US20130008116A1 - Construction assembly including stackable substructure frames and distinct combined tie connection and reinforcing means - Google Patents

Construction assembly including stackable substructure frames and distinct combined tie connection and reinforcing means Download PDF

Info

Publication number
US20130008116A1
US20130008116A1 US13/177,456 US201113177456A US2013008116A1 US 20130008116 A1 US20130008116 A1 US 20130008116A1 US 201113177456 A US201113177456 A US 201113177456A US 2013008116 A1 US2013008116 A1 US 2013008116A1
Authority
US
United States
Prior art keywords
modular building
spaced
multiplicity
building assembly
stackable modular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/177,456
Inventor
Henry Clay Turner, III
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US13/177,456 priority Critical patent/US20130008116A1/en
Publication of US20130008116A1 publication Critical patent/US20130008116A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C2/00Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
    • E04C2/30Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by the shape or structure
    • E04C2/38Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by the shape or structure with attached ribs, flanges, or the like, e.g. framed panels
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C2/00Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
    • E04C2/30Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by the shape or structure
    • E04C2/34Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by the shape or structure composed of two or more spaced sheet-like parts
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C2/00Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
    • E04C2/30Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by the shape or structure
    • E04C2/34Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by the shape or structure composed of two or more spaced sheet-like parts
    • E04C2002/3488Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by the shape or structure composed of two or more spaced sheet-like parts spaced apart by frame like structures

Definitions

  • the present invention relates generally to modular construction systems and, more particularly, to construction systems which employ a plurality of connectable modular framing components and methods for assembling the various modular framing components to construct modular building structures which can be constructed by both professional and amateur do it yourself builders.
  • stick built i.e. typically constructed of 2 ⁇ 4 or 2 ⁇ 6 structural members and nails forming a wooden structural framework and then covered and finished on the exterior and interior.
  • Most stick build houses now include some component parts, such as engineered wood products, windows, doors, and cabinets, because of the advantages of economy of scale in mass production of such components and because of the reduced onsite labor and time requirements.
  • System Built homes Houses made with predominantly preassembled or pre-shaped enclosure components transported to the house-site for assembly are known as System Built homes.
  • Grouped under System Build houses are log houses, timber and steel frame houses, and panelized homes including SIPs, open and closed wall panels, and geodesic domes.
  • SIPs open and closed wall panels
  • geodesic domes Although on site labor of system built homes can be reduced in relation to stick built homes, the labor savings virtues are incomplete.
  • Most modular frame substructure systems focus exclusively on labor savings of primary construction and not finish work—by far the most labor intensive aspect of home building.
  • the Quaile patent is further limited to an arched building enclosure system.
  • the Sherman and Matsubara patents are further limited to a straight building enclosure system.
  • Embodiments of the present invention address the aforementioned limitations of previous prefabricated component systems and connection methods by providing a stackable modular building frame enclosure system with preinstalled interior and exterior finished wall covering capacity utilizing a hollow cavity to easily accommodate a concealed distinct structural connection and reinforcing sustainer members with concealed fasteners, and mechanical rough in systems.
  • a first prefabricated framing unit substructure is connected to a base with the distinct connection and reinforcing strap and secured with mechanical fasteners and a second module is stacked on and connected to the first module with the continuous distinct connection and reinforcing strap secured with mechanical fasteners.
  • the modules are stacked and connected to the desired wall height and then connected to the top plate and roof structure with the distinct structural strapping secured with mechanical fasteners.
  • a stackable modular building enclosure system employing a plurality of prefabricated framing unit substructures including preinstalled rigid insulation board and facer elements for assembly with other similar prefabricated framing unit substructures that reduces the need for timely and costly on-site finishing labor.
  • IRC International Residential Code
  • FIG. 1 is a perspective view illustrating a stackable modular enclosure assembly including pre-installed rigid insulation board and facer elements on the interior and exterior sides.
  • FIG. 2 is a perspective view illustrating a stackable modular enclosure assembly.
  • FIG. 3 is a plan view illustrating a single prefabricated framing unit substructure.
  • FIG. 4 is a side elevation view illustrating a single prefabricated framing unit substructure.
  • FIG. 5 is an end elevation view illustrating a single prefabricated framing unit substructure and further showing a single frame member segment of rectangular side profile.
  • FIG. 6 is an end elevation view illustrating a prefabricated framing unit substructure including preinstalled rigid insulation board and facers on the interior and exterior side.
  • FIG. 7 is a plan view illustrating a prefabricated framing unit substructure including rigid insulation board and facer members on the interior and exterior sides according to a preferred embodiment of the invention.
  • FIG. 8 is an exterior elevation view illustrating a prefabricated framing unit substructure including an exterior facer according to a preferred embodiment of the invention.
  • FIG. 9 is an interior elevation view illustrating a prefabricated framing unit substructure including an interior facer according to a preferred embodiment of the invention.
  • FIG. 1 is a preferred embodiment of the present invention illustrating a partially assembled structural frame enclosure section of two connected prefabricated stackable frame substructures including pre-installed rigid insulation board 6 , interior finished facer element 8 and exterior facer element 5 .
  • stackable frame substructure materials include but are not limited to wood, wood products metal, plastic or fiber-reinforced plastic or concrete.
  • Each longitudinal frame segments 1 of said first prefabricated stackable frame substructure including pre-installed rigid insulation board 6 , interior finished facer element 8 and exterior facer element 5 , is shown receiving a first and a second longitudinally located structural coil strap 3 , including but not limited to metal structural coil strap with pre-punched holes, flat metal strap with pre-punched holes, plastic strap and synthetic webbing strap, connected with mechanical fastener 9 through pre-punched hole 10 to an interior and exterior longitudinal edge of said frame segments.
  • fasteners 9 includes but are not limited to screws, nails, staples, or integral nail like teeth pressed out of the surface of a metal strap and chemical bonding agents.
  • Each said first and said second structural coil strap are further shown fastened to a base plate 4 with mechanical fasteners 9 through pre-punched holes 10 .
  • a second prefabricated stackable frame substructure including pre-installed rigid insulation board 6 , interior finished facer element 8 and exterior facer element 5 is shown, superposed above first said prefabricated stackable frame substructure including pre-installed rigid insulation board 6 , interior finished facer element 8 and exterior facer element 5 , wherein each longitudinal frame segment 1 of said first prefabricated stackable frame substructure including pre-installed rigid insulation board 6 , interior finished facer element 8 and exterior facer element 5 and each longitudinal frame segments 1 of said second prefabricated stackable frame substructure including pre-installed rigid insulation board 6 , interior finished facer element 8 and exterior facer element 5 are positioned in end to end relation.
  • Said first and said second mechanically fastened structural coil strap 3 located on the interior and exterior longitudinal edge of each said longitudinal frame segments of said first prefabricated stackable substructure including pre-installed rigid insulation board 6 , interior finished facer element 8 and exterior facer element 5 , are further shown fastened with mechanical fasteners 9 through pre-punched holes 10 to each longitudinal frame segments 1 of said second prefabricated stackable frame substructure including pre-installed rigid insulation board 6 , interior finished facer element 8 and exterior facer element Son an interior and an exterior longitudinal edge with mechanical fasteners 9 through pre-punched holes 10 forming a straight partial enclosure section.
  • the longitudinal frame segments can be trapezoidal or arced in side profile and can be built up or composite in nature.
  • FIG. 2 is a preferred embodiment of the present invention illustrating a partially assembled structural frame enclosure section of two connected prefabricated stackable frame substructures.
  • stackable frame substructure materials include but are not limited to wood, wood products metal, plastic or fiber-reinforced plastic or concrete.
  • a first prefabricated stackable frame substructure comprising a first longitudinal frame member segment 1 , a second longitudinal wood frame segment 1 , a first spacing and rack resistant bracing element 2 connected at a first end with mechanical fasteners to said first longitudinal frame member segment 1 and connected on the opposite end with mechanical fasteners to said second longitudinal frame member segment 1 , a second spacing and rack-resistant bracing element 2 connected on a first end with mechanical fasteners to said second longitudinal frame segment 1 and connected on the opposite end with mechanical fasteners to a third longitudinal frame member segment 1 , forming two cavities or bays between said connected longitudinal frame member segments 1 .
  • Each longitudinal frame segments 1 of said first prefabricated stackable frame substructure is shown receiving a first and a second longitudinally located structural coil strap 3 , including but not limited to metal structural coil strap with pre-punched holes, flat metal strap with pre-punched holes, plastic strap and synthetic webbing strap, connected with mechanical fastener 9 , through pre-punched hole 10 to an interior and exterior longitudinal edge of said frame segments.
  • fasteners 9 includes but are not limited to screws, nails, staples, or integral nail like teeth pressed out of the surface of a metal strap and chemical bonding agents.
  • Each said first and said second structural coil strap are further shown fastened to a base plate 4 with mechanical fasteners 9 through pre-punched holes 10 .
  • a second prefabricated stackable frame substructure is shown, superposed above first said prefabricated stackable frame substructure, wherein each longitudinal frame segment 1 of said first prefabricated stackable frame substructure and each longitudinal frame segments 1 of said second prefabricated stackable frame substructure are positioned in end to end relation.
  • Said first and said second mechanically fastened structural coil strap 3 located on the interior and exterior longitudinal edge of each said longitudinal frame segments of said first prefabricated stackable substructure, are further shown fastened with mechanical fasteners 9 through pre-punched holes 10 to each longitudinal frame segments 1 of said second prefabricated stackable frame substructure on an interior and an exterior longitudinal edge with mechanical fasteners 9 through pre-punched holes 10 forming a straight partial enclosure section.
  • the longitudinal frame segments can be trapezoidal or arced in side profile and can be built up or composite in nature.
  • FIG. 3 is a top view illustrating a single bay prefabricated stackable frame substructure showing two longitudinal frame segments 1 mechanically fastened to a spacing and rack-resistant bracing member 2 .
  • FIG. 4 is an elevation view illustrating a single bay prefabricated stackable frame substructure showing two longitudinal frame segments 1 mechanically fastened to a spacing and rack-resistant bracing member 2 .
  • FIG. 5 is an end view illustrating a single bay prefabricated stackable frame substructure showing a frame segment 1 in side profile.
  • FIG. 6 is an end view illustrating a prefabricated stackable frame substructure including pre-installed rigid insulation board 6 , interior facer 8 and exterior facer 5 , fastened to a longitudinal fame segment 1 exhibiting a rectangular side profile.
  • FIG. 7 is top view of a double cavity prefabricated stackable frame substructure including preinstalled rigid insulation board 6 , interior facer 8 and exterior facer 5 , showing three longitudinal frame segment and two spacing and rack-resistant bracing elements in communion with one another.
  • FIG. 8 illustrates an exterior elevation view of a prefabricated stackable frame substructure showing exterior facer 5 .
  • FIG. 9 illustrates an interior elevation view of a prefabricated stackable frame substructure showing interior facer 8 and rigid insulation board 6 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Joining Of Building Structures In Genera (AREA)

Abstract

A stackable modular building enclosure assembly and system including in combination a plurality of prefabricated substructure frames superposed, one above the other, and a combined connection tie and frame reinforcing sustainer member for constructing straight, angled or arced building enclosures including walls and roofs. In a preferred embodiment of the invention, prefabricated substructure frames include preinstalled interior and exterior facer members and utilize a hollow cavity to easily accommodate a hidden locating means for receiving a distinct tie and sustainer element.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application claims the benefit of priority under 35 U.S.C. 119(e) of U.S. Provisional Application No. 61/399,109, filed on Jul. 6, 2010, entitled “CONSTRUCTION ASSEMBLY INCLUDING STACKABLE MODULES AND COMBINED VERTICAL TIE CONNECTION AND REINFORCING MEANS’ which is hereby incorporated by reference in its entirety.
  • FIELD OF THE INVENTION
  • The present invention relates generally to modular construction systems and, more particularly, to construction systems which employ a plurality of connectable modular framing components and methods for assembling the various modular framing components to construct modular building structures which can be constructed by both professional and amateur do it yourself builders.
  • BACKGROUND OF THE INVENTION
  • The majority of houses constructed in the USA are built on site and referred to as stick built, i.e. typically constructed of 2×4 or 2×6 structural members and nails forming a wooden structural framework and then covered and finished on the exterior and interior. Most stick build houses now include some component parts, such as engineered wood products, windows, doors, and cabinets, because of the advantages of economy of scale in mass production of such components and because of the reduced onsite labor and time requirements.
  • Houses made with predominantly preassembled or pre-shaped enclosure components transported to the house-site for assembly are known as System Built homes. Grouped under System Build houses are log houses, timber and steel frame houses, and panelized homes including SIPs, open and closed wall panels, and geodesic domes. Although on site labor of system built homes can be reduced in relation to stick built homes, the labor savings virtues are incomplete. Most modular frame substructure systems focus exclusively on labor savings of primary construction and not finish work—by far the most labor intensive aspect of home building.
  • Inventors have, for the most part unsuccessfully, long sought a modular building system that could eliminate the need for highly skilled workers, link together strongly, be cheap and well suited to mass production and be easy to handle and quick to assemble. The present invention addresses these objectives.
  • The use of prefabricated modular framing substructures and connection methods for constructing building enclosures is known to the art.
  • In U.S. Pat. No. 6,935,075 Sherman, Aug. 30, 2005 there is disclosed a triangular stackable building wall module and method of assembly.
  • In U.S. Pat. No. 6,609,336 Matsubara, Aug. 26, 2003 there is disclosed a structurally improved modified version of U.S. Pat. No 6,014,842 addressed below.
  • U.S. Pat. No. 6,014,842 Matsubara, Jan. 18, 2000 illustrates a modular structure having modular units and a mechanical fastening assembly.
  • In U.S. Pat. No. 4,890,437 Quaile, Jan. 2, 1990, there is illustrated a segmented arch structure assembled in combination with an elongated pre-stressing element.
  • None of the above mentioned patents disclose a stackable modular building enclosure system with a continuous hollow cavity facilitating a concealed connection means, a mechanical chase means or a pre-installed finished facer capacity.
  • The Quaile patent is further limited to an arched building enclosure system.
  • The Sherman and Matsubara patents are further limited to a straight building enclosure system.
  • SUMMARRY OF THE PRESENT INVENTION
  • Embodiments of the present invention address the aforementioned limitations of previous prefabricated component systems and connection methods by providing a stackable modular building frame enclosure system with preinstalled interior and exterior finished wall covering capacity utilizing a hollow cavity to easily accommodate a concealed distinct structural connection and reinforcing sustainer members with concealed fasteners, and mechanical rough in systems.
  • A first prefabricated framing unit substructure is connected to a base with the distinct connection and reinforcing strap and secured with mechanical fasteners and a second module is stacked on and connected to the first module with the continuous distinct connection and reinforcing strap secured with mechanical fasteners. The modules are stacked and connected to the desired wall height and then connected to the top plate and roof structure with the distinct structural strapping secured with mechanical fasteners. Through utilization of a concealed cavity and a combined vertical tie connection and reinforcement means, embodiments of the present invention provides a finished facer surface capacity with a concealed connection means capable of effectively withstanding internal and external load forces on the building.
  • Accordingly, it is an object of a preferred embodiment of the present invention to provide a stackable modular building enclosure system employing a plurality of prefabricated framing unit substructures including preinstalled rigid insulation board and facer elements for assembly with other similar prefabricated framing unit substructures that reduces the need for timely and costly on-site finishing labor.
  • It is another object of a preferred embodiment of the present invention to provide a modular structure which utilizes prefabricated framing unit substructures in combination with a distinct tie and sustainer element to provide a final structural framework capable of assuming a multiplicity of shapes and sizes.
  • It is also an object of a preferred embodiment of the present invention to provide a stackable modular building enclosure system for construction of a multiplicity of enclosure structure shapes and styles including straight, curved and arced walls and roofs.
  • It is also an object of a preferred embodiment of the present invention to provide a stackable modular building system for fast assembly of finished surface enclosure modules without a requirement for mechanical lifting equipment and with an easy to comprehend “do it yourself appeal”.
  • It is another object of a preferred embodiment of the present invention to provide a stackable modular building enclosure system with a high R Value and little or no thermal bridging.
  • It is yet another object of a preferred embodiment of the present invention to provide a stackable modular building enclosure system that can meet or exceed the requirements of building codes including, but not limited to, the International Residential Code (IRC).
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The character of the invention, however, may be better understood by reference to one of its structural forms, as illustrated by the accompanying drawings, in which:
  • FIG. 1 is a perspective view illustrating a stackable modular enclosure assembly including pre-installed rigid insulation board and facer elements on the interior and exterior sides.
  • FIG. 2 is a perspective view illustrating a stackable modular enclosure assembly.
  • FIG. 3 is a plan view illustrating a single prefabricated framing unit substructure.
  • FIG. 4 is a side elevation view illustrating a single prefabricated framing unit substructure.
  • FIG. 5 is an end elevation view illustrating a single prefabricated framing unit substructure and further showing a single frame member segment of rectangular side profile.
  • FIG. 6 is an end elevation view illustrating a prefabricated framing unit substructure including preinstalled rigid insulation board and facers on the interior and exterior side.
  • FIG. 7 is a plan view illustrating a prefabricated framing unit substructure including rigid insulation board and facer members on the interior and exterior sides according to a preferred embodiment of the invention.
  • FIG. 8 is an exterior elevation view illustrating a prefabricated framing unit substructure including an exterior facer according to a preferred embodiment of the invention.
  • FIG. 9 is an interior elevation view illustrating a prefabricated framing unit substructure including an interior facer according to a preferred embodiment of the invention.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • FIG. 1 is a preferred embodiment of the present invention illustrating a partially assembled structural frame enclosure section of two connected prefabricated stackable frame substructures including pre-installed rigid insulation board 6, interior finished facer element 8 and exterior facer element 5. Although it is not shown on this figure, stackable frame substructure materials include but are not limited to wood, wood products metal, plastic or fiber-reinforced plastic or concrete. A first prefabricated stackable frame substructure including pre-installed rigid insulation board 6, interior finished facer element 8 and exterior facer element 5, comprising a first longitudinal frame member segment 1, a second longitudinal frame segment 1, a first spacing and rack resistant bracing element 2 connected at a first end with mechanical fasteners to said first longitudinal frame member segment 1, and connected on the opposite end with mechanical fasteners to said second longitudinal frame member segment 1, a second spacing and rack-resistant bracing element 2 connected on a first end with mechanical fasteners to said second longitudinal frame segment 1 and connected on the opposite end with mechanical fasteners to a third longitudinal frame member segment 1, forming two cavities or bays between said connected longitudinal frame member segments 1. Although it is not shown in this figure, the dimensions and number of bays or cavities in a prefabricated stackable frame substructure will depend on a predetermined enclosure section length and shape. Each longitudinal frame segments 1 of said first prefabricated stackable frame substructure including pre-installed rigid insulation board 6, interior finished facer element 8 and exterior facer element 5, is shown receiving a first and a second longitudinally located structural coil strap 3, including but not limited to metal structural coil strap with pre-punched holes, flat metal strap with pre-punched holes, plastic strap and synthetic webbing strap, connected with mechanical fastener 9 through pre-punched hole 10 to an interior and exterior longitudinal edge of said frame segments. Although it is not shown in this figure, fasteners 9 includes but are not limited to screws, nails, staples, or integral nail like teeth pressed out of the surface of a metal strap and chemical bonding agents. Each said first and said second structural coil strap are further shown fastened to a base plate 4 with mechanical fasteners 9 through pre-punched holes 10. A second prefabricated stackable frame substructure including pre-installed rigid insulation board 6, interior finished facer element 8 and exterior facer element 5 is shown, superposed above first said prefabricated stackable frame substructure including pre-installed rigid insulation board 6, interior finished facer element 8 and exterior facer element 5, wherein each longitudinal frame segment 1 of said first prefabricated stackable frame substructure including pre-installed rigid insulation board 6, interior finished facer element 8 and exterior facer element 5 and each longitudinal frame segments 1 of said second prefabricated stackable frame substructure including pre-installed rigid insulation board 6, interior finished facer element 8 and exterior facer element 5 are positioned in end to end relation. Said first and said second mechanically fastened structural coil strap 3 located on the interior and exterior longitudinal edge of each said longitudinal frame segments of said first prefabricated stackable substructure including pre-installed rigid insulation board 6, interior finished facer element 8 and exterior facer element 5, are further shown fastened with mechanical fasteners 9 through pre-punched holes 10 to each longitudinal frame segments 1 of said second prefabricated stackable frame substructure including pre-installed rigid insulation board 6, interior finished facer element 8 and exterior facer element Son an interior and an exterior longitudinal edge with mechanical fasteners 9 through pre-punched holes 10 forming a straight partial enclosure section. Although it is not shown in this figure, in other installations the longitudinal frame segments can be trapezoidal or arced in side profile and can be built up or composite in nature.
  • FIG. 2 is a preferred embodiment of the present invention illustrating a partially assembled structural frame enclosure section of two connected prefabricated stackable frame substructures. Although it is not shown on this figure, stackable frame substructure materials include but are not limited to wood, wood products metal, plastic or fiber-reinforced plastic or concrete. A first prefabricated stackable frame substructure comprising a first longitudinal frame member segment 1, a second longitudinal wood frame segment 1, a first spacing and rack resistant bracing element 2 connected at a first end with mechanical fasteners to said first longitudinal frame member segment 1 and connected on the opposite end with mechanical fasteners to said second longitudinal frame member segment 1, a second spacing and rack-resistant bracing element 2 connected on a first end with mechanical fasteners to said second longitudinal frame segment 1 and connected on the opposite end with mechanical fasteners to a third longitudinal frame member segment 1, forming two cavities or bays between said connected longitudinal frame member segments 1. Although it is not shown in this figure, the dimensions and number of bays or cavities in a prefabricated stackable frame substructure will depend on a predetermined enclosure section length and shape. Each longitudinal frame segments 1 of said first prefabricated stackable frame substructure is shown receiving a first and a second longitudinally located structural coil strap 3, including but not limited to metal structural coil strap with pre-punched holes, flat metal strap with pre-punched holes, plastic strap and synthetic webbing strap, connected with mechanical fastener 9 , through pre-punched hole 10 to an interior and exterior longitudinal edge of said frame segments. Although it is not shown in this figure, fasteners 9 includes but are not limited to screws, nails, staples, or integral nail like teeth pressed out of the surface of a metal strap and chemical bonding agents. Each said first and said second structural coil strap are further shown fastened to a base plate 4 with mechanical fasteners 9 through pre-punched holes 10. A second prefabricated stackable frame substructure is shown, superposed above first said prefabricated stackable frame substructure, wherein each longitudinal frame segment 1 of said first prefabricated stackable frame substructure and each longitudinal frame segments 1 of said second prefabricated stackable frame substructure are positioned in end to end relation. Said first and said second mechanically fastened structural coil strap 3 located on the interior and exterior longitudinal edge of each said longitudinal frame segments of said first prefabricated stackable substructure, are further shown fastened with mechanical fasteners 9 through pre-punched holes 10 to each longitudinal frame segments 1 of said second prefabricated stackable frame substructure on an interior and an exterior longitudinal edge with mechanical fasteners 9 through pre-punched holes 10 forming a straight partial enclosure section. Although it is not shown in this figure, in other installations the longitudinal frame segments can be trapezoidal or arced in side profile and can be built up or composite in nature.
  • FIG. 3 is a top view illustrating a single bay prefabricated stackable frame substructure showing two longitudinal frame segments 1 mechanically fastened to a spacing and rack-resistant bracing member 2.
  • FIG. 4 is an elevation view illustrating a single bay prefabricated stackable frame substructure showing two longitudinal frame segments 1 mechanically fastened to a spacing and rack-resistant bracing member 2.
  • FIG. 5 is an end view illustrating a single bay prefabricated stackable frame substructure showing a frame segment 1 in side profile.
  • FIG. 6 is an end view illustrating a prefabricated stackable frame substructure including pre-installed rigid insulation board 6, interior facer 8 and exterior facer 5, fastened to a longitudinal fame segment 1 exhibiting a rectangular side profile.
  • FIG. 7 is top view of a double cavity prefabricated stackable frame substructure including preinstalled rigid insulation board 6, interior facer 8 and exterior facer 5, showing three longitudinal frame segment and two spacing and rack-resistant bracing elements in communion with one another.
  • FIG. 8 illustrates an exterior elevation view of a prefabricated stackable frame substructure showing exterior facer 5.
  • FIG. 9 illustrates an interior elevation view of a prefabricated stackable frame substructure showing interior facer 8 and rigid insulation board 6.
  • Many configurations and combinations are contemplated and it will be understood that various changes and modifications may be made from the preferred embodiments discussed above without departing from the scope of the present invention.

Claims (19)

1. A stackable modular building enclosure assembly and system comprising in combination:
(a) a plurality of prefabricated framing unit substructures for assembly with other similar prefabricated framing unit substructures, each said prefabricated framing unit substructure comprising a multiplicity of spaced and braced longitudinal frame member segments, further comprising:
at least a first said spaced and braced longitudinal frame member segment,
at least a second said longitudinal frame member segment, in predetermined relation to said first longitudinal framing member segment,
at least one spacing and rack-resistant bracing element, and
(b) a plurality of elongated combined distinct tie connection and frame reinforcing sustainer members comprising a structural strap material,
said plurality of prefabricated framing unit substructures comprising a multiplicity of spaced and braced longitudinal frame member segments ,superposed, one above the other,
hollow cavity or bay locating means for receiving said plurality of elongated combined distinct tie connection and frame reinforcing sustainer members in assembled located load transfer relation to said multiplicity of spaced and braced longitudinal frame segments, positioned end to end, and
fastening means securing said multiplicity of spaced and braced longitudinal frame member segments and said plurality of elongated combined distinct tie and frame reinforcing sustainer members in mutually fastened relation.
2. A stackable modular building assembly and system of claim 1, wherein said plurality of prefabricated framing unit substructures further comprises pre-installed rigid insulation board and facer elements on both the interior and exterior sides.
3. A stackable modular building assembly and system of claim 1, wherein said plurality of prefabricated framing unit substructures further comprises pre-installed rigid insulation board on both the interior and exterior sides and a pre-installed facer elements on one side.
4. A stackable modular building assembly and system of claim 1, wherein said plurality of prefabricated framing unit substructures further comprises pre-installed facer elements on at least one side.
5. A stackable modular building assembly and system of claim 1, wherein said plurality of prefabricated framing unit substructures further comprises pre-installed rigid insulation board and facer elements on one side.
6. A stackable modular building assembly and system of claim 2, wherein said plurality of prefabricated framing unit substructures further comprises pre-installed rigid insulation board on at least one side.
7. A stackable modular building assembly and system of claim 1, wherein said multiplicity of spaced and braced longitudinal frame segments are rectangular in side profile.
8. A stackable modular building assembly and system of claim 1, wherein said multiplicity of spaced and braced longitudinal framing member segments are trapezoidal in side profile.
9. A stackable modular building assembly and system of claim 1, wherein said multiplicity of spaced and braced longitudinal framing member segments are an arc in side profile.
10. A stackable modular building assembly and system of claim 1, wherein said multiplicity of spaced and braced longitudinal framing member segments are a combination of side profile shapes.
11. A stackable modular building assembly and system of claim 1, wherein said multiplicity of spaced and braced longitudinal framing member segments further comprise a molded structural material.
12. A stackable modular building assembly and system of claim 1, wherein said multiplicity of spaced and braced longitudinal framing member segments further comprise a formed structural material.
13. A stackable modular building assembly and system of claim 1, wherein said multiplicity of spaced and braced longitudinal framing member segments further comprise a built up composite element.
14. A stackable modular building assembly and system of claim 1, wherein said multiplicity of spaced and braced longitudinal framing member segments further include but are not limited to wood, wood products, metal, plastic or fiber-reinforced plastic.
15. A stackable modular building assembly and system of claim 13, wherein said multiplicity of spaced and braced longitudinal framing member segments further include but are not limited to wood, wood products, metal, plastic or fiber-reinforced plastic.
16. A stackable modular building assembly and system of claim 1, wherein said plurality of elongated combined distinct tie connection and frame reinforcing sustainer members further includes but is not limited to coil or flat sheet metal strap, plastic strap and synthetic webbing strap.
17. A stackable modular building assembly and system of claim 1, wherein said fastening means securing said multiplicity of spaced and braced longitudinal frame member segments and said plurality of elongated combined distinct tie and frame reinforcing sustainer members in mutually fastened relation includes but is not limited to screws, nails, staples, integral nail like teeth pressed out of a metal strap surface, bonding agents or a combination thereof.
18. A stackable modular building assembly and system of claim 1, wherein said hollow cavity locating means for receiving said plurality of elongated combined distinct tie connection and frame reinforcing sustainer members further comprising a mechanical rough in chase.
19. A stackable modular building assembly and system of claim 1, further comprising a modular structure.
US13/177,456 2011-07-06 2011-07-06 Construction assembly including stackable substructure frames and distinct combined tie connection and reinforcing means Abandoned US20130008116A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/177,456 US20130008116A1 (en) 2011-07-06 2011-07-06 Construction assembly including stackable substructure frames and distinct combined tie connection and reinforcing means

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US13/177,456 US20130008116A1 (en) 2011-07-06 2011-07-06 Construction assembly including stackable substructure frames and distinct combined tie connection and reinforcing means

Publications (1)

Publication Number Publication Date
US20130008116A1 true US20130008116A1 (en) 2013-01-10

Family

ID=47437807

Family Applications (1)

Application Number Title Priority Date Filing Date
US13/177,456 Abandoned US20130008116A1 (en) 2011-07-06 2011-07-06 Construction assembly including stackable substructure frames and distinct combined tie connection and reinforcing means

Country Status (1)

Country Link
US (1) US20130008116A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10104988B2 (en) * 2014-08-14 2018-10-23 N. Eric Knudsen Fence panel display systems and methods

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4817356A (en) * 1984-02-08 1989-04-04 Scott Christopher R Construction systems and elements thereof
US5522194A (en) * 1994-03-25 1996-06-04 Graulich; Peter W. P. Structural bearing panel and panel core for building
US5657606A (en) * 1993-11-09 1997-08-19 Ressel; Dennis Edward Building system
US6185898B1 (en) * 1998-07-10 2001-02-13 Robert F. Pratt High strength wall frames and system utilizing same
US6279284B1 (en) * 1998-01-12 2001-08-28 Emco Limited Composite vapor barrier panel
US6308469B1 (en) * 1999-10-15 2001-10-30 Shear Force Systems Inc. Shear wall panel
US6393783B2 (en) * 1996-06-07 2002-05-28 Herman Miller, Inc. Wall panel
US6460297B1 (en) * 1999-12-21 2002-10-08 Inter-Steel Structures, Inc. Modular building frame
US6941718B1 (en) * 2002-01-28 2005-09-13 The Steel Network, Inc. Wall structure
US20060037256A1 (en) * 2004-08-17 2006-02-23 Pryor Steven E Shear transfer plate
US20060059811A1 (en) * 1997-04-14 2006-03-23 Timmerman Timothy L Lateral force resisting system
US20110192100A1 (en) * 2005-01-27 2011-08-11 United States Gypsum Company Non-combustible reinforced cementitious lightweight panels and metal frame system for a fire wall and other fire resistive assemblies

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4817356A (en) * 1984-02-08 1989-04-04 Scott Christopher R Construction systems and elements thereof
US5657606A (en) * 1993-11-09 1997-08-19 Ressel; Dennis Edward Building system
US5522194A (en) * 1994-03-25 1996-06-04 Graulich; Peter W. P. Structural bearing panel and panel core for building
US6393783B2 (en) * 1996-06-07 2002-05-28 Herman Miller, Inc. Wall panel
US20060059811A1 (en) * 1997-04-14 2006-03-23 Timmerman Timothy L Lateral force resisting system
US6279284B1 (en) * 1998-01-12 2001-08-28 Emco Limited Composite vapor barrier panel
US6185898B1 (en) * 1998-07-10 2001-02-13 Robert F. Pratt High strength wall frames and system utilizing same
US6308469B1 (en) * 1999-10-15 2001-10-30 Shear Force Systems Inc. Shear wall panel
US6460297B1 (en) * 1999-12-21 2002-10-08 Inter-Steel Structures, Inc. Modular building frame
US6941718B1 (en) * 2002-01-28 2005-09-13 The Steel Network, Inc. Wall structure
US20060037256A1 (en) * 2004-08-17 2006-02-23 Pryor Steven E Shear transfer plate
US20110192100A1 (en) * 2005-01-27 2011-08-11 United States Gypsum Company Non-combustible reinforced cementitious lightweight panels and metal frame system for a fire wall and other fire resistive assemblies

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10104988B2 (en) * 2014-08-14 2018-10-23 N. Eric Knudsen Fence panel display systems and methods
US10835059B2 (en) 2014-08-14 2020-11-17 N. Eric Knudsen Fence panel display systems and methods

Similar Documents

Publication Publication Date Title
US6892498B1 (en) Interlocking construction system
US9598852B2 (en) Construction system
JPS60501418A (en) metal architectural structures
JP2012241482A (en) Built-up house and method for building up the sane
DK178478B1 (en) System for constructing a building
KR102079203B1 (en) wooden panel for prefabricated wooden buildings and wall formation method using it
KR100898755B1 (en) Lumber structural construction wall boby block
US7743583B2 (en) Method for providing structure having multiple interwoven structural members enhanced for resistance of multi-directional force
KR20090088479A (en) Building wall utilizing sandwich panel
US10094102B2 (en) Modular interconnectable wall cell
US20130008116A1 (en) Construction assembly including stackable substructure frames and distinct combined tie connection and reinforcing means
WO2013052997A1 (en) Composite wall panel
US20230183977A1 (en) Building assembly
US20070051058A1 (en) Genesis foundation wall system
CN211447260U (en) Adopt shaped steel and fastener for slat to carry out assembled building who connects
US5718093A (en) Floor panel joint structure and method of making a wooden building with the same
RU169083U1 (en) STRUCTURE OF A WOODEN HOUSE BASED ON CONSTRUCTIVE ELEMENTS
JP7369022B2 (en) prefabricated buildings
WO2011073524A1 (en) Vertical wood structure
US8511017B2 (en) Interlocking building system
JP5528127B2 (en) Building construction material, portal frame, construction method of building
EP3971358A1 (en) Structure for aluminum houses
US20140165498A1 (en) Method and system for forming frameless buildings
KR20200076195A (en) Connection structure of column and beam assembly of Hanok architecture
JP3109810U (en) Arched roof house

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION