US20130049011A1 - Optoelectronic device with upconverting luminophoric medium - Google Patents

Optoelectronic device with upconverting luminophoric medium Download PDF

Info

Publication number
US20130049011A1
US20130049011A1 US13/654,281 US201213654281A US2013049011A1 US 20130049011 A1 US20130049011 A1 US 20130049011A1 US 201213654281 A US201213654281 A US 201213654281A US 2013049011 A1 US2013049011 A1 US 2013049011A1
Authority
US
United States
Prior art keywords
microelectronic device
led
heat
upconverting
material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/654,281
Inventor
George R. Brandes
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cree Inc
Original Assignee
Cree Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US11/832,785 priority Critical patent/US8297061B2/en
Application filed by Cree Inc filed Critical Cree Inc
Priority to US13/654,281 priority patent/US20130049011A1/en
Assigned to CREE, INC. reassignment CREE, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BRANDES, GEORGE R.
Publication of US20130049011A1 publication Critical patent/US20130049011A1/en
Application status is Abandoned legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/64Heat extraction or cooling elements
    • H01L33/644Heat extraction or cooling elements in intimate contact or integrated with parts of the device other than the semiconductor body
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7766Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
    • C09K11/7767Chalcogenides
    • C09K11/7769Oxides
    • C09K11/7771Oxysulfides
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/507Wavelength conversion elements the elements being in intimate contact with parts other than the semiconductor body or integrated with parts other than the semiconductor body
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • H01L33/60Reflective elements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/4935Heat exchanger or boiler making

Abstract

A microelectronic device that in operation generates or includes component(s) that generate heat, in which the device comprises a heat conversion medium that converts such heat into a light emission having a shorter wavelength than such heat, to thereby cool the device and dissipate the unwanted heat by such light output. The heat conversion medium can include an upconverting luminophoric material, e.g., an anti-Stokes phosphor or phosphor composition. The provision of such heat conversion medium enables thermal management of microelectronic devices, e.g., optoelectronic devices, to be achieved in an efficient manner, to prolong the operational service life of devices such as LEDs, laser diodes, etc. that are degraded in performance by excessive heat generation in their operation.

Description

    CROSS-REFERENCE TO RELATED APPLICATION
  • This is a continuation under 35 USC 120 of U.S. patent application Ser. No. 11/832,785 filed Aug. 2, 2007 in the name of George R Brandes for “OPTOELECTRONIC DEVICE WITH UPCONVERTING LUMINOPHORIC MEDIUM,” issuing Oct. 30, 2012 as U.S. Pat. No. 8,297,061. The disclosure of U.S. patent application Ser. No. 11/832,785 is hereby incorporated herein by reference, in its entirety, for all purposes.
  • FIELD OF THE INVENTION
  • The present invention relates to optoelectronic devices, and to methods and arrangements for operation and/or thermal management of such devices to achieve improved performance, by the use of upconverting media.
  • DESCRIPTION OF THE RELATED ART
  • Heat generation is a persistent problem in electronic devices, since excessive heating can damage microelectronic components and circuitry as well as degrade device performance. Present approaches to dissipating heat in integrated circuitry and microelectronic devices rely on heat sinks, fans, coolant media, and other heat transfer means to ensure that operation of the device or circuitry is maintained within desired limits.
  • Optoelectronic devices are subject to the same thermal management issues as electronic devices generally, and utilize corresponding approaches of dissipating heat via conduction, radiation, convection and/or direct mechanical cooling.
  • Optoelectronic devices may employ upconverting luminophoric media to convert a primary radiation input to a higher frequency radiation output. Examples include harmonic optoelectronic mixers, optoelectronic photodetector devices, planar waveguide amplifiers, fluorescent resonance energy transfer (FRET) devices, etc., as used in a wide variety of applications such as imaging, video processing, optical data storage, subcarrier modulation, etc.
  • It would be highly advantageous to achieve thermal management of optoelectronic devices in a manner that not only avoids heat-related degradation and damage to such devices, but also achieves increased outputs from such devices as a result of the thermal management techniques that are employed. There is an emerging need for such innovation, in the context of increasing temperatures of light emitting diodes (LEDs) in current and anticipated future lamp designs.
  • SUMMARY OF THE INVENTION
  • The present invention relates to microelectronic devices, e.g., optoelectronic devices such as light emitting diodes (LEDs), and to methods and arrangements for operation and/or thermal management of such devices to achieve improved performance.
  • The invention in one broad aspect relates to a microelectronic device that in operation generates or includes component(s) that generate heat, in which the device comprises a heat conversion medium, including an emissive conversion material, that converts such heat into a light emission having a shorter wavelength than such heat.
  • In another broad aspect, the invention relates to a microelectronic device that in operation generates or includes component(s) that generate heat, in which the device comprises a heat conversion medium that converts the heat to a light emission that is effective to dissipate the heat.
  • Another aspect of the invention relates to a microelectronic device that in operation generates or includes component(s) that generate heat, in which the device comprises an upconverting material that produces upconverted light in response to heat, an external light source and/or energy from an active region of the microelectronic device.
  • The invention a further aspect relates to a microelectronic device comprising a heat-generating structure producing heat in operation of the device, and an upconverting luminophoric material that in exposure to such heat responsively converts the heat to light, to thereby cool the device and dissipate the heat by such light.
  • In another aspect, the invention relates to a microelectronic device generating heat in operation of the device, and an upconverting material arranged to reduce the thermal energy of the device and/or to produce light in the visible spectrum, in exposure of the upconverting material to such heat.
  • A further aspect of the invention relates to a microelectronic device including multiple upconverting materials, including a first upconverting material that is responsive to thermal energy to produce upconverted light, and a second upconverting material that produces upconverting light in response to thermal energy, the upconverted light and/or energy from an active region of the microelectronic device.
  • Another aspect of the invention relates to a microelectronic device including an upconverting material and a down-converting material, each arranged for energetic interaction in the device.
  • In yet another aspect, the invention relates to a microelectronic device including multiple upconverting and/or down-converting elements that are responsive to energy emitted by any of light emitting regions of the microelectronic device to produce a predetermined light output spectrum for the microelectronic device.
  • Another aspect of the invention relates to a composite material comprising anti-Stokes phosphor and Stokes phosphor.
  • In a broad method aspect, the invention relates to a method of thermally managing a microelectronic device, comprising incorporating therein an upconverting material that produces upconverted light in response to heat, an external light source and/or energy from an active region of the microelectronic device.
  • In a further aspect, the invention relates to a method of thermally managing a microelectronic device generating heat in operation, comprising absorbing the heat with an upconverting luminophoric material that in exposure to such heat responsively converts the heat to a light output, to thereby cool the device and dissipate the heat by such light output.
  • In another method aspect, the invention relates to a method of thermally managing a microelectronic device generating heat in operation of the device, comprising reducing the thermal energy of the device by interaction thereof with an upconverting material and/or producing light in the visible spectrum, in exposure of the upconverting material to heat generated by the device.
  • A further method aspect of the invention relates to a method of thermally managing a microelectronic device, comprising incorporating multiple upconverting materials therein, including a first upconverting material that is responsive to thermal energy to produce upconverted light, and a second upconverting material that produces upconverting light in response to thermal energy, the upconverted light from the first upconverting material, an external light source and/or energy from an active region of the microelectronic device.
  • A still further aspect of the invention relates to a method of thermally managing a microelectronic device, comprising incorporating therein an upconverting material that produces upconverted light in response to thermal energy, the upconverted light from the first upconverting material, an external light source and/or energy from an active region of the microelectronic device.
  • Another aspect of the invention relates to a method of thermally managing a microelectronic device, comprising incorporating an upconverting material and a down-converting material therein, each arranged for energetic interaction in the device.
  • A further aspect of the invention relates to a method of fabricating a microelectronic device, comprising incorporating in said microelectronic device multiple upconverting and/or down-converting elements that are responsive to energy emitted by any of light emitting regions of the microelectronic device to produce a predetermined light output spectrum for the microelectronic device.
  • Other aspects, features and embodiments of the invention will be more fully apparent from the ensuing disclosure and appended claims.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is an elevation view, in partial section, of an optoelectronic light emission assembly including a light emitting diode and a down-converting luminophoric medium arranged to receive primary radiation from the light emitting diode, in which the optoelectronic light emission assembly includes an anti-Stokes phosphor film on side surfaces of the light emitting diode support.
  • FIG. 2 is an elevation view, in cross-section, of an optoelectronic light emission assembly accordingly to another embodiment of the invention, including a first down-converting luminophoric medium, a second down-converting luminophoric medium, and an anti-Stokes phosphor film.
  • FIG. 3 is an elevation view, in partial section, of an optoelectronic device according to another embodiment of the invention.
  • FIG. 4 is a perspective view of a composite phosphor particle, comprising a primary down-converting phosphor body having deposited thereon discontinuous film regions of an anti-Stokes phosphor.
  • DETAILED DESCRIPTION OF THE INVENTION, AND PREFERRED EMBODIMENTS THEREOF
  • The present invention relates to microelectronic devices, e.g., optoelectronic devices including light emitting diodes (LEDs), and to methods and arrangements for thermal management of such devices to achieve improved performance.
  • The term “anti-Stokes” as used herein in reference to luminophoric (light-emitting) materials refers to materials that do not conform to Stoke's second law that a material's luminescent emission is lower in photon energy than absorbed incident photon energy. A Stokes material, by contrast, follows such law, and exhibits a so-called Stokes shift when it absorbs incident radiation and responsively emits luminescence of a lower energy, at longer wavelength.
  • By way of example, an anti-Stokes material such as a phosphor may be sensitive to radiation in a wavelength range of 1500-1610 nm and responsively emit light in a wavelength range of 950-1075 nm. Many such materials are known, including materials doped with triply ionized rare earth ions such as erbium (Er3+), yrbium (Yb3+) or thulium (Tm+3). One such material is a Tm+3-doped ZrF4—BaF2—LaF3—AlF3—NaF—PbF2 material. Other suitable materials include, without limitation, Y2O2S:Yb,Tm; La2O2S:Er,Yb; Y2O2S:Er,Yb; YF3:Er,Yb; Y2O3—YOF:Er,Yb; and YOCl:Er,Yb.
  • The invention in one aspect relates to a microelectronic device that in operation generates or includes component(s) that generate heat, the device comprising a heat conversion medium that converts such heat into a light emission having a shorter wavelength than such heat. By such arrangement, the microelectronic device is cooled, to a greater extent, in relation to a corresponding microelectronic device lacking such heat conversion medium, in which the heat is dissipated by radiative cooling of the microelectronic device.
  • In one embodiment, the invention contemplates a microelectronic device comprising a heat-generating structure producing heat in operation of the device, and an upconverting luminophoric material that in exposure to such heat responsively converts the heat to a light output, to thereby cool the device and dissipate the heat by such light of a higher frequency.
  • In another embodiment, the invention contemplates a microelectronic device that in operation generates or includes component(s) that generate heat, in which the device comprises an upconverting material that produces upconverted light in response to heat, an external light source and/or energy from an active region of the microelectronic device. In certain embodiments, the microelectronic device is an optoelectronic device, such as a light-emitting diode or a laser diode, and the upconverting material can reduce the thermal energy and/or produce light in the visible spectrum.
  • In other embodiments, the microelectronic device can include multiple upconverting materials, and a first upconverting material is responsive to thermal energy to produce upconverted light, and a second upconverting material produces upconverting light which is responsive to thermal energy, the upconverted light from the first upconverting material and/or energy from the active region of the microelectronic device. In even further embodiments, the second upconverting material can be responsive to the energy produced from a down-converting material.
  • In another aspect, the invention relates to a microelectronic device comprising an upconverting material, such as an anti-Stokes phosphor, and a down-converting material, such as a Stokes phosphor. In certain embodiments, the down-converting energy upconverts thermal energy to visible light, and the down-converting phosphor is responsive to the energy emitted from the active region of the microelectronic device to produce downconverted light.
  • In certain other embodiments, both the upconverted and downconverted light are in the visible spectrum, and the converting materials are provided in the form of a composite material comprising an anti-Stokes phosphor and a conventional Stokes phosphor.
  • In further embodiments, the microelectronic device can include multiple down-converting and/or upconverting elements that are responsive to energy emitted by any of the light-emitting regions of the microelectronic device to produce a particular output light spectrum for the microelectronic device.
  • A further aspect of the invention relates to a method of thermally managing a microelectronic device generating heat in operation, comprising absorbing the heat with an upconverting luminophoric material that in exposure to such heat responsively converts the heat to a light output, to thereby cool the device and dissipate the heat by such light output.
  • The present invention in various specific embodiments employs an upconverting luminophoric medium for conversion of heat into visible light, to effect cooling of an optoelectronic device.
  • More specifically, an anti-Stokes phosphor can be employed as a coolant medium for conversion of waste heat generated in the operation of an optoelectronic device into visible light radiation. Anti-Stokes phosphors include materials that have the capability of absorbing 2-3 photons of long wavelength radiation, e.g., in the infrared spectral region, and upconverting such radiation to emit a single photon of visible light radiation, as well as other materials that display anti-Stokes behavior in absorbing one infrared photon in conjunction with a visible light photon. This behavior contrasts with the response of conventional phosphors that follow Stoke's Law, according to which luminescence having a longer wavelength is generated by shorter wavelength exciting radiation.
  • The present invention in various embodiments is based on the discovery that anti-Stokes phosphors can be usefully employed to convert heat generated in an optoelectronic device to a light output, with the anti-Stokes phosphor being excited by heat (e.g., photonic and/or phononic heat energy) to emit such light output.
  • The anti-Stokes phosphor in accordance with the invention in one embodiment is arranged to receive the heat input from the optoelectronic device assembly, e.g., by direct conduction and/or radiative heat transfer, and to effect the conversion of such heat energy into light emission.
  • By such arrangement, the optoelectronic device assembly is thermally managed so that the waste heat generated in operation is dissipated to light energy. Such complement of light energy can be employed to augment the output of the optoelectronic device, if the optoelectronic device is of a type that is adapted for light emission, such as a light emitting diode, LED-based lamp assembly, display, or the like, or otherwise as a photonic signal source in the device, as a dissipative medium for removing the heat generated in the operation of the device, or as an indicator signal for thermally excessive conditions in the device.
  • In such manner, the anti-Stokes phosphor medium provides a cooling function that ameliorates or even eliminates the adverse effects of heat generation in the operation of the optoelectronic device. As a result, device fabrication is simplified, since conventional thermal ballast structures, fans, heat exchangers are unnecessary, or at the very least can be substantially reduced in size. Further, by reducing the thermal load on the electronic device assembly, the service life of heat-sensitive components of such assembly are correspondingly increased, so that the assembly is capable of sustained operation before repair or replacement is necessary.
  • The anti-Stokes phosphor utilized in the various embodiments of the invention may be of any suitable type, e.g., a phosphor that is constituted and arranged to absorb heat energy from the electronic device assembly and convert same to a heat-dissipative light output. Examples of anti-Stokes phosphors that may be usefully employed in the broad practice of the present invention include, without limitation, anti-Stokes phosphors of the formula L:M, wherein L is yttrium oxide, yttrium fluoride, yttrium oxyfluoride, yttrium oxychloride, yttrium oxysulfide, or ytterbium oxychloride, and M is one or more of ytterbium, erbium, and thulium.
  • Specific examples of anti-Stokes phosphors of such type that may be usefully employed in specific applications include, without limitation, Y2O2S:Yb,Tm; La2O2S:Er,Yb; Y2O2S:Er,Yb; YF3:Er,Yb; Y2O3—YOF:Er,Yb; YOCl:Er,Yb; YbOCl:Er; and Tm+3-doped ZrF4—BaF2—LaF3—AlF3—NaF-BpF2.
  • Anti-Stokes phosphor material can be deposited on a specific substrate or surface of a particular component in any suitable manner, such as forming a film of the phosphor from a slurry including the phosphor in powder or other particulate form in combination with a solvent or suspending medium, followed by evaporation or other removal of the solvent or suspending medium, to yield the surface film of the phosphor.
  • The anti-Stokes phosphor may also be deposited using electrophoretic deposition, screen printing, sputtering, chemical vapor deposition or any of other suitable deposition techniques. One or more anti-Stokes phosphors may be usefully employed along with one or more conventional phosphors and one or more LEDs. The anti-Stokes phosphors and conventional phosphors may be applied as a mixture to coat certain surfaces of the microelectronic device assembly, or the phosphors may be applied in layers. Such phosphors may also be formulated with or on supportive or reinforcing materials or structures, to form free-standing or supported phosphor layers in the microelectronic device assembly.
  • The location, thickness, density, and compositions of the phosphors may be altered to achieve a desired optical output while retaining the cooling character of the heat-dissipating generation of light afforded by such phosphors. The special distribution of the phosphors may also be altered so that only certain microelectronic devices, or one or more active portions thereof, interact with none, some or all of the phosphors present. Binding materials, light scatterers, transmissive structures, etc., may be employed in combination with the phosphors to produce a desired spectral output.
  • The heat-generating structure in the microelectronic device, in one embodiment of the invention, may comprise an LED, e.g., an LED fabricated of GaN or other III-V nitride or a component or structure formed of other material that generates or passively accumulates unwanted heat during the operation of the microelectronic device.
  • The invention therefore contemplates a microelectronic device generating heat in operation of the device, and an upconverting material arranged to reduce the thermal energy of the device and/or to produce light in the visible spectrum, in exposure of the upconverting material to such heat. The microelectronic device can comprise a light emitting diode or a laser diode or other suitable device structure.
  • A microelectronic device of the invention may be constructed to include multiple upconverting materials, including a first upconverting material that is responsive to thermal energy to produce upconverted light, and a second upconverting material that produces upconverting light in response to heat, upconverted light from the first upconverting material or another source, and/or energy from an active region of the microelectronic device.
  • Alternatively, the microelectronic device may be a device that in operation generates or includes component(s) that generate heat, in which the device comprises an upconverting material that produces upconverted light in response to heat, an external light source and/or energy from an active region of the microelectronic device.
  • More generally, the device may be a microelectronic device that in operation generates or includes component(s) that generate heat, in which the device comprises a heat conversion medium that converts such heat to a light emission that is effective to dissipate such heat.
  • Such device may further include a down-converting material, wherein the second upconverting material is responsive to energy produced by the down-converting material.
  • As another conformation, the microelectronic device may be fabricated to include an upconverting material and a down-converting material, each arranged for energetic interaction in the device. In one specific arrangement, the upconverting material produces upconverted light in response to energy produced by the down-converting material. The upconverting material can include an anti-Stokes phosphor or other suitable upconverting material, and the down-converting material can include a Stokes phosphor or other down-converting material of appropriate character.
  • Such microelectronic device may be configured so that the down-converting energy generated in operation of the device upconverts thermal energy to light energy. As another variant, the down-converting material may be arranged so that it is responsive to energy emitted from an active region of the microelectronic device, to produce downconverted light. As a still further variant, the microelectronic device may be configured so that upconverted and downconverted light in the visible spectrum are generated in the operation of the microelectronic device, by appropriate choice of materials. As another variant, an upconverting material (e.g., an anti-Stokes phosphor) may be arranged so that it is responsive to energy emitted from an active region of the microelectronic device and thermal energy to produce upconverted light.
  • The microelectronic device may be configured in another embodiment with a composite material comprising anti-Stokes phosphor and a Stokes phosphor.
  • The microelectronic device of the invention in another embodiment can include multiple upconverting and/or down-converting elements that are responsive to energy emitted by any of light emitting regions of the microelectronic device to produce a predetermined light output spectrum for the microelectronic device.
  • The invention therefore enables a method of thermally managing a microelectronic device generating heat in operation of the device, including reducing the thermal energy of the device by interaction thereof with an upconverting material and/or producing light in the visible spectrum, in exposure of the upconverting material to heat generated by the device.
  • In one implementation, the method of thermally managing a microelectronic device includes incorporating in such device an upconverting material that produces upconverted light in response to heat, an external light source and/or energy from an active region of the microelectronic device.
  • The thermal management of the microelectronic device may include incorporating multiple upconverting materials therein, including a first upconverting material that is responsive to thermal energy to produce upconverted light, and a second upconverting material produces upconverting light in response to thermal energy, the upconverted light and/or energy from an active region of the microelectronic device.
  • Further, a down-converting material can be incorporated in the microelectronic device, with the second upconverting material being responsive to energy produced by the down-converting material.
  • As another approach to thermally managing a microelectronic device, an upconverting material and a down-converting material can both be incorporated in the device, each arranged for energetic interaction in such device. In such approach, the upconverting material can produce upconverted light in response to energy produced by the down-converting material. The upconverting material can include an anti-Stokes phosphor or other suitable material or medium, and the down-converting material can include a Stokes phosphor or alternative material having suitable down-converting character.
  • Such thermal and/or operational management of the microelectronic device may include using downconverted energy generated in the operation of the device to upconvert thermal energy to light energy. Alternatively, or additionally, the down-converting material may be responsive to energy emitted from an active region of the microelectronic device, to produce downconverted light, and in specific embodiments, upconverted and downconverted light in the visible spectrum may be generated in the operation of the microelectronic device.
  • The invention further contemplates in one embodiment thereof a method of fabricating a microelectronic device, comprising incorporating in said microelectronic device multiple upconverting and/or down-converting elements that are responsive to energy emitted by any of light emitting regions of the microelectronic device to produce a predetermined light output spectrum for the microelectronic device.
  • It will therefore be appreciated that microelectronic devices of the invention may be fabricated in a variety of specific arrangements providing desired thermal management and/or light emission capability.
  • Specific illustrative embodiments of the invention are now described with reference to the accompanying drawings of FIGS. 1-4.
  • Referring now to the drawings, FIG. 1 is an elevation view, in partial section, of an optoelectronic light emission assembly 10 including a light emitting diode 12 and a down-converting luminophoric medium 20 arranged to receive primary radiation from the light emitting diode, in which the optoelectronic light emission assembly includes an anti-Stokes phosphor film 24 on side surfaces of the light emitting diode support 22. The down-converting luminophoric medium 20 in this assembly is constituted as a film on the inside surface of cover 18 overlying the LED 12.
  • The LED assembly as shown may be reflectorized to directionally channel the output light of the assembly, and the LED support 22 may have the anti-Stokes phosphor deposited on side surfaces of the vertical post structure as well as on the base portion of such support, to maximize the cooling effect achieved by the anti-Stokes phosphor material.
  • In operation, the heat generated by the LED and associated componentry is conducted by a support 22 to the anti-Stokes phosphor film 24, which converts the inputted heat energy to light emission, thereby effecting cooling of the LED assembly. Additional cooling of the LED may be achieved through the use of cooling fins, thermoelectric coolers, etc., that contact the back surface of the lamp assembly.
  • FIG. 2 is an elevation view, in cross-section, of an optoelectronic light emission assembly 30 accordingly to another embodiment of the invention, including a first down-converting luminophoric medium, a second down-converting luminophoric medium, and an anti-Stokes phosphor film.
  • The optoelectronic light emission assembly 30 includes a main body 46 defining a cavity therein partially enclosing an interior volume 43 of the assembly. The main body 46 has a reflecting surface 36 and includes a mounting post 31 on which a light emitting diode 32 is placed and electrically contacted. A down-converting luminophoric medium 33 overlies the light emitting diode 32 and is arranged to receive primary radiation from the light emitting diode 32. A second down-converting luminophoric material 34 is arranged in the assembly to receive light from the LED 32 and the down-converting luminophoric material 33.
  • The second down-converting luminophoric material 34 in this embodiment is provided as a coating on the transparent lens 35 that matingly engages the main body 46 to enclose the interior volume 43. Alternatively, such second down-converting luminophoric material could be provided as a free-standing film, e.g., reinforced with a suitable matrix material, or otherwise supported on other structure in the optoelectronic light emission assembly. An anti-Stokes phosphor film 37 is placed on side surfaces of the light emitting diode mounting post 31. The reflecting surface 36 includes features such as reflective protrusions 38 thereon that act to reflect some of the primary emission from the light emitting diode 32 onto the anti-Stokes phosphor film 37 to enable the cooling process. This arrangement thus provides an upconverting luminophoric material coated on or attached to at least a portion of light emitting diode mounting post 31, with the post constituting a heat transfer element that is adapted to remove heat in or from the microelectronic device.
  • FIG. 3 is an elevation view, in partial section, of an optoelectronic device according to another embodiment of the invention. In this device, the light emitting diode 50 is supported at its rear face 54 on support/electrical conductor 52, and the second electrical conductor 56 is arranged for contact with the emitting face 60 of such LED, as shown.
  • The LED 50 emits primary radiation that is impinged on a down-converting luminophoric medium film 64 that is arranged in receiving relationship to the LED, and that is formed on the facing surface of the light-transmissive sheet 66, to transmit light from the device.
  • In this embodiment, a circumscribing film 62 of anti-Stokes phosphor has been formed on the side surfaces of LED 50, so that heat generated in the LED body is conducted to the anti-Stokes phosphor film 62 and converted to light that is emitted from such anti-Stokes phosphor film. By such arrangement, the LED die is thermally managed for operation at a predetermined temperature, by the heat-dissipative action of the anti-Stokes phosphor film.
  • In another embodiment of the invention, the anti-Stokes phosphor may be utilized in combination with a conventional (Stokes) phosphor, such as in a composite coating that is arranged to receive a primary radiation from an LED or other primary radiation source. In high-energy operation, the conventional phosphor itself may develop excess enthalpy and become excessively hot, and such heat in the phosphor film then can be dissipated by the anti-Stokes phosphor component of such composite film. The particulate phosphors for such purpose may be dispersed in a suitable film-forming carrier, to form a corresponding coating composition.
  • FIG. 4 is a perspective view of a composite phosphor particle 80, comprising a primary down-converting phosphor body 82 having deposited thereon discontinuous film regions 84 of an anti-Stokes phosphor, such as may be suitable in a specific application to combat the heat-build up in the phosphor film. In lieu of such composite anti-Stokes phosphor/Stokes phosphor particles, the respective anti-Stokes and Stokes phosphors may be employed as discrete particles of each type, in admixture with one another. The anti-Stokes phosphor and the conventional phosphor may also be deposited as thin films using a conventional deposition technique such as chemical vapor deposition.
  • It will therefore be appreciated that the invention contemplates a wide variety of microelectronic device structures and arrangements, in which the upconverting luminophoric medium is used to convert waste heat energy to a light output and thereby dissipate such heat in the operation of the microelectronic device.
  • While the invention is primarily described herein in application to thermal management of optoelectronic devices, it will be recognized that the invention can be applied to the cooling of non-optical devices, e.g., thermal sensors, as well as microelectronic devices that utilize dedicated light source components, in which the existing light source componentry can be minimized or even eliminated by the capability of converting generated heat to light in accordance with the invention.
  • While the invention has been has been described herein in reference to specific aspects, features and illustrative embodiments of the invention, it will be appreciated that the utility of the invention is not thus limited, but rather extends to and encompasses numerous other variations, modifications and alternative embodiments, as will suggest themselves to those of ordinary skill in the field of the present invention, based on the disclosure herein. Correspondingly, the invention as hereinafter claimed is intended to be broadly construed and interpreted, as including all such variations, modifications and alternative embodiments, within its spirit and scope.

Claims (26)

1. A microelectronic device comprising an LED arranged to produce a light output from the device, and an upconverting luminophoric material arranged to cool the LED by dissipating, via heat to light conversion, heat produced in operation by the LED.
2. The microelectronic device of claim 1, wherein the LED is on a support.
3. The microelectronic device of claim 2, wherein the upconverting luminophoric material is on at least one of the LED and support.
4. The microelectronic device of claim 2, wherein the upconverting luminophoric material is on the support.
5. The microelectronic device of claim 1, wherein the upconverting luminophoric material is on the LED.
6. The microelectronic device of claim 1, further comprising reflecting surface adapted to reflect light emitted from the LED to the upconverting luminophoric material.
7. The microelectronic device of claim 1, wherein the upconverting luminophoric material comprises an anti-Stokes phosphor film.
8. The microelectronic device claim 7, wherein the anti-Stokes phosphor film comprises particulate phosphor material dispersed in a film-forming carrier.
9. The microelectronic device of claim 1, further comprising a down-converting luminophoric material arranged to receive primary radiation from the LED.
10. The microelectronic device of claim 9, wherein the down-converting luminophoric material is on the LED.
11. The microelectronic device of claim 9, wherein the down-converting luminophoric material overlies the LED in spaced relation thereto.
12. The microelectronic device of claim 9, wherein the down-converting luminophoric material comprises a first down-converting luminophoric medium on the LED, and a second down-converting luminophoric medium overlying the LED in spaced relation thereto.
13. The microelectronic device of claim 1, further comprising a lens overlying the LED.
14. The microelectronic device of claim 1, further comprising cooling fin structure.
15. The microelectronic device of claim 1, further comprising a thermoelectric cooler.
16. The microelectronic device of claim 1, wherein the LED comprises a III-V nitride LED.
17. The microelectronic device of claim 1, wherein the LED comprises a GaN LED.
18. The microelectronic device of claim 1, wherein the upconverting luminophoric material comprises anti-Stokes phosphor.
19. The microelectronic device of claim 18, wherein the anti-Stokes phosphor is excitable by photonic and/or phononic heat energy to emit light.
20. The microelectronic device of claim 18, wherein the anti-Stokes phosphor is in a composition comprising Stokes phosphor and anti-Stokes phosphor.
21. The microelectronic device of claim 20, wherein said composition comprises particles of Stokes phosphor having deposited thereon discontinuous film regions of anti-Stokes phosphor.
22. The microelectronic device of claim 1, comprising multiple upconverting and/or down-converting materials.
23. The microelectronic device of claim 1, wherein the upconverting luminophoric material comprises material of the formula L:M, wherein L is yttrium oxide, yttrium fluoride, yttrium oxyfluoride, yttrium oxychloride, yttrium oxysulfide, or ytterbium oxychloride, and M is one or more of ytterbium, erbium, and thulium.
24. The microelectronic device of claim 1, wherein the upconverting luminophoric material comprises material selected from the group consisting of Y2O2S:Yb,Tm; La2O2S:Er,Yb; Y2O2S:Er,Yb; YF3:Er,Yb; Y2O3—YOF:Er,Yb; YOCl:Er,Yb; and YbOCl:Er.
25. A microelectronic device comprising an LED arranged on a support to produce a light output from the device, and an upconverting luminophoric material on at least one of the LED and support, wherein the upconverting luminophoric material is adapted to dissipate, via heat to light conversion, heat produced in operation by the LED.
26. A method of thermally managing an LED for operation at predetermined temperature, said method comprising cooling the LED with an upconverting luminophoric material that is arranged to dissipate, via heat to light conversion, heat produced in operation by the LED.
US13/654,281 2007-08-02 2012-10-17 Optoelectronic device with upconverting luminophoric medium Abandoned US20130049011A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US11/832,785 US8297061B2 (en) 2007-08-02 2007-08-02 Optoelectronic device with upconverting luminophoric medium
US13/654,281 US20130049011A1 (en) 2007-08-02 2012-10-17 Optoelectronic device with upconverting luminophoric medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US13/654,281 US20130049011A1 (en) 2007-08-02 2012-10-17 Optoelectronic device with upconverting luminophoric medium

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11/832,785 Continuation US8297061B2 (en) 2007-08-02 2007-08-02 Optoelectronic device with upconverting luminophoric medium

Publications (1)

Publication Number Publication Date
US20130049011A1 true US20130049011A1 (en) 2013-02-28

Family

ID=40305299

Family Applications (2)

Application Number Title Priority Date Filing Date
US11/832,785 Active 2031-01-06 US8297061B2 (en) 2007-08-02 2007-08-02 Optoelectronic device with upconverting luminophoric medium
US13/654,281 Abandoned US20130049011A1 (en) 2007-08-02 2012-10-17 Optoelectronic device with upconverting luminophoric medium

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US11/832,785 Active 2031-01-06 US8297061B2 (en) 2007-08-02 2007-08-02 Optoelectronic device with upconverting luminophoric medium

Country Status (6)

Country Link
US (2) US8297061B2 (en)
EP (1) EP2176893B1 (en)
JP (1) JP5453262B2 (en)
KR (1) KR101521312B1 (en)
CN (1) CN101790800B (en)
WO (1) WO2009018558A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018236947A3 (en) * 2017-06-20 2019-01-31 Photonica, Inc. Enhanced reality wearable visualization
EP3514439A1 (en) * 2018-01-18 2019-07-24 BGT Materials Limited Led filament and led light bulb having the same

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8089085B2 (en) * 2009-02-26 2012-01-03 Bridgelux, Inc. Heat sink base for LEDS
DE102009029776B3 (en) * 2009-06-18 2010-12-02 Carl Zeiss Smt Ag The optical element
US8426871B2 (en) * 2009-06-19 2013-04-23 Honeywell International Inc. Phosphor converting IR LEDs
DE102010047839A1 (en) 2010-09-28 2011-11-17 Carl Zeiss Smt Gmbh Optical element e.g. lens, for optical system of microlithography projection exposure system to deflect or redirect light for manufacturing highly integrated electric circuit, has two dopant atoms stimulated with exciting light
DE102010047832A1 (en) 2010-09-28 2012-07-12 Carl Zeiss Smt Gmbh Optical element e.g. lens of microlithographic projection exposure system used in manufacture of integrated circuit, has excitation light mirror that is arranged to irradiate excitation light with respect to region of optical material
DE102010047838A1 (en) 2010-09-28 2011-12-01 Carl Zeiss Smt Gmbh Optical element e.g. front surface mirror, for use in optical system of microlithography projection exposure system, has base material, where doping atoms are provided in material and stimulated to anti-stokes fluorescence by light
CN102074608B (en) * 2010-10-21 2012-08-29 罗维鸿 Conversion layer for solar cell and synergy thereof
CN102305387A (en) * 2011-06-01 2012-01-04 厦门昰能机电科技有限公司 Efficiency improving device and method of LED (Light-Emitting Diode) lamp and LED lamp with device
JP6382792B2 (en) 2012-03-30 2018-08-29 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Optical cavity including a light emitting device and the wavelength converting material
US20150171251A1 (en) * 2012-07-30 2015-06-18 Technion Research & Development Foundation Limited Energy conversion system
KR20160056088A (en) 2014-11-11 2016-05-19 엘지이노텍 주식회사 Light emitting apparatus and lighting appartus including the light emitting apparatus
DE102015106635A1 (en) * 2015-04-29 2016-11-03 Osram Opto Semiconductors Gmbh An optoelectronic device

Citations (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6208791B1 (en) * 1999-04-19 2001-03-27 Gemfire Corporation Optically integrating pixel microstructure
US6359745B1 (en) * 1997-09-26 2002-03-19 Iomega Corporation Latent illuminance discrimination marker system for data storage cartridges
US6600175B1 (en) * 1996-03-26 2003-07-29 Advanced Technology Materials, Inc. Solid state white light emitter and display using same
US20040012027A1 (en) * 2002-06-13 2004-01-22 Cree Lighting Company Saturated phosphor solid state emitter
US6771916B2 (en) * 2001-11-13 2004-08-03 Nexpress Solutions Llc Air quality management apparatus for an electrostatographic printer
US20040217364A1 (en) * 2003-05-01 2004-11-04 Cree Lighting Company, Inc. Multiple component solid state white light
US20040263073A1 (en) * 2003-06-27 2004-12-30 Baroky Tajul Arosh White light emitting device
US20050001532A1 (en) * 2003-07-02 2005-01-06 Srivastava Alok Mani Green phosphor for general illumination applications
US6864571B2 (en) * 2003-07-07 2005-03-08 Gelcore Llc Electronic devices and methods for making same using nanotube regions to assist in thermal heat-sinking
US20050260764A1 (en) * 2004-05-24 2005-11-24 Grigsby John M Jr Method and apparatus for monitoring liquid for the presence of an additive
US20050272084A1 (en) * 2003-03-28 2005-12-08 Tero Soukka Homogeneous luminescence energy transfer bioassay
US20050274967A1 (en) * 2004-06-09 2005-12-15 Lumileds Lighting U.S., Llc Semiconductor light emitting device with pre-fabricated wavelength converting element
US6998777B2 (en) * 2002-12-24 2006-02-14 Toyoda Gosei Co., Ltd. Light emitting diode and light emitting diode array
US20060068154A1 (en) * 2004-01-15 2006-03-30 Nanosys, Inc. Nanocrystal doped matrixes
US7037073B2 (en) * 2004-07-16 2006-05-02 Cooler Master Co., Ltd. Cooling fan with a light-emitting device
US7075047B2 (en) * 2004-03-10 2006-07-11 Matsushita Electric Industrial Co., Ltd. Temperature control apparatus
US7088040B1 (en) * 2002-06-27 2006-08-08 University Of Central Florida Research Foundation, Inc. Light source using emitting particles to provide visible light
US20060255347A1 (en) * 1999-11-19 2006-11-16 Cree, Inc. Multi element, multi color solid state LED/laser
US7210833B2 (en) * 2003-03-27 2007-05-01 Valeo Vision Method of fixing a power light-emitting diode on a radiator, and a signalling device comprising such a diode
US7252385B2 (en) * 2004-05-11 2007-08-07 Infocus Corporation Projection LED cooling
US7252787B2 (en) * 2003-10-29 2007-08-07 General Electric Company Garnet phosphor materials having enhanced spectral characteristics
US7261730B2 (en) * 2003-11-14 2007-08-28 Lumerx, Inc. Phototherapy device and system
US7262439B2 (en) * 2005-11-22 2007-08-28 Lumination Llc Charge compensated nitride phosphors for use in lighting applications
US7547123B2 (en) * 2005-09-26 2009-06-16 Advanced Illumination, Inc. High efficiency, compact, modular forced air cooling system for high intensity LED light source
US7572036B2 (en) * 2004-10-18 2009-08-11 Samsung Electronics Co., Ltd. Light emitting diode and lens for the same
US7586125B2 (en) * 2006-02-20 2009-09-08 Industrial Technology Research Institute Light emitting diode package structure and fabricating method thereof
US7710531B2 (en) * 2005-02-15 2010-05-04 Denso Corporation Liquid crystal display apparatus
US7737450B2 (en) * 2003-04-15 2010-06-15 Luminus Devices, Inc. Light emitting diode systems
US7755715B2 (en) * 2005-12-28 2010-07-13 Semiconductor Energy Laboratory Co., Ltd. Display device
US7789661B2 (en) * 2000-03-08 2010-09-07 Koninklijke Philips Electronics N V Light emitting diode light source
US7806562B2 (en) * 2004-12-22 2010-10-05 Osram Gesellschaft Mit Beschraenkter Haftung Lighting device comprising at least one light-emitting diode and vehicle headlight
US7819174B2 (en) * 2005-02-18 2010-10-26 Advanced Thermal Device Inc. Heat pipe cooling system and thermal connector thereof
US7921853B2 (en) * 2004-03-09 2011-04-12 Ledeep Llc Phototherapy method for treating psoriasis
US8118732B2 (en) * 2003-04-01 2012-02-21 Boston Scientific Scimed, Inc. Force feedback control system for video endoscope

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3529200A (en) * 1968-03-28 1970-09-15 Gen Electric Light-emitting phosphor-diode combination
US3593055A (en) * 1969-04-16 1971-07-13 Bell Telephone Labor Inc Electro-luminescent device
JPS5026433B1 (en) * 1970-12-21 1975-09-01
US3932881A (en) * 1972-09-05 1976-01-13 Nippon Electric Co., Inc. Electroluminescent device including dichroic and infrared reflecting components
US5208462A (en) * 1991-12-19 1993-05-04 Allied-Signal Inc. Wide bandwidth solid state optical source
US6159686A (en) * 1992-09-14 2000-12-12 Sri International Up-converting reporters for biological and other assays
US5447032A (en) * 1994-04-19 1995-09-05 The Regents Of The University Of California Fluorescent refrigeration
US5544268A (en) * 1994-09-09 1996-08-06 Deacon Research Display panel with electrically-controlled waveguide-routing
US6275211B1 (en) * 1997-12-05 2001-08-14 Gateway, Inc. Waste heat actuated display back light
AU3551999A (en) * 1998-04-10 1999-11-01 Regents Of The University Of California, The Optical refrigerator using reflectivity tuned dielectric mirror
EP1157421A1 (en) * 1999-02-05 2001-11-28 Alien Technology Corporation Apparatuses and methods for forming assemblies
US6596079B1 (en) * 2000-03-13 2003-07-22 Advanced Technology Materials, Inc. III-V nitride substrate boule and method of making and using the same
US6378321B1 (en) * 2001-03-02 2002-04-30 The Regents Of The University Of California Semiconductor-based optical refrigerator
US7008559B2 (en) * 2001-06-06 2006-03-07 Nomadics, Inc. Manganese doped upconversion luminescence nanoparticles
US6863219B1 (en) * 2001-08-17 2005-03-08 Alien Technology Corporation Apparatuses and methods for forming electronic assemblies
US7218527B1 (en) * 2001-08-17 2007-05-15 Alien Technology Corporation Apparatuses and methods for forming smart labels
WO2003021268A1 (en) * 2001-08-30 2003-03-13 Hrl Laboratories, Llc Addressable concentrators
US6593055B2 (en) * 2001-09-05 2003-07-15 Kodak Polychrome Graphics Llc Multi-layer thermally imageable element
DE10153829A1 (en) * 2001-11-05 2003-05-28 Bayer Ag Assay based on doped nanoparticles
US8118032B2 (en) * 2003-02-14 2012-02-21 American Environmental Systems, Inc. Rapid cryo-heating devices and their applications
JP4431400B2 (en) * 2002-03-25 2010-03-10 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ A light-emitting device and the phosphor composition
US20060237636A1 (en) * 2003-06-23 2006-10-26 Advanced Optical Technologies, Llc Integrating chamber LED lighting with pulse amplitude modulation to set color and/or intensity of output
US6990903B2 (en) * 2004-04-21 2006-01-31 Print-Lock Corporation Kit for labeling valuables for their identification and method therefor
US7265488B2 (en) * 2004-09-30 2007-09-04 Avago Technologies General Ip Pte. Ltd Light source with wavelength converting material
US7180065B2 (en) * 2004-09-30 2007-02-20 Battelle Memorial Institute Infra-red detector and method of making and using same
US7564180B2 (en) * 2005-01-10 2009-07-21 Cree, Inc. Light emission device and method utilizing multiple emitters and multiple phosphors
US7113663B1 (en) * 2005-03-31 2006-09-26 Eastman Kodak Company Visual display with electro-optical individual pixel addressing architecture
US7272275B2 (en) * 2005-03-31 2007-09-18 Eastman Kodak Company Polarized light emitting source with an electro-optical addressing architecture
EP1957608A2 (en) * 2005-10-28 2008-08-20 Cabot Corporation Luminescent compositions, methods for making luminescent compositions and inks incorporating the same
WO2007084640A2 (en) 2006-01-20 2007-07-26 Cree Led Lighting Solutions, Inc. Shifting spectral content in solid state light emitters by spatially separating lumiphor films
US7829162B2 (en) * 2006-08-29 2010-11-09 international imagining materials, inc Thermal transfer ribbon

Patent Citations (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6600175B1 (en) * 1996-03-26 2003-07-29 Advanced Technology Materials, Inc. Solid state white light emitter and display using same
US6359745B1 (en) * 1997-09-26 2002-03-19 Iomega Corporation Latent illuminance discrimination marker system for data storage cartridges
US6208791B1 (en) * 1999-04-19 2001-03-27 Gemfire Corporation Optically integrating pixel microstructure
US20020003928A1 (en) * 1999-04-19 2002-01-10 Gemfire Corporation Optically integrating pixel microstructure
US20060255347A1 (en) * 1999-11-19 2006-11-16 Cree, Inc. Multi element, multi color solid state LED/laser
US7789661B2 (en) * 2000-03-08 2010-09-07 Koninklijke Philips Electronics N V Light emitting diode light source
US6771916B2 (en) * 2001-11-13 2004-08-03 Nexpress Solutions Llc Air quality management apparatus for an electrostatographic printer
US20040012027A1 (en) * 2002-06-13 2004-01-22 Cree Lighting Company Saturated phosphor solid state emitter
US7088040B1 (en) * 2002-06-27 2006-08-08 University Of Central Florida Research Foundation, Inc. Light source using emitting particles to provide visible light
US6998777B2 (en) * 2002-12-24 2006-02-14 Toyoda Gosei Co., Ltd. Light emitting diode and light emitting diode array
US7210833B2 (en) * 2003-03-27 2007-05-01 Valeo Vision Method of fixing a power light-emitting diode on a radiator, and a signalling device comprising such a diode
US20050272084A1 (en) * 2003-03-28 2005-12-08 Tero Soukka Homogeneous luminescence energy transfer bioassay
US8118732B2 (en) * 2003-04-01 2012-02-21 Boston Scientific Scimed, Inc. Force feedback control system for video endoscope
US7737450B2 (en) * 2003-04-15 2010-06-15 Luminus Devices, Inc. Light emitting diode systems
US20040217364A1 (en) * 2003-05-01 2004-11-04 Cree Lighting Company, Inc. Multiple component solid state white light
US20040263073A1 (en) * 2003-06-27 2004-12-30 Baroky Tajul Arosh White light emitting device
US20050001532A1 (en) * 2003-07-02 2005-01-06 Srivastava Alok Mani Green phosphor for general illumination applications
US6864571B2 (en) * 2003-07-07 2005-03-08 Gelcore Llc Electronic devices and methods for making same using nanotube regions to assist in thermal heat-sinking
US7252787B2 (en) * 2003-10-29 2007-08-07 General Electric Company Garnet phosphor materials having enhanced spectral characteristics
US7261730B2 (en) * 2003-11-14 2007-08-28 Lumerx, Inc. Phototherapy device and system
US20060068154A1 (en) * 2004-01-15 2006-03-30 Nanosys, Inc. Nanocrystal doped matrixes
US7921853B2 (en) * 2004-03-09 2011-04-12 Ledeep Llc Phototherapy method for treating psoriasis
US7075047B2 (en) * 2004-03-10 2006-07-11 Matsushita Electric Industrial Co., Ltd. Temperature control apparatus
US7252385B2 (en) * 2004-05-11 2007-08-07 Infocus Corporation Projection LED cooling
US20050260764A1 (en) * 2004-05-24 2005-11-24 Grigsby John M Jr Method and apparatus for monitoring liquid for the presence of an additive
US20050274967A1 (en) * 2004-06-09 2005-12-15 Lumileds Lighting U.S., Llc Semiconductor light emitting device with pre-fabricated wavelength converting element
US7037073B2 (en) * 2004-07-16 2006-05-02 Cooler Master Co., Ltd. Cooling fan with a light-emitting device
US7572036B2 (en) * 2004-10-18 2009-08-11 Samsung Electronics Co., Ltd. Light emitting diode and lens for the same
US7806562B2 (en) * 2004-12-22 2010-10-05 Osram Gesellschaft Mit Beschraenkter Haftung Lighting device comprising at least one light-emitting diode and vehicle headlight
US7710531B2 (en) * 2005-02-15 2010-05-04 Denso Corporation Liquid crystal display apparatus
US7819174B2 (en) * 2005-02-18 2010-10-26 Advanced Thermal Device Inc. Heat pipe cooling system and thermal connector thereof
US7547123B2 (en) * 2005-09-26 2009-06-16 Advanced Illumination, Inc. High efficiency, compact, modular forced air cooling system for high intensity LED light source
US7262439B2 (en) * 2005-11-22 2007-08-28 Lumination Llc Charge compensated nitride phosphors for use in lighting applications
US7755715B2 (en) * 2005-12-28 2010-07-13 Semiconductor Energy Laboratory Co., Ltd. Display device
US7586125B2 (en) * 2006-02-20 2009-09-08 Industrial Technology Research Institute Light emitting diode package structure and fabricating method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018236947A3 (en) * 2017-06-20 2019-01-31 Photonica, Inc. Enhanced reality wearable visualization
EP3514439A1 (en) * 2018-01-18 2019-07-24 BGT Materials Limited Led filament and led light bulb having the same

Also Published As

Publication number Publication date
JP2010535421A (en) 2010-11-18
JP5453262B2 (en) 2014-03-26
KR20100039387A (en) 2010-04-15
CN101790800B (en) 2014-01-22
WO2009018558A2 (en) 2009-02-05
WO2009018558A3 (en) 2009-05-07
US8297061B2 (en) 2012-10-30
EP2176893A4 (en) 2010-12-22
EP2176893B1 (en) 2016-01-27
US20090034201A1 (en) 2009-02-05
CN101790800A (en) 2010-07-28
EP2176893A2 (en) 2010-04-21
WO2009018558A9 (en) 2009-03-26
KR101521312B1 (en) 2015-05-18

Similar Documents

Publication Publication Date Title
Landsberg et al. Thermodynamic energy conversion efficiencies
Wei et al. Transparent Ce: Y3Al5O12 ceramic phosphors for white light-emitting diodes
Chen et al. Bright white upconversion luminescence in rare-earth-ion-doped Y 2 O 3 nanocrystals
US9062832B2 (en) Light emitting diode illumination system
US8410681B2 (en) Light emitting device having a refractory phosphor layer
JP5934130B2 (en) Packages designed to produce white light with short wavelength led and downconversion materials
JP5226077B2 (en) Light emitting module, a method of manufacturing a light emitting module, and a lamp unit
US20040145308A1 (en) Light source having an LED and a luminescence conversion body and method for producing the luminescence conversion body
JP4950999B2 (en) It led to a light-transmitting heat sink
US9057499B2 (en) Solid state light sources with common luminescent and heat dissipating surfaces
Fujita et al. Luminescence characteristics of YAG glass–ceramic phosphor for white LED
KR960014729B1 (en) Infrared-to-visible upconversion display system and method operable at room temperature
KR101094735B1 (en) Oled display having thermally conductive backplate
US8558438B2 (en) Fixtures for large area directional and isotropic solid state lighting panels
US6653765B1 (en) Uniform angular light distribution from LEDs
US20100263723A1 (en) Nearly Index-Matched Luminescent Glass-Phosphor Composites For Photonic Applications
EP1647766B1 (en) Light emitting device package and back light unit for liquid crystal display using the same
JP5628394B2 (en) Phosphor converted semiconductor light emitting devices
Chhajed et al. Influence of junction temperature on chromaticity and color-rendering properties of trichromatic white-light sources based on light-emitting diodes
US6255670B1 (en) Phosphors for light generation from light emitting semiconductors
CN1327579C (en) Luminous device
US8823035B2 (en) Solid state light sources based on thermally conductive luminescent elements containing interconnects
US8210698B2 (en) Phosphor layer having enhanced thermal conduction and light sources utilizing the phosphor layer
JP5530165B2 (en) Light source device and illumination device
US3376437A (en) Thermionic conversion means

Legal Events

Date Code Title Description
AS Assignment

Owner name: CREE, INC., NORTH CAROLINA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BRANDES, GEORGE R.;REEL/FRAME:029464/0150

Effective date: 20121210

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO PAY ISSUE FEE