US20120314388A1 - Substrates with transferable chiplets - Google Patents

Substrates with transferable chiplets Download PDF

Info

Publication number
US20120314388A1
US20120314388A1 US13/491,335 US201213491335A US2012314388A1 US 20120314388 A1 US20120314388 A1 US 20120314388A1 US 201213491335 A US201213491335 A US 201213491335A US 2012314388 A1 US2012314388 A1 US 2012314388A1
Authority
US
United States
Prior art keywords
substrate
active components
transparent intermediate
adhesive layer
photo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US13/491,335
Other versions
US8934259B2 (en
Inventor
Christopher Bower
Joseph Carr
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
X-Celeprint Ltd
Original Assignee
Semprius Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US201161494514P priority Critical
Priority to US201161494507P priority
Assigned to SEMPRIUS, INC. reassignment SEMPRIUS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BOWER, CHRISTOPHER, CARR, JOSEPH
Application filed by Semprius Inc filed Critical Semprius Inc
Priority to US13/491,335 priority patent/US8934259B2/en
Publication of US20120314388A1 publication Critical patent/US20120314388A1/en
Assigned to SILICON VALLEY BANK, HORIZON TECHNOLOGY FINANCE CORPORATION, AS COLLATERAL AGENT, HORIZON FUNDING TRUST 2013-1 reassignment SILICON VALLEY BANK SECURITY AGREEMENT Assignors: SEMPRIUS INC.
Publication of US8934259B2 publication Critical patent/US8934259B2/en
Application granted granted Critical
Assigned to SEMPRIUS INC. reassignment SEMPRIUS INC. RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: HORIZON FUNDING TRUST 2013-1, HORIZON TECHNOLOGY FINANCE CORPORATION, AS COLLATERAL AGENT, SILICON VALLEY BANK
Assigned to SEMPRIUS (ASSIGNMENT FOR THE BENEFIT OF CREDITORS), LLC reassignment SEMPRIUS (ASSIGNMENT FOR THE BENEFIT OF CREDITORS), LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SEMPRIUS, INC.
Assigned to X-Celeprint Limited reassignment X-Celeprint Limited ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SEMPRIUS (ASSIGNMENT FOR THE BENEFIT OF CREDITORS), LLC
Application status is Active legal-status Critical
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L24/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/563Encapsulation of active face of flip-chip device, e.g. underfilling or underencapsulation of flip-chip, encapsulation preform on chip or mounting substrate
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6835Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6838Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping with gripping and holding devices using a vacuum; Bernoulli devices
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3157Partial encapsulation or coating
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L51/00, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L51/00, e.g. assemblies of rectifier diodes the devices not having separate containers
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L51/00, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L51/00, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/065Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L51/00, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L25/0655Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L51/00, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L51/00, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L51/00, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L51/00, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
    • H01L25/072Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L51/00, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L51/00, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L51/00, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L51/00, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L51/00, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/18Printed circuits structurally associated with non-printed electric components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/20Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern by affixing prefabricated conductor pattern
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68318Auxiliary support including means facilitating the separation of a device or wafer from the auxiliary support
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68327Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used during dicing or grinding
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/6834Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used to protect an active side of a device or wafer
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68354Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used to support diced chips prior to mounting
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68368Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used in a transfer process involving at least two transfer steps, i.e. including an intermediate handle substrate
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68381Details of chemical or physical process used for separating the auxiliary support from a device or wafer
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • H01L2224/11001Involving a temporary auxiliary member not forming part of the manufacturing apparatus, e.g. removable or sacrificial coating, film or substrate
    • H01L2224/11002Involving a temporary auxiliary member not forming part of the manufacturing apparatus, e.g. removable or sacrificial coating, film or substrate for supporting the semiconductor or solid-state body
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/1301Shape
    • H01L2224/13012Shape in top view
    • H01L2224/13013Shape in top view being rectangular or square
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/1301Shape
    • H01L2224/13016Shape in side view
    • H01L2224/13017Shape in side view being non uniform along the bump connector
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/1301Shape
    • H01L2224/13016Shape in side view
    • H01L2224/13018Shape in side view comprising protrusions or indentations
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/13124Aluminium [Al] as principal constituent
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/13139Silver [Ag] as principal constituent
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/13144Gold [Au] as principal constituent
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/13147Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13163Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/13166Titanium [Ti] as principal constituent
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13163Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/13184Tungsten [W] as principal constituent
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/16227Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the bump connector connecting to a bond pad of the item
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/2902Disposition
    • H01L2224/29026Disposition relative to the bonding area, e.g. bond pad, of the semiconductor or solid-state body
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/76Apparatus for connecting with build-up interconnects
    • H01L2224/7698Apparatus for connecting with build-up interconnects specially adapted for batch processes
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/81001Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector involving a temporary auxiliary member not forming part of the bonding apparatus
    • H01L2224/81005Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector involving a temporary auxiliary member not forming part of the bonding apparatus being a temporary or sacrificial substrate
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/8119Arrangement of the bump connectors prior to mounting
    • H01L2224/81193Arrangement of the bump connectors prior to mounting wherein the bump connectors are disposed on both the semiconductor or solid-state body and another item or body to be connected to the semiconductor or solid-state body
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/812Applying energy for connecting
    • H01L2224/81201Compression bonding
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/812Applying energy for connecting
    • H01L2224/81201Compression bonding
    • H01L2224/81203Thermocompression bonding, e.g. diffusion bonding, pressure joining, thermocompression welding or solid-state welding
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/8138Bonding interfaces outside the semiconductor or solid-state body
    • H01L2224/81399Material
    • H01L2224/814Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/81401Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • H01L2224/81411Tin [Sn] as principal constituent
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/818Bonding techniques
    • H01L2224/81801Soldering or alloying
    • H01L2224/81815Reflow soldering
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • H01L2224/83192Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed only on another item or body to be connected to the semiconductor or solid-state body
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8385Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester
    • H01L2224/83855Hardening the adhesive by curing, i.e. thermosetting
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/921Connecting a surface with connectors of different types
    • H01L2224/9211Parallel connecting processes
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L2224/95001Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips involving a temporary auxiliary member not forming part of the bonding apparatus, e.g. removable or sacrificial coating, film or substrate
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L2224/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L24/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/73Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L24/80 - H01L24/90
    • H01L24/92Specific sequence of method steps
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L24/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12041LED
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12042LASER
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12044OLED
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1205Capacitor
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/15786Material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • H01L2924/15788Glasses, e.g. amorphous oxides, nitrides or fluorides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/10Methods of surface bonding and/or assembly therefor
    • Y10T156/1002Methods of surface bonding and/or assembly therefor with permanent bending or reshaping or surface deformation of self sustaining lamina
    • Y10T156/1039Surface deformation only of sandwich or lamina [e.g., embossed panels]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49124On flat or curved insulated base, e.g., printed circuit, etc.
    • Y10T29/49128Assembling formed circuit to base

Abstract

A method for fabricating a substrate having transferable chiplets includes forming a photo-sensitive adhesive layer on a process side of a source substrate including active components or on a patterned side of a transparent intermediate substrate. The intermediate substrate is brought into contact with the source substrate to adhere the active components on the process side to the patterned side of the intermediate substrate via the photo-sensitive adhesive layer therebetween. Portions of the source substrate opposite the process side thereof are removed to singulate the active components. Portions of the photo-sensitive adhesive layer are selectively exposed to electromagnetic radiation through the intermediate substrate to alter an adhesive strength thereof. Portions of the photo-sensitive adhesive layer having a weaker adhesive strength are selectively removed to define breakable tethers comprising portions of the adhesive layer having a stronger adhesive strength. The breakable tethers physically secure the active components to the intermediate substrate.

Description

    CLAIM OF PRIORITY
  • The present application claims priority under 35 USC §119 to U.S. Provisional Patent Application Ser. No. 61/494,507 entitled “Substrates with Transferable Chiplets,” filed on Jun. 8, 2011, the disclosure of which is incorporated by reference herein in its entirety.
  • CROSS REFERENCE TO RELATED APPLICATIONS
  • The present application is related to U.S. Provisional Patent Application Ser. No. 61/494,514 entitled “Methods for Surface Attachment of Flipped Active Components,” filed on Jun. 8, 2011, the disclosure of which is incorporated by reference herein in its entirety.
  • FIELD
  • The present invention is directed to methods for providing substrates having separate electrically active components distributed thereon and related devices.
  • BACKGROUND
  • Substrates with electronically active components distributed over the extent of the substrate may be used in a variety of electronic systems, for example flat-panel imaging devices such as flat-panel liquid crystal or organic light emitting diode (OLED) display devices. Substrates with electrically active components are also found in flat-panel solar cells. A variety of methods may be used to distribute electronically active circuits over substrates, including forming the electronically active circuits on a substrate and forming the components on separate substrates and placing them on a substrate. In the latter case, a variety of assembly technologies for device packaging may be used.
  • Electronically active components made in place are typically formed by sputtering a layer of inorganic semiconductor material or by spin-coating organic material over the entire substrate. Inorganic semiconductor materials can be processed to improve their electronic characteristics, for example amorphous silicon can be treated to form low-temperature or high-temperature poly-crystalline silicon. In other process methods, microcrystalline semiconductor layers can be formed by using an underlying seeding layer. These methods typically improve the electron mobility of the semiconductor layer. The substrate and layer of semiconductor material can be photo-lithographically processed to define electronically active components, such as transistors. Such transistors are known as thin-film transistors (TFTs) since they are formed in a thin layer of semiconductor material, typically silicon. Transistors may also be formed in thin layers of organic materials. In these devices, the substrate is often made of glass, for example Corning Eagle® or Jade® glass designed for display applications.
  • The above techniques may have some limitations. Despite processing methods used to improve the performance of thin-film transistors, such transistors may provide performance that is lower than the performance of other integrated circuits formed in mono-crystalline semiconductor material. Semiconductor material and active components can be provided only on portions of the substrate, leading to wasted material and increased material and processing costs. The choice of substrate materials may also be limited by the processing steps necessary to process the semiconductor material and the photo-lithographic steps used to pattern the active components. For example, plastic substrates have a limited chemical and heat tolerance and do not readily survive photo-lithographic processing. Furthermore, the manufacturing equipment used to process large substrates with thin-film circuitry is relatively expensive. Other substrate materials that may be used include quartz, for example for integrated circuits using silicon-on-insulator structures as described in U.S. Patent Application 2010/0289115 and U.S. Patent Application 2010/0123134. However, such substrate materials can be more expensive and/or difficult to process.
  • Other methods used for distributing electronically functional components over a substrate in the circuit board assembly industry include, for example, pick-and-place technologies for integrated circuits provided in a variety of packages, for example, pin-grid arrays, ball-grid arrays, and flip-chips. However, these techniques may be limited in the size of the integrated circuits that can be placed.
  • In further manufacturing techniques, a mono-crystalline semiconductor wafer is employed as the substrate. While this approach can provide substrates with the same performance as integrated circuits, the size of such substrates may be limited, for example, to a 12-inch diameter circle, and the wafers are relatively expensive compared to other substrate materials such as glass, polymer, or quartz.
  • In yet another approach, thin layers of semiconductor are bonded to a substrate and then processed. Such a method is known as semiconductor-on-glass or silicon-on-glass (SOG) and is described, for example, in U.S. Pat. No. 7,605,053, issued Oct. 20, 2009. If the semiconductor material is crystalline, high-performance thin-film circuits can be obtained. However, the bonding technique and the processing equipment for the substrates to form the thin-film active components on large substrates can be relatively expensive.
  • Publication No. 11-142878 of the Patent Abstracts of Japan entitled “Formation of Display Transistor Array Panel” describes etching a substrate to remove it from a thin-film transistor array on which the TFT array was formed. TFT circuits formed on a first substrate can be transferred to a second substrate by adhering the first substrate and the TFTs to the surface of the second substrate and then etching away the first substrate, leaving the TFTs bonded to the second substrate. This method may require etching a significant quantity of material, and may risk damaging the exposed TFT array.
  • Other methods of locating material on a substrate are described in U.S. Pat. No. 7,127,810. In this approach, a first substrate carries a thin-film object to be transferred to a second substrate. An adhesive is applied to the object to be transferred or to the second substrate in the desired location of the object. The substrates are aligned and brought into contact. A laser beam irradiates the object to abrade the transferring thin film so that the transferring thin film adheres to the second substrate. The first and second substrates are separated, peeling the film in the abraded areas from the first substrate and transferring it to the second substrate. In one embodiment, a plurality of objects is selectively transferred by employing a plurality of laser beams to abrade selected area. Objects to be transferred can include thin-film circuits.
  • U.S. Pat. No. 6,969,624 describes a method of transferring a device from a first substrate onto a holding substrate by selectively irradiating an interface with an energy beam. The interface is located between a device for transfer and the first substrate and includes a material that generates ablation upon irradiation, thereby releasing the device from the substrate. For example, a light-emitting device (LED) is made of a nitride semiconductor on a sapphire substrate. The energy beam is directed to the interface between the sapphire substrate and the nitride semiconductor releasing the LED and allowing the LED to adhere to a holding substrate coated with an adhesive. The adhesive is then cured. These methods, however, require the patterned deposition of adhesive on the object(s) or on the second substrate. Moreover, the laser beam that irradiates the object may need to be shaped to match the shape of the object and the laser abrasion can damage the object to be transferred. Furthermore, the adhesive cure takes time, which may reduce the throughput of the manufacturing system.
  • Another method for transferring active components from one substrate to another is described in “AMOLED Displays using Transfer-Printed Integrated Circuits” published in the Proceedings of the 2009 Society for Information Display International Symposium Jun. 2-5, 2009, in San Antonio Tex., US, vol. 40, Book 2, ISSN 0009-0966X, paper 63.2 p. 947. In this approach, small integrated circuits are formed over a buried oxide layer in a crystalline wafer. The small integrated circuits are released from the wafer by etching the buried oxide layer formed beneath the circuits. A PDMS stamp is pressed against the wafer and the circuits are adhered to the stamp. The circuits are pressed against a destination substrate coated with an adhesive and thereby adhered to the destination substrate. The adhesive is subsequently cured. This method, however, may rely on non-standard and relatively more expensive integrated circuit processes that may increase costs associated with, for example, the formation of the buried oxide layer.
  • SUMMARY
  • It should be appreciated that this Summary is provided to introduce a selection of concepts in a simplified form, the concepts being further described below in the Detailed Description. This Summary is not intended to identify key features or essential features of this disclosure, nor is it intended to limit the scope of the disclosure.
  • According to some aspects of the present invention, in a method of printing transferable components, a photo-sensitive adhesive layer is formed on a process side of a source substrate including active components or on a patterned side of a transparent intermediate substrate. The transparent intermediate substrate is contacted with the source substrate to adhere the active components on the process side to the patterned side of the transparent intermediate substrate via the photo-sensitive adhesive layer therebetween. Portions of the source substrate opposite the process side are removed to singulate the active components. Portions of the photo-sensitive adhesive layer are selectively exposed to electromagnetic radiation through the transparent intermediate substrate to alter an adhesive strength thereof, and then portions of the photo-sensitive adhesive layer having a weaker adhesive strength are selectively removed to define breakable tethers comprising portions of the adhesive layer having a stronger adhesive strength. The breakable tethers physically secure the active components to the transparent intermediate substrate.
  • In some embodiments, in selectively exposing portions of the photo-sensitive adhesive layer, a mask pattern may be formed on the transparent intermediate substrate, and the transparent intermediate substrate including the mask pattern thereon may be exposed to the electromagnetic radiation. The mask pattern may include a material configured to block transmission of the electromagnetic radiation therethrough such that the portions of the photo-sensitive adhesive layer exposed by the mask pattern are selectively exposed to the electromagnetic radiation.
  • In some embodiments, the patterned side of the transparent intermediate substrate may include a plurality of structures protruding therefrom, and the mask pattern may be formed on surfaces of the protruding structures.
  • In some embodiments, the tethers may extend in a direction perpendicular to the transparent intermediate layer and may be shaped to break in a desired manner.
  • In some embodiments, the active components may have respective primary surfaces including conductive elements thereon adjacent the process side of the source substrate, and respective secondary surfaces opposite the primary surfaces. The portions of the adhesive layer defining the tethers may physically connect the respective the primary surfaces of the active components to the transparent intermediate substrate.
  • In some embodiments, a stamp having pillars protruding therefrom may be pressed against the active components on the transparent intermediate substrate, and then the stamp may be separated from the transparent intermediate substrate to break the tethers and adhere the respective secondary surfaces of the active components to respective transfer surfaces of the pillars of the stamp. The stamp including the active components on the pillars thereof may be contacted with a destination substrate to adhere the respective primary surfaces of the active components including the conductive elements thereon to a receiving surface of the destination substrate.
  • In some embodiments, the conductive elements on the respective primary surfaces of the active components may be adhered to respective electrical contacts on the receiving surface of the destination substrate.
  • In some embodiments, the primary surfaces of the active components may respectively include a photo-adhesive layer residue thereon including respective portions of the breakable tethers. The residue may be below respective surfaces of the conductive elements.
  • In some embodiments, the portions of the photo-sensitive adhesive layer may be selectively exposed to the electromagnetic radiation to differentially adhere ones of the active components to the transparent intermediate substrate.
  • According to further aspects of the present invention, an active component array includes at least one printable electronic component including a conductive element on a primary surface thereof. The conductive element is configured to provide an electrical coupling to at least one active element on the primary surface. The at least one electronic component includes a photo-adhesive layer residue on the primary surface thereof. The residue includes a broken portion of a tether configured to adhere the at least one electronic component to a transparent intermediate substrate. The photo-adhesive layer residue includes a material configured to provide altered adhesive strength responsive to exposure to electromagnetic radiation. The active component array further includes destination substrate including one or more electrical contacts on a surface thereof. The at least one electronic component is printed on the destination substrate such that the conductive element on the primary surface thereof is in contact with a respective one of the electrical contacts on the receiving surface of the destination substrate.
  • According to one aspect of the present invention, a method for fabricating a substrate having transferrable chiplets comprises: providing a source substrate having a process side and a plurality of active components formed on or in the process side of the source substrate; providing a transparent intermediate substrate having a patterned side; coating a photo-sensitive adhesive layer on the patterned side of the transparent intermediate wafer or on the active components; adhering the patterned side of the transparent intermediate substrate to the process side of the source substrate; removing portions of the source substrate to singulate the active components and adhere the singulated active components to the patterned side of the transparent intermediate substrate; selectively exposing the photo-sensitive adhesive layer to electromagnetic radiation to alter an adhesive strength thereof such that portions of the photo-sensitive adhesive layer have a weaker adhesive strength than other portions thereof; and selectively removing the portions of the photo-sensitive adhesive layer having the weaker adhesive strength to define breakable tethers comprising the other portions of the photo-sensitive adhesive layer that physically connect the singulated active components to the transparent intermediate substrate.
  • According to another aspect of the present invention, a transfer device, comprises: a transparent intermediate substrate having a patterned side; a patterned photo-sensitive adhesive layer adhered to the patterned side of the transparent intermediate substrate, the patterned adhesive layer comprising a material configured to provide altered adhesive strength responsive to exposure to electromagnetic radiation; and a plurality of singulated active components adhered to the patterned adhesive layer, the patterned adhesive layer located between the patterned side of the transparent intermediate substrate and the singulated active components, the patterned adhesive layer forming tethers physically connecting the singulated active components to the patterned side of the transparent intermediate substrate.
  • Embodiments of the present invention provide transferrable high-performance active components that can be assembled onto substrates using standard integrated circuit processes at a reduced cost.
  • Other methods and/or devices according to some embodiments will become apparent to one with skill in the art upon review of the following drawings and detailed description. It is intended that all such additional embodiments, in addition to any and all combinations of the above embodiments, be included within this description, be within the scope of the invention, and be protected by the accompanying claims.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a schematic cross-section of a source substrate having active components on a process side in accordance with embodiments of the present invention;
  • FIG. 2A is a schematic of a transparent intermediate substrate having an optical mask in accordance with embodiments of the present invention;
  • FIG. 2B is a schematic cross-section of a transparent intermediate substrate having a structured surface and an optical mask in accordance with embodiments of the present invention;
  • FIG. 3 is a schematic cross-section of a transparent intermediate substrate having an optical mask and a coated photo-sensitive adhesive layer in accordance with embodiments of the present invention;
  • FIG. 4 is a schematic cross-section of a transparent intermediate substrate adhered to a source substrate in accordance with embodiments of the present invention;
  • FIG. 5 is a schematic cross-section of active components adhered to the transparent intermediate substrate after removing most of the source substrate in accordance with embodiments of the present invention;
  • FIG. 6 is a schematic cross-section of active components adhered to the transparent intermediate substrate after patterning and etching the source substrate in accordance with embodiments of the present invention;
  • FIG. 7A is a schematic cross-section illustrating the patterned exposure of a photo-sensitive adhesive layer through an optical mask on the transparent intermediate substrate in accordance with embodiments of the present invention;
  • FIG. 7B is a schematic cross-section illustrating the patterned exposure of a photo-sensitive adhesive layer using a patterned laser beam in accordance with embodiments of the present invention;
  • FIG. 8A is a schematic cross-section of a source substrate having active components pattern-wise adhered to the transparent intermediate substrate in accordance with embodiments of the present invention;
  • FIG. 8B is a schematic bottom view of the structure of FIG. 8A.
  • FIG. 9A is a schematic cross-section of a source substrate having active components pattern-wise adhered to the transparent intermediate substrate according to some embodiments of the present invention;
  • FIG. 9B is a schematic bottom view of the structure of FIG. 9A.
  • FIG. 9C is a schematic cross-section of the structure of FIG. 9A having conductive material on the connection pads according to another embodiment of the present invention;
  • FIG. 9D is a schematic cross-section of the structure of FIG. 9A having shaped tethers according to another embodiment of the present invention;
  • FIG. 9E is a schematic cross-section illustrating particulate contamination from fractured tethers according to another embodiment of the present invention;
  • FIG. 10 is a schematic cross-section of a stamp having a pattern of pillars in accordance with embodiments of the present invention;
  • FIG. 11 is a schematic cross-section of a stamp having a pattern of pillars pressed against active components adhered to the transparent intermediate substrate in accordance with embodiments of the present invention;
  • FIG. 12 is a schematic cross-section of active components adhered to the stamp pillars with broken tethers on the transparent intermediate substrate in accordance with embodiments of the present invention;
  • FIG. 13 is a schematic cross-section of active components adhered to the stamp pillars in accordance with embodiments of the present invention;
  • FIG. 14 is a schematic cross-section of active components adhered to the stamp pillars and pressed against the receiving side of the destination substrate in accordance with embodiments of the present invention;
  • FIG. 15 is a schematic cross-section of active components adhered to the receiving side of the destination substrate in accordance with embodiments of the present invention;
  • FIG. 16 is a flow diagram illustrating a method in accordance with embodiments of the present invention;
  • FIG. 17 is a flow diagram illustrating another method in accordance with embodiments of the present invention;
  • FIG. 18 is a flow diagram illustrating a further method in accordance with embodiments of the present invention;
  • FIG. 19 is a flow diagram illustrating yet another method in accordance with embodiments of the present invention; and
  • FIG. 20 is a flow diagram illustrating a method in accordance with embodiments of the present invention.
  • The figures are not drawn to scale since the individual elements of the drawings have too great a size variation to permit depiction to scale.
  • DETAILED DESCRIPTION OF EMBODIMENTS
  • The present invention now will be described more fully hereinafter with reference to the accompanying drawings, in which embodiments of the invention are shown. However, this invention should not be construed as limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art. In the drawings, the thickness of layers and regions are exaggerated for clarity. Like numbers refer to like elements throughout.
  • It will be understood that when an element such as a layer, region or substrate is referred to as being “on” or extending “onto” another element, it can be directly on or extend directly onto the other element or intervening elements may also be present. In contrast, when an element is referred to as being “directly on” or extending “directly onto” another element, there are no intervening elements present. It will also be understood that when an element is referred to as being “in contact with” or “connected to” or “coupled to” another element, it can be directly contacting or connected to or coupled to the other element or intervening elements may be present. In contrast, when an element is referred to as being “in direct contact with” or “directly connected to” or “directly coupled to” another element, there are no intervening elements present.
  • It will also be understood that, although the terms first, second, etc. may be used herein to describe various elements, these elements should not be limited by these terms. These terms are only used to distinguish one element from another. For example, a first element could be termed a second element, and, similarly, a second element could be termed a first element, without departing from the scope of the present invention.
  • Furthermore, relative terms, such as “under” or “lower” or “bottom,” and “over” or “upper” or “top,” may be used herein to describe one element's relationship to another element as illustrated in the Figures. It will be understood that relative terms are intended to encompass different orientations of the device in addition to the orientation depicted in the Figures. For example, if the device in one of the figures is turned over, elements described as being on the “lower” side of other elements would then be oriented on “upper” sides of the other elements. The exemplary term “lower”, can therefore, encompasses both an orientation of “lower” and “upper,” depending of the particular orientation of the figure. Similarly, if the device in one of the figures is turned over, elements described as “below” or “beneath” other elements would then be oriented “above” the other elements. The exemplary terms “below” or “beneath” can, therefore, encompass both an orientation of above and below.
  • The terminology used in the description of the invention herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. As used in the description of the invention and the appended claims, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will also be understood that the term “and/or” as used herein refers to and encompasses any and all possible combinations of one or more of the associated listed items. It will be further understood that the terms “comprises” and/or “comprising,” when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.
  • Embodiments of the invention are described herein with reference to cross-section illustrations that are schematic illustrations of idealized embodiments (and intermediate structures) of the invention. As such, variations from the shapes of the illustrations as a result, for example, of manufacturing techniques and/or tolerances, are to be expected. Thus, embodiments of the invention should not be construed as limited to the particular shapes of regions illustrated herein but are to include deviations in shapes that result, for example, from manufacturing. In other words, the regions illustrated in the figures are schematic in nature and their shapes are not intended to illustrate the actual shape of a region of a device and are not intended to limit the scope of the invention.
  • Unless otherwise defined, all terms used in disclosing embodiments of the invention, including technical and scientific terms, have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs, and are not necessarily limited to the specific definitions known at the time of the present invention being described. Accordingly, these terms can include equivalent terms that are created after such time. It will be further understood that terms, such as those defined in commonly used dictionaries, should be interpreted as having a meaning that is consistent with their meaning in the present specification and in the context of the relevant art and will not be interpreted in an idealized or overly formal sense unless expressly so defined herein. All publications, patent applications, patents, and other references mentioned herein are incorporated by reference in their entireties.
  • Embodiments of the present invention provide methods and devices for the transfer of active components, also referred to herein as ‘chiplets,’ from a source substrate to a destination substrate. Chiplets are small integrated circuits, each integrated circuit having a separate and distinct substrate so as to define a separate transferable component. FIGS. 1-15 are schematic diagrams illustrating various fabrication operations in various methods according to embodiments of the present invention, while FIGS. 16-20 are flow diagrams describing various fabrication operations in various methods according to embodiments of the present invention. Transferring integrated circuits from the source substrate to the destination substrate is also referred to herein as ‘printing’ the integrated circuits onto the destination substrate.
  • Referring to the flow diagram of FIG. 16 and to the illustration of FIG. 1, some embodiments of the present invention provide a method for fabricating a substrate having transferrable chiplets. A source substrate 20 having a process side 24 is provided in step 100. The source substrate 20 can be a wafer having a process side 24 opposite a back side that is used to handle and transport the wafer. Active components 22, also referred to herein as ‘chiplets,’ are formed on or in the process side 24 of the source substrate 20 and connection pads 26 providing electrical connectivity to the active components 22 are formed on or in the active components 22. The source substrate 20 can be a semiconductor wafer, for example, a silicon or gallium arsenide wafer. The source substrate 20 can be an inert substrate, for example glass, with semiconductor layers formed on or over the inert substrate. The source substrate 20 can have an inert layer (e.g. silicon dioxide) with semiconductor layers formed on or over the inert layer. Semiconductor layers can include crystalline, microcrystalline, polycrystalline, or amorphous materials, according to various embodiments of the present invention.
  • According to some embodiments of the present invention as shown in FIG. 16, the source substrate 20 can be provided with active components 22 and connection pads 26 already formed on the process side 24. Alternatively, as shown in FIG. 17, an unprocessed source substrate 20 can be provided in step 101 and the active components 22 formed on the process side 24 of the source substrate 20 in step 102. According to FIG. 17, an unprocessed source substrate 20 is a substrate that has not yet been processed to form the active components 22. The unprocessed source substrate 20 can have other processing steps completed, for example cleaning, deposition of material layers, or heat or chemical treatments, as are used in the photo-lithographic arts. In step 102, active components 22 are formed, for example using photo-lithographic processes including forming masks over the source substrate 20, etching materials, removing masks, and depositing materials. Using such processes, active components 22 are formed on or in the process side 24 of the source substrate 20. Source substrate trenches or wells 21 are optionally formed between the active components 22 to assist in singulating the active components 22 from the source substrate 20 as described further below.
  • Active components 22 are small electronic integrated circuits, or chiplets, having a size (for example) of about 5 microns to about 5000 microns in a dimension. The electronic integrated circuits can include semiconductor materials (for example, inorganic materials such as silicon or gallium arsenide, or organic materials) having various structures, including crystalline, microcrystalline, polycrystalline, or amorphous structures. The active components 22 can also include insulating layers and structures such as silicon dioxide, nitride, and passivation layers, and conductive layers or structures including wires made of aluminum, titanium, silver, copper, tungsten, or gold, which can form an electronic circuit. Connection pads 26 can be formed of metals such as aluminum, copper, tin, polysilicon semiconductors, or other interconnection materials used in the integrated circuit packaging industry and can be provided on the top surface of the active components 22. These and other methods and materials used in the integrated circuit arts may be used for making active component 22 electronic circuits. Large numbers of such small integrated circuits are formed on a single source substrate 20. The active components 22 are typically packed as closely as possible to use the surface area of the source substrate 20 as efficiently as possible.
  • As shown in FIG. 2A, a transparent intermediate substrate 80 is provided in step 105 (FIG. 16). A transparent intermediate substrate 80 may be part of a transfer device 5 (as shown in FIG. 9) formed in accordance with embodiments of the present invention using a substrate or wafer to remove active components 22 from the source substrate 20. The transparent intermediate substrate 80 is transparent to one or more selected types of electromagnetic radiation, for example light, ultra-violet radiation, or infra-red radiation. The transparent intermediate substrate 80 need not be transparent to all frequencies of electromagnetic radiation nor is it completely transparent, for example it can absorb radiation at all frequencies. For example, the transparent intermediate substrate 80 can be partially transparent and absorb 50% of the electromagnetic radiation that passes through. However, the transparent intermediate substrate 80 is sufficiently transparent to selected frequencies of electromagnetic radiation to adequately expose desired photo-sensitive materials through the transparent intermediate substrate 80. In various embodiments of the present invention, the transparent intermediate substrate 80 can include a glass substrate or a quartz wafer.
  • An additional or alternative structure is illustrated in FIG. 2B, where the patterned side 84 of the transparent intermediate substrate 80 can include a structured surface as well as the optical mask 82 on protruding portions of the structured surface. Such a structured surface can serve to increase the distance between portions of the transparent intermediate substrate 80 and the active components 22. The increased distance between the transparent intermediate substrate 80 from the active components 22 except in the areas of the optical mask 82 can improve the removal of material between the transparent intermediate substrate 80 and the active components 22, as discussed further below with respect to step 120.
  • Referring to FIGS. 2A, 2B, and 16, the transparent intermediate substrate 80 can include a patterned optical mask 82 formed on a patterned side 84 of the transparent intermediate substrate 80. The transparent intermediate substrate 80 can be provided with a patterned optical mask 82 already formed on the patterned side 84. Alternatively, as shown in FIG. 18, an unprocessed transparent intermediate substrate 80 is provided (step 106) and the optical mask 82 is formed from a metal layer or other material opaque to the selected frequencies of electro-magnetic radiation using conventional photo-lithographic processes (step 107). The optical mask 82 is used to selectively provide electro-magnetic radiation to portions of a photo-sensitive material, as illustrated in FIG. 7A. In other embodiments of the present invention, the transparent intermediate substrate 80 does not include a patterned optical mask 82, and another method is used to selectively provide electro-magnetic radiation to portions of a photo-sensitive material, as shown for example in FIG. 7B.
  • Referring to FIGS. 3 and 16, a photo-sensitive adhesive layer 30 is coated on the patterned side 84 of the transparent intermediate substrate 80 in step 110. The photo-sensitive adhesive layer 30 can also be formed on the active components 22 on the source substrate 20, or on both the transparent intermediate wafer 80 and the active components 22. The photo-sensitive adhesive layer 30 can be a photo-sensitive polymer or resin, as are commercially available. In some embodiments, the photo-sensitive adhesive layer 30 can be pattern-wise exposed to electromagnetic radiation to form a stronger adhesive bond in desired areas when developed. In some embodiment, the photo-sensitive adhesive layer 30 can be heat sensitive to cure the photo-sensitive adhesive material. Both positive- and negative-acting photo-sensitive materials can be used in embodiments of the present invention. However, as described below by way of example, a material that is cured to form a stronger bond (for example with heat) and then pattern-wise exposed to electromagnetic radiation to weaken the bond in desired areas is employed. In other embodiments, a material that is pattern-wise exposed to form a stronger bond in desired areas can be employed. Positive- and negative-acting pattern-wise bonding processes may be used to achieve these effects.
  • The photo-sensitive adhesive can be coated as a layer on the patterned side 84 of the transparent intermediate substrate 80 or the active components 22 in various ways, for example by spin or curtain coating or by applying the photo-sensitive material from an adhesive carrier. In embodiments of the present invention, coating the photo-sensitive material as a layer does not limit the methods used to form the photo-sensitive adhesive layer 30 and simply refers to any method or technique employed to form a layer 30 of photo-sensitive adhesive on the patterned side 84.
  • As shown in FIG. 4 and referenced in FIG. 16, once the photo-sensitive adhesive layer 30 is applied to the patterned side 84 of the transparent intermediate substrate 80 or the active components 22, the process side 24 of the source substrate 20 is brought into contact with the photo-sensitive adhesive layer 30 and adhered in step 115. If the optical mask 82 is present on the transparent intermediate substrate 80, the optical mask 82 is aligned with the active components 22 on the source substrate 20. The active components 22 and the connection pads 26 are in contact with the photo-sensitive adhesive layer 30. The photo-sensitive adhesive layer 30 can then be cured to a desired bonding or adhesive strength, for example with heat or by waiting the desired length of time, or both. In some embodiments, the photo-sensitive adhesive layer 30 can be patterned and developed before or after the source substrate 20 is brought into contact with the photo-sensitive adhesive layer 30.
  • Referring to FIG. 5 and step 120 of FIG. 16, portions of the source substrate 20 are removed except for the active components 22. For example the back side of the source substrate 20 opposite the process side 24 can be removed together with any portions of the source substrate 20 that are not part of the active components 22, leaving the singulated active components 22 adhered to the transparent intermediate wafer 80. The active components 22 are singulated by the removal step so that they have independent, separate substrates and do not share a substrate with any other active component 22. As shown in FIGS. 5 and 6, this can be accomplished in two different steps, first removing a majority of the source substrate 20 and secondly removing a remaining minority of the source substrate 20. For example, the majority of the source substrate 20 can be removed by a thinning process such as back-side grinding the source substrate 20 up to the active components 22. Back-side grinding is a process used in the photo-lithographic or semiconductor arts. Once the bulk of the source substrate 20 is removed, the source substrate portions 20A between the active components 22 can be etched away, for example by forming a mask over the active components 22 and employing an etchant, as shown in FIG. 6. Alternatively, if the trenches or wells 21 (FIG. 1) are formed in the source substrate 20, the step of back-side grinding the source substrate 20 can render additional source substrate removal steps unnecessary, if enough material is removed to reach the substrate trenches or wells 21 to thereby singulate the active components 22.
  • In another embodiment of the present invention, the photo-sensitive adhesive layer 30 can be patterned and developed before or after the source substrate 20 is reduced, or between the first removal step and the second removal step. In yet another embodiment, the majority of the source substrate 20 can be removed before the source substrate 20 is adhered to the transparent intermediate substrate 80. Thus, various embodiments of the present invention can employ various ordering of the source substrate 20 removal steps (step 120), the adhesive layer coating step (110), or the patterning step (125).
  • A structured surface on the transparent intermediate substrate (as shown in FIG. 2B) can ease or improve the removal of the source substrate material. Furthermore, the presence of the protruding structures on the patterned side 24 of the transparent intermediate substrate 80′ can lead to a thinner tether and improve the tether break. The materials in the source substrate portions 20A can include layers and materials, for example dielectric materials, deposited over the source substrate 20 process side 24 to form the active components; these layers and materials in the source substrate portions 20A are removed. Masking and etching processes are used in the integrated circuit arts and any combination of these techniques can be employed and are included in embodiments of the present invention. For example, the entire source substrate 20 (exclusive of the active components 22) can be removed by masking and etching.
  • After the removal of the source substrate 20 (leaving the active components 22 adhered to the transparent intermediate substrate 80), the photo-sensitive adhesive layer 30 is exposed as illustrated in FIG. 7A or 7B and referenced in step 125 of FIG. 16. Note that the order of the exposure and removal steps 125, 120 can be interchanged, depending on the strength of the adhesive bond and the type or technique used for source substrate material removal. For example, the photo-sensitive adhesive layer 30 could be only lightly cured as adequate for a subsequent source substrate 20 grind or etch process step, and then exposed. Thus positive- or negative-acting photo-sensitive adhesive materials can be used to form the adhesive layer 30 in various embodiments of the present invention.
  • Referring to FIG. 7A, a blanket exposure of radiation 40 is provided through the transparent intermediate substrate 80 onto the photo-sensitive adhesive layer 30. The optical mask 82 on the patterned side 84 prevents exposure in undesired areas of the photo-sensitive adhesive layer 30. Alternatively, as shown in FIG. 7B, a selective or patterned exposure of electromagnetic radiation is provided in alignment with the source substrate 20 to expose the desired portions of the photo-sensitive adhesive layer 30 only, for example by using one or more laser beams to sequentially expose the desired portions. Masks external to the transparent intermediate substrate 80 can also be employed. In both the embodiment of FIG. 7A and the embodiment of FIG. 7B, the patterned electro-magnetic radiation exposure provides differential bonding strength in the photo-sensitive adhesive layer 30 to form tethers connecting the active components 22 to the transparent intermediate substrate 80 as shown in FIG. 8A. In FIG. 8A, darker and lighter portions illustrate the differentially exposed portions of the patterned photo-sensitive adhesive layer 32. FIG. 8B shows the active components 22 and the differentially exposed patterned photo-sensitive adhesive layer 32 with a schematic bottom-view.
  • Referring to FIG. 9A and as referenced in step 130 of FIG. 16, the portions of the patterned photo-sensitive adhesive layer 32 that do not form the tethers 60 are removed, for example by washing with a suitable liquid. Washing adhesive materials as part of a mask formation process is a technique used in the photo-lithographic arts. FIG. 9B shows the active components 22, the differentially exposed layer patterned photo-sensitive adhesive 32, and the tethers 60 with a schematic bottom-view.
  • The tethers 60 formed in the patterned photo-sensitive adhesive layer 32 and shown in FIG. 9A serve to physically connect the active components 22 to the patterned side 84 of the transparent intermediate substrate 80. The tethers 60 can be relatively small and thin, to readily enable removal of the active components 22 from the transparent intermediate substrate 80 by breaking the tethers 60 as described further below. In various embodiments of the present invention, the active components 22 have various numbers of individual tethers 60. Alternatively, a single tether 60 can be connected to multiple active components 20. The number and location of tethers 60 connecting the active components 22 to the transparent intermediate substrate 80 are a matter of design choice. The tethers 60 are formed in a layer between the active components 22 and the transparent intermediate substrate 80. The active components 22 and the transparent intermediate substrate 80 also form layers so that the active components 22, the transparent intermediate substrate 80, and the tethers 60 are all in different layers so that the tethers 60 form a bridge between the active component layer and the transparent intermediate substrate layer and extend in a direction perpendicular to the layers.
  • Referring to FIG. 9C, various conductive or adhesive materials 28 can be coated or placed on the connection pads 26 prior to pressing the stamp 90 against the active components 22 (step 145). Such materials can include materials intended to promote adhesion between the active components and other substrates (as described further below), for example materials such as solder or tin or to promote conduction. The deposition of such materials (e.g. solder balls) is used in the art.
  • Referring to FIG. 9D, the tethers 60 can be shaped using various processing techniques, such as chemical etching or laser ablation prior to pressing the stamp 90 against the active components 22 (step 145). Such shaping can enhance the transfer of active components 22 to the stamp 90 described below with reference to FIG. 10 by improving characteristics associated with breaking the tethers 60. For example, the tethers 60 can be shaped to improve their predictability in breaking, reduce the force required to break the tethers 60, control the location of the breaks, reduce the number of particulates generated by the breaks, and/or control the location of particulates generated by the break. Referring to FIG. 9E for example, a tether break can be controlled so that any fracture residue is below the bonding surface of the connection pad 26. Thus, any particulates 64 generated from the fracture are not located on the surface of the connection pads 26 and do not interfere with conductivity and/or adhesion to the surface of the connection pad 26.
  • Thus, FIGS. 9A, 9B, 9C, and 9D illustrate various transfer devices 5 of the present invention. In some embodiments of the present invention, the transfer device 5 comprises a transparent intermediate substrate 80 having a patterned side 84, a patterned photo-sensitive adhesive layer 32 adhered to the patterned side 84 of the transparent intermediate substrate 80, and a plurality of singulated active components 22 adhered to the patterned photo-sensitive adhesive layer 32. The patterned photo-sensitive adhesive layer 32 is located between the patterned side 84 of the transparent intermediate substrate 80 and the singulated active components 22. The patterned photo-sensitive adhesive layer 32 forms tethers 60 physically connecting the active components 22 to the patterned side 84 of the transparent intermediate substrate 80 responsive to exposure to electromagnetic radiation. The transfer device 5 can included an optical mask 82 formed on the patterned side 84 of the transparent intermediate substrate 80. The patterned photo-sensitive adhesive layer 32 can be a photo-sensitive polymer. The tethers 60 can be breakable tethers and the transparent intermediate substrate 80 can be a quartz substrate. The singulated active components 22 can have a process side 24 and a different back side 25 opposite the process side 24. Connection pads 26 are formed on the process side 24 and the process side 24 is adhered to the patterned photo-sensitive adhesive layer 32. A singulated active component 22 is an active component 22 that has a separate substrate and does not share a substrate with any other active component 22. The tethers 60 are not part of an active component 22 substrate or the transparent intermediate substrate 80.
  • As shown in FIGS. 1-9 and as illustrated in the flow diagram of FIG. 16, a method for selectively transferring active components 22 from a source substrate 20 to an transparent intermediate substrate 80 comprises providing a source substrate 20 having a process side 24 and a plurality of active components 22 formed on or in the process side 24 of the source substrate 20. A transparent intermediate substrate 80 having a patterned side 84 is provided. A photo-sensitive adhesive layer 30 is coated on the patterned side 84 of the transparent intermediate wafer 80. The patterned side 84 of the transparent intermediate substrate 80 is adhered to the process side 24 of the source substrate 20. Portions of the source substrate 20 are removed, leaving the active components 22 adhered to the patterned side 84 of the transparent intermediate substrate 80. The photo-sensitive adhesive layer 30 is exposed to patterned electromagnetic radiation 40 to provide differential adhesion in the photo-sensitive adhesive layer 30. Portions of the patterned photo-sensitive adhesive layer 32 are then selectively removed according to the electro-magnetic radiation pattern, thereby forming tethers 60 physically connecting the active components 22 to the transparent intermediate substrate 80.
  • In a further embodiment of the present invention, the active components 22 adhered to the transparent intermediate substrate 80 are transferred to a destination substrate 10. Referring to FIG. 19 and FIGS. 14-15 described below, a destination substrate 10 having a receiving side 12 is provided in step 135 on which the active components 22 are to be located. The receiving side 12 of the destination substrate 10 can be processed and can include a variety of layers and elements, for example conductors, connectors, connection pads, solder materials, insulators, or functional elements such as integrated circuits. These receiving side elements can serve to electrically connect the active components 22 to the destination substrate 10 and provide power, ground, and control signals as desired to make use of the functionality provided by the active components 22.
  • Referring to FIG. 10 and step 140 of FIG. 19, a patterned stamp 90 is provided. The patterned stamp 90 has pillars 92 that can be shaped to match the shape of the active components 22. The stamp 90 can be made of an elastomeric material such as PDMS and the pillars 92 formed using methods described in greater detail in the paper “AMOLED Displays using Transfer-Printed Integrated Circuits” referenced above.
  • The pillars 92 of the patterned stamp 90 are aligned with the active components 22 adhered to the transparent intermediate substrate 80 as shown in FIG. 11 and referenced in step 145 of FIG. 19. The stamp 90 and pillars 92 are pressed against the active components 22 adhered to the patterned photo-sensitive adhesive layer 32, the optical mask 82 (if present) and the patterned side 84 of transparent intermediate substrate 80, thereby breaking the tethers 60 and adhering the active components 22 to the pillars 90, for example with van der Waal's forces. Although each active component 22 is illustrated in FIG. 11 pressed against a corresponding pillar 92, in various embodiments of the present invention fewer pillars 92 may be provided so that only a subset of the active components 22 are removed. Referring to FIG. 12, the broken tethers 62 and the transparent intermediate substrate 80 are then removed, leaving the back side of the active components 22 adhered to the pillars 92 of the stamp 90, as shown in FIG. 13. The connection pads 26 of the active components 22 are exposed.
  • The active components 22 are then adhered to the receiving side 12 of the destination substrate 10, as shown in FIG. 14 and referenced in step 150 of FIG. 19, by pressing the active components 22 on the stamp 90 pillars 92 in alignment to any receiving side 12 structures, elements, or destination receiving side layers 13, for example destination substrate conductive contacts 11. The receiving side 12 can include an adhesive layer, which can be patterned and/or conductive, to adhere the active components 22 to the destination substrate 10. The stamp 90 is then removed from the receiving side 12, leaving the transferred active components 22A adhered to the destination substrate 10, as illustrated in FIG. 15.
  • Other transfer methods can also be used to transfer active components 22 from the transparent intermediate substrate 80 to the destination substrate 10. For example, for larger integrated circuit devices, pick-and-place technologies can be employed, such as vacuum adhesion, for either single or multiple die transfer.
  • In further embodiments of the present invention, referring to FIG. 20, the transparent intermediate substrate 80 can be cleaned in step 155 by removing any remaining portions of the photo-sensitive adhesive layer 30 from the transparent intermediate substrate 80. In other embodiments, the optical mask can also be removed. The transparent intermediate substrate 80 can then be reused in step 160 by coating a second photo-sensitive adhesive layer 30 on the patterned side 84 of the transparent intermediate wafer 80 and adhering the process side 24 of a second source substrate 20 to the patterned side 84 of the transparent intermediate substrate 80 in step 165. Thus, the transparent intermediate substrate 80 can be reused.
  • Embodiments of the present invention provide advantages over other printing methods, for example, as discussed in the paper referenced above. By employing a transparent intermediate substrate 80, robust and inexpensive processes and materials used in the integrated circuit and photolithographic industries can be employed to transfer active components 22 from a source substrate 20 to a destination substrate 10. For example, silicon foundry and back-side grinding techniques may be readily employed. Furthermore, as described above, the methods and transfer devices of embodiments of the present invention enable the adhesion of the process side 24 and connection pads 26 of the active components 22 adjacent to the receiving side 12 of the destination substrate 10, simplifying electrical connections between the active components 22 and any devices or structures on the destination substrate 10 and reducing process steps. Moreover, the transparent intermediate substrate 80 can be reused, reducing costs. These processes can also be employed with flexible destination substrates and substrates that are less tolerant of chemical or high temperature process steps.
  • The source substrate 20, destination substrate 10, stamp 90, and transparent intermediate substrate 80 can be made separately, at different times, and/or in different temporal orders or locations and provided in various process states.
  • The photo-sensitive adhesive layer 30 can be located on the patterned side 84 of the transparent intermediate substrate 80 (as illustrated FIG. 3), or it can be applied to the active components 22 and process side 24 of the source substrate 20. When the transparent intermediate substrate 80 is removed from the active components 22, a portion of the patterned photo-sensitive adhesive layer 32 and the broken tethers 62 can be adhered to the active components 22. The active components 22 can be cleaned prior to transferring the active components 22 to the receiving side 12 of the destination substrate 10.
  • Suitable photo-sensitive adhesive materials, for example UV-curable adhesive resins, are used in the photo-lithographic industry. Adhesives can be applied, for example, as a film on a carrier that is applied to a substrate and the carrier can be subsequently removed, for example by peeling, leaving an adhesive film on the substrate. Additionally or alternatively, uncured liquid adhesives can be coated, for example by spin coating or curtain coating, or other coating methods. The selectively curable photo-sensitive adhesive layer 30 can also or alternatively be applied to the active components 22 and on the source substrate 20. A photo-sensitive adhesive, as used herein, is a material (dry or liquid) that can be cured in some areas, but not others, for example, by the patterned application of photonic energy (e.g., electromagnetic energy such as ultra-violet radiation or light). A laser can be used to provide light or heat to selected areas either to enhance adhesion or to degrade adhesion.
  • According to various embodiments, a variety of materials can be used for various elements in the invention. The selectively curable photo-sensitive adhesive layer 30 can include materials that improve the absorption of light or heat, to improve the rate of curing, for example dyes. The radiation pattern corresponds to the spatial area cured. A wide variety of substrate materials can be employed, for example glass, polymers, quartz, and silicon. In particular, glass substrates are used in various industries such as display, radiography, and photo-voltaics. A variety of active components 22 may be used, for example, such as active components formed in layers of silicon. In one embodiment of an active component 22, thin-film transistors are photo-lithographically formed on a thin silicon layer sputtered and possibly processed on a glass substrate. However, such active components 22 typically have lower performance and are mechanically fragile, which may lead to damage during the transfer process and can lack adequate mechanical robustness.
  • In some embodiments, the active components 22 are small integrated circuits formed in a semiconductor wafer source substrate 20, for example gallium arsenide or silicon, which can have a crystalline structure. Processing technologies for these materials typically employ high heat and reactive chemicals. However, by employing transfer technologies that do not stress the active component 22 or substrate materials, more benign environmental conditions can be used as compared to thin-film manufacturing processes. Thus, embodiments of the present invention provide advantages in that flexible substrates that are typically intolerant of extreme processing conditions (e.g. heat, chemical, or mechanical processes) can be employed as the destination substrates 10. Furthermore, it has been demonstrated that crystalline silicon substrates have strong mechanical properties and, in small sizes, can be relatively flexible and tolerant of mechanical stress. This is particularly true for substrates of about 5 micron, 10 micron, 20 micron, 50 micron, or even 100-micron thicknesses. Additionally or alternatively, the active components 22 can be formed in a microcrystalline, polycrystalline, or amorphous semiconductor layer.
  • The active components 22 can be constructed using foundry fabrication processes. Layers of materials can be used, including materials such as metals, oxides, nitrides and other materials used in the integrated-circuit art. Each active component 22 can be a complete semiconductor integrated circuit and can include, for example, transistors. The active components 22 can have different sizes, for example, about 1000 square microns or about 10,000 square microns, about 100,000 square microns, or about 1 square mm, or larger, and can have variable aspect ratios, for example about 1:1, 2:1, 5:1, or 10:1. The active components 22 can be rectangular or can have other shapes.
  • The stamp 90 can be flat or structured, for example with pillars 92 matched to the shapes, sizes, and locations of the active components 22 to enhance adhesion. The stamp 90 can be elastomeric, for example made of PDMS, rubber, or a reinforced composite.
  • The adhesion between the active components 22 and the receiving side 12 of the destination substrate 10 should be greater than the adhesion between the active components 22 and the stamp 90. When the stamp 90 is removed from the receiving side 12 of the destination substrate 10, the active components 22 must adhere more strongly to the receiving side 12 than to the stamp 90, in order to transfer the active components 22 from the stamp 90 to the receiving side 12 of the destination substrate 10.
  • In one embodiment of the method, the stamp 90 adheres only a subset of the active components 22, for example a subset array of the available active components 22 on the transparent intermediate substrate 80. Subsequent stamping steps can then remove different subset arrays of active components 22 from the transparent intermediate substrate 80 and stamp them in different locations on the destination substrate 10 to form a sparse array of active components 22 adhered to the receiving side 12 of the destination substrate 10.
  • In other embodiments, all of the active components 22 within an array on the transparent intermediate wafer 80 are removed from the transparent intermediate wafer 80 and adhered to the stamp 90. Likewise, all of the removed active components 22 are stamped onto the receiving side 12 of the destination substrate 10. However, only selected active components 22, for example a subset array of the active components 22 on the stamp 90 are adhered to the destination substrate 10 by selectively curing areas of an adhesive layer formed on the receiving side 12 and corresponding to the selected active components 22. The stamp 90 is then removed from the destination substrate 10 and can be reapplied elsewhere on the destination substrate 10 to selectively adhere another different subset array of active components 22 to another different destination substrate area. In this embodiment, there is no need to repeatedly press the stamp 90 against the transparent intermediate wafer 80, but the adhesion of the active components 22 to the stamp 90 must be stronger than the uncured adhesion to the destination substrate 10 and weaker than the cured adhesion to the destination substrate 10.
  • Referring to the flow diagrams of FIGS. 16 and 20, the methods of embodiments of the present invention can be iteratively applied to a single or multiple destination substrates 10. By repeatedly transferring sub-arrays of active components 22 from a stamp 90 to a destination substrate 10 and relatively or laterally moving the stamp 90 and destination substrates 10 between stamping operations a distance equal to the spacing of the selected active components 22 in the transferred sub-array between each transfer of active components 22, an array of active components 22 formed at a high density on a source substrate 20 can be transferred to a destination substrate 10 at a lower density. In practice, the source substrate 20 is likely to be expensive, and forming active components 22 with a high density on the source substrate 20 can reduce the cost of the active components 22, especially as compared to forming active components on the destination substrate 10. Transferring the active components 22 to a lower-density destination substrate 10 can be used, for example, if the active components 22 manage elements distributed over the destination substrate 10, for example in a display, digital radiographic plate, or photovoltaic system.
  • In particular, in the case wherein the active component 22 is an integrated circuit formed in a crystalline semiconductor material, the integrated circuit substrate provides sufficient cohesion, strength, and flexibility that it can adhere to the destination substrate 10 without breaking as the stamp 90 is removed.
  • In various methods of the present invention, laser beams are used to selectively cure selected adhesive areas. In one embodiment, the selected areas can be sequentially exposed. In another embodiment, multiple areas can be simultaneously exposed, thereby increasing the number of selected active components simultaneously adhered. Such selective exposure can enable the selection of known good die, by ensuring that only tethers associated with known good die are patterned for transfer. Thus, methods of the present invention include selectively exposing the photo-sensitive adhesive layer 30 to differentially adhere active components 22 to the transparent intermediate substrate 80. The method can further include selectively exposing the photo-sensitive adhesive layer 30 to differentially adhere electrically defective active components. Selective adhesion of the active components 22 can be accomplished by controlling the size of the tethers 60 or by adhering the active components 22 itself to the transparent intermediate substrate 80 or to the source substrate 20. Active components 22 can be tested while still on the source substrate 20. In this way, active components 22 known to be defective can be prevented from being transferred from one substrate to another substrate.
  • Other methods employing a mask can also adhere multiple selected active components at one time. Methods for scanning and controlling lasers can be employed, as well as light sources used in conjunction with aligned masks, particularly as are used in the photo-lithographic arts.
  • In comparison to thin-film manufacturing methods, using densely populated source substrates 20 and transferring active components 22 to a destination substrate 10 that requires only a sparse array of active components 22 located thereon does not waste or require active layer material on a destination substrate 10. Embodiments of the present invention may also be used in transferring active components 22 made with crystalline semiconductor materials that have higher performance than thin-film active components. Furthermore, the flatness, smoothness, chemical stability, and heat stability requirements for a destination substrate 10 used in embodiments of the present invention are reduced because the adhesion and transfer process is not significantly limited by the destination substrate material properties. Manufacturing and material costs may be reduced because of high utilization rates of expensive materials (e.g. the source substrate) and reduced material and processing requirements for the destination substrate.
  • Many different embodiments have been disclosed herein, in connection with the above description and the drawings. It will be understood that it would be unduly repetitious and obfuscating to literally describe and illustrate every combination and subcombination of these embodiments. Accordingly, the present specification, including the drawings, shall be construed to constitute a complete written description of all combinations and subcombinations of the embodiments described herein, and of the manner and process of making and using them, and shall support claims to any such combination or subcombination.
  • In the specification, there have been disclosed embodiments of the invention and, although specific terms are employed, they are used in a generic and descriptive sense only and not for purposes of limitation. The following claims are provided to ensure that the present application meets all statutory requirements as a priority application in all jurisdictions and shall not be construed as setting forth the scope of the present invention.

Claims (39)

1. A method of printing transferable components, the method comprising:
forming a photo-sensitive adhesive layer on a process side of a source substrate including active components or on a patterned side of a transparent intermediate substrate;
contacting the transparent intermediate substrate with the source substrate to adhere the active components on the process side to the patterned side of the transparent intermediate substrate via the photo-sensitive adhesive layer therebetween;
removing portions of the source substrate opposite the process side to singulate the active components;
selectively exposing portions of the photo-sensitive adhesive layer to electromagnetic radiation through the transparent intermediate substrate to alter an adhesive strength thereof; and then
selectively removing portions of the photo-sensitive adhesive layer having a weaker adhesive strength to define breakable tethers comprising portions of the adhesive layer having a stronger adhesive strength, wherein the breakable tethers physically secure the active components to the transparent intermediate substrate.
2. The method of claim 1, wherein selectively exposing comprises:
forming a mask pattern on the transparent intermediate substrate; and
exposing the transparent intermediate substrate to the electromagnetic radiation,
wherein the mask pattern comprises a material configured to block transmission of the electromagnetic radiation therethrough such that the portions of the photo-sensitive adhesive layer exposed by the mask pattern are selectively exposed to the electromagnetic radiation.
3. The method of claim 2, wherein the patterned side of the transparent intermediate substrate includes a plurality of structures protruding therefrom, and wherein the mask pattern is formed on surfaces of the protruding structures.
4. The method of claim 1, wherein the tethers extend in a direction perpendicular to the transparent intermediate layer and are shaped to break in a desired manner.
5. The method of claim 1, wherein the active components have respective primary surfaces including conductive elements thereon adjacent the process side of the source substrate and respective secondary surfaces opposite the primary surfaces, and
wherein the portions of the adhesive layer defining the tethers physically connect the respective the primary surfaces of the active components to the transparent intermediate substrate.
6. The method of claim 5, further comprising:
pressing a stamp having pillars protruding therefrom against the active components on the transparent intermediate substrate and separating the stamp from the transparent intermediate substrate to break the tethers and adhere the respective secondary surfaces of the active components to respective transfer surfaces of the pillars of the stamp; and
contacting the stamp including the active components on the pillars thereof with a destination substrate to adhere the respective primary surfaces of the active components including the conductive elements thereon to a receiving surface of the destination substrate.
7. The method of claim 6, wherein the conductive elements on the respective primary surfaces of the active components are adhered to respective electrical contacts on the receiving surface of the destination substrate.
8. The method of claim 6, wherein the primary surfaces of the active components respectively include a photo-adhesive layer residue thereon comprising respective portions of the breakable tethers, wherein the residue is below respective surfaces of the conductive elements.
9. The method of claim 1, wherein selectively exposing comprises:
selectively exposing the portions of the photo-sensitive adhesive layer to differentially adhere ones of the active components to the transparent intermediate substrate.
10. An active component array, comprising:
at least one printable electronic component comprising a conductive element on a primary surface thereof, the conductive element being configured to provide an electrical coupling to at least one active element on the primary surface, wherein the at least one electronic component includes a photo-adhesive layer residue on the primary surface thereof, wherein the residue comprises a broken portion of a tether configured to adhere the at least one electronic component to a transparent intermediate substrate, wherein the photo-adhesive layer residue comprises a material configured to provide altered adhesive strength responsive to exposure to electromagnetic radiation; and
a destination substrate including one or more electrical contacts on a surface thereof, wherein the at least one electronic component is printed on the destination substrate such that the conductive element on the primary surface thereof is in contact with a respective one of the electrical contacts on the receiving surface of the destination substrate.
11. A method for fabricating a substrate having transferable chiplets, comprising:
providing a source substrate having a process side and a plurality of active components adjacent the process side of the source substrate;
providing a transparent intermediate substrate having a patterned side;
providing a photo-sensitive adhesive layer on the patterned side of the transparent intermediate wafer or on the active components;
adhering the patterned side of the transparent intermediate substrate to the process side of the source substrate via the photo-sensitive adhesive layer;
removing portions of the source substrate to singulate the active components and adhere the singulated active components to the patterned side of the transparent intermediate substrate;
selectively exposing the photo-sensitive adhesive layer to electromagnetic radiation to alter an adhesive strength thereof such that portions of the photo-sensitive adhesive layer have a weaker adhesive strength than other portions thereof; and
selectively removing the portions of the photo-sensitive adhesive layer having the weaker adhesive strength to define breakable tethers comprising the other portions of the photo-sensitive adhesive layer that physically connect the singulated active components to the transparent intermediate substrate.
12. The method of claim 11, further including forming an optical mask on the patterned side of the transparent intermediate substrate and selectively exposing the photo-sensitive adhesive layer to electromagnetic radiation through the optical mask.
13. The method of claim 11, further including selectively exposing the photo-sensitive adhesive layer to electromagnetic radiation with a patterned laser beam.
14. The method of claim 13, further including selectively exposing the photo-sensitive adhesive layer to differentially adhere ones of the active components.
15. The method of claim 14, further including selectively exposing the photo-sensitive adhesive layer to differentially adhere electrically defective ones of the active components.
16. The method of claim 11, further including:
providing a destination substrate having a receiving side;
providing a patterned stamp having a plurality of pillars, each pillar spatially corresponding to an active component;
pressing the stamp pillars against the active components to detach the active components from the transparent intermediate substrate, thereby adhering the active components to the stamp pillars; and
pressing the active components against the receiving side of the destination substrate with the stamp to adhere the active components to the destination substrate.
17. The method of claim 16, further including:
removing remaining portions of the photo-sensitive adhesive layer from the transparent intermediate substrate.
18. The method of claim 17, further including:
coating a second photo-sensitive adhesive layer on the patterned side of the transparent intermediate wafer; and
adhering the process side of a second source substrate to the patterned side of the transparent intermediate substrate.
19. The method of claim 16, further including breaking the tethers.
20. The method of claim 11, further including providing a source substrate that is a semiconductor wafer, a silicon wafer, or a gallium arsenide wafer.
21. The method of claim 11, further including providing active components that include a crystalline, a microcrystalline, a polycrystalline, or an amorphous semiconductor material.
22. The method of claim 11, further including first removing the majority of the source substrate in a first step and removing a minority of the source substrate in a second step different from the first step.
23. The method of claim 22, further including removing a portion of the source substrate before the transparent intermediate substrate is adhered to the source substrate.
24. The method of claim 11, further including exposing the photo-sensitive adhesive layer to patterned electromagnetic radiation before the source substrate is adhered to the transparent intermediate substrate, after the source substrate is adhered to the transparent intermediate substrate, after portions of the source substrate are removed, or after a first portion of the source substrate is removed but before a second portion of the source substrate is removed.
25. The method of claim 11, further including grinding or etching back the source substrate leaving the active components on the process side adhered to the patterned side of the transparent intermediate substrate.
26. The method of claim 11, wherein the tethers physically connect the active components in a component layer to the transparent intermediate substrate in a substrate layer, wherein the tethers are formed in a tether layer that is between the component layer and the substrate layer, and wherein the component layer, the tether layer, and the substrate layer are all different layers.
27. The method of claim 11, further including coating the photosensitive adhesive layer from an adhesive carrier.
28. The method of claim 11, further including providing a transparent intermediate substrate with protruding structures on the patterned side.
29. The method of claim 11, further including using chemical processes or laser ablation to shape the tethers.
30. A transfer device, comprising:
a transparent intermediate substrate having a patterned side;
a patterned photo-sensitive adhesive layer adhered to the patterned side of the transparent intermediate substrate, the patterned adhesive layer comprising a material configured to provide altered adhesive strength responsive to exposure to electromagnetic radiation; and
a plurality of singulated active components adhered to the patterned adhesive layer, the patterned adhesive layer located between the patterned side of the transparent intermediate substrate and the singulated active components, the patterned adhesive layer forming breakable tethers physically connecting the singulated active components to the patterned side of the transparent intermediate substrate.
31. The transfer device of claim 30, further including a mask on the patterned side of the transparent intermediate substrate.
32. The transfer device of claim 30, wherein the patterned adhesive layer is a photo-sensitive polymer.
33. The transfer device of claim 30, wherein the tethers are breakable tethers.
34. The transfer device of claim 30, wherein the transparent intermediate substrate is a quartz substrate.
35. The transfer device of claim 30, wherein the active components form a component layer, the transparent intermediate substrate forms a substrate layer, and the tethers form a tether layer that is between the component layer and the substrate layer, and wherein the component layer, the tether layer, and the substrate layer are all different layers.
36. The transfer device of claim 30, wherein the active components have a process side and a different back side, the active components have connection pads formed on the process side, and the process side is adhered to the patterned adhesive layer.
37. The transfer device of claim 30, wherein the patterned side of the transparent intermediate substrate is structured to increase a distance between portions of the transparent intermediate substrate and the active components.
38. The transfer device of claim 30, wherein the tethers are shaped to control a manner in which the tethers breaks when mechanically stressed or to control particulate residue when the tether breaks.
39. The transfer device of claim 30, further including conductive or adhesive materials located on the connection pads.
US13/491,335 2011-06-08 2012-06-07 Substrates with transferable chiplets Active 2032-09-19 US8934259B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US201161494514P true 2011-06-08 2011-06-08
US201161494507P true 2011-06-08 2011-06-08
US13/491,335 US8934259B2 (en) 2011-06-08 2012-06-07 Substrates with transferable chiplets

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US13/491,335 US8934259B2 (en) 2011-06-08 2012-06-07 Substrates with transferable chiplets
US14/560,679 US9401344B2 (en) 2011-06-08 2014-12-04 Substrates with transferable chiplets

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/560,679 Division US9401344B2 (en) 2011-06-08 2014-12-04 Substrates with transferable chiplets

Publications (2)

Publication Number Publication Date
US20120314388A1 true US20120314388A1 (en) 2012-12-13
US8934259B2 US8934259B2 (en) 2015-01-13

Family

ID=47292475

Family Applications (7)

Application Number Title Priority Date Filing Date
US13/491,335 Active 2032-09-19 US8934259B2 (en) 2011-06-08 2012-06-07 Substrates with transferable chiplets
US13/491,196 Active US8889485B2 (en) 2011-06-08 2012-06-07 Methods for surface attachment of flipped active componenets
US14/541,276 Active US9307652B2 (en) 2011-06-08 2014-11-14 Methods for surface attachment of flipped active components
US14/560,679 Active US9401344B2 (en) 2011-06-08 2014-12-04 Substrates with transferable chiplets
US14/821,046 Active US9603259B2 (en) 2011-06-08 2015-08-07 Methods for surface attachment of flipped active components
US15/423,159 Active US10008465B2 (en) 2011-06-08 2017-02-02 Methods for surface attachment of flipped active components
US15/990,449 Active US10262966B2 (en) 2011-06-08 2018-05-25 Methods for surface attachment of flipped active components

Family Applications After (6)

Application Number Title Priority Date Filing Date
US13/491,196 Active US8889485B2 (en) 2011-06-08 2012-06-07 Methods for surface attachment of flipped active componenets
US14/541,276 Active US9307652B2 (en) 2011-06-08 2014-11-14 Methods for surface attachment of flipped active components
US14/560,679 Active US9401344B2 (en) 2011-06-08 2014-12-04 Substrates with transferable chiplets
US14/821,046 Active US9603259B2 (en) 2011-06-08 2015-08-07 Methods for surface attachment of flipped active components
US15/423,159 Active US10008465B2 (en) 2011-06-08 2017-02-02 Methods for surface attachment of flipped active components
US15/990,449 Active US10262966B2 (en) 2011-06-08 2018-05-25 Methods for surface attachment of flipped active components

Country Status (1)

Country Link
US (7) US8934259B2 (en)

Cited By (72)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130075023A1 (en) * 2011-09-26 2013-03-28 Sumitomo Electric Industries, Ltd. Method for bonding thin film piece
US20130153277A1 (en) * 2010-03-29 2013-06-20 Etienne Menard Electrically bonded arrays of transfer printed active components
US20140170924A1 (en) * 2012-12-13 2014-06-19 Chengdu Boe Optoelectronics Technology Co., Ltd. Method for manufacturing a liquid crystal panel
US8900911B2 (en) 2012-05-29 2014-12-02 Essence Solar Solutions Ltd. Frame holder
US20150064808A1 (en) * 2012-04-05 2015-03-05 Koninklijke Philips N.V. Led thin-film device partial singulation prior to substrate thinning or removal
US20150163906A1 (en) * 2011-06-08 2015-06-11 Semprius, Inc. Substrates with Transferable Chiplets
US20150200480A1 (en) * 2014-01-16 2015-07-16 International Business Machines Corporation Low insertion force connector utilizing directional adhesion
WO2016071370A1 (en) * 2014-11-03 2016-05-12 Melexis Technologies Nv Magnetic field sensor and method for making same
US9358775B2 (en) * 2014-07-20 2016-06-07 X-Celeprint Limited Apparatus and methods for micro-transfer-printing
US9368683B1 (en) 2015-05-15 2016-06-14 X-Celeprint Limited Printable inorganic semiconductor method
US9437782B2 (en) 2014-06-18 2016-09-06 X-Celeprint Limited Micro assembled LED displays and lighting elements
US9468050B1 (en) 2014-09-25 2016-10-11 X-Celeprint Limited Self-compensating circuit for faulty display pixels
US20160336304A1 (en) * 2015-05-15 2016-11-17 Au Optronics Corporation Method for transferring micro devices and method for manufacturing display panel
US9537069B1 (en) 2014-09-25 2017-01-03 X-Celeprint Limited Inorganic light-emitting diode with encapsulating reflector
US9601356B2 (en) 2014-06-18 2017-03-21 X-Celeprint Limited Systems and methods for controlling release of transferable semiconductor structures
US9640108B2 (en) 2015-08-25 2017-05-02 X-Celeprint Limited Bit-plane pulse width modulated digital display system
US9704821B2 (en) 2015-08-11 2017-07-11 X-Celeprint Limited Stamp with structured posts
US9716082B2 (en) 2014-08-26 2017-07-25 X-Celeprint Limited Micro assembled hybrid displays and lighting elements
CN107004615A (en) * 2014-09-25 2017-08-01 艾克斯瑟乐普林特有限公司 Compound micro-assembly strategies and devices
CN107078088A (en) * 2014-06-18 2017-08-18 艾克斯瑟乐普林特有限公司 Micro assembled high frequency devices and arrays and method of making the same
US9741785B2 (en) 2014-09-25 2017-08-22 X-Celeprint Limited Display tile structure and tiled display
US9761754B2 (en) 2014-06-18 2017-09-12 X-Celeprint Limited Systems and methods for preparing GaN and related materials for micro assembly
US9786646B2 (en) 2015-12-23 2017-10-10 X-Celeprint Limited Matrix addressed device repair
US9799261B2 (en) 2014-09-25 2017-10-24 X-Celeprint Limited Self-compensating circuit for faulty display pixels
US9818725B2 (en) 2015-06-01 2017-11-14 X-Celeprint Limited Inorganic-light-emitter display with integrated black matrix
US9865600B2 (en) 2014-06-18 2018-01-09 X-Celeprint Limited Printed capacitors
US9871345B2 (en) 2015-06-09 2018-01-16 X-Celeprint Limited Crystalline color-conversion device
US9923133B2 (en) 2010-08-26 2018-03-20 X-Celeprint Limited Structures and methods for testing printable integrated circuits
US9930277B2 (en) 2015-12-23 2018-03-27 X-Celeprint Limited Serial row-select matrix-addressed system
US9929053B2 (en) 2014-06-18 2018-03-27 X-Celeprint Limited Systems and methods for controlling release of transferable semiconductor structures
US9928771B2 (en) 2015-12-24 2018-03-27 X-Celeprint Limited Distributed pulse width modulation control
US9980341B2 (en) 2016-09-22 2018-05-22 X-Celeprint Limited Multi-LED components
US9991163B2 (en) 2014-09-25 2018-06-05 X-Celeprint Limited Small-aperture-ratio display with electrical component
US9997501B2 (en) 2016-06-01 2018-06-12 X-Celeprint Limited Micro-transfer-printed light-emitting diode device
US9997102B2 (en) 2016-04-19 2018-06-12 X-Celeprint Limited Wirelessly powered display and system
US10008483B2 (en) 2016-04-05 2018-06-26 X-Celeprint Limited Micro-transfer printed LED and color filter structure
WO2018150262A1 (en) * 2017-02-17 2018-08-23 Analog Devices Global Unlimited Company Method of transfer printing
US10066819B2 (en) 2015-12-09 2018-09-04 X-Celeprint Limited Micro-light-emitting diode backlight system
US10091446B2 (en) 2015-12-23 2018-10-02 X-Celeprint Limited Active-matrix displays with common pixel control
US10102794B2 (en) 2015-06-09 2018-10-16 X-Celeprint Limited Distributed charge-pump power-supply system
US10103069B2 (en) 2016-04-01 2018-10-16 X-Celeprint Limited Pressure-activated electrical interconnection by micro-transfer printing
US10109753B2 (en) 2016-02-19 2018-10-23 X-Celeprint Limited Compound micro-transfer-printed optical filter device
US10133426B2 (en) 2015-06-18 2018-11-20 X-Celeprint Limited Display with micro-LED front light
US10153256B2 (en) 2016-03-03 2018-12-11 X-Celeprint Limited Micro-transfer printable electronic component
US10150325B2 (en) 2016-02-29 2018-12-11 X-Celeprint Limited Hybrid banknote with electronic indicia
US10153257B2 (en) 2016-03-03 2018-12-11 X-Celeprint Limited Micro-printed display
US10150326B2 (en) 2016-02-29 2018-12-11 X-Celeprint Limited Hybrid document with variable state
US10157880B2 (en) 2016-10-03 2018-12-18 X-Celeprint Limited Micro-transfer printing with volatile adhesive layer
US10181483B2 (en) 2010-03-29 2019-01-15 X-Celeprint Limited Laser assisted transfer welding process
US10193025B2 (en) 2016-02-29 2019-01-29 X-Celeprint Limited Inorganic LED pixel structure
US10189243B2 (en) 2011-09-20 2019-01-29 X-Celeprint Limited Printing transferable components using microstructured elastomeric surfaces with pressure modulated reversible adhesion
US10198890B2 (en) 2016-04-19 2019-02-05 X-Celeprint Limited Hybrid banknote with electronic indicia using near-field-communications
US10199546B2 (en) 2016-04-05 2019-02-05 X-Celeprint Limited Color-filter device
US10200013B2 (en) 2016-02-18 2019-02-05 X-Celeprint Limited Micro-transfer-printed acoustic wave filter device
US10217730B2 (en) 2016-02-25 2019-02-26 X-Celeprint Limited Efficiently micro-transfer printing micro-scale devices onto large-format substrates
US10222698B2 (en) 2016-07-28 2019-03-05 X-Celeprint Limited Chiplets with wicking posts
US10224231B2 (en) 2016-11-15 2019-03-05 X-Celeprint Limited Micro-transfer-printable flip-chip structures and methods
US10230048B2 (en) 2015-09-29 2019-03-12 X-Celeprint Limited OLEDs for micro transfer printing
US10255834B2 (en) 2015-07-23 2019-04-09 X-Celeprint Limited Parallel redundant chiplet system for controlling display pixels
US10297502B2 (en) 2016-12-19 2019-05-21 X-Celeprint Limited Isolation structure for micro-transfer-printable devices
US10297585B1 (en) 2017-12-21 2019-05-21 X-Celeprint Limited Multi-resolution compound micro-devices
US10332868B2 (en) 2017-01-26 2019-06-25 X-Celeprint Limited Stacked pixel structures
US10347168B2 (en) 2016-11-10 2019-07-09 X-Celeprint Limited Spatially dithered high-resolution
US10360846B2 (en) 2016-05-10 2019-07-23 X-Celeprint Limited Distributed pulse-width modulation system with multi-bit digital storage and output device
US10361677B2 (en) 2016-02-18 2019-07-23 X-Celeprint Limited Transverse bulk acoustic wave filter
US10380930B2 (en) 2015-08-24 2019-08-13 X-Celeprint Limited Heterogeneous light emitter display system
US10395966B2 (en) 2016-11-15 2019-08-27 X-Celeprint Limited Micro-transfer-printable flip-chip structures and methods
US10396137B2 (en) 2017-03-10 2019-08-27 X-Celeprint Limited Testing transfer-print micro-devices on wafer
US10418331B2 (en) 2010-11-23 2019-09-17 X-Celeprint Limited Interconnection structures and methods for transfer-printed integrated circuit elements with improved interconnection alignment tolerance
US10438859B2 (en) 2016-12-19 2019-10-08 X-Celeprint Limited Transfer printed device repair
US10453826B2 (en) 2016-06-03 2019-10-22 X-Celeprint Limited Voltage-balanced serial iLED pixel and display
US10468363B2 (en) 2015-08-10 2019-11-05 X-Celeprint Limited Chiplets with connection posts

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8349116B1 (en) 2011-11-18 2013-01-08 LuxVue Technology Corporation Micro device transfer head heater assembly and method of transferring a micro device
US8809875B2 (en) 2011-11-18 2014-08-19 LuxVue Technology Corporation Micro light emitting diode
US8573469B2 (en) 2011-11-18 2013-11-05 LuxVue Technology Corporation Method of forming a micro LED structure and array of micro LED structures with an electrically insulating layer
US8646505B2 (en) 2011-11-18 2014-02-11 LuxVue Technology Corporation Micro device transfer head
US9548332B2 (en) 2012-04-27 2017-01-17 Apple Inc. Method of forming a micro LED device with self-aligned metallization stack
US9105492B2 (en) 2012-05-08 2015-08-11 LuxVue Technology Corporation Compliant micro device transfer head
US9034754B2 (en) 2012-05-25 2015-05-19 LuxVue Technology Corporation Method of forming a micro device transfer head with silicon electrode
US8569115B1 (en) 2012-07-06 2013-10-29 LuxVue Technology Corporation Method of forming a compliant bipolar micro device transfer head with silicon electrodes
US9558721B2 (en) 2012-10-15 2017-01-31 Apple Inc. Content-based adaptive refresh schemes for low-power displays
US9236815B2 (en) 2012-12-10 2016-01-12 LuxVue Technology Corporation Compliant micro device transfer head array with metal electrodes
US9255001B2 (en) 2012-12-10 2016-02-09 LuxVue Technology Corporation Micro device transfer head array with metal electrodes
US9166114B2 (en) 2012-12-11 2015-10-20 LuxVue Technology Corporation Stabilization structure including sacrificial release layer and staging cavity
US9153171B2 (en) 2012-12-17 2015-10-06 LuxVue Technology Corporation Smart pixel lighting and display microcontroller
US9484504B2 (en) 2013-05-14 2016-11-01 Apple Inc. Micro LED with wavelength conversion layer
JP2016521893A (en) 2013-06-12 2016-07-25 ロヒンニ インコーポレイテッド Keyboard backlighting with attached light source
US9035279B2 (en) 2013-07-08 2015-05-19 LuxVue Technology Corporation Micro device with stabilization post
US9087764B2 (en) 2013-07-26 2015-07-21 LuxVue Technology Corporation Adhesive wafer bonding with controlled thickness variation
US9224755B2 (en) 2013-09-06 2015-12-29 Globalfoundries Inc. Flexible active matrix display
US9153548B2 (en) 2013-09-16 2015-10-06 Lux Vue Technology Corporation Adhesive wafer bonding with sacrificial spacers for controlled thickness variation
US9450147B2 (en) 2013-12-27 2016-09-20 Apple Inc. LED with internally confined current injection area
US9583466B2 (en) 2013-12-27 2017-02-28 Apple Inc. Etch removal of current distribution layer for LED current confinement
US9859249B2 (en) * 2014-12-03 2018-01-02 Intel Corporation Method of fabricating an electronic package
KR101757404B1 (en) 2015-07-24 2017-07-12 한국기계연구원 Selective continuous transferring apparatus based on adhesion-controlled film
US10223962B2 (en) 2016-03-21 2019-03-05 X-Celeprint Limited Display with fused LEDs
EP3346238A1 (en) 2017-01-10 2018-07-11 Melexis Technologies SA Sensor with multiple sensing elements
GB2559780B (en) * 2017-02-17 2019-05-15 Nu Nano Ltd Passive semiconductor device assembly technology
EP3457154A1 (en) 2017-09-13 2019-03-20 Melexis Technologies SA Stray field rejection in magnetic sensors
EP3467528A1 (en) 2017-10-06 2019-04-10 Melexis Technologies NV Magnetic sensor sensitivity matching calibration
EP3470862A1 (en) 2017-10-10 2019-04-17 Melexis Bulgaria Ltd. Sensor defect diagnostic circuit
EP3477322A1 (en) 2017-10-27 2019-05-01 Melexis Technologies SA Magnetic sensor with integrated solenoid
US20190229097A1 (en) * 2017-12-05 2019-07-25 Seoul Semiconductor Co., Ltd. Displaying apparatus having light emitting device, method of manufacturing the same and method of transferring light emitting device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5629132A (en) * 1991-03-28 1997-05-13 Aicello Chemical Co., Ltd. Method for engraving and/or etching with image-carrying mask and photo-sensitive laminate film for use in making the mask
US20030211649A1 (en) * 2002-05-09 2003-11-13 Katsura Hirai Organic thin-film transistor, organic thin-film transistor sheet and manufacturing method thereof
US20090053498A1 (en) * 2003-02-19 2009-02-26 Hidekazu Matsuura Adhesive film for semiconductor use, metal sheet laminated with adhesive film, wiring circuit laminated with adhesive film, and semiconductor device using same, and method for producing semiconductor device

Family Cites Families (223)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS604991B2 (en) 1979-05-11 1985-02-07 Tokyo Shibaura Electric Co
US4330329A (en) 1979-11-28 1982-05-18 Tanaka Denshi Kogyo Kabushiki Kaisha Gold bonding wire for semiconductor elements and the semiconductor element
US4591659A (en) 1983-12-22 1986-05-27 Trw Inc. Multilayer printed circuit board structure
US5173759A (en) 1990-02-06 1992-12-22 Kyocera Corporation Array of light emitting devices or photo detectors with marker regions
US5300788A (en) 1991-01-18 1994-04-05 Kopin Corporation Light emitting diode bars and arrays and method of making same
DE69321745D1 (en) * 1992-02-04 1998-12-03 Matsushita Electric Ind Co Ltd Direct contact type image sensor and manufacturing method thereof
US5686790A (en) 1993-06-22 1997-11-11 Candescent Technologies Corporation Flat panel device with ceramic backplate
KR100343376B1 (en) 1993-12-31 2002-06-24 고려화학 주식회사 Method for producing hardener for sealing of semiconductor device and resin composition for sealing of semiconductor containing the hardener
US5563470A (en) 1994-08-31 1996-10-08 Cornell Research Foundation, Inc. Tiled panel display assembly
US5550066A (en) 1994-12-14 1996-08-27 Eastman Kodak Company Method of fabricating a TFT-EL pixel
JP3332654B2 (en) 1995-05-12 2002-10-07 株式会社東芝 The method of manufacturing a semiconductor device substrate, a semiconductor device and a semiconductor device
US5625202A (en) 1995-06-08 1997-04-29 University Of Central Florida Modified wurtzite structure oxide compounds as substrates for III-V nitride compound semiconductor epitaxial thin film growth
US6087680A (en) 1997-01-31 2000-07-11 Siemens Aktiengesellschaft Led device
US5748161A (en) 1996-03-04 1998-05-05 Motorola, Inc. Integrated electro-optical package with independent menu bar
US5739800A (en) 1996-03-04 1998-04-14 Motorola Integrated electro-optical package with LED display chip and substrate with drivers and central opening
US5708280A (en) 1996-06-21 1998-01-13 Motorola Integrated electro-optical package and method of fabrication
DE19645035C1 (en) 1996-10-31 1998-04-30 Siemens Ag Multi-colored light-emitting image display device
JP3281848B2 (en) 1996-11-29 2002-05-13 三洋電機株式会社 Display device
US6025730A (en) * 1997-03-17 2000-02-15 Micron Technology, Inc. Direct connect interconnect for testing semiconductor dice and wafers
US6142358A (en) 1997-05-31 2000-11-07 The Regents Of The University Of California Wafer-to-wafer transfer of microstructures using break-away tethers
US5815303A (en) 1997-06-26 1998-09-29 Xerox Corporation Fault tolerant projective display having redundant light modulators
JP3406207B2 (en) 1997-11-12 2003-05-12 シャープ株式会社 Method of forming a display transistor array panel
US6897855B1 (en) 1998-02-17 2005-05-24 Sarnoff Corporation Tiled electronic display structure
JPH11251059A (en) 1998-02-27 1999-09-17 Sanyo Electric Co Ltd Color display device
US6143672A (en) 1998-05-22 2000-11-07 Advanced Micro Devices, Inc. Method of reducing metal voidings in 0.25 μm AL interconnect
US6307527B1 (en) 1998-07-27 2001-10-23 John S. Youngquist LED display assembly
US6504180B1 (en) 1998-07-28 2003-01-07 Imec Vzw And Vrije Universiteit Method of manufacturing surface textured high-efficiency radiating devices and devices obtained therefrom
US6169294B1 (en) 1998-09-08 2001-01-02 Epistar Co. Inverted light emitting diode
TWI233769B (en) 1998-11-26 2005-06-01 Kansai Paint Co Ltd Method of forming conductive pattern
US6184477B1 (en) 1998-12-02 2001-02-06 Kyocera Corporation Multi-layer circuit substrate having orthogonal grid ground and power planes
WO2001008228A1 (en) 1999-07-26 2001-02-01 Labosphere Institute Bulk lens, light emitting body, lighting device and optical information system
US6466281B1 (en) 1999-08-23 2002-10-15 Industrial Technology Research Institute Integrated black matrix/color filter structure for TFT-LCD
GB9922763D0 (en) 1999-09-28 1999-11-24 Koninkl Philips Electronics Nv Semiconductor devices
US6410942B1 (en) 1999-12-03 2002-06-25 Cree Lighting Company Enhanced light extraction through the use of micro-LED arrays
KR100671211B1 (en) 2000-01-12 2007-01-18 엘지.필립스 엘시디 주식회사 Method for fabricating the array substrate for liquid crystal display device
DE10012734C1 (en) 2000-03-16 2001-09-27 Bjb Gmbh & Co Kg Illumination kit for illumination, display or notice purposes has plug connector with contacts in row along edge of each light emitting module to mechanically/electrically connect modules
US6278242B1 (en) 2000-03-20 2001-08-21 Eastman Kodak Company Solid state emissive display with on-demand refresh
US7893435B2 (en) 2000-04-18 2011-02-22 E Ink Corporation Flexible electronic circuits and displays including a backplane comprising a patterned metal foil having a plurality of apertures extending therethrough
EP1158775A1 (en) 2000-05-15 2001-11-28 EASTMAN KODAK COMPANY (a New Jersey corporation) Self-illuminating colour imaging device
GB0011749D0 (en) 2000-05-17 2000-07-05 Cambridge Display Tech Ltd Light-eminating devices
JP3906653B2 (en) 2000-07-18 2007-04-18 ソニー株式会社 An image display device and manufacturing method thereof
US6756576B1 (en) 2000-08-30 2004-06-29 Micron Technology, Inc. Imaging system having redundant pixel groupings
JP4461616B2 (en) 2000-12-14 2010-05-12 ソニー株式会社 Element transfer method, element holding substrate forming method, and element holding substrate
US6703780B2 (en) 2001-01-16 2004-03-09 General Electric Company Organic electroluminescent device with a ceramic output coupler and method of making the same
JP4803884B2 (en) * 2001-01-31 2011-10-26 キヤノン株式会社 Method for manufacturing thin film semiconductor device
US6853411B2 (en) 2001-02-20 2005-02-08 Eastman Kodak Company Light-producing high aperture ratio display having aligned tiles
US20020163301A1 (en) 2001-05-02 2002-11-07 Morley Roland M. Large format emissive display
DE60224681T2 (en) 2001-08-20 2009-01-08 Showa Denko K.K. Multicolor light emission lamp and light source
US7009220B2 (en) 2001-12-03 2006-03-07 Sony Corporation Transferring semiconductor crystal from a substrate to a resin
US6936855B1 (en) 2002-01-16 2005-08-30 Shane Harrah Bendable high flux LED array
JP3946062B2 (en) 2002-03-18 2007-07-18 シャープ株式会社 Display device and manufacturing method thereof
JP4411575B2 (en) 2002-04-25 2010-02-10 セイコーエプソン株式会社 Electronic device manufacturing equipment
JP2004107572A (en) 2002-09-20 2004-04-08 Sharp Corp Fluorescent material, and lighting device and display device containing the same
US20050264472A1 (en) 2002-09-23 2005-12-01 Rast Rodger H Display methods and systems
JP5022552B2 (en) 2002-09-26 2012-09-12 セイコーエプソン株式会社 Electro-optical device manufacturing method and electro-optical device
US7585703B2 (en) 2002-11-19 2009-09-08 Ishikawa Seisakusho, Ltd. Pixel control element selection transfer method, pixel control device mounting device used for pixel control element selection transfer method, wiring formation method after pixel control element transfer, and planar display substrate
US6975369B1 (en) 2002-12-12 2005-12-13 Gelcore, Llc Liquid crystal display with color backlighting employing light emitting diodes
US6825559B2 (en) 2003-01-02 2004-11-30 Cree, Inc. Group III nitride based flip-chip intergrated circuit and method for fabricating
US7176528B2 (en) 2003-02-18 2007-02-13 Corning Incorporated Glass-based SOI structures
US6812637B2 (en) 2003-03-13 2004-11-02 Eastman Kodak Company OLED display with auxiliary electrode
US6933532B2 (en) 2003-03-28 2005-08-23 Eastman Kodak Company OLED display with photosensor
US7030555B2 (en) 2003-04-04 2006-04-18 Nitto Denko Corporation Organic electroluminescence device, planar light source and display device using the same
US7098589B2 (en) 2003-04-15 2006-08-29 Luminus Devices, Inc. Light emitting devices with high light collimation
US20040227704A1 (en) 2003-05-14 2004-11-18 Wen-Chun Wang Apparatus for improving yields and uniformity of active matrix oled panels
US7021811B2 (en) 2003-06-13 2006-04-04 Delphi Technologies, Inc. Light distribution hub
WO2005051044A1 (en) 2003-11-18 2005-06-02 3M Innovative Properties Company Electroluminescent devices and methods of making electroluminescent devices including a color conversion element
CN1890603B (en) 2003-12-01 2011-07-13 伊利诺伊大学评议会 Methods and devices for fabricating three-dimensional nanoscale structures
EP1548571A1 (en) 2003-12-23 2005-06-29 Barco N.V. Configurable tiled emissive display
KR100670543B1 (en) 2003-12-29 2007-01-16 엘지.필립스 엘시디 주식회사 Organic Electro luminescence Device
US7195733B2 (en) 2004-04-27 2007-03-27 The Board Of Trustees Of The University Of Illinois Composite patterning devices for soft lithography
US7012382B2 (en) 2004-04-30 2006-03-14 Tak Meng Cheang Light emitting diode based light system with a redundant light source
US7288753B2 (en) 2004-05-05 2007-10-30 Eastman Kodak Company OLED display with composite photosensor
US7091523B2 (en) 2004-05-13 2006-08-15 Eastman Kodak Company Color OLED device having improved performance
US7521292B2 (en) 2004-06-04 2009-04-21 The Board Of Trustees Of The University Of Illinois Stretchable form of single crystal silicon for high performance electronics on rubber substrates
US7943491B2 (en) 2004-06-04 2011-05-17 The Board Of Trustees Of The University Of Illinois Pattern transfer printing by kinetic control of adhesion to an elastomeric stamp
US7799699B2 (en) 2004-06-04 2010-09-21 The Board Of Trustees Of The University Of Illinois Printable semiconductor structures and related methods of making and assembling
KR101368748B1 (en) 2004-06-04 2014-03-05 더 보오드 오브 트러스티스 오브 더 유니버시티 오브 일리노이즈 Methods and devices for fabricating and assembling printable semiconductor elements
US7262758B2 (en) 2004-06-09 2007-08-28 Eastman Kodak Company Display device using vertical cavity laser arrays
US7453157B2 (en) 2004-06-25 2008-11-18 Tessera, Inc. Microelectronic packages and methods therefor
JP4653447B2 (en) 2004-09-09 2011-03-16 Okiセミコンダクタ株式会社 Manufacturing method of semiconductor device
KR20070098787A (en) 2004-09-09 2007-10-05 코닌클리즈케 필립스 일렉트로닉스 엔.브이. Light-generating body
JP2006086469A (en) 2004-09-17 2006-03-30 Matsushita Electric Ind Co Ltd Semiconductor light-emitting device, illumination module, illuminator, and method of manufacturing the semiconductor light-emitting device
JP4801337B2 (en) 2004-09-21 2011-10-26 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
US7662545B2 (en) 2004-10-14 2010-02-16 The Board Of Trustees Of The University Of Illinois Decal transfer lithography
US7394194B2 (en) 2004-11-23 2008-07-01 Eastman Kodak Company Tiled display
US7259391B2 (en) 2004-12-22 2007-08-21 General Electric Company Vertical interconnect for organic electronic devices
JP5007127B2 (en) 2004-12-28 2012-08-22 光正 小柳 Integrated circuit device manufacturing method and manufacturing apparatus using self-organizing function
US20080296589A1 (en) 2005-03-24 2008-12-04 Ingo Speier Solid-State Lighting Device Package
TWI446004B (en) 2005-06-14 2014-07-21 Koninkl Philips Electronics Nv Combined single/multiple view-display
TWI424408B (en) 2005-08-12 2014-01-21 Semiconductor Energy Lab Semiconductor device, display device and electronic device equipped with the semiconductor device
US7402951B2 (en) 2005-09-27 2008-07-22 Eastman Kodak Company OLED device having improved contrast
US20070077349A1 (en) 2005-09-30 2007-04-05 Eastman Kodak Company Patterning OLED device electrodes and optical material
CN1945822B (en) 2005-10-07 2012-05-23 日立麦克赛尔株式会社 Semiconductor device, semiconductor module and semiconductor module producing method
EP1958456A4 (en) 2005-11-14 2011-04-13 Irina Kiryuschev Display module and tiled display manufacturing method
US7466075B2 (en) 2005-12-08 2008-12-16 Eastman Kodak Company OLED device having improved output and contrast with light-scattering layer and contrast-enhancement layer
US7586497B2 (en) 2005-12-20 2009-09-08 Eastman Kodak Company OLED display with improved power performance
JP2007220782A (en) 2006-02-15 2007-08-30 Shin Etsu Chem Co Ltd Soi substrate, and method of manufacturing soi substrate
US7855396B2 (en) 2006-02-20 2010-12-21 Industrial Technology Research Institute Light emitting diode package structure
US7791271B2 (en) 2006-02-24 2010-09-07 Global Oled Technology Llc Top-emitting OLED device with light-scattering layer and color-conversion
US20070201056A1 (en) 2006-02-24 2007-08-30 Eastman Kodak Company Light-scattering color-conversion material layer
WO2007143197A2 (en) 2006-06-02 2007-12-13 Qd Vision, Inc. Light-emitting devices and displays with improved performance
US8552989B2 (en) 2006-06-09 2013-10-08 Apple Inc. Integrated display and touch screen
US7969085B2 (en) 2006-08-18 2011-06-28 Global Oled Technology Llc Color-change material layer
KR101588019B1 (en) * 2006-09-20 2016-02-12 더 보오드 오브 트러스티스 오브 더 유니버시티 오브 일리노이즈 Release strategies for making transferable semiconductor structures, devices and device components
US7834541B2 (en) 2006-10-05 2010-11-16 Global Oled Technology Llc OLED device having improved light output
JP2010510659A (en) 2006-11-15 2010-04-02 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニアThe Regents of The University of California Light emitting diode with textured phosphor conversion layer
JP2008141026A (en) 2006-12-04 2008-06-19 Sony Corp Electronic instrument, its manufacturing method, light emitting diode display device and its manufacturing method
KR101636750B1 (en) 2007-01-17 2016-07-06 더 보오드 오브 트러스티스 오브 더 유니버시티 오브 일리노이즈 Optical systems fabricated by printing-based assembly
US20080204873A1 (en) 2007-02-23 2008-08-28 Strategic Patent Acquisitions Llc Techniques for three dimensional displays
US20080218068A1 (en) 2007-03-05 2008-09-11 Cok Ronald S Patterned inorganic led device
US8902152B2 (en) 2007-04-30 2014-12-02 Motorola Mobility Llc Dual sided electrophoretic display
US7687812B2 (en) 2007-06-15 2010-03-30 Tpo Displays Corp. Light-emitting diode arrays and methods of manufacture
JP5032231B2 (en) 2007-07-23 2012-09-26 リンテック株式会社 Manufacturing method of semiconductor device
WO2009035693A1 (en) 2007-09-14 2009-03-19 Superbulbs, Inc. Phosphor-containing led light bulb
US8029139B2 (en) 2008-01-29 2011-10-04 Eastman Kodak Company 2D/3D switchable color display apparatus with narrow band emitters
US7893612B2 (en) 2008-02-27 2011-02-22 Global Oled Technology Llc LED device having improved light output
US8470701B2 (en) 2008-04-03 2013-06-25 Advanced Diamond Technologies, Inc. Printable, flexible and stretchable diamond for thermal management
TWI377383B (en) 2008-05-05 2012-11-21 Au Optronics Corp Pixel, display and the driving method thereof
JP4479827B2 (en) 2008-05-12 2010-06-09 ソニー株式会社 Light emitting diode display device and manufacturing method thereof
WO2009151123A1 (en) 2008-06-12 2009-12-17 三菱マテリアル株式会社 Method for joining substrate and object to be mounted using solder paste
WO2009157921A1 (en) 2008-06-24 2009-12-30 Pan Shaoher X Silicon based solid state lighting
KR20100003321A (en) 2008-06-24 2010-01-08 삼성전자주식회사 Light emitting element, light emitting device comprising the same, and fabricating method of the light emitting element and the light emitting device
US7927976B2 (en) 2008-07-23 2011-04-19 Semprius, Inc. Reinforced composite stamp for dry transfer printing of semiconductor elements
US7999454B2 (en) 2008-08-14 2011-08-16 Global Oled Technology Llc OLED device with embedded chip driving
US20100060553A1 (en) 2008-08-21 2010-03-11 Zimmerman Scott M LED display utilizing freestanding epitaxial LEDs
WO2010032603A1 (en) 2008-09-19 2010-03-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and wireless tag using the same
KR101497953B1 (en) 2008-10-01 2015-03-05 삼성전자 주식회사 Light emitting element with improved light extraction efficiency, light emitting device comprising the same, and fabricating method of the light emitting element and the light emitting device
WO2010102310A2 (en) 2009-03-03 2010-09-10 Mc10, Inc. Systems, methods, and devices having stretchable integrated circuitry for sensing and delivering therapy
EP2363383A4 (en) 2008-11-07 2014-06-25 Nitto Denko Corp Transparent substrate and method for production thereof
JP5697842B2 (en) 2008-11-18 2015-04-08 ラピスセミコンダクタ株式会社 Manufacturing method of semiconductor device and SOQ substrate used therefor
WO2010059781A1 (en) 2008-11-19 2010-05-27 Semprius, Inc. Printing semiconductor elements by shear-assisted elastomeric stamp transfer
JP4724222B2 (en) 2008-12-12 2011-07-13 株式会社東芝 Method for manufacturing light emitting device
US20100214247A1 (en) 2009-02-20 2010-08-26 Acrosense Technology Co., Ltd. Capacitive Touch Panel
JP2010177390A (en) 2009-01-29 2010-08-12 Sony Corp Method of transferring device and method of manufacturing display apparatus
US8619008B2 (en) 2009-02-13 2013-12-31 Global Oled Technology Llc Dividing pixels between chiplets in display device
US7816856B2 (en) 2009-02-25 2010-10-19 Global Oled Technology Llc Flexible oled display with chiplets
US8854294B2 (en) 2009-03-06 2014-10-07 Apple Inc. Circuitry for independent gamma adjustment points
US8877648B2 (en) 2009-03-26 2014-11-04 Semprius, Inc. Methods of forming printable integrated circuit devices by selective etching to suspend the devices from a handling substrate and devices formed thereby
US8324602B2 (en) 2009-04-14 2012-12-04 Intersil Americas Inc. Optical sensors that reduce specular reflections
US7973472B2 (en) 2009-04-15 2011-07-05 Global Oled Technology Llc Display device with polygonal chiplets
TW201711095A (en) 2009-05-12 2017-03-16 美國伊利諾大學理事會 Printed assemblies of ultrathin, microscale inorganic light emitting diodes for deformable and semitransparent displays
US8207547B2 (en) 2009-06-10 2012-06-26 Brudgelux, Inc. Thin-film LED with P and N contacts electrically isolated from the substrate
US8896505B2 (en) 2009-06-12 2014-11-25 Global Oled Technology Llc Display with pixel arrangement
US8261660B2 (en) 2009-07-22 2012-09-11 Semprius, Inc. Vacuum coupled tool apparatus for dry transfer printing semiconductor elements
US8648772B2 (en) 2009-08-20 2014-02-11 Amazon Technologies, Inc. Amalgamated display comprising dissimilar display devices
JP5356952B2 (en) 2009-08-31 2013-12-04 レムセン イノベーション、リミティッド ライアビリティー カンパニー Display device
JP2011066130A (en) 2009-09-16 2011-03-31 Seiko Epson Corp Method of manufacturing semiconductor circuit device, semiconductor circuit device, and electronic apparatus
US9165989B2 (en) 2009-09-16 2015-10-20 Semprius, Inc. High-yield fabrication of large-format substrates with distributed, independent control elements
JP5349260B2 (en) 2009-11-19 2013-11-20 株式会社東芝 Semiconductor light emitting device and manufacturing method thereof
US8304917B2 (en) 2009-12-03 2012-11-06 Powertech Technology Inc. Multi-chip stacked package and its mother chip to save interposer
US8642363B2 (en) 2009-12-09 2014-02-04 Nano And Advanced Materials Institute Limited Monolithic full-color LED micro-display on an active matrix panel manufactured using flip-chip technology
US8502192B2 (en) 2010-01-12 2013-08-06 Varian Semiconductor Equipment Associates, Inc. LED with uniform current spreading and method of fabrication
US8334545B2 (en) 2010-03-24 2012-12-18 Universal Display Corporation OLED display architecture
US9496155B2 (en) 2010-03-29 2016-11-15 Semprius, Inc. Methods of selectively transferring active components
KR101047778B1 (en) 2010-04-01 2011-07-07 엘지이노텍 주식회사 Light emitting device package and light unit having thereof
WO2012018997A2 (en) 2010-08-06 2012-02-09 Semprius, Inc. Materials and processes for releasing printable compound semiconductor devices
US9142468B2 (en) 2010-08-26 2015-09-22 Semprius, Inc. Structures and methods for testing printable integrated circuits
JP5652100B2 (en) 2010-10-05 2015-01-14 ソニー株式会社 Display panel, display device, lighting panel and lighting device, and display panel and lighting panel manufacturing method
KR101194844B1 (en) 2010-11-15 2012-10-25 삼성전자주식회사 light emitting diode device and method of manufacturing the same
US20120141799A1 (en) 2010-12-03 2012-06-07 Francis Kub Film on Graphene on a Substrate and Method and Devices Therefor
US8803857B2 (en) 2011-02-10 2014-08-12 Ronald S. Cok Chiplet display device with serial control
JP5754173B2 (en) 2011-03-01 2015-07-29 ソニー株式会社 Light emitting unit and display device
KR20120115896A (en) 2011-04-11 2012-10-19 삼성디스플레이 주식회사 Light emitting unit and display device having the same
WO2012158709A1 (en) 2011-05-16 2012-11-22 The Board Of Trustees Of The University Of Illinois Thermally managed led arrays assembled by printing
KR101812997B1 (en) 2011-06-03 2017-12-29 삼성디스플레이 주식회사 Silicate phosphor, method of manufacturing silicate phosphor, and light-generating device having silicate phosphor
US8934259B2 (en) 2011-06-08 2015-01-13 Semprius, Inc. Substrates with transferable chiplets
JP5730680B2 (en) 2011-06-17 2015-06-10 シチズン電子株式会社 LED light emitting device and manufacturing method thereof
JP2013021175A (en) 2011-07-12 2013-01-31 Toshiba Corp Semiconductor light-emitting element
US9412727B2 (en) 2011-09-20 2016-08-09 Semprius, Inc. Printing transferable components using microstructured elastomeric surfaces with pressure modulated reversible adhesion
GB2495507A (en) 2011-10-11 2013-04-17 Cambridge Display Tech Ltd OLED display circuit
CN103050835B (en) 2011-10-17 2015-03-25 富泰华工业(深圳)有限公司 Portable electronic device and chip card holding mechanism
WO2013059757A1 (en) 2011-10-21 2013-04-25 Santa Barbara Infrared, Inc. Techniques for tiling arrays of pixel elements
GB2496183A (en) 2011-11-05 2013-05-08 Optovate Ltd Illumination apparatus
US8809875B2 (en) 2011-11-18 2014-08-19 LuxVue Technology Corporation Micro light emitting diode
US9368546B2 (en) 2012-02-15 2016-06-14 Microsoft Technology Licensing, Llc Imaging structure with embedded light sources
TWI543128B (en) 2012-03-19 2016-07-21 Fitipower Integrated Tech Inc Electronic devices
KR101891257B1 (en) 2012-04-02 2018-08-24 삼성전자주식회사 Light Emitting Device and Manufacturing Method thereof
KR101315939B1 (en) 2012-04-30 2013-10-08 부경대학교 산학협력단 Led package and manufacturing method thereof
US20130309792A1 (en) 2012-05-21 2013-11-21 Michael A. Tischler Light-emitting dies incorporating wavelength-conversion materials and related methods
US8937388B2 (en) 2012-06-08 2015-01-20 Taiwan Semiconductor Manufacturing Company, Ltd. Methods and apparatus of packaging semiconductor devices
US8519543B1 (en) 2012-07-17 2013-08-27 Futurewei Technologies, Inc. Large sized silicon interposers overcoming the reticle area limitations
WO2014014300A2 (en) 2012-07-18 2014-01-23 주식회사 세미콘라이트 Semiconductor light-emitting element
US8941215B2 (en) 2012-09-24 2015-01-27 LuxVue Technology Corporation Micro device stabilization post
US9558721B2 (en) 2012-10-15 2017-01-31 Apple Inc. Content-based adaptive refresh schemes for low-power displays
KR101983262B1 (en) 2012-11-23 2019-05-29 삼성디스플레이 주식회사 Liquid crystal display pannel and liquid crystal display apparatus having the same
US9202996B2 (en) 2012-11-30 2015-12-01 Corning Incorporated LED lighting devices with quantum dot glass containment plates
US9178123B2 (en) 2012-12-10 2015-11-03 LuxVue Technology Corporation Light emitting device reflective bank structure
US9166114B2 (en) 2012-12-11 2015-10-20 LuxVue Technology Corporation Stabilization structure including sacrificial release layer and staging cavity
US9105714B2 (en) 2012-12-11 2015-08-11 LuxVue Technology Corporation Stabilization structure including sacrificial release layer and staging bollards
US9153171B2 (en) 2012-12-17 2015-10-06 LuxVue Technology Corporation Smart pixel lighting and display microcontroller
TWI542049B (en) 2012-12-21 2016-07-11 Hon Hai Prec Ind Co Ltd A combination of a light emitting chip
JP2014127708A (en) 2012-12-27 2014-07-07 Toshiba Corp Semiconductor light-emitting element and method of manufacturing semiconductor light-emitting element
TWI557942B (en) 2013-02-04 2016-11-11 Ind Tech Res Inst A light emitting diode
KR20140100115A (en) 2013-02-05 2014-08-14 삼성전자주식회사 Semiconductor light emitting device
CN103094269B (en) 2013-02-07 2016-03-23 厦门市三安光电科技有限公司 White light emitting device and manufacturing method thereof
US9308649B2 (en) 2013-02-25 2016-04-12 LuxVue Techonology Corporation Mass transfer tool manipulator assembly
US8791474B1 (en) 2013-03-15 2014-07-29 LuxVue Technology Corporation Light emitting diode display with redundancy scheme
US9252375B2 (en) 2013-03-15 2016-02-02 LuxVue Technology Corporation Method of fabricating a light emitting diode display with integrated defect detection test
WO2014152617A1 (en) 2013-03-15 2014-09-25 Semprius, Inc. Engineered substrates for semiconductor epitaxy and methods of fabricating the same
WO2014149864A1 (en) 2013-03-15 2014-09-25 LuxVue Technology Corporation Light emitting diode display with redundancy scheme and method of fabricating a light emitting diode display with integrated defect detection test
US9217541B2 (en) 2013-05-14 2015-12-22 LuxVue Technology Corporation Stabilization structure including shear release posts
US8987765B2 (en) 2013-06-17 2015-03-24 LuxVue Technology Corporation Reflective bank structure and method for integrating a light emitting device
US9111464B2 (en) 2013-06-18 2015-08-18 LuxVue Technology Corporation LED display with wavelength conversion layer
US9367094B2 (en) 2013-12-17 2016-06-14 Apple Inc. Display module and system applications
US9583533B2 (en) 2014-03-13 2017-02-28 Apple Inc. LED device with embedded nanowire LEDs
JP6106120B2 (en) 2014-03-27 2017-03-29 株式会社東芝 Semiconductor light emitting device
JP2015195332A (en) 2014-03-27 2015-11-05 株式会社東芝 Semiconductor light emitting device and manufacturing method of the same
US9105813B1 (en) 2014-05-30 2015-08-11 Mikro Mesa Technology Co., Ltd. Micro-light-emitting diode
US9929053B2 (en) 2014-06-18 2018-03-27 X-Celeprint Limited Systems and methods for controlling release of transferable semiconductor structures
WO2015193433A2 (en) 2014-06-18 2015-12-23 X-Celeprint Limited Micro assembled high frequency devices and arrays
US9437782B2 (en) 2014-06-18 2016-09-06 X-Celeprint Limited Micro assembled LED displays and lighting elements
US9799719B2 (en) 2014-09-25 2017-10-24 X-Celeprint Limited Active-matrix touchscreen
TWI647833B (en) 2014-08-26 2019-01-11 愛爾蘭商艾克斯瑟樂普林特有限公司 Micro-composite composition and the light emitting element display device
US9537069B1 (en) 2014-09-25 2017-01-03 X-Celeprint Limited Inorganic light-emitting diode with encapsulating reflector
US20160093600A1 (en) 2014-09-25 2016-03-31 X-Celeprint Limited Compound micro-assembly strategies and devices
US9930277B2 (en) 2015-12-23 2018-03-27 X-Celeprint Limited Serial row-select matrix-addressed system
WO2017144573A1 (en) 2016-02-25 2017-08-31 X-Celeprint Limited Efficiently micro-transfer printing micro-scale devices onto large-format substrates
US10153256B2 (en) 2016-03-03 2018-12-11 X-Celeprint Limited Micro-transfer printable electronic component
US10103069B2 (en) 2016-04-01 2018-10-16 X-Celeprint Limited Pressure-activated electrical interconnection by micro-transfer printing
US10224231B2 (en) 2016-11-15 2019-03-05 X-Celeprint Limited Micro-transfer-printable flip-chip structures and methods
US10395966B2 (en) 2016-11-15 2019-08-27 X-Celeprint Limited Micro-transfer-printable flip-chip structures and methods
US20180323178A1 (en) 2017-03-28 2018-11-08 X-Celeprint Limited Structures and methods for electrical connection of micro-devices and substrates
US20180286734A1 (en) 2017-03-28 2018-10-04 X-Celeprint Limited Micro-device pockets for transfer printing

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5629132A (en) * 1991-03-28 1997-05-13 Aicello Chemical Co., Ltd. Method for engraving and/or etching with image-carrying mask and photo-sensitive laminate film for use in making the mask
US5629132B1 (en) * 1991-03-28 2000-02-08 Aicello Chemical Method for engraving and/or etching with image-carrying mask and photo-sensitive laminate film for use in making the mask
US20030211649A1 (en) * 2002-05-09 2003-11-13 Katsura Hirai Organic thin-film transistor, organic thin-film transistor sheet and manufacturing method thereof
US20090053498A1 (en) * 2003-02-19 2009-02-26 Hidekazu Matsuura Adhesive film for semiconductor use, metal sheet laminated with adhesive film, wiring circuit laminated with adhesive film, and semiconductor device using same, and method for producing semiconductor device

Cited By (126)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10181483B2 (en) 2010-03-29 2019-01-15 X-Celeprint Limited Laser assisted transfer welding process
US20130153277A1 (en) * 2010-03-29 2013-06-20 Etienne Menard Electrically bonded arrays of transfer printed active components
US9049797B2 (en) * 2010-03-29 2015-06-02 Semprius, Inc. Electrically bonded arrays of transfer printed active components
US9923133B2 (en) 2010-08-26 2018-03-20 X-Celeprint Limited Structures and methods for testing printable integrated circuits
US10418331B2 (en) 2010-11-23 2019-09-17 X-Celeprint Limited Interconnection structures and methods for transfer-printed integrated circuit elements with improved interconnection alignment tolerance
US10008465B2 (en) 2011-06-08 2018-06-26 X-Celeprint Limited Methods for surface attachment of flipped active components
US10262966B2 (en) 2011-06-08 2019-04-16 X-Celeprint Limited Methods for surface attachment of flipped active components
US20150163906A1 (en) * 2011-06-08 2015-06-11 Semprius, Inc. Substrates with Transferable Chiplets
US9401344B2 (en) * 2011-06-08 2016-07-26 Semprius, Inc. Substrates with transferable chiplets
US10189243B2 (en) 2011-09-20 2019-01-29 X-Celeprint Limited Printing transferable components using microstructured elastomeric surfaces with pressure modulated reversible adhesion
US8778112B2 (en) * 2011-09-26 2014-07-15 Sumitomo Electric Industries, Ltd. Method for bonding thin film piece
US20130075023A1 (en) * 2011-09-26 2013-03-28 Sumitomo Electric Industries, Ltd. Method for bonding thin film piece
US20150064808A1 (en) * 2012-04-05 2015-03-05 Koninklijke Philips N.V. Led thin-film device partial singulation prior to substrate thinning or removal
US9847445B2 (en) * 2012-04-05 2017-12-19 Koninklijke Philips N.V. LED thin-film device partial singulation prior to substrate thinning or removal
US9825194B2 (en) 2012-05-29 2017-11-21 Essence Solar Solutions Ltd. Self aligning soldering
US9917224B2 (en) 2012-05-29 2018-03-13 Essence Solar Solutions Ltd. Photovoltaic module assembly
US8900911B2 (en) 2012-05-29 2014-12-02 Essence Solar Solutions Ltd. Frame holder
US20140170924A1 (en) * 2012-12-13 2014-06-19 Chengdu Boe Optoelectronics Technology Co., Ltd. Method for manufacturing a liquid crystal panel
US9268161B2 (en) * 2012-12-13 2016-02-23 Boe Technology Group Co., Ltd. Method for manufacturing a liquid crystal panel
US9257764B2 (en) * 2014-01-16 2016-02-09 International Business Machines Corporation Low insertion force connector utilizing directional adhesion
US20150200480A1 (en) * 2014-01-16 2015-07-16 International Business Machines Corporation Low insertion force connector utilizing directional adhesion
US9991423B2 (en) 2014-06-18 2018-06-05 X-Celeprint Limited Micro assembled LED displays and lighting elements
US9520537B2 (en) 2014-06-18 2016-12-13 X-Celeprint Limited Micro assembled LED displays and lighting elements
US9947584B2 (en) 2014-06-18 2018-04-17 X-Celeprint Limited Systems and methods for controlling release of transferable semiconductor structures
US9601356B2 (en) 2014-06-18 2017-03-21 X-Celeprint Limited Systems and methods for controlling release of transferable semiconductor structures
US9991413B2 (en) 2014-06-18 2018-06-05 X-Celeprint Limited Systems and methods for preparing GaN and related materials for micro assembly
US10431719B2 (en) 2014-06-18 2019-10-01 X-Celeprint Limited Display with color conversion
US9929053B2 (en) 2014-06-18 2018-03-27 X-Celeprint Limited Systems and methods for controlling release of transferable semiconductor structures
US9698308B2 (en) 2014-06-18 2017-07-04 X-Celeprint Limited Micro assembled LED displays and lighting elements
US9705042B2 (en) 2014-06-18 2017-07-11 X-Celeprint Limited Micro assembled LED displays and lighting elements
US9437782B2 (en) 2014-06-18 2016-09-06 X-Celeprint Limited Micro assembled LED displays and lighting elements
US10050351B2 (en) 2014-06-18 2018-08-14 X-Celeprint Limited Multilayer printed capacitors
US10224460B2 (en) 2014-06-18 2019-03-05 X-Celeprint Limited Micro assembled LED displays and lighting elements
CN107078088A (en) * 2014-06-18 2017-08-18 艾克斯瑟乐普林特有限公司 Micro assembled high frequency devices and arrays and method of making the same
US9865600B2 (en) 2014-06-18 2018-01-09 X-Celeprint Limited Printed capacitors
US9761754B2 (en) 2014-06-18 2017-09-12 X-Celeprint Limited Systems and methods for preparing GaN and related materials for micro assembly
US10446719B2 (en) 2014-06-18 2019-10-15 X-Celeprint Limited Micro assembled LED displays and lighting elements
US10361124B2 (en) 2014-06-18 2019-07-23 X-Celeprint Limited Systems and methods for controlling release of transferable semiconductor structures
US9444015B2 (en) 2014-06-18 2016-09-13 X-Celeprint Limited Micro assembled LED displays and lighting elements
US10347535B2 (en) 2014-06-18 2019-07-09 X-Celeprint Limited Systems and methods for controlling release of transferable semiconductor structures
US10312405B2 (en) 2014-06-18 2019-06-04 X-Celeprint Limited Systems and methods for preparing GaN and related materials for micro assembly
US9550353B2 (en) 2014-07-20 2017-01-24 X-Celeprint Limited Apparatus and methods for micro-transfer-printing
US9434150B2 (en) 2014-07-20 2016-09-06 X-Celeprint Limited Apparatus and methods for micro-transfer-printing
US9358775B2 (en) * 2014-07-20 2016-06-07 X-Celeprint Limited Apparatus and methods for micro-transfer-printing
US10252514B2 (en) 2014-07-20 2019-04-09 X-Celeprint Limited Apparatus and methods for micro-transfer-printing
US9716082B2 (en) 2014-08-26 2017-07-25 X-Celeprint Limited Micro assembled hybrid displays and lighting elements
US9997100B2 (en) 2014-09-25 2018-06-12 X-Celeprint Limited Self-compensating circuit for faulty display pixels
US9799719B2 (en) 2014-09-25 2017-10-24 X-Celeprint Limited Active-matrix touchscreen
US9899465B2 (en) 2014-09-25 2018-02-20 X-Celeprint Limited Redistribution layer for substrate contacts
CN107004615A (en) * 2014-09-25 2017-08-01 艾克斯瑟乐普林特有限公司 Compound micro-assembly strategies and devices
US9741785B2 (en) 2014-09-25 2017-08-22 X-Celeprint Limited Display tile structure and tiled display
US10381430B2 (en) 2014-09-25 2019-08-13 X-Celeprint Limited Redistribution layer for substrate contacts
US9537069B1 (en) 2014-09-25 2017-01-03 X-Celeprint Limited Inorganic light-emitting diode with encapsulating reflector
US10181507B2 (en) 2014-09-25 2019-01-15 X-Celeprint Limited Display tile structure and tiled display
US9468050B1 (en) 2014-09-25 2016-10-11 X-Celeprint Limited Self-compensating circuit for faulty display pixels
US9991163B2 (en) 2014-09-25 2018-06-05 X-Celeprint Limited Small-aperture-ratio display with electrical component
US10170535B2 (en) 2014-09-25 2019-01-01 X-Celeprint Limited Active-matrix touchscreen
US9799261B2 (en) 2014-09-25 2017-10-24 X-Celeprint Limited Self-compensating circuit for faulty display pixels
WO2016071370A1 (en) * 2014-11-03 2016-05-12 Melexis Technologies Nv Magnetic field sensor and method for making same
GB2535683A (en) * 2014-11-03 2016-08-31 Melexis Technologies Nv Magnetic field sensor and method for making same
US10396238B2 (en) 2015-05-15 2019-08-27 X-Celeprint Limited Printable inorganic semiconductor structures
US9368683B1 (en) 2015-05-15 2016-06-14 X-Celeprint Limited Printable inorganic semiconductor method
US9698160B2 (en) * 2015-05-15 2017-07-04 Au Optronics Corporation Method for transferring micro devices and method for manufacturing display panel
US9799794B2 (en) 2015-05-15 2017-10-24 X-Celeprint Limited Printable inorganic semiconductor structures
US10074768B2 (en) 2015-05-15 2018-09-11 X-Celeprint Limited Printable inorganic semiconductor method
US9640715B2 (en) 2015-05-15 2017-05-02 X-Celeprint Limited Printable inorganic semiconductor structures
US20160336304A1 (en) * 2015-05-15 2016-11-17 Au Optronics Corporation Method for transferring micro devices and method for manufacturing display panel
US10109764B2 (en) 2015-05-15 2018-10-23 X-Celeprint Limited Printable inorganic semiconductor structures
US9818725B2 (en) 2015-06-01 2017-11-14 X-Celeprint Limited Inorganic-light-emitter display with integrated black matrix
US10102794B2 (en) 2015-06-09 2018-10-16 X-Celeprint Limited Distributed charge-pump power-supply system
US9871345B2 (en) 2015-06-09 2018-01-16 X-Celeprint Limited Crystalline color-conversion device
US10164404B2 (en) 2015-06-09 2018-12-25 X-Celeprint Limited Crystalline color-conversion device
US10289252B2 (en) 2015-06-18 2019-05-14 X-Celeprint Limited Display with integrated electrodes
US10133426B2 (en) 2015-06-18 2018-11-20 X-Celeprint Limited Display with micro-LED front light
US10255834B2 (en) 2015-07-23 2019-04-09 X-Celeprint Limited Parallel redundant chiplet system for controlling display pixels
US10395582B2 (en) 2015-07-23 2019-08-27 X-Celeprint Limited Parallel redundant chiplet system with printed circuits for reduced faults
US10262567B2 (en) 2015-08-10 2019-04-16 X-Celeprint Limited Two-terminal store-and-control circuit
US10468363B2 (en) 2015-08-10 2019-11-05 X-Celeprint Limited Chiplets with connection posts
US9704821B2 (en) 2015-08-11 2017-07-11 X-Celeprint Limited Stamp with structured posts
US10380930B2 (en) 2015-08-24 2019-08-13 X-Celeprint Limited Heterogeneous light emitter display system
US10388205B2 (en) 2015-08-25 2019-08-20 X-Celeprint Limited Bit-plane pulse width modulated digital display system
US10157563B2 (en) 2015-08-25 2018-12-18 X-Celeprint Limited Bit-plane pulse width modulated digital display system
US9640108B2 (en) 2015-08-25 2017-05-02 X-Celeprint Limited Bit-plane pulse width modulated digital display system
US10230048B2 (en) 2015-09-29 2019-03-12 X-Celeprint Limited OLEDs for micro transfer printing
US10066819B2 (en) 2015-12-09 2018-09-04 X-Celeprint Limited Micro-light-emitting diode backlight system
US10451257B2 (en) 2015-12-09 2019-10-22 X-Celeprint Limited Micro-light-emitting diode backlight system
US9786646B2 (en) 2015-12-23 2017-10-10 X-Celeprint Limited Matrix addressed device repair
US9930277B2 (en) 2015-12-23 2018-03-27 X-Celeprint Limited Serial row-select matrix-addressed system
US10158819B2 (en) 2015-12-23 2018-12-18 X-Celeprint Limited Matrix-addressed systems with row-select circuits comprising a serial shift register
US10091446B2 (en) 2015-12-23 2018-10-02 X-Celeprint Limited Active-matrix displays with common pixel control
US9928771B2 (en) 2015-12-24 2018-03-27 X-Celeprint Limited Distributed pulse width modulation control
US10361677B2 (en) 2016-02-18 2019-07-23 X-Celeprint Limited Transverse bulk acoustic wave filter
US10200013B2 (en) 2016-02-18 2019-02-05 X-Celeprint Limited Micro-transfer-printed acoustic wave filter device
US10109753B2 (en) 2016-02-19 2018-10-23 X-Celeprint Limited Compound micro-transfer-printed optical filter device
US10217730B2 (en) 2016-02-25 2019-02-26 X-Celeprint Limited Efficiently micro-transfer printing micro-scale devices onto large-format substrates
US10150326B2 (en) 2016-02-29 2018-12-11 X-Celeprint Limited Hybrid document with variable state
US10193025B2 (en) 2016-02-29 2019-01-29 X-Celeprint Limited Inorganic LED pixel structure
US10150325B2 (en) 2016-02-29 2018-12-11 X-Celeprint Limited Hybrid banknote with electronic indicia
US10153257B2 (en) 2016-03-03 2018-12-11 X-Celeprint Limited Micro-printed display
US10153256B2 (en) 2016-03-03 2018-12-11 X-Celeprint Limited Micro-transfer printable electronic component
TWI661520B (en) * 2016-04-01 2019-06-01 愛爾蘭商艾克斯瑟樂普林特有限公司 Pressure-activated electrical interconnection by micro-transfer printing
US10163735B2 (en) 2016-04-01 2018-12-25 X-Celeprint Limited Pressure-activated electrical interconnection by micro-transfer printing
US10103069B2 (en) 2016-04-01 2018-10-16 X-Celeprint Limited Pressure-activated electrical interconnection by micro-transfer printing
US10008483B2 (en) 2016-04-05 2018-06-26 X-Celeprint Limited Micro-transfer printed LED and color filter structure
US10199546B2 (en) 2016-04-05 2019-02-05 X-Celeprint Limited Color-filter device
US10217308B2 (en) 2016-04-19 2019-02-26 X-Celeprint Limited Hybrid banknote with electronic indicia using near-field-communications
US10198890B2 (en) 2016-04-19 2019-02-05 X-Celeprint Limited Hybrid banknote with electronic indicia using near-field-communications
US9997102B2 (en) 2016-04-19 2018-06-12 X-Celeprint Limited Wirelessly powered display and system
US10360846B2 (en) 2016-05-10 2019-07-23 X-Celeprint Limited Distributed pulse-width modulation system with multi-bit digital storage and output device
US9997501B2 (en) 2016-06-01 2018-06-12 X-Celeprint Limited Micro-transfer-printed light-emitting diode device
US10453826B2 (en) 2016-06-03 2019-10-22 X-Celeprint Limited Voltage-balanced serial iLED pixel and display
US10222698B2 (en) 2016-07-28 2019-03-05 X-Celeprint Limited Chiplets with wicking posts
US9980341B2 (en) 2016-09-22 2018-05-22 X-Celeprint Limited Multi-LED components
US10157880B2 (en) 2016-10-03 2018-12-18 X-Celeprint Limited Micro-transfer printing with volatile adhesive layer
US10347168B2 (en) 2016-11-10 2019-07-09 X-Celeprint Limited Spatially dithered high-resolution
US10431487B2 (en) 2016-11-15 2019-10-01 X-Celeprint Limited Micro-transfer-printable flip-chip structures and methods
US10224231B2 (en) 2016-11-15 2019-03-05 X-Celeprint Limited Micro-transfer-printable flip-chip structures and methods
US10395966B2 (en) 2016-11-15 2019-08-27 X-Celeprint Limited Micro-transfer-printable flip-chip structures and methods
US10297502B2 (en) 2016-12-19 2019-05-21 X-Celeprint Limited Isolation structure for micro-transfer-printable devices
US10438859B2 (en) 2016-12-19 2019-10-08 X-Celeprint Limited Transfer printed device repair
US10332868B2 (en) 2017-01-26 2019-06-25 X-Celeprint Limited Stacked pixel structures
WO2018150262A1 (en) * 2017-02-17 2018-08-23 Analog Devices Global Unlimited Company Method of transfer printing
US10396137B2 (en) 2017-03-10 2019-08-27 X-Celeprint Limited Testing transfer-print micro-devices on wafer
US10297585B1 (en) 2017-12-21 2019-05-21 X-Celeprint Limited Multi-resolution compound micro-devices
US10468391B2 (en) 2018-02-07 2019-11-05 X-Celeprint Limited Inorganic light-emitting-diode displays with multi-ILED pixels
US10468398B2 (en) 2018-12-20 2019-11-05 X-Celeprint Limited Efficiently micro-transfer printing micro-scale devices onto large-format substrates

Also Published As

Publication number Publication date
US9603259B2 (en) 2017-03-21
US20120313241A1 (en) 2012-12-13
US10262966B2 (en) 2019-04-16
US20150135525A1 (en) 2015-05-21
US20150163906A1 (en) 2015-06-11
US8889485B2 (en) 2014-11-18
US9307652B2 (en) 2016-04-05
US9401344B2 (en) 2016-07-26
US20180277504A1 (en) 2018-09-27
US8934259B2 (en) 2015-01-13
US20150348926A1 (en) 2015-12-03
US20170213803A1 (en) 2017-07-27
US10008465B2 (en) 2018-06-26

Similar Documents

Publication Publication Date Title
CN102097458B (en) Methods and devices for fabricating and assembling printable semiconductor elements
US6800871B2 (en) Display device and process of producing the same
US6623579B1 (en) Methods and apparatus for fluidic self assembly
Bower et al. Active-matrix OLED display backplanes using transfer-printed microscale integrated circuits
EP2255378B1 (en) Stretchable and foldable electronic devices
JP4410456B2 (en) Thin film device device manufacturing method and active matrix substrate manufacturing method
EP1028463B1 (en) Method for manufacturing a module with a flexible package having a very thin semiconductor chip
CN101221936B (en) Wafer level package with die receiving through-hole and method of the same
JP4559993B2 (en) Manufacturing method of semiconductor device
US7687372B2 (en) System and method for manufacturing thick and thin film devices using a donee layer cleaved from a crystalline donor
US7615479B1 (en) Assembly comprising functional block deposited therein
US6527964B1 (en) Methods and apparatuses for improved flow in performing fluidic self assembly
CN101794848B (en) Method of transferring a device and method of manufacturing a display apparatus
US6514790B1 (en) Method for handling a plurality of circuit chips
US20040004058A1 (en) Methods for forming openings in a substrate and apparatuses with these openings and methods for creating assemblies with openings
US7972875B2 (en) Optical systems fabricated by printing-based assembly
Meitl et al. Transfer printing by kinetic control of adhesion to an elastomeric stamp
US9765934B2 (en) Thermally managed LED arrays assembled by printing
JP3747807B2 (en) The method of repairing element mounting substrate and defective elements
US20040195576A1 (en) Light-emitting device, light-emitting apparatus, image display apparatus, method of manufacturing light-emitting device, and method of manufacturing image display apparatus
US7763901B2 (en) Electronic device, method of producing the same, light-emitting diode display unit, and method of producing the same
JP5094776B2 (en) Method for manufacturing semiconductor device
US6525407B1 (en) Integrated circuit package
TWI360208B (en) Semiconductor device package with die receiving th
US9761754B2 (en) Systems and methods for preparing GaN and related materials for micro assembly

Legal Events

Date Code Title Description
AS Assignment

Owner name: SEMPRIUS, INC., NORTH CAROLINA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BOWER, CHRISTOPHER;CARR, JOSEPH;REEL/FRAME:028338/0230

Effective date: 20120604

AS Assignment

Owner name: HORIZON TECHNOLOGY FINANCE CORPORATION, AS COLLATE

Free format text: SECURITY AGREEMENT;ASSIGNOR:SEMPRIUS INC.;REEL/FRAME:034098/0475

Effective date: 20140214

Owner name: HORIZON FUNDING TRUST 2013-1, CONNECTICUT

Free format text: SECURITY AGREEMENT;ASSIGNOR:SEMPRIUS INC.;REEL/FRAME:034098/0475

Effective date: 20140214

Owner name: SILICON VALLEY BANK, CALIFORNIA

Free format text: SECURITY AGREEMENT;ASSIGNOR:SEMPRIUS INC.;REEL/FRAME:034098/0475

Effective date: 20140214

STCF Information on status: patent grant

Free format text: PATENTED CASE

AS Assignment

Owner name: SEMPRIUS INC., NORTH CAROLINA

Free format text: RELEASE BY SECURED PARTY;ASSIGNORS:SILICON VALLEY BANK;HORIZON TECHNOLOGY FINANCE CORPORATION, AS COLLATERAL AGENT;HORIZON FUNDING TRUST 2013-1;REEL/FRAME:041932/0462

Effective date: 20170330

AS Assignment

Owner name: SEMPRIUS (ASSIGNMENT FOR THE BENEFIT OF CREDITORS)

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SEMPRIUS, INC.;REEL/FRAME:042231/0140

Effective date: 20170131

AS Assignment

Owner name: X-CELEPRINT LIMITED, IRELAND

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SEMPRIUS (ASSIGNMENT FOR THE BENEFIT OF CREDITORS), LLC;REEL/FRAME:042244/0531

Effective date: 20170330

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551)

Year of fee payment: 4