US20130040357A1 - Hydrogel Precursor Formulation and Production Process Thereof - Google Patents

Hydrogel Precursor Formulation and Production Process Thereof Download PDF

Info

Publication number
US20130040357A1
US20130040357A1 US13/640,141 US201113640141A US2013040357A1 US 20130040357 A1 US20130040357 A1 US 20130040357A1 US 201113640141 A US201113640141 A US 201113640141A US 2013040357 A1 US2013040357 A1 US 2013040357A1
Authority
US
United States
Prior art keywords
solution
compound
precursor formulation
linker
formulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/640,141
Inventor
Simone Rizzi
Matthias Lutolf
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
QGEL SA
Original Assignee
QGEL SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by QGEL SA filed Critical QGEL SA
Assigned to QGEL SA reassignment QGEL SA ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: LUTOLF, MATTHIAS, Rizzi, Simone
Publication of US20130040357A1 publication Critical patent/US20130040357A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/0068General culture methods using substrates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/329Polymers modified by chemical after-treatment with organic compounds
    • C08G65/334Polymers modified by chemical after-treatment with organic compounds containing sulfur
    • C08G65/3344Polymers modified by chemical after-treatment with organic compounds containing sulfur containing oxygen in addition to sulfur
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2533/00Supports or coatings for cell culture, characterised by material
    • C12N2533/30Synthetic polymers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2533/00Supports or coatings for cell culture, characterised by material
    • C12N2533/50Proteins

Definitions

  • the present invention relates to a hydrogel precursor formulation, its process of production as well as a kit comprising said formulation and a method of production of a hydrogel using said formulation.
  • Three dimensional cell culture scaffolds have been recognized to allow patterns of gene expression and other cellular activities that more closely mimic living organisms than the conventional two dimensional cell cultures in dishes.
  • ECM artificial polymer hydrogels
  • WO 00/454808 describes novel biomaterials, especially for the formation of hydrogels, having a cross-linking chemistry based on a Michael-type addition reaction between a nucleophile and a conjugated unsaturated bond or group, which allows the formation of the gel in the presence of cells or biomolecules. Moreover, specific signal molecules may be integrated into the gel matrix by a specific reaction.
  • the hydrogel precursor formulation according to the present invention comprises at least one structural compound and at least one linker compound.
  • the structural and the linker compound are polymerizable by a selective reaction between a nucleophile and a conjugated unsaturated bond or group.
  • the hydrogel precursor formulation is in the form of an unreacted powder.
  • the formulation has the advantage that the powder may simply be re-suspended, preferably in a buffer, to start the gelling reaction. No mixing of different components is required, thus considerably reducing the probability of erroneous ratios between the at least one structural compound and the at least one linker compound. Thus, this increases the reproducibility of the hydrogels produced from these hydrogel precursors. Moreover, the hydrogel precursor of the present invention provides ease of use.
  • the hydrogel precursor formulation of the present invention is in the form of a powder.
  • the powder may comprise particles having any size and shape.
  • the powder may also be provided as pressed tablet or pill.
  • the powder is provided in the form of a stable compact cake, e.g. at the bottom of a container.
  • the powder is unreacted, meaning that almost none of the at least one structural compound has reacted with the at least one linker compound via the selective reaction.
  • the selective reaction is a reaction between a nucleophile and a conjugated unsaturated bond or group by nucleophilic addition. Such reactions are also known as Michael-Type addition reactions.
  • the structural compound has a functionality of at least three, but most preferably the structural compound has a functionality of four or more.
  • functionality the number of reactive sites on a molecule is meant.
  • the structural compound is preferably selected from the group consisting of oligomers, polymers, biosynthetic or natural proteins or peptides and polysaccharides.
  • the structural compound is a polymer selected from the group consisting of poly(ethylene glycol), poly(ethylene oxide), poly(vinyl alcohol), poly(ethylene-co-vinyl alcohol), poly(acrylic acid), poly(ethylene-co-acrylic acid), poly(ethyloxazoline), poly(vinyl pyrrolidone), poly(ethylene-co-vinyl pyrrolidone), poly(maleic acid), poly(ethylene-co-maleic acid), poly(acrylamide), or poly(ethylene oxide)-co-poly(propylene oxide) block copolymers or mixtures thereof.
  • the structural compound is a poly(ethylene glycol), most preferably a branched poly(ethylene glycol) with three, four or more arms.
  • the linker compound has a functionality of at least two and is selected from the group consisting of oligomers, polymers, biosynthetic or natural proteins or peptides and polysaccharides or mixtures thereof.
  • the linker compound is a peptide sequence, most preferably containing an adhesion site, a growth factor binding site, or a protease binding site.
  • the nucleophile preferably is a strong nucleophile, such as a thiol or a thiol containing group.
  • the nucleophile could also be any other type of nucleophile known in the art, provided that it is strong enough to undergo the selective reaction, e.g. such as an amine.
  • the conjugated unsaturated group preferably is an acrylate, an acrylamide, a quinone or a vinylpyridinium. Most preferably, the unsaturated group is a vinyl sulfone.
  • the hydrogel precursor formulation of the present invention may comprise at least one bioactive compound, preferably comprising an RGD peptide sequence, which is conjugatable with the structural compound through a selective reaction between a nucleophile and a conjugated unsaturated bond or group.
  • the bioactive compound may comprise an adhesion site, such as the RGD sequence from fibronectin or the YISG sequence from laminin; a growth factor binding site, such as a heparin binding site; a protease binding site or a therapeutically active compound.
  • the bioactive compound comprises a cell adhesion site, most preferably an RGD sequence.
  • the bioactive compound comprises at least one active group capable of undergoing the self selective reaction. More preferably, the bioactive compound comprises at least one nuclophilic group, most preferably a thiol group.
  • the bioactive compound is conjugateable with the structural compound through a self selective reaction between a nucleophile and a conjugated unsaturated bond or group. Most preferably, this self selective reaction is the same reaction as the self selective reaction between the structural compound and the linker compound, especially between the same type of nucleophile and conjugated unsaturated bond or group. Alternatively, the bioactive compound may be conjugated to the structural compound through a self selective reaction prior to the polymerization of the linker compound with the structural compound.
  • the structural compound preferably is a multi-branched poly(ethylene glycol) (PEG) with functionalized end groups. More preferably, the end groups are functionalized with vinyl sulfone. Most preferably, the structural compound is PEG-tri(vinyl sulfone) or PEG-tetra(vinyl sulfone). Vinyl sulfone functionalization of the alcohol groups of PEG may be carried out with any suitable reaction known in the art. By using branched PEG with three, four or more arms it is possible to produce structural compounds with a functionality of three, four or more.
  • the linker comprises at least two nucleophilic groups, preferably thiol groups.
  • Thiols are strong nucleophiles readily undergoing Michael-Type addition reactions with unsaturated bonds or groups at physiological pH. Moreover, thiols are commonly found in biological systems, so that their use poses no issue in view of toxicity.
  • the linker compound preferably is a peptide comprising at least two cysteins, preferably located near the N- and C-terminus of the peptide. Synthesizing peptides with two or more cysteine residues is straightforward. It is further possible to introduce specific protease sites in the peptide such as to produce degradable hydrogels, e.g. for in-vivo use. Further, by varying the amino acids neighbouring the cysteines, it is possible to change the pKa value of the thiol group.
  • the cysteins are located at the N- and C-terminus of the peptide, resulting in peptides with the structure H 2 NCXXXXXXXC-COOH (SEQ ID NO:1), preferably with an acetylated N-terminus, Ac; and an amidated C-terminus, NH2; where C is the one letter representation of cysteine and X represents any amino acid except cysteine.
  • the peptide may be of any length, thus the number of X (X n ) may be any number.
  • the peptide has a length of 16 amino acids.
  • the cysteins might be located one or more amino acids away from the N- or C-terminus, e.g. resulting in peptides with the general structure H 2 N—X m CX n CX p —COOH (SEQ ID NO:2), where m, n and p may be any integer, including zero.
  • the linker compound is a peptide with the sequence NH 2 -GCRE-XXXXXXX-ERCG-COOH (SEQ ID NO:3).
  • the Glycine (G) serves as spacer
  • the Arginin (R) increases the reactivity of the thiol group of the neighbouring cysteine
  • the glutamic acid (E) enhances the solubility of the peptide in aqueous solutions.
  • the sequence of the linker compound is NH 2 -GCREGPQGIWGQERCG-COOH [SEQ ID NO:4] or NH 2 -GCREGDQGIAGFERCG-COOH [SEQ ID NO:5], again preferably with an acetylated N-terminus and an amidated C-terminus.
  • Peptides for the linker and bioactive compounds should be synthisized and processed in acidic solvents, most preferably in solutions containing trifluoroacetate (TFA). Residual TFA bound to the peptide powder after peptide synthesis has the effect to lower the pH of a water suspension containing the respective peptide below 4.
  • TFA trifluoroacetate
  • the structural compound and/or the linker compound are selected such that the reaction rate of the selective reaction between the structural compound and the linker compound is hindered or highly reduced in the mixing conditions.
  • the reaction rate is highly reduced at or below pH 4 compared to at or above pH 7.
  • a selection of the compounds in this way allows to provide a precursor formulation which will readily undergo gelation reaction at physiological conditions, but which allows its preparation under conditions such that no or almost no selective reaction occurs.
  • the structural and/or the linker compound are selected such that the reaction rate of the self selective reaction is at least twice as fast at pH 7.5 compared to pH 7.0.
  • Another objective of the present invention is to provide a production process for a hydrogel precursor formulation. This problem is solved by a process as claimed in claim 8 .
  • the process comprises the steps of:
  • the at least one structural compound and the at least one linker compound are polymerizable by a selective reaction between a nucleophile and a conjugated unsaturated bond or group. Both solutions A and B are mixed under conditions which hinder the selective reaction.
  • This process allows the production of a hydrogel precursor formulation in form of a powder comprising both the structural compound as well as the linker compound.
  • the mixing conditions have to be selected in such a way, that the self selective reaction is hindered. This means that the reaction rate is sufficiently low, that a very large fraction of the compounds of both solutions A and B do not react through the self selective reaction prior to lyophilization.
  • Preferably, more than 70%, more preferably more than 85%, most preferably more than 90% of the molecules in both solutions have not undergone the selective reaction prior to the lyophilization step.
  • the mixing conditions may be selected by adjustment of pH, concentration of the different compounds, process time, temperature or solvent condition. Most preferably, the mixing is carried out at or below pH 4. Especially when a thiol is used as nucleophile, a pH at or below 4 sufficiently hinders the self selective reaction. Mixing is preferably performed at room temperature.
  • solution A is added to solution B, since the pH of solution A is around 7, whereas the pH of solution B is below 4. If solution B was added to solution A, the self selective polymerization reaction would start during the mixing step. When adding solution A to solution B, the pH of the resulting solution will always be below pH 4, therefore hindering the reaction.
  • Solution A preferably comprises 5-10% w/v of the at least one structural compound. Most preferably, solution A comprises 7.5% w/v of the at least one structural compound.
  • solution B preferably comprises 0.1-2% w/v of the at least one linker compound. Most preferably, solution B comprises 1% w/v of the at least one linker compound. This concentration of the linker compound provides for good solubility of the compound in the solution.
  • solution A and/or solution B preferably are solutions of the at least one structural compound or the at least one linker compound, respectively, in distilled water.
  • both compounds are present in an un-buffered solution. Due to the trifluoro acetic acid adhering to the peptide linker compound of solution B, the pH of this solution will be reduced. This leads to a pH which is preferably under 4 for the resulting mixture of solutions A and B. More preferably, the pH of the resulting solution is around 3.5.
  • solution A may be mixed with an additional solution C comprising a biologically active compound which is dimerizable with the structural compound by a selective reaction between a nucleophile and a conjugated unsaturated bond or group.
  • This bioactive compound may comprise an adhesion site, such as the RGD sequence from fibronectin or the YISG sequence from laminin; a growth factor binding site, such as a heparin binding site; a protease binding site or a therapeutically active compound.
  • the bioactive compound comprises a cell adhesion site, most preferably an RGD sequence.
  • solution C comprises 0.1 to 10% w/v of the biologically active compound. More preferably, solution C comprises between 0.1 and 5%, most preferably between 0.1 and 2% of the biologically active compound.
  • Variation of the respective amounts of the structural compound in solution A and the biologically active compound in the optional solution C as well as the concentration and nature (e.g. amino acid sequence) of the linker compound in solution B allows the production of hydrogel precursor formulations with different characteristics.
  • the concentration of the compounds in each of solution A and B is selected such that the molar ratio of the nucleophile to the conjugated unsaturated bond or group results in optimal physicochemical properties, like maximum shear modulus and minimal swelling characteristics of the final gels.
  • the optimal ratio of the nucleophile to the conjugated unsaturated bond or group is within the range of 0.8:1 to 1.3:1. This ensures the formation of a hydrogel where almost all active groups have undergone the selective reaction, so that side reactions of any of the reactive groups are considerably reduced.
  • the precursor solution may be subjected to filtration prior to the lyophilization step.
  • the filtration preferably is a sterile filtration. Any undissolved compounds as well as bacterial contaminations may be removed from the mixture prior to the lyophilization step.
  • the pre-mixed precursor solution is aliquoted and filled into containers, preferably sterile containers, before the lyophilization step.
  • containers preferably sterile containers
  • the containers may be of any suitable material, such as plastic or glass.
  • the containers are vials.
  • the containers are preferably filled with sterile nitrogen gas and capped immediately after the lyophilization step. This protects the hydrogel precursor powder from contact with moisture and/or oxygen, which may lead to premature polymerization or oxidation of the nucleophiles.
  • Another object of the present invention is the use of a hydrogel precursor formulation as described herein for the manufacture of a hydrogel.
  • a further object of the present invention is to provide a simple to use system for the production of hydrogels with highly reproducible results. This problem is solved with a kit according to claim 20 .
  • the kit of the present invention comprises at least one container filled with a hydrogel precursor formulation as described herein and a container with a reaction buffer.
  • the container contains preferably an amount of precursor formulation powder, which will result in a gel with predefined characteristics when re-suspended with a defined amount of reaction buffer.
  • the reaction buffer preferably has a pH above 7. More preferably the reaction buffer has a pH between 7 and 8.
  • the buffer preferably comprises HEPES, preferably at 0.3M concentration with the pH adjusted to a value between 7 and 8. This allows for a sufficiently fast polymerization reaction.
  • a further object of the present invention is to provide an easy to use method to produce a hydrogel. This objective is achieved with a method according to claim 22 .
  • the method of production of a hydrogel comprises the steps of:
  • the hydrogel precursor formulation of the present invention is polymerizable under physiological conditions, which allows the addition of a cell culture to the precursor suspension so that the cells may be evenly distributed in the suspension prior to gelation. This would not readily be possible with any other precursor system.
  • FIG. 2 Schematic representation of a second embodiment of a manufacturing process of a hydrogel precursor formulation according to the present invention
  • FIG. 3 Schematic representation of a third embodiment of a manufacturing process of a hydrogel precursor formulation according to the present invention
  • FIG. 1 shows a schematic representation of an embodiment of a manufacturing process of a hydrogel precursor formulation according to the present invention.
  • Solution A comprising 7.5% w/v of branched PEG with 4 arms functionalized with vinyl sulfone is added to solution B comprising 1% w/v of a peptide sequence with two cysteines, one near the C- and the other near the N-terminus, in mixing step 1.
  • solution A comprising 7.5% w/v of functionalized PEG is added to 425 mL of solution B comprising 1% w/v of a linker peptide.
  • Solutions A and B are prepared by suspending the respective compounds in distilled water.
  • the peptide linker compound is preferably added to the water in small portions. Mixing is carried out under continuous stirring with a magnetic stirrer at 400 RPM.
  • the so obtained precursor solution 4 is subsequently subjected to a sterile filtration step 5, e.g. using a Mini Kleenpak filter (PALL Corp.) with a PTFE membrane with an absolute rating of 0.2 ⁇ m, yielding the filtrated precursor solution 6.
  • This solution is then subjected to lyophilization step 7, resulting in the hydrogel precursor formulation 8 in form of a powder.
  • the resulting powder is in the form of a stable compact cake.
  • Lyophylization step 7 may be carried out by first freezing the solution a shelf at ⁇ 50° C. for 150 min, followed by a first drying step at ⁇ 10° C. for 570 min at a pressure of 0.26 mbar. A second drying step follows at a temperature of 20° C. for 180 min at a pressure of 0.02 mbar.
  • FIG. 2 a second embodiment of a manufacturing process of a hydrogel precursor formulation according to the present invention is schematically represented.
  • Solution A comprising 7.5% w/v of a branched PEG with 4 arms functionalized with vinyl sulfone is mixed with Solution C comprising 2% w/v of a peptide comprising an RGD sequence in mixing step 2.
  • Solution A comprising 7.5% w/v of a functionalized four branched PEG is mixed with 5 mL of Solution C comprising 2% w/v of a bioactive compound.
  • Solution C comprising 2% w/v of a bioactive compound.
  • solution B comprising 1% w/v of a peptide linker comprising two cysteins, one near the C- and the other near the N-terminus, in mixing step 1.
  • the so obtained precursor solution 4 is subsequently subjected to a sterile filtration step 5, yielding the filtrated precursor solution 6.
  • This solution is then subjected to lyophilization step 7, resulting in the hydrogel precursor formulation 8 in form of a powder.
  • FIG. 3 shows a third embodiment of a manufacturing process of a hydrogel precursor formulation according to the present invention.
  • Solution A comprising 7.5% w/v of branched PEG with 4 arms functionalized with vinyl sulfone is mixed with Solution B comprising 1% w/v of a linker peptide sequence with a cysteine near the C- and N-terminus, in mixing step 1.
  • Solutions A and B are prepared by suspending the respective compounds in distilled water. The mixing is carried out under continuous stirring with a magnetic stirrer, preferably at 400 RPM.
  • the so obtained precursor solution 4 is subsequently subjected to a sterile filtration step 5, yielding the filtrated precursor solution 6.
  • This solution is then aliquoted into containers in aliqoting step 9. Each container may contain only a small amount, preferably 0.3-0.4 mL.
  • the containers are sealable and are preferably made of glass.
  • the aliquoted precursor solution 10 is the lyophilized in lyophilization step 7 to yield the precursor

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Preparation (AREA)
  • Peptides Or Proteins (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Other Resins Obtained By Reactions Not Involving Carbon-To-Carbon Unsaturated Bonds (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Materials For Medical Uses (AREA)

Abstract

The present invention relates to a hydrogel precursor formulation, its process of production as well as a kit comprising said formulation and a method of production of a hydrogel using said formulation. The precursor formulation comprises at least one structural compound, preferably vinyl sulfone (acrylated branched) poly(ethylene glycol), and at least one linker compound, preferably a peptide with two cysteines, wherein said structural compound and said linker compound are polymerizable by a selective reaction between a nucleophile and a conjugated unsaturated bond or group. The precursor formulation is in the form of a powder.

Description

  • The present invention relates to a hydrogel precursor formulation, its process of production as well as a kit comprising said formulation and a method of production of a hydrogel using said formulation.
  • Three dimensional cell culture scaffolds have been recognized to allow patterns of gene expression and other cellular activities that more closely mimic living organisms than the conventional two dimensional cell cultures in dishes.
  • This has led to the development of novel families of synthetic polymer hydrogels, which are often termed artificial ECMs (aECM), since they mimic many aspects of the extracellular matrix. One major challenge is to provide a chemistry which allows cross-linking of the matrix in the presence of cells or biomolecules as well as stable tethering of biomolecules to the matrix itself.
  • In recent years, different mechanisms were developed allowing the formation of gels in the presence of cells or biomolecules. For example, mechanisms based on the self-assembly of low molecular weight building blocks such as peptides (Estroff et al.: Water gelation by small organic molecules; Chem. Rev. 2004; 104(3); 1201-18) or ueidopyrmimidinone (Zhang S.: Fabrication of novel biomaterials through molecular self-assembly; Nat. Biotechnol. 2003; 21(10); 1171-8) and moderate molecular weight amphiphilic block copolymers (e.g. see Hartgerink et al.: Peptide-amphiphile nonofibers: A versatile scaffold for the preparation of self-assembling materials; Proc. Nat. Acad. Sci. U.S.A. 2002; 99(8); 5133-8) were proposed.
  • WO 00/454808 describes novel biomaterials, especially for the formation of hydrogels, having a cross-linking chemistry based on a Michael-type addition reaction between a nucleophile and a conjugated unsaturated bond or group, which allows the formation of the gel in the presence of cells or biomolecules. Moreover, specific signal molecules may be integrated into the gel matrix by a specific reaction.
  • One major drawback of this system is that it relies on manually mixing at least two precursor components together prior to gelation. In practice, the use of multiple component solutions may be a source of error due to unintentional variations of i) the re-suspension conditions of the different components in powder form, ii) the mixing ratios of the precursor solutions, thus leading to more complex use and reproducibility problems of the gel compositions. Additionally, the upscale of a manufacturing process of a gel system that requires the mixing of several solutions is more expensive than the upscale of a manufacturing process of a gel requiring a single.
  • It is therefore an objective of the present invention to avoid the disadvantages of the known hydrogel formulations and specifically to provide a hydrogel precursor formulation which is easy in handling and which enables the production of hydrogels with highly reproducible compositions. This objective is solved with a hydrogel precursor according to claim 1.
  • The hydrogel precursor formulation according to the present invention comprises at least one structural compound and at least one linker compound. The structural and the linker compound are polymerizable by a selective reaction between a nucleophile and a conjugated unsaturated bond or group. The hydrogel precursor formulation is in the form of an unreacted powder.
  • The formulation has the advantage that the powder may simply be re-suspended, preferably in a buffer, to start the gelling reaction. No mixing of different components is required, thus considerably reducing the probability of erroneous ratios between the at least one structural compound and the at least one linker compound. Thus, this increases the reproducibility of the hydrogels produced from these hydrogel precursors. Moreover, the hydrogel precursor of the present invention provides ease of use.
  • The hydrogel precursor formulation of the present invention is in the form of a powder. The powder may comprise particles having any size and shape. Alternatively, the powder may also be provided as pressed tablet or pill. Most preferably, the powder is provided in the form of a stable compact cake, e.g. at the bottom of a container.
  • The powder is unreacted, meaning that almost none of the at least one structural compound has reacted with the at least one linker compound via the selective reaction. Preferably more than 70%, more preferably more than 85%, most preferably more than 95% of the compounds have not undergone the selective reaction.
  • The selective reaction is a reaction between a nucleophile and a conjugated unsaturated bond or group by nucleophilic addition. Such reactions are also known as Michael-Type addition reactions.
  • The structural compound has a functionality of at least three, but most preferably the structural compound has a functionality of four or more. By “functionality” the number of reactive sites on a molecule is meant.
  • The structural compound is preferably selected from the group consisting of oligomers, polymers, biosynthetic or natural proteins or peptides and polysaccharides. Preferably, the structural compound is a polymer selected from the group consisting of poly(ethylene glycol), poly(ethylene oxide), poly(vinyl alcohol), poly(ethylene-co-vinyl alcohol), poly(acrylic acid), poly(ethylene-co-acrylic acid), poly(ethyloxazoline), poly(vinyl pyrrolidone), poly(ethylene-co-vinyl pyrrolidone), poly(maleic acid), poly(ethylene-co-maleic acid), poly(acrylamide), or poly(ethylene oxide)-co-poly(propylene oxide) block copolymers or mixtures thereof. More preferably, the structural compound is a poly(ethylene glycol), most preferably a branched poly(ethylene glycol) with three, four or more arms.
  • The linker compound has a functionality of at least two and is selected from the group consisting of oligomers, polymers, biosynthetic or natural proteins or peptides and polysaccharides or mixtures thereof. Preferably, the linker compound is a peptide sequence, most preferably containing an adhesion site, a growth factor binding site, or a protease binding site.
  • The nucleophile preferably is a strong nucleophile, such as a thiol or a thiol containing group. The nucleophile could also be any other type of nucleophile known in the art, provided that it is strong enough to undergo the selective reaction, e.g. such as an amine. Further, the conjugated unsaturated group preferably is an acrylate, an acrylamide, a quinone or a vinylpyridinium. Most preferably, the unsaturated group is a vinyl sulfone.
  • Additionally, the hydrogel precursor formulation of the present invention may comprise at least one bioactive compound, preferably comprising an RGD peptide sequence, which is conjugatable with the structural compound through a selective reaction between a nucleophile and a conjugated unsaturated bond or group.
  • The bioactive compound may comprise an adhesion site, such as the RGD sequence from fibronectin or the YISG sequence from laminin; a growth factor binding site, such as a heparin binding site; a protease binding site or a therapeutically active compound. Preferably, the bioactive compound comprises a cell adhesion site, most preferably an RGD sequence.
  • The bioactive compound comprises at least one active group capable of undergoing the self selective reaction. More preferably, the bioactive compound comprises at least one nuclophilic group, most preferably a thiol group.
  • The bioactive compound is conjugateable with the structural compound through a self selective reaction between a nucleophile and a conjugated unsaturated bond or group. Most preferably, this self selective reaction is the same reaction as the self selective reaction between the structural compound and the linker compound, especially between the same type of nucleophile and conjugated unsaturated bond or group. Alternatively, the bioactive compound may be conjugated to the structural compound through a self selective reaction prior to the polymerization of the linker compound with the structural compound.
  • The structural compound preferably is a multi-branched poly(ethylene glycol) (PEG) with functionalized end groups. More preferably, the end groups are functionalized with vinyl sulfone. Most preferably, the structural compound is PEG-tri(vinyl sulfone) or PEG-tetra(vinyl sulfone). Vinyl sulfone functionalization of the alcohol groups of PEG may be carried out with any suitable reaction known in the art. By using branched PEG with three, four or more arms it is possible to produce structural compounds with a functionality of three, four or more.
  • Preferably, the linker comprises at least two nucleophilic groups, preferably thiol groups. Thiols are strong nucleophiles readily undergoing Michael-Type addition reactions with unsaturated bonds or groups at physiological pH. Moreover, thiols are commonly found in biological systems, so that their use poses no issue in view of toxicity.
  • The linker compound preferably is a peptide comprising at least two cysteins, preferably located near the N- and C-terminus of the peptide. Synthesizing peptides with two or more cysteine residues is straightforward. It is further possible to introduce specific protease sites in the peptide such as to produce degradable hydrogels, e.g. for in-vivo use. Further, by varying the amino acids neighbouring the cysteines, it is possible to change the pKa value of the thiol group.
  • Preferably, the cysteins are located at the N- and C-terminus of the peptide, resulting in peptides with the structure H2NCXXXXXXXXC-COOH (SEQ ID NO:1), preferably with an acetylated N-terminus, Ac; and an amidated C-terminus, NH2; where C is the one letter representation of cysteine and X represents any amino acid except cysteine. The peptide may be of any length, thus the number of X (Xn) may be any number. Preferably, the peptide has a length of 16 amino acids. Alternatively, the cysteins might be located one or more amino acids away from the N- or C-terminus, e.g. resulting in peptides with the general structure H2N—XmCXnCXp—COOH (SEQ ID NO:2), where m, n and p may be any integer, including zero.
  • Most preferably, the linker compound is a peptide with the sequence NH2-GCRE-XXXXXXXX-ERCG-COOH (SEQ ID NO:3). The Glycine (G) serves as spacer, the Arginin (R) increases the reactivity of the thiol group of the neighbouring cysteine, and the glutamic acid (E) enhances the solubility of the peptide in aqueous solutions.
  • Most preferably, the sequence of the linker compound is NH2-GCREGPQGIWGQERCG-COOH [SEQ ID NO:4] or NH2-GCREGDQGIAGFERCG-COOH [SEQ ID NO:5], again preferably with an acetylated N-terminus and an amidated C-terminus.
  • Peptides for the linker and bioactive compounds should be synthisized and processed in acidic solvents, most preferably in solutions containing trifluoroacetate (TFA). Residual TFA bound to the peptide powder after peptide synthesis has the effect to lower the pH of a water suspension containing the respective peptide below 4.
  • The structural compound and/or the linker compound are selected such that the reaction rate of the selective reaction between the structural compound and the linker compound is hindered or highly reduced in the mixing conditions. Preferably, the reaction rate is highly reduced at or below pH 4 compared to at or above pH 7.
  • A selection of the compounds in this way allows to provide a precursor formulation which will readily undergo gelation reaction at physiological conditions, but which allows its preparation under conditions such that no or almost no selective reaction occurs.
  • Preferably, the structural and/or the linker compound are selected such that the reaction rate of the self selective reaction is at least twice as fast at pH 7.5 compared to pH 7.0.
  • Another objective of the present invention is to provide a production process for a hydrogel precursor formulation. This problem is solved by a process as claimed in claim 8.
  • The process comprises the steps of:
      • providing a first solution A comprising at least one structural compound;
      • providing a second solution B comprising at least one linker compound;
      • mixing of the solutions A and B; and
      • lyophilization of the resulting precursor solution
  • The at least one structural compound and the at least one linker compound are polymerizable by a selective reaction between a nucleophile and a conjugated unsaturated bond or group. Both solutions A and B are mixed under conditions which hinder the selective reaction.
  • This process allows the production of a hydrogel precursor formulation in form of a powder comprising both the structural compound as well as the linker compound. The mixing conditions have to be selected in such a way, that the self selective reaction is hindered. This means that the reaction rate is sufficiently low, that a very large fraction of the compounds of both solutions A and B do not react through the self selective reaction prior to lyophilization. Preferably, more than 70%, more preferably more than 85%, most preferably more than 90% of the molecules in both solutions have not undergone the selective reaction prior to the lyophilization step.
  • The mixing conditions may be selected by adjustment of pH, concentration of the different compounds, process time, temperature or solvent condition. Most preferably, the mixing is carried out at or below pH 4. Especially when a thiol is used as nucleophile, a pH at or below 4 sufficiently hinders the self selective reaction. Mixing is preferably performed at room temperature.
  • It is important that solution A is added to solution B, since the pH of solution A is around 7, whereas the pH of solution B is below 4. If solution B was added to solution A, the self selective polymerization reaction would start during the mixing step. When adding solution A to solution B, the pH of the resulting solution will always be below pH 4, therefore hindering the reaction.
  • Solution A preferably comprises 5-10% w/v of the at least one structural compound. Most preferably, solution A comprises 7.5% w/v of the at least one structural compound.
  • Further, solution B preferably comprises 0.1-2% w/v of the at least one linker compound. Most preferably, solution B comprises 1% w/v of the at least one linker compound. This concentration of the linker compound provides for good solubility of the compound in the solution.
  • Using the concentrations of the structural and the linker compounds as mentioned above for both solutions A and B leads to the formation of a compact powder after the lyophilization step. This compact powder will form a cake-like layer on the bottom of a container, which is favourable. Additionally, using these relatively low concentrations of both compounds during the production process additionally reduces the probability of unwanted pre-mature reactions between the structural and the linker compound. Further, material losses in subsequent production steps are reduced with these concentrations compared with higher concentrations.
  • Further, solution A and/or solution B preferably are solutions of the at least one structural compound or the at least one linker compound, respectively, in distilled water. Thus, both compounds are present in an un-buffered solution. Due to the trifluoro acetic acid adhering to the peptide linker compound of solution B, the pH of this solution will be reduced. This leads to a pH which is preferably under 4 for the resulting mixture of solutions A and B. More preferably, the pH of the resulting solution is around 3.5.
  • Alternatively, prior to mixing with solution B, solution A) may be mixed with an additional solution C comprising a biologically active compound which is dimerizable with the structural compound by a selective reaction between a nucleophile and a conjugated unsaturated bond or group. This bioactive compound may comprise an adhesion site, such as the RGD sequence from fibronectin or the YISG sequence from laminin; a growth factor binding site, such as a heparin binding site; a protease binding site or a therapeutically active compound. Preferably, the bioactive compound comprises a cell adhesion site, most preferably an RGD sequence.
  • Preferably, solution C comprises 0.1 to 10% w/v of the biologically active compound. More preferably, solution C comprises between 0.1 and 5%, most preferably between 0.1 and 2% of the biologically active compound.
  • Variation of the respective amounts of the structural compound in solution A and the biologically active compound in the optional solution C as well as the concentration and nature (e.g. amino acid sequence) of the linker compound in solution B allows the production of hydrogel precursor formulations with different characteristics.
  • Although the possibilities of variation of the concentration of the compounds in each of solution A and B are many, it is preferred that the concentration of the compounds is selected such that the molar ratio of the nucleophile to the conjugated unsaturated bond or group results in optimal physicochemical properties, like maximum shear modulus and minimal swelling characteristics of the final gels. Normally the optimal ratio of the nucleophile to the conjugated unsaturated bond or group is within the range of 0.8:1 to 1.3:1. This ensures the formation of a hydrogel where almost all active groups have undergone the selective reaction, so that side reactions of any of the reactive groups are considerably reduced.
  • Further the precursor solution may be subjected to filtration prior to the lyophilization step. The filtration preferably is a sterile filtration. Any undissolved compounds as well as bacterial contaminations may be removed from the mixture prior to the lyophilization step.
  • Preferably, the pre-mixed precursor solution is aliquoted and filled into containers, preferably sterile containers, before the lyophilization step. This allows the production of single containers containing a defined amount of a hydrogel precursor formulation. The containers may be of any suitable material, such as plastic or glass. Preferably the containers are vials.
  • The containers are preferably filled with sterile nitrogen gas and capped immediately after the lyophilization step. This protects the hydrogel precursor powder from contact with moisture and/or oxygen, which may lead to premature polymerization or oxidation of the nucleophiles.
  • Another object of the present invention is the use of a hydrogel precursor formulation as described herein for the manufacture of a hydrogel.
  • A further object of the present invention is to provide a simple to use system for the production of hydrogels with highly reproducible results. This problem is solved with a kit according to claim 20.
  • The kit of the present invention comprises at least one container filled with a hydrogel precursor formulation as described herein and a container with a reaction buffer. The container contains preferably an amount of precursor formulation powder, which will result in a gel with predefined characteristics when re-suspended with a defined amount of reaction buffer.
  • The reaction buffer preferably has a pH above 7. More preferably the reaction buffer has a pH between 7 and 8. The buffer preferably comprises HEPES, preferably at 0.3M concentration with the pH adjusted to a value between 7 and 8. This allows for a sufficiently fast polymerization reaction.
  • A further object of the present invention is to provide an easy to use method to produce a hydrogel. This objective is achieved with a method according to claim 22.
  • The method of production of a hydrogel comprises the steps of:
      • Re-suspending a hydrogel precursor formulation as described herein in a buffer having pH 7, more preferably with a buffer having a pH between 7 and 8;
      • Optionally adding a cell culture suspension to the precursor suspension;
      • Casting of a gel precursor with the precursor suspension; and
      • Polymerization of the gel precursor for at least 30 minutes, preferably for 30 to 45 minutes, preferably in an incubator at 37° C.
  • The hydrogel precursor formulation of the present invention is polymerizable under physiological conditions, which allows the addition of a cell culture to the precursor suspension so that the cells may be evenly distributed in the suspension prior to gelation. This would not readily be possible with any other precursor system.
  • Further details and benefits of the present invention will be apparent from the following figures and examples:
  • FIG. 1: Schematic representation of an embodiment of a manufacturing process of a hydrogel precursor formulation according to the present invention
  • FIG. 2: Schematic representation of a second embodiment of a manufacturing process of a hydrogel precursor formulation according to the present invention
  • FIG. 3: Schematic representation of a third embodiment of a manufacturing process of a hydrogel precursor formulation according to the present invention
  • FIG. 1 shows a schematic representation of an embodiment of a manufacturing process of a hydrogel precursor formulation according to the present invention. Solution A comprising 7.5% w/v of branched PEG with 4 arms functionalized with vinyl sulfone is added to solution B comprising 1% w/v of a peptide sequence with two cysteines, one near the C- and the other near the N-terminus, in mixing step 1.
  • For example, 275 mL of solution A comprising 7.5% w/v of functionalized PEG is added to 425 mL of solution B comprising 1% w/v of a linker peptide.
  • Solutions A and B are prepared by suspending the respective compounds in distilled water. For solution B, the peptide linker compound is preferably added to the water in small portions. Mixing is carried out under continuous stirring with a magnetic stirrer at 400 RPM. The so obtained precursor solution 4 is subsequently subjected to a sterile filtration step 5, e.g. using a Mini Kleenpak filter (PALL Corp.) with a PTFE membrane with an absolute rating of 0.2 μm, yielding the filtrated precursor solution 6. This solution is then subjected to lyophilization step 7, resulting in the hydrogel precursor formulation 8 in form of a powder. The resulting powder is in the form of a stable compact cake.
  • Lyophylization step 7 may be carried out by first freezing the solution a shelf at −50° C. for 150 min, followed by a first drying step at −10° C. for 570 min at a pressure of 0.26 mbar. A second drying step follows at a temperature of 20° C. for 180 min at a pressure of 0.02 mbar.
  • On FIG. 2 a second embodiment of a manufacturing process of a hydrogel precursor formulation according to the present invention is schematically represented. In this embodiment Solution A comprising 7.5% w/v of a branched PEG with 4 arms functionalized with vinyl sulfone is mixed with Solution C comprising 2% w/v of a peptide comprising an RGD sequence in mixing step 2.
  • For example, 275 mL of Solution A comprising 7.5% w/v of a functionalized four branched PEG is mixed with 5 mL of Solution C comprising 2% w/v of a bioactive compound. This solution is then subsequently mixed with solution B comprising 1% w/v of a peptide linker comprising two cysteins, one near the C- and the other near the N-terminus, in mixing step 1.
  • The so obtained precursor solution 4 is subsequently subjected to a sterile filtration step 5, yielding the filtrated precursor solution 6. This solution is then subjected to lyophilization step 7, resulting in the hydrogel precursor formulation 8 in form of a powder.
  • FIG. 3 shows a third embodiment of a manufacturing process of a hydrogel precursor formulation according to the present invention. Solution A comprising 7.5% w/v of branched PEG with 4 arms functionalized with vinyl sulfone is mixed with Solution B comprising 1% w/v of a linker peptide sequence with a cysteine near the C- and N-terminus, in mixing step 1. Solutions A and B are prepared by suspending the respective compounds in distilled water. The mixing is carried out under continuous stirring with a magnetic stirrer, preferably at 400 RPM. The so obtained precursor solution 4 is subsequently subjected to a sterile filtration step 5, yielding the filtrated precursor solution 6. This solution is then aliquoted into containers in aliqoting step 9. Each container may contain only a small amount, preferably 0.3-0.4 mL. The containers are sealable and are preferably made of glass. The aliquoted precursor solution 10 is the lyophilized in lyophilization step 7 to yield the precursor formulation powder 8.

Claims (22)

1-22. (canceled)
23. A hydrogel precursor formulation comprising at least one structural compound and at least one linker compound, wherein said structural compound and said linker compound are polymerizable by a selective reaction between a nucleophile and a conjugated unsaturated bond or group, wherein the hydrogel precursor formulation is in the form of an unreacted powder.
24. A hydrogel precursor formulation as claimed in claim 23, wherein the formulation additionally comprises at least one bioactive compound, preferably comprising an RGD peptide sequence, which is dimerizable with the structural compound through a selective reaction between a nucleophile and a conjugated unsaturated bond or group.
25. A hydrogel precursor formulation as claimed in claim 23, wherein the structural compound is a multi-branched polyethylene glycol with vinyl sulfone end groups, preferably PEG-tri(vinyl sulfone) or PEG-tetra(vinyl sulfone).
26. A hydrogel precursor formulation as claimed in claim 23, wherein the linker comprises at least two nucleophilic groups, preferably thiol groups.
27. A hydrogel precursor formulation as claimed in claim 23, wherein the linker is a peptide comprising at least two cysteins, preferably located near the N- and C-terminus of the peptide.
28. A precursor formulation as claimed in claim 23, wherein the structural compound and/or the linker compound are selected such that the selective reaction is hindered at or below pH 4.0.
29. A precursor formulation as claimed in claim 28, wherein the reaction rate is at least twice as fast at pH 7.5 compared to pH 7.0.
30. Process for the production of a hydrogel precursor formulation in form of a powder comprising the steps of:
providing a first solution A of at least one structural compound;
providing a second solution B comprising at least one linker compound;
mixing of the solutions A and B; and
lyophilization of the resulting precursor solution
wherein the at least one structural compound and the at least one linker compound are polymerizable by a selective reaction between a nucleophile and a conjugated unsaturated bond or group, wherein the solutions A and B are mixed under conditions which hinder the selective reaction.
31. Process as claimed in claim 30, wherein the solutions are mixed at or below pH 4.0, preferably at pH 3.5.
32. Process as claimed in claim 30, wherein solution A comprises 5-10% w/v of the at least one structural compound, preferably 7.5% w/v.
33. Process as claimed in claim 30, wherein solution B comprises 0.1-2% w/v of the at least one linker compound, preferably 1% w/v.
34. Process as claimed in claim 30, wherein a solution C comprising at least one biologically active compound which is dimerizable with the structural compound by a selective reaction between a nucleophile and a conjugated unsaturated bond or group is added to solution A prior to the mixing of the solutions A and B.
35. Process as claimed in claim 34, wherein solution C comprises 0.1-10% w/v of the at least one active compound, preferably 2%.
36. Process as claimed in claim 30, wherein solution A, solution B and/or solution C are a solution of the at least one structural compound, the at least one linker compound or the at least one biologically active compound in distilled water.
37. Process as claimed in claim 30, wherein the concentration of the compounds is selected such that the molar ratio of the nucleophile to the conjugated unsaturated bond or group is in the range of 0.8:1 to 1.3:1.
38. Process as claimed in claim 30, wherein the precursor solution is subjected to filtration prior to the lyophilization step, preferably to sterile filtration.
39. Process as claimed in claim 30, wherein the precursor solution is aliquoted and filled into containers, preferably under sterile conditions before the lyophilization step.
40. Process as claimed in claim 39, wherein the containers are filled with sterile nitrogen gas and capped immediately after the lyophilization step.
41. Kit of parts comprising at least one container filled with a hydrogel precursor formulation as claimed in claim 23 and a container with a reaction buffer.
42. Kit of parts as claimed in claim 41, wherein the reaction buffer has a pH of at least 7, preferably the reaction buffer has a pH between 7 and 8.
43. Method of production of a hydrogel comprising the steps of
Re-suspending a hydrogel precursor formulation as claimed in claim 23 in a buffer having at least pH 7
Optionally adding a cell culture suspension to the precursor suspension
Casting of at least one gel with the precursor suspension
Polymerization of the at least one gel precursor for at least 30 minutes, preferably in an incubator at 37° C.
US13/640,141 2010-04-22 2011-04-19 Hydrogel Precursor Formulation and Production Process Thereof Abandoned US20130040357A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP10160796A EP2380920A1 (en) 2010-04-22 2010-04-22 Hydrogel precursor formulation and production process thereof
EP10160796.8 2010-04-22
PCT/EP2011/056187 WO2011131642A1 (en) 2010-04-22 2011-04-19 Hydrogel precursor formulation and production process thereof

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2011/056187 A-371-Of-International WO2011131642A1 (en) 2010-04-22 2011-04-19 Hydrogel precursor formulation and production process thereof

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/684,490 Division US9850461B2 (en) 2010-04-22 2015-04-13 Hydrogel precursor formulation and production process thereof

Publications (1)

Publication Number Publication Date
US20130040357A1 true US20130040357A1 (en) 2013-02-14

Family

ID=42224660

Family Applications (3)

Application Number Title Priority Date Filing Date
US13/640,141 Abandoned US20130040357A1 (en) 2010-04-22 2011-04-19 Hydrogel Precursor Formulation and Production Process Thereof
US14/684,490 Active 2031-06-18 US9850461B2 (en) 2010-04-22 2015-04-13 Hydrogel precursor formulation and production process thereof
US15/846,534 Abandoned US20180119092A1 (en) 2010-04-22 2017-12-19 Hydrogel precursor formulation and production process thereof

Family Applications After (2)

Application Number Title Priority Date Filing Date
US14/684,490 Active 2031-06-18 US9850461B2 (en) 2010-04-22 2015-04-13 Hydrogel precursor formulation and production process thereof
US15/846,534 Abandoned US20180119092A1 (en) 2010-04-22 2017-12-19 Hydrogel precursor formulation and production process thereof

Country Status (9)

Country Link
US (3) US20130040357A1 (en)
EP (2) EP2380920A1 (en)
JP (2) JP6185837B2 (en)
CN (1) CN102858845B (en)
AU (1) AU2011244362B2 (en)
BR (1) BR112012027053B1 (en)
MX (1) MX345820B (en)
RU (1) RU2561108C2 (en)
WO (1) WO2011131642A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160077081A1 (en) * 2013-04-25 2016-03-17 Qgel Sa Method for a cell-based drug screening assay and the use thereof
WO2017040989A1 (en) * 2015-09-04 2017-03-09 Saint Louis University Custom multiwell plate design for rapid preparation and assembly of photo-patterned hydrogels

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2888951B1 (en) 2005-07-20 2008-02-08 Essilor Int RANDOMIZED PIXELLIZED OPTICAL COMPONENT, METHOD FOR MANUFACTURING THE SAME, AND USE THEREOF IN THE MANUFACTURE OF A TRANSPARENT OPTICAL ELEMENT
WO2011140441A2 (en) 2010-05-06 2011-11-10 Children's Hospital Medical Center Methods and systems for converting precursor cells into intestinal tissues through directed differentiation
CN104080489A (en) * 2011-12-02 2014-10-01 香港科技大学 Injectable gelling material
EP3712254A1 (en) 2014-05-28 2020-09-23 Children's Hospital Medical Center Methods and systems for converting precursor cells into gastric tissues through directed differentiation
US11584916B2 (en) 2014-10-17 2023-02-21 Children's Hospital Medical Center Method of making in vivo human small intestine organoids from pluripotent stem cells
EP4177335A1 (en) 2016-05-05 2023-05-10 Children's Hospital Medical Center Methods for the in vitro manufacture of gastric fundus tissue and compositions related to same
EP3275997A1 (en) * 2016-07-28 2018-01-31 QGel SA Hydrogel precursor formulation and the use thereof
SG10202105768WA (en) 2016-12-05 2021-06-29 Childrens Hospital Med Ct Colonic organoids and methods of making and using same
EP3789049A1 (en) 2019-09-06 2021-03-10 QGel SA Method for obtaining healthy intestinal organoids
CN114787336A (en) 2019-12-04 2022-07-22 精准癌症技术公司 Methods and kits for cell growth
CN113980292A (en) * 2021-10-03 2022-01-28 淮阴工学院 Preparation method of novel biocompatible polyether sulfone-based hydrogel
CN114652903A (en) * 2022-05-06 2022-06-24 上海益思妙医疗器械有限公司 Rapid polymerization medical hydrogel and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6703047B2 (en) * 2001-02-02 2004-03-09 Incept Llc Dehydrated hydrogel precursor-based, tissue adherent compositions and methods of use
US20050065281A1 (en) * 2001-11-07 2005-03-24 Mathias Lutolf Synthetic matrix for controlled cell ingrowth and tissue regeneration
US20090324720A1 (en) * 2008-04-22 2009-12-31 Angiotech Pharmaceuticals, Inc. Biocompatible crosslinked hydrogels, drug-loaded hydrogels and methods of using the same

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9613858D0 (en) 1996-07-02 1996-09-04 Cortecs Ltd Hydrophobic preparations
US6201072B1 (en) * 1997-10-03 2001-03-13 Macromed, Inc. Biodegradable low molecular weight triblock poly(lactide-co- glycolide) polyethylene glycol copolymers having reverse thermal gelation properties
AU773914B2 (en) 1999-02-01 2004-06-10 Eidgenossische Technische Hochschule Zurich Biomaterials formed by nucleophilic addition reaction to conjugated unsaturated groups
US6958212B1 (en) * 1999-02-01 2005-10-25 Eidgenossische Technische Hochschule Zurich Conjugate addition reactions for the controlled delivery of pharmaceutically active compounds
ES2255502T3 (en) 1999-07-21 2006-07-01 Amgen Inc. VGF POLYPEPTIDES AND METHODS TO TREAT VGF-RELATED DISORDERS.
ATE546481T1 (en) * 1999-08-27 2012-03-15 Angiodevice Internat Gmbh BIOLOGICALLY COMPATIBLE POLYMER DEVICE
SE0403014D0 (en) * 2004-12-10 2004-12-10 Straumann Holding Ag New protein formulation
AU2005318097A1 (en) * 2004-12-22 2006-06-29 Kuros Biosurgery Ag Michael-type addition reaction functionalised peg hydrogels with factor XIIIA incorporated biofactors
TWI436793B (en) * 2006-08-02 2014-05-11 Baxter Int Rapidly acting dry sealant and methods for use and manufacture
JP2010519183A (en) 2007-02-06 2010-06-03 インセプト エルエルシー Polymerization using protein precipitation for elution of physiological solutions
US20090042825A1 (en) 2007-08-06 2009-02-12 Majed Matar Composition, method of preparation & application of concentrated formulations of condensed nucleic acids with a cationic lipopolymer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6703047B2 (en) * 2001-02-02 2004-03-09 Incept Llc Dehydrated hydrogel precursor-based, tissue adherent compositions and methods of use
US20050065281A1 (en) * 2001-11-07 2005-03-24 Mathias Lutolf Synthetic matrix for controlled cell ingrowth and tissue regeneration
US20090324720A1 (en) * 2008-04-22 2009-12-31 Angiotech Pharmaceuticals, Inc. Biocompatible crosslinked hydrogels, drug-loaded hydrogels and methods of using the same

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Dictionary of Chemical Engineering. Caking.Oxford University Press (publisher). First edition. Copyright 2014 Oxford University Press. Ed.: Carl Schaschke. Editorial Offices, Oxford, UK. pg. 49 *
Lutolf, M.P. et al. 2003. Synthesis and Physicochemical Characterization of End-Linked Poly (ethylene glycol)-co-peptide Hydrogels Formed by Michael-Type Addition. Biomacromolecules 4:713-722. specif. pp. 713-714 *
Monahan, F.J. et al., Effect of pH and temperature on protein unfolding and thiol/disulfide interchange reactions during heat-induced gelation of whey proteins. Journal of Food Chemistry (1995) 43:46-52; pp. 46, 47, 49 *
Sugahara, K.N. et al. 2010.Coadministration of a Tumor-Penetrating Peptide Enhances the Efficacy of Cancer Drugs. Science 328: 1031-1035. Published online 08 April 2010. specif. pg. 1032, 1035 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160077081A1 (en) * 2013-04-25 2016-03-17 Qgel Sa Method for a cell-based drug screening assay and the use thereof
WO2017040989A1 (en) * 2015-09-04 2017-03-09 Saint Louis University Custom multiwell plate design for rapid preparation and assembly of photo-patterned hydrogels

Also Published As

Publication number Publication date
US9850461B2 (en) 2017-12-26
JP6185837B2 (en) 2017-08-23
CN102858845B (en) 2017-05-03
US20180119092A1 (en) 2018-05-03
US20150247119A1 (en) 2015-09-03
CN102858845A (en) 2013-01-02
MX345820B (en) 2017-02-16
EP2561005B1 (en) 2016-11-09
BR112012027053A2 (en) 2016-07-19
RU2561108C2 (en) 2015-08-20
BR112012027053B1 (en) 2020-03-03
AU2011244362B2 (en) 2014-12-04
EP2380920A1 (en) 2011-10-26
JP2016033139A (en) 2016-03-10
JP2013531691A (en) 2013-08-08
WO2011131642A1 (en) 2011-10-27
EP2561005A1 (en) 2013-02-27
RU2012149729A (en) 2014-05-27
AU2011244362A1 (en) 2012-11-15
MX2012012248A (en) 2012-11-23

Similar Documents

Publication Publication Date Title
US9850461B2 (en) Hydrogel precursor formulation and production process thereof
US10125222B2 (en) Method for the preparation of high molecular weight oligo(alkylene glycol) functionalized polyisocyanopeptides
KR20010085742A (en) Polyamide chains of precise length, methods to manufacture them and their conjugates with proteins
US20080125581A1 (en) Methods and compositions for controlled polypeptide synthesis
US10760068B2 (en) Hydrogel precursor formulation and the use thereof
US20100197888A1 (en) Method for Manufacturing Linear Polyethylenimine (PEI) for Transfection Purpose and Linear PEI Obtained with Such Method
CN111218011B (en) Polyethylene glycol-based hydrogel and preparation method and application thereof
US8841408B2 (en) Macromonomers and hydrogel systems using native chemical ligation, and their methods of preparation
KR101512759B1 (en) Polyethyleneglycol/polyester block copolymers with ionic functional group in side chain or chain-end, and method for preparing the same
Khelfallah et al. Synthesis of a new PHEMA/PEO enzymatically biodegradable hydrogel
Zhang et al. Synthesis and characterization of poly (L-alanine)-block-poly (ethylene glycol) monomethyl ether as amphiphilic biodegradable co-polymers
WO2011145077A2 (en) Branched polypeptides and their use in promoting adhesion of cells to solid surfaces
JP2023163455A (en) Polymer having reactive functional groups
Proks et al. Biodegradable copolymers carrying cell-adhesion peptide sequences
Edson Protease-Catalyzed Synthesis of N-Acryloyl-Oligopeptides and Histidine-Containing Oligopeptides
US6326178B1 (en) Method for synthesizing a composite of a conductive macromolecule and a protein
JP2007230891A (en) Peptide fiber aggregate
Kweon et al. PEGylation of silk fibroin model peptide

Legal Events

Date Code Title Description
AS Assignment

Owner name: QGEL SA, SWITZERLAND

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:RIZZI, SIMONE;LUTOLF, MATTHIAS;REEL/FRAME:029096/0878

Effective date: 20120831

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION