US20120326957A1 - Full color reflective display with multichromatic sub pixels - Google Patents
Full color reflective display with multichromatic sub pixels Download PDFInfo
- Publication number
- US20120326957A1 US20120326957A1 US13/603,964 US201213603964A US2012326957A1 US 20120326957 A1 US20120326957 A1 US 20120326957A1 US 201213603964 A US201213603964 A US 201213603964A US 2012326957 A1 US2012326957 A1 US 2012326957A1
- Authority
- US
- United States
- Prior art keywords
- particles
- electrode
- display
- sub
- capsule
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000002245 particle Substances 0.000 claims abstract description 268
- 230000003287 optical effect Effects 0.000 claims description 91
- 239000000758 substrate Substances 0.000 claims description 44
- 239000003086 colorant Substances 0.000 claims description 42
- 239000012530 fluid Substances 0.000 claims description 39
- 239000004033 plastic Substances 0.000 claims description 9
- 229920003023 plastic Polymers 0.000 claims description 9
- 239000010409 thin film Substances 0.000 claims description 9
- 239000011159 matrix material Substances 0.000 claims description 5
- 238000004049 embossing Methods 0.000 claims description 3
- 238000000206 photolithography Methods 0.000 claims description 2
- 239000002775 capsule Substances 0.000 abstract description 150
- 230000000007 visual effect Effects 0.000 abstract description 32
- 230000004044 response Effects 0.000 abstract description 8
- 238000000034 method Methods 0.000 description 48
- 239000000976 ink Substances 0.000 description 36
- 230000005684 electric field Effects 0.000 description 33
- 239000000463 material Substances 0.000 description 28
- 239000004973 liquid crystal related substance Substances 0.000 description 24
- 230000000694 effects Effects 0.000 description 23
- 230000008569 process Effects 0.000 description 21
- 230000037230 mobility Effects 0.000 description 17
- 239000000203 mixture Substances 0.000 description 14
- 238000000576 coating method Methods 0.000 description 12
- 239000004020 conductor Substances 0.000 description 12
- 238000004519 manufacturing process Methods 0.000 description 12
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 11
- 238000007639 printing Methods 0.000 description 11
- 229910052710 silicon Inorganic materials 0.000 description 11
- 239000010703 silicon Substances 0.000 description 11
- 239000011230 binding agent Substances 0.000 description 10
- 239000011248 coating agent Substances 0.000 description 10
- 239000011521 glass Substances 0.000 description 10
- 229920000642 polymer Polymers 0.000 description 10
- 230000009977 dual effect Effects 0.000 description 8
- 239000002184 metal Substances 0.000 description 8
- 229910052751 metal Inorganic materials 0.000 description 8
- 239000003094 microcapsule Substances 0.000 description 8
- 230000008901 benefit Effects 0.000 description 7
- 239000012769 display material Substances 0.000 description 6
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 6
- 239000000049 pigment Substances 0.000 description 6
- 239000011888 foil Substances 0.000 description 5
- 239000012212 insulator Substances 0.000 description 5
- 239000000725 suspension Substances 0.000 description 5
- 238000003491 array Methods 0.000 description 4
- 229920001940 conductive polymer Polymers 0.000 description 4
- 229910021419 crystalline silicon Inorganic materials 0.000 description 4
- 229920000767 polyaniline Polymers 0.000 description 4
- 229920000123 polythiophene Polymers 0.000 description 4
- 229920006395 saturated elastomer Polymers 0.000 description 4
- 238000001228 spectrum Methods 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 3
- 239000002131 composite material Substances 0.000 description 3
- 238000010276 construction Methods 0.000 description 3
- 238000000151 deposition Methods 0.000 description 3
- 230000008021 deposition Effects 0.000 description 3
- 239000010408 film Substances 0.000 description 3
- 229910002804 graphite Inorganic materials 0.000 description 3
- 239000010439 graphite Substances 0.000 description 3
- 229910052709 silver Inorganic materials 0.000 description 3
- 239000004332 silver Substances 0.000 description 3
- 239000004983 Polymer Dispersed Liquid Crystal Substances 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 229910021417 amorphous silicon Inorganic materials 0.000 description 2
- 230000000295 complement effect Effects 0.000 description 2
- 238000005538 encapsulation Methods 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 238000009685 knife-over-roll coating Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 230000005499 meniscus Effects 0.000 description 2
- 229920000553 poly(phenylenevinylene) Polymers 0.000 description 2
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 2
- 229920005591 polysilicon Polymers 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000007763 reverse roll coating Methods 0.000 description 2
- 238000004528 spin coating Methods 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229920000134 Metallised film Polymers 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 239000011149 active material Substances 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- 238000007754 air knife coating Methods 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- QXJJQWWVWRCVQT-UHFFFAOYSA-K calcium;sodium;phosphate Chemical compound [Na+].[Ca+2].[O-]P([O-])([O-])=O QXJJQWWVWRCVQT-UHFFFAOYSA-K 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000007385 chemical modification Methods 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- 239000002322 conducting polymer Substances 0.000 description 1
- 229940039231 contrast media Drugs 0.000 description 1
- 239000002872 contrast media Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000007766 curtain coating Methods 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000007607 die coating method Methods 0.000 description 1
- 238000003618 dip coating Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000007765 extrusion coating Methods 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000007756 gravure coating Methods 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 238000007641 inkjet printing Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 150000002790 naphthalenes Chemical class 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 239000012811 non-conductive material Substances 0.000 description 1
- SLIUAWYAILUBJU-UHFFFAOYSA-N pentacene Chemical compound C1=CC=CC2=CC3=CC4=CC5=CC=CC=C5C=C4C=C3C=C21 SLIUAWYAILUBJU-UHFFFAOYSA-N 0.000 description 1
- 230000002085 persistent effect Effects 0.000 description 1
- 238000005191 phase separation Methods 0.000 description 1
- 238000001259 photo etching Methods 0.000 description 1
- IEQIEDJGQAUEQZ-UHFFFAOYSA-N phthalocyanine Chemical compound N1C(N=C2C3=CC=CC=C3C(N=C3C4=CC=CC=C4C(=N4)N3)=N2)=C(C=CC=C2)C2=C1N=C1C2=CC=CC=C2C4=N1 IEQIEDJGQAUEQZ-UHFFFAOYSA-N 0.000 description 1
- 229920006255 plastic film Polymers 0.000 description 1
- 239000002985 plastic film Substances 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 229920006254 polymer film Polymers 0.000 description 1
- -1 polyphenylenevinylene Polymers 0.000 description 1
- 229920000128 polypyrrole Polymers 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 238000002310 reflectometry Methods 0.000 description 1
- 238000005488 sandblasting Methods 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 229910000679 solder Inorganic materials 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000010421 standard material Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000007651 thermal printing Methods 0.000 description 1
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 239000012780 transparent material Substances 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
- 238000001429 visible spectrum Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/165—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on translational movement of particles in a fluid under the influence of an applied field
- G02F1/166—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on translational movement of particles in a fluid under the influence of an applied field characterised by the electro-optical or magneto-optical effect
- G02F1/167—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on translational movement of particles in a fluid under the influence of an applied field characterised by the electro-optical or magneto-optical effect by electrophoresis
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41J—TYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
- B41J3/00—Typewriters or selective printing or marking mechanisms characterised by the purpose for which they are constructed
- B41J3/407—Typewriters or selective printing or marking mechanisms characterised by the purpose for which they are constructed for marking on special material
- B41J3/4076—Typewriters or selective printing or marking mechanisms characterised by the purpose for which they are constructed for marking on special material printing on rewritable, bistable "electronic paper" by a focused electric or magnetic field
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B26/00—Optical devices or arrangements for the control of light using movable or deformable optical elements
- G02B26/02—Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the intensity of light
- G02B26/026—Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the intensity of light based on the rotation of particles under the influence of an external field, e.g. gyricons, twisting ball displays
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09F—DISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
- G09F9/00—Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
- G09F9/30—Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
- G09F9/302—Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements characterised by the form or geometrical disposition of the individual elements
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09F—DISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
- G09F9/00—Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
- G09F9/30—Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
- G09F9/37—Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements being movable elements
- G09F9/372—Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements being movable elements the positions of the elements being controlled by the application of an electric field
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G3/00—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
- G09G3/20—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
- G09G3/34—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
- G09G3/3433—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using light modulating elements actuated by an electric field and being other than liquid crystal devices and electrochromic devices
- G09G3/344—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using light modulating elements actuated by an electric field and being other than liquid crystal devices and electrochromic devices based on particles moving in a fluid or in a gas, e.g. electrophoretic devices
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K19/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic element specially adapted for rectifying, amplifying, oscillating or switching, covered by group H10K10/00
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/133305—Flexible substrates, e.g. plastics, organic film
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1334—Constructional arrangements; Manufacturing methods based on polymer dispersed liquid crystals, e.g. microencapsulated liquid crystals
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/165—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on translational movement of particles in a fluid under the influence of an applied field
- G02F1/1675—Constructional details
- G02F2001/1678—Constructional details characterised by the composition or particle type
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F2202/00—Materials and properties
- G02F2202/28—Adhesive materials or arrangements
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G3/00—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
- G09G3/20—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
- G09G3/2003—Display of colours
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G3/00—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
- G09G3/20—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
- G09G3/2007—Display of intermediate tones
- G09G3/2074—Display of intermediate tones using sub-pixels
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K10/00—Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
- H10K10/40—Organic transistors
- H10K10/46—Field-effect transistors, e.g. organic thin-film transistors [OTFT]
- H10K10/462—Insulated gate field-effect transistors [IGFETs]
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/30—Coordination compounds
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
Definitions
- the present invention relates to electronic displays and, in particular, to full color electrophoretic displays and methods of creating full-color microencapsulated electrophoretic displays.
- enhanced reflective display media which offer numerous benefits such as enhanced optical appearance, the ability to be constructed in large form factors, capable of being formed using flexible substrates, characterized by easy manufacturability and manufactured at low cost.
- Such reflective display media include microencapsulated electrophoretic displays, rotating ball displays, suspended particle displays, and composites of liquid crystals with polymers (known by many names including but not limited to polymer dispersed liquid crystals, polymer stabilized liquid crystals, and liquid crystal gels).
- Electrophoretic display media generally characterized by the movement of particles through an applied electric field, are highly reflective, can be made bistable, and consume very little power. Further, encapsulated electrophoretic displays also may be printed. These properties allow encapsulated electrophoretic display media to be used in many applications for which traditional electronic displays are not suitable, such as flexible, printed displays.
- each pixel has two states: on, or the emission of color; and off. Since light blends from these sub-pixels, the overall pixel can take on a variety of colors and color combinations.
- the visual result is the summation of the wavelengths emitted by the sub-pixels at selected intensities, white is seen when red, green and blue are all active in balanced proportion or full intensity.
- the brightness of the white image is controlled by the intensities of emission of light by the sub-pixels. Black is seen when none are active or, equivalently, when all are emitting at zero intensity.
- a red visual display appears when the red sub-pixel is active while the green and blue are inactive, and thus only red light is emitted.
- this method can be applied to bichromatic reflective displays, typically using the cyan-magenta-yellow subtractive color system.
- the reflective sub-pixels absorb characteristic portions of the optical spectrum, rather than generating characteristic portions of the spectrum as do the pixels in an emissive display.
- White reflects everything, or equivalently absorbs nothing.
- a colored reflective material reflects light corresponding in wavelength to the color seen, and absorbs the remainder of the wavelengths in the visible spectrum. To achieve a black display, all three sub-pixels are turned on, and they absorb complementary portions of the spectrum.
- the colors displayed by a full-color display as described above are sub-optimal. For example, to display red, one pixel displays magenta, one displays yellow, and one displays white. The white sub-pixel reduces the saturation of red in the image and reduces display contrast. The overall effect is a washed out red. This further illustrates why no method to date has been capable of generating a high-contrast, high-brightness full color reflective display with good color saturation.
- This invention teaches practical ways to achieve brighter, more saturated, reflective full-color displays than previously known, particularly full-color encapsulated, electrophoretic displays.
- An object of the invention is to provide a brighter, more saturated, reflective full-color display.
- the displays are highly flexible, can be manufactured easily, consume little power, and can, therefore, be incorporated into a variety of applications.
- the invention features a printable display comprising an encapsulated electrophoretic display medium.
- the display media can be printed and, therefore the display itself can be made inexpensively.
- An encapsulated electrophoretic display can be constructed so that the optical state of the display is stable for some length of time.
- the display When the display has two states which are stable in this manner, the display is said to be bistable. If more than two states of the display are stable, then the display can be said to be multistable.
- bistable and multistable or generally, stable, will be used to indicate a display in which any optical state remains fixed once the addressing voltage is removed.
- the definition of a stable state depends on the application for the display.
- a slowly-decaying optical state can be effectively stable if the optical state is substantially unchanged over the required viewing time.
- bistable and multistable also indicate a display with an optical state sufficiently long-lived as to be effectively stable for the application in mind.
- encapsulated electrophoretic displays in which the image decays quickly once the addressing voltage to the display is removed (i.e., the display is not bistable or multistable).
- an encapsulated electrophoretic display which is not bistable or multistable. Whether or not an encapsulated electrophoretic display is stable, and its degree of stability, can be controlled through appropriate chemical modification of the electrophoretic particles, the suspending fluid, the capsule, and binder materials.
- An encapsulated electrophoretic display may take many forms.
- the display may comprise capsules dispersed in a binder.
- the capsules may be of any size or shape.
- the capsules may, for example, be spherical and may have diameters in the millimeter range or the micron range, but is preferably from ten to a few hundred microns.
- the capsules may be formed by an encapsulation technique, as described below.
- Particles may be encapsulated in the capsules.
- the particles may be two or more different types of particles.
- the particles may be colored, luminescent, light-absorbing or transparent, for example.
- the particles may include neat pigments, dyed (laked) pigments or pigment/polymer composites, for example.
- the display may further comprise a suspending fluid in which the particles are dispersed.
- an encapsulated electrophoretic display requires the proper interaction of several different types of materials and processes, such as a polymeric binder and, optionally, a capsule membrane. These materials must be chemically compatible with the electrophoretic particles and fluid, as well as with each other. The capsule materials may engage in useful surface interactions with the electrophoretic particles, or may act as a chemical or physical boundary between the fluid and the binder.
- materials and combinations of materials useful in constructing encapsulated electrophoretic displays are described in co-pending application Ser. No. 09/140,861, the contents of which are incorporated by reference herein.
- the encapsulation step of the process is not necessary, and the electrophoretic fluid may be directly dispersed or emulsified into the binder (or a precursor to the binder materials) and an effective “polymer-dispersed electrophoretic display” constructed.
- the binder or a precursor to the binder materials
- an effective “polymer-dispersed electrophoretic display” constructed.
- voids created in the binder may be referred to as capsules or microcapsules even though no capsule membrane is present.
- the binder dispersed electrophoretic display may be of the emulsion or phase separation type.
- printing is intended to include all forms of printing and coating, including: premetered coatings such as patch die coating, slot or extrusion coating, slide or cascade coating, and curtain coating; roll coating such as knife over roll coating, forward and reverse roll coating; gravure coating; dip coating; spray coating; meniscus coating; spin coating; brush coating; air knife coating; silk screen printing processes; electrostatic printing processes; thermal printing processes; and other similar techniques.
- premetered coatings such as patch die coating, slot or extrusion coating, slide or cascade coating, and curtain coating
- roll coating such as knife over roll coating, forward and reverse roll coating
- gravure coating dip coating
- spray coating meniscus coating
- spin coating spin coating
- brush coating air knife coating
- silk screen printing processes electrostatic printing processes
- thermal printing processes thermal printing processes
- electrophoretic display elements can be encapsulated. Throughout the Specification, reference will be made to “capsules,” “pixels,” and “sub-pixels.”
- a pixel display element can be formed by one or more capsules or sub-pixels.
- a sub-pixel may itself comprise one or more capsules or other structures.
- a full color, reflective display having superior saturation and brightness is achieved with a novel display element comprising multichromatic sub-elements.
- the display employs three sub-pixels, each sub-pixel comprising a capsule including three species of particles which differ visually.
- Another embodiment of the display employs color filters combined with an encapsulated electrophoretic display to provide different visual states.
- the display employs display elements capable of more than three visual states.
- the visual display states are selected from specific colors, for example, the primary colors red, green and blue, or their complements, and white and/or black.
- the display element presents a visual display in response to the application of an electrical signal to at least one of the capsules.
- the present invention relates to an electrophoretic display element.
- the display element comprises a first capsule including a first species of particles having a first optical property and a second species of particles having a second optical property visually different from the first optical property.
- the display element further comprises a second capsule including a third species of particles having a third optical property and a fourth species of particles having a fourth optical property visually different from the third optical property.
- the display element presents a visual display in response to the application of an electrical signal to at least one of the first and second capsules.
- the first optical property and the third optical property can be, but are not required to be, substantially similar in appearance.
- the electrophoretic display element can further comprise a fifth species of particles having a fifth optical property visually different from the first and second optical properties in the first capsule. It can also comprise a sixth species of particles having a sixth optical property visually different from the third and fourth optical properties in the second capsule. It can also include a third capsule having a seventh species of particles having a seventh optical property, an eighth species of particles having a eighth optical property, and a ninth species of particles having a ninth optical property.
- the electrophoretic display element can include particles such that the first, third and seventh optical properties have a white visual appearance.
- the electrophoretic display element can include particles such that the second, fourth and eighth optical properties have a black visual appearance.
- the electrophoretic display element can have at least one of the optical properties be red, green, blue, yellow, cyan, or magenta in visual appearance.
- the electrophoretic display element can have at least one of the optical properties comprising color, brightness, or reflectivity.
- the electrophoretic display element can have capsules which include a suspending fluid.
- the suspending fluid can be substantially clear, or it can be dyed or otherwise colored.
- the present invention relates to a display apparatus comprising at least one display element which includes at least two capsules such as are described above and at least one electrode adjacent to the display element, wherein the apparatus presents a visual display in response to the application of an electrical signal via the electrode to the display element.
- the display apparatus can include a plurality of electrodes adjacent the display element.
- the plurality of electrodes can include at least one which has a size different from others of the plurality of electrodes, and can include at least one which has a color different from others of the plurality of electrodes.
- the present invention relates to an electrophoretic display element comprising a capsule containing a first species of particles having a first optical property, a second species of particles having a second optical property visually different from the first optical property, a third species of particles having a third optical property visually different from the first and second optical properties and a fourth species of particles having a fourth optical property visually different from the first, second, and third optical properties such that the element presents a visual display in response to the application of an electrical signal to the capsule.
- the electrophoretic display element can also include a suspending fluid within the capsule.
- the present invention relates to an electrophoretic display element comprising a capsule containing a first species of particles having a first optical property, a second species of particles having a second optical property visually different from the first optical property, a third species of particles having a third optical property visually different from the first and second optical properties, a fourth species of particles having a fourth optical property visually different from the first, second, and third optical properties, and a fifth species of particles having a fifth optical property visually different from the first, second, third, and fourth optical properties such that the element presents a visual display in response to the application of an electrical signal to said capsule.
- the electrophoretic display element can also include a suspending fluid within the capsule.
- the present invention relates to a method of manufacturing an electrophoretic display.
- the manufacturing method comprises the steps of providing a first capsule containing a first species of particles having a first optical property and a second species of particles having a second optical property visually different from the first optical property, and providing a second capsule containing a third species of particles having a third optical property and a fourth species of particles having a fourth optical property visually different from the third optical property, such that when an electrical signal is applied to at least one of the first and second capsules the element presents a visual display in response to the signal.
- the first optical property and the third optical property can be substantially similar in appearance.
- the present invention relates to a method of manufacturing an electrophoretic display.
- This manufacturing method comprises the steps of providing a first capsule containing a first species of particles having a first optical property, a second species of particles having a second optical property visually different from the first optical property and containing a third species of particles having a third optical property visually different from the first and second optical properties, providing a second capsule containing a fourth species of particles having a fourth optical property, a fifth species of particles having a fifth optical property visually different from the fourth optical property and a sixth species of particles having a sixth optical property visually different from the fourth and fifth optical properties, and providing a third capsule containing a seventh species of particles having a seventh optical property, an eighth species of particles having a eighth optical property visually different from the seventh optical property, and a ninth species of particles having a ninth optical property visually different from the seventh and eighth optical properties, such that when an electrical signal is applied to at least one of the first, second and third capsules, the element presents a visual display in response to the signal.
- the manufacturing method can include the step of providing a first capsule wherein the third optical property is red visual appearance, or is yellow visual appearance.
- the manufacturing method can include the step of providing a second capsule wherein the sixth optical property is green visual appearance, or is cyan visual appearance.
- the manufacturing method can include the step of providing a third capsule wherein the ninth optical property is blue visual appearance, or is magenta visual appearance.
- the manufacturing method can include the step of providing capsules wherein the first, fourth and seventh optical properties are white visual appearance, or wherein the second, fifth and eighth optical properties are black visual appearance.
- FIG. 1A is a diagrammatic side view of an embodiment of a rear-addressing electrode structure for a particle-based display in which a smaller electrode has been placed at a voltage relative to the large electrode causing the particles to migrate to the smaller electrode.
- FIG. 1B is a diagrammatic side view of an embodiment of a rear-addressing electrode structure for a particle-based display in which the larger electrode has been placed at a voltage relative to the smaller electrode causing the particles to migrate to the larger electrode.
- FIG. 1C is a diagrammatic top-down view of one embodiment of a rear-addressing electrode structure.
- FIG. 1D is a diagrammatic perspective view of one embodiment of a display element having three sub-pixels, each sub-pixel comprising a relatively larger rear electrode and a relatively smaller rear electrode.
- FIG. 2A is a diagrammatic side view of an embodiment of a rear-addressing electrode structure having a retroreflective layer associated with the larger electrode in which the smaller electrode has been placed at a voltage relative to the large electrode causing the particles to migrate to the smaller electrode.
- FIG. 2B is a diagrammatic side view of an embodiment of a rear-addressing electrode structure having a retroreflective layer associated with the larger electrode in which the larger electrode has been placed at a voltage relative to the smaller electrode causing the particles to migrate to the larger electrode.
- FIG. 2C is a diagrammatic side view of an embodiment of a rear-addressing electrode structure having a retroreflective layer disposed below the larger electrode in which the smaller electrode has been placed at a voltage relative to the large electrode causing the particles to migrate to the smaller electrode.
- FIG. 2D is a diagrammatic side view of an embodiment of a rear-addressing electrode structure having a retroreflective layer disposed below the larger electrode in which the larger electrode has been placed at a voltage relative to the smaller electrode causing the particles to migrate to the larger electrode.
- FIG. 3A is a diagrammatic side view of an embodiment of an addressing structure in which a direct-current electric field has been applied to the capsule causing the particles to migrate to the smaller electrode.
- FIG. 3B is a diagrammatic side view of an embodiment of an addressing structure in which an alternating-current electric field has been applied to the capsule causing the particles to disperse into the capsule, obscuring a rear substrate.
- FIG. 3C is a diagrammatic side view of an embodiment of an addressing structure having transparent electrodes, in which a direct-current electric field has been applied to the capsule causing the particles to migrate to the smaller electrode, revealing a rear substrate.
- FIG. 3D is a diagrammatic side view of an embodiment of an addressing structure having transparent electrodes, in which an alternating-current electric field has been applied to the capsule causing the particles to disperse into the capsule.
- FIG. 3E is a diagrammatic side view of an embodiment of an addressing structure for a display element having three sub-pixels.
- FIG. 3F is a diagrammatic side view of an embodiment of a dual particle curtain mode addressing structure addressing a display element to appear white.
- FIG. 3G is a diagrammatic side view of an embodiment of a dual particle curtain mode addressing structure addressing a display element to appear red.
- FIG. 3H is a diagrammatic side view of an embodiment of a dual particle curtain mode addressing structure addressing a display element to absorb red light.
- FIG. 3I is a diagrammatic side view of an embodiment of a dual particle curtain mode addressing structure for a display element having three sub-pixels, in which the display is addressed to appear red.
- FIG. 3J is a diagrammatic side view of another embodiment of a dual particle curtain mode addressing structure for a display element.
- FIG. 3K is a diagrammatic plan view of an embodiment of an interdigitated electrode structure.
- FIG. 3L is a diagrammatic side view of another embodiment of a dual particle curtain mode display structure having a dyed fluid and two species of particles, addressed to absorb red.
- FIG. 3M is a diagrammatic side view of another embodiment of a dual particle curtain mode display structure having clear fluid and three species of particles, addressed to absorb red.
- FIG. 4A is a diagrammatic side view of an embodiment of a rear-addressing electrode structure for a particle-based display having colored electrodes and a white electrode, in which the colored electrodes have been placed at a voltage relative to the white electrode causing the particles to migrate to the colored electrodes.
- FIG. 4B is a diagrammatic side view of an embodiment of a rear-addressing electrode structure for a particle-based display having colored electrodes and a white electrode, in which the white electrode has been placed at a voltage relative to the colored electrodes causing the particles to migrate to the white electrode.
- FIG. 5 is a diagrammatic side view of an embodiment of a color display element having red, green, and blue particles of different electrophoretic mobilities.
- FIGS. 6A-6B depict the steps taken to address the display of FIG. 5 to display red.
- FIGS. 7A-7D depict the steps taken to address the display of FIG. 5 to display blue.
- FIGS. 8A-8C depict the steps taken to address the display of FIG. 5 to display green.
- FIG. 9 is a cross-sectional view of a rear electrode addressing structure that is formed by printing.
- FIG. 10 is a perspective view of an embodiment of a control grid addressing structure.
- An electronic ink is an optoelectronically active material that comprises at least two phases: an electrophoretic contrast media phase and a coating/binding phase.
- the electrophoretic phase comprises, in some embodiments, a single species of electrophoretic particles dispersed in a clear or dyed medium, or more than one species of electrophoretic particles having distinct physical and electrical characteristics dispersed in a clear or dyed medium.
- the electrophoretic phase is encapsulated, that is, there is a capsule wall phase between the two phases.
- the coating/binding phase includes, in one embodiment, a polymer matrix that surrounds the electrophoretic phase.
- the polymer in the polymeric binder is capable of being dried, crosslinked, or otherwise cured as in traditional inks, and therefore a printing process can be used to deposit the electronic ink onto a substrate.
- the ink may comprise sub-pixels capable of displaying different colors.
- Sub-pixels may be grouped to form pixels.
- each sub-pixel contains red particles, green particles, and blue particles, respectively.
- each sub-pixel contains cyan particles, yellow particles, and magenta particles, respectively.
- each sub-pixel can additionally include particles which are white and particles which are black.
- An electronic ink is capable of being printed by several different processes, depending on the mechanical properties of the specific ink employed. For example, the fragility or viscosity of a particular ink may result in a different process selection. A very viscous ink would not be well-suited to deposition by an inkjet printing process, while a fragile ink might not be used in a knife over roll coating process.
- the optical quality of an electronic ink is quite distinct from other electronic display materials.
- the most notable difference is that the electronic ink provides a high degree of both reflectance and contrast because it is pigment based (as are ordinary printing inks).
- the light scattered from the electronic ink comes from a very thin layer of pigment close to the top of the viewing surface. In this respect it resembles an ordinary, printed image.
- electronic ink is easily viewed from a wide range of viewing angles in the same manner as a printed page, and such ink approximates a Lambertian contrast curve more closely than any other electronic display material.
- electronic ink can be printed, it can be included on the same surface with any other printed material, including traditional inks
- Electronic ink can be made optically stable in all display configurations, that is, the ink can be set to a persistent optical state. Fabrication of a display by printing an electronic ink is particularly useful in low power applications because of this stability.
- Electronic ink displays are novel in that they can be addressed by DC voltages and draw very little current.
- the conductive leads and electrodes used to deliver the voltage to electronic ink displays can be of relatively high resistivity.
- the ability to use resistive conductors substantially widens the number and type of materials that can be used as conductors in electronic ink displays.
- ITO indium tin oxide
- the use of costly vacuum-sputtered indium tin oxide (ITO) conductors a standard material in liquid crystal devices, is not required.
- the replacement of ITO with other materials can provide benefits in appearance, processing capabilities (printed conductors), flexibility, and durability.
- the printed electrodes are in contact only with a solid binder, not with a fluid layer (like liquid crystals).
- conductive materials which would otherwise dissolve or be degraded by contact with liquid crystals, can be used in an electronic ink application.
- These conductive coatings include semiconducting colloids, examples of which are indium tin oxide and antimony-doped tin oxide.
- Organic conductors polymeric conductors and molecular organic conductors also may be used.
- Polymers include, but are not limited to, polyaniline and derivatives, polythiophene and derivatives, poly3,4-ethylenedioxythiophene (PEDOT) and derivatives, polypyrrole and derivatives, and polyphenylenevinylene (PPV) and derivatives.
- Organic molecular conductors include, but are not limited to, derivatives of naphthalene, phthalocyanine, and pentacene.
- Polymer layers can be made thinner and more transparent than with traditional displays because conductivity requirements are not as stringent.
- electroconductive powders which are also useful as coatable transparent conductors in electronic ink displays.
- electroconductive powders which are also useful as coatable transparent conductors in electronic ink displays.
- Zelec ECP electroconductive powders from DuPont Chemical Co. of Wilmington, Del.
- Emissive or transmissive displays operate according to additive rules, where the perceived color is created by summing the emission wavelengths of a plurality of emitting or transmitting objects.
- emissive or transmissive display which includes three sub-pixels, one of which can produce red light, one green light, and one blue light, respectively, one can generate all colors, as well as white and black. At one extreme, the combination of all three at full intensity is perceived as white, and at the other, the combination of all three at zero intensity is perceived as black. Specific combinations of controlled proportions of these three colors can be used to represent other colors.
- the light which a viewer perceives is the portion of the spectrum which is not absorbed when the light to be reflected falls on the reflector surface.
- a reflecting system that is, that each reflective surface “subtracts” from the light that portion which the reflector absorbs.
- the color of a reflector represents the wavelengths of light the reflector absorbs.
- a yellow reflector absorbs substantially blue light.
- a magenta reflector absorbs substantially green light.
- a cyan reflector absorbs substantially red light.
- One approach which may be taken to overcome the shortcomings inherent in two state displays is to create a display comprising individual pixels or pixels comprising sub-pixels that can support multiple color states.
- the use of multiple color states permits more robust color rendition and provides better contrast than is possible with two color states per pixel or per sub-pixel.
- a microencapsulated electrophoretic display a single microcapsule with five kinds of particles could display white, cyan, magenta, yellow, or black all with excellent saturation.
- cyan/magenta/yellow By foregoing black and using cyan/magenta/yellow to combine to black, a similar effect can be achieved with a display element capable of four color states.
- the invention can also utilize any reflective display element that can create three color states within a single sub-pixel, where sub-pixels are combined to generate a variety of overall pixel colors.
- Such a display is capable of greatly improved appearance yet relies on only three color states per sub-pixel instead of four or five or more.
- a sub-pixel having only three color states can have advantages with regard to the operation of the display. Fewer and simpler applied voltage signals are needed to operate each sub-pixel of the display element, A sub-pixel having fewer stable states may be capable of being addressed more quickly than one with more stable states.
- a microencapsulated electrophoretic display element sub-pixel may contain particles in a clear suspension medium.
- a simple addressing method is to provide white particles having a positive charge, cyan particles having a negative charge, and red particles having no charge.
- white is achieved when the top electrode is negative and the bottom electrodes are both positive.
- Cyan is achieved when the top electrode is positive and the bottom electrodes are both negative.
- Red is achieved when the top electrode is set to ground, one bottom electrode is positive and attracts the cyan particles, and the other bottom electrode is negative and attracts the white particles, so that the red particles are uppermost and are seen.
- red particles have strong positive charge
- black particles have lesser positive charge
- the sub-pixel of the display incorporates a white sheet behind a clear bottom electrode.
- the clear bottom electrode comprises a larger sub-electrode and a smaller sub-electrode.
- red is achieved when the top electrode has a negative voltage and the bottom electrode, including both subelectrodes, has a positive voltage.
- Black is achieved when the top electrode has a positive voltage and the bottom electrode, including both subelectrodes, has a negative voltage.
- White is achieved when the smaller subelectrode of the bottom electrode is switched to a negative voltage but the top electrode and the larger subelectrode of the bottom electrode is switched to a less negative voltage.
- the red and black particles are attracted to cluster at the smaller sub-electrode, with the slower black particles clustering on top and blocking from sight the red particles, and the bulk of the microcapsule is clear, allowing the white sheet to be visible.
- the top electrode may be masked so that the clustered particles are not visible.
- the backing sheet could be replaced with a backlight or color filter and backlight.
- a brief alternating voltage signal may be used prior to addressing methods described above to mix the particles into a random order.
- any combination of dyes, liquids droplets and transparent regions that respond to electrophoretic effects could also be used.
- Particles of various optical effects may be combined in any suitable proportion. For example, certain colors may be over- or under-populated in the electrophoretic suspension to account for the sensitivities of the human eye and to thereby achieve a more pleasing or uniform effect. Similarly, the sizes of the sub-pixels may also be disproportionate to achieve various optical effects.
- microencapsulated electrophoretic displays the invention can be utilized across other reflective displays including liquid crystal, polymer-dispersed liquid crystal, rotating ball, suspended particle and any other reflective display capable of imaging three colors.
- a bichromal rotating ball or pyramid, cube, etc.
- One way to address such a display element would be to provide differing charge characteristics (such as charged vertices in the case of the pyramid) and to use various combinations and sequences of electrode voltage potentials across the surrounding top, bottom, or side electrodes to rotate the shape in a desired manner.
- many addressing schemes are possible by which a sub-pixel in a direct color reflective display could be switched among three colors. Such switching mechanism will vary by the nature of the display and any suitable means may be used.
- One embodiment of the invention is to separate each pixel into three sub-pixels, each sub-pixel being capable of displaying three color states, and to choose as the color state combinations a first sub-pixel being capable of displaying white, cyan or red, a second sub-pixel being capable of displaying white, magenta or green, and a third sub-pixel being capable of displaying white, yellow or blue.
- black can be displayed with the three sub-pixels turned to red, green and blue, respectively. This display achieves a more saturated black than is achieved under the two-state system.
- red is displayed with the sub-pixels turned to red, magenta and yellow, respectively, which offers a more saturated red than is obtained with a two-state system.
- Other colors may be obtained by suitable choices of the individual states of the sub-pixels.
- Another embodiment of the invention is to separate each pixel into three sub-pixels, each sub-pixel being capable of displaying three color states, and to choose as the color state combinations a first sub-pixel being capable of displaying white, cyan or black, a second sub-pixel being capable of displaying white, magenta or black, and a third sub-pixel being capable of displaying white, yellow or black.
- black and white are displayed directly with high saturation.
- the first (cyan) sub-pixel is set to either white or black to achieve a dimmer or brighter color, respectively
- the second sub-pixel is set to magenta
- the last sub-pixel is set to yellow.
- Another embodiment of the invention is to separate each pixel into three sub-pixels, each sub-pixel being capable of displaying three color states, and to choose as the color state combinations a first sub-pixel being capable of displaying white, red or black, a second sub-pixel being capable of displaying white, green or black, and a third sub-pixel being capable of displaying white, blue or black.
- black and white are displayed directly with high saturation.
- the first sub-pixel is set to red
- the second and the third sub-pixels are set to either white or black to achieve a dimmer or brighter color, respectively.
- the invention is embodied by any pixel containing two or more sub-pixels, where at least one sub-pixel can achieve three or more colors. In this manner a better effect can be achieved for reflective displays than can be achieved by adopting the simple two-state sub-pixel color change technique that is common to emissive displays.
- the invention can be extended to four or more color states to permit full color displays without the need for sub-pixels, and illustrates addressing mechanisms that work for three states and which can be extended or combined to achieve a display with four or more states.
- Another means of generating color in a microencapsulated display medium is the use of color filters in conjunction with a contrast-generating optical element.
- One manifestation of this technique is to use a pixel element which switches between white and black. This, in conjunction with the color filter, allows for switching between a light and dark colored state to occur.
- different numbers of color filters ranging from one to three
- the microencapsulated particle display can switch between colors other than white and black.
- an electrophoretic device known as a “shutter mode” display, in which particles are switched electrically between a widely-dispersed state on one electrode and a narrow band on the other electrode.
- a device can act as a transmissive light valve or reflective display.
- Color filters can be used with such a device.
- FIGS. 1A and 1B an addressing scheme for controlling particle-based displays is shown in which electrodes are disposed on only one side of a display, allowing the display to be rear-addressed. Utilizing only one side of the display for electrodes simplifies fabrication of displays. For example, if the electrodes are disposed on only the rear side of a display, both of the electrodes can be fabricated using opaque materials, which may be colored, because the electrodes do not need to be transparent.
- FIG. 1A depicts a single capsule 20 of an encapsulated display media.
- the embodiment depicted in FIG. 1A includes a capsule 20 containing at least one particle 50 dispersed in a suspending fluid 25 .
- the capsule 20 is addressed by a first electrode 30 and a second electrode 40 .
- the first electrode 30 is smaller than the second electrode 40 .
- the first electrode 30 and the second electrode 40 may be set to voltage potentials which affect the position of the particles 50 in the capsule 20 .
- the particles 50 represent 0.1% to 20% of the volume enclosed by the capsule 20 . In some embodiments the particles 50 represent 2.5% to 17.5% of the volume enclosed by capsule 20 . In preferred embodiments, the particles 50 represent 5% to 15% of the volume enclosed by the capsule 20 . In more preferred embodiments the particles 50 represent 9% to 11% of the volume defined by the capsule 20 . In general, the volume percentage of the capsule 20 that the particles 50 represent should be selected so that the particles 50 expose most of the second, larger electrode 40 when positioned over the first, smaller electrode 30 . As described in detail below, the particles 50 may be colored any one of a number of colors. The particles 50 may be either positively charged or negatively charged.
- the particles 50 are dispersed in a dispersing fluid 25 .
- the dispersing fluid 25 should have a low dielectric constant.
- the fluid 25 may be clear, or substantially clear, so that the fluid 25 does not inhibit viewing the particles 50 and the electrodes 30 , 40 from position 10 .
- the fluid 25 is dyed.
- the dispersing fluid 25 has a specific gravity matched to the density of the particles 50 . These embodiments can provide a bistable display media, because the particles 50 do not tend to move in certain compositions absent an electric field applied via the electrodes 30 , 40 .
- the electrodes 30 , 40 should be sized and positioned appropriately so that together they address the entire capsule 20 . There may be exactly one pair of electrodes 30 , 40 per capsule 20 , multiple pairs of electrodes 30 , 40 per capsule 20 , or a single pair of electrodes 30 , 40 may span multiple capsules 20 . In the embodiment shown in FIGS. 1A and 1B , the capsule 20 has a flattened, rectangular shape. In these embodiments, the electrodes 30 , 40 should address most, or all, of the flattened surface area adjacent the electrodes 30 , 40 . The smaller electrode 30 is at most one-half the size of the larger electrode 40 .
- the smaller electrode is one-quarter the size of the larger electrode 40 ; in more preferred embodiments the smaller electrode 30 is one-eighth the size of the larger electrode 40 . In even more preferred embodiments, the smaller electrode 30 is one-sixteenth the size of the larger electrode 40 .
- reference to “smaller” in connection with the electrode 30 means that the electrode 30 addresses a smaller amount of the surface area of the capsule 20 , not necessarily that the electrode 30 is physically smaller than the larger electrode 40 .
- multiple capsules 20 may be positioned such that less of each capsule 20 is addressed by the “smaller” electrode 30 , even though both electrodes 30 , 40 are equal in size. It should also be noted that, as shown in FIG.
- electrode 30 may address only a small corner of a rectangular capsule 20 (shown in phantom view in FIG. 1C ), requiring the larger electrode 40 to surround the smaller electrode 30 on two sides in order to properly address the capsule 20 . Selection of the percentage volume of the particles 50 and the electrodes 30 , 40 in this manner allow the encapsulated display media to be addressed as described below.
- Electrodes may be fabricated from any material capable of conducting electricity so that electrode 30 , 40 may apply an electric field to the capsule 20 .
- the rear-addressed embodiments depicted in FIGS. 1A and 1B allow the electrodes 30 , 40 to be fabricated from opaque materials such as solder paste, copper, copper-clad polyimide, graphite inks, silver inks and other metal-containing conductive inks.
- electrodes may be fabricated using transparent materials such as indium tin oxide and conductive polymers such as polyaniline or polythiophenes.
- Electrodes 30 , 40 may be provided with contrasting optical properties. In some embodiments, one of the electrodes has an optical property complementary to optical properties of the particles 50 . Alternatively, since the electrodes need not be transparent, an electrode can be constructed so as to display a selected color.
- the capsule 20 contains positively charged black particles 50 , and a substantially clear suspending fluid 25 .
- the first, smaller electrode 30 is colored black, and is smaller than the second electrode 40 , which is colored white or is highly reflective.
- the positively-charged particles 50 migrate to the smaller, black electrode 30 .
- the effect to a viewer of the capsule 20 located at position 10 is a mixture of the larger, white electrode 40 and the smaller, black electrode 30 , creating an effect which is largely white. Referring to FIG.
- the capsule 20 may be addressed to display either a white visual state or a black visual state.
- varying the color of the smaller electrode 30 and the particles 50 allows fabrication of a rear-addressed, two-color display having black as one of the colors.
- varying the color of the smaller electrode 30 and the particles 50 allow a rear-addressed two-color system to be fabricated having white as one of the colors.
- the particles 50 and the smaller electrode 30 can be different colors.
- a two-color display may be fabricated having a second color that is different from the color of the smaller electrode 30 and the particles 50 .
- a rear-addressed, orange-white display may be fabricated by providing blue particles 50 , a red, smaller electrode 30 , and a white (or highly reflective) larger electrode 40 .
- the optical properties of the electrodes 30 , 40 and the particles 50 can be independently selected to provide desired display characteristics.
- the optical properties of the dispersing fluid 25 may also be varied, e.g. the fluid 25 may be dyed.
- this technique may be used to provide a full color display.
- a pixel embodiment is depicted that comprises three sub-pixels. It should be understood that although FIG. 1D depicts a hexagonal pixel having equally-sized sub-pixels, a pixel may have any shape and may be comprised of unequal sub-pixels.
- the sub-pixels may each be contained in a single large capsule, or each may be distributed across any number of small microcapsules or microcells. For the purposed of illustration, the simpler case of a single large sub-cell for each sub-pixel is shown. In both cases we refer to the regions, 20 , 20 ′, 20 ′′, as capsules.
- a first capsule 20 contains positively charged black particles 50 and a substantially clear suspending fluid 25 .
- a first, smaller electrode 30 is colored black, and is smaller than the second electrode 40 , which is colored red.
- the positively-charged particles 50 migrate to the smaller, black electrode 30 .
- the effect to a viewer of the capsule 20 located at position 10 is a mixture of the larger, red electrode 40 and the smaller, black electrode 30 , creating an effect which is largely red.
- the first capsule 20 may be addressed to display either a red visual state or a black visual state.
- a second capsule 20 ′ contains positively charged black particles 50 ′ and a substantially clear suspending fluid 25 ′.
- a first, smaller electrode 30 ′ is colored black, and is smaller than the second electrode 40 ′, which is colored green.
- the smaller, black electrode 30 ′ is placed at a negative voltage potential relative to larger, green electrode 40 ′, the positively-charged particles 50 ′ migrate to the smaller, black electrode 30 ′.
- the effect to a viewer of the capsule 20 ′ located at position 10 ′ is a mixture of the larger, green electrode 40 ′ and the smaller, black electrode 30 ′, creating an effect which is largely green.
- a third capsule 20 ′′ contains positively charged black particles 50 ′′ and a substantially clear suspending fluid 25 ′′.
- a first, smaller electrode 30 ′′ is colored black, and is smaller than the second electrode 40 ′′, which is colored blue.
- the effect to a viewer of the capsule 20 ′′ located at position 10 ′′ is a mixture of the larger, blue electrode 40 ′′ and the smaller, black electrode 30 ′′, creating an effect which is largely blue.
- the smaller, black electrode 30 ′′ is placed at a positive voltage potential relative to the larger, blue electrode 40 ′′, particles 50 ′′ migrate to the larger, blue electrode 40 ′′ and the viewer is presented a mixture of the black particles 50 ′′ covering the larger, blue electrode 40 ′′ and the smaller, black electrode 30 ′′, creating an effect which is largely black.
- the relative intensities of these colors can be controlled by the actual voltage potentials applied to the electrodes. By choosing appropriate combinations of the three colors, one may create a visual display which appears as the effective combination of the selected colors as an additive process.
- the first, second and third capsules can have larger electrodes 40 , 40 ′, 40 ′′ which are respectively colored cyan, yellow, and magenta. Operation of the alternative cyan, yellow, and magenta embodiment is analogous to that of the red, green, and blue embodiment, with the feature that the color to be displayed is selected by a subtractive process.
- the larger electrode 40 may be reflective instead of white.
- the particles 50 when the particles 50 are moved to the smaller electrode 30 , light reflects off the reflective surface 60 associated with the larger electrode 40 and the capsule 20 appears light in color, e.g. white (see FIG. 2A ).
- the reflecting surface 60 is obscured and the capsule 20 appears dark (see FIG. 2B ) because light is absorbed by the particles 50 before reaching the reflecting surface 60 .
- the reflecting surface 60 for the larger electrode 40 may possess retroreflective properties, specular reflection properties, diffuse reflective properties or gain reflection properties.
- the reflective surface 60 reflects light with a Lambertian distribution
- the surface 60 may be provided as a plurality of glass spheres disposed on the electrode 40 , a diffractive reflecting layer such as a holographically formed reflector, a surface patterned to totally internally reflect incident light, a brightness-enhancing film, a diffuse reflecting layer, an embossed plastic or metal film, or any other known reflecting surface.
- the reflecting surface 60 may be provided as a separate layer laminated onto the larger electrode 40 or the reflecting surface 60 may be provided as a unitary part of the larger electrode 40 . In the embodiments depicted by FIGS. 2C and 2D , the reflecting surface may be disposed below the electrodes 30 , 40 vis-á-vis the viewpoint 10 .
- electrode 30 should be transparent so that light may be reflected by surface 60 .
- proper switching of the particles may be accomplished with a combination of alternating-current (AC) and direct-current (DC) electric fields and described below in connection with FIGS. 3A-3D .
- the rear-addressed display previously discussed can be configured to transition between largely transmissive and largely opaque modes of operation (referred to hereafter as “shutter mode”).
- the capsule 20 contains at least one positively-charged particle 50 dispersed in a substantially clear dispersing fluid 25 .
- the larger electrode 40 is transparent and the smaller electrode 30 is opaque.
- the smaller, opaque electrode 30 is placed at a negative voltage potential relative to the larger, transmissive electrode 40 , the particles 50 migrate to the smaller, opaque electrode 30 .
- the effect to a viewer of the capsule 20 located at position 10 is a mixture of the larger, transparent electrode 40 and the smaller, opaque electrode 30 , creating an effect which is largely transparent.
- FIG. 1B when the smaller, opaque electrode 30 is placed at a positive voltage potential relative to the larger, transparent electrode 40 , particles 50 migrate to the second electrode 40 and the viewer is presented a mixture of the opaque particles 50 covering the larger, transparent electrode 40 and the smaller, opaque electrode 30 , creating an effect which is largely opaque.
- a display formed using the capsules depicted in FIGS. 1A and 1B may be switched between transmissive and opaque modes. Such a display can be used to construct a window that can be rendered opaque.
- FIGS. 1A-2D depict a pair of electrodes associated with each capsule 20 , it should be understood that each pair of electrodes may be associated with more than one capsule 20 .
- a capsule 20 contains at least one dark or black particle 50 dispersed in a substantially clear dispersing fluid 25 .
- a smaller, opaque electrode 30 and a larger, transparent electrode 40 apply both direct-current (DC) electric fields and alternating-current (AC) fields to the capsule 20 .
- a DC field can be applied to the capsule 20 to cause the particles 50 to migrate towards the smaller electrode 30 .
- the smaller electrode is placed a voltage that is more negative than the larger electrode 40 .
- FIGS. 3A-3D depict only one capsule per electrode pair, multiple capsules may be addressed using the same electrode pair.
- the smaller electrode 30 is at most one-half the size of the larger electrode 40 . In preferred embodiments the smaller electrode is one-quarter the size of the larger electrode 40 ; in more preferred embodiments the smaller electrode 30 is one-eighth the size of the larger electrode 40 . In even more preferred embodiments, the smaller electrode 30 is one-sixteenth the size of the larger electrode 40 .
- Causing the particles 50 to migrate to the smaller electrode 30 allows incident light to pass through the larger, transparent electrode 40 and be reflected by a reflecting surface 60 .
- the reflecting surface 60 is replaced by a translucent layer, a transparent layer, or a layer is not provided at all, and incident light is allowed to pass through the capsule 20 , i.e. the capsule 20 is transmissive.
- the translucent layer or the transparent layer comprises a color, such as a color filter, the light which is transmitted will be those wavelengths that the filter passes, and the reflected light will consist of those wavelengths that the filter reflects, while the wavelengths that the filter absorbs will be lost.
- the visual appearance of a shutter mode display may thus depend on whether the display is in a transmissive or reflective condition, on the characteristics of the filter, and on the position of the viewer.
- the particles 50 are dispersed into the capsule 20 by applying an AC field to the capsule 20 via the electrodes 30 , 40 .
- the particles 50 dispersed into the capsule 20 by the AC field, block incident light from passing through the capsule 20 , causing it to appear dark at the viewpoint 10 .
- the embodiment depicted in FIGS. 3A-3B may be used in shutter mode by not providing the reflecting surface 60 and instead providing a translucent layer, a transparent layer, a color filter layer, or no layer at all.
- shutter mode application of an AC electric field causes the capsule 20 to appear opaque.
- the transparency of a shutter mode display formed by the apparatus depicted in FIGS. 3A-3D may be controlled by the number of capsules addressed using DC fields and AC fields. For example, a display in which every other capsule 20 is addressed using an AC field would appear fifty percent transmissive.
- FIGS. 3C and 3D depict an embodiment of the electrode structure described above in which electrodes 30 , 40 are on “top” of the capsule 20 , that is, the electrodes 30 , 40 are between the viewpoint 10 and the capsule 20 .
- both electrodes 30 , 40 should be transparent.
- Transparent polymers can be fabricated using conductive polymers, such as polyaniline, polythiophenes, or indium tin oxide. These materials may be made soluble so that electrodes can be fabricated using coating techniques such as spin coating, spray coating, meniscus coating, printing techniques, forward and reverse roll coating and the like.
- light passes through the electrodes 30 , 40 and is either absorbed by the particles 50 , reflected by retroreflecting layer 60 (when provided), transmitted throughout the capsule 20 (when retroreflecting layer 60 is not provided), or partially transmitted and/or reflected if a color filter is present in place of retroreflecting layer 60 .
- each sub-pixel capsule 22 , 22 ′ and 22 ′′ each contain at least one white particle 50 dispersed in a substantially clear dispersing fluid 25 .
- each sub-pixel capsule 22 , 22 ′ and 22 ′′ has a transparent electrode 42 , 42 ′, and 42 ′′ disposed above it and a colored filter 60 , 60 ′ and 60 ′′ disposed below it.
- a common reflective surface 70 may be shared behind the color filter layer.
- the display includes an emissive light source 70 .
- Smaller, opaque electrodes 30 , 30 ′ and 30 ′′ and Larger, transparent electrodes 40 , 40 ′ and 40 ′′ may apply direct-current (DC) electric fields and alternating-current (AC) fields to the capsules 20 , 20 ′ and 20 ′′.
- a DC field can be applied to the capsules 20 , 20 ′ and 20′′ to cause the particles 50 , 50 ′ 50 ′′ to migrate towards the smaller electrodes 30 , 30 ′ and 30 ′′.
- the smaller electrodes 30 , 30 ′ and 30 ′′ are placed a voltage that is more negative than the larger electrodes 40 , 40 ′ and 40 ′′.
- the smaller electrode 30 is at most one-half the size of the larger electrode 40 . In preferred embodiments the smaller electrode 30 is one-quarter the size of the larger electrode 40 ; in more preferred embodiments the smaller electrode 30 is one-eighth the size of the larger electrode 40 . In even more preferred embodiments, the smaller electrode 30 is one-sixteenth the size of the larger electrode 40 .
- the filter layer 60 may be a translucent layer, a transparent layer, a color filter layer, or a layer is not provided at all, and further substrate 70 may be reflective, emissive, translucent or not provided at all. If the layer 60 comprises a color, such as a color filter, the light which is transmitted will be those wavelengths that the filter passes, and the reflected light will consist of those wavelengths that the filter reflects, while the wavelengths that the filter absorbs will be lost. The visual appearance of a the display element in 3 E may thus depend on whether the display is in a transmissive or reflective condition, on the characteristics of the filter, and on the position of the viewer. In an alternative embodiment layer 60 may be provided on top of the capsule adjacent to electrode 42 .
- Clear electrode 42 allows light to pass into capsule 22 and to strike either white particles W, red particles R, or a colored substrate 60 .
- the substrate 60 can be a combination of color filter and non-colored substrate or it can be provided as a unitary colored substrate.
- Capsule 22 also includes a suspending fluid that can be dye-colored (possibly eliminating the need for a separate color filter 60 ) or substantially clear.
- Electrodes 45 and 35 are transparent and may be equally sized or sized in any suitable manner taking into account the relative particles sizes and mobilities of particles W and R. A gap exists between 45 and 35 . Assume that particles W are negatively charged and particles R are positively charged. In FIG.
- top electrode 42 is set at a positive voltage potential relative to bottom electrodes 35 and 45 , moving particles W to the top and particles R to the bottom and thus white is displayed.
- red is displayed in both FIGS. 3F and 3G .
- the particles obscure substrate 60 .
- electrode 45 is at a negative voltage potential relative to electrode 35
- electrode 42 is at a voltage potential between the potentials of 45 and 35 , such as zero.
- electrode 42 switches between the potentials of 45 and 35 so that over time the effective voltage of 42 is again between the potentials of 45 and 35 .
- the color combinations can differ.
- the specific colors of the filters and particles need not differ.
- This system called “dual particle curtain mode,” can image three arbitrary colors. In a preferred embodiment the colors are as described wherein one color is white and the other two colors are complements. In this manner, referring again to FIG. 3H , if a small portion of red is visible it absorbs part of the light reflected from the cyan substrate and the net result is black, which may be offset by a small portion of visible white. Thus, the pixel in FIG. 3H may appear to be cyan even if some red and white is visible. As mentioned above, the edges of the pixel may be masked to hide particles R and W when in the mode shown in FIG. 3H .
- FIG. 3I a full-color pixel is shown comprising three sub-pixels, each operating in the manner taught by FIGS. 3F-3H wherein the colored particles are positively charged, and the white particles are negatively charged.
- the system may still function with top electrode 42 extended as a common top electrode as shown in FIG. 3I .
- electrodes 42 , 45 , 35 , 45 ′, 35 ′, 45 ′′, 35 ′′ may be set to voltage potentials ⁇ 30V, 60V, 60V, ⁇ 60V, +60V, ⁇ 60V, +60V respectively.
- an electrode scheme is shown whereby a cluster of microcapsules may be addressed for an entire sub-pixel in a manner similar to those described above.
- Clear electrode 42 allows light to pass into microcapsules 27 and to strike either white particles W, red particles R, or colored substrate 60 .
- colored substrate 60 may be a combination of color filter and non-colored substrate 60 or colored substrate 60 may be provided as a unitary colored substrate.
- Capsules 27 include a suspending fluid that may be dye-colored (possibly eliminating the need for a separate color filter 60 ) or substantially clear.
- Electrodes 45 and 35 are transparent and may be equally sized or sized in any suitable manner taking into account the relative particle sizes and mobilities of particles W and R.
- FIG. 3K illustrates an embodiment of a suitable electrode pattern in which 45 and 35 are interdigitated.
- capsule 22 includes a suspending fluid 62 that is dyed cyan.
- suspending fluid 62 is substantially clear and a third species of cyan particles C is included in capsules 22 .
- the cyan particles have a relatively neutral charge.
- FIGS. 3A-3M may be used with electrophoretic display media and encapsulated electrophoretic display media.
- the particles 50 exhibit bistability, that is, they are substantially motionless in the absence of a electric field.
- a preferred substrate for this use is an electroluminescent (EL) backlight.
- EL electroluminescent
- Such a backlight can be reflective when inactive, often with a whitish-green color, yet emit lights in various wavelengths when active.
- whitish EL substrates in place of static white reflective substrates, it is possible to construct a full-color reflective display that can also switch its mode of operation to display a range of colors in an emissive state, permitting operation in low ambient light conditions.
- FIGS. 4A and 4B depict an embodiment of a rear-addressing electrode structure that creates a reflective color display in a manner similar to half-toning or pointillism.
- the capsule 20 contains white particles 55 dispersed in a clear suspending fluid 25 .
- Electrodes 42 , 44 , 46 , 48 are colored cyan, magenta, yellow, and white respectively.
- FIG. 4A when the colored electrodes 42 , 44 , 46 are placed at a positive potential relative to the white electrode 48 , negatively-charged particles 55 migrate to these three electrodes, causing the capsule 20 to present to the viewpoint 10 a mix of the white particles 55 and the white electrode 48 , creating an effect which is largely white.
- FIG. 4A when the colored electrodes 42 , 44 , 46 are placed at a positive potential relative to the white electrode 48 , negatively-charged particles 55 migrate to these three electrodes, causing the capsule 20 to present to the viewpoint 10 a mix of the white particles 55 and the white electrode 48 , creating an effect which is largely
- any color can be produced that is possible with a subtractive color process.
- the yellow electrode 46 and the magenta electrode 42 are set to a voltage potential that is more positive than the voltage potential applied by the cyan electrode 42 and the white electrode 48 .
- the relative intensities of these colors can be controlled by the actual voltage potentials applied to the electrodes.
- AC current may be used appropriately to randomize the position of the particles as a step in this process.
- FIGS. 4A and 4B could be used in a similar manner with fewer electrodes and controlling fewer colors. For example, if electrode 42 were not present, the pixel could still display three colors. If electrodes 44 and 46 were colored red and cyan respectively, the capsule could display red, cyan and white. This construction could be used then employed as a sub-pixel, to be matched with similar sub-pixels displaying other trios of colors thus achieving a full-color display as described above.
- a color display is provided by a capsule 20 of size d containing multiple species of particles in a clear, dispersing fluid 25 .
- Each species of particles has different optical properties and possess different electrophoretic mobilities ( ⁇ ) from the other species.
- the capsule 20 contains red particles 52 , blue particles 54 , and green particles 56 , and
- FIGS. 6A-6B depict the steps to be taken to address the display shown in FIG. 5 to display a red color to a viewpoint 10 .
- all the particles 52 , 54 , 56 are attracted to one side of the capsule 20 by applying an electric field in one direction.
- the electric field should be applied to the capsule 20 long enough to attract even the more slowly moving green particles 56 to the electrode 34 .
- the electric field is reversed just long enough to allow the red particles 52 to migrate towards the electrode 32 .
- the blue particles 54 and green particles 56 will also move in the reversed electric field, but they will not move as fast as the red particles 52 and thus will be obscured by the red particles 52 .
- the amount of time for which the applied electric field must be reversed can be determined from the relative electrophoretic mobilities of the particles, the strength of the applied electric field, and the size of the capsule.
- FIGS. 7A-7D depict addressing the display element to a blue state.
- the particles 52 , 54 , 56 are initially randomly dispersed in the capsule 20 . All the particles 52 , 54 , 56 are attracted to one side of the capsule 20 by applying an electric field in one direction (shown in FIG. 7B ).
- the electric field is reversed just long enough to allow the red particles 52 and blue particles 54 to migrate towards the electrode 32 .
- the amount of time for which the applied electric field must be reversed can be determined from the relative electrophoretic mobilities of the particles, the strength of the applied electric field, and the size of the capsule. Referring to FIG.
- the electric field is then reversed a second time and the red particles 52 , moving faster than the blue particles 54 , leave the blue particles 54 exposed to the viewpoint 10 .
- the amount of time for which the applied electric field must be reversed can be determined from the relative electrophoretic mobilities of the particles, the strength of the applied electric field, and the size of the capsule.
- FIGS. 8A-8C depict the steps to be taken to present a green display to the viewpoint 10 .
- the particles 52 , 54 , 56 are initially distributed randomly in the capsule 20 . All the particles 52 , 54 , 56 are attracted to the side of the capsule 20 proximal the viewpoint 10 by applying an electric field in one direction. The electric field should be applied to the capsule 20 long enough to attract even the more slowly moving green particles 56 to the electrode 32 .
- the electric field is reversed just long enough to allow the red particles 52 and the blue particles 54 to migrate towards the electrode 54 , leaving the slowly-moving green particles 56 displayed to the viewpoint.
- the amount of time for which the applied electric field must be reversed can be determined from the relative electrophoretic mobilities of the particles, the strength of the applied electric field, and the size of the capsule.
- the capsule contains multiple species of particles and a dyed dispersing fluid that acts as one of the colors. In still other embodiments, more than three species of particles may be provided having additional colors. In one of these embodiments, the capsule contains white particles which have a strong positive charge, cyan particles which have a weakly positive charge, and red particles having a negative charge. Since the electrophoretic mobilities of these types of particles will be proportional to charge and of a direction related to the sign or polarity of the charge, these three types of particles will have different mobilities in the same voltage field. In this example, white is achieved when the top electrode is negative and the bottom electrode is positive. Red is achieved when the top electrode is positive and the bottom electrode is negative.
- Cyan is achieved by first setting the sub-pixel to white and then briefly reversing the voltage field so that the higher mobility white particles migrate past the cyan particles and the lower mobility, or slower, cyan particles remain topmost and visible.
- FIGS. 6-8C depict two electrodes associated with a single capsule, the electrodes may address multiple capsules or less than a full capsule.
- the addressing structures described in FIGS. 1-8 typically comprise a top electrode controlled by display driver circuitry. It may be seen that if the top electrode is absent, the display may be imaged by an externally applied voltage source, such as a passing stylus or electrostatic print head.
- an externally applied voltage source such as a passing stylus or electrostatic print head.
- the rear electrode structure can be made entirely of printed layers.
- a conductive layer 166 can be printed onto the back of a display comprised of a clear, front electrode 168 and a printable display material 170 .
- a clear electrode may be fabricated from indium tin oxide or conductive polymers such as polyanilines and polythiophenes.
- a dielectric coating 176 can be printed leaving areas for vias. Then, the back layer of conductive ink 178 can be printed. If necessary, an additional layer of conductive ink can be used before the final ink structure is printed to fill in the holes.
- This technique for printing displays can be used to build the rear electrode structure on a display or to construct two separate layers that are laminated together to form the display.
- an electronically active ink may be printed on an indium tin oxide electrode.
- a rear electrode structure as described above can be printed on a suitable substrate, such as plastic, polymer films, or glass.
- the electrode structure and the display element can be laminated to form a display.
- a threshold may be introduced into an electrophoretic display cell by the introduction of a third electrode.
- One side of the cell is a continuous, transparent electrode 200 (anode).
- the transparent electrode is patterned into a set of isolated column electrode strips 210 .
- An insulator 212 covers the column electrodes 210 , and an electrode layer on top of the insulator is divided into a set of isolated row electrode strips 230 , which are oriented orthogonal to the column electrodes 210 .
- the row electrodes 230 are patterned into a dense array of holes, or a grid, beneath which the exposed insulator 212 has been removed, forming a multiplicity of physical and potential wells.
- a positively charged particle 50 is loaded into the potential wells by applying a positive potential (e.g. 30V) to all the column electrodes 210 while keeping the row electrodes 230 at a less positive potential (e.g. 15V) and the anode 200 at zero volts.
- the particle 50 may be a conformable capsule that situates itself into the physical wells of the control grid.
- the control grid itself may have a rectangular cross-section, or the grid structure may be triangular in profile. It can also be a different shape which encourages the microcapsules to situate in the grid, for example, hemispherical.
- the anode 200 is then reset to a positive potential (e.g. 50V).
- a positive potential e.g. 50V
- the particle will remain in the potential wells due to the potential difference in the potential wells: this is called the Hold condition.
- the potential on the column electrode associated with that element is reduced, e.g. by a factor of two, and the potential on the row electrode associated with that element is made equal to or greater than the potential on the column electrode.
- the particles in this element will then be transported by the electric field due to the positive voltage on the anode 200 .
- the potential difference between row and column electrodes for the remaining display elements is now less than half of that in the normal Hold condition.
- a control electrode device can be operated such that the anode electrode side of the cell is viewed.
- control grid may be manufactured through any of the processes known in the art, or by several novel processes described herein. That is, according to traditional practices, the control grid may be constructed with one or more steps of photolithography and subsequent etching, or the control grid may be fabricated with a mask and a “sandblasting” technique.
- control grid is fabricated by an embossing technique on a plastic substrate.
- the grid electrodes may be deposited by vacuum deposition or sputtering, either before or after the embossing step.
- the electrodes are printed onto the grid structure after it is formed, the electrodes consisting of some kind of printable conductive material which need not be clear (e.g. a metal or carbon-doped polymer, an intrinsically conducting polymer, etc.).
- control grid is fabricated with a series of printing steps.
- the grid structure is built up in a series of one or more printed layers after the cathode has been deposited, and the grid electrode is printed onto the grid structure.
- the grid electrode may not occupy the entire width of the grid structure, and may only occupy a central region of the structure, in order to stay within reproducible tolerances.
- the control grid is fabricated by photoetching away a glass, such as a photostructural glass.
- an electrophoretic suspension such as the ones described previously, is placed inside discrete compartments that are dispersed in a polymer matrix.
- This resulting material is highly susceptible to an electric field across the thickness of the film.
- Such a field is normally applied using electrodes attached to either side of the material.
- some display media may be addressed by writing electrostatic charge onto one side of the display material.
- the other side normally has a clear or opaque electrode.
- a sheet of encapsulated electrophoretic display media can be addressed with a head providing DC voltages.
- the encapsulated electrophoretic suspension can be printed onto an area of a conductive material such as a printed silver or graphite ink, aluminized Mylar, or any other conductive surface.
- a conductive material such as a printed silver or graphite ink, aluminized Mylar, or any other conductive surface.
- This surface which constitutes one electrode of the display can be set at ground or high voltage.
- An electrostatic head consisting of many electrodes can be passed over the capsules to addressing them.
- a stylus can be used to address the encapsulated electrophoretic suspension.
- an electrostatic write head is passed over the surface of the material. This allows very high resolution addressing. Since encapsulated electrophoretic material can be placed on plastic, it is flexible. This allows the material to be passed through normal paper handling equipment. Such a system works much like a photocopier, but with no consumables.
- the sheet of display material passes through the machine and an electrostatic or electrophotographic head addresses the sheet of material.
- electrical charge is built up on the surface of the encapsulated display material or on a dielectric sheet through frictional or triboelectric charging.
- the charge can built up using an electrode that is later removed.
- charge is built up on the surface of the encapsulated display by using a sheet of piezoelectric material.
- Microencapsulated displays offer a useful means of creating electronic displays, many of which can be coated or printed. There are many versions of microencapsulated displays, including microencapsulated electrophoretic displays. These displays can be made to be highly reflective, bistable, and low power.
- This invention describes useful combinations of addressing means with microencapsulated electrophoretic materials in order to obtain high resolution displays.
- One method of addressing liquid crystal displays is the use of silicon-based thin film transistors to form an addressing backplane for the liquid crystal.
- these thin film transistors are typically deposited on glass, and are typically made from amorphous silicon or polysilicon.
- Other electronic circuits (such as drive electronics or logic) are sometimes integrated into the periphery of the display.
- An emerging field is the deposition of amorphous or polysilicon devices onto flexible substrates such as metal foils or plastic films.
- the addressing electronic backplane could incorporate diodes as the nonlinear element, rather than transistors.
- Diode-based active matrix arrays have been demonstrated as being compatible with liquid crystal displays to form high resolution devices.
- Crystalline silicon possesses very high mobilities, and thus can be used to make high performance devices.
- the most straightforward way of constructing crystalline silicon devices is on a silicon wafer.
- the crystalline silicon circuit is constructed on a silicon wafer, and then transferred to a glass substrate by a “liftoff” process.
- the silicon transistors can be formed on a silicon wafer, removed via a liftoff process, and then deposited on a flexible substrate such as plastic, metal foil, or paper.
- the silicon could be formed on a different substrate that is able to tolerate high temperatures (such as glass or metal foils), lifted off, and transferred to a flexible substrate.
- the silicon transistors are formed on a silicon wafer, which is then used in whole or in part as one of the substrates for the display.
- liquid crystal displays are inefficient with light, so that most liquid crystal displays require some sort of backlighting. Reflective liquid crystal displays can be constructed, but are typically very dim, due to the presence of polarizers. Most liquid crystal devices require precise spacing of the cell gap, so that they are not very compatible with flexible substrates. Most liquid crystal displays require a “rubbing” process to align the liquid crystals, which is both difficult to control and has the potential for damaging the TFT array.
- liquid crystal arrays typically requires a “rubbing” process to align the liquid crystals, which can cause either mechanical or static electrical damage to the transistor array. No such rubbing is needed for microencapsulated displays, improving yields and simplifying the construction process.
- Microencapsulated electrophoretic displays can be highly reflective. This provides an advantage in high-resolution displays, as a backlight is not required for good visibility. Also, a high-resolution display can be built on opaque substrates, which opens up a range of new materials for the deposition of thin film transistor arrays.
- the encapsulated electrophoretic display is highly compatible with flexible substrates.
- This enables high-resolution TFT displays in which the transistors are deposited on flexible substrates like flexible glass, plastics, or metal foils.
- the flexible substrate used with any type of thin film transistor or other nonlinear element need not be a single sheet of glass, plastic, metal foil, though. Instead, it could be constructed of paper. Alternatively, it could be constructed of a woven material. Alternatively, it could be a composite or layered combination of these materials.
- external logic or drive circuitry can be built on the same substrate as the thin film transistor switches.
- the addressing electronic backplane could incorporate diodes as the nonlinear element, rather than transistors.
- transistors on a silicon wafer, dice the transistors, and place them in a large area array to form a large, TFT-addressed display medium.
- One example of this concept is to form mechanical impressions in the receiving substrate, and then cover the substrate with a slurry or other form of the transistors. With agitation, the transistors will fall into the impressions, where they can be bonded and incorporated into the device circuitry.
- the receiving substrate could be glass, plastic, or other nonconductive material. In this way, the economy of creating transistors using standard processing methods can be used to create large-area displays without the need for large area silicon processing equipment.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Nonlinear Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Optics & Photonics (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Computer Hardware Design (AREA)
- Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)
Abstract
A full color, reflective display having superior saturation and brightness is achieved with a novel display element comprising multichromatic elements. In one embodiment a capsule includes more than three species of particles which differ visually. One embodiment of the invention employs three sub-pixels, each sub-pixel comprising capsules including three species of particles which differ visually. Another embodiment of the invention employs color filters to provide different visual states to the user. The display element provides a visual display in response to the application of an electrical signal to at least one of the capsules.
Description
- This application is a divisional of copending application Ser. No. 11/926,201, filed Oct. 29, 2007 (Publication No. 2008/0048970), which is itself a continuation of application Ser. No. 10/877,745, filed Apr. 20, 2004 (Publication No. 2004/0263947), which is itself a continuation of application Ser. No. 09/289,507, filed Apr. 9, 1999 (now U.S. Pat. No. 7,075,502, issued Jul. 11, 2006), which itself claims benefit of Application Ser. No. 60/081,362 filed Apr. 10, 1998. The entire disclosures of all the aforementioned applications are incorporated herein by reference.
- The present invention relates to electronic displays and, in particular, to full color electrophoretic displays and methods of creating full-color microencapsulated electrophoretic displays.
- There are a number of enhanced reflective display media which offer numerous benefits such as enhanced optical appearance, the ability to be constructed in large form factors, capable of being formed using flexible substrates, characterized by easy manufacturability and manufactured at low cost. Such reflective display media include microencapsulated electrophoretic displays, rotating ball displays, suspended particle displays, and composites of liquid crystals with polymers (known by many names including but not limited to polymer dispersed liquid crystals, polymer stabilized liquid crystals, and liquid crystal gels). Electrophoretic display media, generally characterized by the movement of particles through an applied electric field, are highly reflective, can be made bistable, and consume very little power. Further, encapsulated electrophoretic displays also may be printed. These properties allow encapsulated electrophoretic display media to be used in many applications for which traditional electronic displays are not suitable, such as flexible, printed displays.
- While bichromatic electrophoretic displays have been demonstrated in a limited range of colors (e.g. black/white or yellow/red), to date there has not been successful commercialization of a full-color electrophoretic display. Indeed, no reflective display technology to date has shown itself capable of satisfactory color. Full-color reflective displays typically are deficient when compared to emissive displays in at least two important areas: brightness and color saturation.
- One traditional technique for achieving a bright, full-color display which is known in the art of emissive displays is to create sub-pixels that are red, green and blue. In this system, each pixel has two states: on, or the emission of color; and off. Since light blends from these sub-pixels, the overall pixel can take on a variety of colors and color combinations. In an emissive display, the visual result is the summation of the wavelengths emitted by the sub-pixels at selected intensities, white is seen when red, green and blue are all active in balanced proportion or full intensity. The brightness of the white image is controlled by the intensities of emission of light by the sub-pixels. Black is seen when none are active or, equivalently, when all are emitting at zero intensity. As an additional example, a red visual display appears when the red sub-pixel is active while the green and blue are inactive, and thus only red light is emitted.
- It is known that this method can be applied to bichromatic reflective displays, typically using the cyan-magenta-yellow subtractive color system. In this system, the reflective sub-pixels absorb characteristic portions of the optical spectrum, rather than generating characteristic portions of the spectrum as do the pixels in an emissive display. White reflects everything, or equivalently absorbs nothing. A colored reflective material reflects light corresponding in wavelength to the color seen, and absorbs the remainder of the wavelengths in the visible spectrum. To achieve a black display, all three sub-pixels are turned on, and they absorb complementary portions of the spectrum.
- However, the colors displayed by a full-color display as described above are sub-optimal. For example, to display red, one pixel displays magenta, one displays yellow, and one displays white. The white sub-pixel reduces the saturation of red in the image and reduces display contrast. The overall effect is a washed out red. This further illustrates why no method to date has been capable of generating a high-contrast, high-brightness full color reflective display with good color saturation.
- This invention teaches practical ways to achieve brighter, more saturated, reflective full-color displays than previously known, particularly full-color encapsulated, electrophoretic displays.
- An object of the invention is to provide a brighter, more saturated, reflective full-color display. In some embodiments, the displays are highly flexible, can be manufactured easily, consume little power, and can, therefore, be incorporated into a variety of applications. The invention features a printable display comprising an encapsulated electrophoretic display medium. In an embodiment the display media can be printed and, therefore the display itself can be made inexpensively.
- An encapsulated electrophoretic display can be constructed so that the optical state of the display is stable for some length of time. When the display has two states which are stable in this manner, the display is said to be bistable. If more than two states of the display are stable, then the display can be said to be multistable. For the purpose of this invention, the terms bistable and multistable, or generally, stable, will be used to indicate a display in which any optical state remains fixed once the addressing voltage is removed. The definition of a stable state depends on the application for the display. A slowly-decaying optical state can be effectively stable if the optical state is substantially unchanged over the required viewing time. For example, in a display which is updated every few minutes, a display image which is stable for hours or days is effectively bistable or multistable, as the case may be, for that application. In this invention, the terms bistable and multistable also indicate a display with an optical state sufficiently long-lived as to be effectively stable for the application in mind. Alternatively, it is possible to construct encapsulated electrophoretic displays in which the image decays quickly once the addressing voltage to the display is removed (i.e., the display is not bistable or multistable). As will be described, in some applications it is advantageous to use an encapsulated electrophoretic display which is not bistable or multistable. Whether or not an encapsulated electrophoretic display is stable, and its degree of stability, can be controlled through appropriate chemical modification of the electrophoretic particles, the suspending fluid, the capsule, and binder materials.
- An encapsulated electrophoretic display may take many forms. The display may comprise capsules dispersed in a binder. The capsules may be of any size or shape. The capsules may, for example, be spherical and may have diameters in the millimeter range or the micron range, but is preferably from ten to a few hundred microns. The capsules may be formed by an encapsulation technique, as described below. Particles may be encapsulated in the capsules. The particles may be two or more different types of particles. The particles may be colored, luminescent, light-absorbing or transparent, for example. The particles may include neat pigments, dyed (laked) pigments or pigment/polymer composites, for example. The display may further comprise a suspending fluid in which the particles are dispersed.
- The successful construction of an encapsulated electrophoretic display requires the proper interaction of several different types of materials and processes, such as a polymeric binder and, optionally, a capsule membrane. These materials must be chemically compatible with the electrophoretic particles and fluid, as well as with each other. The capsule materials may engage in useful surface interactions with the electrophoretic particles, or may act as a chemical or physical boundary between the fluid and the binder. Various materials and combinations of materials useful in constructing encapsulated electrophoretic displays are described in co-pending application Ser. No. 09/140,861, the contents of which are incorporated by reference herein.
- In some cases, the encapsulation step of the process is not necessary, and the electrophoretic fluid may be directly dispersed or emulsified into the binder (or a precursor to the binder materials) and an effective “polymer-dispersed electrophoretic display” constructed. In such displays, voids created in the binder may be referred to as capsules or microcapsules even though no capsule membrane is present. The binder dispersed electrophoretic display may be of the emulsion or phase separation type.
- Throughout the specification, reference will be made to printing or printed. As used throughout the specification, printing is intended to include all forms of printing and coating, including: premetered coatings such as patch die coating, slot or extrusion coating, slide or cascade coating, and curtain coating; roll coating such as knife over roll coating, forward and reverse roll coating; gravure coating; dip coating; spray coating; meniscus coating; spin coating; brush coating; air knife coating; silk screen printing processes; electrostatic printing processes; thermal printing processes; and other similar techniques. A “printed element” refers to an element formed using any one of the above techniques.
- As noted above, electrophoretic display elements can be encapsulated. Throughout the Specification, reference will be made to “capsules,” “pixels,” and “sub-pixels.” A pixel display element can be formed by one or more capsules or sub-pixels. A sub-pixel may itself comprise one or more capsules or other structures.
- A full color, reflective display having superior saturation and brightness is achieved with a novel display element comprising multichromatic sub-elements. One embodiment of the display employs three sub-pixels, each sub-pixel comprising a capsule including three species of particles which differ visually. Another embodiment of the display employs color filters combined with an encapsulated electrophoretic display to provide different visual states. In still another embodiment, the display employs display elements capable of more than three visual states. In yet another embodiment, the visual display states are selected from specific colors, for example, the primary colors red, green and blue, or their complements, and white and/or black. The display element presents a visual display in response to the application of an electrical signal to at least one of the capsules.
- In one aspect, the present invention relates to an electrophoretic display element. The display element comprises a first capsule including a first species of particles having a first optical property and a second species of particles having a second optical property visually different from the first optical property. The display element further comprises a second capsule including a third species of particles having a third optical property and a fourth species of particles having a fourth optical property visually different from the third optical property. The display element presents a visual display in response to the application of an electrical signal to at least one of the first and second capsules. The first optical property and the third optical property can be, but are not required to be, substantially similar in appearance.
- The electrophoretic display element can further comprise a fifth species of particles having a fifth optical property visually different from the first and second optical properties in the first capsule. It can also comprise a sixth species of particles having a sixth optical property visually different from the third and fourth optical properties in the second capsule. It can also include a third capsule having a seventh species of particles having a seventh optical property, an eighth species of particles having a eighth optical property, and a ninth species of particles having a ninth optical property.
- The electrophoretic display element can include particles such that the first, third and seventh optical properties have a white visual appearance. The electrophoretic display element can include particles such that the second, fourth and eighth optical properties have a black visual appearance. The electrophoretic display element can have at least one of the optical properties be red, green, blue, yellow, cyan, or magenta in visual appearance. The electrophoretic display element can have at least one of the optical properties comprising color, brightness, or reflectivity.
- The electrophoretic display element can have capsules which include a suspending fluid. The suspending fluid can be substantially clear, or it can be dyed or otherwise colored.
- In another aspect, the present invention relates to a display apparatus comprising at least one display element which includes at least two capsules such as are described above and at least one electrode adjacent to the display element, wherein the apparatus presents a visual display in response to the application of an electrical signal via the electrode to the display element.
- The display apparatus can include a plurality of electrodes adjacent the display element. The plurality of electrodes can include at least one which has a size different from others of the plurality of electrodes, and can include at least one which has a color different from others of the plurality of electrodes.
- In another aspect, the present invention relates to an electrophoretic display element comprising a capsule containing a first species of particles having a first optical property, a second species of particles having a second optical property visually different from the first optical property, a third species of particles having a third optical property visually different from the first and second optical properties and a fourth species of particles having a fourth optical property visually different from the first, second, and third optical properties such that the element presents a visual display in response to the application of an electrical signal to the capsule. The electrophoretic display element can also include a suspending fluid within the capsule.
- In yet another aspect, the present invention relates to an electrophoretic display element comprising a capsule containing a first species of particles having a first optical property, a second species of particles having a second optical property visually different from the first optical property, a third species of particles having a third optical property visually different from the first and second optical properties, a fourth species of particles having a fourth optical property visually different from the first, second, and third optical properties, and a fifth species of particles having a fifth optical property visually different from the first, second, third, and fourth optical properties such that the element presents a visual display in response to the application of an electrical signal to said capsule. The electrophoretic display element can also include a suspending fluid within the capsule.
- In still another aspect, the present invention relates to a method of manufacturing an electrophoretic display. The manufacturing method comprises the steps of providing a first capsule containing a first species of particles having a first optical property and a second species of particles having a second optical property visually different from the first optical property, and providing a second capsule containing a third species of particles having a third optical property and a fourth species of particles having a fourth optical property visually different from the third optical property, such that when an electrical signal is applied to at least one of the first and second capsules the element presents a visual display in response to the signal. In this method of manufacture, the first optical property and the third optical property can be substantially similar in appearance.
- In still a further aspect, the present invention relates to a method of manufacturing an electrophoretic display. This manufacturing method comprises the steps of providing a first capsule containing a first species of particles having a first optical property, a second species of particles having a second optical property visually different from the first optical property and containing a third species of particles having a third optical property visually different from the first and second optical properties, providing a second capsule containing a fourth species of particles having a fourth optical property, a fifth species of particles having a fifth optical property visually different from the fourth optical property and a sixth species of particles having a sixth optical property visually different from the fourth and fifth optical properties, and providing a third capsule containing a seventh species of particles having a seventh optical property, an eighth species of particles having a eighth optical property visually different from the seventh optical property, and a ninth species of particles having a ninth optical property visually different from the seventh and eighth optical properties, such that when an electrical signal is applied to at least one of the first, second and third capsules, the element presents a visual display in response to the signal.
- The manufacturing method can include the step of providing a first capsule wherein the third optical property is red visual appearance, or is yellow visual appearance. The manufacturing method can include the step of providing a second capsule wherein the sixth optical property is green visual appearance, or is cyan visual appearance. The manufacturing method can include the step of providing a third capsule wherein the ninth optical property is blue visual appearance, or is magenta visual appearance. The manufacturing method can include the step of providing capsules wherein the first, fourth and seventh optical properties are white visual appearance, or wherein the second, fifth and eighth optical properties are black visual appearance.
- The invention is pointed out with particularity in the appended claims. The advantages of the invention described above, together with further advantages, may be better understood by referring to the following description taken in conjunction with the accompanying drawings. In the drawings, like reference characters generally refer to the same parts throughout the different views. Also, the drawings are not necessarily to scale, emphasis instead generally being placed upon illustrating the principles of the invention.
-
FIG. 1A is a diagrammatic side view of an embodiment of a rear-addressing electrode structure for a particle-based display in which a smaller electrode has been placed at a voltage relative to the large electrode causing the particles to migrate to the smaller electrode. -
FIG. 1B is a diagrammatic side view of an embodiment of a rear-addressing electrode structure for a particle-based display in which the larger electrode has been placed at a voltage relative to the smaller electrode causing the particles to migrate to the larger electrode. -
FIG. 1C is a diagrammatic top-down view of one embodiment of a rear-addressing electrode structure. -
FIG. 1D is a diagrammatic perspective view of one embodiment of a display element having three sub-pixels, each sub-pixel comprising a relatively larger rear electrode and a relatively smaller rear electrode. -
FIG. 2A is a diagrammatic side view of an embodiment of a rear-addressing electrode structure having a retroreflective layer associated with the larger electrode in which the smaller electrode has been placed at a voltage relative to the large electrode causing the particles to migrate to the smaller electrode. -
FIG. 2B is a diagrammatic side view of an embodiment of a rear-addressing electrode structure having a retroreflective layer associated with the larger electrode in which the larger electrode has been placed at a voltage relative to the smaller electrode causing the particles to migrate to the larger electrode. -
FIG. 2C is a diagrammatic side view of an embodiment of a rear-addressing electrode structure having a retroreflective layer disposed below the larger electrode in which the smaller electrode has been placed at a voltage relative to the large electrode causing the particles to migrate to the smaller electrode. -
FIG. 2D is a diagrammatic side view of an embodiment of a rear-addressing electrode structure having a retroreflective layer disposed below the larger electrode in which the larger electrode has been placed at a voltage relative to the smaller electrode causing the particles to migrate to the larger electrode. -
FIG. 3A is a diagrammatic side view of an embodiment of an addressing structure in which a direct-current electric field has been applied to the capsule causing the particles to migrate to the smaller electrode. -
FIG. 3B is a diagrammatic side view of an embodiment of an addressing structure in which an alternating-current electric field has been applied to the capsule causing the particles to disperse into the capsule, obscuring a rear substrate. -
FIG. 3C is a diagrammatic side view of an embodiment of an addressing structure having transparent electrodes, in which a direct-current electric field has been applied to the capsule causing the particles to migrate to the smaller electrode, revealing a rear substrate. -
FIG. 3D is a diagrammatic side view of an embodiment of an addressing structure having transparent electrodes, in which an alternating-current electric field has been applied to the capsule causing the particles to disperse into the capsule. -
FIG. 3E is a diagrammatic side view of an embodiment of an addressing structure for a display element having three sub-pixels. -
FIG. 3F is a diagrammatic side view of an embodiment of a dual particle curtain mode addressing structure addressing a display element to appear white. -
FIG. 3G is a diagrammatic side view of an embodiment of a dual particle curtain mode addressing structure addressing a display element to appear red. -
FIG. 3H is a diagrammatic side view of an embodiment of a dual particle curtain mode addressing structure addressing a display element to absorb red light. -
FIG. 3I is a diagrammatic side view of an embodiment of a dual particle curtain mode addressing structure for a display element having three sub-pixels, in which the display is addressed to appear red. -
FIG. 3J is a diagrammatic side view of another embodiment of a dual particle curtain mode addressing structure for a display element. -
FIG. 3K is a diagrammatic plan view of an embodiment of an interdigitated electrode structure. -
FIG. 3L is a diagrammatic side view of another embodiment of a dual particle curtain mode display structure having a dyed fluid and two species of particles, addressed to absorb red. -
FIG. 3M is a diagrammatic side view of another embodiment of a dual particle curtain mode display structure having clear fluid and three species of particles, addressed to absorb red. -
FIG. 4A is a diagrammatic side view of an embodiment of a rear-addressing electrode structure for a particle-based display having colored electrodes and a white electrode, in which the colored electrodes have been placed at a voltage relative to the white electrode causing the particles to migrate to the colored electrodes. -
FIG. 4B is a diagrammatic side view of an embodiment of a rear-addressing electrode structure for a particle-based display having colored electrodes and a white electrode, in which the white electrode has been placed at a voltage relative to the colored electrodes causing the particles to migrate to the white electrode. -
FIG. 5 is a diagrammatic side view of an embodiment of a color display element having red, green, and blue particles of different electrophoretic mobilities. -
FIGS. 6A-6B depict the steps taken to address the display ofFIG. 5 to display red. -
FIGS. 7A-7D depict the steps taken to address the display ofFIG. 5 to display blue. -
FIGS. 8A-8C depict the steps taken to address the display ofFIG. 5 to display green. -
FIG. 9 is a cross-sectional view of a rear electrode addressing structure that is formed by printing. -
FIG. 10 is a perspective view of an embodiment of a control grid addressing structure. - An electronic ink is an optoelectronically active material that comprises at least two phases: an electrophoretic contrast media phase and a coating/binding phase. The electrophoretic phase comprises, in some embodiments, a single species of electrophoretic particles dispersed in a clear or dyed medium, or more than one species of electrophoretic particles having distinct physical and electrical characteristics dispersed in a clear or dyed medium. In some embodiments the electrophoretic phase is encapsulated, that is, there is a capsule wall phase between the two phases. The coating/binding phase includes, in one embodiment, a polymer matrix that surrounds the electrophoretic phase. In this embodiment, the polymer in the polymeric binder is capable of being dried, crosslinked, or otherwise cured as in traditional inks, and therefore a printing process can be used to deposit the electronic ink onto a substrate.
- In one embodiment, the ink may comprise sub-pixels capable of displaying different colors. Sub-pixels may be grouped to form pixels. In one particular embodiment, each sub-pixel contains red particles, green particles, and blue particles, respectively. In another particular embodiment, each sub-pixel contains cyan particles, yellow particles, and magenta particles, respectively. In each example, each sub-pixel can additionally include particles which are white and particles which are black. By addressing each sub-pixel to display some fraction of its colored particles, and some portion of the white and black particles, a pixel can be caused to give an appearance corresponding to a selected color at a selected brightness level.
- An electronic ink is capable of being printed by several different processes, depending on the mechanical properties of the specific ink employed. For example, the fragility or viscosity of a particular ink may result in a different process selection. A very viscous ink would not be well-suited to deposition by an inkjet printing process, while a fragile ink might not be used in a knife over roll coating process.
- The optical quality of an electronic ink is quite distinct from other electronic display materials. The most notable difference is that the electronic ink provides a high degree of both reflectance and contrast because it is pigment based (as are ordinary printing inks). The light scattered from the electronic ink comes from a very thin layer of pigment close to the top of the viewing surface. In this respect it resembles an ordinary, printed image. Also, electronic ink is easily viewed from a wide range of viewing angles in the same manner as a printed page, and such ink approximates a Lambertian contrast curve more closely than any other electronic display material. Since electronic ink can be printed, it can be included on the same surface with any other printed material, including traditional inks Electronic ink can be made optically stable in all display configurations, that is, the ink can be set to a persistent optical state. Fabrication of a display by printing an electronic ink is particularly useful in low power applications because of this stability.
- Electronic ink displays are novel in that they can be addressed by DC voltages and draw very little current. As such, the conductive leads and electrodes used to deliver the voltage to electronic ink displays can be of relatively high resistivity. The ability to use resistive conductors substantially widens the number and type of materials that can be used as conductors in electronic ink displays. In particular, the use of costly vacuum-sputtered indium tin oxide (ITO) conductors, a standard material in liquid crystal devices, is not required. Aside from cost savings, the replacement of ITO with other materials can provide benefits in appearance, processing capabilities (printed conductors), flexibility, and durability. Additionally, the printed electrodes are in contact only with a solid binder, not with a fluid layer (like liquid crystals). This means that some conductive materials, which would otherwise dissolve or be degraded by contact with liquid crystals, can be used in an electronic ink application. These include opaque metallic inks for the rear electrode (e.g., silver and graphite inks), as well as conductive transparent inks for either substrate. These conductive coatings include semiconducting colloids, examples of which are indium tin oxide and antimony-doped tin oxide. Organic conductors (polymeric conductors and molecular organic conductors) also may be used. Polymers include, but are not limited to, polyaniline and derivatives, polythiophene and derivatives, poly3,4-ethylenedioxythiophene (PEDOT) and derivatives, polypyrrole and derivatives, and polyphenylenevinylene (PPV) and derivatives. Organic molecular conductors include, but are not limited to, derivatives of naphthalene, phthalocyanine, and pentacene. Polymer layers can be made thinner and more transparent than with traditional displays because conductivity requirements are not as stringent.
- As an example, there are a class of materials called electroconductive powders which are also useful as coatable transparent conductors in electronic ink displays. One example is Zelec ECP electroconductive powders from DuPont Chemical Co. of Wilmington, Del.
- It is possible to produce any selected color from the superposition of suitable proportions of three properly chosen colors. In one embodiment, the colors red, green, and blue can be combined in various proportions to produce an image which is perceived as a selected color. Emissive or transmissive displays operate according to additive rules, where the perceived color is created by summing the emission wavelengths of a plurality of emitting or transmitting objects. For an emissive or transmissive display which includes three sub-pixels, one of which can produce red light, one green light, and one blue light, respectively, one can generate all colors, as well as white and black. At one extreme, the combination of all three at full intensity is perceived as white, and at the other, the combination of all three at zero intensity is perceived as black. Specific combinations of controlled proportions of these three colors can be used to represent other colors.
- In a reflective display, the light which a viewer perceives is the portion of the spectrum which is not absorbed when the light to be reflected falls on the reflector surface. One may thus consider a reflecting system as a subtractive system, that is, that each reflective surface “subtracts” from the light that portion which the reflector absorbs. The color of a reflector represents the wavelengths of light the reflector absorbs. A yellow reflector absorbs substantially blue light. A magenta reflector absorbs substantially green light. A cyan reflector absorbs substantially red light. Thus, in an alternative embodiment employing reflectors, nearly the same results as an emissive system can be obtained by use of the three colors cyan, yellow, and magenta as the primary colors, from which all other colors, including black but not white, can be derived. To obtain white from such a display, one must further introduce a third state per sub-pixel, namely white.
- One approach which may be taken to overcome the shortcomings inherent in two state displays is to create a display comprising individual pixels or pixels comprising sub-pixels that can support multiple color states. The use of multiple color states permits more robust color rendition and provides better contrast than is possible with two color states per pixel or per sub-pixel. For example, using a microencapsulated electrophoretic display, a single microcapsule with five kinds of particles could display white, cyan, magenta, yellow, or black all with excellent saturation. By foregoing black and using cyan/magenta/yellow to combine to black, a similar effect can be achieved with a display element capable of four color states.
- The invention can also utilize any reflective display element that can create three color states within a single sub-pixel, where sub-pixels are combined to generate a variety of overall pixel colors. Such a display is capable of greatly improved appearance yet relies on only three color states per sub-pixel instead of four or five or more. A sub-pixel having only three color states can have advantages with regard to the operation of the display. Fewer and simpler applied voltage signals are needed to operate each sub-pixel of the display element, A sub-pixel having fewer stable states may be capable of being addressed more quickly than one with more stable states.
- Various methods are possible by which three color states could be achieved within a single addressable region, which can be a display element sub-pixel. For example, a microencapsulated electrophoretic display element sub-pixel may contain particles in a clear suspension medium. A simple addressing method is to provide white particles having a positive charge, cyan particles having a negative charge, and red particles having no charge. In this example, white is achieved when the top electrode is negative and the bottom electrodes are both positive. Cyan is achieved when the top electrode is positive and the bottom electrodes are both negative. Red is achieved when the top electrode is set to ground, one bottom electrode is positive and attracts the cyan particles, and the other bottom electrode is negative and attracts the white particles, so that the red particles are uppermost and are seen.
- Another example combines top and bottom motion with a sideways or so-called in-plane switching, control grid or shutter-effect method. In one example, red particles have strong positive charge, black particles have lesser positive charge, and the sub-pixel of the display incorporates a white sheet behind a clear bottom electrode. The clear bottom electrode comprises a larger sub-electrode and a smaller sub-electrode. In this example, using a shutter effect, red is achieved when the top electrode has a negative voltage and the bottom electrode, including both subelectrodes, has a positive voltage. Black is achieved when the top electrode has a positive voltage and the bottom electrode, including both subelectrodes, has a negative voltage. White is achieved when the smaller subelectrode of the bottom electrode is switched to a negative voltage but the top electrode and the larger subelectrode of the bottom electrode is switched to a less negative voltage. Thus the red and black particles are attracted to cluster at the smaller sub-electrode, with the slower black particles clustering on top and blocking from sight the red particles, and the bulk of the microcapsule is clear, allowing the white sheet to be visible. The top electrode may be masked so that the clustered particles are not visible. Additionally, the backing sheet could be replaced with a backlight or color filter and backlight. In another embodiment, a brief alternating voltage signal may be used prior to addressing methods described above to mix the particles into a random order.
- While the methods described discuss particles, any combination of dyes, liquids droplets and transparent regions that respond to electrophoretic effects could also be used. Particles of various optical effects may be combined in any suitable proportion. For example, certain colors may be over- or under-populated in the electrophoretic suspension to account for the sensitivities of the human eye and to thereby achieve a more pleasing or uniform effect. Similarly, the sizes of the sub-pixels may also be disproportionate to achieve various optical effects.
- Although these examples describe microencapsulated electrophoretic displays, the invention can be utilized across other reflective displays including liquid crystal, polymer-dispersed liquid crystal, rotating ball, suspended particle and any other reflective display capable of imaging three colors. For example, a bichromal rotating ball (or pyramid, cube, etc.) could be split into regions of multiple colors. One way to address such a display element would be to provide differing charge characteristics (such as charged vertices in the case of the pyramid) and to use various combinations and sequences of electrode voltage potentials across the surrounding top, bottom, or side electrodes to rotate the shape in a desired manner. In short, many addressing schemes are possible by which a sub-pixel in a direct color reflective display could be switched among three colors. Such switching mechanism will vary by the nature of the display and any suitable means may be used.
- One embodiment of the invention is to separate each pixel into three sub-pixels, each sub-pixel being capable of displaying three color states, and to choose as the color state combinations a first sub-pixel being capable of displaying white, cyan or red, a second sub-pixel being capable of displaying white, magenta or green, and a third sub-pixel being capable of displaying white, yellow or blue. As has already been explained, for a reflective display, black can be displayed with the three sub-pixels turned to red, green and blue, respectively. This display achieves a more saturated black than is achieved under the two-state system. Alternatively, red is displayed with the sub-pixels turned to red, magenta and yellow, respectively, which offers a more saturated red than is obtained with a two-state system. Other colors may be obtained by suitable choices of the individual states of the sub-pixels.
- Another embodiment of the invention is to separate each pixel into three sub-pixels, each sub-pixel being capable of displaying three color states, and to choose as the color state combinations a first sub-pixel being capable of displaying white, cyan or black, a second sub-pixel being capable of displaying white, magenta or black, and a third sub-pixel being capable of displaying white, yellow or black. In this embodiment, black and white are displayed directly with high saturation. For example, to display red, the first (cyan) sub-pixel is set to either white or black to achieve a dimmer or brighter color, respectively, the second sub-pixel is set to magenta, and the last sub-pixel is set to yellow.
- Another embodiment of the invention is to separate each pixel into three sub-pixels, each sub-pixel being capable of displaying three color states, and to choose as the color state combinations a first sub-pixel being capable of displaying white, red or black, a second sub-pixel being capable of displaying white, green or black, and a third sub-pixel being capable of displaying white, blue or black. In this embodiment, black and white are displayed directly with high saturation. For example, to display red, the first sub-pixel is set to red, and the second and the third sub-pixels are set to either white or black to achieve a dimmer or brighter color, respectively.
- While the embodiments above describe a pixel of three sub-pixels, each sub-pixel having three possible color states, the invention is embodied by any pixel containing two or more sub-pixels, where at least one sub-pixel can achieve three or more colors. In this manner a better effect can be achieved for reflective displays than can be achieved by adopting the simple two-state sub-pixel color change technique that is common to emissive displays.
- Additionally, the invention can be extended to four or more color states to permit full color displays without the need for sub-pixels, and illustrates addressing mechanisms that work for three states and which can be extended or combined to achieve a display with four or more states.
- Another means of generating color in a microencapsulated display medium is the use of color filters in conjunction with a contrast-generating optical element. One manifestation of this technique is to use a pixel element which switches between white and black. This, in conjunction with the color filter, allows for switching between a light and dark colored state to occur. However, it is known to those skilled in the art that different numbers of color filters (ranging from one to three) can be used in a sub-pixel, depending on how many colors are desired. Also, the microencapsulated particle display can switch between colors other than white and black. In this case, it is advantageous to use a color filter which is opposed (in a color sense) to the color of the pixel. For example, a yellow color filter used with a blue or white electrophoretic display would result in a green or yellow color to that element.
- Additionally, there is an electrophoretic device known as a “shutter mode” display, in which particles are switched electrically between a widely-dispersed state on one electrode and a narrow band on the other electrode. Such a device can act as a transmissive light valve or reflective display. Color filters can be used with such a device.
- Referring now to
FIGS. 1A and 1B , an addressing scheme for controlling particle-based displays is shown in which electrodes are disposed on only one side of a display, allowing the display to be rear-addressed. Utilizing only one side of the display for electrodes simplifies fabrication of displays. For example, if the electrodes are disposed on only the rear side of a display, both of the electrodes can be fabricated using opaque materials, which may be colored, because the electrodes do not need to be transparent. -
FIG. 1A depicts asingle capsule 20 of an encapsulated display media. In brief overview, the embodiment depicted inFIG. 1A includes acapsule 20 containing at least oneparticle 50 dispersed in a suspendingfluid 25. Thecapsule 20 is addressed by afirst electrode 30 and asecond electrode 40. Thefirst electrode 30 is smaller than thesecond electrode 40. Thefirst electrode 30 and thesecond electrode 40 may be set to voltage potentials which affect the position of theparticles 50 in thecapsule 20. - The
particles 50 represent 0.1% to 20% of the volume enclosed by thecapsule 20. In some embodiments theparticles 50 represent 2.5% to 17.5% of the volume enclosed bycapsule 20. In preferred embodiments, theparticles 50 represent 5% to 15% of the volume enclosed by thecapsule 20. In more preferred embodiments theparticles 50 represent 9% to 11% of the volume defined by thecapsule 20. In general, the volume percentage of thecapsule 20 that theparticles 50 represent should be selected so that theparticles 50 expose most of the second,larger electrode 40 when positioned over the first,smaller electrode 30. As described in detail below, theparticles 50 may be colored any one of a number of colors. Theparticles 50 may be either positively charged or negatively charged. - The
particles 50 are dispersed in a dispersingfluid 25. The dispersingfluid 25 should have a low dielectric constant. The fluid 25 may be clear, or substantially clear, so that the fluid 25 does not inhibit viewing theparticles 50 and theelectrodes position 10. In other embodiments, the fluid 25 is dyed. In some embodiments the dispersingfluid 25 has a specific gravity matched to the density of theparticles 50. These embodiments can provide a bistable display media, because theparticles 50 do not tend to move in certain compositions absent an electric field applied via theelectrodes - The
electrodes entire capsule 20. There may be exactly one pair ofelectrodes capsule 20, multiple pairs ofelectrodes capsule 20, or a single pair ofelectrodes multiple capsules 20. In the embodiment shown inFIGS. 1A and 1B , thecapsule 20 has a flattened, rectangular shape. In these embodiments, theelectrodes electrodes smaller electrode 30 is at most one-half the size of thelarger electrode 40. In preferred embodiments the smaller electrode is one-quarter the size of thelarger electrode 40; in more preferred embodiments thesmaller electrode 30 is one-eighth the size of thelarger electrode 40. In even more preferred embodiments, thesmaller electrode 30 is one-sixteenth the size of thelarger electrode 40. It should be noted that reference to “smaller” in connection with theelectrode 30 means that theelectrode 30 addresses a smaller amount of the surface area of thecapsule 20, not necessarily that theelectrode 30 is physically smaller than thelarger electrode 40. For example,multiple capsules 20 may be positioned such that less of eachcapsule 20 is addressed by the “smaller”electrode 30, even though bothelectrodes FIG. 1C ,electrode 30 may address only a small corner of a rectangular capsule 20 (shown in phantom view inFIG. 1C ), requiring thelarger electrode 40 to surround thesmaller electrode 30 on two sides in order to properly address thecapsule 20. Selection of the percentage volume of theparticles 50 and theelectrodes - Electrodes may be fabricated from any material capable of conducting electricity so that
electrode capsule 20. As noted above, the rear-addressed embodiments depicted inFIGS. 1A and 1B allow theelectrodes Electrodes particles 50. Alternatively, since the electrodes need not be transparent, an electrode can be constructed so as to display a selected color. - In one embodiment, the
capsule 20 contains positively chargedblack particles 50, and a substantially clear suspendingfluid 25. The first,smaller electrode 30 is colored black, and is smaller than thesecond electrode 40, which is colored white or is highly reflective. When the smaller,black electrode 30 is placed at a negative voltage potential relative to larger,white electrode 40, the positively-chargedparticles 50 migrate to the smaller,black electrode 30. The effect to a viewer of thecapsule 20 located atposition 10 is a mixture of the larger,white electrode 40 and the smaller,black electrode 30, creating an effect which is largely white. Referring toFIG. 1B , when the smaller,black electrode 30 is placed at a positive voltage potential relative to the larger,white electrode 40,particles 50 migrate to the larger,white electrode 40 and the viewer is presented a mixture of theblack particles 50 covering the larger,white electrode 40 and the smaller,black electrode 30, creating an effect which is largely black. In this manner thecapsule 20 may be addressed to display either a white visual state or a black visual state. - Other two-color schemes are easily provided by varying the color of the
smaller electrode 30 and theparticles 50 or by varying the color of thelarger electrode 40. For example, varying the color of thelarger electrode 40 allows fabrication of a rear-addressed, two-color display having black as one of the colors. Alternatively, varying the color of thesmaller electrode 30 and theparticles 50 allow a rear-addressed two-color system to be fabricated having white as one of the colors. Further, it is contemplated that theparticles 50 and thesmaller electrode 30 can be different colors. In these embodiments, a two-color display may be fabricated having a second color that is different from the color of thesmaller electrode 30 and theparticles 50. For example, a rear-addressed, orange-white display may be fabricated by providingblue particles 50, a red,smaller electrode 30, and a white (or highly reflective)larger electrode 40. In general, the optical properties of theelectrodes particles 50 can be independently selected to provide desired display characteristics. In some embodiments the optical properties of the dispersingfluid 25 may also be varied, e.g. the fluid 25 may be dyed. - In another embodiment, this technique may be used to provide a full color display. Referring now to
FIG. 1D , a pixel embodiment is depicted that comprises three sub-pixels. It should be understood that althoughFIG. 1D depicts a hexagonal pixel having equally-sized sub-pixels, a pixel may have any shape and may be comprised of unequal sub-pixels. The sub-pixels may each be contained in a single large capsule, or each may be distributed across any number of small microcapsules or microcells. For the purposed of illustration, the simpler case of a single large sub-cell for each sub-pixel is shown. In both cases we refer to the regions, 20, 20′, 20″, as capsules. Thus, afirst capsule 20 contains positively chargedblack particles 50 and a substantially clear suspendingfluid 25. A first,smaller electrode 30 is colored black, and is smaller than thesecond electrode 40, which is colored red. When the smaller,black electrode 30 is placed at a negative voltage potential relative to larger,red electrode 40, the positively-chargedparticles 50 migrate to the smaller,black electrode 30. The effect to a viewer of thecapsule 20 located atposition 10 is a mixture of the larger,red electrode 40 and the smaller,black electrode 30, creating an effect which is largely red. When the smaller,black electrode 30 is placed at a positive voltage potential relative to the larger,red electrode 40,particles 50 migrate to the larger,red electrode 40 and the viewer is presented a mixture of theblack particles 50 covering the larger,red electrode 40 and the smaller,black electrode 30, creating an effect which is largely black. In this manner thefirst capsule 20 may be addressed to display either a red visual state or a black visual state. One can equally have asecond capsule 20′ wherein thelarger electrode 40′ is green, and athird capsule 20″ wherein thelarger electrode 40″ is blue. Asecond capsule 20′ contains positively chargedblack particles 50′ and a substantially clear suspendingfluid 25′. A first,smaller electrode 30′ is colored black, and is smaller than thesecond electrode 40′, which is colored green. When the smaller,black electrode 30′ is placed at a negative voltage potential relative to larger,green electrode 40′, the positively-chargedparticles 50′ migrate to the smaller,black electrode 30′. The effect to a viewer of thecapsule 20′ located atposition 10′ is a mixture of the larger,green electrode 40′ and the smaller,black electrode 30′, creating an effect which is largely green. When the smaller,black electrode 30′ is placed at a positive voltage potential relative to the larger,green electrode 40′,particles 50′ migrate to the larger,green electrode 40′ and the viewer is presented a mixture of theblack particles 50′ covering the larger,green electrode 40′ and the smaller,black electrode 30′, creating an effect which is largely black. Similarly, athird capsule 20″ contains positively chargedblack particles 50″ and a substantially clear suspendingfluid 25″. A first,smaller electrode 30″ is colored black, and is smaller than thesecond electrode 40″, which is colored blue. When the smaller,black electrode 30″ is placed at a negative voltage potential relative to larger,blue electrode 40″, the positively-chargedparticles 50″ migrate to the smaller,black electrode 30″. The effect to a viewer of thecapsule 20″ located atposition 10″ is a mixture of the larger,blue electrode 40″ and the smaller,black electrode 30″, creating an effect which is largely blue. When the smaller,black electrode 30″ is placed at a positive voltage potential relative to the larger,blue electrode 40″,particles 50″ migrate to the larger,blue electrode 40″ and the viewer is presented a mixture of theblack particles 50″ covering the larger,blue electrode 40″ and the smaller,black electrode 30″, creating an effect which is largely black. Further, the relative intensities of these colors can be controlled by the actual voltage potentials applied to the electrodes. By choosing appropriate combinations of the three colors, one may create a visual display which appears as the effective combination of the selected colors as an additive process. As an alternative embodiment, the first, second and third capsules can havelarger electrodes - In other embodiments the
larger electrode 40 may be reflective instead of white. In these embodiments, when theparticles 50 are moved to thesmaller electrode 30, light reflects off thereflective surface 60 associated with thelarger electrode 40 and thecapsule 20 appears light in color, e.g. white (seeFIG. 2A ). When theparticles 50 are moved to thelarger electrode 40, the reflectingsurface 60 is obscured and thecapsule 20 appears dark (seeFIG. 2B ) because light is absorbed by theparticles 50 before reaching the reflectingsurface 60. The reflectingsurface 60 for thelarger electrode 40 may possess retroreflective properties, specular reflection properties, diffuse reflective properties or gain reflection properties. In certain embodiments, thereflective surface 60 reflects light with a Lambertian distribution Thesurface 60 may be provided as a plurality of glass spheres disposed on theelectrode 40, a diffractive reflecting layer such as a holographically formed reflector, a surface patterned to totally internally reflect incident light, a brightness-enhancing film, a diffuse reflecting layer, an embossed plastic or metal film, or any other known reflecting surface. The reflectingsurface 60 may be provided as a separate layer laminated onto thelarger electrode 40 or the reflectingsurface 60 may be provided as a unitary part of thelarger electrode 40. In the embodiments depicted byFIGS. 2C and 2D , the reflecting surface may be disposed below theelectrodes viewpoint 10. In these embodiments,electrode 30 should be transparent so that light may be reflected bysurface 60. In other embodiments, proper switching of the particles may be accomplished with a combination of alternating-current (AC) and direct-current (DC) electric fields and described below in connection withFIGS. 3A-3D . - In still other embodiments, the rear-addressed display previously discussed can be configured to transition between largely transmissive and largely opaque modes of operation (referred to hereafter as “shutter mode”). Referring back to
FIGS. 1A and 1B , in these embodiments thecapsule 20 contains at least one positively-chargedparticle 50 dispersed in a substantially clear dispersingfluid 25. Thelarger electrode 40 is transparent and thesmaller electrode 30 is opaque. When the smaller,opaque electrode 30 is placed at a negative voltage potential relative to the larger,transmissive electrode 40, theparticles 50 migrate to the smaller,opaque electrode 30. The effect to a viewer of thecapsule 20 located atposition 10 is a mixture of the larger,transparent electrode 40 and the smaller,opaque electrode 30, creating an effect which is largely transparent. Referring toFIG. 1B , when the smaller,opaque electrode 30 is placed at a positive voltage potential relative to the larger,transparent electrode 40,particles 50 migrate to thesecond electrode 40 and the viewer is presented a mixture of theopaque particles 50 covering the larger,transparent electrode 40 and the smaller,opaque electrode 30, creating an effect which is largely opaque. In this manner, a display formed using the capsules depicted inFIGS. 1A and 1B may be switched between transmissive and opaque modes. Such a display can be used to construct a window that can be rendered opaque. AlthoughFIGS. 1A-2D depict a pair of electrodes associated with eachcapsule 20, it should be understood that each pair of electrodes may be associated with more than onecapsule 20. - A similar technique may be used in connection with the embodiment of
FIGS. 3A , 3B, 3C, and 3D. Referring toFIG. 3A , acapsule 20 contains at least one dark orblack particle 50 dispersed in a substantially clear dispersingfluid 25. A smaller,opaque electrode 30 and a larger,transparent electrode 40 apply both direct-current (DC) electric fields and alternating-current (AC) fields to thecapsule 20. A DC field can be applied to thecapsule 20 to cause theparticles 50 to migrate towards thesmaller electrode 30. For example, if theparticles 50 are positively charged, the smaller electrode is placed a voltage that is more negative than thelarger electrode 40. AlthoughFIGS. 3A-3D depict only one capsule per electrode pair, multiple capsules may be addressed using the same electrode pair. - The
smaller electrode 30 is at most one-half the size of thelarger electrode 40. In preferred embodiments the smaller electrode is one-quarter the size of thelarger electrode 40; in more preferred embodiments thesmaller electrode 30 is one-eighth the size of thelarger electrode 40. In even more preferred embodiments, thesmaller electrode 30 is one-sixteenth the size of thelarger electrode 40. - Causing the
particles 50 to migrate to thesmaller electrode 30, as depicted inFIG. 3A , allows incident light to pass through the larger,transparent electrode 40 and be reflected by a reflectingsurface 60. In shutter mode, the reflectingsurface 60 is replaced by a translucent layer, a transparent layer, or a layer is not provided at all, and incident light is allowed to pass through thecapsule 20, i.e. thecapsule 20 is transmissive. If the translucent layer or the transparent layer comprises a color, such as a color filter, the light which is transmitted will be those wavelengths that the filter passes, and the reflected light will consist of those wavelengths that the filter reflects, while the wavelengths that the filter absorbs will be lost. The visual appearance of a shutter mode display may thus depend on whether the display is in a transmissive or reflective condition, on the characteristics of the filter, and on the position of the viewer. - Referring now to
FIG. 3B , theparticles 50 are dispersed into thecapsule 20 by applying an AC field to thecapsule 20 via theelectrodes particles 50, dispersed into thecapsule 20 by the AC field, block incident light from passing through thecapsule 20, causing it to appear dark at theviewpoint 10. The embodiment depicted inFIGS. 3A-3B may be used in shutter mode by not providing the reflectingsurface 60 and instead providing a translucent layer, a transparent layer, a color filter layer, or no layer at all. In shutter mode, application of an AC electric field causes thecapsule 20 to appear opaque. The transparency of a shutter mode display formed by the apparatus depicted inFIGS. 3A-3D may be controlled by the number of capsules addressed using DC fields and AC fields. For example, a display in which everyother capsule 20 is addressed using an AC field would appear fifty percent transmissive. -
FIGS. 3C and 3D depict an embodiment of the electrode structure described above in whichelectrodes capsule 20, that is, theelectrodes viewpoint 10 and thecapsule 20. In these embodiments, bothelectrodes electrodes particles 50, reflected by retroreflecting layer 60 (when provided), transmitted throughout the capsule 20 (when retroreflectinglayer 60 is not provided), or partially transmitted and/or reflected if a color filter is present in place ofretroreflecting layer 60. - Referring to
FIG. 3E , threesub-pixel capsules white particle 50 dispersed in a substantially clear dispersingfluid 25. In one embodiment, eachsub-pixel capsule transparent electrode colored filter reflective surface 70 may be shared behind the color filter layer. In an alternative embodiment, the display includes an emissivelight source 70. - Smaller,
opaque electrodes transparent electrodes capsules capsules particles smaller electrodes particles smaller electrodes larger electrodes - The
smaller electrode 30 is at most one-half the size of thelarger electrode 40. In preferred embodiments thesmaller electrode 30 is one-quarter the size of thelarger electrode 40; in more preferred embodiments thesmaller electrode 30 is one-eighth the size of thelarger electrode 40. In even more preferred embodiments, thesmaller electrode 30 is one-sixteenth the size of thelarger electrode 40. - Causing the
particles 50 to migrate to thesmaller electrode 30, as depicted in the first two capsules ofFIG. 3E , allows incident light to pass through the larger,transparent electrode 40filter 60 and reflect offsubstrate 70. If the first, second andthird filters particles 50 are white, this system can display full color in a standard two-color fashion. - The
filter layer 60 may be a translucent layer, a transparent layer, a color filter layer, or a layer is not provided at all, andfurther substrate 70 may be reflective, emissive, translucent or not provided at all. If thelayer 60 comprises a color, such as a color filter, the light which is transmitted will be those wavelengths that the filter passes, and the reflected light will consist of those wavelengths that the filter reflects, while the wavelengths that the filter absorbs will be lost. The visual appearance of a the display element in 3E may thus depend on whether the display is in a transmissive or reflective condition, on the characteristics of the filter, and on the position of the viewer. In analternative embodiment layer 60 may be provided on top of the capsule adjacent toelectrode 42. - Referring now to
FIGS. 3F-3K , one embodiment of a tri-color pixel is described.Clear electrode 42 allows light to pass intocapsule 22 and to strike either white particles W, red particles R, or acolored substrate 60. Thesubstrate 60 can be a combination of color filter and non-colored substrate or it can be provided as a unitary colored substrate.Capsule 22 also includes a suspending fluid that can be dye-colored (possibly eliminating the need for a separate color filter 60) or substantially clear.Electrodes FIG. 3F ,top electrode 42 is set at a positive voltage potential relative tobottom electrodes FIG. 3G by reversing the polarity of the electrodes, red is displayed. In bothFIGS. 3F and 3G the particlesobscure substrate 60. InFIG. 3H electrode 45 is at a negative voltage potential relative toelectrode 35, whileelectrode 42 is at a voltage potential between the potentials of 45 and 35, such as zero. Alternatively,electrode 42 switches between the potentials of 45 and 35 so that over time the effective voltage of 42 is again between the potentials of 45 and 35. In this state, the particles R move towardelectrode 45 and the particles W move towardelectrode 35 and both particles R and W move away from the gap in the center of thecapsule 22. This revealssubstrate 60, permitting a third color such as cyan to be imaged. In alternate embodiments the color combinations can differ. The specific colors of the filters and particles need not differ. This system, called “dual particle curtain mode,” can image three arbitrary colors. In a preferred embodiment the colors are as described wherein one color is white and the other two colors are complements. In this manner, referring again toFIG. 3H , if a small portion of red is visible it absorbs part of the light reflected from the cyan substrate and the net result is black, which may be offset by a small portion of visible white. Thus, the pixel inFIG. 3H may appear to be cyan even if some red and white is visible. As mentioned above, the edges of the pixel may be masked to hide particles R and W when in the mode shown inFIG. 3H . - Referring now to
FIG. 3I , a full-color pixel is shown comprising three sub-pixels, each operating in the manner taught byFIGS. 3F-3H wherein the colored particles are positively charged, and the white particles are negatively charged. The system may still function withtop electrode 42 extended as a common top electrode as shown inFIG. 3I . For example, to achieve the state shown,electrodes - Referring now to
FIGS. 3J-3K , an electrode scheme is shown whereby a cluster of microcapsules may be addressed for an entire sub-pixel in a manner similar to those described above.Clear electrode 42 allows light to pass intomicrocapsules 27 and to strike either white particles W, red particles R, orcolored substrate 60. As above,colored substrate 60 may be a combination of color filter andnon-colored substrate 60 orcolored substrate 60 may be provided as a unitary colored substrate.Capsules 27 include a suspending fluid that may be dye-colored (possibly eliminating the need for a separate color filter 60) or substantially clear.Electrodes FIGS. 3F-3K , although for any givenmicrocapsule 27 there may be multiple gaps.FIG. 3K illustrates an embodiment of a suitable electrode pattern in which 45 and 35 are interdigitated. - Referring now to 3L-3M, an alternate embodiment is shown. Again
clear electrode 42 allows light to pass intocapsule 22 and to strike white particles W or red particles R. In the embodiment shown inFIG. 3L ,capsule 22 includes a suspendingfluid 62 that is dyed cyan. Whenelectrodes electrodes fluid 62. Alternatively, as shown inFIG. 3M , suspendingfluid 62 is substantially clear and a third species of cyan particles C is included incapsules 22. The cyan particles have a relatively neutral charge. Whenelectrodes electrodes - The addressing structure depicted in
FIGS. 3A-3M may be used with electrophoretic display media and encapsulated electrophoretic display media.FIGS. 3A-3M depict embodiments in whichelectrode particles 50 exhibit bistability, that is, they are substantially motionless in the absence of a electric field. - While various of the substrates described above are reflective, an analogous technique may be employed wherein the substrates emit light, with the particles again acting in a “shutter mode” to reveal or obscure light. A preferred substrate for this use is an electroluminescent (EL) backlight. Such a backlight can be reflective when inactive, often with a whitish-green color, yet emit lights in various wavelengths when active. By using whitish EL substrates in place of static white reflective substrates, it is possible to construct a full-color reflective display that can also switch its mode of operation to display a range of colors in an emissive state, permitting operation in low ambient light conditions.
-
FIGS. 4A and 4B depict an embodiment of a rear-addressing electrode structure that creates a reflective color display in a manner similar to half-toning or pointillism. Thecapsule 20 containswhite particles 55 dispersed in a clear suspendingfluid 25.Electrodes FIG. 4A , when thecolored electrodes white electrode 48, negatively-chargedparticles 55 migrate to these three electrodes, causing thecapsule 20 to present to the viewpoint 10 a mix of thewhite particles 55 and thewhite electrode 48, creating an effect which is largely white. Referring toFIG. 4B , whenelectrodes electrode 48,particles 55 migrate to thewhite electrode 48, and theeye 10 sees a mix of thewhite particles 55, thecyan electrode 42, themagenta electrode 44, and theyellow electrode 46, creating an effect which is largely black or gray. By addressing the electrodes, any color can be produced that is possible with a subtractive color process. For example, to cause thecapsule 20 to display a red color to theviewpoint 10, theyellow electrode 46 and themagenta electrode 42 are set to a voltage potential that is more positive than the voltage potential applied by thecyan electrode 42 and thewhite electrode 48. Further, the relative intensities of these colors can be controlled by the actual voltage potentials applied to the electrodes. Again, AC current may be used appropriately to randomize the position of the particles as a step in this process. - The technique used in
FIGS. 4A and 4B could be used in a similar manner with fewer electrodes and controlling fewer colors. For example, ifelectrode 42 were not present, the pixel could still display three colors. Ifelectrodes - In another embodiment, depicted in
FIG. 5 , a color display is provided by acapsule 20 of size d containing multiple species of particles in a clear, dispersingfluid 25. Each species of particles has different optical properties and possess different electrophoretic mobilities (μ) from the other species. In the embodiment depicted inFIG. 5 , thecapsule 20 containsred particles 52,blue particles 54, andgreen particles 56, and -
- |μR||μB||μG|
That is, the magnitude of the electrophoretic mobility of thered particles 52, on average, exceeds the electrophoretic mobility of theblue particles 54, on average, and the electrophoretic mobility of theblue particles 54, on average, exceeds the average electrophoretic mobility of thegreen particles 56. As an example, there may be a species of red particle with a zeta potential of 100 millivolts (mV), a blue particle with a zeta potential of 60 mV, and a green particle with a zeta potential of 20 mV. Thecapsule 20 is placed between twoelectrodes capsule 20 with positive and negative voltage fields of varying time durations, it is possible to move any of the various particle species to the top of the capsule to present a certain color.
- |μR||μB||μG|
-
FIGS. 6A-6B depict the steps to be taken to address the display shown inFIG. 5 to display a red color to aviewpoint 10. Referring toFIG. 6A , all theparticles capsule 20 by applying an electric field in one direction. The electric field should be applied to thecapsule 20 long enough to attract even the more slowly movinggreen particles 56 to theelectrode 34. Referring toFIG. 6B , the electric field is reversed just long enough to allow thered particles 52 to migrate towards theelectrode 32. Theblue particles 54 andgreen particles 56 will also move in the reversed electric field, but they will not move as fast as thered particles 52 and thus will be obscured by thered particles 52. The amount of time for which the applied electric field must be reversed can be determined from the relative electrophoretic mobilities of the particles, the strength of the applied electric field, and the size of the capsule. -
FIGS. 7A-7D depict addressing the display element to a blue state. As shown inFIG. 7A , theparticles capsule 20. All theparticles capsule 20 by applying an electric field in one direction (shown inFIG. 7B ). Referring toFIG. 7C , the electric field is reversed just long enough to allow thered particles 52 andblue particles 54 to migrate towards theelectrode 32. The amount of time for which the applied electric field must be reversed can be determined from the relative electrophoretic mobilities of the particles, the strength of the applied electric field, and the size of the capsule. Referring toFIG. 7D , the electric field is then reversed a second time and thered particles 52, moving faster than theblue particles 54, leave theblue particles 54 exposed to theviewpoint 10. The amount of time for which the applied electric field must be reversed can be determined from the relative electrophoretic mobilities of the particles, the strength of the applied electric field, and the size of the capsule. -
FIGS. 8A-8C depict the steps to be taken to present a green display to theviewpoint 10. As shown inFIG. 8A , theparticles capsule 20. All theparticles capsule 20 proximal theviewpoint 10 by applying an electric field in one direction. The electric field should be applied to thecapsule 20 long enough to attract even the more slowly movinggreen particles 56 to theelectrode 32. As shown inFIG. 8C , the electric field is reversed just long enough to allow thered particles 52 and theblue particles 54 to migrate towards theelectrode 54, leaving the slowly-movinggreen particles 56 displayed to the viewpoint. The amount of time for which the applied electric field must be reversed can be determined from the relative electrophoretic mobilities of the particles, the strength of the applied electric field, and the size of the capsule. - In other embodiments, the capsule contains multiple species of particles and a dyed dispersing fluid that acts as one of the colors. In still other embodiments, more than three species of particles may be provided having additional colors. In one of these embodiments, the capsule contains white particles which have a strong positive charge, cyan particles which have a weakly positive charge, and red particles having a negative charge. Since the electrophoretic mobilities of these types of particles will be proportional to charge and of a direction related to the sign or polarity of the charge, these three types of particles will have different mobilities in the same voltage field. In this example, white is achieved when the top electrode is negative and the bottom electrode is positive. Red is achieved when the top electrode is positive and the bottom electrode is negative. Cyan is achieved by first setting the sub-pixel to white and then briefly reversing the voltage field so that the higher mobility white particles migrate past the cyan particles and the lower mobility, or slower, cyan particles remain topmost and visible. Although
FIGS. 6-8C depict two electrodes associated with a single capsule, the electrodes may address multiple capsules or less than a full capsule. - The addressing structures described in
FIGS. 1-8 typically comprise a top electrode controlled by display driver circuitry. It may be seen that if the top electrode is absent, the display may be imaged by an externally applied voltage source, such as a passing stylus or electrostatic print head. The means that techniques applied above to generate a full-color electrophoretic display could also be applied for a full-color electrophoretic media. - In
FIG. 9 , the rear electrode structure can be made entirely of printed layers. Aconductive layer 166 can be printed onto the back of a display comprised of a clear,front electrode 168 and aprintable display material 170. A clear electrode may be fabricated from indium tin oxide or conductive polymers such as polyanilines and polythiophenes. Adielectric coating 176 can be printed leaving areas for vias. Then, the back layer ofconductive ink 178 can be printed. If necessary, an additional layer of conductive ink can be used before the final ink structure is printed to fill in the holes. - This technique for printing displays can be used to build the rear electrode structure on a display or to construct two separate layers that are laminated together to form the display. For example an electronically active ink may be printed on an indium tin oxide electrode. Separately, a rear electrode structure as described above can be printed on a suitable substrate, such as plastic, polymer films, or glass. The electrode structure and the display element can be laminated to form a display.
- Referring now to
FIG. 10 , a threshold may be introduced into an electrophoretic display cell by the introduction of a third electrode. One side of the cell is a continuous, transparent electrode 200 (anode). On the other side of the cell, the transparent electrode is patterned into a set of isolated column electrode strips 210. Aninsulator 212 covers thecolumn electrodes 210, and an electrode layer on top of the insulator is divided into a set of isolated row electrode strips 230, which are oriented orthogonal to thecolumn electrodes 210. Therow electrodes 230 are patterned into a dense array of holes, or a grid, beneath which the exposedinsulator 212 has been removed, forming a multiplicity of physical and potential wells. - A positively charged
particle 50 is loaded into the potential wells by applying a positive potential (e.g. 30V) to all thecolumn electrodes 210 while keeping therow electrodes 230 at a less positive potential (e.g. 15V) and theanode 200 at zero volts. Theparticle 50 may be a conformable capsule that situates itself into the physical wells of the control grid. The control grid itself may have a rectangular cross-section, or the grid structure may be triangular in profile. It can also be a different shape which encourages the microcapsules to situate in the grid, for example, hemispherical. - The
anode 200 is then reset to a positive potential (e.g. 50V). The particle will remain in the potential wells due to the potential difference in the potential wells: this is called the Hold condition. To address a display element the potential on the column electrode associated with that element is reduced, e.g. by a factor of two, and the potential on the row electrode associated with that element is made equal to or greater than the potential on the column electrode. The particles in this element will then be transported by the electric field due to the positive voltage on theanode 200. The potential difference between row and column electrodes for the remaining display elements is now less than half of that in the normal Hold condition. The geometry of the potential well structure and voltage levels are chosen such that this also constitutes a Hold condition, i.e., no particles will leave these other display elements and hence there will be no half-select problems. This addressing method can select and write any desired element in a matrix without affecting the pigment in any other display element. A control electrode device can be operated such that the anode electrode side of the cell is viewed. - The control grid may be manufactured through any of the processes known in the art, or by several novel processes described herein. That is, according to traditional practices, the control grid may be constructed with one or more steps of photolithography and subsequent etching, or the control grid may be fabricated with a mask and a “sandblasting” technique.
- In another embodiment, the control grid is fabricated by an embossing technique on a plastic substrate. The grid electrodes may be deposited by vacuum deposition or sputtering, either before or after the embossing step. In another embodiment, the electrodes are printed onto the grid structure after it is formed, the electrodes consisting of some kind of printable conductive material which need not be clear (e.g. a metal or carbon-doped polymer, an intrinsically conducting polymer, etc.).
- In a preferred embodiment, the control grid is fabricated with a series of printing steps. The grid structure is built up in a series of one or more printed layers after the cathode has been deposited, and the grid electrode is printed onto the grid structure. There may be additional insulator on top of the grid electrode, and there may be multiple grid electrodes separated by insulator in the grid structure. The grid electrode may not occupy the entire width of the grid structure, and may only occupy a central region of the structure, in order to stay within reproducible tolerances. In another embodiment, the control grid is fabricated by photoetching away a glass, such as a photostructural glass.
- In an encapsulated electrophoretic image display, an electrophoretic suspension, such as the ones described previously, is placed inside discrete compartments that are dispersed in a polymer matrix. This resulting material is highly susceptible to an electric field across the thickness of the film. Such a field is normally applied using electrodes attached to either side of the material. However, as described above in connection with
FIGS. 3A-3F , some display media may be addressed by writing electrostatic charge onto one side of the display material. The other side normally has a clear or opaque electrode. For example, a sheet of encapsulated electrophoretic display media can be addressed with a head providing DC voltages. - In another embodiment, the encapsulated electrophoretic suspension can be printed onto an area of a conductive material such as a printed silver or graphite ink, aluminized Mylar, or any other conductive surface. This surface which constitutes one electrode of the display can be set at ground or high voltage. An electrostatic head consisting of many electrodes can be passed over the capsules to addressing them. Alternatively, a stylus can be used to address the encapsulated electrophoretic suspension.
- In another embodiment, an electrostatic write head is passed over the surface of the material. This allows very high resolution addressing. Since encapsulated electrophoretic material can be placed on plastic, it is flexible. This allows the material to be passed through normal paper handling equipment. Such a system works much like a photocopier, but with no consumables. The sheet of display material passes through the machine and an electrostatic or electrophotographic head addresses the sheet of material.
- In another embodiment, electrical charge is built up on the surface of the encapsulated display material or on a dielectric sheet through frictional or triboelectric charging. The charge can built up using an electrode that is later removed. In another embodiment, charge is built up on the surface of the encapsulated display by using a sheet of piezoelectric material.
- Microencapsulated displays offer a useful means of creating electronic displays, many of which can be coated or printed. There are many versions of microencapsulated displays, including microencapsulated electrophoretic displays. These displays can be made to be highly reflective, bistable, and low power.
- To obtain high resolution displays, it is useful to use some external addressing means with the microencapsulated material. This invention describes useful combinations of addressing means with microencapsulated electrophoretic materials in order to obtain high resolution displays.
- One method of addressing liquid crystal displays is the use of silicon-based thin film transistors to form an addressing backplane for the liquid crystal. For liquid crystal displays, these thin film transistors are typically deposited on glass, and are typically made from amorphous silicon or polysilicon. Other electronic circuits (such as drive electronics or logic) are sometimes integrated into the periphery of the display. An emerging field is the deposition of amorphous or polysilicon devices onto flexible substrates such as metal foils or plastic films.
- The addressing electronic backplane could incorporate diodes as the nonlinear element, rather than transistors. Diode-based active matrix arrays have been demonstrated as being compatible with liquid crystal displays to form high resolution devices.
- There are also examples of crystalline silicon transistors being used on glass substrates. Crystalline silicon possesses very high mobilities, and thus can be used to make high performance devices. Presently, the most straightforward way of constructing crystalline silicon devices is on a silicon wafer. For use in many types of liquid crystal displays, the crystalline silicon circuit is constructed on a silicon wafer, and then transferred to a glass substrate by a “liftoff” process. Alternatively, the silicon transistors can be formed on a silicon wafer, removed via a liftoff process, and then deposited on a flexible substrate such as plastic, metal foil, or paper. As another embodiment, the silicon could be formed on a different substrate that is able to tolerate high temperatures (such as glass or metal foils), lifted off, and transferred to a flexible substrate. As yet another embodiment, the silicon transistors are formed on a silicon wafer, which is then used in whole or in part as one of the substrates for the display.
- The use of silicon-based circuits with liquid crystals is the basis of a large industry. Nevertheless, these display possess serious drawbacks. Liquid crystal displays are inefficient with light, so that most liquid crystal displays require some sort of backlighting. Reflective liquid crystal displays can be constructed, but are typically very dim, due to the presence of polarizers. Most liquid crystal devices require precise spacing of the cell gap, so that they are not very compatible with flexible substrates. Most liquid crystal displays require a “rubbing” process to align the liquid crystals, which is both difficult to control and has the potential for damaging the TFT array.
- The combination of these thin film transistors with microencapsulated electrophoretic displays should be even more advantageous than with liquid crystal displays. Thin film transistor arrays similar to those used with liquid crystals could also be used with the microencapsulated display medium. As noted above, liquid crystal arrays typically requires a “rubbing” process to align the liquid crystals, which can cause either mechanical or static electrical damage to the transistor array. No such rubbing is needed for microencapsulated displays, improving yields and simplifying the construction process.
- Microencapsulated electrophoretic displays can be highly reflective. This provides an advantage in high-resolution displays, as a backlight is not required for good visibility. Also, a high-resolution display can be built on opaque substrates, which opens up a range of new materials for the deposition of thin film transistor arrays.
- Moreover, the encapsulated electrophoretic display is highly compatible with flexible substrates. This enables high-resolution TFT displays in which the transistors are deposited on flexible substrates like flexible glass, plastics, or metal foils. The flexible substrate used with any type of thin film transistor or other nonlinear element need not be a single sheet of glass, plastic, metal foil, though. Instead, it could be constructed of paper. Alternatively, it could be constructed of a woven material. Alternatively, it could be a composite or layered combination of these materials.
- As in liquid crystal displays, external logic or drive circuitry can be built on the same substrate as the thin film transistor switches.
- In another embodiment, the addressing electronic backplane could incorporate diodes as the nonlinear element, rather than transistors.
- In another embodiment, it is possible to form transistors on a silicon wafer, dice the transistors, and place them in a large area array to form a large, TFT-addressed display medium. One example of this concept is to form mechanical impressions in the receiving substrate, and then cover the substrate with a slurry or other form of the transistors. With agitation, the transistors will fall into the impressions, where they can be bonded and incorporated into the device circuitry. The receiving substrate could be glass, plastic, or other nonconductive material. In this way, the economy of creating transistors using standard processing methods can be used to create large-area displays without the need for large area silicon processing equipment.
- While the examples described here are listed using encapsulated electrophoretic displays, there are other particle-based display media which should also work as well, including encapsulated suspended particles and rotating ball displays.
- While the invention has been particularly shown and described with reference to specific preferred embodiments, it should be understood by those skilled in the art that various changes in form and detail may be made therein without departing from the spirit and scope of the invention as defined by the appended claims.
Claims (13)
1. A color reflective electronic display comprising at least two microcells each containing at least two particles and not having any suspending fluid, the microcells being disposed adjacent a color filter.
2. A display according to claim 1 in combination with at least one electrode.
3. A display according to claim 2 having a plurality of electrodes arranged to drive the display using a passive matrix addressing scheme.
4. A display according to claim 2 further comprising at least one thin film transistor arranged to control the potential of the at least one electrode.
5. A display according to claim 4 further comprising a flexible substrate on which the thin film transistor is disposed.
6. A display according to claim 1 wherein the at least two microcells are formed by photolithography.
7. A display according to claim 1 wherein the at least two microcells are formed by embossing a plastic substrate.
8. A color reflective electronic display comprising at least one pixel having a plurality of sub-pixels, wherein at least one of the sub-pixels is capable of displaying three colors.
9. A display according to claim 8 wherein said at least one sub-pixel comprises an electrophoretic medium comprising first and second types of electrically charged particles bearing charges of opposite polarity and differing in at least one optical characteristic.
10. A display according to claim 9 wherein said at least one sub-pixel has a viewing surface and is capable of being driven to a first optical state, in which the first type of particles are disposed adjacent the viewing surface and the second type of particles are disposed spaced from the viewing surface, a second optical state, in which the second type of particles are disposed adjacent the viewing surface and the first type of particles are disposed spaced from the viewing surface, and a third optical state in which both the first and second types of particles are disposed spaced from the viewing surface.
11. A display according to claim 10 wherein the first and second types of particles are disposed in a colored fluid, and the third optical state displays the color of the colored fluid.
12. A display according to claim 10 wherein said at least one sub-pixel further comprises a third type of particles, the third type of particles being substantially uncharged and differing from the first and second types of particles in at least one optical characteristic, and wherein the third optical state displays the optical characteristic of the third type of particles.
13. A display according to claim 10 wherein said at least one sub-pixel further comprises a colored member disposed on the opposed side of the sub-pixel from the viewing surface, and wherein the third optical state displays the optical characteristic of the colored member.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/603,964 US20120326957A1 (en) | 1998-04-10 | 2012-09-05 | Full color reflective display with multichromatic sub pixels |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US8136298P | 1998-04-10 | 1998-04-10 | |
US09/289,507 US7075502B1 (en) | 1998-04-10 | 1999-04-09 | Full color reflective display with multichromatic sub-pixels |
US10/827,745 US8466852B2 (en) | 1998-04-10 | 2004-04-20 | Full color reflective display with multichromatic sub-pixels |
US11/926,201 US20080048970A1 (en) | 1998-04-10 | 2007-10-29 | Full color reflective display with multichromatic sub-pixels |
US13/603,964 US20120326957A1 (en) | 1998-04-10 | 2012-09-05 | Full color reflective display with multichromatic sub pixels |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/926,201 Division US20080048970A1 (en) | 1998-04-10 | 2007-10-29 | Full color reflective display with multichromatic sub-pixels |
Publications (1)
Publication Number | Publication Date |
---|---|
US20120326957A1 true US20120326957A1 (en) | 2012-12-27 |
Family
ID=33543695
Family Applications (6)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/289,507 Expired - Fee Related US7075502B1 (en) | 1998-04-10 | 1999-04-09 | Full color reflective display with multichromatic sub-pixels |
US10/145,861 Expired - Lifetime US6864875B2 (en) | 1998-04-10 | 2002-05-13 | Full color reflective display with multichromatic sub-pixels |
US10/827,745 Expired - Fee Related US8466852B2 (en) | 1998-04-10 | 2004-04-20 | Full color reflective display with multichromatic sub-pixels |
US11/926,201 Abandoned US20080048970A1 (en) | 1998-04-10 | 2007-10-29 | Full color reflective display with multichromatic sub-pixels |
US13/603,964 Abandoned US20120326957A1 (en) | 1998-04-10 | 2012-09-05 | Full color reflective display with multichromatic sub pixels |
US13/919,574 Abandoned US20130278995A1 (en) | 1998-04-10 | 2013-06-17 | Full color reflective display with multichromatic sub-pixels |
Family Applications Before (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/289,507 Expired - Fee Related US7075502B1 (en) | 1998-04-10 | 1999-04-09 | Full color reflective display with multichromatic sub-pixels |
US10/145,861 Expired - Lifetime US6864875B2 (en) | 1998-04-10 | 2002-05-13 | Full color reflective display with multichromatic sub-pixels |
US10/827,745 Expired - Fee Related US8466852B2 (en) | 1998-04-10 | 2004-04-20 | Full color reflective display with multichromatic sub-pixels |
US11/926,201 Abandoned US20080048970A1 (en) | 1998-04-10 | 2007-10-29 | Full color reflective display with multichromatic sub-pixels |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/919,574 Abandoned US20130278995A1 (en) | 1998-04-10 | 2013-06-17 | Full color reflective display with multichromatic sub-pixels |
Country Status (1)
Country | Link |
---|---|
US (6) | US7075502B1 (en) |
Cited By (49)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9195111B2 (en) | 2013-02-11 | 2015-11-24 | E Ink Corporation | Patterned electro-optic displays and processes for the production thereof |
US9361836B1 (en) | 2013-12-20 | 2016-06-07 | E Ink Corporation | Aggregate particles for use in electrophoretic color displays |
WO2016115083A1 (en) * | 2015-01-12 | 2016-07-21 | Massachusetts Institute Of Technology | Transparent luminescent displays enabled by electric-field-induced quenching of photoluminescent pixels |
US9436056B2 (en) | 2013-02-06 | 2016-09-06 | E Ink Corporation | Color electro-optic displays |
WO2017062345A1 (en) | 2015-10-06 | 2017-04-13 | E Ink Corporation | Improved low-temperature electrophoretic media |
US9697778B2 (en) | 2013-05-14 | 2017-07-04 | E Ink Corporation | Reverse driving pulses in electrophoretic displays |
US9752034B2 (en) | 2015-11-11 | 2017-09-05 | E Ink Corporation | Functionalized quinacridone pigments |
US9761181B2 (en) | 2014-07-09 | 2017-09-12 | E Ink California, Llc | Color display device |
US9921451B2 (en) | 2014-09-10 | 2018-03-20 | E Ink Corporation | Colored electrophoretic displays |
US9922603B2 (en) | 2014-07-09 | 2018-03-20 | E Ink California, Llc | Color display device and driving methods therefor |
US10036931B2 (en) | 2014-01-14 | 2018-07-31 | E Ink California, Llc | Color display device |
US10040954B2 (en) | 2015-05-28 | 2018-08-07 | E Ink California, Llc | Electrophoretic medium comprising a mixture of charge control agents |
US10062337B2 (en) | 2015-10-12 | 2018-08-28 | E Ink California, Llc | Electrophoretic display device |
WO2018164942A1 (en) | 2017-03-06 | 2018-09-13 | E Ink Corporation | Method for rendering color images |
US10087344B2 (en) | 2015-10-30 | 2018-10-02 | E Ink Corporation | Methods for sealing microcell containers with phenethylamine mixtures |
US10175550B2 (en) | 2014-11-07 | 2019-01-08 | E Ink Corporation | Applications of electro-optic displays |
US10190743B2 (en) | 2012-04-20 | 2019-01-29 | E Ink Corporation | Illumination systems for reflective displays |
US10254619B2 (en) | 2013-05-17 | 2019-04-09 | E Ink California, Llc | Driving methods for color display devices |
US10254620B1 (en) | 2016-03-08 | 2019-04-09 | E Ink Corporation | Encapsulated photoelectrophoretic display |
US10270939B2 (en) | 2016-05-24 | 2019-04-23 | E Ink Corporation | Method for rendering color images |
US10276109B2 (en) | 2016-03-09 | 2019-04-30 | E Ink Corporation | Method for driving electro-optic displays |
US10353266B2 (en) | 2014-09-26 | 2019-07-16 | E Ink Corporation | Color sets for low resolution dithering in reflective color displays |
US10380955B2 (en) | 2014-07-09 | 2019-08-13 | E Ink California, Llc | Color display device and driving methods therefor |
US10444592B2 (en) | 2017-03-09 | 2019-10-15 | E Ink Corporation | Methods and systems for transforming RGB image data to a reduced color set for electro-optic displays |
US10573257B2 (en) | 2017-05-30 | 2020-02-25 | E Ink Corporation | Electro-optic displays |
US10593272B2 (en) | 2016-03-09 | 2020-03-17 | E Ink Corporation | Drivers providing DC-balanced refresh sequences for color electrophoretic displays |
US10657869B2 (en) | 2014-09-10 | 2020-05-19 | E Ink Corporation | Methods for driving color electrophoretic displays |
WO2020122917A1 (en) | 2018-12-13 | 2020-06-18 | E Ink Corporation | Illumination systems for reflective displays |
US10782586B2 (en) | 2017-01-20 | 2020-09-22 | E Ink California, Llc | Color organic pigments and electrophoretic display media containing the same |
US10891906B2 (en) | 2014-07-09 | 2021-01-12 | E Ink California, Llc | Color display device and driving methods therefor |
US11079651B2 (en) | 2017-12-15 | 2021-08-03 | E Ink Corporation | Multi-color electro-optic media |
US11087644B2 (en) | 2015-08-19 | 2021-08-10 | E Ink Corporation | Displays intended for use in architectural applications |
US11143929B2 (en) | 2018-03-09 | 2021-10-12 | E Ink Corporation | Reflective electrophoretic displays including photo-luminescent material and color filter arrays |
US11248122B2 (en) | 2017-12-30 | 2022-02-15 | E Ink Corporation | Pigments for electrophoretic displays |
US11266832B2 (en) | 2017-11-14 | 2022-03-08 | E Ink California, Llc | Electrophoretic active delivery system including porous conductive electrode layer |
US11287718B2 (en) | 2015-08-04 | 2022-03-29 | E Ink Corporation | Reusable display addressable with incident light |
US11422427B2 (en) | 2017-12-19 | 2022-08-23 | E Ink Corporation | Applications of electro-optic displays |
US11460722B2 (en) | 2019-05-10 | 2022-10-04 | E Ink Corporation | Colored electrophoretic displays |
US11467466B2 (en) | 2012-04-20 | 2022-10-11 | E Ink Corporation | Illumination systems for reflective displays |
WO2023043714A1 (en) | 2021-09-14 | 2023-03-23 | E Ink Corporation | Coordinated top electrode - drive electrode voltages for switching optical state of electrophoretic displays using positive and negative voltages of different magnitudes |
US11640803B2 (en) | 2021-09-06 | 2023-05-02 | E Ink California, Llc | Method for driving electrophoretic display device |
WO2023132958A1 (en) | 2022-01-04 | 2023-07-13 | E Ink Corporation | Electrophoretic media comprising electrophoretic particles and a combination of charge control agents |
WO2023211867A1 (en) | 2022-04-27 | 2023-11-02 | E Ink Corporation | Color displays configured to convert rgb image data for display on advanced color electronic paper |
US11869451B2 (en) | 2021-11-05 | 2024-01-09 | E Ink Corporation | Multi-primary display mask-based dithering with low blooming sensitivity |
US11868020B2 (en) | 2020-06-05 | 2024-01-09 | E Ink Corporation | Electrophoretic display device |
WO2024044119A1 (en) | 2022-08-25 | 2024-02-29 | E Ink Corporation | Transitional driving modes for impulse balancing when switching between global color mode and direct update mode for electrophoretic displays |
US11922893B2 (en) | 2021-12-22 | 2024-03-05 | E Ink Corporation | High voltage driving using top plane switching with zero voltage frames between driving frames |
US11938214B2 (en) | 2019-11-27 | 2024-03-26 | E Ink Corporation | Benefit agent delivery system comprising microcells having an electrically eroding sealing layer |
US12130530B2 (en) | 2022-04-25 | 2024-10-29 | E Ink Corporation | Applications of electro-optic displays |
Families Citing this family (535)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6866760B2 (en) * | 1998-08-27 | 2005-03-15 | E Ink Corporation | Electrophoretic medium and process for the production thereof |
US7411719B2 (en) | 1995-07-20 | 2008-08-12 | E Ink Corporation | Electrophoretic medium and process for the production thereof |
US7079305B2 (en) * | 2001-03-19 | 2006-07-18 | E Ink Corporation | Electrophoretic medium and process for the production thereof |
US7193625B2 (en) | 1999-04-30 | 2007-03-20 | E Ink Corporation | Methods for driving electro-optic displays, and apparatus for use therein |
US7583251B2 (en) | 1995-07-20 | 2009-09-01 | E Ink Corporation | Dielectrophoretic displays |
US7848006B2 (en) | 1995-07-20 | 2010-12-07 | E Ink Corporation | Electrophoretic displays with controlled amounts of pigment |
US8139050B2 (en) * | 1995-07-20 | 2012-03-20 | E Ink Corporation | Addressing schemes for electronic displays |
US7999787B2 (en) * | 1995-07-20 | 2011-08-16 | E Ink Corporation | Methods for driving electrophoretic displays using dielectrophoretic forces |
US7259744B2 (en) * | 1995-07-20 | 2007-08-21 | E Ink Corporation | Dielectrophoretic displays |
US7327511B2 (en) | 2004-03-23 | 2008-02-05 | E Ink Corporation | Light modulators |
US7002728B2 (en) * | 1997-08-28 | 2006-02-21 | E Ink Corporation | Electrophoretic particles, and processes for the production thereof |
US7247379B2 (en) * | 1997-08-28 | 2007-07-24 | E Ink Corporation | Electrophoretic particles, and processes for the production thereof |
US8040594B2 (en) | 1997-08-28 | 2011-10-18 | E Ink Corporation | Multi-color electrophoretic displays |
US7075502B1 (en) * | 1998-04-10 | 2006-07-11 | E Ink Corporation | Full color reflective display with multichromatic sub-pixels |
CA2336596A1 (en) | 1998-07-08 | 2000-01-20 | E Ink Corporation | Methods for achieving improved color in microencapsulated electrophoretic devices |
WO2000054101A1 (en) * | 1999-03-05 | 2000-09-14 | Seiko Epson Corporation | Electrophoresis display and its production method |
US6424998B2 (en) | 1999-04-28 | 2002-07-23 | World Theatre, Inc. | System permitting the display of video or still image content on selected displays of an electronic display network according to customer dictates |
US6430605B2 (en) * | 1999-04-28 | 2002-08-06 | World Theatre, Inc. | System permitting retail stores to place advertisements on roadside electronic billboard displays that tie into point of purchase displays at stores |
US6430603B2 (en) * | 1999-04-28 | 2002-08-06 | World Theatre, Inc. | System for direct placement of commercial advertising, public service announcements and other content on electronic billboard displays |
US7088335B2 (en) * | 1999-04-28 | 2006-08-08 | Novus Partners Llc | Methods and apparatus for ultra-violet stimulated displays |
US7012600B2 (en) * | 1999-04-30 | 2006-03-14 | E Ink Corporation | Methods for driving bistable electro-optic displays, and apparatus for use therein |
US7119772B2 (en) * | 1999-04-30 | 2006-10-10 | E Ink Corporation | Methods for driving bistable electro-optic displays, and apparatus for use therein |
US8115729B2 (en) | 1999-05-03 | 2012-02-14 | E Ink Corporation | Electrophoretic display element with filler particles |
US8009348B2 (en) * | 1999-05-03 | 2011-08-30 | E Ink Corporation | Machine-readable displays |
US7119759B2 (en) * | 1999-05-03 | 2006-10-10 | E Ink Corporation | Machine-readable displays |
US7715087B2 (en) * | 2000-03-03 | 2010-05-11 | Sipix Imaging, Inc. | Segment electrophoretic displays and methods for their manufacture |
US6825068B2 (en) * | 2000-04-18 | 2004-11-30 | E Ink Corporation | Process for fabricating thin film transistors |
US7893435B2 (en) * | 2000-04-18 | 2011-02-22 | E Ink Corporation | Flexible electronic circuits and displays including a backplane comprising a patterned metal foil having a plurality of apertures extending therethrough |
US20050289015A1 (en) * | 2000-05-17 | 2005-12-29 | Hunter Charles E | System and method permitting merchants to use electronic billboard displays to carry advertisements for products that can be purchased through a universal, automated order processing system |
US7283142B2 (en) * | 2000-07-28 | 2007-10-16 | Clairvoyante, Inc. | Color display having horizontal sub-pixel arrangements and layouts |
US6816147B2 (en) * | 2000-08-17 | 2004-11-09 | E Ink Corporation | Bistable electro-optic display, and method for addressing same |
JP3667257B2 (en) * | 2000-12-01 | 2005-07-06 | キヤノン株式会社 | Electrophoretic display device |
AU2002250304A1 (en) | 2001-03-13 | 2002-09-24 | E Ink Corporation | Apparatus for displaying drawings |
US7679814B2 (en) | 2001-04-02 | 2010-03-16 | E Ink Corporation | Materials for use in electrophoretic displays |
US8390918B2 (en) | 2001-04-02 | 2013-03-05 | E Ink Corporation | Electrophoretic displays with controlled amounts of pigment |
US20050156340A1 (en) * | 2004-01-20 | 2005-07-21 | E Ink Corporation | Preparation of capsules |
WO2002093246A1 (en) * | 2001-05-15 | 2002-11-21 | E Ink Corporation | Electrophoretic particles |
US8582196B2 (en) * | 2001-05-15 | 2013-11-12 | E Ink Corporation | Electrophoretic particles and processes for the production thereof |
US20090009852A1 (en) * | 2001-05-15 | 2009-01-08 | E Ink Corporation | Electrophoretic particles and processes for the production thereof |
US6680726B2 (en) * | 2001-05-18 | 2004-01-20 | International Business Machines Corporation | Transmissive electrophoretic display with stacked color cells |
US6727873B2 (en) * | 2001-05-18 | 2004-04-27 | International Business Machines Corporation | Reflective electrophoretic display with stacked color cells |
US7098869B2 (en) * | 2001-06-29 | 2006-08-29 | Novus Partners Llc | Business method for billboard advertising |
US7015875B2 (en) * | 2001-06-29 | 2006-03-21 | Novus Partners Llc | Dynamic device for billboard advertising |
US7088352B2 (en) * | 2002-06-19 | 2006-08-08 | Novus Partners Llc | Dynamic device and method for dispensing machines |
US7098870B2 (en) * | 2001-06-29 | 2006-08-29 | Novus Partners Llc | Advertising method for dynamic billboards |
US6982178B2 (en) | 2002-06-10 | 2006-01-03 | E Ink Corporation | Components and methods for use in electro-optic displays |
JP4348180B2 (en) * | 2001-07-09 | 2009-10-21 | イー インク コーポレイション | Electro-optic display with laminated adhesive layer |
US7535624B2 (en) | 2001-07-09 | 2009-05-19 | E Ink Corporation | Electro-optic display and materials for use therein |
US7110163B2 (en) * | 2001-07-09 | 2006-09-19 | E Ink Corporation | Electro-optic display and lamination adhesive for use therein |
WO2003007067A1 (en) * | 2001-07-09 | 2003-01-23 | E Ink Corporation | Electro-optic display and adhesive composition |
US6819471B2 (en) * | 2001-08-16 | 2004-11-16 | E Ink Corporation | Light modulation by frustration of total internal reflection |
EP1421438B1 (en) * | 2001-08-23 | 2006-05-03 | Koninklijke Philips Electronics N.V. | Electrophoretic display device |
JP3780885B2 (en) * | 2001-09-04 | 2006-05-31 | セイコーエプソン株式会社 | Reflective display device and electronic apparatus |
JP4027178B2 (en) * | 2001-09-12 | 2007-12-26 | キヤノン株式会社 | Electrophoretic display device |
US6825970B2 (en) * | 2001-09-14 | 2004-11-30 | E Ink Corporation | Methods for addressing electro-optic materials |
US9530363B2 (en) | 2001-11-20 | 2016-12-27 | E Ink Corporation | Methods and apparatus for driving electro-optic displays |
US7528822B2 (en) * | 2001-11-20 | 2009-05-05 | E Ink Corporation | Methods for driving electro-optic displays |
US7952557B2 (en) * | 2001-11-20 | 2011-05-31 | E Ink Corporation | Methods and apparatus for driving electro-optic displays |
US8558783B2 (en) | 2001-11-20 | 2013-10-15 | E Ink Corporation | Electro-optic displays with reduced remnant voltage |
US8125501B2 (en) | 2001-11-20 | 2012-02-28 | E Ink Corporation | Voltage modulated driver circuits for electro-optic displays |
US9412314B2 (en) | 2001-11-20 | 2016-08-09 | E Ink Corporation | Methods for driving electro-optic displays |
US8593396B2 (en) | 2001-11-20 | 2013-11-26 | E Ink Corporation | Methods and apparatus for driving electro-optic displays |
US20050259068A1 (en) * | 2001-12-10 | 2005-11-24 | Norio Nihei | Image display |
US7583279B2 (en) * | 2004-04-09 | 2009-09-01 | Samsung Electronics Co., Ltd. | Subpixel layouts and arrangements for high brightness displays |
US6950220B2 (en) * | 2002-03-18 | 2005-09-27 | E Ink Corporation | Electro-optic displays, and methods for driving same |
TWI223729B (en) * | 2002-04-23 | 2004-11-11 | Sipix Imaging Inc | Improved segment electrophoretic displays and methods for their manufacture |
US7190008B2 (en) | 2002-04-24 | 2007-03-13 | E Ink Corporation | Electro-optic displays, and components for use therein |
US7223672B2 (en) | 2002-04-24 | 2007-05-29 | E Ink Corporation | Processes for forming backplanes for electro-optic displays |
US20030214475A1 (en) * | 2002-05-17 | 2003-11-20 | Sharp Kabushiki Kaisha | Display medium |
US6958848B2 (en) * | 2002-05-23 | 2005-10-25 | E Ink Corporation | Capsules, materials for use therein and electrophoretic media and displays containing such capsules |
US8049947B2 (en) | 2002-06-10 | 2011-11-01 | E Ink Corporation | Components and methods for use in electro-optic displays |
US7843621B2 (en) | 2002-06-10 | 2010-11-30 | E Ink Corporation | Components and testing methods for use in the production of electro-optic displays |
US7649674B2 (en) | 2002-06-10 | 2010-01-19 | E Ink Corporation | Electro-optic display with edge seal |
US7110164B2 (en) * | 2002-06-10 | 2006-09-19 | E Ink Corporation | Electro-optic displays, and processes for the production thereof |
US8363299B2 (en) | 2002-06-10 | 2013-01-29 | E Ink Corporation | Electro-optic displays, and processes for the production thereof |
US9470950B2 (en) | 2002-06-10 | 2016-10-18 | E Ink Corporation | Electro-optic displays, and processes for the production thereof |
US20080024482A1 (en) | 2002-06-13 | 2008-01-31 | E Ink Corporation | Methods for driving electro-optic displays |
CN104238227B (en) | 2002-06-13 | 2019-03-22 | 伊英克公司 | Method for addressing bistable electro-optical medium |
US20110199671A1 (en) * | 2002-06-13 | 2011-08-18 | E Ink Corporation | Methods for driving electrophoretic displays using dielectrophoretic forces |
AU2003245575A1 (en) * | 2002-06-19 | 2004-01-06 | University Of Rochester | Oligonucleotide directed misfolding of rna |
AU2003257197A1 (en) * | 2002-08-06 | 2004-03-03 | E Ink Corporation | Protection of electro-optic displays against thermal effects |
US7312916B2 (en) * | 2002-08-07 | 2007-12-25 | E Ink Corporation | Electrophoretic media containing specularly reflective particles |
US7071895B2 (en) * | 2002-08-22 | 2006-07-04 | Novus Communication Technologies, Inc. | Pseudo bit-depth system for dynamic billboards |
WO2004023202A1 (en) * | 2002-09-03 | 2004-03-18 | E Ink Corporation | Electrophoretic medium with gaseous suspending fluid |
US7839564B2 (en) | 2002-09-03 | 2010-11-23 | E Ink Corporation | Components and methods for use in electro-optic displays |
AU2003265922A1 (en) | 2002-09-03 | 2004-03-29 | E Ink Corporation | Electro-optic displays |
US7166182B2 (en) * | 2002-09-04 | 2007-01-23 | Sipix Imaging, Inc. | Adhesive and sealing layers for electrophoretic displays |
TW575646B (en) * | 2002-09-04 | 2004-02-11 | Sipix Imaging Inc | Novel adhesive and sealing layers for electrophoretic displays |
US7616374B2 (en) * | 2002-09-23 | 2009-11-10 | Sipix Imaging, Inc. | Electrophoretic displays with improved high temperature performance |
US20130063333A1 (en) | 2002-10-16 | 2013-03-14 | E Ink Corporation | Electrophoretic displays |
JP3796499B2 (en) * | 2002-11-06 | 2006-07-12 | キヤノン株式会社 | Color display element, color display element driving method, and color display device |
US7365733B2 (en) * | 2002-12-16 | 2008-04-29 | E Ink Corporation | Backplanes for electro-optic displays |
JP4696439B2 (en) * | 2002-12-17 | 2011-06-08 | 富士ゼロックス株式会社 | Image display device |
US6922276B2 (en) * | 2002-12-23 | 2005-07-26 | E Ink Corporation | Flexible electro-optic displays |
DE10302605B4 (en) * | 2003-01-23 | 2006-05-24 | Humboldt-Universität Zu Berlin | Arrangement and method for diffracting light waves on a diffraction structure |
US7572491B2 (en) * | 2003-01-24 | 2009-08-11 | Sipix Imaging, Inc. | Adhesive and sealing layers for electrophoretic displays |
US9346987B2 (en) * | 2003-01-24 | 2016-05-24 | E Ink California, Llc | Adhesive and sealing layers for electrophoretic displays |
TWI230832B (en) * | 2003-01-24 | 2005-04-11 | Sipix Imaging Inc | Novel adhesive and sealing layers for electrophoretic displays |
US6987603B2 (en) * | 2003-01-31 | 2006-01-17 | E Ink Corporation | Construction of electrophoretic displays |
US20040174335A1 (en) * | 2003-03-03 | 2004-09-09 | Lee Wang | Driver control scheme for electronic-ink display |
JP2004271610A (en) * | 2003-03-05 | 2004-09-30 | Canon Inc | Color electrophoresis display device |
US7910175B2 (en) | 2003-03-25 | 2011-03-22 | E Ink Corporation | Processes for the production of electrophoretic displays |
US7339715B2 (en) * | 2003-03-25 | 2008-03-04 | E Ink Corporation | Processes for the production of electrophoretic displays |
DE602004029661D1 (en) * | 2003-03-27 | 2010-12-02 | E Ink Corp | ELECTROOPTICAL MODULES |
US10726798B2 (en) | 2003-03-31 | 2020-07-28 | E Ink Corporation | Methods for operating electro-optic displays |
US20060209009A1 (en) * | 2003-04-03 | 2006-09-21 | Koninklijke Philips Electronics N.V. | Color electrophoretic display |
JP2006525539A (en) | 2003-05-02 | 2006-11-09 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | Active matrix OLED display with threshold voltage drift compensation |
EP1623405B1 (en) * | 2003-05-02 | 2015-07-29 | E Ink Corporation | Electrophoretic displays |
EP1629315B1 (en) * | 2003-05-22 | 2017-09-06 | Amazon Europe Holding Technologies SCS | Display device |
JP5904690B2 (en) | 2003-06-30 | 2016-04-20 | イー インク コーポレイション | Method for driving an electro-optic display |
US8174490B2 (en) | 2003-06-30 | 2012-05-08 | E Ink Corporation | Methods for driving electrophoretic displays |
US20050012707A1 (en) * | 2003-07-15 | 2005-01-20 | Hong-Da Liu | Electrophoretic display and a method of driving said display |
US20050012708A1 (en) * | 2003-07-15 | 2005-01-20 | Hong-Da Liu | Electrophoretic display and a method of driving said display |
US20050122563A1 (en) | 2003-07-24 | 2005-06-09 | E Ink Corporation | Electro-optic displays |
JP4806634B2 (en) * | 2003-08-19 | 2011-11-02 | イー インク コーポレイション | Electro-optic display and method for operating an electro-optic display |
EP1665214A4 (en) * | 2003-09-19 | 2008-03-19 | E Ink Corp | Methods for reducing edge effects in electro-optic displays |
US7616227B2 (en) * | 2003-10-02 | 2009-11-10 | Real D | Hardware based interdigitation |
US7616228B2 (en) * | 2003-10-02 | 2009-11-10 | Real D | Hardware based interdigitation |
CN101930118B (en) * | 2003-10-08 | 2013-05-29 | 伊英克公司 | Electro-wetting displays |
US8319759B2 (en) | 2003-10-08 | 2012-11-27 | E Ink Corporation | Electrowetting displays |
US7598961B2 (en) | 2003-10-21 | 2009-10-06 | Samsung Electronics Co., Ltd. | method and apparatus for converting from a source color space to a target color space |
US6980219B2 (en) | 2003-10-21 | 2005-12-27 | Clairvoyante, Inc | Hue angle calculation system and methods |
US7176935B2 (en) * | 2003-10-21 | 2007-02-13 | Clairvoyante, Inc. | Gamut conversion system and methods |
WO2005040908A1 (en) * | 2003-10-23 | 2005-05-06 | Koninklijke Philips Electronics N.V. | A fast full color electrophoretic display with improved driving |
US7551346B2 (en) * | 2003-11-05 | 2009-06-23 | E Ink Corporation | Electro-optic displays, and materials for use therein |
US20110164301A1 (en) | 2003-11-05 | 2011-07-07 | E Ink Corporation | Electro-optic displays, and materials for use therein |
US7672040B2 (en) | 2003-11-05 | 2010-03-02 | E Ink Corporation | Electro-optic displays, and materials for use therein |
US8177942B2 (en) | 2003-11-05 | 2012-05-15 | E Ink Corporation | Electro-optic displays, and materials for use therein |
CN101142510B (en) * | 2003-11-05 | 2010-04-14 | 伊英克公司 | Electro-optic displays |
US8928562B2 (en) | 2003-11-25 | 2015-01-06 | E Ink Corporation | Electro-optic displays, and methods for driving same |
WO2005054933A2 (en) | 2003-11-26 | 2005-06-16 | E Ink Corporation | Electro-optic displays with reduced remnant voltage |
US7206119B2 (en) * | 2003-12-31 | 2007-04-17 | E Ink Corporation | Electro-optic displays, and method for driving same |
US7075703B2 (en) * | 2004-01-16 | 2006-07-11 | E Ink Corporation | Process for sealing electro-optic displays |
ATE378620T1 (en) * | 2004-02-06 | 2007-11-15 | Koninkl Philips Electronics Nv | ELECTROPHORETIC DISPLAY BOARD |
US7388572B2 (en) * | 2004-02-27 | 2008-06-17 | E Ink Corporation | Backplanes for electro-optic displays |
JP2005266613A (en) * | 2004-03-19 | 2005-09-29 | Canon Inc | Particle movement type display device |
JP2007530996A (en) * | 2004-03-23 | 2007-11-01 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | Electrophoretic display panel |
US7492339B2 (en) * | 2004-03-26 | 2009-02-17 | E Ink Corporation | Methods for driving bistable electro-optic displays |
US20050227063A1 (en) * | 2004-03-26 | 2005-10-13 | Solaris Nanosciences, Inc. | Plasmon nanoparticles and pixels, displays and inks using them |
US8289250B2 (en) | 2004-03-31 | 2012-10-16 | E Ink Corporation | Methods for driving electro-optic displays |
US7301543B2 (en) | 2004-04-09 | 2007-11-27 | Clairvoyante, Inc. | Systems and methods for selecting a white point for image displays |
KR20070029686A (en) * | 2004-04-14 | 2007-03-14 | 코닌클리케 필립스 일렉트로닉스 엔.브이. | Electrophoretic display panel having rotatable particles |
US20050253777A1 (en) * | 2004-05-12 | 2005-11-17 | E Ink Corporation | Tiled displays and methods for driving same |
JP2008501134A (en) * | 2004-05-28 | 2008-01-17 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | Electrophoresis display panel |
KR20070041714A (en) * | 2004-07-09 | 2007-04-19 | 코닌클리케 필립스 일렉트로닉스 엔.브이. | Light modulator |
WO2006015044A1 (en) * | 2004-07-27 | 2006-02-09 | E Ink Corporation | Electro-optic displays |
US11250794B2 (en) | 2004-07-27 | 2022-02-15 | E Ink Corporation | Methods for driving electrophoretic displays using dielectrophoretic forces |
US20080136774A1 (en) | 2004-07-27 | 2008-06-12 | E Ink Corporation | Methods for driving electrophoretic displays using dielectrophoretic forces |
CN101002247A (en) * | 2004-08-10 | 2007-07-18 | 皇家飞利浦电子股份有限公司 | Electrophoretic color display panel |
US20060050068A1 (en) * | 2004-08-25 | 2006-03-09 | Pitney Bowes Incorporated | Apparatus for producing three-dimensional static or dynamic images |
KR100619710B1 (en) * | 2004-12-27 | 2006-09-08 | 엘지전자 주식회사 | E-paper panel with enhanced electrode |
CA2592055A1 (en) | 2004-12-27 | 2006-07-06 | Quantum Paper, Inc. | Addressable and printable emissive display |
US7865734B2 (en) * | 2005-05-12 | 2011-01-04 | The Invention Science Fund I, Llc | Write accessibility for electronic paper |
US8063878B2 (en) * | 2005-01-20 | 2011-11-22 | The Invention Science Fund I, Llc | Permanent electronic paper |
US8640259B2 (en) * | 2005-01-20 | 2014-01-28 | The Invention Science Fund I, Llc | Notarizable electronic paper |
US7739510B2 (en) * | 2005-05-12 | 2010-06-15 | The Invention Science Fund I, Inc | Alert options for electronic-paper verification |
US7856555B2 (en) * | 2005-01-20 | 2010-12-21 | The Invention Science Fund I, Llc | Write accessibility for electronic paper |
US8281142B2 (en) * | 2005-01-20 | 2012-10-02 | The Invention Science Fund I, Llc | Notarizable electronic paper |
US7774606B2 (en) * | 2005-01-20 | 2010-08-10 | The Invention Science Fund I, Inc | Write accessibility for electronic paper |
US7643005B2 (en) * | 2005-01-20 | 2010-01-05 | Searete, Llc | Semi-permanent electronic paper |
US7669245B2 (en) * | 2005-06-08 | 2010-02-23 | Searete, Llc | User accessibility to electronic paper |
WO2006081305A2 (en) * | 2005-01-26 | 2006-08-03 | E Ink Corporation | Electrophoretic displays using gaseous fluids |
KR101143002B1 (en) * | 2005-04-11 | 2012-05-08 | 삼성전자주식회사 | Electrophoretic display |
US7532290B2 (en) * | 2005-05-18 | 2009-05-12 | Industrial Technology Research Institute | Barrier layers for coating conductive polymers on liquid crystals |
US7978397B2 (en) * | 2005-05-25 | 2011-07-12 | Bridgestone Corporation | Information display panel and method for manufacturing the same |
WO2007002452A2 (en) | 2005-06-23 | 2007-01-04 | E Ink Corporation | Edge seals and processes for electro-optic displays |
JP2008545158A (en) * | 2005-07-07 | 2008-12-11 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | Light modulator |
US7532181B2 (en) * | 2005-07-20 | 2009-05-12 | Eastman Kodak Company | Visible and invisible image display |
EP2711770B1 (en) | 2005-10-18 | 2016-02-24 | E Ink Corporation | Electro-optic displays |
US20080043318A1 (en) | 2005-10-18 | 2008-02-21 | E Ink Corporation | Color electro-optic displays, and processes for the production thereof |
US20070091417A1 (en) * | 2005-10-25 | 2007-04-26 | E Ink Corporation | Electrophoretic media and displays with improved binder |
JP5050343B2 (en) * | 2005-12-06 | 2012-10-17 | 富士ゼロックス株式会社 | Display medium, display element, and display method |
EP1966647A2 (en) * | 2005-12-20 | 2008-09-10 | Koninklijke Philips Electronics N.V. | Improved in-plane switching electrophoretic display |
US8390301B2 (en) | 2006-03-08 | 2013-03-05 | E Ink Corporation | Electro-optic displays, and materials and methods for production thereof |
US7843624B2 (en) | 2006-03-08 | 2010-11-30 | E Ink Corporation | Electro-optic displays, and materials and methods for production thereof |
US7733554B2 (en) | 2006-03-08 | 2010-06-08 | E Ink Corporation | Electro-optic displays, and materials and methods for production thereof |
US8610988B2 (en) | 2006-03-09 | 2013-12-17 | E Ink Corporation | Electro-optic display with edge seal |
US7952790B2 (en) | 2006-03-22 | 2011-05-31 | E Ink Corporation | Electro-optic media produced using ink jet printing |
US7298543B1 (en) | 2006-05-19 | 2007-11-20 | Xerox Corporation | Electrophoretic display and method of displaying images |
US7280266B1 (en) | 2006-05-19 | 2007-10-09 | Xerox Corporation | Electrophoretic display medium and device |
US7417787B2 (en) * | 2006-05-19 | 2008-08-26 | Xerox Corporation | Electrophoretic display device |
US7345810B2 (en) * | 2006-05-19 | 2008-03-18 | Xerox Corporation | Electrophoretic display and method of displaying images |
US7403325B2 (en) | 2006-05-19 | 2008-07-22 | Xerox Corporation | Electrophoretic display device |
US7652656B2 (en) * | 2006-05-19 | 2010-01-26 | Xerox Corporation | Electrophoretic display and method of displaying images |
US7433113B2 (en) * | 2006-05-19 | 2008-10-07 | Xerox Corporation | Electrophoretic display medium and device |
US7382521B2 (en) | 2006-05-19 | 2008-06-03 | Xerox Corporation | Electrophoretic display device |
US7502161B2 (en) | 2006-05-19 | 2009-03-10 | Xerox Corporation | Electrophoretic display medium and device |
US7440159B2 (en) | 2006-05-19 | 2008-10-21 | Xerox Corporation | Electrophoretic display and method of displaying images |
US7492504B2 (en) * | 2006-05-19 | 2009-02-17 | Xerox Corporation | Electrophoretic display medium and device |
US7430073B2 (en) | 2006-05-19 | 2008-09-30 | Xerox Corporation | Electrophoretic display device and method of displaying image |
US7426074B2 (en) * | 2006-05-19 | 2008-09-16 | Xerox Corporation | Electrophoretic display medium and display device |
US7344750B2 (en) | 2006-05-19 | 2008-03-18 | Xerox Corporation | Electrophoretic display device |
US7443570B2 (en) | 2006-05-19 | 2008-10-28 | Xerox Corporation | Electrophoretic display medium and device |
KR101191451B1 (en) * | 2006-06-09 | 2012-10-18 | 엘지디스플레이 주식회사 | LCD and drive method thereof |
US7349147B2 (en) * | 2006-06-23 | 2008-03-25 | Xerox Corporation | Electrophoretic display medium containing solvent resistant emulsion aggregation particles |
US7903319B2 (en) | 2006-07-11 | 2011-03-08 | E Ink Corporation | Electrophoretic medium and display with improved image stability |
US8018640B2 (en) | 2006-07-13 | 2011-09-13 | E Ink Corporation | Particles for use in electrophoretic displays |
US20080024429A1 (en) * | 2006-07-25 | 2008-01-31 | E Ink Corporation | Electrophoretic displays using gaseous fluids |
US7492497B2 (en) * | 2006-08-02 | 2009-02-17 | E Ink Corporation | Multi-layer light modulator |
US7675502B2 (en) * | 2006-08-30 | 2010-03-09 | Xerox Corporation | Color electrophoretic display device |
TWI442086B (en) * | 2006-08-31 | 2014-06-21 | Liquavista Bv | Electronic device comprising an array of cells and method for operating the same |
WO2008036519A2 (en) | 2006-09-18 | 2008-03-27 | E Ink Corporation | Color electro-optic displays |
US7477444B2 (en) * | 2006-09-22 | 2009-01-13 | E Ink Corporation & Air Products And Chemical, Inc. | Electro-optic display and materials for use therein |
US7986450B2 (en) | 2006-09-22 | 2011-07-26 | E Ink Corporation | Electro-optic display and materials for use therein |
TW200835995A (en) * | 2006-10-10 | 2008-09-01 | Cbrite Inc | Electro-optic display |
WO2008065603A1 (en) * | 2006-11-30 | 2008-06-05 | Koninklijke Philips Electronics N.V. | Drive method for an electrophoretic cell and an electrophoretic device |
US7649666B2 (en) | 2006-12-07 | 2010-01-19 | E Ink Corporation | Components and methods for use in electro-optic displays |
WO2008080066A1 (en) | 2006-12-22 | 2008-07-03 | Cbrite Inc. | Hemispherical coating method for micro-elements |
US20100035377A1 (en) * | 2006-12-22 | 2010-02-11 | Cbrite Inc. | Transfer Coating Method |
EP2111562B1 (en) | 2007-01-22 | 2018-09-19 | E Ink Corporation | Multi-layer sheet for use in electro-optic displays |
US7688497B2 (en) | 2007-01-22 | 2010-03-30 | E Ink Corporation | Multi-layer sheet for use in electro-optic displays |
US7826129B2 (en) | 2007-03-06 | 2010-11-02 | E Ink Corporation | Materials for use in electrophoretic displays |
KR101360124B1 (en) * | 2007-05-02 | 2014-02-07 | 삼성디스플레이 주식회사 | Display apparatus having pixel improved brightness and contrast ratio |
EP2150881A4 (en) | 2007-05-21 | 2010-09-22 | E Ink Corp | Methods for driving video electro-optic displays |
KR101393630B1 (en) * | 2007-05-21 | 2014-05-09 | 삼성디스플레이 주식회사 | Display device |
US8510155B2 (en) * | 2007-05-30 | 2013-08-13 | Cdmdata, Llc | Wireless electronic vehicle window display system |
US8846457B2 (en) | 2007-05-31 | 2014-09-30 | Nthdegree Technologies Worldwide Inc | Printable composition of a liquid or gel suspension of diodes |
US8877101B2 (en) | 2007-05-31 | 2014-11-04 | Nthdegree Technologies Worldwide Inc | Method of manufacturing a light emitting, power generating or other electronic apparatus |
US8809126B2 (en) | 2007-05-31 | 2014-08-19 | Nthdegree Technologies Worldwide Inc | Printable composition of a liquid or gel suspension of diodes |
US7972031B2 (en) * | 2007-05-31 | 2011-07-05 | Nthdegree Technologies Worldwide Inc | Addressable or static light emitting or electronic apparatus |
US9018833B2 (en) | 2007-05-31 | 2015-04-28 | Nthdegree Technologies Worldwide Inc | Apparatus with light emitting or absorbing diodes |
US8674593B2 (en) | 2007-05-31 | 2014-03-18 | Nthdegree Technologies Worldwide Inc | Diode for a printable composition |
US8456393B2 (en) * | 2007-05-31 | 2013-06-04 | Nthdegree Technologies Worldwide Inc | Method of manufacturing a light emitting, photovoltaic or other electronic apparatus and system |
US9534772B2 (en) | 2007-05-31 | 2017-01-03 | Nthdegree Technologies Worldwide Inc | Apparatus with light emitting diodes |
US9419179B2 (en) | 2007-05-31 | 2016-08-16 | Nthdegree Technologies Worldwide Inc | Diode for a printable composition |
US8852467B2 (en) | 2007-05-31 | 2014-10-07 | Nthdegree Technologies Worldwide Inc | Method of manufacturing a printable composition of a liquid or gel suspension of diodes |
US9343593B2 (en) | 2007-05-31 | 2016-05-17 | Nthdegree Technologies Worldwide Inc | Printable composition of a liquid or gel suspension of diodes |
WO2008150965A2 (en) * | 2007-05-31 | 2008-12-11 | Nthdegree Technologies Worldwide Inc. | Method of manufacturing addressable and static electronic displays, power generating or other electronic apparatus |
US8889216B2 (en) * | 2007-05-31 | 2014-11-18 | Nthdegree Technologies Worldwide Inc | Method of manufacturing addressable and static electronic displays |
US8415879B2 (en) | 2007-05-31 | 2013-04-09 | Nthdegree Technologies Worldwide Inc | Diode for a printable composition |
US8133768B2 (en) * | 2007-05-31 | 2012-03-13 | Nthdegree Technologies Worldwide Inc | Method of manufacturing a light emitting, photovoltaic or other electronic apparatus and system |
US9425357B2 (en) | 2007-05-31 | 2016-08-23 | Nthdegree Technologies Worldwide Inc. | Diode for a printable composition |
US8416197B2 (en) * | 2007-06-15 | 2013-04-09 | Ricoh Co., Ltd | Pen tracking and low latency display updates on electronic paper displays |
US8203547B2 (en) * | 2007-06-15 | 2012-06-19 | Ricoh Co. Ltd | Video playback on electronic paper displays |
US8355018B2 (en) * | 2007-06-15 | 2013-01-15 | Ricoh Co., Ltd. | Independent pixel waveforms for updating electronic paper displays |
US8279232B2 (en) | 2007-06-15 | 2012-10-02 | Ricoh Co., Ltd. | Full framebuffer for electronic paper displays |
US8913000B2 (en) * | 2007-06-15 | 2014-12-16 | Ricoh Co., Ltd. | Video playback on electronic paper displays |
US8319766B2 (en) * | 2007-06-15 | 2012-11-27 | Ricoh Co., Ltd. | Spatially masked update for electronic paper displays |
US9199441B2 (en) | 2007-06-28 | 2015-12-01 | E Ink Corporation | Processes for the production of electro-optic displays, and color filters for use therein |
WO2009006248A1 (en) | 2007-06-29 | 2009-01-08 | E Ink Corporation | Electro-optic displays, and materials and methods for production thereof |
US8902153B2 (en) | 2007-08-03 | 2014-12-02 | E Ink Corporation | Electro-optic displays, and processes for their production |
TWI377880B (en) * | 2007-08-20 | 2012-11-21 | Ind Tech Res Inst | Fabrication methods for flexible electronic devices |
US20090122389A1 (en) | 2007-11-14 | 2009-05-14 | E Ink Corporation | Electro-optic assemblies, and adhesives and binders for use therein |
TWI368808B (en) * | 2007-11-23 | 2012-07-21 | Chunghwa Picture Tubes Ltd | Display |
JP2009211047A (en) * | 2008-02-05 | 2009-09-17 | Sony Corp | Liquid optical element |
WO2009105385A1 (en) * | 2008-02-21 | 2009-08-27 | Sipix Imaging, Inc. | Color display devices |
WO2009108187A1 (en) * | 2008-02-26 | 2009-09-03 | Hewlett-Packard Development Company, L.P. | Electrophoretic display device |
US8054526B2 (en) | 2008-03-21 | 2011-11-08 | E Ink Corporation | Electro-optic displays, and color filters for use therein |
KR101440456B1 (en) * | 2008-03-31 | 2014-09-18 | 삼성디스플레이 주식회사 | Display apparatus and method of manufacturing the same |
US8422116B2 (en) | 2008-04-03 | 2013-04-16 | Sipix Imaging, Inc. | Color display devices |
JP5904791B2 (en) | 2008-04-11 | 2016-04-20 | イー インク コーポレイション | Method for driving an electro-optic display |
JP2011520137A (en) | 2008-04-14 | 2011-07-14 | イー インク コーポレイション | Method for driving an electro-optic display |
DE102008020130A1 (en) | 2008-04-22 | 2009-10-29 | Advanced Display Technology Ag | Fluidic multicolor display |
US8072675B2 (en) * | 2008-05-01 | 2011-12-06 | Sipix Imaging, Inc. | Color display devices |
US8127477B2 (en) | 2008-05-13 | 2012-03-06 | Nthdegree Technologies Worldwide Inc | Illuminating display systems |
US7992332B2 (en) | 2008-05-13 | 2011-08-09 | Nthdegree Technologies Worldwide Inc. | Apparatuses for providing power for illumination of a display object |
KR101508588B1 (en) * | 2008-06-13 | 2015-04-03 | 삼성전자주식회사 | Electro-phoresis device |
US20090313121A1 (en) * | 2008-06-13 | 2009-12-17 | Cdmdata Inc. | System and method for marketing vehicles residing on a dealership lot |
JP5286973B2 (en) * | 2008-06-26 | 2013-09-11 | セイコーエプソン株式会社 | Electrophoretic display device, driving method thereof, and electronic apparatus |
JP5310145B2 (en) * | 2008-08-20 | 2013-10-09 | 株式会社リコー | Electrophoretic liquid and display element using the same |
CN102138094B (en) * | 2008-09-02 | 2015-07-29 | 希毕克斯影像有限公司 | Color display apparatus |
US20100090943A1 (en) * | 2008-10-14 | 2010-04-15 | Fricke Peter J | Electrophoretic Display Apparatus and Method |
KR101581002B1 (en) * | 2008-10-15 | 2015-12-29 | 삼성전자주식회사 | Reflective display panel and device |
US8068271B2 (en) * | 2008-10-22 | 2011-11-29 | Cospheric Llc | Rotating element transmissive displays |
US8503063B2 (en) * | 2008-12-30 | 2013-08-06 | Sipix Imaging, Inc. | Multicolor display architecture using enhanced dark state |
US8797258B2 (en) * | 2008-12-30 | 2014-08-05 | Sipix Imaging, Inc. | Highlight color display architecture using enhanced dark state |
US20100177750A1 (en) * | 2009-01-13 | 2010-07-15 | Metrologic Instruments, Inc. | Wireless Diplay sensor communication network |
US8457013B2 (en) | 2009-01-13 | 2013-06-04 | Metrologic Instruments, Inc. | Wireless dual-function network device dynamically switching and reconfiguring from a wireless network router state of operation into a wireless network coordinator state of operation in a wireless communication network |
US20100177080A1 (en) * | 2009-01-13 | 2010-07-15 | Metrologic Instruments, Inc. | Electronic-ink signage device employing thermal packaging for outdoor weather applications |
US20100177076A1 (en) * | 2009-01-13 | 2010-07-15 | Metrologic Instruments, Inc. | Edge-lit electronic-ink display device for use in indoor and outdoor environments |
US8234507B2 (en) | 2009-01-13 | 2012-07-31 | Metrologic Instruments, Inc. | Electronic-ink display device employing a power switching mechanism automatically responsive to predefined states of device configuration |
JP5388028B2 (en) * | 2009-01-13 | 2014-01-15 | 株式会社リコー | Image display medium and image display device |
US8717664B2 (en) | 2012-10-02 | 2014-05-06 | Sipix Imaging, Inc. | Color display device |
US8964282B2 (en) * | 2012-10-02 | 2015-02-24 | E Ink California, Llc | Color display device |
US9251736B2 (en) | 2009-01-30 | 2016-02-02 | E Ink California, Llc | Multiple voltage level driving for electrophoretic displays |
TWI484273B (en) | 2009-02-09 | 2015-05-11 | E Ink Corp | Electrophoretic particles |
US8098418B2 (en) | 2009-03-03 | 2012-01-17 | E. Ink Corporation | Electro-optic displays, and color filters for use therein |
TWI424241B (en) * | 2009-04-07 | 2014-01-21 | Chunghwa Picture Tubes Ltd | Method of displaying colors for pixel driving structure of displaying three colors of particle display |
US8049954B2 (en) * | 2009-06-05 | 2011-11-01 | Cospheric Llc | Color rotating element displays |
GB2472091B (en) * | 2009-07-24 | 2013-09-25 | James Beckett | A Greetings Card |
JP5469957B2 (en) * | 2009-08-20 | 2014-04-16 | セイコーエプソン株式会社 | Evaluation method, display sheet manufacturing method, and display sheet manufacturing apparatus |
JP4930561B2 (en) * | 2009-09-07 | 2012-05-16 | カシオ計算機株式会社 | Electrophoretic display panel |
CN102023452B (en) * | 2009-09-23 | 2015-04-22 | 淮南恒天生物科技有限公司 | Electronic paper device |
CN102687103B (en) | 2009-10-28 | 2016-04-20 | 伊英克公司 | There is the electro-optic displays of touch sensor |
US8654436B1 (en) | 2009-10-30 | 2014-02-18 | E Ink Corporation | Particles for use in electrophoretic displays |
CN101738814B (en) * | 2009-11-11 | 2013-09-18 | 广州奥翼电子科技有限公司 | Electrophoresis disclosing solution and preparation method thereof |
WO2011097228A2 (en) | 2010-02-02 | 2011-08-11 | E Ink Corporation | Method for driving electro-optic displays |
GB2478287A (en) | 2010-03-01 | 2011-09-07 | Merck Patent Gmbh | Electro-optical switching element and electro-optical display |
US20140078576A1 (en) * | 2010-03-02 | 2014-03-20 | Sipix Imaging, Inc. | Electrophoretic display device |
US20110217639A1 (en) * | 2010-03-02 | 2011-09-08 | Sprague Robert A | Electrophoretic display fluid |
KR101485234B1 (en) | 2010-04-02 | 2015-01-22 | 이 잉크 코포레이션 | Electrophoretic media |
KR101220196B1 (en) * | 2010-04-06 | 2013-01-16 | 주식회사 이미지앤머터리얼스 | Multi-color electrophoretic display device, image sheet and method of fabricating the same |
CN102834857B (en) | 2010-04-09 | 2016-03-02 | 伊英克公司 | Method for driving electro-optic display |
JP2011237771A (en) * | 2010-04-12 | 2011-11-24 | Seiko Epson Corp | Electrophoresis display device and electronic equipment |
JP2011237770A (en) | 2010-04-12 | 2011-11-24 | Seiko Epson Corp | Electrophoresis display device, driving method of the same and electronic equipment |
US9140952B2 (en) | 2010-04-22 | 2015-09-22 | E Ink California, Llc | Electrophoretic display with enhanced contrast |
JP5516017B2 (en) * | 2010-04-23 | 2014-06-11 | セイコーエプソン株式会社 | Electrophoretic display device driving method, electrophoretic display device, and electronic apparatus |
WO2011139278A1 (en) * | 2010-05-06 | 2011-11-10 | Hewlett-Packard Development Company, L.P. | Reflective displays, sub-pixels for reflective displays and methods to control reflective displays |
TWI444740B (en) * | 2010-05-18 | 2014-07-11 | Innolux Corp | System for displaying images |
TWI484275B (en) | 2010-05-21 | 2015-05-11 | E Ink Corp | Electro-optic display, method for driving the same and microcavity electrophoretic display |
US9116412B2 (en) | 2010-05-26 | 2015-08-25 | E Ink California, Llc | Color display architecture and driving methods |
US8704756B2 (en) | 2010-05-26 | 2014-04-22 | Sipix Imaging, Inc. | Color display architecture and driving methods |
US8576470B2 (en) | 2010-06-02 | 2013-11-05 | E Ink Corporation | Electro-optic displays, and color alters for use therein |
US8769836B2 (en) | 2010-06-22 | 2014-07-08 | Nike, Inc. | Article of footwear with color change portion and method of changing color |
US8474146B2 (en) | 2010-06-22 | 2013-07-02 | Nike, Inc. | Article of footwear with color change portion and method of changing color |
US9301569B2 (en) | 2010-06-22 | 2016-04-05 | Nike, Inc. | Article of footwear with color change portion and method of changing color |
JP5505130B2 (en) * | 2010-06-29 | 2014-05-28 | セイコーエプソン株式会社 | Display device and electronic device |
KR101687720B1 (en) * | 2010-07-14 | 2016-12-29 | 엘지디스플레이 주식회사 | Electrophoretic display device and method of fabrication thereof |
US20130278993A1 (en) * | 2010-09-02 | 2013-10-24 | Jason Heikenfeld | Color-mixing bi-primary color systems for displays |
WO2012044303A1 (en) | 2010-09-30 | 2012-04-05 | Hewlett-Packard Development Company, L.P. | Reflective color pixel |
WO2012047190A1 (en) | 2010-10-03 | 2012-04-12 | Hewlett-Packard Development Company, L.P. | Luminescent pixel assembly |
WO2012074792A1 (en) * | 2010-11-30 | 2012-06-07 | E Ink Corporation | Multi-color electrophoretic displays |
US8670174B2 (en) | 2010-11-30 | 2014-03-11 | Sipix Imaging, Inc. | Electrophoretic display fluid |
WO2012087269A1 (en) * | 2010-12-20 | 2012-06-28 | Hewlett-Packard Development Company, L.P. | Reflective display utilizing luminescence |
CN103384681B (en) * | 2010-12-23 | 2018-05-18 | 霍夫曼-拉罗奇有限公司 | Bonding agent |
US9146439B2 (en) | 2011-01-31 | 2015-09-29 | E Ink California, Llc | Color electrophoretic display |
US10514583B2 (en) | 2011-01-31 | 2019-12-24 | E Ink California, Llc | Color electrophoretic display |
US20120243070A1 (en) * | 2011-03-25 | 2012-09-27 | Delphi Technologies, Inc. | Display using a transreflective electrowetting layer |
US8873129B2 (en) | 2011-04-07 | 2014-10-28 | E Ink Corporation | Tetrachromatic color filter array for reflective display |
CN107748469B (en) | 2011-05-21 | 2021-07-16 | 伊英克公司 | Electro-optic display |
US9013783B2 (en) | 2011-06-02 | 2015-04-21 | E Ink California, Llc | Color electrophoretic display |
US8786935B2 (en) | 2011-06-02 | 2014-07-22 | Sipix Imaging, Inc. | Color electrophoretic display |
TWI444741B (en) * | 2011-06-07 | 2014-07-11 | E Ink Holdings Inc | Electrophoresis display apparatus |
JP2013025066A (en) * | 2011-07-21 | 2013-02-04 | Seiko Epson Corp | Electro-optic device and electronic equipment |
JP5556762B2 (en) * | 2011-08-01 | 2014-07-23 | 日立化成株式会社 | Suspended particle device, light control device using suspended particle device, and driving method thereof |
US8730518B2 (en) * | 2011-08-18 | 2014-05-20 | Raytheon Company | Application of color imagery to a rewritable color surface |
US8649084B2 (en) | 2011-09-02 | 2014-02-11 | Sipix Imaging, Inc. | Color display devices |
US8605354B2 (en) | 2011-09-02 | 2013-12-10 | Sipix Imaging, Inc. | Color display devices |
US10261370B2 (en) * | 2011-10-05 | 2019-04-16 | Apple Inc. | Displays with minimized border regions having an apertured TFT layer for signal conductors |
US9286826B2 (en) | 2011-10-28 | 2016-03-15 | Apple Inc. | Display with vias for concealed printed circuit and component attachment |
US20130125910A1 (en) | 2011-11-18 | 2013-05-23 | Avon Products, Inc. | Use of Electrophoretic Microcapsules in a Cosmetic Composition |
WO2013079158A1 (en) * | 2011-11-30 | 2013-06-06 | Merck Patent Gmbh | Electrophoretic fluids |
KR102058340B1 (en) | 2011-11-30 | 2019-12-23 | 메르크 파텐트 게엠베하 | Particles for electrophoretic displays |
CN105632418B (en) | 2012-02-01 | 2019-07-12 | 伊英克公司 | Method for driving electro-optic displays |
US11030936B2 (en) | 2012-02-01 | 2021-06-08 | E Ink Corporation | Methods and apparatus for operating an electro-optic display in white mode |
US8917439B2 (en) | 2012-02-09 | 2014-12-23 | E Ink California, Llc | Shutter mode for color display devices |
US10282033B2 (en) | 2012-06-01 | 2019-05-07 | E Ink Corporation | Methods for updating electro-optic displays when drawing or writing on the display |
US9513743B2 (en) | 2012-06-01 | 2016-12-06 | E Ink Corporation | Methods for driving electro-optic displays |
US9226347B2 (en) | 2012-06-25 | 2015-12-29 | Apple Inc. | Displays with vias |
US8797636B2 (en) | 2012-07-17 | 2014-08-05 | Sipix Imaging, Inc. | Light-enhancing structure for electrophoretic display |
CN104583853B (en) | 2012-07-27 | 2018-01-26 | 伊英克公司 | For the technique for producing electro-optic displays |
WO2014019650A1 (en) | 2012-08-01 | 2014-02-06 | Merck Patent Gmbh | Electrophoretic fluids |
US9214507B2 (en) | 2012-08-17 | 2015-12-15 | Apple Inc. | Narrow border organic light-emitting diode display |
US9454025B2 (en) | 2012-08-31 | 2016-09-27 | Apple Inc. | Displays with reduced driver circuit ledges |
US9360733B2 (en) | 2012-10-02 | 2016-06-07 | E Ink California, Llc | Color display device |
US11017705B2 (en) | 2012-10-02 | 2021-05-25 | E Ink California, Llc | Color display device including multiple pixels for driving three-particle electrophoretic media |
US10037735B2 (en) | 2012-11-16 | 2018-07-31 | E Ink Corporation | Active matrix display with dual driving modes |
US9715155B1 (en) | 2013-01-10 | 2017-07-25 | E Ink Corporation | Electrode structures for electro-optic displays |
US9726957B2 (en) | 2013-01-10 | 2017-08-08 | E Ink Corporation | Electro-optic display with controlled electrochemical reactions |
US9721495B2 (en) | 2013-02-27 | 2017-08-01 | E Ink Corporation | Methods for driving electro-optic displays |
CN106782353B (en) | 2013-03-01 | 2020-01-10 | 伊英克公司 | Method for driving electro-optic display |
WO2014160552A1 (en) | 2013-03-26 | 2014-10-02 | Clearink Displays Llc | Displaced porous electrode for frustrating tir |
CN109031845B (en) | 2013-04-18 | 2021-09-10 | 伊英克加利福尼亚有限责任公司 | Color display device |
US9759980B2 (en) | 2013-04-18 | 2017-09-12 | Eink California, Llc | Color display device |
US9280029B2 (en) | 2013-05-13 | 2016-03-08 | Clearink Displays, Inc. | Registered reflective element for a brightness enhanced TIR display |
WO2014186605A1 (en) | 2013-05-17 | 2014-11-20 | Sipix Imaging, Inc. | Color display device with color filters |
CA2912689C (en) | 2013-05-17 | 2019-08-20 | E Ink California, Llc | Color display device |
US9383623B2 (en) | 2013-05-17 | 2016-07-05 | E Ink California, Llc | Color display device |
CN105264422B (en) | 2013-05-22 | 2019-07-26 | 清墨显示股份有限责任公司 | A kind of reflected displaying device with brightness enhancing structures |
EP3327498B1 (en) | 2013-07-08 | 2021-09-01 | Concord (Hk) International Education Limited | Tir-modulated wide viewing angle display |
US10705404B2 (en) | 2013-07-08 | 2020-07-07 | Concord (Hk) International Education Limited | TIR-modulated wide viewing angle display |
US9620048B2 (en) | 2013-07-30 | 2017-04-11 | E Ink Corporation | Methods for driving electro-optic displays |
ES2946753T3 (en) | 2013-07-31 | 2023-07-25 | E Ink Corp | Methods for driving electro-optical displays |
TW201508574A (en) * | 2013-08-22 | 2015-03-01 | Henghao Technology Co Ltd | Touch electrode device |
US9740075B2 (en) | 2013-09-10 | 2017-08-22 | Clearink Displays, Inc. | Method and system for perforated reflective film display device |
CN105579900B (en) | 2013-09-30 | 2019-09-20 | 清墨显示股份有限责任公司 | Method and apparatus for preceding half retroreflection display of light |
TWI502574B (en) | 2013-10-09 | 2015-10-01 | Sipix Technology Inc | Electro-optical apparatus and driving method thereof |
TWI534520B (en) | 2013-10-11 | 2016-05-21 | 電子墨水加利福尼亞有限責任公司 | Color display device |
ES2893766T3 (en) | 2013-10-22 | 2022-02-10 | E Ink Corp | An electrophoretic device with a wide operating temperature range |
TWI502369B (en) | 2013-10-22 | 2015-10-01 | 達意科技股份有限公司 | Electric system |
TWI533268B (en) * | 2013-11-15 | 2016-05-11 | 元太科技工業股份有限公司 | Color reflective display and operating method thereof |
CN109491173B (en) | 2014-01-17 | 2022-07-12 | 伊英克公司 | Electro-optic display with dual phase electrode layers |
WO2015120294A1 (en) | 2014-02-06 | 2015-08-13 | E Ink Corporation | Electrophoretic particles and processes for the production thereof |
EP3103113A4 (en) | 2014-02-07 | 2017-07-19 | E Ink Corporation | Electro-optic display backplane structures |
US10317767B2 (en) | 2014-02-07 | 2019-06-11 | E Ink Corporation | Electro-optic display backplane structure with drive components and pixel electrodes on opposed surfaces |
EP3936935A1 (en) | 2014-02-19 | 2022-01-12 | E Ink California, LLC | Driving method for a color electrophoretic display |
CA2939109C (en) * | 2014-02-24 | 2018-08-14 | E Ink California, Llc | Electrophoretic display |
US10446585B2 (en) | 2014-03-17 | 2019-10-15 | E Ink Corporation | Multi-layer expanding electrode structures for backplane assemblies |
US20150268531A1 (en) | 2014-03-18 | 2015-09-24 | Sipix Imaging, Inc. | Color display device |
US9506243B1 (en) | 2014-03-20 | 2016-11-29 | E Ink Corporation | Thermally-responsive film |
US9953588B1 (en) | 2014-03-25 | 2018-04-24 | E Ink Corporation | Nano-particle based variable transmission devices |
TWI560511B (en) * | 2014-04-22 | 2016-12-01 | E Ink Holdings Inc | Electrophoretic display apparatus |
US10423028B2 (en) | 2014-04-22 | 2019-09-24 | E Ink Holdings Inc. | Display apparatus |
US20170075184A1 (en) * | 2014-05-12 | 2017-03-16 | Clearink Displays, Inc. | Two particle total internal reflection image display |
JP2016027361A (en) * | 2014-07-01 | 2016-02-18 | 株式会社リコー | Electrochromic display device, and manufacturing method and driving method of the same |
US9897890B2 (en) | 2014-10-07 | 2018-02-20 | Clearink Displays, Inc. | Reflective image display with threshold |
US10304394B2 (en) | 2014-10-08 | 2019-05-28 | Clearink Displays, Inc. | Color filter registered reflective display |
US10147366B2 (en) | 2014-11-17 | 2018-12-04 | E Ink California, Llc | Methods for driving four particle electrophoretic display |
US10197883B2 (en) | 2015-01-05 | 2019-02-05 | E Ink Corporation | Electro-optic displays, and methods for driving same |
WO2016111995A1 (en) | 2015-01-05 | 2016-07-14 | E Ink Corporation | Electro-optic displays, and methods for driving same |
US9835925B1 (en) | 2015-01-08 | 2017-12-05 | E Ink Corporation | Electro-optic displays, and processes for the production thereof |
WO2016123546A1 (en) | 2015-01-30 | 2016-08-04 | E Ink Corporation | Font control for electro-optic displays and related apparatus and methods |
TWI666624B (en) | 2015-02-04 | 2019-07-21 | 美商電子墨水股份有限公司 | Electro-optic displays displaying in dark mode and light mode, and related apparatus and methods |
US10475396B2 (en) | 2015-02-04 | 2019-11-12 | E Ink Corporation | Electro-optic displays with reduced remnant voltage, and related apparatus and methods |
CN107209435B (en) * | 2015-02-12 | 2021-09-14 | 协和(香港)国际教育有限公司 | Multi-electrode total internal reflection image display |
JP6527587B2 (en) | 2015-02-17 | 2019-06-05 | イー インク コーポレイション | Electromagnetic writing device for electro-optical displays |
WO2016133980A1 (en) | 2015-02-18 | 2016-08-25 | E Ink Corporation | Addressable electro-optic display |
CN112750407B (en) | 2015-04-27 | 2023-11-07 | 伊英克公司 | Electro-optic display |
KR102073463B1 (en) | 2015-05-11 | 2020-02-04 | 이 잉크 캘리포니아 엘엘씨 | Electrophoretic display fluid |
US10997930B2 (en) | 2015-05-27 | 2021-05-04 | E Ink Corporation | Methods and circuitry for driving display devices |
US10386691B2 (en) | 2015-06-24 | 2019-08-20 | CLEARink Display, Inc. | Method and apparatus for a dry particle totally internally reflective image display |
EP3314328B1 (en) | 2015-06-29 | 2021-03-03 | E Ink Corporation | Electro-optic display device and method of manufacturing thereof |
EP3320395B1 (en) | 2015-06-30 | 2024-02-28 | E Ink Corporation | Composite electrophoretic displays |
US9777201B2 (en) | 2015-07-23 | 2017-10-03 | E Ink Corporation | Polymer formulations for use with electro-optic media |
EP3345047A1 (en) * | 2015-08-31 | 2018-07-11 | E Ink Corporation | Electronically erasing a drawing device |
WO2017049020A1 (en) | 2015-09-16 | 2017-03-23 | E Ink Corporation | Apparatus and methods for driving displays |
US11657774B2 (en) | 2015-09-16 | 2023-05-23 | E Ink Corporation | Apparatus and methods for driving displays |
US10803813B2 (en) | 2015-09-16 | 2020-10-13 | E Ink Corporation | Apparatus and methods for driving displays |
EP3356445B1 (en) | 2015-09-30 | 2021-01-06 | E Ink Corporation | Polyurethane adhesive layers for electro-optic assemblies |
WO2017059179A1 (en) | 2015-10-01 | 2017-04-06 | E Ink Corporation | Variable color and transmission coverings |
WO2017087747A1 (en) | 2015-11-18 | 2017-05-26 | E Ink Corporation | Electro-optic displays |
US10386547B2 (en) | 2015-12-06 | 2019-08-20 | Clearink Displays, Inc. | Textured high refractive index surface for reflective image displays |
US10261221B2 (en) | 2015-12-06 | 2019-04-16 | Clearink Displays, Inc. | Corner reflector reflective image display |
US10209530B2 (en) | 2015-12-07 | 2019-02-19 | E Ink Corporation | Three-dimensional display |
EP3185235A1 (en) * | 2015-12-21 | 2017-06-28 | Siemens Aktiengesellschaft | Representation of information on a device |
WO2017139323A1 (en) | 2016-02-08 | 2017-08-17 | E Ink Corporation | Methods and apparatus for operating an electro-optic display in white mode |
WO2017184816A1 (en) | 2016-04-22 | 2017-10-26 | E Ink Corporation | Foldable electro-optic display apparatus |
US10545622B2 (en) | 2016-05-20 | 2020-01-28 | E Ink Corporation | Magnetically-responsive display including a recording layer configured for local and global write/erase |
WO2017210069A1 (en) | 2016-05-31 | 2017-12-07 | E Ink Corporation | Backplanes for electro-optic displays |
CN109073951B (en) | 2016-05-31 | 2022-05-13 | 伊英克公司 | Stretchable electro-optic displays |
WO2018031358A1 (en) | 2016-08-08 | 2018-02-15 | E Ink Corporation | Wearable apparatus having a flexible electrophoretic display |
US10503041B2 (en) | 2016-11-30 | 2019-12-10 | E Ink Corporation | Laminated electro-optic displays and methods of making same |
US10509294B2 (en) | 2017-01-25 | 2019-12-17 | E Ink Corporation | Dual sided electrophoretic display |
PL3583464T3 (en) | 2017-02-15 | 2023-10-02 | E Ink California, Llc | Polymer additives used in color electrophoretic display media |
CN108508672A (en) * | 2017-02-24 | 2018-09-07 | 元太科技工业股份有限公司 | Electrophoretic display apparatus |
US10324577B2 (en) | 2017-02-28 | 2019-06-18 | E Ink Corporation | Writeable electrophoretic displays including sensing circuits and styli configured to interact with sensing circuits |
RU2754814C2 (en) | 2017-03-03 | 2021-09-07 | Е Инк Корпорэйшн | Electrical-optical displays and their switching methods |
US10585325B2 (en) | 2017-03-09 | 2020-03-10 | E Ink California, Llc | Photo-thermally induced polymerization inhibitors for electrophoretic media |
US9995987B1 (en) | 2017-03-20 | 2018-06-12 | E Ink Corporation | Composite particles and method for making the same |
CN116430639A (en) | 2017-03-28 | 2023-07-14 | 伊英克公司 | Permeable back sheet for electro-optic displays |
KR102449642B1 (en) | 2017-04-04 | 2022-09-29 | 이 잉크 코포레이션 | Methods for driving electro-optic displays |
JP2020522730A (en) | 2017-05-19 | 2020-07-30 | イー インク コーポレイション | Foldable electro-optical display including digitization and touch sensing |
US11404013B2 (en) | 2017-05-30 | 2022-08-02 | E Ink Corporation | Electro-optic displays with resistors for discharging remnant charges |
US10962816B2 (en) | 2017-06-16 | 2021-03-30 | E Ink Corporation | Flexible color-changing fibers and fabrics |
CN110603484B (en) | 2017-06-16 | 2023-05-02 | 伊英克公司 | Electro-optic medium comprising encapsulated pigments in a gelatin binder |
WO2018232075A2 (en) | 2017-06-16 | 2018-12-20 | E Ink Corporation | Variable transmission electrophoretic devices |
US10802373B1 (en) | 2017-06-26 | 2020-10-13 | E Ink Corporation | Reflective microcells for electrophoretic displays and methods of making the same |
US10921676B2 (en) | 2017-08-30 | 2021-02-16 | E Ink Corporation | Electrophoretic medium |
EP3682440A4 (en) | 2017-09-12 | 2021-04-28 | E Ink Corporation | Methods for driving electro-optic displays |
US11721295B2 (en) | 2017-09-12 | 2023-08-08 | E Ink Corporation | Electro-optic displays, and methods for driving same |
US10698265B1 (en) | 2017-10-06 | 2020-06-30 | E Ink California, Llc | Quantum dot film |
WO2019079267A1 (en) | 2017-10-18 | 2019-04-25 | E Ink Corporation | Digital microfluidic devices including dual substrates with thin-film transistors and capacitive sensing |
US10824042B1 (en) | 2017-10-27 | 2020-11-03 | E Ink Corporation | Electro-optic display and composite materials having low thermal sensitivity for use therein |
ES2931049T3 (en) | 2017-11-03 | 2022-12-23 | E Ink Corp | Production processes of electro-optical display devices |
EP3743909A4 (en) | 2018-01-22 | 2021-08-18 | E Ink Corporation | Electro-optic displays, and methods for driving same |
JP2021514073A (en) | 2018-02-15 | 2021-06-03 | イー インク コーポレイション | Installation of vias for a narrow frame electro-optical display backplane with reduced capacitive coupling between the T-wire and the pixel electrodes |
US11175561B1 (en) | 2018-04-12 | 2021-11-16 | E Ink Corporation | Electrophoretic display media with network electrodes and methods of making and using the same |
JP7152494B2 (en) | 2018-04-23 | 2022-10-12 | イー インク コーポレイション | Nanoparticle-based tunable transmission device |
MX2020012298A (en) | 2018-05-17 | 2021-01-29 | E Ink California Llc | Piezo electrophoretic display. |
EP3814836B1 (en) | 2018-06-28 | 2024-04-03 | E Ink Corporation | Driving methods for variable transmission electro-phoretic media |
KR102609672B1 (en) | 2018-07-17 | 2023-12-05 | 이 잉크 코포레이션 | Electro-optical displays and driving methods |
TWI727374B (en) | 2018-07-25 | 2021-05-11 | 美商電子墨水股份有限公司 | Flexible transparent intumescent coatings and composites incorporating the same |
EP3834038B1 (en) | 2018-08-07 | 2023-10-18 | E Ink Corporation | Flexible encapsulated electro-optic media |
US11493821B2 (en) | 2018-08-14 | 2022-11-08 | E Ink California, Llc | Piezo electrophoretic display |
US11353759B2 (en) | 2018-09-17 | 2022-06-07 | Nuclera Nucleics Ltd. | Backplanes with hexagonal and triangular electrodes |
EP3853657A4 (en) | 2018-09-20 | 2022-06-29 | E Ink Corporation | Three-dimensional display apparatuses |
US11656522B2 (en) | 2018-09-28 | 2023-05-23 | E Ink Corporation | Solar temperature regulation system for a fluid |
CN112740087B (en) | 2018-10-01 | 2023-07-04 | 伊英克公司 | Electro-optic fiber and method for manufacturing same |
US11635640B2 (en) | 2018-10-01 | 2023-04-25 | E Ink Corporation | Switching fibers for textiles |
WO2020081478A1 (en) | 2018-10-15 | 2020-04-23 | E Ink Corporation | Digital microfluidic delivery device |
WO2020092190A1 (en) | 2018-10-30 | 2020-05-07 | E Ink Corporation | Electro-optic medium and writable device incorporating the same |
JP7145732B2 (en) | 2018-11-09 | 2022-10-03 | 株式会社ジャパンディスプレイ | Display device |
CN112955817B (en) | 2018-11-09 | 2024-06-07 | 伊英克公司 | Electro-optic display |
US11754903B1 (en) | 2018-11-16 | 2023-09-12 | E Ink Corporation | Electro-optic assemblies and materials for use therein |
KR102699214B1 (en) | 2018-11-30 | 2024-08-26 | 이 잉크 코포레이션 | Electro-optic displays and driving methods |
CN113056703B (en) | 2018-11-30 | 2024-06-14 | 伊英克公司 | Pressure sensitive writing medium comprising electrophoretic material |
US11402719B2 (en) | 2018-12-11 | 2022-08-02 | E Ink Corporation | Retroreflective electro-optic displays |
CN113168063A (en) | 2018-12-12 | 2021-07-23 | 伊英克公司 | Edible electrode and use in electro-optic displays |
JP2022514540A (en) | 2018-12-17 | 2022-02-14 | イー インク コーポレイション | Anisotropy moisture barrier film and electro-optic assembly containing it |
US10823373B2 (en) | 2018-12-17 | 2020-11-03 | E Ink Corporation | Light emitting device including variable transmission film to control intensity and pattern |
WO2020132362A1 (en) | 2018-12-21 | 2020-06-25 | E Ink Corporation | Sub-threshold addressing and erasing in a magneto-electrophoretic writing medium |
TWI728631B (en) | 2018-12-28 | 2021-05-21 | 美商電子墨水股份有限公司 | Electro-optic displays |
JP7201816B2 (en) | 2018-12-30 | 2023-01-10 | イー インク カリフォルニア, エルエルシー | electro-optic display |
KR102632666B1 (en) | 2019-02-25 | 2024-02-01 | 이 잉크 코포레이션 | Composite electrophoretic particles and variable transmission films containing composite electrophoretic particles |
US11456397B2 (en) | 2019-03-12 | 2022-09-27 | E Ink Corporation | Energy harvesting electro-optic displays |
WO2020205206A1 (en) | 2019-03-29 | 2020-10-08 | E Ink Corporation | Electro-optic displays and methods of driving the same |
CN113423751B (en) | 2019-04-24 | 2024-03-12 | 伊英克公司 | Electrophoretic particles, medium, and display and method of manufacturing the same |
US11139594B2 (en) | 2019-04-30 | 2021-10-05 | E Ink Corporation | Connectors for electro-optic displays |
US11579510B2 (en) | 2019-05-07 | 2023-02-14 | E Ink Corporation | Driving methods for a variable light transmission device |
US11761123B2 (en) | 2019-08-07 | 2023-09-19 | E Ink Corporation | Switching ribbons for textiles |
WO2021026431A1 (en) | 2019-08-08 | 2021-02-11 | E Ink Corporation | Stylus for addressing magnetically-actuated display medium |
EP4022389A4 (en) | 2019-08-26 | 2023-08-16 | E Ink Corporation | Electro-optic device comprising an identification marker |
GB201914105D0 (en) | 2019-09-30 | 2019-11-13 | Vlyte Innovations Ltd | A see-through electrophoretic device having a visible grid |
WO2021071600A1 (en) | 2019-10-07 | 2021-04-15 | E Ink Corporation | An adhesive composition comprising a polyurethane and a cationic dopant |
CA3157990A1 (en) | 2019-11-14 | 2021-05-20 | E Ink Corporation | Methods for driving electro-optic displays |
KR20220069973A (en) | 2019-11-14 | 2022-05-27 | 이 잉크 코포레이션 | Electro-optic medium comprising oppositely charged particles and variable transmission device comprising same |
CN114667561B (en) | 2019-11-18 | 2024-01-05 | 伊英克公司 | Method for driving electro-optic display |
EP4078276A4 (en) | 2019-12-17 | 2024-05-29 | E Ink Corporation | Autostereoscopic devices and methods for producing 3d images |
WO2021133794A1 (en) | 2019-12-23 | 2021-07-01 | E Ink Corporation | Color electrophoretic layer including microcapsules with nonionic polymeric walls |
US11934081B2 (en) | 2019-12-23 | 2024-03-19 | E Ink Corporation | Transferrable light-transmissive electrode films for electro-optic devices |
JP7416966B2 (en) | 2020-02-06 | 2024-01-17 | イー インク コーポレイション | Electrophoretic core-shell particles having an organic pigment core and a shell with a thin metal oxide layer and a silane layer |
JP7407293B2 (en) | 2020-02-07 | 2023-12-28 | イー インク コーポレイション | Electrophoretic display layer with thin film top electrode |
GB2593150A (en) | 2020-03-05 | 2021-09-22 | Vlyte Ltd | A light modulator having bonded structures embedded in its viewing area |
WO2021247450A1 (en) | 2020-05-31 | 2021-12-09 | E Ink Corporation | Electro-optic displays, and methods for driving same |
US11513415B2 (en) | 2020-06-03 | 2022-11-29 | E Ink Corporation | Foldable electrophoretic display module including non-conductive support plate |
JP7496002B2 (en) | 2020-06-11 | 2024-06-05 | イー インク コーポレイション | Electro-optic display and method for driving same - Patents.com |
EP4185922A4 (en) | 2020-07-22 | 2024-07-24 | E Ink Corp | An electro-optic device comprising integrated conductive edge seal and a method of production of the same |
US12027129B2 (en) | 2020-08-31 | 2024-07-02 | E Ink Corporation | Electro-optic displays and driving methods |
WO2022060700A1 (en) | 2020-09-15 | 2022-03-24 | E Ink Corporation | Improved driving voltages for advanced color electrophoretic displays and displays with improved driving voltages |
US11846863B2 (en) | 2020-09-15 | 2023-12-19 | E Ink Corporation | Coordinated top electrode—drive electrode voltages for switching optical state of electrophoretic displays using positive and negative voltages of different magnitudes |
EP4214574A4 (en) | 2020-09-15 | 2024-10-09 | E Ink Corp | Four particle electrophoretic medium providing fast, high-contrast optical state switching |
KR20230053667A (en) | 2020-10-01 | 2023-04-21 | 이 잉크 코포레이션 | Electro-optical display, and method of driving it |
CN116368553A (en) | 2020-11-02 | 2023-06-30 | 伊英克公司 | Drive sequence for removing previous state information from color electrophoretic display |
WO2022094371A1 (en) | 2020-11-02 | 2022-05-05 | E Ink Corporation | Methods for reducing image artifacts during partial updates of electrophoretic displays |
CN116490913A (en) | 2020-11-02 | 2023-07-25 | 伊英克公司 | Enhanced push-pull (EPP) waveforms for implementing primary color sets in multi-color electrophoretic displays |
EP4200836A4 (en) | 2020-11-02 | 2023-12-27 | E Ink Corporation | Method and apparatus for rendering color images |
US11657772B2 (en) | 2020-12-08 | 2023-05-23 | E Ink Corporation | Methods for driving electro-optic displays |
US11688357B2 (en) | 2021-04-29 | 2023-06-27 | E Ink California, Llc | Disaggregation driving sequences for four particle electrophoretic displays |
CN117396804A (en) | 2021-05-25 | 2024-01-12 | 伊英克公司 | Synchronous drive waveforms for four-particle electrophoretic displays |
TWI846017B (en) | 2021-08-18 | 2024-06-21 | 美商電子墨水股份有限公司 | Methods for driving electro-optic displays |
US11830448B2 (en) | 2021-11-04 | 2023-11-28 | E Ink Corporation | Methods for driving electro-optic displays |
WO2023122142A1 (en) | 2021-12-22 | 2023-06-29 | E Ink Corporation | Methods for driving electro-optic displays |
TWI847453B (en) | 2021-12-27 | 2024-07-01 | 美商電子墨水股份有限公司 | Methods for measuring electrical properties of electro-optic displays |
KR20240101671A (en) | 2021-12-30 | 2024-07-02 | 이 잉크 코포레이션 | How to Drive an Electro-Optical Display |
TWI847563B (en) | 2022-02-25 | 2024-07-01 | 美商電子墨水股份有限公司 | Electro-optic displays with edge seal components and methods of making the same |
CN118715890A (en) | 2022-02-28 | 2024-09-27 | 伊英克公司 | Piezoelectric film comprising ionic liquid and electrophoretic display film comprising the same |
US20230273495A1 (en) | 2022-02-28 | 2023-08-31 | E Ink California, Llc | Piezo-electrophoretic film including patterned piezo polarities for creating images via electrophoretic media |
US11830449B2 (en) | 2022-03-01 | 2023-11-28 | E Ink Corporation | Electro-optic displays |
WO2023196915A1 (en) | 2022-04-08 | 2023-10-12 | E Ink California, Llc | A water-resistant sealing layer for sealing microcells of electro-optic devices |
US20230333437A1 (en) | 2022-04-13 | 2023-10-19 | E Ink Corporation | Display material including patterned areas of encapsulated electrophoretic media |
US20230350263A1 (en) | 2022-04-27 | 2023-11-02 | E Ink Corporation | Electro-optic display stacks with segmented electrodes and methods of making the same |
EP4273673A1 (en) * | 2022-05-05 | 2023-11-08 | Freshape SA | A full-color, writable-erasable display system |
US20240004255A1 (en) | 2022-07-01 | 2024-01-04 | E Ink Corporation | Sealing Films and Sealing Compositions for Sealing Microcells of Electro-Optic Devices |
US20240008585A1 (en) | 2022-07-08 | 2024-01-11 | Puma SE | Article of footwear having a textile display system |
WO2024028713A1 (en) | 2022-08-01 | 2024-02-08 | Puma SE | Article of footwear having a display system |
US20240041155A1 (en) | 2022-08-02 | 2024-02-08 | Puma SE | Article of footwear having a display system |
US20240225171A9 (en) | 2022-10-24 | 2024-07-11 | Puma SE | Article of footwear having a display system powered by motion |
US20240233662A9 (en) | 2022-10-25 | 2024-07-11 | E Ink Corporation | Methods for driving electro-optic displays |
US20240158945A1 (en) | 2022-11-15 | 2024-05-16 | E Ink Corporation | Color-changing electrophoretic threads and fibers, and methods and apparatuses for making the same |
WO2024145318A1 (en) | 2022-12-30 | 2024-07-04 | E Ink Corporation | A variable light transmission device and a method of operation of the same |
WO2024145345A1 (en) | 2022-12-30 | 2024-07-04 | E Ink Corporation | A variable light transmission device comprising electrophoretic medium having a compination of light reflective and light absorbing pigment particles |
WO2024145324A1 (en) | 2022-12-30 | 2024-07-04 | E Ink Corporation | A variable light transmission device and a method of manufacture of the same |
US20240257773A1 (en) | 2023-01-27 | 2024-08-01 | E Ink Corporation | Multi-element pixel electrode circuits for electro-optic displays and methods for driving the same |
US20240290290A1 (en) | 2023-02-28 | 2024-08-29 | E Ink Corporation | Drive scheme for improved color gamut in color electrophoretic displays |
WO2024206187A1 (en) | 2023-03-24 | 2024-10-03 | E Ink Corporation | Methods for driving electro-optic displays |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3870517A (en) * | 1969-10-18 | 1975-03-11 | Matsushita Electric Ind Co Ltd | Color image reproduction sheet employed in photoelectrophoretic imaging |
US4272596A (en) * | 1979-06-01 | 1981-06-09 | Xerox Corporation | Electrophoretic display device |
US5717514A (en) * | 1995-12-15 | 1998-02-10 | Xerox Corporation | Polychromal segmented balls for a twisting ball display |
US5961804A (en) * | 1997-03-18 | 1999-10-05 | Massachusetts Institute Of Technology | Microencapsulated electrophoretic display |
US6864875B2 (en) * | 1998-04-10 | 2005-03-08 | E Ink Corporation | Full color reflective display with multichromatic sub-pixels |
Family Cites Families (444)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2766478A (en) | 1951-10-15 | 1956-10-16 | Gasoline Res Ind And Commercia | Encapsulating method and apparatus |
USRE25822E (en) | 1961-10-27 | 1965-07-20 | Magnetic writing materials set | |
US3384565A (en) | 1964-07-23 | 1968-05-21 | Xerox Corp | Process of photoelectrophoretic color imaging |
GB1096640A (en) | 1964-12-07 | 1967-12-29 | Monsanto Co | Micro-fiber spinning process |
US3364488A (en) * | 1965-10-01 | 1968-01-16 | Gen Precision Inc | Inflatable portable antenna system |
US3406363A (en) | 1966-05-26 | 1968-10-15 | Clarence R. Tate | Multicolored micromagnets |
US3460248A (en) | 1966-05-26 | 1969-08-12 | Clarence R Tate | Method for making micromagnets |
US3369194A (en) * | 1966-09-26 | 1968-02-13 | Gen Time Corp | Frequency dividing synchronous saturable core oscillator having high frequency signal effective only at saturation |
US3423489A (en) | 1966-11-01 | 1969-01-21 | Minnesota Mining & Mfg | Encapsulation process |
US3617374A (en) | 1969-04-14 | 1971-11-02 | Ncr Co | Display device |
US3585381A (en) | 1969-04-14 | 1971-06-15 | Ncr Co | Encapsulated cholesteric liquid crystal display device |
NL7005615A (en) | 1969-04-23 | 1970-10-27 | ||
DE2029463C3 (en) | 1969-06-12 | 1973-11-15 | Matsushita Electric Industrial Co. Ltd., Kadoma, Osaka (Japan) | Image recording and / or fermentation device |
US3612758A (en) | 1969-10-03 | 1971-10-12 | Xerox Corp | Color display device |
US3668106A (en) | 1970-04-09 | 1972-06-06 | Matsushita Electric Ind Co Ltd | Electrophoretic display device |
US3767392A (en) | 1970-04-15 | 1973-10-23 | Matsushita Electric Ind Co Ltd | Electrophoretic light image reproduction process |
US3792308A (en) | 1970-06-08 | 1974-02-12 | Matsushita Electric Ind Co Ltd | Electrophoretic display device of the luminescent type |
US3670323A (en) | 1970-12-14 | 1972-06-13 | Zenith Radio Corp | Image-display devices comprising particle light modulators with storage |
JPS4917079B1 (en) | 1970-12-21 | 1974-04-26 | ||
US3772013A (en) | 1971-01-06 | 1973-11-13 | Xerox Corp | Photoelectrophoretic imaging process employing electrically photosensitive particles and inert particles |
US3850627A (en) | 1971-01-06 | 1974-11-26 | Xerox Corp | Electrophoretic imaging method |
US3909116A (en) | 1972-09-11 | 1975-09-30 | Matsushita Electric Ind Co Ltd | Light modulating device |
US3936816A (en) | 1972-11-02 | 1976-02-03 | Dai Nippon Toryo Kabushiki Kaisha | Flat display system |
US3792306A (en) * | 1972-12-04 | 1974-02-12 | Raytheon Co | Multisignal magnetron having plural signal coupling means |
CH563807A5 (en) | 1973-02-14 | 1975-07-15 | Battelle Memorial Institute | Fine granules and microcapsules mfrd. from liquid droplets - partic. of high viscosity requiring forced sepn. of droplets |
GB1458045A (en) | 1973-08-15 | 1976-12-08 | Secr Defence | Display systems |
US3959906A (en) | 1973-11-14 | 1976-06-01 | J. Robert Norris, Jr. | Message display system |
GB1465701A (en) | 1973-11-22 | 1977-03-02 | Plessey Co Ltd | Electrophoretic suspension |
US4093534A (en) | 1974-02-12 | 1978-06-06 | Plessey Handel Und Investments Ag | Working fluids for electrophoretic image display devices |
US4045327A (en) | 1974-08-28 | 1977-08-30 | Matsushita Electric Industrial Co., Ltd. | Electrophoretic matrix panel |
US4041481A (en) | 1974-10-05 | 1977-08-09 | Matsushita Electric Industrial Co., Ltd. | Scanning apparatus for an electrophoretic matrix display panel |
FR2318474A1 (en) | 1975-07-17 | 1977-02-11 | Thomson Csf | ELECTROPHORESIS DISPLAY DEVICE |
US4056708A (en) | 1975-07-22 | 1977-11-01 | Baxter Travenol Laboratories, Inc. | Digital temperature controller |
CH594263A5 (en) | 1975-11-29 | 1977-12-30 | Ebauches Sa | |
SE400841B (en) | 1976-02-05 | 1978-04-10 | Hertz Carl H | WAY TO CREATE A LIQUID RAY AND DEVICE FOR IMPLEMENTING THE SET |
JPS584762B2 (en) | 1976-02-20 | 1983-01-27 | 株式会社日立製作所 | Percent display device |
US4143103A (en) | 1976-05-04 | 1979-03-06 | Xerox Corporation | Method of making a twisting ball panel display |
US4126854A (en) | 1976-05-05 | 1978-11-21 | Xerox Corporation | Twisting ball panel display |
FR2351191A1 (en) | 1976-05-11 | 1977-12-09 | Thomson Csf | PERFECTED ELECTROPHORESIS DEVICE |
US4088395A (en) | 1976-05-27 | 1978-05-09 | American Cyanamid Company | Paper counter-electrode for electrochromic devices |
US4068927A (en) | 1976-09-01 | 1978-01-17 | North American Philips Corporation | Electrophoresis display with buried lead lines |
US4071430A (en) | 1976-12-06 | 1978-01-31 | North American Philips Corporation | Electrophoretic image display having an improved switching time |
US4123206A (en) | 1977-02-07 | 1978-10-31 | Eastman Kodak Company | Encapsulating apparatus |
JPS5947676B2 (en) | 1977-04-11 | 1984-11-20 | 株式会社パイロット | magnetic panel |
US4104520A (en) | 1977-05-24 | 1978-08-01 | Xonics, Inc. | Image charge relaxation in electrophoretic displays |
US4126528A (en) | 1977-07-26 | 1978-11-21 | Xerox Corporation | Electrophoretic composition and display device |
US4147932A (en) | 1977-09-06 | 1979-04-03 | Xonics, Inc. | Low light level and infrared viewing system |
US4185621A (en) | 1977-10-28 | 1980-01-29 | Triad, Inc. | Body parameter display incorporating a battery charger |
US4203106A (en) | 1977-11-23 | 1980-05-13 | North American Philips Corporation | X-Y addressable electrophoretic display device with control electrode |
US4261653A (en) | 1978-05-26 | 1981-04-14 | The Bendix Corporation | Light valve including dipolar particle construction and method of manufacture |
US4303433A (en) | 1978-08-28 | 1981-12-01 | Torobin Leonard B | Centrifuge apparatus and method for producing hollow microspheres |
DE2846675C3 (en) | 1978-10-26 | 1981-08-13 | Siemens AG, 1000 Berlin und 8000 München | Test device for displaying an electrical voltage and, if necessary, its polarity |
DE2906652A1 (en) | 1979-02-02 | 1980-08-14 | Bbc Brown Boveri & Cie | METHOD FOR PRODUCING AN ELECTROPHORETIC DISPLAY WITH WAX-COVERED PIGMENT PARTICLES |
US4419663A (en) | 1979-03-14 | 1983-12-06 | Matsushita Electric Industrial Co., Ltd. | Display device |
US4314013A (en) | 1979-04-04 | 1982-02-02 | Xerox Corporation | Particle formation by double encapsulation |
US4279632A (en) | 1979-05-08 | 1981-07-21 | Nasa | Method and apparatus for producing concentric hollow spheres |
US4324456A (en) | 1979-08-02 | 1982-04-13 | U.S. Philips Corporation | Electrophoretic projection display systems |
US4218302A (en) | 1979-08-02 | 1980-08-19 | U.S. Philips Corporation | Electrophoretic display devices |
US4285801A (en) | 1979-09-20 | 1981-08-25 | Xerox Corporation | Electrophoretic display composition |
US4251747A (en) | 1979-11-15 | 1981-02-17 | Gte Products Corporation | One piece astigmatic grid for color picture tube electron gun |
JPS5932796B2 (en) | 1979-12-11 | 1984-08-10 | 株式会社パイロット | magnet reversal display magnetic panel |
US4336536A (en) | 1979-12-17 | 1982-06-22 | Kalt Charles G | Reflective display and method of making same |
JPS5691277A (en) | 1979-12-25 | 1981-07-24 | Citizen Watch Co Ltd | Liquiddcrystal display panel |
US4373282A (en) | 1979-12-26 | 1983-02-15 | Hughes Aircraft Company | Thin-panel illuminator for front-lit displays |
JPS56104387A (en) | 1980-01-22 | 1981-08-20 | Citizen Watch Co Ltd | Display unit |
US4311361A (en) | 1980-03-13 | 1982-01-19 | Burroughs Corporation | Electrophoretic display using a non-Newtonian fluid as a threshold device |
US4305807A (en) | 1980-03-13 | 1981-12-15 | Burroughs Corporation | Electrophoretic display device using a liquid crystal as a threshold device |
US4430646A (en) * | 1980-12-31 | 1984-02-07 | American District Telegraph Company | Forward scatter smoke detector |
FR2499276A1 (en) | 1981-02-05 | 1982-08-06 | Commissariat Energie Atomique | MATRIX DISPLAY DEVICE HAVING SEVERAL ELECTRODE GAMES AND ITS CONTROL METHOD |
EP0060650A1 (en) | 1981-03-04 | 1982-09-22 | Johnson Matthey Public Limited Company | Credit control systems |
GB2094044B (en) | 1981-03-04 | 1985-12-18 | Johnson Matthey Plc | Credit card |
US4418346A (en) | 1981-05-20 | 1983-11-29 | Batchelder J Samuel | Method and apparatus for providing a dielectrophoretic display of visual information |
US4700183A (en) | 1981-06-29 | 1987-10-13 | North American Philips Corporation | Format for improving the readability of numeric displays |
US4500880A (en) | 1981-07-06 | 1985-02-19 | Motorola, Inc. | Real time, computer-driven retail pricing display system |
US4453200A (en) | 1981-07-20 | 1984-06-05 | Rockwell International Corporation | Apparatus for lighting a passive display |
US4390403A (en) | 1981-07-24 | 1983-06-28 | Batchelder J Samuel | Method and apparatus for dielectrophoretic manipulation of chemical species |
US4435047A (en) | 1981-09-16 | 1984-03-06 | Manchester R & D Partnership | Encapsulated liquid crystal and method |
US4606611A (en) | 1981-09-16 | 1986-08-19 | Manchester R & D Partnership | Enhanced scattering in voltage sensitive encapsulated liquid crystal |
US4707080A (en) | 1981-09-16 | 1987-11-17 | Manchester R & D Partnership | Encapsulated liquid crystal material, apparatus and method |
US4605284A (en) | 1981-09-16 | 1986-08-12 | Manchester R & D Partnership | Encapsulated liquid crystal and method |
US5082351A (en) | 1981-09-16 | 1992-01-21 | Manchester R & D Partnership | Encapsulated liquid crystal material, apparatus and method |
US4450440A (en) | 1981-12-24 | 1984-05-22 | U.S. Philips Corporation | Construction of an epid bar graph |
CA1190362A (en) | 1982-01-18 | 1985-07-16 | Reiji Ishikawa | Method of making a rotary ball display device |
US4522472A (en) | 1982-02-19 | 1985-06-11 | North American Philips Corporation | Electrophoretic image display with reduced drives and leads |
US4960351A (en) | 1982-04-26 | 1990-10-02 | California Institute Of Technology | Shell forming system |
FR2527843B1 (en) | 1982-06-01 | 1986-01-24 | Thomson Csf | ELECTRODE COMPRISING AN ELECTROCHROMIC POLYMER FILM WHICH CAN BE USED IN AN ENERGY STORAGE OR DISPLAY DEVICE |
US4640583A (en) | 1983-07-22 | 1987-02-03 | Kabushiki Kaisha Seiko Epson | Display panel having an inner and an outer seal and process for the production thereof |
NO157596C (en) | 1983-12-16 | 1988-09-27 | Alf Lange | DEVICE FOR PRESENTATION OF INFORMATION. |
EP0162300B1 (en) | 1984-04-20 | 1992-12-30 | Hitachi, Ltd. | Input integrated flat panel display system |
US4789858A (en) | 1984-06-12 | 1988-12-06 | Taliq Corporation | Multifunction switch incorporating NCAP liquid crystal |
JPS614020A (en) | 1984-06-18 | 1986-01-09 | Nissha Printing Co Ltd | Multicolor liquid crystal display device |
US4824208A (en) | 1984-08-28 | 1989-04-25 | Talig Corporation | Display for contrast enhancement |
US4732456A (en) | 1984-08-28 | 1988-03-22 | Taliq Corporation | Scattering display for contrast enhancement including target |
US4832458A (en) | 1984-08-28 | 1989-05-23 | Talig Corporation | Display for contrast enhancement |
CH661373A5 (en) | 1984-09-11 | 1987-07-15 | Autophon Ag | ALPHANUMERIC DISPLAY SYSTEM WITH SEGMENTS CONTROLABLE IN EVERY VISIBLE AND INVISIBLE CONDITION. |
JPS6188578A (en) | 1984-10-08 | 1986-05-06 | Nec Corp | Non-linear element |
US4655897A (en) | 1984-11-13 | 1987-04-07 | Copytele, Inc. | Electrophoretic display panels and associated methods |
US4732830A (en) | 1984-11-13 | 1988-03-22 | Copytele, Inc. | Electrophoretic display panels and associated methods |
US4648956A (en) | 1984-12-31 | 1987-03-10 | North American Philips Corporation | Electrode configurations for an electrophoretic display device |
DE3574292D1 (en) | 1985-01-02 | 1989-12-21 | Ibm | Electro-optic display cell and method of making same |
US4741604A (en) | 1985-02-01 | 1988-05-03 | Kornfeld Cary D | Electrode arrays for cellular displays |
US4703573A (en) | 1985-02-04 | 1987-11-03 | Montgomery John W | Visual and audible activated work and method of forming same |
US5208686A (en) | 1985-03-01 | 1993-05-04 | Manchester R&D Partnership | Liquid crystal color display and method |
US5345322A (en) | 1985-03-01 | 1994-09-06 | Manchester R&D Limited Partnership | Complementary color liquid crystal display |
US4643528A (en) | 1985-03-18 | 1987-02-17 | Manchester R & D Partnership | Encapsulated liquid crystal and filler material |
US4598960A (en) | 1985-04-29 | 1986-07-08 | Copytele, Inc. | Methods and apparatus for connecting closely spaced large conductor arrays employing multi-conductor carrier boards |
JPS61273786A (en) | 1985-05-29 | 1986-12-04 | Pilot Pen Co Ltd:The | Visual magnetic card |
US4686524A (en) | 1985-11-04 | 1987-08-11 | North American Philips Corporation | Photosensitive electrophoretic displays |
US4620916A (en) | 1985-09-19 | 1986-11-04 | Zwemer Dirk A | Degradation retardants for electrophoretic display devices |
US4726662A (en) | 1985-09-24 | 1988-02-23 | Talig Corporation | Display including a prismatic lens system or a prismatic reflective system |
US4742345A (en) | 1985-11-19 | 1988-05-03 | Copytele, Inc. | Electrophoretic display panel apparatus and methods therefor |
JPH0628570B2 (en) | 1986-02-13 | 1994-04-20 | 雪印乳業株式会社 | Method and device for manufacturing capsule body |
US4794390A (en) | 1986-03-10 | 1988-12-27 | Lippman Jeffrey H | Alphanumeric display means |
US4891245A (en) | 1986-03-21 | 1990-01-02 | Koh-I-Noor Rapidograph, Inc. | Electrophoretic display particles and a process for their preparation |
FR2596566B1 (en) | 1986-04-01 | 1989-03-10 | Solvay | CONDUCTIVE POLYMERS DERIVED FROM 3-ALKYLTHIOPHENES, PROCESS FOR THEIR MANUFACTURE AND ELECTRICALLY CONDUCTIVE DEVICES CONTAINING THEM |
US5042917A (en) | 1986-04-25 | 1991-08-27 | Matsushita Electric Industrial Co., Ltd. | Liquid crystal matrix display unit |
EP0255158A3 (en) | 1986-07-07 | 1989-09-27 | Koninklijke Philips Electronics N.V. | Data display device |
US4746917A (en) | 1986-07-14 | 1988-05-24 | Copytele, Inc. | Method and apparatus for operating an electrophoretic display between a display and a non-display mode |
US4748366A (en) | 1986-09-02 | 1988-05-31 | Taylor George W | Novel uses of piezoelectric materials for creating optical effects |
US4850919A (en) | 1986-09-11 | 1989-07-25 | Copytele, Inc. | Monolithic flat panel display apparatus and methods for fabrication thereof |
EP0344367B1 (en) | 1988-05-03 | 1994-08-24 | Copytele Inc. | Monolithic flat panel display apparatus |
US4772820A (en) | 1986-09-11 | 1988-09-20 | Copytele, Inc. | Monolithic flat panel display apparatus |
US4821291A (en) | 1986-09-22 | 1989-04-11 | Stevens John K | Improvements in or relating to signal communication systems |
US4937586A (en) | 1986-09-22 | 1990-06-26 | Stevens John K | Radio broadcast communication systems with multiple loop antennas |
US5194852A (en) | 1986-12-01 | 1993-03-16 | More Edward S | Electro-optic slate for direct entry and display and/or storage of hand-entered textual and graphic information |
US4892607A (en) | 1986-12-04 | 1990-01-09 | Copytele, Inc. | Chip mounting techniques for display apparatus |
US5028841A (en) | 1989-07-18 | 1991-07-02 | Copytele, Inc. | Chip mounting techniques for display apparatus |
US5279694A (en) | 1986-12-04 | 1994-01-18 | Copytele, Inc. | Chip mounting techniques for display apparatus |
US4947219A (en) | 1987-01-06 | 1990-08-07 | Chronar Corp. | Particulate semiconductor devices and methods |
US4888140A (en) | 1987-02-11 | 1989-12-19 | Chesebrough-Pond's Inc. | Method of forming fluid filled microcapsules |
IT1204914B (en) | 1987-03-06 | 1989-03-10 | Bonapace & C Spa | PROCEDURE FOR THE PROTECTION OF LITTLE STABLE SUBSTANCES WITH POLYMERIC MIXTURES AND PROCESSES FOR THEIR APPLICATION |
US4962466A (en) | 1987-03-27 | 1990-10-09 | Viscom Systems, Inc. | Electronic product information display system |
US4772102A (en) | 1987-05-18 | 1988-09-20 | Taliq Corporation | Display with light traps between reflector and scattering means |
US4919521A (en) | 1987-06-03 | 1990-04-24 | Nippon Sheet Glass Co., Ltd. | Electromagnetic device |
US5006422A (en) | 1987-08-06 | 1991-04-09 | The Nippon Signal Co., Ltd. | Visual magnetic recording medium and method of making the same |
US5450069A (en) | 1987-09-04 | 1995-09-12 | Copytele, Inc. | Data/facsimile telephone subset apparatus incorporating electrophoretic displays |
US4870677A (en) | 1987-09-04 | 1989-09-26 | Copytele, Inc. | Data/facsimile telephone subset apparatus incorporating electrophoretic displays |
US4833464A (en) | 1987-09-14 | 1989-05-23 | Copytele, Inc. | Electrophoretic information display (EPID) apparatus employing grey scale capability |
JP2551783B2 (en) | 1987-09-29 | 1996-11-06 | エヌオーケー株式会社 | Electrophoretic display device |
EP0346484B1 (en) | 1987-12-02 | 1995-08-16 | Japan Capsular Products, Inc. | Microencapsulated photochromic material, process for its preparation, and water-base ink composition prepared therefrom |
EP0323656B1 (en) | 1987-12-07 | 1993-04-07 | Solvay | Conductive polymers from heterocyclic aromatic compounds substitued with an ether group, process for their obtention, device containing these polymers, and monomers allowing to obtain such polymers |
US5161233A (en) | 1988-05-17 | 1992-11-03 | Dai Nippon Printing Co., Ltd. | Method for recording and reproducing information, apparatus therefor and recording medium |
US5006212A (en) | 1988-03-10 | 1991-04-09 | Copytele, Inc. | Methods enabling stress crack free patterning of chrome on layers of organic polymers |
US5185226A (en) | 1988-03-23 | 1993-02-09 | Olin Corporation | Electrostatic method for multicolor imaging from a single toner bath comprising double-encapsulated toner particles |
US5250932A (en) | 1988-04-13 | 1993-10-05 | Ube Industries, Ltd. | Liquid crystal display device |
US5070326A (en) | 1988-04-13 | 1991-12-03 | Ube Industries Ltd. | Liquid crystal display device |
FI80536C (en) | 1988-04-15 | 1990-06-11 | Nokia Mobira Oy | matrix Display |
US4947159A (en) | 1988-04-18 | 1990-08-07 | 501 Copytele, Inc. | Power supply apparatus capable of multi-mode operation for an electrophoretic display panel |
US5354695A (en) | 1992-04-08 | 1994-10-11 | Leedy Glenn J | Membrane dielectric isolation IC fabrication |
US5731116A (en) | 1989-05-17 | 1998-03-24 | Dai Nippon Printing Co., Ltd. | Electrostatic information recording medium and electrostatic information recording and reproducing method |
US5067021A (en) | 1988-07-21 | 1991-11-19 | Brody Thomas P | Modular flat-screen television displays and modules and circuit drives therefor |
US4931019A (en) | 1988-09-01 | 1990-06-05 | Pennwalt Corporation | Electrostatic image display apparatus |
US5119218A (en) | 1988-09-28 | 1992-06-02 | Ube Industries, Ltd. | Liquid crystal display device having varistor elements |
NL8802409A (en) | 1988-09-30 | 1990-04-17 | Philips Nv | DISPLAY DEVICE, SUPPORT PLATE PROVIDED WITH DIODE AND SUITABLE FOR THE DISPLAY DEVICE AND METHOD FOR MANUFACTURING THE SUPPORT PLATE. |
US4947157A (en) | 1988-10-03 | 1990-08-07 | 501 Copytele, Inc. | Apparatus and methods for pulsing the electrodes of an electrophoretic display for achieving faster display operation |
JPH02131221A (en) | 1988-11-11 | 1990-05-21 | Pioneer Electron Corp | Photoconduction type liquid crystal light valve |
US4889603A (en) | 1988-12-09 | 1989-12-26 | Copytele, Inc. | Method of eliminating gas bubbles in an electrophoretic display |
US5892244A (en) | 1989-01-10 | 1999-04-06 | Mitsubishi Denki Kabushiki Kaisha | Field effect transistor including πconjugate polymer and liquid crystal display including the field effect transistor |
US5041824A (en) | 1989-03-02 | 1991-08-20 | Copytele, Inc. | Semitransparent electrophoretic information displays (EPID) employing mesh like electrodes |
ES2116981T3 (en) | 1989-03-16 | 1998-08-01 | Dainippon Printing Co Ltd | FILTER PRODUCTION AND DUPLICATION PROCEDURE, AND PRODUCTION PROCEDURE OF PHOTOSENSITIVE ORGANS PROVIDED WITH THESE FILTERS. |
DE69031509T2 (en) | 1989-03-31 | 1998-04-23 | Kyocera Corp | Electronic notebook |
JP2770409B2 (en) | 1989-04-28 | 1998-07-02 | ソニー株式会社 | Display composition, coloring pigment and recording material |
US5179065A (en) | 1989-04-28 | 1993-01-12 | Sony Corporation | Recording material with a display composition including a coloring pigment |
US5053763A (en) | 1989-05-01 | 1991-10-01 | Copytele, Inc. | Dual anode flat panel electrophoretic display apparatus |
US5302235A (en) | 1989-05-01 | 1994-04-12 | Copytele, Inc. | Dual anode flat panel electrophoretic display apparatus |
US5508068A (en) | 1989-06-17 | 1996-04-16 | Shinko Electric Works Co., Ltd. | Cholesteric liquid crystal composition, color-forming liquid crystal composite product, method for protecting liquid crystal and color-forming liquid crystal picture laminated product |
JPH03109526A (en) | 1989-06-20 | 1991-05-09 | Japan Synthetic Rubber Co Ltd | Active matrix substrate for liquid crystal display device |
US5220316A (en) | 1989-07-03 | 1993-06-15 | Benjamin Kazan | Nonlinear resistor control circuit and use in liquid crystal displays |
US5066946A (en) | 1989-07-03 | 1991-11-19 | Copytele, Inc. | Electrophoretic display panel with selective line erasure |
JPH0344621A (en) | 1989-07-12 | 1991-02-26 | Alps Electric Co Ltd | Method and device for displaying and display medium tube used therein |
US5128785A (en) | 1989-08-08 | 1992-07-07 | Ube Industries, Ltd. | Liquid crystal display device substantially free from cross-talk having varistor layers coupled to signal lines and picture electrodes |
US5185228A (en) * | 1989-08-17 | 1993-02-09 | Mita Industrial Co., Ltd. | Electrophotosensitive material containing p-benzylbiphenyl |
US5167508A (en) | 1989-08-21 | 1992-12-01 | Mc Taggart Stephen I | Electronic book |
GB2236424A (en) | 1989-09-15 | 1991-04-03 | Philips Electronic Associated | Active matrix display device and their fabrication |
US5254981A (en) | 1989-09-15 | 1993-10-19 | Copytele, Inc. | Electrophoretic display employing gray scale capability utilizing area modulation |
US5266934A (en) | 1989-09-28 | 1993-11-30 | U.S. Philips Corporation | Alpha-numerical display device |
JP2712046B2 (en) | 1989-10-18 | 1998-02-10 | 宇部興産株式会社 | Liquid crystal display |
CA2027440C (en) | 1989-11-08 | 1995-07-04 | Nicholas K. Sheridon | Paper-like computer output display and scanning system therefor |
US5177476A (en) | 1989-11-24 | 1993-01-05 | Copytele, Inc. | Methods of fabricating dual anode, flat panel electrophoretic displays |
US5077157A (en) | 1989-11-24 | 1991-12-31 | Copytele, Inc. | Methods of fabricating dual anode, flat panel electrophoretic displays |
US5497171A (en) | 1989-11-27 | 1996-03-05 | Asulab S.A. | Electronic display arrangement |
US5057363A (en) | 1989-12-27 | 1991-10-15 | Japan Capsular Products Inc. | Magnetic display system |
FI91573C (en) | 1990-01-04 | 1994-07-11 | Neste Oy | Method for manufacturing electronic and electro-optical components and circuits |
US5576867A (en) | 1990-01-09 | 1996-11-19 | Merck Patent Gesellschaft Mit Beschrankter Haftung | Liquid crystal switching elements having a parallel electric field and βo which is not 0° or 90° |
US5500635A (en) | 1990-02-20 | 1996-03-19 | Mott; Jonathan C. | Products incorporating piezoelectric material |
EP0443571A3 (en) | 1990-02-23 | 1992-04-15 | Ube Industries, Ltd. | Liquid crystal display panel |
JPH063528B2 (en) | 1990-03-16 | 1994-01-12 | 富士ゼロックス株式会社 | Light modulation display element and display method |
US5407231A (en) | 1990-04-09 | 1995-04-18 | Productive Environments, Inc. | Windowing leaf structure |
JPH049916A (en) | 1990-04-27 | 1992-01-14 | Victor Co Of Japan Ltd | Recording device and recording head |
US5085918A (en) | 1990-05-15 | 1992-02-04 | Minnesota Mining And Manufacturing Company | Printed retroreflective sheet |
FR2662290B1 (en) | 1990-05-15 | 1992-07-24 | France Telecom | METHOD FOR PRODUCING A DISPLAY SCREEN WITH ACTIVE MATRIX AND STORAGE CAPACITORS AND SCREEN OBTAINED BY THIS PROCESS. |
JP2554769B2 (en) | 1990-05-16 | 1996-11-13 | 株式会社東芝 | Liquid crystal display |
GB2244860A (en) | 1990-06-04 | 1991-12-11 | Philips Electronic Associated | Fabricating mim type device array and display devices incorporating such arrays |
US6438882B1 (en) | 1990-06-11 | 2002-08-27 | Randy B. Reynolds | Lighted flexible display device having a battery supply mount |
US5151032A (en) | 1990-07-13 | 1992-09-29 | Kabushiki Kaisha Pilot | Magnetophoretic display panel |
US5175047A (en) | 1990-08-09 | 1992-12-29 | Teledyne Industries, Inc. | Rigid-flex printed circuit |
US5699102A (en) | 1990-10-15 | 1997-12-16 | Eastman Kodak Company | Non-impact copier/printer system communicating rosterized, printer independant data |
US5250938A (en) | 1990-12-19 | 1993-10-05 | Copytele, Inc. | Electrophoretic display panel having enhanced operation |
JP3053224B2 (en) | 1990-12-20 | 2000-06-19 | 東燃株式会社 | Method for producing steel sheet or molded steel sheet having ceramic coating |
US5362671A (en) | 1990-12-31 | 1994-11-08 | Kopin Corporation | Method of fabricating single crystal silicon arrayed devices for display panels |
US5138472A (en) | 1991-02-11 | 1992-08-11 | Raychem Corporation | Display having light scattering centers |
US5233459A (en) | 1991-03-06 | 1993-08-03 | Massachusetts Institute Of Technology | Electric display device |
US5223823A (en) | 1991-03-11 | 1993-06-29 | Copytele, Inc. | Electrophoretic display panel with plural electrically independent anode elements |
DE69210993T2 (en) | 1991-03-11 | 1996-10-02 | Copytele Inc | ELECTROPHORETIC DISPLAY DEVICE WITH SEVERAL ELECTRICALLY INDEPENDENT ANODE ELEMENTS |
US5148002A (en) | 1991-03-14 | 1992-09-15 | Kuo David D | Multi-functional garment system |
US5187609A (en) | 1991-03-27 | 1993-02-16 | Disanto Frank J | Electrophoretic display panel with semiconductor coated elements |
US5172314A (en) | 1991-05-03 | 1992-12-15 | Electronic Retailing Systems International | Apparatus for communicating price changes including printer and display devices |
US5315312A (en) | 1991-05-06 | 1994-05-24 | Copytele, Inc. | Electrophoretic display panel with tapered grid insulators and associated methods |
US5375044A (en) | 1991-05-13 | 1994-12-20 | Guritz; Steven P. W. | Multipurpose optical display for articulating surfaces |
US5223115A (en) | 1991-05-13 | 1993-06-29 | Copytele, Inc. | Electrophoretic display with single character erasure |
GB2255934B (en) | 1991-05-13 | 1994-10-05 | Richelt George Williams | Credit/bank card security system |
GB9110737D0 (en) | 1991-05-17 | 1991-07-10 | Philips Electronic Associated | Method of fabricating mim type device arrays and display devices incorporating such arrays |
DE69125190T2 (en) | 1991-05-30 | 1997-06-19 | Copytele Inc | METHOD FOR PRODUCING ELECTROPHORETIC FLAT PANELS WITH DOUBLE ANODE |
JP2935290B2 (en) | 1991-06-07 | 1999-08-16 | 日本電気株式会社 | Display device using flat display panel |
JP3086718B2 (en) | 1991-06-24 | 2000-09-11 | 株式会社東芝 | Liquid crystal display device |
US5689282A (en) | 1991-07-09 | 1997-11-18 | U.S. Philips Corporation | Display device with compensation for stray capacitance |
WO1993002443A1 (en) | 1991-07-15 | 1993-02-04 | Copytele, Inc. | Electrophoretic display employing grey scale capability utilizing area modulation |
GB9115402D0 (en) | 1991-07-17 | 1991-09-04 | Philips Electronic Associated | Matrix display device and its method of operation |
JP3096925B2 (en) | 1991-07-22 | 2000-10-10 | 横浜ゴム株式会社 | Pneumatic radial tire |
US5216416A (en) | 1991-08-19 | 1993-06-01 | Copytele, Inc. | Electrophoretic display panel with interleaved local anode |
EP0600878B1 (en) | 1991-08-29 | 1997-02-12 | Copytele Inc. | Electrophoretic display panel with internal mesh background screen |
CA2119247C (en) | 1991-09-17 | 1999-07-06 | Frank J. Disanto | Method for writing data to an electrophoretic display panel |
US5527589A (en) | 1991-10-16 | 1996-06-18 | Dai Nippon Printing Co., Ltd. | Electrostatic information recording medium |
JP3164919B2 (en) | 1991-10-29 | 2001-05-14 | ゼロックス コーポレーション | Method of forming dichroic balls |
US5463492A (en) | 1991-11-01 | 1995-10-31 | Research Frontiers Incorporated | Light modulating film of improved clarity for a light valve |
JP3120085B2 (en) | 1991-11-21 | 2000-12-25 | 株式会社セガ | Electronic devices and information carriers |
US5247290A (en) | 1991-11-21 | 1993-09-21 | Copytele, Inc. | Method of operation for reducing power, increasing life and improving performance of epids |
US5266937A (en) | 1991-11-25 | 1993-11-30 | Copytele, Inc. | Method for writing data to an electrophoretic display panel |
US5174882A (en) | 1991-11-25 | 1992-12-29 | Copytele, Inc. | Electrode structure for an electrophoretic display apparatus |
DE4140647C2 (en) | 1991-12-10 | 1996-09-12 | Bosch Gmbh Robert | Display device with light sensor |
WO1993012607A1 (en) | 1991-12-13 | 1993-06-24 | Kabushiki Kaisha Ace Denken | Electronic notepad |
US5260002A (en) | 1991-12-23 | 1993-11-09 | Vanderbilt University | Method and apparatus for producing uniform polymeric spheres |
US5351143A (en) | 1992-02-07 | 1994-09-27 | Kabushiki Kaisha Pilot | Hand-writable polymer dispersed liquid crystal board set with high resistance layer of crosslinking polymer adjacent conductive layer |
US5412398A (en) | 1992-02-25 | 1995-05-02 | Copytele, Inc. | Electrophoretic display panel and associated methods for blinking displayed characters |
US5293528A (en) | 1992-02-25 | 1994-03-08 | Copytele, Inc. | Electrophoretic display panel and associated methods providing single pixel erase capability |
DE69324675T2 (en) | 1992-02-25 | 2000-09-07 | Copytele Inc., Huntington Station | ELECTROPHORETIC DISPLAY FOR FLASHING SIGNS DISPLAYED |
US5411792A (en) | 1992-02-27 | 1995-05-02 | Sumitomo Metal Mining Co., Ltd. | Transparent conductive substrate |
JP2875922B2 (en) * | 1992-03-05 | 1999-03-31 | 三菱電機株式会社 | A / D converter |
DK0725939T3 (en) | 1992-03-13 | 1999-11-15 | Kopin Corp | Display system for mounting on the head |
ZA933185B (en) | 1992-05-08 | 1994-05-23 | Dick Co Ab | Encapsulated magnetic particles pigments and carbon black compositions and methods related thereto |
CA2070068C (en) | 1992-05-29 | 2000-07-04 | Masayuki Nakanishi | Magnetic display system |
US5194652A (en) * | 1992-05-29 | 1993-03-16 | The Dow Chemical Company | Oxidation-resistant cyclophosphazene fluid including triarylphosphine or phosphine oxide |
US5298833A (en) | 1992-06-22 | 1994-03-29 | Copytele, Inc. | Black electrophoretic particles for an electrophoretic image display |
FR2693005B1 (en) | 1992-06-26 | 1995-03-31 | Thomson Lcd | Circuit encapsulation and passivation arrangement for flat screens. |
CA2094343A1 (en) | 1992-07-17 | 1994-01-18 | Gerald L. Klein | Method and apparatus for displaying capillary electrophoresis data |
US5398131A (en) | 1992-08-13 | 1995-03-14 | Hall; Dennis R. | Stereoscopic hardcopy methods |
US5512162A (en) | 1992-08-13 | 1996-04-30 | Massachusetts Institute Of Technology | Method for photo-forming small shaped metal containing articles from porous precursors |
EP0585000A3 (en) | 1992-08-21 | 1994-06-08 | Hitachi Ltd | A sheet processing apparatus, and a facsimile system incorporating such an apparatus |
US5270843A (en) | 1992-08-31 | 1993-12-14 | Jiansheng Wang | Directly formed polymer dispersed liquid crystal light shutter displays |
US5279511A (en) | 1992-10-21 | 1994-01-18 | Copytele, Inc. | Method of filling an electrophoretic display |
US5528399A (en) | 1992-10-29 | 1996-06-18 | Sharp Kabushiki Kaisha | Optical address type display device with uniformly functioning optical switching elements each provided for each pixel |
US5742879A (en) | 1992-11-16 | 1998-04-21 | Eastman Kodak Company | Method and apparatus for reproducing documents with variable information |
US5380769A (en) | 1993-01-19 | 1995-01-10 | Tektronix Inc. | Reactive ink compositions and systems |
ATE533112T1 (en) | 1992-11-27 | 2011-11-15 | Io Res Pty Ltd | DISTRIBUTED DATABASE SYSTEM AND DATABASE RECEIVER THEREOF |
JP2774424B2 (en) | 1992-12-07 | 1998-07-09 | シャープ株式会社 | Image input integrated display device |
CA2208884C (en) | 1992-12-22 | 2000-02-01 | Electronic Retailing Systems International Inc., | Subglobal area addressing for electronic price displays |
US5262098A (en) | 1992-12-23 | 1993-11-16 | Xerox Corporation | Method and apparatus for fabricating bichromal balls for a twisting ball display |
DE4244584A1 (en) | 1992-12-28 | 1994-07-07 | Krone Ag | Method and arrangement for networking electro-optical screen modules |
US5345251A (en) | 1993-01-11 | 1994-09-06 | Copytele, Inc. | Electrophoretic display panel with interleaved cathode and anode |
US5402145A (en) | 1993-02-17 | 1995-03-28 | Copytele, Inc. | Electrophoretic display panel with arc driven individual pixels |
US5374815A (en) | 1993-03-15 | 1994-12-20 | Electronic Retailing Systems Int'l Inc. | Technique for locating electronic labels in an electronic price display system |
GB9305934D0 (en) | 1993-03-22 | 1993-05-12 | Solaria Ind Inc | Automatic hitching system |
US5600172A (en) | 1993-03-31 | 1997-02-04 | Electric Power Research Institute | Hybrid, dye antenna/thin film superconductor devices and methods of tuned photo-responsive control thereof |
CA2160680A1 (en) | 1993-04-21 | 1994-10-27 | Wei-Hsin Hou | Black and white electrophoretic particles and method of manufacture |
JPH07152024A (en) | 1993-05-17 | 1995-06-16 | Sharp Corp | Liquid crystal display element |
US5548764A (en) | 1993-04-30 | 1996-08-20 | Advanced Micro Devices, Inc. | Power interrupt device with remote activity detector |
GB9309246D0 (en) | 1993-05-05 | 1993-06-16 | Esselte Meto Int Gmbh | Rechargeable shelf edge tag |
US5360689A (en) | 1993-05-21 | 1994-11-01 | Copytele, Inc. | Colored polymeric dielectric particles and method of manufacture |
JPH08510790A (en) | 1993-05-21 | 1996-11-12 | コピイテル,インコーポレイテッド | Method for preparing electrophoretic dispersion containing two types of particles having different colors and opposite charges |
US6105290A (en) | 1993-05-25 | 2000-08-22 | Coates Signco Pty. Limited | Display device |
JPH0713138A (en) | 1993-06-29 | 1995-01-17 | Casio Comput Co Ltd | Polymer dispersion type liquid crystal display element |
US5380362A (en) | 1993-07-16 | 1995-01-10 | Copytele, Inc. | Suspension for use in electrophoretic image display systems |
US5411656A (en) | 1993-08-12 | 1995-05-02 | Copytele, Inc. | Gas absorption additives for electrophoretic suspensions |
WO1995007527A1 (en) | 1993-09-09 | 1995-03-16 | Copytele, Inc. | Electrophoretic display panel with selective character addressability |
BR9407493A (en) * | 1993-09-13 | 1996-06-25 | Colivier Pty Ltd | Toilet seat |
EP0721638A4 (en) | 1993-10-01 | 1997-04-09 | Copytele Inc | Electrophoretic display panel with selective character addressability |
DE69412567T2 (en) | 1993-11-01 | 1999-02-04 | Hodogaya Chemical Co., Ltd., Tokio/Tokyo | Amine compound and electroluminescent device containing it |
US5414283A (en) | 1993-11-19 | 1995-05-09 | Ois Optical Imaging Systems, Inc. | TFT with reduced parasitic capacitance |
GB2284469B (en) * | 1993-12-01 | 1997-12-03 | Spectral Technology Limited | Lamp assembly |
US5403518A (en) | 1993-12-02 | 1995-04-04 | Copytele, Inc. | Formulations for improved electrophoretic display suspensions and related methods |
US5625460A (en) | 1993-12-09 | 1997-04-29 | Eastman Kodak Company | Method and apparatus for locally switching gray dot types to reproduce an image with gray level printing |
US5508720A (en) | 1994-02-02 | 1996-04-16 | Copytele, Inc. | Portable telecommunication device with removable electrophoretic display |
US5534888A (en) | 1994-02-03 | 1996-07-09 | Motorola | Electronic book |
US5541478A (en) | 1994-03-04 | 1996-07-30 | General Motors Corporation | Active matrix vacuum fluorescent display using pixel isolation |
JPH08510575A (en) | 1994-03-18 | 1996-11-05 | フィリップス エレクトロニクス ネムローゼ フェン ノートシャップ | Active matrix display device and driving method thereof |
US5744283A (en) | 1994-04-12 | 1998-04-28 | U.S. Philips Corporation | Method of photolithographically metallizing at least the inside of holes arranged in accordance with a pattern in a plate of an electrically insulating material |
US5699097A (en) | 1994-04-22 | 1997-12-16 | Kabushiki Kaisha Toshiba | Display medium and method for display therewith |
JPH08512171A (en) | 1994-04-28 | 1996-12-17 | フィリップス エレクトロニクス ネムローゼ フェンノートシャップ | A method for photolithographically producing copper patterns on a plate of electrically insulating material. |
US5596209A (en) * | 1994-05-09 | 1997-01-21 | Lockheed Sanders, Inc. | Photoconductive semiconductor control device |
US5543589A (en) | 1994-05-23 | 1996-08-06 | International Business Machines Corporation | Touchpad with dual sensor that simplifies scanning |
JPH10501301A (en) | 1994-05-26 | 1998-02-03 | コピイテル,インコーポレイテッド | Fluorinated dielectric suspensions for electrophoretic image displays and related methods |
JPH082068A (en) | 1994-06-17 | 1996-01-09 | Matsushita Electric Ind Co Ltd | Printer with facsimile |
JP3246189B2 (en) | 1994-06-28 | 2002-01-15 | 株式会社日立製作所 | Semiconductor display device |
US5619307A (en) | 1994-07-07 | 1997-04-08 | Cannon Kabushiki Kaisha | Method of printing test pattern and apparatus for outputting test pattern |
US5538430A (en) | 1994-07-26 | 1996-07-23 | Smith; B. Gary | Self-reading child's book |
US5914698A (en) | 1996-04-15 | 1999-06-22 | Addco Manufacturing, Inc. | Modular message board |
GB2324273B (en) | 1994-08-10 | 1998-12-30 | Chemitech Inc | Microcapsules for magnetic display |
GB2292119B (en) | 1994-08-10 | 1998-12-30 | Chemitech Inc | A process for producing a magnetic display sheet using microcapsules |
US5602572A (en) | 1994-08-25 | 1997-02-11 | Minnesota Mining And Manufacturing Company | Thinned halftone dot patterns for inkjet printing |
EP0709713A3 (en) | 1994-10-31 | 1997-03-26 | Fujikura Ltd | Electrically controlled color display device and method |
EP0791190B1 (en) | 1994-11-07 | 1999-09-29 | Minnesota Mining And Manufacturing Company | Signage articles and methods of making same |
US5722048A (en) | 1994-12-02 | 1998-02-24 | Ncr Corporation | Apparatus for improving the signal to noise ratio in wireless communication systems through message pooling and method of using the same |
US5650872A (en) | 1994-12-08 | 1997-07-22 | Research Frontiers Incorporated | Light valve containing ultrafine particles |
US5694224A (en) | 1994-12-08 | 1997-12-02 | Eastman Kodak Company | Method and apparatus for tone adjustment correction on rendering gray level image data |
US5574291A (en) | 1994-12-09 | 1996-11-12 | Lucent Technologies Inc. | Article comprising a thin film transistor with low conductivity organic layer |
TW293172B (en) | 1994-12-09 | 1996-12-11 | At & T Corp | |
US5684365A (en) | 1994-12-14 | 1997-11-04 | Eastman Kodak Company | TFT-el display panel using organic electroluminescent media |
US5648801A (en) | 1994-12-16 | 1997-07-15 | International Business Machines Corporation | Grayscale printing system |
DE69532752T2 (en) | 1994-12-16 | 2005-02-10 | Nippon Carbide Kogyo K.K. | LIGHT-EMITTING RETRORE-LAYERING LAYER IN ULTRAVIOLET RADIATION |
US5745094A (en) | 1994-12-28 | 1998-04-28 | International Business Machines Corporation | Electrophoretic display |
US5604027A (en) | 1995-01-03 | 1997-02-18 | Xerox Corporation | Some uses of microencapsulation for electric paper |
US6137467A (en) | 1995-01-03 | 2000-10-24 | Xerox Corporation | Optically sensitive electric paper |
DE19500694C2 (en) | 1995-01-12 | 1997-12-11 | Martin Hauck | RF imaging device |
CA2210237A1 (en) | 1995-01-13 | 1996-07-18 | Gary R. Cantu | Solar powered price display system |
EP0820605A4 (en) | 1995-03-09 | 1999-12-01 | Geo Centers Inc | Conducting substrate, liquid crystal device made therefrom and liquid crystalline composition in contact therewith |
US5751257A (en) | 1995-04-28 | 1998-05-12 | Teletransactions, Inc. | Programmable shelf tag and method for changing and updating shelf tag information |
KR100395380B1 (en) | 1995-05-02 | 2003-12-01 | 코닌클리케 필립스 일렉트로닉스 엔.브이. | Apparatus for depositing cathode material on wire cathode and method for manufacturing wire cathode |
US5609978A (en) | 1995-06-06 | 1997-03-11 | Eastman Kodak Company | Method for producing an electronic image from a photographic element |
US6372534B1 (en) | 1995-06-06 | 2002-04-16 | Lg. Philips Lcd Co., Ltd | Method of making a TFT array with photo-imageable insulating layer over address lines |
US5644327A (en) | 1995-06-07 | 1997-07-01 | David Sarnoff Research Center, Inc. | Tessellated electroluminescent display having a multilayer ceramic substrate |
US6459418B1 (en) | 1995-07-20 | 2002-10-01 | E Ink Corporation | Displays combining active and non-active inks |
US6017584A (en) | 1995-07-20 | 2000-01-25 | E Ink Corporation | Multi-color electrophoretic displays and materials for making the same |
US6124851A (en) | 1995-07-20 | 2000-09-26 | E Ink Corporation | Electronic book with multiple page displays |
US6120839A (en) | 1995-07-20 | 2000-09-19 | E Ink Corporation | Electro-osmotic displays and materials for making the same |
US7106296B1 (en) | 1995-07-20 | 2006-09-12 | E Ink Corporation | Electronic book with multiple page displays |
US6262706B1 (en) | 1995-07-20 | 2001-07-17 | E Ink Corporation | Retroreflective electrophoretic displays and materials for making the same |
US6120588A (en) | 1996-07-19 | 2000-09-19 | E Ink Corporation | Electronically addressable microencapsulated ink and display thereof |
US6515649B1 (en) | 1995-07-20 | 2003-02-04 | E Ink Corporation | Suspended particle displays and materials for making the same |
US6118426A (en) | 1995-07-20 | 2000-09-12 | E Ink Corporation | Transducers and indicators having printed displays |
US5737041A (en) | 1995-07-31 | 1998-04-07 | Image Quest Technologies, Inc. | TFT, method of making and matrix displays incorporating the TFT |
US5716550A (en) | 1995-08-10 | 1998-02-10 | Eastman Kodak Company | Electrically conductive composition and elements containing solubilized polyaniline complex and solvent mixture |
US5716026A (en) * | 1995-08-14 | 1998-02-10 | Pascasio; Vidal | High-capacity, high-comfort split-level seating for transport and stationary applications |
US5686383A (en) | 1995-08-22 | 1997-11-11 | Eastman Kodak Company | Method of making a color filter array by colorant transfer and lamination |
GB2306229B (en) | 1995-10-13 | 1999-04-07 | Ibm | Diffusely reflective display cell |
US5582700A (en) | 1995-10-16 | 1996-12-10 | Zikon Corporation | Electrophoretic display utilizing phase separation of liquids |
US5650199A (en) | 1995-11-22 | 1997-07-22 | Aem, Inc. | Method of making a multilayer electronic component with inter-layer conductor connection utilizing a conductive via forming ink |
JP3759986B2 (en) | 1995-12-07 | 2006-03-29 | フロイント産業株式会社 | Seamless capsule and manufacturing method thereof |
US5760761A (en) | 1995-12-15 | 1998-06-02 | Xerox Corporation | Highlight color twisting ball display |
US5708525A (en) | 1995-12-15 | 1998-01-13 | Xerox Corporation | Applications of a transmissive twisting ball display |
US5767826A (en) | 1995-12-15 | 1998-06-16 | Xerox Corporation | Subtractive color twisting ball display |
US5982346A (en) | 1995-12-15 | 1999-11-09 | Xerox Corporation | Fabrication of a twisting ball display having two or more different kinds of balls |
US5717515A (en) | 1995-12-15 | 1998-02-10 | Xerox Corporation | Canted electric fields for addressing a twisting ball display |
US5739801A (en) | 1995-12-15 | 1998-04-14 | Xerox Corporation | Multithreshold addressing of a twisting ball display |
US5737115A (en) | 1995-12-15 | 1998-04-07 | Xerox Corporation | Additive color tristate light valve twisting ball display |
US5751268A (en) | 1995-12-15 | 1998-05-12 | Xerox Corporation | Pseudo-four color twisting ball display |
US5717283A (en) | 1996-01-03 | 1998-02-10 | Xerox Corporation | Display sheet with a plurality of hourglass shaped capsules containing marking means responsive to external fields |
US6117294A (en) | 1996-01-19 | 2000-09-12 | Micron Technology, Inc. | Black matrix material and methods related thereto |
US5752152A (en) | 1996-02-08 | 1998-05-12 | Eastman Kodak Company | Copy restrictive system |
US5801664A (en) | 1996-02-12 | 1998-09-01 | Microsoft Corporation | System and method for transmitting data from a computer to a portable information device using RF emissions from a computer monitor |
US5786875A (en) | 1996-03-15 | 1998-07-28 | Brader; Lawrence Allen | Thermal liquid crystal display using thermoelectric link |
US5649266A (en) | 1996-04-18 | 1997-07-15 | Eastman Kodak Company | In-station calibration of toner concentration monitor and replenisher drive |
US5835577A (en) | 1996-04-25 | 1998-11-10 | Copytele, Inc. | Multi-functional personal telecommunications apparatus |
KR100479000B1 (en) | 1996-05-15 | 2005-08-01 | 세이코 엡슨 가부시키가이샤 | Manufacturing method of thin film device, liquid crystal panel and electronic device and thin film device |
US5986622A (en) | 1996-05-24 | 1999-11-16 | Lucent Technologies Inc. | Panel display of multiple display units for multiple signal sources |
US5709976A (en) | 1996-06-03 | 1998-01-20 | Xerox Corporation | Coated papers |
NO304859B1 (en) | 1997-06-06 | 1999-02-22 | Opticom As | Optical logic element and methods for its preparation and optical addressing, respectively, and its use in an optical logic device |
JP2998075B2 (en) | 1996-06-20 | 2000-01-11 | セイコーインスツルメンツ株式会社 | Reflective liquid crystal display |
US5808783A (en) | 1996-06-27 | 1998-09-15 | Xerox Corporation | High reflectance gyricon display |
US6055091A (en) | 1996-06-27 | 2000-04-25 | Xerox Corporation | Twisting-cylinder display |
US5825529A (en) | 1996-06-27 | 1998-10-20 | Xerox Corporation | Gyricon display with no elastomer substrate |
US5754332A (en) | 1996-06-27 | 1998-05-19 | Xerox Corporation | Monolayer gyricon display |
JPH1090662A (en) | 1996-07-12 | 1998-04-10 | Tektronix Inc | Plasma address liquid crystal display device and display panel operating method |
US6538801B2 (en) | 1996-07-19 | 2003-03-25 | E Ink Corporation | Electrophoretic displays using nanoparticles |
US6323989B1 (en) | 1996-07-19 | 2001-11-27 | E Ink Corporation | Electrophoretic displays using nanoparticles |
US5738716A (en) | 1996-08-20 | 1998-04-14 | Eastman Kodak Company | Color pigmented ink jet ink set |
US5843259A (en) | 1996-08-29 | 1998-12-01 | Xerox Corporation | Method for applying an adhesive layer to a substrate surface |
US5894367A (en) | 1996-09-13 | 1999-04-13 | Xerox Corporation | Twisting cylinder display using multiple chromatic values |
US5922268A (en) | 1997-10-30 | 1999-07-13 | Xerox Corporation | Method of manufacturing a twisting cylinder display using multiple chromatic values |
US5715514A (en) | 1996-10-02 | 1998-02-03 | Xerox Corporation | Calibration method and system for sheet registration and deskewing |
US5930026A (en) | 1996-10-25 | 1999-07-27 | Massachusetts Institute Of Technology | Nonemissive displays and piezoelectric power supplies therefor |
JP3118196B2 (en) | 1996-11-26 | 2000-12-18 | 日本碍子株式会社 | Vacuum sealing plug and vacuum exhaust jig |
US6107117A (en) | 1996-12-20 | 2000-08-22 | Lucent Technologies Inc. | Method of making an organic thin film transistor |
US5777782A (en) | 1996-12-24 | 1998-07-07 | Xerox Corporation | Auxiliary optics for a twisting ball display |
US5815306A (en) | 1996-12-24 | 1998-09-29 | Xerox Corporation | "Eggcrate" substrate for a twisting ball display |
US5767978A (en) | 1997-01-21 | 1998-06-16 | Xerox Corporation | Image segmentation system |
US5783614A (en) | 1997-02-21 | 1998-07-21 | Copytele, Inc. | Polymeric-coated dielectric particles and formulation and method for preparing same |
US6980196B1 (en) | 1997-03-18 | 2005-12-27 | Massachusetts Institute Of Technology | Printable electronic display |
US6026896A (en) * | 1997-04-10 | 2000-02-22 | Applied Materials, Inc. | Temperature control system for semiconductor processing facilities |
US5866284A (en) | 1997-05-28 | 1999-02-02 | Hewlett-Packard Company | Print method and apparatus for re-writable medium |
US5900858A (en) | 1997-05-30 | 1999-05-04 | Xerox Corporation | Rotation mechanism for bichromal balls of a twisting ball display sheet based on contact potential charging |
US6215920B1 (en) | 1997-06-10 | 2001-04-10 | The University Of British Columbia | Electrophoretic, high index and phase transition control of total internal reflection in high efficiency variable reflectivity image displays |
US6064784A (en) | 1997-06-10 | 2000-05-16 | The University Of British Columbia | Electrophoretic, dual refraction frustration of total internal reflection in high efficiency variable reflectivity image displays |
US5751434A (en) | 1997-06-27 | 1998-05-12 | Xerox Corporation | Area dependent draft printing system |
US5751433A (en) | 1997-06-27 | 1998-05-12 | Xerox Corporation | Draft printing system |
US6171464B1 (en) | 1997-08-20 | 2001-01-09 | Micron Technology, Inc. | Suspensions and methods for deposition of luminescent materials and articles produced thereby |
US6300932B1 (en) | 1997-08-28 | 2001-10-09 | E Ink Corporation | Electrophoretic displays with luminescent particles and materials for making the same |
US6252564B1 (en) | 1997-08-28 | 2001-06-26 | E Ink Corporation | Tiled displays |
US6232950B1 (en) | 1997-08-28 | 2001-05-15 | E Ink Corporation | Rear electrode structures for displays |
US6177921B1 (en) | 1997-08-28 | 2001-01-23 | E Ink Corporation | Printable electrode structures for displays |
US6067185A (en) | 1997-08-28 | 2000-05-23 | E Ink Corporation | Process for creating an encapsulated electrophoretic display |
US6340957B1 (en) | 1997-08-29 | 2002-01-22 | Xerox Corporation | Dynamically relocatable tileable displays |
JP4085449B2 (en) | 1997-10-09 | 2008-05-14 | ブラザー工業株式会社 | Electrophoretic display device, microcapsule and medium |
GB2376566B (en) | 1997-10-14 | 2003-02-05 | Patterning Technologies Ltd | Method of forming an electronic device |
GB9726094D0 (en) | 1997-12-10 | 1998-02-11 | Philips Electronics Nv | Thin film transistors and electronic devices comprising such |
EP0924551A1 (en) | 1997-12-18 | 1999-06-23 | The Technology Partnership Public Limited Company | Method and apparatus for matrix addressing of an electrophoretic display device |
JP4003273B2 (en) | 1998-01-19 | 2007-11-07 | セイコーエプソン株式会社 | Pattern forming method and substrate manufacturing apparatus |
US5975680A (en) | 1998-02-05 | 1999-11-02 | Eastman Kodak Company | Producing a non-emissive display having a plurality of pixels |
US5914806A (en) | 1998-02-11 | 1999-06-22 | International Business Machines Corporation | Stable electrophoretic particles for displays |
US6153075A (en) | 1998-02-26 | 2000-11-28 | Micron Technology, Inc. | Methods using electrophoretically deposited patternable material |
JP3091722B2 (en) | 1998-03-30 | 2000-09-25 | 三洋電機株式会社 | Battery storage case |
AU3767899A (en) | 1998-04-27 | 1999-11-16 | E-Ink Corporation | Shutter mode microencapsulated electrophoretic display |
AU3987299A (en) | 1998-05-12 | 1999-11-29 | E-Ink Corporation | Microencapsulated electrophoretic electrostatically-addressed media for drawing device applications |
US5917199A (en) | 1998-05-15 | 1999-06-29 | Ois Optical Imaging Systems, Inc. | Solid state imager including TFTS with variably doped contact layer system for reducing TFT leakage current and increasing mobility and method of making same |
US6239896B1 (en) | 1998-06-01 | 2001-05-29 | Canon Kabushiki Kaisha | Electrophotographic display device and driving method therefor |
US6014247A (en) | 1998-06-05 | 2000-01-11 | Lear Automotive Dearborn, Inc. | Electronic ink dimming mirror |
US6146716A (en) | 1998-06-26 | 2000-11-14 | Sri International | Conservatively printed displays and methods relating to same |
DE69904185T2 (en) | 1998-07-08 | 2003-03-27 | E Ink Corp | METHOD AND DEVICE FOR MEASURING THE CONDITION OF AN ELECTROPHORETIC DISPLAY DEVICE |
US6348908B1 (en) | 1998-09-15 | 2002-02-19 | Xerox Corporation | Ambient energy powered display |
US6184856B1 (en) | 1998-09-16 | 2001-02-06 | International Business Machines Corporation | Transmissive electrophoretic display with laterally adjacent color cells |
US6144361A (en) | 1998-09-16 | 2000-11-07 | International Business Machines Corporation | Transmissive electrophoretic display with vertical electrodes |
US6225971B1 (en) | 1998-09-16 | 2001-05-01 | International Business Machines Corporation | Reflective electrophoretic display with laterally adjacent color cells using an absorbing panel |
US6271823B1 (en) | 1998-09-16 | 2001-08-07 | International Business Machines Corporation | Reflective electrophoretic display with laterally adjacent color cells using a reflective panel |
AU6293499A (en) | 1998-10-07 | 2000-04-26 | E-Ink Corporation | Capsules for electrophoretic displays and methods for making the same |
JP4679726B2 (en) | 1998-10-07 | 2011-04-27 | イー インク コーポレイション | Lighting system for non-luminous electronic display |
US6051957A (en) | 1998-10-21 | 2000-04-18 | Duracell Inc. | Battery pack having a state of charge indicator |
JP4138106B2 (en) | 1998-10-22 | 2008-08-20 | セイコーエプソン株式会社 | Printer for electronic paper |
US6097531A (en) | 1998-11-25 | 2000-08-01 | Xerox Corporation | Method of making uniformly magnetized elements for a gyricon display |
US6312304B1 (en) | 1998-12-15 | 2001-11-06 | E Ink Corporation | Assembly of microencapsulated electronic displays |
US6506438B2 (en) | 1998-12-15 | 2003-01-14 | E Ink Corporation | Method for printing of transistor arrays on plastic substrates |
US6274412B1 (en) | 1998-12-21 | 2001-08-14 | Parelec, Inc. | Material and method for printing high conductivity electrical conductors and other components on thin film transistor arrays |
US6287899B1 (en) | 1998-12-31 | 2001-09-11 | Samsung Electronics Co., Ltd. | Thin film transistor array panels for a liquid crystal display and a method for manufacturing the same |
JP3768710B2 (en) * | 1999-01-28 | 2006-04-19 | キヤノン株式会社 | Developing device, process cartridge, and electrophotographic image forming apparatus |
EP1737054B1 (en) | 1999-01-29 | 2012-04-11 | Seiko Epson Corporation | Piezoelectric transducer |
US6377387B1 (en) | 1999-04-06 | 2002-04-23 | E Ink Corporation | Methods for producing droplets for use in capsule-based electrophoretic displays |
WO2000060410A1 (en) | 1999-04-06 | 2000-10-12 | E Ink Corporation | Microcell electrophoretic displays |
US6504524B1 (en) | 2000-03-08 | 2003-01-07 | E Ink Corporation | Addressing methods for displays having zero time-average field |
EP1198852B1 (en) | 1999-07-21 | 2009-12-02 | E Ink Corporation | Preferred methods for producing electrical circuit elements used to control an electronic display |
WO2001017040A1 (en) | 1999-08-31 | 2001-03-08 | E Ink Corporation | A solvent annealing process for forming a thin semiconductor film with advantageous properties |
US6337761B1 (en) | 1999-10-01 | 2002-01-08 | Lucent Technologies Inc. | Electrophoretic display and method of making the same |
WO2001037244A2 (en) | 1999-11-19 | 2001-05-25 | Avery Dennison Corporation | Low information content display |
GB9928353D0 (en) | 1999-12-01 | 2000-01-26 | Koninkl Philips Electronics Nv | Liquid crystal display and method of manufacture |
US6310665B1 (en) | 1999-12-28 | 2001-10-30 | Sharp Kabushiki Kaisha | Liquid crystal display apparatus and optical addressing device |
US6672921B1 (en) | 2000-03-03 | 2004-01-06 | Sipix Imaging, Inc. | Manufacturing process for electrophoretic display |
US6930818B1 (en) | 2000-03-03 | 2005-08-16 | Sipix Imaging, Inc. | Electrophoretic display and novel process for its manufacture |
DE10021984A1 (en) | 2000-05-05 | 2001-11-08 | Creavis Tech & Innovation Gmbh | Composite film electrophoretic displays with particle order retention after switching off are rheologically controlled by a negatively-acting effect produced by dissolved or particulate polymeric materials |
US6384124B1 (en) | 2000-06-28 | 2002-05-07 | 3M Innovative Properties Company | Non-film-forming electrophoretic latexes in fluorocarbon solvents |
US6816147B2 (en) | 2000-08-17 | 2004-11-09 | E Ink Corporation | Bistable electro-optic display, and method for addressing same |
WO2002045061A2 (en) | 2000-11-29 | 2002-06-06 | E Ink Corporation | Addressing circuitry for large electronic displays |
JP2004536475A (en) | 2000-12-05 | 2004-12-02 | イー−インク コーポレイション | Portable electronic device with additional electro-optical display |
EP1342126A2 (en) | 2000-12-08 | 2003-09-10 | E Ink Corporation | Electrophoretic displays using nanoparticles |
AU2002250304A1 (en) | 2001-03-13 | 2002-09-24 | E Ink Corporation | Apparatus for displaying drawings |
JP4568477B2 (en) | 2001-04-02 | 2010-10-27 | イー インク コーポレイション | Electrophoretic media with improved image stability |
US6580545B2 (en) | 2001-04-19 | 2003-06-17 | E Ink Corporation | Electrochromic-nanoparticle displays |
ES2355656T3 (en) | 2002-04-18 | 2011-03-29 | Kabushiki Kaisha Toshiba | PROCEDURE AND DEVICE FOR VIDEO DECODIFICATION. |
-
1999
- 1999-04-09 US US09/289,507 patent/US7075502B1/en not_active Expired - Fee Related
-
2002
- 2002-05-13 US US10/145,861 patent/US6864875B2/en not_active Expired - Lifetime
-
2004
- 2004-04-20 US US10/827,745 patent/US8466852B2/en not_active Expired - Fee Related
-
2007
- 2007-10-29 US US11/926,201 patent/US20080048970A1/en not_active Abandoned
-
2012
- 2012-09-05 US US13/603,964 patent/US20120326957A1/en not_active Abandoned
-
2013
- 2013-06-17 US US13/919,574 patent/US20130278995A1/en not_active Abandoned
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3870517A (en) * | 1969-10-18 | 1975-03-11 | Matsushita Electric Ind Co Ltd | Color image reproduction sheet employed in photoelectrophoretic imaging |
US4272596A (en) * | 1979-06-01 | 1981-06-09 | Xerox Corporation | Electrophoretic display device |
US5717514A (en) * | 1995-12-15 | 1998-02-10 | Xerox Corporation | Polychromal segmented balls for a twisting ball display |
US5961804A (en) * | 1997-03-18 | 1999-10-05 | Massachusetts Institute Of Technology | Microencapsulated electrophoretic display |
US6864875B2 (en) * | 1998-04-10 | 2005-03-08 | E Ink Corporation | Full color reflective display with multichromatic sub-pixels |
US7075502B1 (en) * | 1998-04-10 | 2006-07-11 | E Ink Corporation | Full color reflective display with multichromatic sub-pixels |
Cited By (84)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11467466B2 (en) | 2012-04-20 | 2022-10-11 | E Ink Corporation | Illumination systems for reflective displays |
US10190743B2 (en) | 2012-04-20 | 2019-01-29 | E Ink Corporation | Illumination systems for reflective displays |
US12000560B2 (en) | 2012-04-20 | 2024-06-04 | E Ink Corporation | Illumination systems for reflective displays |
US11460165B2 (en) | 2012-04-20 | 2022-10-04 | E Ink Corporation | Illumination systems for reflective displays |
US9436056B2 (en) | 2013-02-06 | 2016-09-06 | E Ink Corporation | Color electro-optic displays |
US9195111B2 (en) | 2013-02-11 | 2015-11-24 | E Ink Corporation | Patterned electro-optic displays and processes for the production thereof |
US11195481B2 (en) | 2013-05-14 | 2021-12-07 | E Ink Corporation | Color electrophoretic displays using same polarity reversing address pulse |
US10475399B2 (en) | 2013-05-14 | 2019-11-12 | E Ink Corporation | Color electrophoretic displays using same polarity reversing address pulse |
US10242630B2 (en) | 2013-05-14 | 2019-03-26 | E Ink Corporation | Color electrophoretic displays using same polarity reversing address pulse |
US9697778B2 (en) | 2013-05-14 | 2017-07-04 | E Ink Corporation | Reverse driving pulses in electrophoretic displays |
US10254619B2 (en) | 2013-05-17 | 2019-04-09 | E Ink California, Llc | Driving methods for color display devices |
US10901287B2 (en) | 2013-05-17 | 2021-01-26 | E Ink California, Llc | Driving methods for color display devices |
US9778538B2 (en) | 2013-12-20 | 2017-10-03 | E Ink Corporation | Aggregate particles for use in electrophoretic color displays |
US9361836B1 (en) | 2013-12-20 | 2016-06-07 | E Ink Corporation | Aggregate particles for use in electrophoretic color displays |
US9552780B2 (en) | 2013-12-20 | 2017-01-24 | E Ink Corporation | Aggregate particles for use in electrophoretic color displays |
US10234742B2 (en) | 2014-01-14 | 2019-03-19 | E Ink California, Llc | Color display device |
US10036931B2 (en) | 2014-01-14 | 2018-07-31 | E Ink California, Llc | Color display device |
US11315505B2 (en) | 2014-07-09 | 2022-04-26 | E Ink California, Llc | Color display device and driving methods therefor |
US10380955B2 (en) | 2014-07-09 | 2019-08-13 | E Ink California, Llc | Color display device and driving methods therefor |
US10891906B2 (en) | 2014-07-09 | 2021-01-12 | E Ink California, Llc | Color display device and driving methods therefor |
US9922603B2 (en) | 2014-07-09 | 2018-03-20 | E Ink California, Llc | Color display device and driving methods therefor |
US9761181B2 (en) | 2014-07-09 | 2017-09-12 | E Ink California, Llc | Color display device |
US10678111B2 (en) | 2014-09-10 | 2020-06-09 | E Ink Corporation | Colored electrophoretic displays |
US9921451B2 (en) | 2014-09-10 | 2018-03-20 | E Ink Corporation | Colored electrophoretic displays |
US10657869B2 (en) | 2014-09-10 | 2020-05-19 | E Ink Corporation | Methods for driving color electrophoretic displays |
EP3633662A1 (en) | 2014-09-10 | 2020-04-08 | E Ink Corporation | Colored electrophoretic displays |
US10509293B2 (en) | 2014-09-10 | 2019-12-17 | E Ink Corporation | Colored electrophoretic displays |
US11468855B2 (en) | 2014-09-10 | 2022-10-11 | E Ink Corporation | Colored electrophoretic displays |
US11402718B2 (en) | 2014-09-26 | 2022-08-02 | E Ink Corporation | Color sets for low resolution dithering in reflective color displays |
US10353266B2 (en) | 2014-09-26 | 2019-07-16 | E Ink Corporation | Color sets for low resolution dithering in reflective color displays |
US10976634B2 (en) | 2014-11-07 | 2021-04-13 | E Ink Corporation | Applications of electro-optic displays |
US10175550B2 (en) | 2014-11-07 | 2019-01-08 | E Ink Corporation | Applications of electro-optic displays |
WO2016115083A1 (en) * | 2015-01-12 | 2016-07-21 | Massachusetts Institute Of Technology | Transparent luminescent displays enabled by electric-field-induced quenching of photoluminescent pixels |
US10233339B2 (en) | 2015-05-28 | 2019-03-19 | E Ink California, Llc | Electrophoretic medium comprising a mixture of charge control agents |
US10040954B2 (en) | 2015-05-28 | 2018-08-07 | E Ink California, Llc | Electrophoretic medium comprising a mixture of charge control agents |
US11287718B2 (en) | 2015-08-04 | 2022-03-29 | E Ink Corporation | Reusable display addressable with incident light |
US11087644B2 (en) | 2015-08-19 | 2021-08-10 | E Ink Corporation | Displays intended for use in architectural applications |
US11098206B2 (en) | 2015-10-06 | 2021-08-24 | E Ink Corporation | Electrophoretic media including charge control agents comprising quartenary amines and unsaturated polymeric tails |
WO2017062345A1 (en) | 2015-10-06 | 2017-04-13 | E Ink Corporation | Improved low-temperature electrophoretic media |
US10062337B2 (en) | 2015-10-12 | 2018-08-28 | E Ink California, Llc | Electrophoretic display device |
US10087344B2 (en) | 2015-10-30 | 2018-10-02 | E Ink Corporation | Methods for sealing microcell containers with phenethylamine mixtures |
US10793750B2 (en) | 2015-10-30 | 2020-10-06 | E Ink Corporation | Methods for sealing microcell containers with phenethylamine mixtures |
US10662334B2 (en) | 2015-11-11 | 2020-05-26 | E Ink Corporation | Method of making functionalized quinacridone pigments |
US9752034B2 (en) | 2015-11-11 | 2017-09-05 | E Ink Corporation | Functionalized quinacridone pigments |
US10196523B2 (en) | 2015-11-11 | 2019-02-05 | E Ink Corporation | Functionalized quinacridone pigments |
US11084935B2 (en) | 2015-11-11 | 2021-08-10 | E Ink Corporation | Method of making functionalized quinacridone pigments |
US10254620B1 (en) | 2016-03-08 | 2019-04-09 | E Ink Corporation | Encapsulated photoelectrophoretic display |
US10593272B2 (en) | 2016-03-09 | 2020-03-17 | E Ink Corporation | Drivers providing DC-balanced refresh sequences for color electrophoretic displays |
US10276109B2 (en) | 2016-03-09 | 2019-04-30 | E Ink Corporation | Method for driving electro-optic displays |
US11030965B2 (en) | 2016-03-09 | 2021-06-08 | E Ink Corporation | Drivers providing DC-balanced refresh sequences for color electrophoretic displays |
US10771652B2 (en) | 2016-05-24 | 2020-09-08 | E Ink Corporation | Method for rendering color images |
US10554854B2 (en) | 2016-05-24 | 2020-02-04 | E Ink Corporation | Method for rendering color images |
US10270939B2 (en) | 2016-05-24 | 2019-04-23 | E Ink Corporation | Method for rendering color images |
US11265443B2 (en) | 2016-05-24 | 2022-03-01 | E Ink Corporation | System for rendering color images |
US11099452B2 (en) | 2017-01-20 | 2021-08-24 | E Ink California, Llc | Color organic pigments and electrophoretic display media containing the same |
US11493820B2 (en) | 2017-01-20 | 2022-11-08 | E Ink California, Llc | Color organic pigments and electrophoretic display media containing the same |
US10782586B2 (en) | 2017-01-20 | 2020-09-22 | E Ink California, Llc | Color organic pigments and electrophoretic display media containing the same |
US11094288B2 (en) | 2017-03-06 | 2021-08-17 | E Ink Corporation | Method and apparatus for rendering color images |
US10467984B2 (en) | 2017-03-06 | 2019-11-05 | E Ink Corporation | Method for rendering color images |
WO2018164942A1 (en) | 2017-03-06 | 2018-09-13 | E Ink Corporation | Method for rendering color images |
US10444592B2 (en) | 2017-03-09 | 2019-10-15 | E Ink Corporation | Methods and systems for transforming RGB image data to a reduced color set for electro-optic displays |
US10573257B2 (en) | 2017-05-30 | 2020-02-25 | E Ink Corporation | Electro-optic displays |
US11107425B2 (en) | 2017-05-30 | 2021-08-31 | E Ink Corporation | Electro-optic displays with resistors for discharging remnant charges |
US10825405B2 (en) | 2017-05-30 | 2020-11-03 | E Ink Corporatior | Electro-optic displays |
US11266832B2 (en) | 2017-11-14 | 2022-03-08 | E Ink California, Llc | Electrophoretic active delivery system including porous conductive electrode layer |
US11079651B2 (en) | 2017-12-15 | 2021-08-03 | E Ink Corporation | Multi-color electro-optic media |
US11422427B2 (en) | 2017-12-19 | 2022-08-23 | E Ink Corporation | Applications of electro-optic displays |
US11248122B2 (en) | 2017-12-30 | 2022-02-15 | E Ink Corporation | Pigments for electrophoretic displays |
US11143929B2 (en) | 2018-03-09 | 2021-10-12 | E Ink Corporation | Reflective electrophoretic displays including photo-luminescent material and color filter arrays |
WO2020122917A1 (en) | 2018-12-13 | 2020-06-18 | E Ink Corporation | Illumination systems for reflective displays |
US11460722B2 (en) | 2019-05-10 | 2022-10-04 | E Ink Corporation | Colored electrophoretic displays |
US11938215B2 (en) | 2019-11-27 | 2024-03-26 | E Ink Corporation | Method for operating a benefit agent delivery system comprising microcells having an electrically eroding sealing layer |
US11938214B2 (en) | 2019-11-27 | 2024-03-26 | E Ink Corporation | Benefit agent delivery system comprising microcells having an electrically eroding sealing layer |
US11868020B2 (en) | 2020-06-05 | 2024-01-09 | E Ink Corporation | Electrophoretic display device |
US12094429B2 (en) | 2021-09-06 | 2024-09-17 | E Ink Corporation | Method for driving electrophoretic display device |
US11804190B2 (en) | 2021-09-06 | 2023-10-31 | E Ink California, Llc | Method for driving electrophoretic display device |
US11640803B2 (en) | 2021-09-06 | 2023-05-02 | E Ink California, Llc | Method for driving electrophoretic display device |
WO2023043714A1 (en) | 2021-09-14 | 2023-03-23 | E Ink Corporation | Coordinated top electrode - drive electrode voltages for switching optical state of electrophoretic displays using positive and negative voltages of different magnitudes |
US11869451B2 (en) | 2021-11-05 | 2024-01-09 | E Ink Corporation | Multi-primary display mask-based dithering with low blooming sensitivity |
US11922893B2 (en) | 2021-12-22 | 2024-03-05 | E Ink Corporation | High voltage driving using top plane switching with zero voltage frames between driving frames |
WO2023132958A1 (en) | 2022-01-04 | 2023-07-13 | E Ink Corporation | Electrophoretic media comprising electrophoretic particles and a combination of charge control agents |
US12130530B2 (en) | 2022-04-25 | 2024-10-29 | E Ink Corporation | Applications of electro-optic displays |
WO2023211867A1 (en) | 2022-04-27 | 2023-11-02 | E Ink Corporation | Color displays configured to convert rgb image data for display on advanced color electronic paper |
WO2024044119A1 (en) | 2022-08-25 | 2024-02-29 | E Ink Corporation | Transitional driving modes for impulse balancing when switching between global color mode and direct update mode for electrophoretic displays |
Also Published As
Publication number | Publication date |
---|---|
US7075502B1 (en) | 2006-07-11 |
US20080048970A1 (en) | 2008-02-28 |
US6864875B2 (en) | 2005-03-08 |
US20040263947A1 (en) | 2004-12-30 |
US8466852B2 (en) | 2013-06-18 |
US20020180688A1 (en) | 2002-12-05 |
US20130278995A1 (en) | 2013-10-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8466852B2 (en) | Full color reflective display with multichromatic sub-pixels | |
CA2321131C (en) | Full color reflective display with multichromatic sub-pixels | |
US7956841B2 (en) | Stylus-based addressing structures for displays | |
US7304634B2 (en) | Rear electrode structures for electrophoretic displays | |
US8089453B2 (en) | Stylus-based addressing structures for displays | |
US9293511B2 (en) | Methods for achieving improved color in microencapsulated electrophoretic devices | |
US7167155B1 (en) | Color electrophoretic displays | |
US8441714B2 (en) | Multi-color electrophoretic displays | |
US7352353B2 (en) | Electrostatically addressable electrophoretic display | |
US6842167B2 (en) | Rear electrode structures for displays | |
US8593721B2 (en) | Multi-color electrophoretic displays and materials for making the same | |
US6177921B1 (en) | Printable electrode structures for displays | |
US6664944B1 (en) | Rear electrode structures for electrophoretic displays | |
EP1557714B1 (en) | Full color reflective display with multichromatic sub-pixels |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |