US20130029440A1 - Method for fabricating semiconductor light-emitting device - Google Patents

Method for fabricating semiconductor light-emitting device Download PDF

Info

Publication number
US20130029440A1
US20130029440A1 US13/632,856 US201213632856A US2013029440A1 US 20130029440 A1 US20130029440 A1 US 20130029440A1 US 201213632856 A US201213632856 A US 201213632856A US 2013029440 A1 US2013029440 A1 US 2013029440A1
Authority
US
United States
Prior art keywords
epitaxial structure
manufacturing
multilayer epitaxial
angle
roughening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/632,856
Inventor
Ya-Ju Lee
Ta-Cheng Hsu
Ming-Ta Chin
Yen-Wen Chen
Lo Wu-Tsung
Chung-Yuan Li
Min-Hsun Hsieh
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Epistar Corp
Original Assignee
Epistar Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Epistar Corp filed Critical Epistar Corp
Priority to US13/632,856 priority Critical patent/US20130029440A1/en
Publication of US20130029440A1 publication Critical patent/US20130029440A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/16Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular crystal structure or orientation, e.g. polycrystalline, amorphous or porous
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • H01L33/22Roughened surfaces, e.g. at the interface between epitaxial layers

Definitions

  • the invention relates to fabrication technology for a semiconductor light-emitting device, and more particularly to a semiconductor light-emitting device with increased light extraction efficiency and the fabrication method thereof.
  • LEDs Semiconductor light-emitting devices, such as light-emitting diodes (LEDs), have been become popular due to the small size, light weight, and low power consumption along with the increased light-emitting efficiency.
  • LED comprises a semiconductor p-n diode. After a bias applies to both ends of the p-n junction for passing current therethrough, electrons and holes are combined to release light. To increase LED's reliability and lower its energy consumption, increased light-emitting efficiency thereof is required.
  • Light-emitting efficiency of LEDs is also known as external quantum efficiency of a device, which is the product of internal quantum efficiency and light extraction efficiency of the LED.
  • the internal quantum efficiency of the LED is the electric-optical conversion efficiency thereof determined by material properties and quality. Additionally, the light extraction efficiency is determined by the structure, the light absorption index and refractive index of LEDs. Conventionally, the internal quantum efficiency is raised by improving the quality of epitaxial layers or changing the epitaxial structure, to suppress the electric energy converting to thermal energy. Nevertheless, to further increase the light-emitting efficiency of LEDs, another important concern is how to increase light extraction efficiency thereof.
  • an LED with a roughened surface can be accomplished by natural lithography, such as ion beam etching using randomly arranged polystyrene spheroids as a mask, but it may result in uneven rough surface or damage the lattice structure of the active layer of the LED and thereby reducing the light extraction efficiency of the LED.
  • Another method for surface roughening is wet etching. In this method, an epitaxial layer for light emission is grown on a substrate with unselected lattice plane. The surface of the epitaxial layer is etched by suitable etchant with a metal mask.
  • wet etching is isotropic, the epitaxial layer is etched in not only a vertical direction but also horizontal direction, so the patterns on the mask cannot effectively transfer to the surface of the epitaxial layer and thereby reducing the degree of roughening.
  • both ion beam etching and wet etching require an additional process step for formation of an etch mask and the process steps of both are complicated.
  • the surface roughening degree is proportioned to light extraction efficiency. Therefore, there is a need to develop an improved fabrication method for a semiconductor light-emitting device with higher degree of surface roughening and thereby increasing light extraction efficiency.
  • the semiconductor light-emitting device comprises a multilayer epitaxial structure disposed on a semiconductor substrate.
  • the semiconductor substrate has a predetermined lattice direction perpendicular to an upper surface thereof, wherein the predetermined lattice direction is oriented toward [0 1 1] or [01 1 ] from [100] with a first angle, or oriented toward [011] or [0 11 ] from [ 1 00] with a second angle, so the upper surface of the semiconductor substrate comprises at least two lattice planes with different lattice plane directions.
  • a multilayer epitaxial structure disposed on the semiconductor substrate therefore has a roughened upper surface perpendicular to the predetermined lattice directions.
  • An embodiment of a method for fabricating a semiconductor light-emitting device comprises providing a semiconductor substrate having a predetermined lattice direction perpendicular to an upper surface thereof, wherein the predetermined lattice direction is oriented toward [0 1 1] or [01 1 ] from [100] with a first angle, or oriented toward [011] or [0 11 ] from [ 1 00]with a second angle, so the upper surface of the semiconductor substrate comprises at least two lattice planes with different lattice plane directions.
  • a multilayer epitaxial structure is formed on the semiconductor substrate. Surface roughening is performed on an upper surface of the multilayer epitaxial structure on the semiconductor substrate by etching.
  • FIGS. 1A to 1B are cross sections of an embodiment of a method for fabricating a semiconductor light-emitting device
  • FIG. 1C is a magnified diagram showing a multilayer epitaxial structure of FIG. 1B ;
  • FIG. 1D is a plan view SEM (scanning electron microscope) image of a multilayer epitaxial structure of FIG. 1B ;
  • FIG. 2 is a magnified diagram showing a part of the semiconductor substrate shown in FIGS. 1A and 1B ;
  • FIGS. 3A and 3B show several lattice planes of a cubic crystal lattice structure, respectively.
  • FIG. 1B illustrates an embodiment of a semiconductor light-emitting device.
  • the semiconductor light-emitting device such as a light-emitting diode (LED)
  • a semiconductor substrate 100 comprises a semiconductor substrate 100 , a multilayer epitaxial structure 101 , and upper and lower electrode plates 110 and 112 .
  • the semiconductor substrate 100 is provided for formation of the multilayer epitaxial structure 101 , comprising a III-V group compound semiconductor material, such as GaAsP, GaAs, GaP or the like.
  • the multilayer epitaxial structure 101 is disposed on the semiconductor substrate 100 and comprises an n-type semiconductor layer 102 , a p-type semiconductor layer 106 , and an active layer 104 interposed therebetween.
  • the arrangements of the n-type and p-type semiconductor layers 102 and 106 can be interchanged. That is, the p-type semiconductor layer 106 is disposed at the bottom of the multilayer epitaxial structure 101 and the n-type semiconductor layer 102 is disposed on the top of the multilayer epitaxial structure 101 .
  • the n-type and p-type semiconductor layers 102 and 106 act as cladding layers of the LED, comprising III-V group compound semiconductor materials, such as AlGaInP, AlGaAs or other ternary or quaternary III-V group compound semiconductor materials.
  • the active layer 104 may comprise [Al x Ga 1-x ] 0.5 In 0.5 P or other materials matched with the n-type and p-type semiconductor layers 102 and 106 .
  • the upper and lower electrode plates 110 and 112 are disposed on the top of the multilayer epitaxial structure 101 and the bottom of the semiconductor substrate 100 respectively.
  • FIG. 2 illustrates a magnified diagram showing a part of semiconductor substrate shown in FIGS. 1A and 1B .
  • the semiconductor substrate 100 has a predetermined lattice direction [abc] substantially perpendicular to an upper surface S 1 thereof so the upper surface S 1 of the semiconductor substrate 100 comprises at least two lattice planes, such as (100) and (001) lattice planes, to form an uneven rough surface.
  • the predetermined lattice direction [abc] is defined by having a group III atom located at the [000] position of the coordinate of the unit cell as the origin and then oriented toward [0 1 1] or [01 1 ] with an angle from [100], wherein the angle is between 6° and 55°, and 15° is preferred.
  • the predetermined lattice direction [abc] may be oriented toward [011] or [0 11 ] with an angle from [ 1 00], wherein the angle is also between 6° and 55°, and 15° is preferred.
  • the multilayer epitaxial structure 101 also has the predetermined lattice direction [abc] substantially perpendicular to an upper surface S 3 thereof so the upper surface S 3 of the multilayer epitaxial structure 101 and the upper surface S 1 of the semiconductor substrate 100 have substantially the same surface topography.
  • the roughening degree of the upper surface S 3 exceeds that of the upper surface S 1 which will be described subsequently.
  • FIGS. 1A to 1B describe a method for fabricating a semiconductor light-emitting device.
  • a semiconductor substrate 100 is provided.
  • the semiconductor substrate 100 has a predetermined lattice direction [abc] substantially perpendicular to an upper surface S 1 thereof so the upper surface S 1 of the semiconductor substrate 100 comprises at least two lattice planes, such as (100) and (001) lattice planes, to form an uneven rough surface, as shown in FIG. 2 .
  • FIG. 3A shows the diagram of the lattice planes of a cubic crystal structure.
  • the predetermined lattice direction [abc] of the semiconductor substrate 100 may be oriented toward [0 1 1] with an angle ⁇ from [ 100 ], or toward [011] with the angle ⁇ from [ 1 00], wherein ⁇ is between 6° and 55°, and 15° is preferred, as the dotted arrow labeled in FIG. 3A .
  • the lattice planes and directions relative to the predetermined lattice direction [abc] are shown in FIG. 3A for clarification.
  • FIG. 3B shows the diagram of the lattice planes of a cubic crystal structure.
  • the predetermined lattice direction [abc] of the semiconductor substrate 100 may be oriented toward [01 1 ] with an angle ⁇ from [100], or toward [0 11 ] with the angle ⁇ from [ 1 00], wherein the angle ⁇ is between 6° and 55°, and 15° is preferred, as the dotted arrow labeled in FIG. 3B .
  • the lattice planes and directions relative to the predetermined lattice direction [abc] are also shown in FIG. 3B for clarification.
  • the semiconductor substrate 100 is provided for subsequent formation of a multilayer epitaxial structure 101 , comprising an III-V group compound semiconductor material, such as GaAsP, GaAs, GaP or the like.
  • a multilayer epitaxial structure 101 is formed on the semiconductor substrate 100 , which having the predetermined lattice direction [abc], also has the predetermined lattice direction [abc] perpendicular to an upper surface S 2 thereof by epitaxially grown on the substrate 100 . That is, the upper surface S 2 of the multilayer epitaxial structure 101 and the upper surface S 1 of the semiconductor substrate 100 have substantially the same surface topography.
  • the multilayer epitaxial structure 101 can be formed by liquid phase epitaxy (LPE), metal organic vapor phase epitaxy (MOVPE), or other known epitaxial methods.
  • the multilayer epitaxial structure 101 may comprise an n-type semiconductor layer 102 , a p-type semiconductor layer 106 and an active layer 104 interposed therebetween.
  • the p-type semiconductor layer 106 is disposed at the bottom of the multilayer epitaxial structure 101 and the n-type semiconductor layer 102 is disposed on the top of the multilayer epitaxial structure 101 .
  • the n-type and p-type semiconductor layers 102 and 106 may comprise III-V group compound semiconductor materials, such as AlGaInP, AlGaAs or other ternary or quaternary III-V group compound semiconductor materials.
  • the active layer 104 may comprise [Al x Ga 1-x ] 0.5 In 0.5 P or other materials matched for the n-type and p-type semiconductor layers 102 and 106 .
  • the upper surface S 2 of the multilayer epitaxial structure 101 on the semiconductor substrate 100 is roughened by dry or wet etching.
  • wet etching can be performed on the upper surface S 2 of the multilayer epitaxial structure 101 using HCl and H 3 PO 4 as an etchant for about 20 seconds.
  • FIG. 1D is a top view of SEM (Scanning Electron Microscope) image of a multilayer epitaxial structure shown in FIG. 1B .
  • the upper surface S 2 of the multilayer epitaxial structure 101 comprises at least two different lattice planes, such as (100) and (001) lattice planes.
  • the surface structure with different lattice planes may act as an etch mask, so an additional etch mask is not required.
  • the multilayer epitaxial structure 101 may have an upper surface S 3 having substantially the same surface topography as the original upper surface S 2 thereof and the upper surface S 1 of the semiconductor substrate 100 after etching, but the roughening degree of the upper surface S 3 exceeds that of the original upper surface S 2 and the upper surface S 1 .
  • FIG. 1C is a magnified diagram showing the upper surface S 3 of the multilayer epitaxial structure 101 .
  • the roughened upper surface S 3 of the multilayer epitaxial structure 101 has a roughening depth not less than 0.05 ⁇ m, and between 0.05 ⁇ m and 1 ⁇ m is preferred.
  • Upper and lower electrode plates 110 and 112 are respectively formed on the upper surface S 3 of the multilayer epitaxial structure 101 and the lower surface of the semiconductor substrate 100 by conventional process steps. Note that the arrangement of the upper and lower electrode plates 110 and 112 can be varied with different device design.
  • the multilayer epitaxial structure 101 is formed by epitaxial growth along a predetermined lattice direction and then etching, the multilayer epitaxial structure 101 can have an upper surface with higher roughening degree and regular and even roughening topography. Accordingly, light extraction efficiency of the semiconductor light-emitting device is increased, thereby enhancing the light-emitting efficiency of the semiconductor light-emitting device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)
  • Physical Vapour Deposition (AREA)
  • Semiconductor Lasers (AREA)

Abstract

A semiconductor light-emitting device is disclosed. The semiconductor light-emitting device comprises a multilayer epitaxial structure disposed on a substrate. The substrate has a predetermined lattice direction perpendicular to an upper surface thereof, wherein the predetermined lattice direction is angled toward [0 11] or [01 1] from [100], or toward [011] or [0 11] from [ 100] so that the upper surface of the substrate comprises at least two lattice planes with different lattice plane directions. The multilayer epitaxial structure has a roughened upper surface perpendicular to the predetermined lattice direction. The invention also discloses a method for fabricating a semiconductor light-emitting device.

Description

    REFERENCE TO RELATED APPLICATION
  • The present application is a divisional application of U.S. patent application Ser. No. 11/727,378, filed on Mar. 26, 2007, now pending, which claims the right of priority based on Taiwan Application Serial Number 095110538, filed Mar. 27, 2006, the disclosure of which is incorporated herein by reference in their entirety.
  • BACKGROUND OF THE INVENTION
  • 1. Technical Field
  • The invention relates to fabrication technology for a semiconductor light-emitting device, and more particularly to a semiconductor light-emitting device with increased light extraction efficiency and the fabrication method thereof.
  • 2. Description of the Related Art
  • Semiconductor light-emitting devices, such as light-emitting diodes (LEDs), have been become popular due to the small size, light weight, and low power consumption along with the increased light-emitting efficiency. Typically, an LED comprises a semiconductor p-n diode. After a bias applies to both ends of the p-n junction for passing current therethrough, electrons and holes are combined to release light. To increase LED's reliability and lower its energy consumption, increased light-emitting efficiency thereof is required.
  • Light-emitting efficiency of LEDs is also known as external quantum efficiency of a device, which is the product of internal quantum efficiency and light extraction efficiency of the LED. The internal quantum efficiency of the LED is the electric-optical conversion efficiency thereof determined by material properties and quality. Additionally, the light extraction efficiency is determined by the structure, the light absorption index and refractive index of LEDs. Conventionally, the internal quantum efficiency is raised by improving the quality of epitaxial layers or changing the epitaxial structure, to suppress the electric energy converting to thermal energy. Nevertheless, to further increase the light-emitting efficiency of LEDs, another important concern is how to increase light extraction efficiency thereof.
  • It has been proposed to roughen the profile of an LED to increase the light reflection and scattering, thereby increasing light-emitting efficiency of the LED. For example, an LED with a roughened surface can be accomplished by natural lithography, such as ion beam etching using randomly arranged polystyrene spheroids as a mask, but it may result in uneven rough surface or damage the lattice structure of the active layer of the LED and thereby reducing the light extraction efficiency of the LED. Another method for surface roughening is wet etching. In this method, an epitaxial layer for light emission is grown on a substrate with unselected lattice plane. The surface of the epitaxial layer is etched by suitable etchant with a metal mask. Since wet etching is isotropic, the epitaxial layer is etched in not only a vertical direction but also horizontal direction, so the patterns on the mask cannot effectively transfer to the surface of the epitaxial layer and thereby reducing the degree of roughening. Moreover, both ion beam etching and wet etching require an additional process step for formation of an etch mask and the process steps of both are complicated.
  • The surface roughening degree is proportioned to light extraction efficiency. Therefore, there is a need to develop an improved fabrication method for a semiconductor light-emitting device with higher degree of surface roughening and thereby increasing light extraction efficiency.
  • BRIEF SUMMARY OF THE INVENTION
  • A detailed description is given in the following embodiments with reference to the accompanying drawings. An embodiment of a semiconductor light-emitting device and a fabrication method thereof are provided. The semiconductor light-emitting device comprises a multilayer epitaxial structure disposed on a semiconductor substrate. The semiconductor substrate has a predetermined lattice direction perpendicular to an upper surface thereof, wherein the predetermined lattice direction is oriented toward [0 11] or [01 1] from [100] with a first angle, or oriented toward [011] or [0 11] from [ 100] with a second angle, so the upper surface of the semiconductor substrate comprises at least two lattice planes with different lattice plane directions. A multilayer epitaxial structure disposed on the semiconductor substrate therefore has a roughened upper surface perpendicular to the predetermined lattice directions.
  • An embodiment of a method for fabricating a semiconductor light-emitting device comprises providing a semiconductor substrate having a predetermined lattice direction perpendicular to an upper surface thereof, wherein the predetermined lattice direction is oriented toward [0 11] or [01 1] from [100] with a first angle, or oriented toward [011] or [0 11] from [ 100]with a second angle, so the upper surface of the semiconductor substrate comprises at least two lattice planes with different lattice plane directions. A multilayer epitaxial structure is formed on the semiconductor substrate. Surface roughening is performed on an upper surface of the multilayer epitaxial structure on the semiconductor substrate by etching.
  • BRIEF DESCRIPTION OF DRAWINGS
  • The invention can be more fully understood by reading the subsequent detailed description and examples with references made to the accompanying drawings, wherein:
  • FIGS. 1A to 1B are cross sections of an embodiment of a method for fabricating a semiconductor light-emitting device;
  • FIG. 1C is a magnified diagram showing a multilayer epitaxial structure of FIG. 1B;
  • FIG. 1D is a plan view SEM (scanning electron microscope) image of a multilayer epitaxial structure of FIG. 1B;
  • FIG. 2 is a magnified diagram showing a part of the semiconductor substrate shown in FIGS. 1A and 1B; and
  • FIGS. 3A and 3B show several lattice planes of a cubic crystal lattice structure, respectively.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • The following description is provided for the purpose of illustrating the general principles of the invention and should not be taken in a limiting sense. The scope of the invention is best determined by reference to the appended claims.
  • FIG. 1B illustrates an embodiment of a semiconductor light-emitting device. The semiconductor light-emitting device, such as a light-emitting diode (LED), comprises a semiconductor substrate 100, a multilayer epitaxial structure 101, and upper and lower electrode plates 110 and 112. In this embodiment, the semiconductor substrate 100 is provided for formation of the multilayer epitaxial structure 101, comprising a III-V group compound semiconductor material, such as GaAsP, GaAs, GaP or the like. The multilayer epitaxial structure 101 is disposed on the semiconductor substrate 100 and comprises an n-type semiconductor layer 102, a p-type semiconductor layer 106, and an active layer 104 interposed therebetween. In some embodiments, the arrangements of the n-type and p- type semiconductor layers 102 and 106 can be interchanged. That is, the p-type semiconductor layer 106 is disposed at the bottom of the multilayer epitaxial structure 101 and the n-type semiconductor layer 102 is disposed on the top of the multilayer epitaxial structure 101. In the embodiment, the n-type and p- type semiconductor layers 102 and 106 act as cladding layers of the LED, comprising III-V group compound semiconductor materials, such as AlGaInP, AlGaAs or other ternary or quaternary III-V group compound semiconductor materials. The active layer 104 may comprise [AlxGa1-x]0.5In0.5P or other materials matched with the n-type and p- type semiconductor layers 102 and 106. The upper and lower electrode plates 110 and 112 are disposed on the top of the multilayer epitaxial structure 101 and the bottom of the semiconductor substrate 100 respectively.
  • In particular, FIG. 2 illustrates a magnified diagram showing a part of semiconductor substrate shown in FIGS. 1A and 1B. The semiconductor substrate 100 has a predetermined lattice direction [abc] substantially perpendicular to an upper surface S1 thereof so the upper surface S1 of the semiconductor substrate 100 comprises at least two lattice planes, such as (100) and (001) lattice planes, to form an uneven rough surface. In this embodiment, the predetermined lattice direction [abc] is defined by having a group III atom located at the [000] position of the coordinate of the unit cell as the origin and then oriented toward [0 11] or [01 1] with an angle from [100], wherein the angle is between 6° and 55°, and 15° is preferred. In some embodiments, the predetermined lattice direction [abc] may be oriented toward [011] or [0 11] with an angle from [ 100], wherein the angle is also between 6° and 55°, and 15° is preferred.
  • As shown in FIG. 1B, the multilayer epitaxial structure 101 also has the predetermined lattice direction [abc] substantially perpendicular to an upper surface S3 thereof so the upper surface S3 of the multilayer epitaxial structure 101 and the upper surface S1 of the semiconductor substrate 100 have substantially the same surface topography. However, the roughening degree of the upper surface S3 exceeds that of the upper surface S1 which will be described subsequently.
  • FIGS. 1A to 1B describe a method for fabricating a semiconductor light-emitting device. In FIG. 1A, a semiconductor substrate 100 is provided. The semiconductor substrate 100 has a predetermined lattice direction [abc] substantially perpendicular to an upper surface S1 thereof so the upper surface S1 of the semiconductor substrate 100 comprises at least two lattice planes, such as (100) and (001) lattice planes, to form an uneven rough surface, as shown in FIG. 2. FIG. 3A shows the diagram of the lattice planes of a cubic crystal structure. In the embodiment, the predetermined lattice direction [abc] of the semiconductor substrate 100 may be oriented toward [0 11] with an angle θ from [100], or toward [011] with the angle θ from [ 100], wherein θ is between 6° and 55°, and 15° is preferred, as the dotted arrow labeled in FIG. 3A. The lattice planes and directions relative to the predetermined lattice direction [abc] are shown in FIG. 3A for clarification.
  • FIG. 3B shows the diagram of the lattice planes of a cubic crystal structure. In some embodiments, the predetermined lattice direction [abc] of the semiconductor substrate 100 may be oriented toward [01 1] with an angle θ from [100], or toward [0 11] with the angle θ from [ 100], wherein the angle θ is between 6° and 55°, and 15° is preferred, as the dotted arrow labeled in FIG. 3B. The lattice planes and directions relative to the predetermined lattice direction [abc] are also shown in FIG. 3B for clarification.
  • The semiconductor substrate 100 is provided for subsequent formation of a multilayer epitaxial structure 101, comprising an III-V group compound semiconductor material, such as GaAsP, GaAs, GaP or the like.
  • Next, a multilayer epitaxial structure 101 is formed on the semiconductor substrate 100, which having the predetermined lattice direction [abc], also has the predetermined lattice direction [abc] perpendicular to an upper surface S2 thereof by epitaxially grown on the substrate 100. That is, the upper surface S2 of the multilayer epitaxial structure 101 and the upper surface S1 of the semiconductor substrate 100 have substantially the same surface topography. In the embodiment, the multilayer epitaxial structure 101 can be formed by liquid phase epitaxy (LPE), metal organic vapor phase epitaxy (MOVPE), or other known epitaxial methods.
  • The multilayer epitaxial structure 101 may comprise an n-type semiconductor layer 102, a p-type semiconductor layer 106 and an active layer 104 interposed therebetween. In some embodiments, the p-type semiconductor layer 106 is disposed at the bottom of the multilayer epitaxial structure 101 and the n-type semiconductor layer 102 is disposed on the top of the multilayer epitaxial structure 101. In this embodiment, the n-type and p-type semiconductor layers 102 and 106 may comprise III-V group compound semiconductor materials, such as AlGaInP, AlGaAs or other ternary or quaternary III-V group compound semiconductor materials. The active layer 104 may comprise [AlxGa1-x]0.5In0.5P or other materials matched for the n-type and p-type semiconductor layers 102 and 106.
  • The upper surface S2 of the multilayer epitaxial structure 101 on the semiconductor substrate 100 is roughened by dry or wet etching. For example, wet etching can be performed on the upper surface S2 of the multilayer epitaxial structure 101 using HCl and H3PO4 as an etchant for about 20 seconds. FIG. 1D is a top view of SEM (Scanning Electron Microscope) image of a multilayer epitaxial structure shown in FIG. 1B. The upper surface S2 of the multilayer epitaxial structure 101 comprises at least two different lattice planes, such as (100) and (001) lattice planes. The surface structure with different lattice planes may act as an etch mask, so an additional etch mask is not required. Since the etching rate of the (100) and (001) lattice planes are different, the multilayer epitaxial structure 101 may have an upper surface S3 having substantially the same surface topography as the original upper surface S2 thereof and the upper surface S1 of the semiconductor substrate 100 after etching, but the roughening degree of the upper surface S3 exceeds that of the original upper surface S2 and the upper surface S1. FIG. 1C is a magnified diagram showing the upper surface S3 of the multilayer epitaxial structure 101. In the embodiment, the roughened upper surface S3 of the multilayer epitaxial structure 101 has a roughening depth not less than 0.05 μm, and between 0.05 μm and 1 μm is preferred.
  • Upper and lower electrode plates 110 and 112 are respectively formed on the upper surface S3 of the multilayer epitaxial structure 101 and the lower surface of the semiconductor substrate 100 by conventional process steps. Note that the arrangement of the upper and lower electrode plates 110 and 112 can be varied with different device design.
  • Since the multilayer epitaxial structure 101 is formed by epitaxial growth along a predetermined lattice direction and then etching, the multilayer epitaxial structure 101 can have an upper surface with higher roughening degree and regular and even roughening topography. Accordingly, light extraction efficiency of the semiconductor light-emitting device is increased, thereby enhancing the light-emitting efficiency of the semiconductor light-emitting device.
  • While the invention has been described by way of example and in terms of preferred embodiment, it is to be understood that the invention is not limited thereto. To the contrary, it is intended to cover various modifications and similar arrangements (as would be apparent to those skilled in the art). Therefore, the scope of the appended claims should be accorded the broadest interpretation so as to encompass all such modifications and similar arrangements.

Claims (12)

1. A manufacturing method of a semiconductor light-emitting device, comprising:
providing a substrate having an upper surface with a predetermined direction perpendicular to the upper surface thereof, wherein the predetermined direction is selected from a group consisting of directions toward [0 11] with a first angle from [100], [01 1] with the first angle from [100], [011] with a second angle from [ 100], and [0 11] with the second angle from [ 100], wherein the first or the second angle is between 6° and 55°; and
forming a multilayer epitaxial structure on the upper surface, wherein the multilayer epitaxial structure has a rough upper surface substantially perpendicular to the predetermined direction and wherein the upper surfaces of the multilayer epitaxial structure and the substrate have substantially the same surface topography.
2. The manufacturing method as claimed in claim 1, further comprising roughening the upper surface of the multilayer epitaxial structure.
3. The manufacturing method as claimed in claim 1, wherein the multilayer epitaxial structure comprises an n-type semiconductor layer, a p-type semiconductor layer and an active layer interposed therebetween.
4. The manufacturing method as claimed in claim 1, wherein the predetermined direction is defined by having a group III atom located at the [000] position of the coordinate of the unit cell as the origin.
5. The manufacturing method as claimed in claim 1, wherein the first angle or the second angle is 15°.
6. The manufacturing method as claimed in claim 1, wherein the roughened upper surface of the multilayer epitaxial structure has a roughening depth not less than 0.05 μm.
7. The manufacturing method as claimed in claim 1, wherein the roughened upper surface of the multilayer epitaxial structure has a roughening depth between 0.05 μm and 1 μm.
8. The manufacturing method as claimed in claim 2, wherein the step of roughening the upper surface of the multilayer epitaxial structure is performed by wet etching using HCl and/or H3PO4 as an etchant.
9. The manufacturing method as claimed in claim 2, wherein the step of roughening the upper surface of the multilayer epitaxial structure is performed by dry etching.
10. The manufacturing method as claimed in claim 1, wherein the whole upper surface is generally extending along a horizontal direction.
11. The manufacturing method as claimed in claim 1, wherein the upper surface comprises at least two lattice planes with different lattice plane directions.
12. The manufacturing method as claimed in claim 11, wherein the predetermined direction is different from the lattice plane directions.
US13/632,856 2006-03-27 2012-10-01 Method for fabricating semiconductor light-emitting device Abandoned US20130029440A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/632,856 US20130029440A1 (en) 2006-03-27 2012-10-01 Method for fabricating semiconductor light-emitting device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
TW095110538A TWI298209B (en) 2006-03-27 2006-03-27 Semiconductor light-emitting device and method for fabricating the same
TW95110538 2006-03-27
US11/727,378 US8278672B2 (en) 2006-03-27 2007-03-26 Semiconductor light-emitting device and fabrication method thereof
US13/632,856 US20130029440A1 (en) 2006-03-27 2012-10-01 Method for fabricating semiconductor light-emitting device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11/727,378 Division US8278672B2 (en) 2006-03-27 2007-03-26 Semiconductor light-emitting device and fabrication method thereof

Publications (1)

Publication Number Publication Date
US20130029440A1 true US20130029440A1 (en) 2013-01-31

Family

ID=38532412

Family Applications (2)

Application Number Title Priority Date Filing Date
US11/727,378 Active 2030-05-07 US8278672B2 (en) 2006-03-27 2007-03-26 Semiconductor light-emitting device and fabrication method thereof
US13/632,856 Abandoned US20130029440A1 (en) 2006-03-27 2012-10-01 Method for fabricating semiconductor light-emitting device

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US11/727,378 Active 2030-05-07 US8278672B2 (en) 2006-03-27 2007-03-26 Semiconductor light-emitting device and fabrication method thereof

Country Status (2)

Country Link
US (2) US8278672B2 (en)
TW (1) TWI298209B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11477726B2 (en) 2014-05-30 2022-10-18 Nec Corporation Apparatus, system and method for dedicated core network

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008182069A (en) * 2007-01-25 2008-08-07 Toshiba Corp Semiconductor light-emitting element
TWI370558B (en) * 2007-11-07 2012-08-11 Ind Tech Res Inst Light emitting diode and process for fabricating the same
CN102420280A (en) * 2010-09-25 2012-04-18 亚威朗光电(中国)有限公司 Semiconductor light-emitting diode
JPWO2013132762A1 (en) * 2012-03-09 2015-07-30 パナソニックIpマネジメント株式会社 LIGHT EMITTING ELEMENT AND MANUFACTURING METHOD THEREOF
US9276164B2 (en) * 2012-11-26 2016-03-01 Epistar Corporation Optoelectronic device and method for manufacturing the same

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63226918A (en) * 1987-03-16 1988-09-21 Shin Etsu Handotai Co Ltd Epitaxial wafer of mixed crystal of gallium arsenide phosphide
KR100281939B1 (en) * 1993-01-13 2001-03-02 고오사이 아끼오 Semiconductor epitaxial substrate
JP2630264B2 (en) * 1994-03-24 1997-07-16 日本電気株式会社 Strained quantum well semiconductor laser
JP3146874B2 (en) * 1994-09-13 2001-03-19 三菱化学株式会社 Light emitting diode
JP2743901B2 (en) * 1996-01-12 1998-04-28 日本電気株式会社 Gallium nitride crystal growth method
US6072196A (en) * 1996-09-05 2000-06-06 Ricoh Company, Ltd. semiconductor light emitting devices
JP4091261B2 (en) * 2000-10-31 2008-05-28 株式会社東芝 Semiconductor light emitting device and manufacturing method thereof
JP3782357B2 (en) * 2002-01-18 2006-06-07 株式会社東芝 Manufacturing method of semiconductor light emitting device
JP2004339003A (en) * 2003-05-15 2004-12-02 Shin Etsu Handotai Co Ltd Silicon epitaxial wafer, and method for manufacturing silicon epitaxial wafer
JP4092658B2 (en) * 2004-04-27 2008-05-28 信越半導体株式会社 Method for manufacturing light emitting device
US7524708B2 (en) * 2005-02-28 2009-04-28 Neosemitech Corporation Fabrication method of a high brightness light emitting diode with a bidirectionally angled substrate
US20070158661A1 (en) * 2006-01-12 2007-07-12 Rutgers, The State University Of New Jersey ZnO nanostructure-based light emitting device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11477726B2 (en) 2014-05-30 2022-10-18 Nec Corporation Apparatus, system and method for dedicated core network

Also Published As

Publication number Publication date
US8278672B2 (en) 2012-10-02
TW200737542A (en) 2007-10-01
US20070221929A1 (en) 2007-09-27
TWI298209B (en) 2008-06-21

Similar Documents

Publication Publication Date Title
JP3852000B2 (en) Light emitting element
JP5232972B2 (en) Semiconductor light emitting device and method for manufacturing semiconductor light emitting device
US7791061B2 (en) External extraction light emitting diode based upon crystallographic faceted surfaces
US8604488B2 (en) Light emitting diode and fabricating method thereof
JP4824293B2 (en) Photonic crystal light emitting device
US20100019263A1 (en) Rough structure of optoelectronic device and fabrication thereof
US8841149B2 (en) Method for making light emitting diode
US8901589B2 (en) Semiconductor structure
US8841148B2 (en) Method for making light emitting diode
US20130029440A1 (en) Method for fabricating semiconductor light-emitting device
US8841688B2 (en) Light emitting diode
US20130248911A1 (en) Light-emitting device including nitride-based semiconductor omnidirectional reflector
US8785955B2 (en) Light emitting diode
US20130089939A1 (en) Method for making light emitting diode
US9041030B2 (en) Light emitting diode
US8664020B2 (en) Semiconductor light emitting device and method of manufacturing the same
US20140367634A1 (en) Nitride-based light emitting diode including nonorods and method of mmanufacturing the same
KR101371819B1 (en) Semiconductor light emitting device and fabrication method thereof
CN107735870B (en) Light emitting module and method for manufacturing light emitting module
US20150050762A1 (en) SEPARATION METHOD OF GaN SUBSTRATE BY WET ETCHING
KR100867499B1 (en) Nitride Semiconductor Light Emitting Device and Method for Manufacturing the Same
KR101701041B1 (en) Light emitting diode formed on silicon polyhedron and method for fabricating the same
JP5980669B2 (en) Light emitting diode
KR101775123B1 (en) Nitride light emitting device
CN117832352A (en) Patterned substrate, epitaxial wafer, preparation method and flip-chip light-emitting diode

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION