG
    CCCTTCCTCG
    1001 NCGGCGCACT ACCTACCATA GCCTTCGCCT TGCTCGCCGT
    TTGGCTGATA
    1051 CGCAAACAGG AAAAACGCTA A
  • This encodes a protein having the amino acid sequence <SEQ ID 890>:
  • 1 MNLISRYIIR QMAVMAVYAL LAFLALYSFF EILYETGNLG
    KGSYGIWEMX
    51 GYTALKMXAR AYELMPLAVL IGGLVSXSQ L AAGSELXVIK
    ASGMSTKKLL
    101 LILSQFGFIF AIATVALGEW VAPTLSQKAE NIKAAAINGK
    ISTGNTGLWL
    151 KEKNSIINVR EMLPDHTLLG IKIWARNDKN ELAEAVEADS
    AVLNSDGSWQ
    201 LKNIRRSTLG EDKVEVSIAA EEXWPISVKR NLMDVLLVKP
    DQMSVGELTT
    251 YIRHLQXXSQ NTRIYAIAWW RKLVYPAAAW VMALVAFAFT
    PQTTRHGNMG
    301 LKXFGGICLG LLFHLAGRLF XFTSQLYGIP PFLXGALPTI
    AFALLAVWLI
    351 RKQEKR*
  • ORF112a and ORF112-1 show 96.3% identity in 326 aa overlap:
  • Figure US20130064846A1-20130314-C00403
  • Homology with a Predicted ORF from N. gonorrhoeae
  • ORF112 shows 95.8% identity over 166aa overlap with a predicted ORF (ORF112ng) from N. gonorrhoeae:
  • Figure US20130064846A1-20130314-C00404
  • The complete length ORF112ng nucleotide sequence <SEQ ID 891> is:
  • 1 ATGAACCTGA TTTCACGTTA CATCATCCGC CAAATGGCGG
    TTATGGCGGT
    51 TTACGCGCTC CTTGCCTTCC TCGCTTTGTA CAGCTTTTTT
    GAAATCCTGT
    101 ACGAAACCGG CAACCTCGGC AAAGGCAGTT ACGGCATATG
    GGAAATGCTG
    151 GGCTACACCG CCCTCAAAAT GCCCGCCCGC GCCTACGAAC
    TCATGCCCCT
    201 CGCCGTCCTC ATCGGCGGAC TGGCCTCTCT CAGCCAGCTT
    GCCGCCGGCA
    251 GCGAACTGGC CGTCATCAAA GCCAGCGGCA TGAGCACCAA
    AAAGCTGCTG
    301 TTGATTCTGT CTCAGTTCGG TTTTATTTTT GCTATTGCCG
    CCGTCGCGCT
    351 CGGCGAATGG GTTGCGCCCA CGCTGAGCCA AAAAGCCGAA
    AACATCAAag
    401 cCGCCGCCAt taacggCAAA ATCAGCAccg gcAATACCGG
    CCTTTggcTG
    451 AAAGAAAAAa ccAGCATTAT CAATGTGcGc GGAATGTTGC
    CCGACCATAC
    501 GCTTTTGGGC ATCAAAATTT GGGCGCGCAA CGATAAAAAC
    GAATTGGCAG
    551 AGGCAGTGGA AGCCGATTCC GCCGTTTTGA ACAGCGACGG
    CAGCTGGCAG
    601 TTGAAAAACA TCCGCCGCAG CATCATGGGT ACAGACAAAA
    TCGAAACATC
    651 cgCCGCCGCC GAAGAAACTT gGCCGATTGC CGTCAGACGC
    AACCTGATGG
    701 ACGTATTGCT CGTCAAGCCC GACCAAATGT CCGTCGGCGA
    GCTGACCACC
    751 TACATCCGCC ACCTCCAAAA CAACAGCCAA AACACCCAAA
    TCTACGCCAT
    801 CGCATGGTGG CGTAAACTCG TTTACCCCGT CGCCGCATGG
    GTCATGGCGC
    851 TCGTTGCCTT CGCCTTTACG CCGCAAACCA CGCGCCACGG
    CAATATGGGC
    901 TTAAAACTCT TCGGCGGCAT CTGTCTCGGA TTGCTGTTCC
    ACCTTGCCGG
    951 CAGGCTCTTC GGGTTTACCA GCCAACTCTA CGGCACCCCA
    CCCTTCCTCG
    1001 CCGGCGCACT GCCTACCATA GCCTTCGCCT TGCTCGCTGT
    TTGGCTGATA
    1051 CGCAAACAGG AAAAACGTTG A
  • This encodes a protein having amino acid sequence <SEQ ID 892>:
  • 1 MNLISRYIIR QMAVMAVYAL LAFLALYSFF EILYETGNLG
    KGSYGIWEML
    51 GYTALKMPAR AYELMPLAVL IGGLASLSQL  AAGSELAVIK
    ASGMSTKKLL
    101 LILSQFGFIF AIAAVALGEW VAPTLSQKAE NIKAAAINGK
    ISTGNTGLWL
    151 KEKTSIINVR GMLPDHTLLG IKIWARNDKN ELAEAVEADS
    AVLNSDGSWQ
    201 LKNIRRSIMG TDKIETSAAA EETWPIAVRR NLMDVLLVKP
    DQMSVGELTT
    251 YIRHLQNNSQ NTQIYAIAWW RKLVYPVAAW VMALVAFAFT
    PQTTRHGNMG
    301 LKLFGGICLG LLFHLAGRLF GFTSQLYGTP PFLAGALPTI
    AFALLAVWLI
      • 351 RKQEKR*
  • ORF112ng and ORF112-1 show 94.2% identity in 326 aa overlap:
  • Figure US20130064846A1-20130314-C00405
  • This analysis suggests that these proteins from N. meningitidis and N. gonorrhoeae, and their epitopes, could be useful antigens for vaccines or diagnostics, or for raising antibodies.
  • It will be appreciated that the invention has been described by means of example only, and that modifications may be made whilst remaining within the spirit and scope of the invention.
  • TABLE I
    PCR primers
    ORF Primer Sequence Restriction sites
    ORF 1 Forward CGCGGATCCGCTAGC-GGACACACTTATTTCGG BamHI-NheI
    Reverse CCCGCTCGAG-CCAGCGGTAGCCTAATT XhoI
    ORF 2 Forward GCGGATCCCATATG-TTTGATTTCGGTTTGGG BamHI-NdeI
    Reverse CCCGCTCGAG-GACGGCATAACGGCG XhoI
    ORF 2-1 Forward GCGGATCCCATATG-TTTGATTTCGGTTTGGG BamHI-NdeI
    Reverse CCCGCTCGAG-TGATTTACGGACGCGCA XhoI
    ORF 4 Forward GCGGATCCCATATG-TGCGGAGGTCAAAAAGAC BamHI-NdeI
    Reverse CCCGCTCGAG-TTTGGCTGCGCCTTC XhoI
    ORF 5 Forward GGAATTCCATATGGCCATGG-TGGAAGGCGCACAACC NdeI-NcoI
    Forward CGGGATCC-ATGGAAGGCGCACAAC BamHI
    Reverse CCCGCTCGAG-GACTGTGCAAAAACGG XhoI
    ORF 6 Forward CGCGGATCCCATATG-ACCCGTCAATCTCTGCA BamHI-NdeI
    Reverse CCCGCTCGAG-TGCGCCGAACACTTTC XhoI
    ORF 7 Forward CGCGGATCCGCTAGC-GCGCTGCTTTTTGTTCC BamHI-NheI
    Reverse CCCGCTCGAG-TTTCAAAATATATTTGCGGA XhoI
    ORF 8 Forward GCGGATCCCATATG-GCTCAACTGCTTCGTAC BamHI-NdeI
    Reverse CCCGCTCGAG-AGCAGGCTTTGGCGC XhoI
    ORF 9 Forward CGCGGATCCCATATG-CCGAAGGAAGTCGGAAA BamHI-NdeI
    Reverse CCCGCTCGAG-TTTCCGAGGTTTTCGGG XhoI
    ORF 10 Forward GCGGATCCCATATG-GACACAAAAGAAATCCTC BamHI-NdeI
    Reverse CCCGCTCGAG-TAATGGGAAACCTTGTTTT XhoI
    ORF 11 Forward GCGGATCCCATATG-GCGGTCAACCTCTACG BamHI-NdeI
    Reverse CCCGCTCGAG-GGAAACGACTTCGCC XhoI
    ORF 13 Forward CGCGGATCCCATATG-GCTCTGCTTTCCGCGC BamHI-NdeI
    Reverse CCCGCTCGAG-AGGGTGTGTGATAATAAG XhoI
    ORF 15 Forward GGAATTCCATATGGCCATGG-GCGGGACACTGACAG NdeI-NcoI
    Forward CGGGATCC-TGCGGGACACTGACAGG BamHI
    Reverse CCCGCTCGAG-AGGTTGGCCTTGTCTATG XhoI
    ORF 17 Forward GGAATTCCATATGGCCATGG-TTGCCGGCCTGTTCG NdeI-NcoI
    Forward CGGGATCC-ATTGCCGGCCTGTTCG BamHI
    Reverse CCCGCTCGAG-AAGCAGGTTGTACAGC XhoI
    ORF 18 Forward GCGGATCCCATATG-ATTTTGCTGCATTTGGAT BamHI-NdeI
    Reverse CCCGCTCGAG-TCTTCCAATTTCTGAAAGC XhoI
    ORF 19 Forward GGAATTCCATATGGCCATGG -TCGCCAGTGTTTTTACC NdeI-NcoI
    Forward CGGGATCC-TTCGCCAGTGTTTTTACCG BamHI
    Reverse CCCGCTCGAG-GGTGTTTTTGAAGCTGCC XhoI
    ORF 20 Forward GGAATTCCATATGGCCATGG -TCGGCGCGGGTATG NdeI-NcoI
    Forward CGGGATCC-TTCGGCGCGGGTATG BamHI
    Reverse CCCGCTCGAG-CGGCGAGCGAGAGCA XhoI
    ORF 22 Forward GGAATTCCATATGGCCATGG-TGATTAAAATCAAAAAAGGTCT NdeI-NcoI
    Forward CGGGATCC-ATGATTAAAATCAAAAAAGGTCTAAACC BamHI
    Reverse CCCGCTCGAG-ATTATGATAGCGGCCC XhoI
    ORF 23 Forward CGCGGATCCCATATG-GATGTTTCTGTTTCAGAC BamHI-NdeI
    Reverse CCCGCTCGAG-TTTAAACCGATAGGTAAACG XhoI
    ORF 24 Forward GGAATTCCATATGGCCATGG- TGATGCCGGAAATGGTG NdeI-NcoI
    Forward CGGGATCC-ATGATGCCGGAAATGGTG BamHI
    Reverse CCCGCTCGAG-TGTCAGCGTGGCGCA XhoI
    ORF 25 Forward GCGGATCCCATATG-TATCGCAAACTGATTGC BamHI-NdeI
    Reverse CCCGCTCGAG-ATCGATGGAATAGCCG XhoI
    ORF 26 Forward GCGGATCCCATATG -CAGCTGATCGACTATTC BamHI-NdeI
    Reverse CCCGCTCGAG-GACATCGGCGCGTTTT XhoI
    ORF 27 Forward GGAATTCCATATGGCCATGG-AGACCTATTCTGTTTA NdeI-NcoI
    Forward CGGGATCC- CAGACCTATTCTGTTTATTTTAATC BamHI
    Reverse CCCGCTCGAG-GGGTTCGATTAAATAACCAT XhoI
    ORF 28 Forward GGAATTCCATATGGCCATGG-ACGGCTGTACGTTGATGT NdeI-NcoI
    Forward CGGGATCC-AACGGCTGTACGTTGATG BamHI
    Reverse CCCGCTCGAG-TTTGTCAGAGGAATTCGCG XhoI
    ORF 29 Forward GCGGATCCCATATG -AACGGTTTGGATGCCCG BamHI-NdeI
    Forward CGCGGATCCGCTAGC-AACGGTTTGGATGCCCG BamHI-NheI
    Reverse CCCGCTCGAG-TTTGTCTAAGTTCCTGATATG XhoI
    ORF 32 Forward CGCGGATCCCATATG-AATACTCCTCCTTTTG BamHI-NdeI
    Reverse CCCGCTCGAG-GCGTATTTTTTGATGCTTTG XhoI
    ORF 33 Forward GCGGATCCCATATG -ATTGATAGGGATCGTATG BamHI-NdeI
    Reverse CCCGCTCGAG-TTGATCTTTCAAACGGCC XhoI
    ORF 35 Forward GCGGATCCCATATG-TTCAGAGCTCAGCTT BamHI-NdeI
    Forward CGCGGATCCGCTAGC-TTCAGAGCTCAGCTT BamHI-NheI
    Reverse CCCGCTCGAG-AAACAGCCATTTGAGCGA XhoI
    ORF 37 Forward GCGGATCCCATATG-GATGACGTATCGGATTTT BamHI-NdeI
    Reverse CCCGCTCGAG-ATAGCCCGCTTTCAGG XhoI
    ORF 58 Forward CGCGGATCCGCTAGC-TCCGAACGCGAGTGGAT BamHI-NheI
    Reverse CCCGCTCGAG-AGCATTGTCCAAGGGGAC XhoI
    ORF 65 Forward GGAATTCCATATGGCCATGG -TGCTGTATCTGAATCAAG NdeI-NcoI
    Forward CGGGATCC-TTGCTGTATCTGAATCAAGG BamHI
    Reverse CCCGCTCGAG-CCGCATCGGCAGACA XhoI
    ORF 66 Forward GCGGATCCCATATG-TACGCATTTACCGCCG BamHI-NdeI
    Reverse CCCGCTCGAG-TGGATTTTGCAGAGATGG XhoI
    ORF 72 Forward CGCGGATCCCATATG- AATGCAGTAAAAATATCTGA BamHI-NdeI
    Reverse CCCGCTCGAG-GCCTGAGACCTTTGCAA XhoI
    ORF 73 Forward GCGGATCCCATATG-AGATTTTTCGGTATCGG BamHI-NdeI
    Reverse CCCGCTCGAG-TTCATCTTTTTCATGTTCG XhoI
    ORF 75 Forward GCGGATCCCATATG- TCTGTCTTTCAAACGGC BamHI-NdeI
    Reverse CCCGCTCGAG-TTTGTTTTTGCAAGACAG XhoI
    ORF 76 Forward GATCAGCTAGCCATATG-AAACAGAAAAAAACCGC NheI-NdeI
    Reverse CGGGATCC-TTACGGTTTGACACCGTT BamHI
    ORF 79 Forward CGCGGATCCCATATG-GTTTCCGCCGCCG BamHI-NdeI
    Reverse CCCGCTCGAG-GTGCTGATGCGCTTCG XhoI
    ORF 83 Forward GCGGATCCCATATG-AAAACCCTGCTGCTGC BamHI-NdeI
    Reverse CCCGCTCGAG-GCCGCCTTTGCGGC XhoI
    ORF 84 Forward GCGGATCCCATATG-GCAGAGATCTGTTTG BamHI-NdeI
    Reverse CCCGCTCGAG-GTTTGCCGATCCGACCA XhoI
    ORF 85 Forward CGCGGATCCCATATG- GCGGTTTGGGGCGGA BamHI-NdeI
    Reverse CCCGCTCGAG-TCGGCGCGGCGGGC XhoI
    ORF 89 Forward GGAATTCCATATGGCCATGG-CCATACCTTCTTATCA NdeI-NcoI
    Forward CGGGATCC-GCCATACCTTCTTATCAGAG BamHI
    Reverse CCCGCTCGAG-TTTTTTGCGATTAGAAAAAGC XhoI
    ORF 97 Forward GCGGATCCCATATG-CATCCTGCCAGCGAAC BamHI-NdeI
    Reverse CCCGCTCGAG-TTCGCCTACGGTTTTTTG XhoI
    ORF 98 Forward GCGGATCCCATATG-ACGGTAACTGCGG BamHI-NdeI
    Reverse CCCGCTCGAG-TTGTTGTTCGGGCAAATC XhoI
    ORF 100 Forward GCGGATCCCATATG-TCGGGCATTTACACCG BamHI-NdeI
    Reverse CCCGCTCGAG-ACGGGTTTCGGCGGAA XhoI
    ORF 101 Forward GCGGATCCCATATG-ATTTATCAAAGAAACCTC BamHI-NdeI
    Reverse CCCGCTCGAG-TTTTCCGCCTTTCAATGT XhoI
    ORF 102 Forward GCGGATCCCATATG-GCAGGGCTGTTTTACC BamHI-NdeI
    Reverse CCCGCTCGAG-AAACGGTTTGAACACGAC XhoI
    ORF 103 Forward GCGGATCCCATATG-AACCACGACATCAC BamHI-NdeI
    Reverse CCCGCTCGAG-CAGCCACAGGACGGC XhoI
    ORF 104 Forward GCGGATCCCATATG-ACGTGGGGAACGC BamHI-NdeI
    Reverse CCCGCTCGAG-GCGGCGTTTGAACGGC XhoI
    ORF 105 Forward GCGGATCCCATATG-ACCAAATTTCAAACCCCTC BamHI-NdeI
    Reverse CCCGCTCGAG-TAAACGAATGCCGTCCAG XhoI
    ORF 106 Forward GCGGATCCCATATG-AGGATAACCGACGGCG BamHI-NdeI
    Reverse CCCGCTCGAG-TTTGTTCCCGATGATGTT XhoI
    ORF 109 Forward GCGGATCCCATATG-GAAGATTTATATATAATACTCG BamHI-NdeI
    Reverse CCCGCTCGAG-ATCAGCTTCGAACCGAAG XhoI
    ORF 110 Forward AAAGAATTC-ATGAGTAAATCCCGTAGATCTCCC EcoRI
    Reverse AAACTGCAG-GGAAAACCACATCCGCACTCTGCC PstI
    ORF 111 Forward AAAGAATTC-GCACCGCAAAAGGCAAAAACCGCA EcoRI
    Reverse AAACTGCAG-TCTGCGCGTTTTCGGGCAGGGTGG PstI
    ORF 113 Forward AAAGAATTC-ATGAACAAAACCCTCTATCGTGTGATTTTCAACCG EcoRI
    Reverse AAACTGCAG-TTACGAATGCCTGCTTGCTCGACCGTACTG PstI
    ORF 115 Forward AAAGAATTC-TTGCTTGTGCAAACAGAAAAAGACGG EcoRI
    Reverse AAAAAAGTCGAC-CTATTTTTTAGGGGCTTTTGCTTGTTTGAAAAGCCTGCC SalI
    ORF 119 Forward AAAGAATTC-TACAACATGTATCAGGAAAACCAATACCG EcoRI
    Reverse AAACTGCAG-TTATGAAAACAGGCGCAGGGCGGTTTTGCC PstI
    ORF 120 Forward AAAGAATTC-GCAAGGCTACCCCAATCCGCCGTG EcoRI
    Reverse AAACTGCAG-CGGTTTGGCTGCCTGGCCGTTGAT PstI
    ORF 121 Forward AAAGAATTC-GCCTTGGTCTGGCTGGTTTTCGC EcoRI
    Reverse AAACTGCAG-TCATCCGCCACCCCACCTCGGCCATCCATC PstI
    ORF 122 Forward AAAAAAGTCGAC-ATGTCTTACCGCGCAAGCAGTTCTCC SalI
    Reverse AAACTGCAG-TCAGGAACACAAACGATGACGAATATCCGTATC PstI
    ORF 125 Forward AAAGAATTC-GCGCTGTTTTTTGCGGCGGCGTAT EcoRI
    Reverse AAACTGCAG-CGCCGTTTCAAGACGAAAAAGTCG PstI
    ORF 126 Forward AAAGAATTC-GCGGAAACGGTCGAAG EcoRI
    Reverse AAACTGCAG-TTAATCTTGTCTTCCGATATAC PstI
    ORF 127 Forward AAAGAATTC-ATGACTGATAATCGGGGGTTTACG EcoRI
    Reverse AAAAAAGTCGAC-CTTAAGTAACTTGCAGTCCTTATC SalI
    ORF 128 Forward AAAGAATTC-ATGCAAGCTGTCCGCTACAGGCC EcoRI
    Reverse AAACTGCAG-CTATTGCAATGCGCCGCCGCGGGAATGTTTGAGCAGGCG PstI
    ORF 129 Forward AAAGAATTC-ATGGATTTTCGTTTTGACATTATTTACGAATACCG EcoRI
    Reverse AAACTGCAG-TTATTTTTTGATGAAATTTTGGGGCGG PstI
    ORF 130 Forward AAAGAATTC-GCAGTACTTGCCATTCTCGGTGCG EcoRI
    Reverse AAACTGCAG-CTCCGGATCGTCTGTAAACGCATT PstI
    ORF 131 Forward GCGGATCCCATATG-GAAATTCGGGCAATAAAAT BamHI-NdeI
    Reverse CCCGCTCGAG-CCAGCGGACGCGTTC XhoI
    ORF 132 Forward GCGGATCCCATATG-AAAGAAGCGGGGTTTG BamHI-NdeI
    Reverse CCCGCTCGAG-CCAATCTGCCAGCCGT XhoI
    ORF 133 Forward CGCGGATCCCATATG-GAAGATGCAGGGCGCG BamHI-NdeI
    Reverse CCCGCTCGAG-AAACTTGTAGCTCATCGT XhoI
    ORF 134 Forward GCGGATCCCATATG-TCTGTGCAAGCAGTATTG BamHI-NdeI
    Reverse CCCGCTCGAG-ATCCTGTGCCAATGCG XhoI
    ORF 135 Forward GCGGATCCCATATG-CCGTCTGAAAAAGCTTT BamHI-NdeI
    Reverse CCCGCTCGAG-AAATACCGCTGAGGATG XhoI
    ORF 136 Forward CGCGGATCCGCTAGC-ATGAAGCGGCGTATAGCC BamHI-NheI
    Reverse CCCGCTCGAG-TTCCGAATATTTGGAACTTTT XhoI
    ORF 137 Forward CGCGGATCCCATATG-GGCACGGCGGGAAATA BamHI-NdeI
    Reverse CCCGCTCGAG-ATAACGGTATGCCGCC XhoI
    ORF 138 Forward GCGGATCCCATATG-TTTCGTTTACAATTCAGGC BamHI-NdeI
    Reverse CCCGCTCGAG-CGGCGTTTTATAGCGG XhoI
    ORF 139 Forward GCGGATCCCATATG-GCTTTTTTGGCGGTAATG BamHI-NdeI
    Reverse CCCGCTCGAG-TAACGTTTCCGTGCGTTT XhoI
    ORF 140 Forward GCGGATCCCATATG-TTGCCCACAGGCAGC BamHI-NdeI
    Reverse CCCGCTCGAG-GACGATGGCAAACAGC XhoI
    ORF 141 Forward GCGGATCCCATATG-CCGTCTGAAGCAGTCT BamHI-NdeI
    Reverse CCCGCTCGAG-ATCTGTTGTTTTTAAAATATT XhoI
    ORF 142 Forward GCGGATCCCATATG-GATAATTCTGGTAGTGAAG BamHI-NdeI
    Reverse CCCGCTCGAG-AAACGTATAGCCTACCT XhoI
    ORF 143 Forward GCGGATCCCATATG-GATACCGCTTTGAACCT BamHI-NdeI
    Reverse CCCGCTCGAG-AATGGCTTCCGCAATATG XhoI
    ORF 144 Forward GCGGATCCCATATG-ACCTTTTTACAACGTTTGC BamHI-NdeI
    Reverse CCCGCTCGAG-AGATTGTTGTTGTTTTTTCG XhoI
    ORF 147 Forward GCGGATCCCATATG-TCTGTCTTTCAAACGGC BamHI-NdeI
    Reverse CCCGCTCGAG-TTTGTTTTTGCAAGACAG XhoI
    NB:
    restriction sites are underlined
    for ORFs 110-130, where the ORF itself carries an EcoRI site (eg. ORF 122), a SalI site was used in the forward primer instead. Similarly, where the ORF carries a PstI site (eg. ORFs 115 and 127), a SalI site was used in the reverse primer.
  • TABLE II
    Summary of cloning, expression and purification
    PCR/ His-fusion GST-fusion
    ORF cloning expression expression Purification
    orf 1  + + + His-fusion
    orf 2  + + + GST-fusion
    orf 2.1  + n.d. + GST-fusion
    orf 4  + + + His-fusion
    orf 5  + n.d. + GST-fusion
    orf 6  + + + GST-fusion
    orf 7  + + + GST-fusion
    orf
    8  + n.d. n.d.
    orf 9  + + + GST-fusion
    orf
    10  + n.d. n.d.
    orf 11  + n.d. n.d.
    orf 13  + n.d. + GST-fusion
    orf 15  + + + GST-fusion
    orf 17  + n.d. n.d.
    orf 18  + n.d. n.d.
    orf 19  + n.d. n.d.
    orf 20  + n.d. n.d.
    orf 22  + + + GST-fusion
    orf 23  + + + His-fusion
    orf 24  + n.d. n.d.
    orf 25  + + + His-fusion
    orf 26  + n.d. n.d.
    orf 27  + + + GST-fusion
    orf 28  + + + GST-fusion
    orf 29  + n.d. n.d.
    orf 32  + + + His-fusion
    orf 33  + n.d. n.d.
    orf 35  + n.d. n.d.
    orf 37  + + + GST-fusion
    orf 58  + n.d. n.d.
    orf 65  + n.d. n.d.
    orf 66  + n.d. n.d.
    orf 72  + + n.d. His-fusion
    orf 73  + n.d. + n.d.
    orf 75  + n.d. n.d.
    orf 76  + + n.d. His-fusion
    orf 79  + + n.d. His-fusion
    orf 83  + n.d. + n.d.
    orf 84  + n.d. n.d.
    orf 85  + n.d. + GST-fusion
    orf 89  + n.d. + GST-fusion
    orf 97  + + + GST-fusion
    orf 98  + n.d. n.d.
    orf 100 + n.d. n.d.
    orf 101 + n.d. n.d.
    orf 102 + n.d. n.d.
    orf 103 + n.d. n.d.
    orf 104 + n.d. n.d.
    orf 105 + n.d. n.d.
    orf 106 + + + His-fusion
    orf 109 + n.d. n.d.
    orf 110 + n.d. n.d.
    orf 111 + + n.d. His-fusion
    orf 113 + + n.d. His-fusion
    orf 115 n.d. n.d. n.d.
    orf 119 + + n.d. His-fusion
    orf
    120 + + n.d. His-fusion
    orf 121 + n.d. n.d.
    orf 122 + + n.d. His-fusion
    orf
    125 + + n.d. His-fusion
    orf 126 + + n.d. His-fusion
    orf 127 + + n.d. His-fusion
    orf 128 + n.d. n.d.
    orf 129 + + n.d. His-fusion
    orf
    130 + n.d. n.d.
    orf 131 + + + n.d.
    orf 132 + + + His-fusion
    orf 133 + n.d. + GST-fusion
    orf 134 + n.d. n.d.
    orf 135 + n.d. n.d.
    orf 136 + n.d. n.d.
    orf 137 + n.d. + GST-fusion
    orf 138 + n.d. + GST-fusion
    orf 139 + n.d. n.d.
    orf 140 + n.d. n.d.
    orf 141 + n.d. n.d.
    orf 142 + n.d. n.d.
    orf 143 + n.d. n.d.
    orf 144 + n.d. + n.d.
    orf 147 + n.d. n.d.

Claims (7)

1: An isolated protein comprising:
(a) the amino acid sequence of SEQ ID NO: 654; or
(b) an amino acid sequence having 80% or greater sequence identity to the amino acid sequence of SEQ ID NO: 654; or
(b) a fragment of SEQ ID NO: 654 of at least 10 contiguous amino acids in length.
2: The isolated protein of claim 1 comprising (b).
3: The isolated protein of claim 2, wherein the amino acid sequence has 90% or greater sequence identity to the amino acid sequence of SEQ ID NO: 654.
4: The isolated protein of claim 2, wherein the amino acid sequence has 95% or greater sequence identity to the amino acid sequence of SEQ ID NO: 654.
5: The isolated protein of claim 1 comprising (c).
6: A composition comprising the protein of any one of claims 1-5 and an adjuvant.
7: The composition of claim 6 further comprising a pharmaceutically acceptable carrier.
US13/593,464 1997-11-06 2012-08-23 Neisserial antigens Abandoned US20130064846A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/593,464 US20130064846A1 (en) 1997-11-06 2012-08-23 Neisserial antigens

Applications Claiming Priority (19)

Application Number Priority Date Filing Date Title
GB9723516.2 1997-11-06
GBGB9723516.2A GB9723516D0 (en) 1997-11-06 1997-11-06
GB9724190.5 1997-11-14
GBGB9724190.5A GB9724190D0 (en) 1997-11-14 1997-11-14
GBGB9724386.9A GB9724386D0 (en) 1997-11-18 1997-11-18
GB9724386.9 1997-11-18
GB9725158.1 1997-11-27
GBGB9725158.1A GB9725158D0 (en) 1997-11-27 1997-11-27
GBGB9726147.3A GB9726147D0 (en) 1997-12-10 1997-12-10 Antigens
GB9726147.3 1997-12-10
GBGB9800759.4A GB9800759D0 (en) 1998-01-14 1998-01-14
GB9800759.4 1998-01-14
GBGB9819016.8A GB9819016D0 (en) 1998-09-01 1998-09-01
GB9819016.8 1998-09-01
PCT/IB1998/001665 WO1999024578A2 (en) 1997-11-06 1998-10-09 Neisserial antigens
US09/303,518 US6914131B1 (en) 1998-10-09 1999-04-30 Neisserial antigens
US10/864,684 US7655245B2 (en) 1997-11-06 2004-06-08 Neisserial antigens
US12/653,954 US8293251B2 (en) 1997-11-06 2009-12-18 Neisserial antigens
US13/593,464 US20130064846A1 (en) 1997-11-06 2012-08-23 Neisserial antigens

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US12/653,954 Division US8293251B2 (en) 1997-11-06 2009-12-18 Neisserial antigens

Publications (1)

Publication Number Publication Date
US20130064846A1 true US20130064846A1 (en) 2013-03-14

Family

ID=34699747

Family Applications (4)

Application Number Title Priority Date Filing Date
US09/303,518 Expired - Fee Related US6914131B1 (en) 1997-11-06 1999-04-30 Neisserial antigens
US10/864,684 Expired - Fee Related US7655245B2 (en) 1997-11-06 2004-06-08 Neisserial antigens
US12/653,954 Expired - Fee Related US8293251B2 (en) 1997-11-06 2009-12-18 Neisserial antigens
US13/593,464 Abandoned US20130064846A1 (en) 1997-11-06 2012-08-23 Neisserial antigens

Family Applications Before (3)

Application Number Title Priority Date Filing Date
US09/303,518 Expired - Fee Related US6914131B1 (en) 1997-11-06 1999-04-30 Neisserial antigens
US10/864,684 Expired - Fee Related US7655245B2 (en) 1997-11-06 2004-06-08 Neisserial antigens
US12/653,954 Expired - Fee Related US8293251B2 (en) 1997-11-06 2009-12-18 Neisserial antigens

Country Status (1)

Country Link
US (4) US6914131B1 (en)

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7141244B1 (en) * 1992-03-02 2006-11-28 Chiron Srl Helicobacter pylori proteins useful for vaccines and diagnostics
EP0769018B1 (en) * 1994-07-01 2002-12-18 Chiron Corporation Helicobacter proteins and vaccines
EP0909323B1 (en) * 1996-01-04 2007-02-28 Novartis Vaccines and Diagnostics, Inc. Helicobacter pylori bacterioferritin
US6914131B1 (en) * 1998-10-09 2005-07-05 Chiron S.R.L. Neisserial antigens
GB9808866D0 (en) * 1998-04-24 1998-06-24 Smithkline Beecham Biolog Novel compounds
EP2261351A3 (en) 1998-05-01 2012-01-11 Novartis Vaccines and Diagnostics, Inc. Neisseria meningitidis antigens and compositions
ES2477194T3 (en) 1999-04-30 2014-07-16 Novartis Vaccines And Diagnostics S.R.L. Neisserial antigens conserved
EP2270172B1 (en) * 1999-05-19 2016-01-13 GlaxoSmithKline Biologicals SA Combination neisserial compositions
GB9911683D0 (en) * 1999-05-19 1999-07-21 Chiron Spa Antigenic peptides
CN1796404A (en) 1999-10-29 2006-07-05 启龙有限公司 Neisserial antigenic peptides
GB9928196D0 (en) 1999-11-29 2000-01-26 Chiron Spa Combinations of B, C and other antigens
ATE503837T1 (en) 2000-02-28 2011-04-15 Novartis Vaccines & Diagnostic HYBRID EXPRESSION NEISSER PROTEINS
GB0114940D0 (en) * 2001-06-19 2001-08-08 Chiron Spa Gene expression during meningococcus adhesion
GB0118249D0 (en) 2001-07-26 2001-09-19 Chiron Spa Histidine vaccines
GB0121591D0 (en) 2001-09-06 2001-10-24 Chiron Spa Hybrid and tandem expression of neisserial proteins
WO2003018054A1 (en) * 2001-08-31 2003-03-06 Chiron Srl. Helicobacter pylori vaccination
ES2537737T3 (en) * 2002-08-02 2015-06-11 Glaxosmithkline Biologicals S.A. Vaccine compositions comprising lipooligosaccharides of immunotype L2 and / or L3 of Neisseria meningitidis of IgtB
BRPI0315228A8 (en) 2002-10-11 2018-04-03 Chiron Srl Polypeptide vaccines for broad protection against hypervirulent meningococcal strains
GB0227346D0 (en) 2002-11-22 2002-12-31 Chiron Spa 741
GB0408977D0 (en) * 2004-04-22 2004-05-26 Chiron Srl Immunising against meningococcal serogroup Y using proteins
MX2007012057A (en) * 2005-03-30 2007-11-23 Novartis Vaccines & Diagnostic Haemophilus influenzae type b.
GB0524066D0 (en) 2005-11-25 2006-01-04 Chiron Srl 741 ii
CA2586710A1 (en) * 2006-08-25 2008-02-25 Emory University O-acetyltransferase from neisseria meningitidis, compositions and methods
EP2245048B1 (en) 2008-02-21 2014-12-31 Novartis AG Meningococcal fhbp polypeptides
US9475864B2 (en) * 2008-09-05 2016-10-25 University Of Massachusetts Methods, compositions and vaccines relating to Neisseria meningitidis antibodies
BRPI1009828A2 (en) 2009-03-24 2019-03-12 Novartis Ag meningococcal h factor binding protein adjuvant
CA2803239A1 (en) 2010-06-25 2011-12-29 Novartis Ag Combinations of meningococcal factor h binding proteins
AU2011300418B2 (en) 2010-09-10 2016-05-12 Glaxosmithkline Biologicals Sa Meningococcus overexpressing NadA and/or NHBA and outer membrane vesicles derived therefrom
BR112014031386A2 (en) 2012-06-14 2017-08-01 Pasteur Institut serogroup x meningococcal vaccines
US10000545B2 (en) 2012-07-27 2018-06-19 Institut National De La Sante Et De La Recherche Medicale CD147 as receptor for pilus-mediated adhesion of Meningococci to vascular endothelia
KR101525663B1 (en) 2013-05-10 2015-06-04 씨제이제일제당 (주) Novel O-phosphoserine efflux protein and the method of producing O-phosphoserine using the same
DK3173420T3 (en) * 2014-07-23 2021-10-18 Nat Ct Nanoscience & Technology China POLYPEPTID AND POLYPEPTID COMPLEX FOR SUPPRESSING TUMOR METASTASE AND TREATMENT OF LEUKEMIA AND PROCEDURE FOR MANUFACTURING ITS AND USING IT
US9610319B2 (en) * 2014-09-30 2017-04-04 Research Foundation Of The City University Of New York Method of treating cancer

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5288641A (en) 1984-06-04 1994-02-22 Arch Development Corporation Herpes Simplex virus as a vector
CA1282721C (en) 1984-06-04 1991-04-09 Bernard Roizman Herpes simplex virus as a vector
GB8702816D0 (en) 1987-02-07 1987-03-11 Al Sumidaie A M K Obtaining retrovirus-containing fraction
JPH03504079A (en) 1988-03-21 1991-09-12 カイロン コーポレイション recombinant retrovirus
US5591624A (en) 1988-03-21 1997-01-07 Chiron Viagene, Inc. Retroviral packaging cell lines
US5422120A (en) 1988-05-30 1995-06-06 Depotech Corporation Heterovesicular liposomes
AP129A (en) 1988-06-03 1991-04-17 Smithkline Biologicals S A Expression of retrovirus gag protein eukaryotic cells
US5703055A (en) 1989-03-21 1997-12-30 Wisconsin Alumni Research Foundation Generation of antibodies through lipid mediated DNA delivery
ES2200016T3 (en) 1989-03-21 2004-03-01 Vical Incorporated EXPRESSION OF EXECUTIVE POLINUCLEOTIDIC SEQUENCES IN A VERTEBRATE.
GB8919607D0 (en) 1989-08-30 1989-10-11 Wellcome Found Novel entities for cancer therapy
CA2092195C (en) 1990-09-21 2000-04-18 Douglas J. Jolly Retroviral packaging cell line
FR2681786A1 (en) 1991-09-27 1993-04-02 Centre Nat Rech Scient RECOMBINANT VECTORS OF VIRAL ORIGIN, PROCESS FOR OBTAINING SAME AND THEIR USE FOR THE EXPRESSION OF POLYPEPTIDES IN MUSCLE CELLS.
IL103059A0 (en) 1991-09-30 1993-02-21 Boehringer Ingelheim Int Conjugates for introducing nucleic acid into higher eucaryotic cells
NZ244306A (en) 1991-09-30 1995-07-26 Boehringer Ingelheim Int Composition for introducing nucleic acid complexes into eucaryotic cells, complex containing nucleic acid and endosomolytic agent, peptide with endosomolytic domain and nucleic acid binding domain and preparation
US6100380A (en) * 1991-10-28 2000-08-08 Cytran, Inc. Immunomodulating peptides and methods of use
CA2128616A1 (en) 1992-01-23 1993-08-05 Gary H. Rhodes Ex vivo gene transfer
WO1993018150A1 (en) 1992-03-02 1993-09-16 Biocine S.P.A. Helicobacter pylori proteins useful for vaccines and diagnostics
ATE328118T1 (en) * 1992-07-07 2006-06-15 Fuso Pharmaceutical Ind DNA PROBE SPECIFIC TO STAPHYLOCOCCUS EPIDERMIDIS
NZ259882A (en) * 1993-01-23 1997-03-24 Inmunologia & Genetica Aplic Synthetic peptides and vaccines against parvoviruses
CN1099868C (en) 1993-11-16 2003-01-29 斯卡法玛公司 Vesicles with controlled release of actives
JP4303315B2 (en) 1994-05-09 2009-07-29 オックスフォード バイオメディカ(ユーケー)リミテッド Non-crossing retroviral vector
US6245337B1 (en) 1994-08-25 2001-06-12 Washington University Haemophilus adherence and penetration proteins
US6121037A (en) 1994-10-18 2000-09-19 Stojiljkovic; Igor Bacterial hemoglobin receptor genes
IL117483A (en) 1995-03-17 2008-03-20 Bernard Brodeur Proteinase k resistant surface protein of neisseria meningitidis
US6265567B1 (en) 1995-04-07 2001-07-24 University Of North Carolina At Chapel Hill Isolated FrpB nucleic acid molecule
DE19534579C2 (en) 1995-09-18 2000-06-08 Max Planck Gesellschaft Nucleic acid molecules encoding proteins that mediate the adhesion of Neisseria cells to human cells
US6083499A (en) * 1996-04-19 2000-07-04 Mycogen Corporation Pesticidal toxins
US5980898A (en) 1996-11-14 1999-11-09 The United States Of America As Represented By The U.S. Army Medical Research & Material Command Adjuvant for transcutaneous immunization
US6583275B1 (en) * 1997-07-02 2003-06-24 Genome Therapeutics Corporation Nucleic acid sequences and expression system relating to Enterococcus faecium for diagnostics and therapeutics
DE69841807D1 (en) 1997-11-06 2010-09-16 Novartis Vaccines & Diagnostic NEISSERIAL ANTIGENE
US6914131B1 (en) * 1998-10-09 2005-07-05 Chiron S.R.L. Neisserial antigens
GB9808866D0 (en) 1998-04-24 1998-06-24 Smithkline Beecham Biolog Novel compounds
US6150502A (en) * 1998-04-29 2000-11-21 Genesis Research & Development Corporation Limited Polypeptides expressed in skin cells
EP2261351A3 (en) 1998-05-01 2012-01-11 Novartis Vaccines and Diagnostics, Inc. Neisseria meningitidis antigens and compositions

Also Published As

Publication number Publication date
US20080131421A1 (en) 2008-06-05
US8293251B2 (en) 2012-10-23
US20100272725A1 (en) 2010-10-28
US7655245B2 (en) 2010-02-02
US6914131B1 (en) 2005-07-05

Similar Documents

Publication Publication Date Title
US8293251B2 (en) Neisserial antigens
JP4472866B2 (en) Neisseria antigen
US7714121B2 (en) Meningococcal antigens
CA2330838C (en) Neisseria meningitidis antigens and compositions
US7612192B2 (en) Neisseria genomic sequences and methods of their use
US7504111B2 (en) Gonococcal proteins and nucleic acids
AU780308B2 (en) Neisseria genomic sequences and methods of their use
CN1824675B (en) Neisserial antigens
MXPA00004363A (en) Neisserial antigens
AU2003235364B2 (en) Neisseria meningitidis antigens and compositions
AU2004201096B2 (en) Neisseria genomic sequences and methods of their use
FRASER et al. Patent 2346713 Summary
AU2005200246A1 (en) Neisseria genomic sequences and methods of their use

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION