US20130035555A1 - Systems, implants, tools, and methods for treatment of pelvic conditions - Google Patents

Systems, implants, tools, and methods for treatment of pelvic conditions Download PDF

Info

Publication number
US20130035555A1
US20130035555A1 US13/566,756 US201213566756A US2013035555A1 US 20130035555 A1 US20130035555 A1 US 20130035555A1 US 201213566756 A US201213566756 A US 201213566756A US 2013035555 A1 US2013035555 A1 US 2013035555A1
Authority
US
United States
Prior art keywords
retractor
tissue
segments
distal end
peritoneum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/566,756
Inventor
James A. Alexander
John R. Frigstad
Carrie L. Herman
Justin H. Huelman
Karl A. Jagger
Chaouki A. Khamis
Michael A. Knipfer
Jeffrey M. O'Hern
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AMS Research LLC
Original Assignee
AMS Research LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US201161515685P priority Critical
Application filed by AMS Research LLC filed Critical AMS Research LLC
Priority to US13/566,756 priority patent/US20130035555A1/en
Assigned to AMS RESEARCH CORPORATION reassignment AMS RESEARCH CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: FRIGSTAD, JOHN R., KHAMIS, CHAOUKI A., HERMAN, CARRIE L., HUELMAN, Justin H., JAGGER, KARL A., ALEXANDER, JAMES A., KNIPFER, MICHAEL A., O'HERN, JEFFREY M.
Publication of US20130035555A1 publication Critical patent/US20130035555A1/en
Assigned to DEUTSCHE BANK AG NEW YORK BRANCH, AS COLLATERAL AGENT reassignment DEUTSCHE BANK AG NEW YORK BRANCH, AS COLLATERAL AGENT GRANT OF SECURITY INTEREST IN PATENTS Assignors: AMERICAN MEDICAL SYSTEMS, INC., AMS RESEARCH CORPORATION, ENDO PHARMACEUTICALS SOLUTIONS, INC., ENDO PHARMACEUTICALS, INC., LASERSCOPE
Assigned to AMS RESEARCH, LLC, LASERSCOPE, AMERICAN MEDICAL SYSTEMS, LLC reassignment AMS RESEARCH, LLC RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: DEUTSCHE BANK AG NEW YORK BRANCH
Application status is Abandoned legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/02Surgical instruments, devices or methods, e.g. tourniquets for holding wounds open; Tractors
    • A61B17/0218Surgical instruments, devices or methods, e.g. tourniquets for holding wounds open; Tractors for minimally invasive surgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00163Optical arrangements
    • A61B1/00165Optical arrangements with light-conductive means, e.g. fibre optics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/32Devices for opening or enlarging the visual field, e.g. of a tube of the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/00234Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
    • A61B2017/00292Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery mounted on or guided by flexible, e.g. catheter-like, means
    • A61B2017/00336Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery mounted on or guided by flexible, e.g. catheter-like, means with a protective sleeve, e.g. retractable or slidable
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00743Type of operation; Specification of treatment sites
    • A61B2017/00805Treatment of female stress urinary incontinence

Abstract

Described are various embodiments of surgical procedure systems, devices, tools, and methods, useful for treating pelvic conditions such as vaginal prolapse and other conditions caused by muscle and ligament weakness, the devices and tools being useful for accessing a posterior region of pelvic anatomy, and related methods. Such devices can include retractors, introducers, and other devices for accessing desired areas of a patient's anatomy.

Description

    CROSS REFERENCE TO RELATED APPLICATION
  • This application claims the benefit under 35 U.S.C. §119(e) of U.S. Provisional Patent Application No. 61/515,685, filed Aug. 5, 2011 and titled “Systems, Implants, Tools, and Methods for Treatments of Pelvic Conditions,” which is incorporated herein by reference in its entirety.
  • FIELD OF THE INVENTION
  • The present invention relates to tools and related methods for treating pelvic conditions by use of a pelvic implant to support pelvic tissue. The pelvic treatments include, for example, treatment of vaginal prolapse by laparoscopic, abdominal, and transvaginal procedures, and treatment of urethral incontinence (e.g., stress urinary incontinence) by a single incision retropubic procedure.
  • BACKGROUND
  • Pelvic health for men and women is a medical area of increasing importance, at least in part due to an aging population. Examples of common pelvic ailments include incontinence (e.g., fecal and urinary incontinence), pelvic tissue prolapse (e.g., female vaginal prolapse), and other conditions that affect the pelvic floor. Pelvic disorders such as these can be caused by weakness or damage to normal pelvic support systems. Common etiologies include childbearing, removal of the uterus, connective tissue defects, prolonged heavy physical labor, and postmenopausal atrophy.
  • Urinary incontinence can further be classified as including different types, such as stress urinary incontinence (SUI), urge urinary incontinence, mixed urinary incontinence, among others. Urinary incontinence can be characterized by the loss or diminution in the ability to maintain the urethral sphincter closed as the bladder fills with urine. Male or female stress urinary incontinence (SUI) generally occurs when the patient is physically stressed.
  • Pelvic floor disorders include cystocele, rectocele, and prolapse such as anal, uterine, and vaginal vault prolapse. Vaginal vault prolapse is a condition that occurs when the upper portion of the vagina loses its normal shape and moves downwardly into the vaginal canal. In its severest forms, vaginal vault prolapse can result in the distension of the vaginal apex outside of the vagina. Vaginal vault prolapse may occur alone, such as can be caused by weakness of the pelvic and vaginal tissues and muscles, or can be associated with a rectocele, cystocele and/or enterocele. A rectocele is caused by a weakening or stretching of tissues and muscles that hold the rectum in place, which can result in the rectum moving from its usual location to a position where it presses against the back wall of the vagina. A cystocele is a hernia of the bladder, usually into the vagina and introitus. An enterocele is a vaginal hernia in which the peritoneal sac containing a portion of the small bowel extends into the rectovaginal space. All of these conditions can represent challenging forms of pelvic disorders for surgeons to treat. Some of these treatments include, for example, abdominal sacralcolpopexy (SCP), which may be performed laparoscopically, and transvaginal sacralcolpopexy (TSCP), wherein these procedures are performed using a variety of different instruments, implants, and surgical methods. It is known to repair vaginal vault prolapse by suturing the vaginal vault (e.g., by stitches) to the supraspinous ligament or by attaching the vaginal vault through mesh or fascia to the sacrum.
  • There is ongoing need to provide physicians with improved methods and associated instruments for treating pelvic conditions including incontinence, vaginal prolapse (e.g., vaginal vault prolapse), and other pelvic organ prolapse conditions, wherein such methods can include those that are minimally invasive, safe, and highly effective.
  • SUMMARY
  • Devices, systems, and methods as described can be used to treat pelvic conditions such as incontinence (various forms such as fecal incontinence, stress urinary incontinence, urge incontinence, mixed incontinence, etc.), vaginal prolapse (including various forms such as enterocele, cystocele, rectocele, apical or vault prolapse, uterine descent, etc.), and other conditions caused by muscle and ligament weakness, hysterectomies and the like.
  • Certain described embodiments of devices and methods involve the use of a retractor or “expansion member” adapted to provide port access and guidance to a surgical site. These embodiments involve placement of an elongate expansion member through a body orifice or incision and to a surgical site, to create an access space from the exterior of the patient to the surgical site. The expansion member is useful to retract tissue, create an access space, and allow surgical instruments such as sharp tools to safely access the surgical site. Certain of these described embodiments relate generally to various means, devices, and techniques for providing a clear view of a surgical site in a region of a sacrum, and nearby anatomy, through a vaginal incision. In several examples, this is provided by way of a device that can be inserted into a vaginal incision and then used to expand or dilate tissue.
  • In described examples, desired retraction functionality is provided by a device that can be changed in its size or shape, to contact and then move, expand, or dilate (e.g., refract) tissue. An expansion member may include two or more pieces (e.g., longitudinal panels or blades) that are optionally hinged or slidably connectable and able to move laterally or longitudinally relative to each other. The pieces can be moveable relative to each other in a manner that allows the pieces to define a space (access space) therebetween, the space being capable of being varied in size, e.g., “expandable.” In specific embodiments, the device can be inserted into a vaginal incision and then expanded, dilated, manipulated, or otherwise used for tissue retraction to create a working space between the vaginal introitus and the vaginal apex, a posterior location of a pelvic region, or a region of sacral anatomy. Certain preferred versions of these tools can include distal end functionality to add efficiency to a surgical procedure, such as a lighting feature, an anchor driving feature, an optical feature that allows viewing of the surgical site, or hooks and/or other attachment features.
  • Certain described embodiments relate to surgical tools having one or more surfaces capable of retracting tissue (a retractor, such as an expansion member), and adapted to provide access and guidance to a surgical site. These embodiments involve various surgical tools and related methods designed to provide improved and safer access to a surgical site or anatomy, for example so that sharp objects and tools can be passed to a surgical location without having to make multiple attempts from an incision to an anatomical target area. Certain of these described embodiments relate generally to various means, devices, and techniques for providing a clear view and unobstructed access to a surgical site. In several examples, this is provided by way of an expandable device, or other devices capable of being used to retract tissue, that can be inserted into an incision site and then expanded, dilated, manipulated, or otherwise used for tissue retraction. Certain preferred versions of these tools can include distal end functionality to add efficiency to a surgical procedure.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The present invention will be further explained with reference to the appended Figures, wherein like structure is referred to by like numerals throughout the several views, and wherein:
  • FIGS. 1A-1C are perspective, top, and side views, respectively, of an embodiment of a retractor and introducer system of the invention;
  • FIG. 2 is a side view of a retraction tool of the invention;
  • FIG. 3 is a side schematic view of a retractor of the invention as it can be positioned relative to a patient's anatomy;
  • FIGS. 4A and 4B are top views of a retractor of the invention, illustrated in closed and open configurations, respectively;
  • FIGS. 5A-5C are top views of an embodiment of a retractor;
  • FIGS. 6A and 6B are perspective and end views, respectively, of a retractor embodiment in a first configuration, and FIGS. 6C and 6D are perspective and end views, respectively, of the same retractor embodiment in a second configuration;
  • FIG. 7 is a perspective view of a retractor embodiment of the invention;
  • FIGS. 8A and 8B are schematic front views of a retractor and introducer of the invention;
  • FIG. 9 is a front view of a retractor and introducer embodiment of the invention;
  • FIG. 10 is a perspective view of a retractor of the invention;
  • FIG. 11 is a front view of a retractor of the invention in an exemplary location relative to a patient's anatomy;
  • FIGS. 12A and 12B are front and side views, respectively, of a retractor in a collapsed state;
  • FIGS. 13A and 13B are front and side views, respectively, of the retractor of FIGS. 12A and 12B in an expanded or open state;
  • FIGS. 14A and 14B are front views of an embodiment of a retractor and introducer;
  • FIGS. 15A and 15B are front views of a retractor of the invention;
  • FIGS. 16A and 16B are perspective views of a retractor of the invention;
  • FIG. 17 is a front schematic view of an expansion member and probe of the invention;
  • FIG. 18 is a front view of a retractor system of the invention;
  • FIG. 19A is a perspective view of a retractable hook system for use with a retractor of the invention;
  • FIG. 19B is a perspective view of a retractor positioned relative to a peritoneum;
  • FIG. 19C is an end view of the retractor of FIG. 19B;
  • FIGS. 20A and 20B are perspective and front views of an implant placement relative to a patient's anatomy;
  • FIGS. 21A-21D are perspective views of a retractor and introducer being used to insert an implant;
  • FIG. 22 is a side view of the use of a light with a retractor for an implantation procedure;
  • FIG. 23 is a top view of an embodiment of a retractor of the invention;
  • FIGS. 24A and 2413 are schematic front views of a tool for use with an implant;
  • FIGS. 25A and 25B are bottom perspective and front views, respectively, of an implant of the invention;
  • FIG. 26 is a schematic front view of an introducer being used to position an implant within a patient's anatomy;
  • FIGS. 27A and 27B are top perspective and top views, respectively, of a retractor of the invention;
  • FIG. 28 is a side view of an embodiment of a retractor;
  • FIGS. 29A-29C are top perspective views of an anchor, a ring, and an anchor and ring system of the invention, respectively; and
  • FIGS. 30A and 30B are perspective views of a tool being used with the anchor and ring of FIGS. 29A-29C.
  • DETAILED DESCRIPTION
  • Pelvic floor disorders include cystocele, rectocele, enterocele, uterine and vaginal vault prolapse, urinary and fecal incontinence, among others, in men and women. These disorders typically result from weakness or damage to normal pelvic support systems. The most common etiologies include childbearing, removal of the uterus, connective tissue defects, prolonged heavy physical labor, and postmenopausal atrophy.
  • Vaginal vault prolapse is often associated with a rectocele, cystocele, or enterocele. It is known to repair vaginal vault prolapse by suturing to the supraspinous ligament or to attach the vaginal vault through mesh or fascia to the sacrum. Many patients suffering from vaginal vault prolapse also require a surgical procedure to correct stress urinary incontinence that is either symptomatic or latent.
  • A sacral colpopexy is a procedure for providing vaginal vault suspension. It may be performed through an abdominal incision, a vaginal incision, or laparoscopically and entails suspension (by use of an implant such as a strip of mesh) of the vaginal cuff to a region of sacral anatomy such as the sacrum (bone itself), a nearby sacrospinous ligament, uterosacral ligament, or anterior longitudinal ligament at the sacral promontory. In some sacral colpopexy procedures that also involve a hysterectomy, an implant can attach to posterior vaginal tissue remaining after removal of the uterus and cervix, and attaches also to anatomy to support the vaginal tissue, at or around the sacrum such as to uterosacral ligaments or to the sacrum itself (i.e., to a component of the sacral anatomy).
  • As used herein, the term “anchor” refers non-specifically to any structure that can connect an implant to tissue of a pelvic region, to secure the implant to that tissue. The tissue may be bone, or a soft tissue such as a muscle, fascia, ligament, tendon, or the like. The anchor may be any known or future-developed structure, or a structure described herein, useful to connect an implant to such tissue, including but not limited to a clamp, a suture, a soft tissue anchor such as a self-fixating tip, a helical anchor such as a screw-type or corkscrew-type anchor that can be driven into bone or soft tissue using rotation, a bone anchor (e.g., screw), or other structures known or later developed for connecting an implant to soft tissue or bone of a pelvic region.
  • Traditional pelvic implant installation procedures (e.g., sacral colpopexy procedures) may be performed through an abdominal opening or laparoscopically. As such, special skills and equipment are needed to complete the procedure effectively. And abdominal wounds are created. According to methods described herein, a tissue expander or other retractor devices and tools can be used according to minimally invasive sacral colpopexy procedures with no abdominal wounds or potential organ perforation or dissection. Examples of similar methods and tools, expansion members, and soft tissue anchors (which may include structures or features similar to those herein) are described in Assignee's co-pending International Patent Application docket identification number AMS0193WO, having International Patent Application number PCT/US2010/062577, filed Dec. 30, 2010, the entirety of which is incorporated by reference.
  • As described, a retractor or expansion member may include distal end functionality such as an anchoring functionality, viewing and lighting functionalities, size adjustability, suction, dissection, anchor delivery, implant delivery, and fluid delivery, among others. By use of a retractor or expansion member having viewing and lighting functions, clear visualization of internal tissue is provided for placement and anchoring of an implant, e.g., to a region of sacral anatomy. A physician is able to guide a distal end or shaft of an implant delivery tool (i.e., “needle”) to a surgical location, with direct viewing, is able to visually identify potential areas of risk and guide or steer the tool to a desired target tissue site, e.g., for placing an anchor or implant. With a visualization feature, a faster learning curve is provided for physicians to safely pass the needle with the aid of a scope and optical viewing, and the knowledge from scope usage in surgery is applied to and benefits surgical procedures.
  • According to presently described systems, devices, and methods, an expansion member, “retractor,” or “speculum,” or the like can be useful for accessing a male or female pelvic anatomy during a pelvic procedure, especially a female pelvic anatomy, to access tissue of the posterior pelvic region such as to perform a sacral colpopexy procedure. An expansion member or other tool can optionally have a length to allow such access when placed transvaginally, e.g., a length to allow a distal end of the tool to access pelvic tissue while a proximal end of the tool extends through a vaginal opening and to a location external to the patient. The proximal end of the tool remains external to the patient during use to allow a surgeon or other user to access and manipulate the proximal end and access a surgical site at the distal end. A shaft extends between the distal and the proximal ends, and may optionally include an enclosure or tube along some or all of the length.
  • According to certain embodiments, a retractor or expansion member can optionally include a shaft portion that includes a full or partial enclosure or “tube” (whether a partial tube or complete tube) to provide partial or continuous structure and support along a length of the tool between the distal end and proximal end, to separate tissue from a working space. The structure may extend lengthwise along a partial or complete length of the device, and in a lateral direction the structure can be a complete or partial structure; the structure may be in the form of a tube, having structure extending around a complete circumference, e.g., a circular or non-circular “tube”; or a structure that extends partially around a circumference, such as in the form of a partial circular or non-circular “tube.” A diameter of such a structure can be useful to allow the device to be inserted and placed with reduced trauma. Optionally, as described elsewhere herein, a diameter of the tube can be variable, such as by being expandable after placement of the tube within a patient, to allow increased and expanded access to tissue at a surgical site.
  • Exemplary tools that can be used in combination with various retractors or expansion members can include one or more functional features at a distal end that allow the tool to be useful to carry out functions such as dissection (a mechanical dissection using a sharp blade, a blunt dissection device using an expandable structure such as a balloon, hydrodissection, etc.), blunt dissection, viewing (visualization) of a surgical location, illumination of a surgical location, fluid delivery at a surgical location, irrigation at a surgical location, suction at a surgical location, expandability, and placing anchors (bone anchors, soft tissue anchors such as a self-fixating tip, sutures, etc.) into a desired target tissue at a surgical location.
  • Various embodiments of tools (e.g., retractors, expansion members, etc.) are described hereinbelow, and may have general structural and operational features that allow one or more flexible, rigid, or semi-rigid, distal retracting structure to be introduced through an incision (e.g., a vaginal incision), to retract internal tissue. In certain (but not all) embodiments the tool can be introduced through an incision in a closed, compressed, or reduced-size or reduced-diameter state, then be moved, assembled, or expanded to enlarge a cross-sectional size or related space or opening to push tissue aside to create space in and access to a pelvic region with access to desired anatomy. In other embodiments, the tool may have a variable diameter along the length, tapered from a smaller diameter at a distal end to a larger diameter at a proximal end.
  • For tools of variable diameter, a preferred size of a device can include a cross sectional dimension (e.g., a width or diameter associated with an opening along a length of the device) in the range from 1 to 5 centimeters, such as from 2 to 4 centimeters, when retracting structures are in their a reduced-size configuration. Upon opening, un-compressing, expanding, or assembling, etc., the retracting structures, a preferred dimension (e.g., a width or diameter associated with an opening along a length of the device) associated with these structures can be in the range from 2 to 10 centimeters, such as from 3 to 7 centimeters.
  • Various embodiments of devices (“expansion members,” “retractors,” or “speculums”) are contemplated for use in providing access to internal tissue of a pelvic region through an incision in a male or female patient, e.g., as a tissue retractor used to gain access to a posterior region of a pelvic anatomy. Any of these may be useful according to methods for placing an implant to support pelvic tissue, for example a SCP procedure, using any desired or useful implant, insertions tool, multi-functional tool, anchor, etc.
  • According to certain embodiments, an expansion member can be designed to have a reduced cross-sectional size and profile in closed or compressed state for easy entry into a patient (e.g., vaginally), and the expansion member can be opened or expanded to open and retract the surrounding tissue for improved viewing of the surgical area to keep tissue from interfering with the procedure. In particular such embodiments, a device can include multiple (e.g., three) retractor surfaces, each surface being separated longitudinally by a hinge. The hinge extends partially or fully along the length of the expansion member, between a distal and a proximal end, and a hinge may be straight or curved.
  • Referring now to the Figures, where like structure may be described with like reference numbers and/or terms, and initially to FIG. 1, an embodiment is illustrated of a retractor assembly that includes an introducer 10 and a retractor 12. The introducer 10 is a component that can be inserted into a patient (e.g., through a vaginal introitus) to provide an initial opening of a surgical space. The retractor 12 can then be placed within the installed introducer 10, and the introducer can be removed. In the illustrated embodiment, the introducer 10 includes a first section 14 and a second section 16, which may roughly be configured such that each of the sections 14, 16 comprises one half of the total width of the introducer 10, although the division of size between the two sections may be different. All or portions of the introducer 10 can be made of a transparent or translucent material in order to be able to view the insertion of a retractor or other components into its internal area, for example. The introducer 10 may further include a proximal end 18 and a polished tip 19 at the opposite end from the proximal end 18 to allow for viewing at the distal end during insertion of the introducer 10. Once the introducer 10 is placed within a patient in a desired location, the retractor 12 can be placed inside of the introducer 10 at its proximal end 22 and then the introducer 10 can be removed. The retractor 12 can include handles 20, which can optionally be foldable relative to the retractor body and positioned at or adjacent to its proximal end 28. In certain embodiments, the introducer 10 can be disassembled and removed from the patient as separate pieces (e.g., first and second sections 14, 16). The retractor 12 can then be opened or expanded to create a larger surgical space. The expandable retractor 12 can be expanded (opened) and contracted (closed) by any desired mechanism, as described herein or otherwise.
  • FIG. 2 shows an example of a method and a device 40 useful to retract tissue internal to a patient, including a speculum 44 having a “blunt dissection device” 46 at its distal end 42. The device 40 can be used in combination with a viewing apparatus capable of viewing the distal end during placement. The viewing apparatus may be any apparatus capable of optically accessing the distal end while the distal end is being placed within a patient (e.g., a fiber optic device or a mirror at the end of an extension arm). The distal end includes the blunt dissection feature 46 or surface that can be used to contact tissue, to cause dissection or otherwise move or retract tissue by manipulation of the handle at the proximal end. The blunt dissection surface may include one or a combination of a rigid, curved or flat paddle, and an optional expandable structure or surface. A preferred expandable structure may be an inflatable balloon (e.g., air, carbon dioxide, nitrogen, etc.), which in use can be placed in contact with tissue and expanded to adjust the position of tissue, e.g., retract the tissue during a surgical procedure. The distal end can also optionally and preferably include a light, for better viewing of a surgical space by a surgeon.
  • FIG. 3 shows another embodiment of a retractor 60 having an expandable surface, and which optionally includes a fiber optic feature such as a fiber optic wand 62 that can be used to view the distal end of the retractor during use in a surgical procedure. The distal end of the wand 62 is shown as being positioned next to the sacrum 68 of a patient, although the wand 62 can instead be used in another location in the patient. The fiber optic wand 62 can also be used as an introducer that is inserted into a surgical site as a guide for subsequent placement of a retractor. The retractor may be of the type that can be inserted in a collapsed or closed state, as shown with the configuration of retractor 60 in a non-expanded retractor configuration 64. The retractor 60 can then be expanded within the patient to create a surgical space, as shown with the configuration of retractor 60 in an expanded retractor configuration 66.
  • FIGS. 4A and 4B illustrate another exemplary embodiment of an expandable retractor 70, which includes a structure that is configured similar to the general configuration of a pair of scissors. In particular, retractor 70 includes handles and arms 74 extending proximally from a pivot point 76, and also includes elongate arms 72 extending distally from pivot point 76. Due to the configuration of the handles and arms, movement of the arms 74 toward each other will cause the elongate arms 72 to move away from each other, and movement of the handles 74 away from each other will cause the elongate arms 72 to move toward each other. The retractor 70 is further provided with a sheet of material 78 operatively attached to the elongate arms 72 so that the material 78 will be compressed or compacted when the arms 72 are relatively close to each other, and so that the material 78 will be extended or spread to cover at least a portion of the space between the arms 72 when the arms are moved away from each other. The sheet of material 78 can be a mesh material, a net (e.g., light fabric), or other film (e.g., polymeric) material. In operation, the retractor 70 can be inserted into a patient, such as in a location adjacent to a sacrum 75, for example, and then expanded to retract the surrounding tissue. When the retractor is in its expanded configuration, the material 78 will be spread between the arms 72 to control or retract tissue.
  • FIGS. 5A-5C illustrate a collapsible tissue retractor 80, which generally includes an outer frame 88 surrounding a thin flexible material piece 86. The frame 88 may be made of a separate material, such as a thin wire or other flexible material, or the frame may instead be provided as a reinforced area that surrounds the material piece 86. That is, the structure of the retractor 80 can include a perimeter (edges) along a length that includes structural reinforcements such as a folding scaffold or collapsible wire. In any case, the retractor 80 is one that in a collapsed form, is folded, twisted, or spirally wound, and that can be expanded by unfolding or by expanding the spiral. For one example, one corner area 82 of the retractor 80 can be folded or twisted toward an opposite corner area 84, as is shown by the arrow in FIG. 5A. FIGS. 5B and 5C illustrate other exemplary manipulations of the retractor 80 that can be performed to reduce its outer dimensions. In one exemplary use of the retractor 80, retractor 80 is compressed to a desired size so that it can be inserted into a particular area that is to be expanded. After it is in place, retractor 80 can be untwisted or uncoiled so that it expands to cover a larger area and also causes corresponding movement of the surrounding tissue (e.g., bowel tissue)
  • FIGS. 6A-6D illustrate an expansion member or retractor 90 that comprises multiple sections that extend from each other to form a ring-like structure. In this illustrated embodiment, the retractor 90 includes four of such sections, shown as sections 91-94 in FIGS. 6A and 6B, wherein sections 91 and 92 are on opposite sides of retractor 90, and wherein sections 93 and 94 extend between the sections 91 and 92 and are also opposite sides of the retractor from each other. Adjacent sections of the retractor 90 can be attached to each other in any number of different ways, such as with a mechanical connection (e.g., dovetailed ends, frictional fit, and the like), an adhesive connection (e.g., with a breakable adhesive bond between edges of adjacent sections), or another connection method or combination of connection methods. The sections of the retractor 90 can be assembled or attached to each other somewhere that is external to the patient, and then the retractor 90 can be inserted into a target location where it is desired to retract tissue. In this way, the retractor will have a relatively smooth outer surface that does not have exposed free edges that can interfere with tissue that is encountered during insertion of the retractor into the patient.
  • As illustrated in FIGS. 6C and 6D, one of the sections (e.g., section 92) can be removed to create a length-wise opening or slot along a side of the retractor 90 that allows access to tissue of the patient along a length of the expansion member, when installed. Removal of this section can be accomplished by breaking any seals on both edges of sections that are adjacent to the section to be removed, and then sliding that section out of the patient. The illustrated embodiment includes a substantially circular cross-section, but other non-circular shapes may also be useful.
  • FIG. 7 shows an expansion member or retractor 100 that includes a shaft 102 with a hollow interior having a distal end and a proximal end, and a blunt tip member 104, which includes a blunt distal tip 106, that can be removably mounted to the distal end. The expansion member 100 can be placed into a patient with the blunt tip member 104 attached to the distal end, then the blunt tip member 104 can be removed and withdrawn through the shaft. Optionally and as illustrated, the shaft 102 may include lights 108 that are provided to illuminate a surgical space at the distal end, wherein such lights 108 can be mounted on the inside of the shaft 102. At least a portion of the blunt tip member 104 may optionally be transparent, and can have an open or closed tip. The illustrated embodiment includes a substantially circular cross-section, but other non-circular shapes may also be useful.
  • FIGS. 8A and 8B illustrate a combination of an introducer 122 and an inflatable retractor 120. Introducer 122 includes a distal tip 128, which can be guided and held in position relative to a target tissue of a patient. The introducer and retractor combination can be inserted into a patient (e.g., through a vaginal introitus) to provide an initial opening of a surgical space. A pump 124 of the retractor 120 can then be activated to inflate and expand the outer tubular shape of the retractor 120 to create a surgical space in the patient. After inflation of the retractor 120, the introducer 122 can be removed from the target tissue of the patient.
  • FIG. 9 illustrates an introducer 140 with a self-expanding (e.g., nitinol) or shape-memory stent or structure 142 extending from its distal end. To maintain the structure 142 in a compressed configuration, it can be kept in a deployment tube or other structure of the introducer that can be moved relative to the structure 142 when it is desired to allow it to expand. This embodiment further includes a dissolvable or disposable tip 144 (e.g., rounded) that can also help to maintain the stent 142 in a closed (collapsed) state during introduction into a patient. The stent 142 is biased toward an open (i.e., non-collapsed, or “deployed”) state, which has a reduced length and increased diameter, and can be collapsed and extended to a non-deployed state having a greater length and reduced diameter. The non-collapsed (deployed) stent 142 can be collapsed (closed) and lengthened by placing lateral pressure on the stent surface, such as at an end or a location along the length of the stent. For example, the stent 142 can be placed and maintained in the collapsed state using the introducer, and by the use of a removable or dissolvable tip 144 at one end (e.g., the distal end). In use, an introducer can be used to place the stent 142 in a patient in the collapsed state. The introducer can be withdrawn, and the tip 144 can be removed or dissolved, allowing the stent 142 to expand within the patient. The stent 142 can be designed to provide a working depth and a working space as described herein.
  • FIG. 10 illustrates an example of a retractor 150 that includes a retractor body 152 that may be shaped as an elongated cylinder, for example, and one or more distal end extensions 156 adjacent to a distal end 154 of the body 152. The extensions 156 can be fixed or moveable relative to the body 152, and can be used to push tissue aside without damaging it when inserting the distal end of the retractor 150 into a patient at a surgical site. The extensions 156 can be shaped like a fin, a paddle, or another extension structure that can be manipulated by rotating the body 152 within the patient to gently push tissue aside. The extensions 156 can have a wide variety of shapes, such as straight, curved, or bent, and may extend directly away from the body 152 or may be angled toward or away from the distal end or the proximal end. The structure of the extensions 156 can be sufficiently rigid to move tissue, but can optionally be soft or malleable enough to avoid damaging the tissue, such as can be accomplished by using extensions that have a shape that is relatively blunt and without sharp edges. Optionally, the extensions 156 can be moveable relative to the body 152 by manipulation of an actuator at or near the proximal end of the retractor 150.
  • FIG. 11 illustrates another exemplary embodiment of an expansion member or retractor 160. Retractor 160 includes multiple sections or segments of different cross-sectional size (e.g., diameter) along its length, each of which has a proximal end and a distal end arranged so that the sections can be assembled by connecting a distal end of one section to a proximal end of an adjacent section. In this particular illustrated embodiment, the retractor 160 includes four segments 162, 164, 166, 168, each of which has a progressively smaller cross-sectional diameter than the previous segment. It is understood that a retractor of this type can have more or less than four of such segments. The multiple segments can be assembled in a “telescoping” manner, with the most distal segment 168 having the smallest diameter and the most proximal segment 162 having the largest diameter. The distal segment 168 can optionally include a lens 170 at its distal tip, wherein this lens 170 can be a clear, polymeric material, for example, and can include a fisheye or wide-angled configuration.
  • The assembled expansion member 160 can be inserted into a patient until it is positioned with its distal end segment 168 is located at a desired surgical site (e.g., near a sacrum). Optionally, the smaller-diameter segments can be removed, and one of the larger-diameter, or the largest-diameter segment 162 can be placed to extend to the surgical site. For example, the smaller sections can be removed through the largest section and the largest diameter section can be advanced to extend to the surgical site, so the site is expanded to the larger diameter of the largest-diameter section.
  • FIGS. 12A and 12B illustrate an exemplary embodiment of an expansion member 180, wherein FIGS. 12A and 12B show the expansion member 180 in its collapsed state, and wherein FIGS. 13A and 13B show the expansion member 180 in its expanded or open state. Expansion member 180 includes longitudinal segments or sides 184 of an expandable member (e.g., balloon), and other longitudinal members or sides 182 of a rigid material. The two opposing rigid sides 182 are connected to each other at their end areas by the two opposing expandable sides 184 (e.g., comprising inflatable balloons). In use, the expansion member 180 in a closed or collapsed state can be inserted into a patient to place a distal end at a surgical site. During or upon insertion, the expandable sides 184 can be expanded (e.g., inflated) to move the expansion member to an open or expanded state, which will include moving the rigid sides 182 outwardly in response to the expansion of the expandable sides 184.
  • FIGS. 14A and 14B illustrate a system that includes an introducer 200 and a retractor 202, wherein the introducer 200 is expandable. For example, the expandable introducer 200 can include a balloon 204 or other expandable structure that is capable of being expanded (e.g., inflated) within a patient to displace or retract tissue. In use, the introducer 200 can be inserted into a patient in a non-expanded state, as shown on the left side of FIG. 14A. The introducer 200 can then be expanded, as shown on the right side of FIG. 14A. Thereafter, the retractor 202, which may comprise a rigid tube, for example, can be placed over the expanded introducer 200. The introducer 200 can then be collapsed (e.g., deflated) and removed from the patient, leaving the rigid retractor 202 in place to provide access to a surgical site.
  • FIGS. 15A and 15B illustrate another embodiment of a system that includes an introducer 220 and a retractor 222, the introducer 220 including a dilating tip 224, which may have a curved or blunt distal end and a circular or curved cross-section (when viewed in a longitudinal direction), such as in the shape of a curved “bullet” or blunt-tipped “cone”. Such a configuration of the dilating tip 224 is provided so that when it is advanced into tissue, it will deflect and displace the tissue laterally to expand an opening for introducing the retractor 222. The dilating introducer 220 can be advanced into tissue, through an incision to displace or retract tissue extending to a surgical site. The rigid expansion member (e.g., tube) 222 can closely following the dilating tip 224, or can subsequently be placed into the opening made by the dilating tip 224. The introducer 220 can then be removed, leaving the rigid retractor 222 in place to provide access to a surgical site.
  • FIGS. 16A and 16B illustrate an example of an expansion member 230 that includes an expanding portion 232 and a blunt dilating tip 236. Generally, the structure includes an introducer having an inner shaft 234 and an expandable structure 232 (e.g., expandable retractor) removably attached to the inner shaft 234. The introducer carries the expandable structure 232 to a desired location (e.g., a sacrum 237), at which location the expandable structure 232 can be expanded and the inner shaft can be withdrawn. The expandable structure 232 can have a number of different expandable configurations, such as a coiled surface that can expand laterally as it uncoils, or an inflatable surface (e.g., balloon), such that the expanding structure can be inserted into a patient and expanded laterally to displace tissue to create a surgical incision. The distal end may include an optional blunt or dilating tip 236 that can deflect and displace tissue as the tip is advanced through a surgical incision and toward a surgical site. As illustrated, the expandable structure 232 can be expanded to produce an expansion member or retractor that can be left behind in the patient to allow access to the surgical site.
  • In use, the expansion member 230 can be inserted into an incision with the expandable structure 232 in a collapsed or closed state, and the dilating distal end can be advanced through tissue and positioned at a surgical site (e.g., a region of a sacrum 237). The distal end may optionally include fiber optics, an electronic camera, or other mechanism to allow visualization at the distal end for guiding the expansion member during insertion. Once placed as desired, the expandable structure 232 can be expanded to displace tissue along the length of the shaft, which can generally correspond to a path leading to a surgical site. The expandable structure 232 can be separated from the blunt tip and inner shaft, and the inner shaft and blunt tip can be removed, leaving the expanded structure to function as a retractor to provide access to the surgical site.
  • FIG. 17 illustrates an expansion member 240, which may include features and structures of any of the expansion members or retractors described herein, and that includes a Doppler probe or transducer 246 at a distal end of a structure 242 that communicates with a proximal end of the expansion member 240 and a user. In a surgical procedure, the Doppler probe 246 can be useful to detect and avoid certain anatomical bodies, such as blood vessels and nearby nerves or other sensitive tissues. In this way, safe surgical locations can be discerned in order to avoid damaging those sensitive tissues. Alternately or additionally, an expansion member may be equipped at a distal end with infrared radiating or sensing functionality, for communication with a proximal end and a user, and for detecting and avoiding anatomical bodies such as blood vessels and arteries. Either or both of these features can be used in conjunction with any embodiments or features of devices, tools, implants, and methods described herein.
  • Retractors or expansion members of the invention can be structured to retract tissue of the small bowel, such as during a sacral colpopexy that places a component of an implant at a region of pelvic anatomy, or nearby. The structure, features, and functionality of the retractor can be as described herein, additionally with the distal end being structured to provide access to a sacrum while displacing tissue of a small bowel. The distal end feature can be in a retracted (i.e., collapsed or closed) state when positioned near the sacrum, beyond the peritoneum. Upon such placement, the distal end feature can be extended or opened, and additionally manipulated if necessary, to displace tissue including tissue of the small bowel.
  • Another method of controlling the position of a small bowel during a sacral colpopexy procedure involves placement of a component of an implant of the invention at a region of pelvic anatomy, or nearby. With such a method, the small bowel may be pressurized in a manner that is used in laparoscopic procedures. By placing a port inside the vagina, the small bowel can be pressurized to control the tissue and positioning of the tissue during placement of an implant at a region of sacral anatomy, for supporting vaginal tissue. The procedure could be performed through a single port, similar to a laparoscopic procedure.
  • FIG. 18 illustrates a system for retracting tissue during a sacral colpopexy procedure, including an introducer 250, as described herein, and a fixture 252 that includes a guide 253. The fixture 252 can fit externally to the patient, over the patient's skin and pubic bone 254, to be used as a guide for the expansion member. In particular, the external fixture 252 can be aligned with a centerline of the patient, externally, and can act to hold, manipulate, and guide a tool for use in a sacral colpopexy procedure, for example, by placing the tool or relevant structure of the tool on the same centerline, to align or position a distal feature of the tool at a desired location at or near a centerline of a sacrum. The tool may be a retractor, expansion member, speculum, etc., as described herein, or any other tool useful in a sacral colpopexy procedure.
  • FIGS. 19A-19C illustrate a peritoneum management system for use in a sacral colpopexy procedure (e.g., using a retractor or other tool or system as described herein). According to this system, a surface of a retractor 260 includes frictional structure 268 to engage a peritoneum (e.g., to create a barrier or seal at the interface), alternately or additionally to use the tool to grasp and manipulate the position of the peritoneum during the procedure. The retractor 260 further includes an outer curved surface 264 from which the frictional structure 268 extends and/or to which the frictional structure is attached, and a handle 262 extending outwardly from curved surface 264. The frictional structure 268 of retractor 260 can include small hooks, pins, channels, teeth, or other structure that can frictionally engage and grasp or hold tissue of the peritoneum 270. The frictional structure 268 may be fixed, or extendable and retractable by manipulation of an actuator at a proximal end of the tool. The frictional structure 268 may also extend from a series of hollow channels 266, as is illustrated in FIG. 19A, for example.
  • In use, frictional structure 268 at the distal end 272 of the tool 260 engages tissue of a peritoneum 270, wherein the peritoneum is severed as part of the procedure. The distal end continues to grasp the severed tissue of the peritoneum, to control the position of the severed tissue. The frictional surface can be located at the distal end tip of the tool and along a length, especially along a length of an opening, e.g., at edges of an opening that extends in a longitudinal direction along a length of the shaft of the tool, as is shown in the figures. For example, the distal end and a portion of a length of the tool may, during use, be located adjacent to a peritoneum. Edges or surfaces of these locations may include the described frictional surface features. The procedure may include making an incision of the peritoneum between the sacrum and the vaginal apex, and the frictional surfaces can be used to maintain the position of the peritoneum (adjacent to the tool) during the procedure.
  • FIGS. 20A and 20B illustrate an exemplary sacral colpopexy procedure, as described, optionally using a tool, implant, system, or method as described, with placement of an implant 284 (e.g., mesh) at a location above the peritoneum 286. This may be facilitated by a perforation 288 of the perineum near the apex. Instead of placing an implant below the peritoneum, at least a portion of an implant is placed above (superior to) the peritoneum 286 (see FIG. 20B) and adjacent to the sacrum 282, and optionally attached to the peritoneum. This placement can reduce or eliminate the possibility of bowel obstruction and/or kinks. Fixation between the implant and peritoneum can be accomplished in any desired and useful manner, such as by suture, staple, hooks, pins, clips, Velcro, adhesive, etc.
  • Another embodiment of a sacral colpopexy method involves management of peritoneum tissue by use of a shaped implant or implant portion or component, such as a retractor described herein or elsewhere. In this embodiment, a shape of the implant conforms to the surface of a sacrum, so that when placed at the sacrum, the implant abuts against the sacrum and conforms to the shape of the sacrum. The peritoneum, adjacent to the sacrum, is thereby forced against the sacrum, between the sacrum and the implant, and is not able to become an obstruction to the surgeon. The implant may be rigid, semi-rigid, flexible, and may be prepared of mesh or a molded polymer. In somewhat more detail, the curved shape of the implant conforms to or hugs the sacral curve, e.g., to prevent bending, banding, binding, or obstruction of the small bowel. The placement of the implant and peritoneum forces the peritoneum to follow the sacral curvature and will prevent the bowel from becoming positioned beneath the implant, which could potentially cause a bowel obstruction.
  • Another sacral colpopexy method of the invention that involves management of peritoneum tissue involves using a retractor to manage an incision in the peritoneum. The retractor can be as described herein, e.g., two separate pieces that can be separated or moved in different directions relative to one another, optionally with frictional surfaces capable of engaging a peritoneum. For example, an expandable retractor can be placed so that the distal end can contact and engage a peritoneum, and to manage an incision made in the peritoneum by maintaining a separation between the two portions of a severed peritoneum. The peritoneum is severed generally to produce a right portion on a right side of the patient and a left portion on a left side of the patient, and each of the two sides of an expandable retractor can engage one portion, maintaining a separation between the right and left portions. Maintaining this separation also maintains the opening between the portions, at the cut, to improve access to the opening between the portions and the surgical site below the peritoneum, to facilitate placement of an implant below the peritoneum.
  • FIGS. 21A-21D illustrate an example of a method of using an expansion member or retractor 300 to gain access to a surgical site, to place a guide 310 (e.g., a guidewire) at a peritoneum 306, and to use the guide 310 to place a component of an implant. Accordingly, a method of the invention can involve placing a retractor (shown herein as retractor 300, but can be as described) to access a surgical site at a posterior pelvic region, such as at a region of sacral anatomy. Using a surgical tool such as a forceps 308, through the retractor 300, a surgeon grips the peritoneum 306 and inserts a guidewire 310 into the peritoneum 306. The guidewire 310 is advanced beneath the peritoneum 306 by a predetermined distance, then exits the peritoneum 306 at a more distal location. The guide 310 is deflected or re-directed to be pulled back out of the patient through the retractor 300, and an implant component 312 attached to the guide 310 is advanced into position underneath the peritoneum. The implant component can be useful to support tissue of a vaginal apex, or other tissue, e.g., in a sacrocolpopexy procedure.
  • FIG. 22 illustrates an expansion member or retractor 320 as described herein, as it can be used with a light 324 located at a position along a shaft to illuminate a peritoneum 326, while the expansion member 320 is placed in a patient. For example, in a procedure that includes an apical vaginal incision and a posterior vaginal incision, the light 324 can be placed through the posterior incision, either connected to or separate from the expansion member. The light can be placed internally on the “external” side of the peritoneum, which is the side opposite of the location of the expansion member (i.e., inferior to or below the peritoneum). The light can be used to illuminate the peritoneum, shining through the peritoneum to identify any critical or sensitive structures before cutting or advancing a delivery tool. The procedure or tool may also include a feature for visualizing the peritoneum, e.g., electronically or through the expansion member. The expansion member can also include an opening (e.g., an elongate opening or slot) along a length of the expansion member shaft that allows access (including visual access) to the peritoneum.
  • FIG. 23 shows an example of an expansion member or retractor 340 that includes hooks 346 or another frictional structure capable of engaging and grasping a peritoneum, which is located at an edge or outer surface of the expansion member 340. These structures 340 are also discussed herein relative to FIGS. 19A-19C. With continued reference to FIG. 23, the retractor 340 includes three longitudinal sections 342 that are connected to each other by longitudinal hinges 344. It is understood that more or less than three sections 342 may be used, with a hinge 344 located between each adjacent pair of sections 342. In any case, the hinges 344 allow the retractor 340 to be expanded and contracted by folding the sections 342 relative to each other at the hinges 344 to thereby “open” or “close” the structure.
  • The hooks 346 are located at an edge of an elongate longitudinal opening 348 that is located between the distal ends of the first and last sections 342 of the retractor 340 on one side of and along a length of an expansion member. When the expansion member 340 is positioned with the distal end at a region of a sacrum, for example, one side (e.g., an inferior side or “bottom”) of the shaft includes the length-wise opening or slot 348 that provides access to a peritoneum, located inferior to the shaft. Adjacent to that opening 348 (e.g., at a surface of the shaft, or at an edge of the opening) are the multiple hooks or other engagement structures 346 that are capable of engaging and grasping the peritoneum to allow the peritoneum to be controlled during a surgical procedure. For example, the hooks 346 may grasp the peritoneum for maintaining the position of the peritoneum as the peritoneum is severed along a centerline of the patient, to gain access to the underside of the peritoneum and a region of sacral anatomy. After the cut is made, hooks 346 on each side of the tool will maintain the position of the two portions of severed peritoneum.
  • Another embodiment of a sacral colpopexy procedure involves the use of peritoneum tissue, which is pulled together and used as a material to provide support for vaginal tissue. As a substitute for mesh, this method relies on the use of, e.g., multiple layers of peritoneum tissue that are pulled and secured together to create a material that will support the vaginal apex. Alternately, a small piece of mesh may be useful in combination with one or two layers of peritoneum, the combined mesh and peritoneum tissue being placed and attached to support tissue of a vaginal apex.
  • FIGS. 24A and 24B illustrate an embodiment of a method of attaching an implant to a component of sacral anatomy, using a tool 360, an implant 362 in the form of a tubular mesh, and an anchor 364. The implant 362 includes an anchor delivery mechanism for delivering a soft tissue anchor from the distal end, and frictional surfaces to engage tissue of a peritoneum 366, similar to that described herein relative to FIGS. 19A-19C and 23. In use, the tubular implant 362 is inserted to position the distal end at a region of a sacrum. The tubular implant 362 contains an elongate portion of an implant (e.g., mesh), having an anchor attached at the distal end. The soft tissue anchor attached to the implant is secured to a region of sacral anatomy. The frictional surfaces are used to engage the peritoneum 366. The tubular implant 362 is then rotated to pull the peritoneum 366 around it, thereby creating a tunnel of the peritoneal tissue. The peritoneum 366 can then be sutured or otherwise secured to itself to maintain the “tunnel” shape and opening around the implant (e.g., mesh). The tubular implant 362 can be withdrawn slightly, and the tool can again be used to grasp and rotate peritoneum tissue to form a tunnel, which is held together by another suture. These steps can be repeated to form a desired length of tunnel made of the peritoneal tissue, surrounding the implant. The tool can then be removed and the mesh implant remains behind within the peritoneal tunnel.
  • FIGS. 25A and 25B illustrate another example of a method and device for securing an implant material 380 directly to tissue of a peritoneum. The implant material 380 comprises a base material sheet 382 from which a frictional surface extends, which surface may comprise extension members 384 (e.g., clips, barbs, extensions, needles, hooks, “mushroom heads,” Velcro-type (hook-and-loop) frictional structures, etc.). In order to engage this implant material 380 with a tissue, such as a peritoneum tissue, the implant can be positioned with its frictional surface in contact with the tissue, and then the material can be pressed toward and into the tissue until the frictional surface is sufficiently engaged with the tissue.
  • FIG. 26 illustrates an example of a method, implant, and retractor that can be used to secure an implant at a region of a peritoneum and sacrum. The implant is passed, multiple times, through the peritoneum, from above to below, back to above, etc., “snaking” along a length of the peritoneum until it reaches the sacrum. An exemplary path that the implant can take is illustrated with arrows as path 404. Alternating the position of the implant on either side of the peritoneum mitigates, reduces, or eliminates, the need for additional fixating elements between the implant and the peritoneum, peritoneal closing devices, and potential banding that may occur. Friction between the implant and the peritoneum will provide securing force between the two. The implant may be placed as shown and described using a tool that can be passed alternately above, then below, the peritoneal tissue, e.g., “snaking” alternately above and below the tissue, then fixing the implant at a region of sacral anatomy such as an anterior longitudinal ligament. The tool can be withdrawn to leave the implant, placed as described.
  • FIGS. 27A and 27B illustrate another exemplary embodiment of a retractor 420 that includes a closing feature for closing an opening previously made in the peritoneum. As illustrated, the retractor 420 is a generally tubular shape and includes first and second sections 422, 424 attached at a longitudinal hinge 426 along the length of the retractor 420 so that the retractor 420 can open along its length on the side opposite the hinge (e.g., along a length of the retractor 420 that will be adjacent to a peritoneum when the retractor is installed in a sacral colpopexy procedure). Retractor 420 includes frictional structures for engaging tissue of a peritoneum, which are located along the length of the retractor adjacent to the peritoneum when installed.
  • In use, the retractor 420 can be used to close the surgical opening in the peritoneum. After a surgical procedure, the retractor 420 is opened along the hinge 426, and the frictional structures located longitudinally on opposite edges of the opening contact opposite sides of a severed peritoneum. The retractor 420 is then closed, squeezing the opposite sides of severed peritoneum between the edges, which may include catching the opposite sides of the peritoneum with the clips to hold the sides together for healing.
  • FIG. 28 illustrates another embodiment of a retractor 440 that includes frictional structures 442 (e.g., pins, wires, etc.) on the inside of the retractor 440 for engaging tissue of a peritoneum on exterior surface of the retractor. In this way, after the peritoneum is cut open, the peritoneum can be pushed to either side and stick to the walls of the retractor 440. In one embodiment, the frictional structures 442 can be angled upwardly so that the peritoneum does not slide off during mesh placement.
  • The methods, tools, expansion members, and implants described can be used in conjunction with any type of anchor for securing an implant to tissue, such as at a region of sacral anatomy using a soft tissue anchor. FIGS. 29A-29C and 30A-30B show a system 450 for securing a pincher-type soft tissue anchor to soft tissue, e.g., a peritoneum, a ligament, muscle, etc., optionally at a region of sacral anatomy. The assembly includes a pincher anchor 452, a ring 454, and an insertion tool 456. The ring and insertion tool are used together to position the pincher anchor 452 at a location of soft tissue, and to close the jaws of the pincher anchor 452 to grip into and become secured to the soft tissue, leaving behind the pincher anchor 452 and the ring 454 secured to the soft tissue, for supporting an implant.
  • FIG. 30A illustrates the elongate tool 456 with a shaft) and the pincher-anchor and ring (collar) at the distal end of the tool 456 with jaws open. In use, the target soft tissue can be identified and the assembly can be positioned adjacent to soft tissue with jaws open, as illustrated in FIG. 30A. Next, the outer ring is slid distally relative to the jaws, causing the jaws to pivot together and close. To close the jaws, the ring may be pushed distally relative to the shaft, the pincher-anchor can be pulled proximally relative to the shaft, or a combination of these movement may be used.
  • After the jaws are closed on the soft tissue, the tool 456 can be disengaged and withdrawn, leaving the pincher anchor and ring (collar) 456 in place secured to soft tissue. Any release mechanism can be useful. As illustrated, an actuator at the delivery tool handle can be moved (e.g., rotated) to release an engagement between the ring and delivery tool bars by spreading the bars apart, as shown in FIG. 30B. The inner supports can be rotated to align with channels in the ring, the tool can be withdrawn.
  • Extending between the handle and the distal end is an elongate shaft section, which is connected to the moveable retractor surfaces through hinges. A removable retractor section can be engaged with the shaft to produce an inner space along a length of the retractor, which can be a working space of the retractor to allow access to a surgical site. The removable retractor section can include an opening (e.g., slot) at the distal to allow lateral access to a surgical site.
  • In cross section, the shaft includes two abutments along a length of the shaft; each abutment is capable of engaging a structure of the removable section to allow a removable engagement between the shaft and the removable section. For example, as illustrated, two opposing longitudinal edges or lips (continuous or interrupted), each located along a length of the removable section, can be fit behind the to abutments to place the removable section of in a working engagement with the shaft. In cross-section the removable section is semi-circular, and the spine is curved, such that when engaged the two sections of the expansion member produce a curved space.
  • The moveable retractor surfaces at the distal end can function to retract tissue at a surgical location by moving laterally upon rotating or pivoting about the hinges. The moveable retractor surfaces can be located along a length of the shaft at the distal end, optionally not extending along the entire length of the shaft but only along a partial length of the shaft at the distal end. The moveable retractor surfaces can be of any cross-sectional shape or form, such as curved or straight (flat).
  • Expansion member devices as described and illustrated herein, sometimes referred to interchangeably as “tubes,” “speculums,” “retractors,” etc., can be used and useful according to methods of inserting the device into a surgical incision, and moving, retracting, displacing, or expanding tissue to provide access to desired anatomy. For performing certain surgical procedures, a tube or refractor can be placed in a non-expanded, collapsed state. The device or a related structure can then be expanded while in place to create access to desired anatomy such as the posterior of a pelvic region, e.g., to gain access to a region of sacral anatomy; to create a workspace between a vaginal introitus and a region of a sacrum, such as an anterior longitudinal ligament, sacral promontory, or peritoneum. A surgeon can perform a surgical procedure by use of the access, which provides working space to pelvic anatomy such as the sacrum and surrounding tissue as described.
  • Methods of utilizing devices of the invention can optionally also involve a tool, multi-functional tool, implant, adjustable implant, anchor (soft tissue anchor or bone anchor), or other device or method described herein. Optional features and structures (e.g., fiber optics) to allow viewing or illumination, or any other functionality at the distal end can be incorporated into any of these types of devices, For example, if a structural component of the device is made of a plastic or polymeric light-conductive material, light can be transmitted through that material from a proximal end to a distal end at the surgical site. Alternately, a fiber optic cable can be incorporated into a length of the device, extending from a proximal to or toward a distal end, to allow light to be transmitted from the proximal end to the distal end, or to allow images to be transmitted from the distal end to the proximal end. Light could alternately be generated and shone from the distal end.
  • The implants, their various components, structures, features, materials and methods may have a number of suitable configurations as shown and described in the previously-incorporated references, or as described herein. Various methods and tools for introducing, deploying, anchoring and manipulating implants to treat incontinence, prolapse, or another pelvic condition, as disclosed in the previously-incorporated references are envisioned for use with the present invention as well as those methods and tools identified and described herein.
  • Also according to embodiments of the methods, implants, tools, and devices described herein, any of the described tools can be used for placing any desired pelvic implant in a male or a female patient, and for any of a large variety of conditions, such as a pelvic condition. The implant can include any structural features useful for such treatment, including any desired size, shape, and optional features such as adjustability and anchoring systems. Any of these features may be previously known, future developed, described herein, or described in documents incorporated herein, for any particular implant and method. For example, some figures and discussions include examples of features of “anchors” (e.g., soft tissue or bone anchors, as these terms are generically and inclusively used) that can be useful according to the methods of placing a surgical implant. An implant that includes or is otherwise secured by any of the anchors described can be useful to treat a pelvic condition in a male or a female patient.
  • Various devices and methods described herein are advantageous because they facilitate reduction of total procedural time if the patient needs a urinary sling, levator floor support, high apical support (fixation to the sacrum), and anterior or posterior prolapse by combining multiple products into one. The pelvic floor support reduces the long term prolapse recurrence as well as improve the patient's sexual function with the high apical support due to the sacral fixation. Moreover, the various tools and methods allow a physician to use a transvaginal approach, an abdominal approach, or a laparoscopic approach to achieve a similar tension as what is currently only achievable for sacral colpopexy procedures.
  • The various systems, apparatus, and methods detailed herein are envisioned for use with many known implant and repair systems (e.g., for male and female), features and methods, including those disclosed in U.S. Pat. Nos. 7,500,945, 7,407,480, 7,351,197, 7,347,812, 7,303,525, 7,025,063, 6,691,711, 6,648,921, and 6,612,977, International Patent Publication Nos. WO 2008/057261, WO 2007/097994, WO 2007/149348, and U.S. Patent Publication Nos. 2002/151762, 2010-0174134, 2010-0298630, and 2002/147382. Accordingly, the above-identified disclosures are fully incorporated herein by reference in their entirety.
  • The disclosed systems, their various components, structures, features, materials and methods may have a number of suitable configurations as shown and described in the previously-incorporated references. Various methods and tools for introducing, deploying, anchoring and manipulate device, implants, and the like as disclosed in the previously-incorporated references are envisioned for use with the present invention as well.
  • All patents, patent applications, and publications cited herein are hereby incorporated by reference in their entirety as if individually incorporated, and include those references incorporated within the identified patents, patent applications and publications.

Claims (16)

1. A retractor for retracting pelvic tissue, the retractor comprising:
a body member extending from a proximal end to a distal end, the body member comprising a plurality of segments configured as a ring, wherein each segment of the ring is attached to at least one adjacent segment of the ring; and
an aperture extending along a longitudinal axis from the proximal end to the distal end of the body member.
2. The retractor of claim 1, wherein each of the segments comprises a curved member having a first end, an opposite second end, and an outer surface extending from the proximal to the distal end of the body member, and wherein a first end of a first segment is adjacent to a second end of an adjacent second segment.
3. The retractor of claim 2, wherein at least one of the plurality of segments is removeably attached at both its first and second ends to adjacent segments.
4. The retractor of claim 1, wherein at least one of the plurality of segments is removable from the ring to provide a longitudinal gap from the proximal end to the distal end of the body member.
5. The retractor of claim 1, wherein the attachment between adjacent segments of the ring comprises one of a mechanical connection and an adhesive connection.
6. The retractor of claim 1, wherein the body member can be expanded to a diameter in a range from 3 to 7 centimeters, and contracted to a diameter in a range from 1 to 5 centimeters.
7. The retractor of claim 1, wherein the ring comprises four segments, and wherein one of the segments is slideably removeable from the other three segments.
8. The retractor of claim 1, wherein at least one of the plurality of segments is hingedly attached to at least one adjacent segment.
9. The retractor of claim 8, wherein the hinged attachment extends from the proximal to the distal end of the body member.
10. The retractor of claim 9, wherein a first segment comprises a first end that is hingedly attached to a first end of a second segment, and wherein each of the first and second segments comprises a second end with a tissue engagement mechanism.
11. The retractor of claim 10, wherein the tissue engagement mechanism comprises a plurality of hooks.
12. The retractor of claim 1, wherein at least one of the plurality of segments is expandable.
13. The retractor of claim 12, wherein the expandable segment comprises a balloon extending from the proximal end to the distal end of the body member.
14. A refractor for retracting pelvic tissue, the retractor comprising:
a pivot point;
first and second handles extending proximally from the pivot point and pivotably attached to the pivot point;
first and second arms extending distally from the pivot point and pivotably attached to the pivot point; and
a sheet of material operatively attached to an inner surface of each of the first and second arms.
15. The retractor of claim 14, comprising a closed configuration in which the first and second arms are adjacent to each other and an open configuration in which the first and second arms are spaced from each other with the sheet of material extending between them.
16. The retractor of claim 14, wherein the sheet of material comprises a mesh material.
US13/566,756 2011-08-05 2012-08-03 Systems, implants, tools, and methods for treatment of pelvic conditions Abandoned US20130035555A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US201161515685P true 2011-08-05 2011-08-05
US13/566,756 US20130035555A1 (en) 2011-08-05 2012-08-03 Systems, implants, tools, and methods for treatment of pelvic conditions

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US13/566,756 US20130035555A1 (en) 2011-08-05 2012-08-03 Systems, implants, tools, and methods for treatment of pelvic conditions
US14/573,859 US10390813B2 (en) 2011-08-05 2014-12-17 Systems, implants, tools, and methods for treatments of pelvic conditions

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/573,859 Continuation US10390813B2 (en) 2011-08-05 2014-12-17 Systems, implants, tools, and methods for treatments of pelvic conditions

Publications (1)

Publication Number Publication Date
US20130035555A1 true US20130035555A1 (en) 2013-02-07

Family

ID=47627375

Family Applications (2)

Application Number Title Priority Date Filing Date
US13/566,756 Abandoned US20130035555A1 (en) 2011-08-05 2012-08-03 Systems, implants, tools, and methods for treatment of pelvic conditions
US14/573,859 Active 2033-06-04 US10390813B2 (en) 2011-08-05 2014-12-17 Systems, implants, tools, and methods for treatments of pelvic conditions

Family Applications After (1)

Application Number Title Priority Date Filing Date
US14/573,859 Active 2033-06-04 US10390813B2 (en) 2011-08-05 2014-12-17 Systems, implants, tools, and methods for treatments of pelvic conditions

Country Status (1)

Country Link
US (2) US20130035555A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130190558A1 (en) * 2010-09-29 2013-07-25 Ams Research Corporation Systems, tools, and methods for treatments of pelvic conditions
US20130190572A1 (en) * 2011-02-18 2013-07-25 Jeong Sam Lee Retraction system for laparoscopic surgery
WO2014018473A1 (en) 2012-07-24 2014-01-30 Ams Research Corporation Systems, tools, and methods for connecting to tissue
WO2014150468A1 (en) 2013-03-15 2014-09-25 Ams Research Corporation Systems, tools, and methods for connecting to tissue
US20150066039A1 (en) * 2012-04-05 2015-03-05 Nlt Spine Ltd. Conic retraction
WO2016004083A1 (en) * 2014-06-30 2016-01-07 University Of South Florida Sacrocolpopexy/sacrocervicopexy vaginal positioning and mesh retention system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080214898A1 (en) * 2006-10-31 2008-09-04 Lanx, Llc Retractor system

Family Cites Families (327)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3124136A (en) 1964-03-10 Method of repairing body tissue
US2738790A (en) 1954-08-12 1956-03-20 George P Pilling & Son Company Suturing instrument
US3182662A (en) 1962-07-25 1965-05-11 Vithal N Shirodkar Plastic prosthesis useful in gynaecological surgery
US3384073A (en) 1964-04-21 1968-05-21 Ethicon Inc Surgical device for correction of urinary incontinence
US3311110A (en) 1964-07-15 1967-03-28 American Cyanamid Co Flexible composite suture having a tandem linkage
US3472232A (en) 1967-05-31 1969-10-14 Abbott Lab Catheter insertion device
US3580313A (en) 1969-01-07 1971-05-25 Mcknight Charles A Surgical instrument
US3763860A (en) 1971-08-26 1973-10-09 H Clarke Laparoscopy instruments and method for suturing and ligation
US3789828A (en) 1972-09-01 1974-02-05 Heyer Schulte Corp Urethral prosthesis
US3858783A (en) 1972-11-20 1975-01-07 Nikolai Nikolaevich Kapitanov Surgical instrument for stitching up tissues with lengths of suture wire
US3815576A (en) 1973-01-26 1974-06-11 D Balaban Artificial sphincter
DE2305815A1 (en) 1973-02-07 1974-08-08 Kurt Seuberth Apparatus for separating sutures
US3924633A (en) 1974-01-31 1975-12-09 Cook Inc Apparatus and method for suprapubic catheterization
US4037603A (en) 1975-05-13 1977-07-26 Wendorff Erwin R Metallic surgical suture
US3995619A (en) 1975-10-14 1976-12-07 Glatzer Stephen G Combination subcutaneous suture remover, biopsy sampler and syringe
US4019499A (en) 1976-04-22 1977-04-26 Heyer-Schulte Corporation Compression implant for urinary incontinence
US4128100A (en) 1976-10-08 1978-12-05 Wendorff Erwin R Suture
US5633286B1 (en) 1977-03-17 2000-10-10 Applied Elastomerics Inc Gelatinous elastomer articles
US4172458A (en) 1977-11-07 1979-10-30 Pereyra Armand J Surgical ligature carrier
US4235238A (en) 1978-05-11 1980-11-25 Olympus Optical Co., Ltd. Apparatus for suturing coeliac tissues
US4246660A (en) 1978-12-26 1981-01-27 Queen's University At Kingston Artificial ligament
IE49491B1 (en) * 1980-06-26 1985-10-16 Inst For Ind Res & Standards A vaginal speculum
SU1342486A1 (en) 1982-06-29 1987-10-07 М.А. Мороз Needle holder
US4441497A (en) 1982-10-21 1984-04-10 Paudler Franklin T Universal suture passer
US4509516A (en) 1983-02-24 1985-04-09 Stryker Corporation Ligament tunneling instrument
US4548202A (en) 1983-06-20 1985-10-22 Ethicon, Inc. Mesh tissue fasteners
US4873976A (en) 1984-02-28 1989-10-17 Schreiber Saul N Surgical fasteners and method
SU1225547A1 (en) 1984-08-03 1986-04-23 Московский Городской Ордена Ленина И Ордена Трудового Красного Знамени Научно-Исследовательский Институт Скорой Помощи Им.Н.В.Склифосовского Surgical instrument
IL74847A (en) * 1985-04-09 1989-08-15 Timetz Ltd Endoscope particularly useful as an anoscope
US4865031A (en) 1985-07-12 1989-09-12 Keeffe Paul J O Fabric and method of use for treatment of scars
US4632100A (en) 1985-08-29 1986-12-30 Marlowe E. Goble Suture anchor assembly
GB8525565D0 (en) 1985-10-17 1985-11-20 Speedhom B B Surgical replacement of ligaments
GB8611129D0 (en) 1986-05-07 1986-06-11 Annis D Prosthetic materials
US5386836A (en) 1986-10-14 1995-02-07 Zedlani Pty Limited Urinary incontinence device
AT75135T (en) 1986-10-14 1992-05-15 Zedlani Pty Ltd A device for treatment of urinary incontinence.
US5032508A (en) 1988-09-08 1991-07-16 Marrow-Tech, Inc. Three-dimensional cell and tissue culture system
WO1990003766A1 (en) 1988-10-04 1990-04-19 Peter Emanuel Petros Surgical instrument prosthesis and method of utilisation of such
US5123428A (en) 1988-10-11 1992-06-23 Schwarz Gerald R Laparoscopically implanting bladder control apparatus
US5012822A (en) 1988-10-11 1991-05-07 Schwarz Gerald R Method for controlling urinary incontinence
US5007894A (en) 1989-02-10 1991-04-16 Goran Enhorning Female incontinence device
US5013292A (en) 1989-02-24 1991-05-07 R. Laborie Medical Corporation Surgical correction of female urinary stress incontinence and kit therefor
US4938760A (en) 1989-03-29 1990-07-03 American Medical Systems, Inc. Female suspension procedure
US4932962A (en) 1989-05-16 1990-06-12 Inbae Yoon Suture devices particularly useful in endoscopic surgery and methods of suturing
GB8924806D0 (en) 1989-11-03 1989-12-20 Neoligaments Ltd Prosthectic ligament system
US5345927A (en) * 1990-03-02 1994-09-13 Bonutti Peter M Arthroscopic retractors
US5013316A (en) 1990-03-26 1991-05-07 Marlowe Goble E Soft tissue anchor system
US5019032A (en) 1990-04-03 1991-05-28 Robertson Jack R Refined suspension procedure with implement for treating female stress incontinence
US5256133A (en) 1990-09-05 1993-10-26 Spitz Robert M Device for correcting stress urinary incontinence
US5368595A (en) 1990-09-06 1994-11-29 United States Surgical Corporation Implant assist apparatus
US5053043A (en) 1990-09-28 1991-10-01 Vance Products Incorporated Suture guide and method of placing sutures through a severed duct
US5085661A (en) 1990-10-29 1992-02-04 Gerald Moss Surgical fastener implantation device
EP0560934B2 (en) 1990-12-06 1999-11-10 W.L. GORE & ASSOCIATES, INC. Implantable bioabsorbable article
US5149329A (en) 1990-12-12 1992-09-22 Wayne State University Surgical suture carrier and method for urinary bladder neck suspension
US5203864A (en) 1991-04-05 1993-04-20 Phillips Edward H Surgical fastener system
US5269783A (en) 1991-05-13 1993-12-14 United States Surgical Corporation Device and method for repairing torn tissue
US5141520A (en) 1991-10-29 1992-08-25 Marlowe Goble E Harpoon suture anchor
WO1993010715A2 (en) 1991-12-03 1993-06-10 Vesitec Medical, Inc. Surgical treatment of stress urinary incontinence
JP3192147B2 (en) 1991-12-03 2001-07-23 ボストン サイエンティフィック アイルランド リミテッド,バーバドス ヘッド オフィス Bone anchor insertion device
US5439467A (en) 1991-12-03 1995-08-08 Vesica Medical, Inc. Suture passer
US5935122A (en) 1991-12-13 1999-08-10 Endovascular Technologies, Inc. Dual valve, flexible expandable sheath and method
CA2090000A1 (en) 1992-02-24 1993-08-25 H. Jonathan Tovey Articulating mesh deployment apparatus
WO1993017635A1 (en) 1992-03-04 1993-09-16 C.R. Bard, Inc. Composite prosthesis and method for limiting the incidence of postoperative adhesions
US5403328A (en) 1992-04-22 1995-04-04 United States Surgical Corporation Surgical apparatus and method for suturing body tissue
US5188636A (en) 1992-05-07 1993-02-23 Ethicon, Inc. Purse string suture instrument
US5501695A (en) 1992-05-27 1996-03-26 The Anspach Effort, Inc. Fastener for attaching objects to bones
DE4220283C2 (en) 1992-06-20 1994-05-19 Singer Spezialnadelfab The surgical needle-suture combination
GB2268690A (en) 1992-07-15 1994-01-19 Lopez Francisco Garcia Vaginal autosuture device
US6048351A (en) 1992-09-04 2000-04-11 Scimed Life Systems, Inc. Transvaginal suturing system
US5281237A (en) 1992-09-25 1994-01-25 Gimpelson Richard J Surgical stitching device and method of use
US5362294A (en) 1992-09-25 1994-11-08 Seitzinger Michael R Sling for positioning internal organ during laparoscopic surgery and method of use
US5337736A (en) 1992-09-30 1994-08-16 Reddy Pratap K Method of using a laparoscopic retractor
ES2049653B1 (en) 1992-10-05 1994-12-16 Velazquez Francisco Farrer correction device female urinary incontinence.
US5383904A (en) 1992-10-13 1995-01-24 United States Surgical Corporation Stiffened surgical device
US5250033A (en) 1992-10-28 1993-10-05 Interventional Thermodynamics, Inc. Peel-away introducer sheath having proximal fitting
US6406480B1 (en) 1992-11-13 2002-06-18 American Med Syst Bone anchor inserter with retractable shield
US5972000A (en) 1992-11-13 1999-10-26 Influence Medical Technologies, Ltd. Non-linear anchor inserter device and bone anchors
IL103737A (en) 1992-11-13 1997-02-18 Technion Res & Dev Foundation Stapler device particularly useful in medical suturing
US5328077A (en) 1992-11-19 1994-07-12 Lou Ek Seng Method and apparatus for treating female urinary incontinence
US5540703A (en) 1993-01-06 1996-07-30 Smith & Nephew Richards Inc. Knotted cable attachment apparatus formed of braided polymeric fibers
AU6236794A (en) 1993-02-22 1994-09-14 Valleylab, Inc. A laparoscopic dissection tension retractor device and method
WO1994021197A1 (en) 1993-03-25 1994-09-29 C.R. Bard, Inc. Vascular graft
US5474543A (en) 1993-05-17 1995-12-12 Mckay; Hunter A. Single needle apparatus and method for performing retropublic urethropexy
US5520703A (en) 1993-06-07 1996-05-28 Essig; Mitchell N. Laparoscopic deschamp and associated suturing technique
US5370662A (en) 1993-06-23 1994-12-06 Kevin R. Stone Suture anchor assembly
US5500000A (en) 1993-07-01 1996-03-19 United States Surgical Corporation Soft tissue repair system and method
BR9302774A (en) 1993-07-06 1995-02-14 Antoine Jean Henri Robert Expander adjustable peri-urethral
CA2124651C (en) 1993-08-20 2004-09-28 David T. Green Apparatus and method for applying and adjusting an anchoring device
US5591206A (en) 1993-09-30 1997-01-07 Moufarr+E,Gra E+Ee Ge; Richard Method and device for closing wounds
JPH09504216A (en) 1993-10-28 1997-04-28 ピエース、ジャヴィン Suture fixation device
US5527342A (en) 1993-12-14 1996-06-18 Pietrzak; William S. Method and apparatus for securing soft tissues, tendons and ligaments to bone
US5518504A (en) 1993-12-28 1996-05-21 American Medical Systems, Inc. Implantable sphincter system utilizing lifting means
AU1011595A (en) 1994-01-13 1995-07-20 Ethicon Inc. Spiral surgical tack
FR2720266B1 (en) 1994-05-27 1996-12-20 Cogent Sarl prosthetic tissue.
US5899909A (en) 1994-08-30 1999-05-04 Medscand Medical Ab Surgical instrument for treating female urinary incontinence
US5643320A (en) 1995-03-13 1997-07-01 Depuy Inc. Soft tissue anchor and method
US5571139A (en) 1995-05-19 1996-11-05 Jenkins, Jr.; Joseph R. Bidirectional suture anchor
US6042583A (en) 1995-06-14 2000-03-28 Medworks Corporation Bone anchor-insertion tool and surgical method employing same
US6451024B1 (en) 1995-06-14 2002-09-17 Dexterity Surgical, Inc. Surgical method for treating urinary incontinence, and apparatus for use in same
US5997554A (en) 1995-06-14 1999-12-07 Medworks Corporation Surgical template and surgical method employing same
US5697931A (en) 1995-06-14 1997-12-16 Incont, Inc. Apparatus and method for laparoscopic urethopexy
US5591163A (en) 1995-06-14 1997-01-07 Incont, Inc. Apparatus and method for laparoscopic urethropexy
US5669935A (en) 1995-07-28 1997-09-23 Ethicon, Inc. One-way suture retaining device for braided sutures
AUPN562295A0 (en) 1995-09-26 1995-10-19 Compton, Jeffrey Spencer Dr Easy load device for raney style scalp clips
SE506164C2 (en) 1995-10-09 1997-11-17 Medscand Medical Ab Instrumentarium for the treatment of urinary incontinence in women
WO1997016121A1 (en) 1995-10-31 1997-05-09 Karl Christopher Texler Surgical instruments
DE19544162C1 (en) 1995-11-17 1997-04-24 Ethicon Gmbh Implant for suspension of the urinary bladder in female urinary incontinence
WO1997021402A1 (en) 1995-12-14 1997-06-19 Prograft Medical, Inc. Stent-graft deployment apparatus and method
US5741282A (en) 1996-01-22 1998-04-21 The Anspach Effort, Inc. Soft tissue fastener device
US5725541A (en) 1996-01-22 1998-03-10 The Anspach Effort, Inc. Soft tissue fastener device
US5785640A (en) 1996-05-23 1998-07-28 Kresch; Arnold J. Method for treating female incontinence
US5893856A (en) 1996-06-12 1999-04-13 Mitek Surgical Products, Inc. Apparatus and method for binding a first layer of material to a second layer of material
US5782916A (en) 1996-08-13 1998-07-21 Galt Laboratories, Inc. Device for maintaining urinary continence
US6264676B1 (en) 1996-11-08 2001-07-24 Scimed Life Systems, Inc. Protective sheath for transvaginal anchor implantation devices
US6053935A (en) 1996-11-08 2000-04-25 Boston Scientific Corporation Transvaginal anchor implantation device
US5709708A (en) 1997-01-31 1998-01-20 Thal; Raymond Captured-loop knotless suture anchor assembly
US5954057A (en) 1997-02-12 1999-09-21 Li Medical Technologies, Inc. Soft tissue suspension clip, clip assembly, emplacement tool and method
CA2280812A1 (en) 1997-02-13 1998-08-20 Rodney Brenneman Percutaneous and hiatal devices and methods for use in minimally invasive pelvic surgery
EP1006886B1 (en) 1997-02-13 2003-07-09 Boston Scientific Limited Dilator for minimally invasive pelvic surgery
AU6329598A (en) 1997-02-13 1998-09-08 Boston Scientific Ireland Limited, Barbados Head Office Stabilization sling for use in minimally invasive pelvic surgery
CA2283190A1 (en) 1997-03-07 1998-09-11 Mordechay Beyar Systems for percutaneous bone and spinal stabilization, fixation and repair
US6039686A (en) 1997-03-18 2000-03-21 Kovac; S. Robert System and a method for the long term cure of recurrent urinary female incontinence
US6599235B2 (en) 1997-03-18 2003-07-29 American Medical Systems Inc. Transvaginal bone anchor implantation device
US5782866A (en) 1997-03-25 1998-07-21 Ethicon, Inc. System for anchoring tissue to bone
US5934283A (en) 1997-04-15 1999-08-10 Uroplasty, Inc. Pubovaginal sling device
US5922026A (en) 1997-05-01 1999-07-13 Origin Medsystems, Inc. Surgical method and prosthetic strip therefor
DE69807329T2 (en) 1997-06-02 2003-04-24 Martello Jeanette M Fixing anchor for soft tissue
US5988171A (en) 1997-06-26 1999-11-23 Influence Medical Technologies, Ltd. Methods and devices for the treatment of airway obstruction, sleep apnea and snoring
US5944732A (en) 1997-08-27 1999-08-31 Medical Components, Inc. Subcutaneous tunnelling device and methods of forming a subcutaneous tunnel
US5980558A (en) 1997-09-30 1999-11-09 Biomet Inc. Suture anchor system
CA2304296C (en) 1997-10-01 2005-02-15 Boston Scientific Limited Pelvic floor reconstruction
US6027523A (en) 1997-10-06 2000-02-22 Arthrex, Inc. Suture anchor with attached disk
US6099552A (en) 1997-11-12 2000-08-08 Boston Scientific Corporation Gastrointestinal copression clips
US6096041A (en) 1998-01-27 2000-08-01 Scimed Life Systems, Inc. Bone anchors for bone anchor implantation device
US6221005B1 (en) 1998-02-17 2001-04-24 Norman I. Bruckner Pubo-urethral support harness apparatus for percutaneous treatment of female stress urinary incontinence with urethal hypemobility
US6068591A (en) 1998-02-17 2000-05-30 Bruckner; Norman I. Pubo-urethral support harness apparatus for percutaneous treatment of female stress urinary incontinence
US5984927A (en) 1998-03-03 1999-11-16 Ethicon, Inc. Device for sutureless attachment of soft tissue to bone
ES2149091B1 (en) 1998-03-10 2001-05-16 Gil Vernet Vila Jose Maria Device for fastening and height adjustable support of internal anatomical organs.
US6099551A (en) 1998-03-12 2000-08-08 Shelhigh, Inc. Pericardial strip and stapler assembly for dividing and sealing visceral tissues and method of use thereof
US6106545A (en) 1998-04-16 2000-08-22 Axya Medical, Inc. Suture tensioning and fixation device
IT1299162B1 (en) 1998-04-17 2000-02-29 Mauro Cervigni Together prosthetic to be used in surgical treatment of urogenital prolapse
FR2777442B1 (en) 1998-04-21 2000-07-28 Tornier Sa Suture anchor a reversible expansion
US6382214B1 (en) 1998-04-24 2002-05-07 American Medical Systems, Inc. Methods and apparatus for correction of urinary and gynecological pathologies including treatment of male incontinence and female cystocele
CA2321004C (en) 1998-05-12 2004-05-04 Scimed Life Systems, Inc. Manual bone anchor placement devices
AT371409T (en) 1998-05-21 2007-09-15 Christopher J Walshe System for fixing tissue
US6074341A (en) 1998-06-09 2000-06-13 Timm Medical Technologies, Inc. Vessel occlusive apparatus and method
US6010447A (en) 1998-07-31 2000-01-04 Kardjian; Paul M. Bladder sling
US6042536A (en) 1998-08-13 2000-03-28 Contimed, Inc. Bladder sling
US6648903B1 (en) 1998-09-08 2003-11-18 Pierson, Iii Raymond H. Medical tensioning system
US6030393A (en) 1998-09-15 2000-02-29 Corlew; Earvin L. Needle and procedure for relieving urinary incontinence
US6050937A (en) 1998-09-21 2000-04-18 Benderev; Theodore V. Surgical tension/pressure monitor
US6302840B1 (en) 1998-09-21 2001-10-16 Theodore V. Benderev Surgical monitor
US6786861B1 (en) 1998-10-01 2004-09-07 Nicolaas Daniel Lombard Burger Distensible sling for urinary incontinence
US5925047A (en) 1998-10-19 1999-07-20 Third Millennium Engineering, Llc Coupled rod, anterior vertebral body screw, and staple assembly
FR2785521B1 (en) 1998-11-10 2001-01-05 Sofradim Production Suspension device for the treatment of prolapse and urinary incontinence
US7410460B2 (en) 1998-11-23 2008-08-12 Benderev Theodore V System for securing sutures, grafts and soft tissue to bone and periosteum
US7387634B2 (en) 1998-11-23 2008-06-17 Benderev Theodore V System for securing sutures, grafts and soft tissue to bone and periosteum
US20050004576A1 (en) 1998-11-23 2005-01-06 Benderev Theodore V. System for securing sutures, grafts and soft tissue to bone and periosteum
US6200330B1 (en) 1998-11-23 2001-03-13 Theodore V. Benderev Systems for securing sutures, grafts and soft tissue to bone and periosteum
FR2787990B1 (en) 1998-12-30 2001-04-27 Medical Res & Man Llc Prothese destiny to correct urinary incontinence in women
IL127978D0 (en) 1999-01-08 1999-11-30 Influence Med Tech Ltd Incontinence device
JP2002534149A (en) 1999-01-08 2002-10-15 インフルエンス・メディカル・テクノロジーズ・リミテッド Tack equipment
US6099538A (en) 1999-02-02 2000-08-08 T.A.G. Medical Products Set of surgical tools and surgical method for connecting soft bone parts to one another or to connective tissue
US6287316B1 (en) 1999-03-26 2001-09-11 Ethicon, Inc. Knitted surgical mesh
US20050283189A1 (en) 1999-03-31 2005-12-22 Rosenblatt Peter L Systems and methods for soft tissue reconstruction
US6981983B1 (en) 1999-03-31 2006-01-03 Rosenblatt Peter L System and methods for soft tissue reconstruction
FR2792824B1 (en) 1999-04-27 2001-06-22 Sofradim Production prolapse treatment device by vaginal suspension
EP1189552B1 (en) 1999-04-30 2009-04-01 Uromedica Inc. Apparatus with an adjustable sling for treatment of urinary stress incontinence
IL130307D0 (en) 1999-06-04 2000-06-01 Influence Med Tech Ltd Bone suturing device
ES2269069T3 (en) 1999-06-08 2007-04-01 Ethicon, Inc. Woven surgical mesh.
US7121997B2 (en) 1999-06-09 2006-10-17 Ethicon, Inc. Surgical instrument and method for treating female urinary incontinence
US6475139B1 (en) 1999-06-09 2002-11-05 Ethicon, Inc. Visually-directed surgical instrument and method for treating female urinary incontinence
US6273852B1 (en) 1999-06-09 2001-08-14 Ethicon, Inc. Surgical instrument and method for treating female urinary incontinence
US6932759B2 (en) 1999-06-09 2005-08-23 Gene W. Kammerer Surgical instrument and method for treating female urinary incontinence
US7226407B2 (en) 1999-06-09 2007-06-05 Ethicon, Inc. Surgical instrument and method for treating female urinary incontinence
DK1581162T3 (en) 1999-06-09 2011-08-01 Ethicon Inc Device for adjusting polymer implants on soft surfaces
US7131943B2 (en) 2000-03-09 2006-11-07 Ethicon, Inc. Surgical instrument and method for treating organ prolapse conditions
IT1313574B1 (en) 1999-07-27 2002-09-09 Angiologica B M S R L Corrective Network for body tissues.
US6168611B1 (en) 1999-09-08 2001-01-02 Syed Rizvi Suturing needle assemblies and methods of use thereof
US6419624B1 (en) 1999-10-11 2002-07-16 Uromedica, Inc. Apparatus and method for inserting an adjustable implantable genitourinary device
AUPQ362199A0 (en) 1999-10-22 1999-11-18 Kaladelfos, George Intra-vaginal sling placement device
US6599318B1 (en) 1999-11-30 2003-07-29 Shlomo Gabbay Implantable support apparatus and method of using same
US6306079B1 (en) 1999-12-07 2001-10-23 Arnaldo F. Trabucco Mesh pubovaginal sling
DE19961218A1 (en) 1999-12-15 2001-07-05 Ethicon Gmbh A surgical needle for implanting a tape
FR2802798B1 (en) 1999-12-22 2002-02-01 Promedon S A Strap pad for treatment of urinary incontinence
US6406423B1 (en) 2000-01-21 2002-06-18 Sofradim Production Method for surgical treatment of urinary incontinence and device for carrying out said method
GB2359256B (en) 2000-01-21 2004-03-03 Sofradim Production Percutaneous device for treating urinary stress incontinence in women using a sub-urethral tape
DE10004832A1 (en) 2000-01-31 2001-08-16 Ethicon Gmbh Areal implant with a radiopaque elements
US6414179B1 (en) 2000-02-18 2002-07-02 Bristol-Myers Squibb Company Alpha-and beta-substituted trifluoromethyl ketones as phospholipase inhibitors
US6837846B2 (en) 2000-04-03 2005-01-04 Neo Guide Systems, Inc. Endoscope having a guide tube
US20020007222A1 (en) 2000-04-11 2002-01-17 Ashvin Desai Method and apparatus for supporting a body organ
US6908473B2 (en) 2000-04-14 2005-06-21 Jeffry B. Skiba Tissue anchoring devices, biological vessel suspending devices and systems and methods utilizing same
US6482214B1 (en) 2000-04-27 2002-11-19 Medtronic, Inc. Intravascular seal with mesh reinforcement and method for using same
US6596001B2 (en) 2000-05-01 2003-07-22 Ethicon, Inc. Aiming device for surgical instrument and method for use for treating female urinary incontinence
US6638211B2 (en) 2000-07-05 2003-10-28 Mentor Corporation Method for treating urinary incontinence in women and implantable device intended to correct urinary incontinence
US6494906B1 (en) 2000-07-25 2002-12-17 Advanced Cardiovascular Systems, Inc. Stent fold clip
US6592515B2 (en) 2000-09-07 2003-07-15 Ams Research Corporation Implantable article and method
US7025063B2 (en) 2000-09-07 2006-04-11 Ams Research Corporation Coated sling material
AU9308501A (en) 2000-09-26 2002-04-08 Ethicon Inc Surgical apparatus and methods for delivery of a sling in the treatment of female urinary incontinence
DE20016866U1 (en) 2000-09-30 2000-12-14 Wendt Adalbert Tool for unlocking a lock cylinder
FR2814939B1 (en) 2000-10-05 2002-12-20 Sofradim Production Set soutenement sub-urethral in the treatment of urinary incontinence in women effort
US20040073235A1 (en) 2001-10-01 2004-04-15 Lund Robert E. Surgical article
US6702827B1 (en) 2000-10-06 2004-03-09 American Medical Systems Sling adjustment and tensioning accessory
US7299803B2 (en) 2000-10-09 2007-11-27 Ams Research Corporation Pelvic surgery drape
GB0025068D0 (en) 2000-10-12 2000-11-29 Browning Healthcare Ltd Apparatus and method for treating female urinary incontinence
US6605097B1 (en) 2000-10-18 2003-08-12 Jorn Lehe Apparatus and method for treating female urinary incontinence
US6638209B2 (en) 2000-10-20 2003-10-28 Ethicon Gmbh System with a surgical needle and a handle
US6699175B2 (en) 2000-10-23 2004-03-02 Ethicon, Inc. Apparatus and method for the measurement of the resistance of the urethral sphincter
DE10056169C2 (en) 2000-11-13 2003-07-03 Ethicon Gmbh Implant for holding the female bladder
WO2002039914A1 (en) 2000-11-15 2002-05-23 Scimed Life Systems, Inc. Device and method for treating female urinary incontinence
DE60137964D1 (en) 2000-11-20 2009-04-23 Ethicon Inc Operating instrument for the treatment of female harnine continence
US20020128670A1 (en) 2000-11-22 2002-09-12 Ulf Ulmsten Surgical instrument and method for treating female urinary incontinence
US6599323B2 (en) 2000-12-21 2003-07-29 Ethicon, Inc. Reinforced tissue implants and methods of manufacture and use
US6582443B2 (en) 2000-12-27 2003-06-24 Ams Research Corporation Apparatus and methods for enhancing the functional longevity and for facilitating the implantation of medical devices
US6802807B2 (en) 2001-01-23 2004-10-12 American Medical Systems, Inc. Surgical instrument and method
US7037255B2 (en) 2001-07-27 2006-05-02 Ams Research Corporation Surgical instruments for addressing pelvic disorders
US6641525B2 (en) 2001-01-23 2003-11-04 Ams Research Corporation Sling assembly with secure and convenient attachment
US6612977B2 (en) 2001-01-23 2003-09-02 American Medical Systems Inc. Sling delivery system and method of use
US7407480B2 (en) 2001-07-27 2008-08-05 Ams Research Corporation Method and apparatus for correction of urinary and gynecological pathologies, including treatment of incontinence cystocele
US20020147382A1 (en) 2001-01-23 2002-10-10 Neisz Johann J. Surgical articles and methods
US7229453B2 (en) 2001-01-23 2007-06-12 Ams Research Corporation Pelvic floor implant system and method of assembly
US6602260B2 (en) 2001-02-02 2003-08-05 Ams Research Corporation Powered bone screw device
US9149261B2 (en) 2001-03-09 2015-10-06 Boston Scientific Scimed, Inc. Systems, methods and devices relating to delivery of medical implants
US8162816B2 (en) 2001-03-09 2012-04-24 Boston Scientific Scimed, Inc. System for implanting an implant and method thereof
US20050131393A1 (en) 2001-03-09 2005-06-16 Scimed Life Systems, Inc. Systems, methods and devices relating to delivery of medical implants
US7364541B2 (en) 2001-03-09 2008-04-29 Boston Scientific Scimed, Inc. Systems, methods and devices relating to delivery of medical implants
CA2440153C (en) 2001-03-09 2011-09-20 Scimed Life Systems, Inc. System for implanting an implant and method thereof
AUPR406501A0 (en) 2001-03-28 2001-04-26 Kaladelfos, George Treatment of vault prolapse
US20020161382A1 (en) 2001-03-29 2002-10-31 Neisz Johann J. Implant inserted without bone anchors
FR2824257B1 (en) 2001-05-07 2004-01-30 Bernard Guerquin intravaginal device for prevention of female urinary incontinence effort
US20030004581A1 (en) 2001-06-27 2003-01-02 Rousseau Robert A. Implantable prosthetic mesh system
ITMI20011376A1 (en) 2001-06-29 2002-12-30 Siemens Inf & Comm Networks A method for traffic control in packet switching in digital cellular communication systems
US6755781B2 (en) 2001-07-27 2004-06-29 Scimed Life Systems, Inc. Medical slings
WO2003017948A2 (en) 2001-08-29 2003-03-06 Avlan Limited Aryl tetrahydronaphthalene derivatives
US6830052B2 (en) 2001-10-03 2004-12-14 Solarant Medical, Inc. Urethral support for incontinence
US6648921B2 (en) 2001-10-03 2003-11-18 Ams Research Corporation Implantable article
US7087065B2 (en) 2001-10-04 2006-08-08 Ethicon, Inc. Mesh for pelvic floor repair
US6673010B2 (en) 2001-10-22 2004-01-06 T. A. G. Medical Products Ltd. Biological vessel suspending assembly and systems and methods utilizing same
DE10153334B4 (en) 2001-10-29 2004-04-29 Ethicon Gmbh areal implant
DE10155842A1 (en) 2001-11-14 2003-05-28 Ethicon Gmbh areal implant
DE10159181A1 (en) 2001-12-03 2003-06-26 Ethicon Gmbh Surgical auxiliary instrument
US6974462B2 (en) 2001-12-19 2005-12-13 Boston Scientific Scimed, Inc. Surgical anchor implantation device
WO2003073960A1 (en) 2002-03-01 2003-09-12 Ethicon, Inc. Method and apparatus for treating pelvic organ prolapses in female patients
US8968178B2 (en) 2002-03-07 2015-03-03 Ams Research Corporation Transobturator surgical articles and methods
US7357773B2 (en) 2002-03-07 2008-04-15 Ams Research Corporation Handle and surgical article
JP4476630B2 (en) 2002-03-07 2010-06-09 エーエムエス・リサーチ・コーポレーション Surgical instruments and methods via the closure membrane
US6911003B2 (en) 2002-03-07 2005-06-28 Ams Research Corporation Transobturator surgical articles and methods
US7070556B2 (en) 2002-03-07 2006-07-04 Ams Research Corporation Transobturator surgical articles and methods
FR2836820B1 (en) 2002-03-08 2004-12-17 Vincent Goria Surgical apparatus and tape for the treatment of stress urinary incontinence in women
DE10211360A1 (en) 2002-03-14 2003-10-09 Ethicon Gmbh Implantate band and surgical needle system to support female urethra has distal end region of needle narrower than implantate band
GB2402343B (en) 2002-04-11 2006-03-15 Gyne Ideas Ltd Apparatus for treating female urinary incontinence
US7766926B2 (en) 2002-04-30 2010-08-03 Vance Products Incorporated Sling for supporting tissue
WO2003094784A2 (en) 2002-05-07 2003-11-20 Ams Research Corporation Urethral prosthesis with tensioning member
AU2003245470A1 (en) 2002-06-12 2003-12-31 Boston Scientific Limited Medical slings
US6881184B2 (en) 2002-07-16 2005-04-19 Stephen M. Zappala Absorbable pubovaginal sling system and method
ITFI20020145A1 (en) 2002-08-01 2004-02-02 Giulio Nicita A device for the surgical treatment of female prolapse.
US7371245B2 (en) 2002-08-02 2008-05-13 C R Bard, Inc Transobturator introducer system for sling suspension system
WO2004016196A2 (en) 2002-08-14 2004-02-26 Boston Scientific Limited Systems, methods and devices relating to delivery of medical implants
CA2495105C (en) 2002-08-23 2012-06-05 Peter Emmanuel Petros Anchoring device and its implementation
US7611454B2 (en) 2002-08-29 2009-11-03 Universite De Liege Surgical procedure for the treatment of female urinary incontinence: tension-free inside-out transobturator urethral suspension
FR2843876B1 (en) 2002-08-30 2004-11-26 Bernard Bouffier Device forming a surgical prosthesis, for implantation of a retaining of an organ of a mammal
US7946982B2 (en) * 2002-10-25 2011-05-24 K2M, Inc. Minimal incision maximal access MIS spine instrumentation and method
US7494495B2 (en) 2003-03-28 2009-02-24 Coloplast A/S Method and implant for curing cystocele
FR2852813B1 (en) 2003-03-28 2005-06-24 Analytic Biosurgical Solutions Introducer and perforator guide for the implementation of a bandlet in the human body
WO2004091442A2 (en) 2003-03-28 2004-10-28 Analytic Biosurgical Solution Abiss Implant for treatment of a rectocele and device for placement of said implant
US20070078295A1 (en) 2003-04-03 2007-04-05 Susanne Landgrebe Surgical implant system for treating female urinary incontinence
US7273448B2 (en) 2003-04-24 2007-09-25 Ams Research Corporation Male urethral prosthesis
EP1617767B1 (en) 2003-04-25 2012-09-26 Boston Scientific Limited Systems for surgical sling delivery and placement
ITRM20030210A1 (en) 2003-04-30 2004-11-01 Mauro Cervigni Implants for use in the surgical treatment of prolapse
US6981944B2 (en) 2003-07-07 2006-01-03 Ethicon, Inc. Implantable surgical mesh having a lubricious coating
WO2005018493A1 (en) 2003-08-14 2005-03-03 Boston Scientific Limited Medical slings
US7303525B2 (en) 2003-08-22 2007-12-04 Ams Research Corporation Surgical article and methods for treating female urinary incontinence
US7347812B2 (en) 2003-09-22 2008-03-25 Ams Research Corporation Prolapse repair
US7393319B2 (en) 2003-10-14 2008-07-01 Caldera Medical, Inc. Implantable sling having bladder support
US20060028828A1 (en) 2003-10-31 2006-02-09 Phillips Todd L Light fixture candle assembly
US7261723B2 (en) 2003-11-12 2007-08-28 Ethicon, Inc. Surgical instrument and method for the treatment of urinary incontinence
ES2435513T3 (en) 2003-11-17 2013-12-20 Lyra Medical Ltd. Pelvic implant with anchor frame
CN1913834B (en) * 2003-12-18 2010-12-01 德普伊斯派尔公司 Surgical retractor systems
WO2005079702A1 (en) 2004-02-19 2005-09-01 Ams Research Corporation Prolapse repair
US20050199249A1 (en) 2004-03-15 2005-09-15 Karram Mickey M. Apparatus and method for incision-free vaginal prolapse repair
US7500945B2 (en) 2004-04-30 2009-03-10 Ams Research Corporation Method and apparatus for treating pelvic organ prolapse
AU2005244221B2 (en) 2004-05-03 2011-02-10 Ams Research Corporation Surgical implants and related methods
US8062206B2 (en) 2004-05-07 2011-11-22 Ams Research Corporation Method and apparatus for treatment of vaginal anterior repairs
US7351197B2 (en) 2004-05-07 2008-04-01 Ams Research Corporation Method and apparatus for cystocele repair
FR2871364B1 (en) 2004-06-10 2007-09-14 Cie De Rech En Composants Impl Prothetic implant of support under uretral and surgical instrument for its implantation
US20050278037A1 (en) 2004-06-11 2005-12-15 Analytic Biosurgical Solutions-Abiss Implant for the treatment of cystocele and rectocele
EP2543341B1 (en) 2004-06-14 2016-07-20 Boston Scientific Limited A soft tissue anchor
AU2005269338B2 (en) 2004-07-28 2012-02-02 Ethicon, Inc. Minimally invasive medical implant and insertion device and method for using the same
US7527588B2 (en) 2004-09-15 2009-05-05 Ethicon, Inc. System and method for surgical implant placement
WO2006041861A2 (en) 2004-10-05 2006-04-20 Ams Research Corporation Device and method for supporting vaginal cuff
US8500624B2 (en) 2004-10-25 2013-08-06 Boston Scientific Scimed, Inc. Systems and methods for sling delivery and placement
US8172745B2 (en) 2004-12-20 2012-05-08 Ams Research Corporation Treatment of anal incontinence and defecatory dysfunction
AU2006210494B2 (en) 2005-02-04 2011-01-06 Ams Research Corporation Needle design for male transobturator sling
US7914437B2 (en) 2005-02-04 2011-03-29 Ams Research Corporation Transobturator methods for installing sling to treat incontinence, and related devices
US20060217589A1 (en) 2005-03-22 2006-09-28 Wan Shaw P Pubovaginal sling implanter and procedure for the usage
WO2006108045A2 (en) 2005-04-05 2006-10-12 Ans Research Corporation Articles, devices, and methods for pelvic surgery
EP1871281B1 (en) 2005-04-06 2014-01-08 Boston Scientific Limited Assembly for sub-urethral support
US7393320B2 (en) 2005-04-29 2008-07-01 Ams Research Corporation Pelvic floor health articles and procedures
US7431690B2 (en) 2005-04-30 2008-10-07 Coloplast A/S Implantable sling for the treatment of male incontinence and method of using the same
US20060252980A1 (en) 2005-05-04 2006-11-09 Arnal Kevin R Methods and Apparatus for Securing and Tensioning a Urethral Sling to Pubic Bone
WO2007008209A1 (en) 2005-07-13 2007-01-18 Boston Scientific Scimed Inc. Snap fit sling anchor system and related methods
US9248010B2 (en) 2005-07-15 2016-02-02 Boston Scientific Scimed, Inc. Tension-adjustable surgical sling assembly
WO2007014241A1 (en) 2005-07-25 2007-02-01 Boston Scientific Scimed, Inc. Pelvic floor repair system
BRPI0613896A2 (en) 2005-07-26 2016-11-16 Ams Res Corp pelvic implant set and kit
WO2007079385A2 (en) 2005-12-28 2007-07-12 C.R. Bard, Inc. Apparatus and method for introducing implants
US20080207989A1 (en) 2005-08-29 2008-08-28 Ams Research Corporation System For Positioning Support Mesh in a Patient
ES2470338T3 (en) 2005-11-14 2014-06-23 C.R. Bard, Inc. Sling anchor system
US7637860B2 (en) 2005-11-16 2009-12-29 Boston Scientific Scimed, Inc. Devices for minimally invasive pelvic surgery
US7513865B2 (en) 2005-12-20 2009-04-07 Boston Scientific Scimed, Inc. Flattened tubular mesh sling and related methods
CA2636521A1 (en) 2006-01-10 2007-07-19 Roger D. Beyer Apparatus for posterior pelvic floor repair
US8585577B2 (en) 2006-01-10 2013-11-19 Ams Research Corporation Multi-leveled transgluteal tension-free levatorplasty for treatment of Rectocele
EP1978890A1 (en) 2006-01-10 2008-10-15 Hallum, Alton, V Levator for repair of perineal prolapse
US9144483B2 (en) 2006-01-13 2015-09-29 Boston Scientific Scimed, Inc. Placing fixation devices
EP1991133B1 (en) 2006-02-16 2018-10-24 Boston Scientific Scimed, Inc. Surgical articles for treating pelvic conditions
EP2019648A4 (en) 2006-05-19 2017-06-07 AMS Research Corporation Method and articles for treatment of stress urinary incontinence
EP2926765A3 (en) 2006-06-08 2015-12-23 AMS Research Corporation Apparatus for levator distension repair
US8834350B2 (en) 2006-06-16 2014-09-16 Ams Research Corporation Surgical implants, tools, and methods for treating pelvic conditions
BRPI0712370A2 (en) 2006-06-22 2012-06-12 Ams Res Corp system and method for providing body tissue support to slow incontinence
EP2371294B1 (en) 2006-10-26 2015-02-25 AMS Research Corporation Surgical articles for treating pelvic conditions
US8734319B2 (en) 2007-02-28 2014-05-27 Boston Scientific Scimed, Inc. Apparatus for organ suspension
EP2155106A1 (en) 2007-04-04 2010-02-24 Ajay Rane Kit for levator avulsion repair
JP2010532209A (en) 2007-06-29 2010-10-07 エーエムエス リサーチ コーポレイション Surgical apparatus and method for treating pelvic disease
EP2175783A2 (en) 2007-07-27 2010-04-21 AMS Research Corporation Pelvic floor treatments and related tools and implants
US8821372B2 (en) 2008-12-12 2014-09-02 Walter von Pechmann Endoscopic mesh delivery system with integral mesh stabilizer and vaginal probe
US20100179575A1 (en) 2008-11-10 2010-07-15 Von Pechmann Walter Adjustable sacral mesh fixation device and method
US8998803B2 (en) 2009-04-30 2015-04-07 Boston Scientific Scimed, Inc. Dissection and retraction device for vaginal sacral colpopexy
AU2010339436B2 (en) 2009-12-30 2015-01-15 Boston Scientific Scimed, Inc. Systems, implants, tools, and methods for treatments of pelvic conditions
US20120016185A1 (en) 2010-07-16 2012-01-19 Charles Sherts Vaginal Manipulator Tips and Related Systems and Methods

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080214898A1 (en) * 2006-10-31 2008-09-04 Lanx, Llc Retractor system

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130190558A1 (en) * 2010-09-29 2013-07-25 Ams Research Corporation Systems, tools, and methods for treatments of pelvic conditions
US9949814B2 (en) * 2010-09-29 2018-04-24 Boston Scientific Scimed, Inc. Systems, tools, and methods for treatments of pelvic conditions
US20130190572A1 (en) * 2011-02-18 2013-07-25 Jeong Sam Lee Retraction system for laparoscopic surgery
US9247932B2 (en) * 2011-02-18 2016-02-02 Jeong Sam Lee Retraction system for laparoscopic surgery
US20150066039A1 (en) * 2012-04-05 2015-03-05 Nlt Spine Ltd. Conic retraction
US9649114B2 (en) 2012-07-24 2017-05-16 Ams Research Corporation Systems, tools, and methods for connecting to tissue
WO2014018473A1 (en) 2012-07-24 2014-01-30 Ams Research Corporation Systems, tools, and methods for connecting to tissue
EP3520708A2 (en) 2012-07-24 2019-08-07 Boston Scientific Scimed, Inc. Systems and tools for connecting to tissue
WO2014150468A1 (en) 2013-03-15 2014-09-25 Ams Research Corporation Systems, tools, and methods for connecting to tissue
US10028739B2 (en) 2013-03-15 2018-07-24 Boston Scientific Scimed, Inc. Systems, tools, and methods for connecting to tissue
WO2016004083A1 (en) * 2014-06-30 2016-01-07 University Of South Florida Sacrocolpopexy/sacrocervicopexy vaginal positioning and mesh retention system

Also Published As

Publication number Publication date
US20150105623A1 (en) 2015-04-16
US10390813B2 (en) 2019-08-27

Similar Documents

Publication Publication Date Title
US8100921B2 (en) Methods for reducing gastric volume
EP2305128B1 (en) Placing fixation devices
US6517566B1 (en) Devices and methods for treating e.g. urinary stress incontinence
EP1962720B1 (en) System for retracting, lifting, compressing, supporting or repositioning tissues or anatomical structures
JP4404776B2 (en) Anastomosis device
AU2006202854B2 (en) Method of treating anal incontinence
US6981983B1 (en) System and methods for soft tissue reconstruction
KR20100051059A (en) Pelvic floor treatments and related tools and implants
EP0525791A1 (en) Method and apparatus for laparoscopic repair of hernias
US7691050B2 (en) Devices for minimally invasive pelvic surgery
EP1911416A1 (en) Prosthetic implant for sub-urethral support and insertion kit for implanting it
US9655708B2 (en) Systems and methods employing a push tube for delivering a urethral sling
EP0519022B1 (en) Surgical patch and insertion device
US9149352B2 (en) Implants and procedures for treatment of pelvic floor disorders
US7708748B2 (en) Anastomosis device
JP2009279428A (en) Endoscopic organ retraction system and method of using the same
US20070270890A1 (en) System and Method for Treating Tissue Wall Prolapse
JP2010532209A (en) Surgical apparatus and method for treating pelvic disease
EP1684663B1 (en) Pelvic implant with anchoring frame
EP1531756B1 (en) Surgical prosthesis-forming device used to implant an organ support in a mammal
JP4767961B2 (en) System and method for surgical implant placement
US9931192B2 (en) Continuous indentation lateral lobe apparatus and method
JP4971440B2 (en) Surgical implants, tools, and methods for treating pelvic disease
US20050021085A1 (en) Surgical stabilizer devices and methods
US9775644B2 (en) Tissue removal and manipulator device for LAVH and related surgeries

Legal Events

Date Code Title Description
AS Assignment

Owner name: AMS RESEARCH CORPORATION, MINNESOTA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ALEXANDER, JAMES A.;FRIGSTAD, JOHN R.;HERMAN, CARRIE L.;AND OTHERS;SIGNING DATES FROM 20120909 TO 20120913;REEL/FRAME:029130/0242

AS Assignment

Owner name: DEUTSCHE BANK AG NEW YORK BRANCH, AS COLLATERAL AG

Free format text: GRANT OF SECURITY INTEREST IN PATENTS;ASSIGNORS:ENDO PHARMACEUTICALS SOLUTIONS, INC.;ENDO PHARMACEUTICALS, INC.;AMS RESEARCH CORPORATION;AND OTHERS;REEL/FRAME:032491/0440

Effective date: 20140228

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: AMERICAN MEDICAL SYSTEMS, LLC, MINNESOTA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:DEUTSCHE BANK AG NEW YORK BRANCH;REEL/FRAME:036285/0146

Effective date: 20150803

Owner name: AMS RESEARCH, LLC, MINNESOTA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:DEUTSCHE BANK AG NEW YORK BRANCH;REEL/FRAME:036285/0146

Effective date: 20150803

Owner name: LASERSCOPE, CALIFORNIA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:DEUTSCHE BANK AG NEW YORK BRANCH;REEL/FRAME:036285/0146

Effective date: 20150803