US20120301465A1 - Compositions and methods to immunize against hepatitis c virus - Google Patents

Compositions and methods to immunize against hepatitis c virus Download PDF

Info

Publication number
US20120301465A1
US20120301465A1 US13/430,206 US201213430206A US2012301465A1 US 20120301465 A1 US20120301465 A1 US 20120301465A1 US 201213430206 A US201213430206 A US 201213430206A US 2012301465 A1 US2012301465 A1 US 2012301465A1
Authority
US
United States
Prior art keywords
seq
hcv
antibody
linker
fragment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/430,206
Inventor
Helene Dutartre
Yves Levy
Jacques F. Banchereau
Gerard Zurawski
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institut National de la Sante et de la Recherche Medicale INSERM
Baylor Research Institute
Original Assignee
Institut National de la Sante et de la Recherche Medicale INSERM
Baylor Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institut National de la Sante et de la Recherche Medicale INSERM, Baylor Research Institute filed Critical Institut National de la Sante et de la Recherche Medicale INSERM
Priority to US13/430,206 priority Critical patent/US20120301465A1/en
Assigned to BAYLOR RESEARCH INSTITUTE reassignment BAYLOR RESEARCH INSTITUTE ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BANCHEREAU, JACQUES F., ZURAWSKI, GERARD
Assigned to INSTITUT NATIONAL DE LA SANTE ET DE LA RECHERCHE MEDICALE (INSERM) reassignment INSTITUT NATIONAL DE LA SANTE ET DE LA RECHERCHE MEDICALE (INSERM) ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: DUTARTRE, Helene, LEVY, YVES
Assigned to BAYLOR RESEARCH INSTITUTE reassignment BAYLOR RESEARCH INSTITUTE ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BANCHEREAU, JACQUES F., ZURAWSKI, GERARD
Assigned to INSTITUT NATIONAL DE LA SANTE ET DE LA RCHERCHE MEDICALE (INSERM) reassignment INSTITUT NATIONAL DE LA SANTE ET DE LA RCHERCHE MEDICALE (INSERM) ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: LEVY, YVES, DUTARTRE, Helene
Publication of US20120301465A1 publication Critical patent/US20120301465A1/en
Priority to US14/152,448 priority patent/US9885017B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • A61K39/29Hepatitis virus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/04Immunostimulants
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/005Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2851Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the lectin superfamily, e.g. CD23, CD72
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2878Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the NGF-receptor/TNF-receptor superfamily, e.g. CD27, CD30, CD40, CD95
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0634Cells from the blood or the immune system
    • C12N5/0639Dendritic cells, e.g. Langherhans cells in the epidermis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/60Medicinal preparations containing antigens or antibodies characteristics by the carrier linked to the antigen
    • A61K2039/6031Proteins
    • A61K2039/6056Antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/33Fusion polypeptide fusions for targeting to specific cell types, e.g. tissue specific targeting, targeting of a bacterial subspecies
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2770/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses positive-sense
    • C12N2770/00011Details
    • C12N2770/24011Flaviviridae
    • C12N2770/24211Hepacivirus, e.g. hepatitis C virus, hepatitis G virus
    • C12N2770/24222New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2770/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses positive-sense
    • C12N2770/00011Details
    • C12N2770/24011Flaviviridae
    • C12N2770/24211Hepacivirus, e.g. hepatitis C virus, hepatitis G virus
    • C12N2770/24234Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein

Definitions

  • the present invention relates in general to the field of immunology, and more particularly, to hepatitis C virus (HCV) immunization, vaccines, and targeting of the HCV peptides to human dendritic cells.
  • HCV hepatitis C virus
  • the application also describes a bi-functional antibody fused to a HCV target antigen(s) that is directed against a dendritic cell (DC)-specific receptor.
  • DC dendritic cell
  • U.S. Patent Application Publication No. 2009/0238822 (Rajan et al. 2009) relates to chimeric antigens for targeting and activating antigen presenting cells to elicit cellular and humoral immune responses.
  • the Rajan invention describes compositions and methods that contain or use one or more chimeric antigens that contain one or more pre-selected HCV antigen(s), and an immunoglobulin fragment.
  • the invention further discloses chimeric antigens, comprising an HCV antigen and a Fc fragment of an immunoglobulin for eliciting an immune response against said antigen.
  • the immune response is said to be enhanced upon presenting the host immune system with an immune response domain (HCV antigen from HCV core, envelope, or non-structural protein fragments) and a target-binding domain (an Fc fragment).
  • U.S. Patent Application Publication No. 2008/0241170 discloses compositions and methods for making and using vaccine that specifically target (deliver) antigens to antigen-presenting cells for the purpose of eliciting potent and broad immune responses directed against the antigen.
  • the purpose is primarily to evoke protective or therapeutic immune responses against the agent (pathogen or cancer) from which the antigen was derived.
  • U.S. Patent Application Publication 2010/0239575 refers to compositions and methods for the expression, secretion, and use of novel compositions for use as, e.g., vaccines and antigen delivery vectors, to delivery antigens to antigen presenting cells.
  • the vector is an anti-CD40 antibody, or fragments thereof, and one or more antigenic peptides linked to the anti-CD40 antibody or fragments thereof, including humanized antibodies.
  • the present invention describes immunostimulatory compositions, vaccines, HCV vaccines, HCV antigen presenting dendritic cells, methods for increasing effectiveness of HCV antigen presentation by an antigen presenting cell, methods for increasing effectiveness of HCV antigen presentation by an antigen presenting cell, methods for increasing effectiveness of antigen presentation by an antigen presenting cell, methods for a treatment, a prophylaxis or a combination thereof against hepatitis C in a human subject, methods of providing immunostimulation by activation of one or more dendritic cells, methods to treat or prevent hepatitis C in a subject, and methods for generating a HCV presenting dendritic cell.
  • the present invention further describes virus antigens, e.g., proteins and peptides corresponding to HCV proteins or fragments thereof, fused to heavy and/or light chain of antibodies, or fragments thereof specific for dendritic cells (DCs).
  • the vaccine composition as described herein delivers HCV antigen specifically to DCs for the purpose of invoking an immune response.
  • the vaccine composition may also promote efficient recall memory in hepatitis C patients.
  • the instant invention discloses an immunostimulatory composition for generating an immune response for a prophylaxis, a therapy, or any combination thereof against a Hepatitis C infection in a human or animal subject comprising: one or more antibodies or fragments thereof specific for a dendritic cell (DC) and one or more HCV antigens attached to the one or more antibodies or fragments thereof.
  • the composition disclosed hereinabove further comprises at least one Toll-Like Receptor (TLR) agonist selected from the group consisting of TLR1, TLR2, TLR3, TLR4, TLR5, TLR6, TLR7, and TLR8 agonists.
  • TLR Toll-Like Receptor
  • composition further comprises an optional pharmaceutically acceptable carrier that is effective, in combination, to produce the immune response for prophylaxis, for therapy, or any combination thereof in the human or animal subject in need of immunostimulation.
  • the DC-specific antibody or fragment is specific for a DC specific receptor, wherein the DC-specific antibody or fragment is selected from an antibody that specifically binds to MHC class I, MHC class II, CD1, CD2, CD3, CD4, CD8, CD11b, CD14, CD15, CD16, CD19, CD20, CD29, CD31, CD40, CD43, CD44, CD45, CD54, CD56, CD57, CD58, CD83, CD86, CMRF-44, CMRF-56, DCIR, DC-ASPGR, CLEC-6, CD40, BDCA-2, MARCO, DEC-205, mannose receptor, Langerin, DECTIN-1, B7-1, B7-2, IFN- ⁇ receptor and IL-2 receptor, ICAM-1, Fc ⁇ receptor, LOX-1, and
  • the HCV antigens comprises a peptide sequence derived from a HCV 1a genotype protein or a fragment thereof and the HCV antigens are selected from the group consisting of protein E1, envelope protein E2, non-structural protein NS3, non-structural protein NS4b, non-structural protein NS5b, and a fragment thereof.
  • the one or more HCV antigens are selected from the group consisting of SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5, SEQ ID NO: 6, SEQ ID NO: 7, and a fragment thereof and from the group consisting of SEQ ID NO: 8, SEQ ID NO: 9, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, E1b, and a fragment thereof.
  • the composition comprises a recombinant antibody that comprises a fusion protein and the one or more HCV antigen are at a C-terminal position relative to the one or more antibody or fragment thereof within a fusion protein.
  • composition comprises a recombinant antibody, and the one or more HCV antigens are fused to a C-terminus of a heavy chain of the antibody.
  • composition comprises a recombinant antibody, and the one or more HCV antigens are fused to a C-terminus of a light chain of the one or more antibody or fragment thereof specific for a DC.
  • the one or more HCV antigens are selected from the group consisting of SEQ ID NO: 12-linker A-SEQ ID NO: 13, SEQ ID NO: 12-linker A-SEQ ID NO: 11, SEQ ID NO: 12-linker B-SEQ ID NO: 14, SEQ ID NO: 14-linker B-SEQ ID NO: 12, SEQ ID NO: 12-linker B-SEQ ID NO: 10, SEQ ID NO: 10-linker B-SEQ ID NO: 12, SEQ ID NO: 9-linker
  • B-SEQ ID NO: 10 SEQ ID NO: 10-linker B-SEQ ID NO: 9, SEQ ID NO: 10-linker B-SEQ ID NO: 14, SEQ ID NO: 14-linker B-SEQ ID NO: 10, SEQ ID NO: 9-linker B-SEQ ID NO: 12, SEQ ID NO: 12-linker B-SEQ ID NO: 9, SEQ ID NO: 8-linker B-E1b.
  • SEQ ID NO: 12-linkerB-SEQ ID NO: 10-linker C-SEQ ID NO: 14 SEQ ID NO: 12-linker B-SEQ ID NO: 14-linker C-SEQ ID NO: 10 SEQ ID NO: 10-linker B-SEQ ID NO: 12-linker C-SEQ ID NO: 14, SEQ ID NO: 10-linker B-SEQ ID NO: 14-linker C-SEQ ID NO: 12, SEQ ID NO: 14-linker B-SEQ ID NO: 12-linker C-SEQ ID NO: 10, SEQ ID NO: 14-linker B-SEQ ID NO: 10-linker C-SEQ ID NO: 12, and SEQ ID NO: 12-linker B-SEQ ID NO: 10-linker C-SEQ ID NO: 14-linker D-SEQ ID NO: 8.
  • the one or more HCV antigens are attached to a C-terminus of a light chain of the recombinant antibody and selected from a group consisting of: SEQ ID NO: 9; SEQ ID NO: 11, and E1b.
  • the one or more HCV antigens are selected from the group consisting of SEQ ID NO: 9 fused to the C-terminus of a light chain and SEQ ID NO: 10-linker B-SEQ ID NO: 12-linker C-SEQ ID NO: 14 fused to the C-terminus of the heavy chain of the antibody.
  • the one or more HCV antigen are chemically coupled to the one or more antibodies or fragments thereof or are attached to the one or more antibodies or fragments thereof via an affinity association.
  • the DC-specific antibody is humanized.
  • the composition is optimized to be administered to the human or animal subject by an oral route, a nasal route, topically, or as an injection.
  • a vaccine comprising: one or more antibodies or fragments thereof specific for a dendritic cell (DC); and one or more HCV antigens attached to the one or more antibodies or fragments thereof.
  • the vaccine described herein further comprises at least one Toll-Like Receptor (TLR) agonist selected from the group consisting of TLR1, TLR2, TLR3, TLR4, TLR5, TLR6, TLR7, and TLR8 agonists and an optional pharmaceutically acceptable carrier or an adjuvant that is effective, in combination, to produce an immune response for prophylaxis, for therapy, or any combination thereof in the human or animal subject in need of immunostimulation.
  • TLR Toll-Like Receptor
  • the DC-specific antibody or fragment is specific for a dendritic cell specific receptor.
  • the HCV antigen comprises a peptide sequence derived from a HCV 1a genotype protein or a fragment thereof, wherein the HCV antigen is selected from the group consisting of protein E1, envelope protein E2, non-structural protein NS3, non-structural protein NS4b, non-structural protein NS5b, and a fragment thereof.
  • the DC-specific antibody is humanized and the composition is optimized to be administered to the human or animal subject by an oral route, a nasal route, topically, or as an injection.
  • the instant invention discloses a Hepatitis C vaccine (HCV) comprising a fusion protein comprising: (i) one or more antibodies or fragments thereof specific for a dendritic cell (DC), (ii) one or more HCV antigens located C-terminal of the antibodies or fragments thereof, (iii) at least one Toll-Like Receptor (TLR) agonist which is selected from the group consisting of TLR1, TLR2, TLR3, TLR4, TLR5, TLR6, TLR7, and TLR8 agonists, and (iv) one or more optional pharmaceutically acceptable carriers and adjuvants, wherein the vaccine is effective to produce an immune response, for a prophylaxis, a therapy, or any combination thereof against hepatitis C in a human or an animal subject in need thereof.
  • DC dendritic cell
  • TLR Toll-Like Receptor
  • the vaccine comprises one or more optional agents selected from the group consisting of an agonistic anti-CD40 antibody, an agonistic anti-CD40 antibody fragment, a CD40 ligand (CD40L) polypeptide, a CD40L polypeptide fragment, anti-4-1BB antibody, an anti-4-1BB antibody fragment, 4-1BB ligand polypeptide, a 4-1BB ligand polypeptide fragment, IFN- ⁇ , TNF- ⁇ , type 1 cytokines, type 2 cytokines or combinations and modifications thereof.
  • CD40L CD40 ligand
  • the instant invention in one embodiment discloses a method for increasing effectiveness of Hepatitis C virus (HCV) antigen presentation by an antigen presenting cell (APC) comprising the steps of: (i) providing an antibody conjugate comprising a dendritic cell (DC) specific antibody or a fragment thereof and one or more native or engineered HCV antigenic peptides, (ii) providing one or more APCs; and (iii) contacting the APC with the conjugate, wherein the antibody-antigen complex is processed and presented for T cell recognition.
  • the antigen presenting cell comprises a dendritic cell (DC).
  • the instant invention provides a method for increasing effectiveness of antigen presentation by an antigen presenting cell (APC) comprising the steps of: i) isolating and purifying one or more dendritic cell (DC)-specific antibody or a fragment thereof, ii) providing one or more HCV antigens or antigenic peptides, iii) loading or chemically coupling the one or more HCV antigens or antigenic peptides to the DC-specific antibody to form an antibody-antigen conjugate, and iv) contacting the antigen presenting cell with the conjugate, wherein the antibody-antigen complex is processed and presented for T cell recognition.
  • APC antigen presenting cell
  • the method as described hereinabove further comprises adding at least one Toll-Like Receptor (TLR) agonist which is selected from the group consisting of TLR1, TLR2, TLR3, TLR4, TLR5, TLR6, TLR7, and TLR8 agonists and one or more optional steps comprising i) adding one or more optional agents selected from the group consisting of an agonistic anti-CD40 antibody, an agonistic anti-CD40 antibody fragment, a CD40 ligand (CD40L) polypeptide, a CD40L polypeptide fragment, anti-4-1BB antibody, an anti-4-1BB antibody fragment, 4-1BB ligand polypeptide, a 4-1BB ligand polypeptide fragment, IFN- ⁇ , TNF- ⁇ , type 1 cytokines, type 2 cytokines or combinations and modifications thereof to the antibody-antigen conjugate and the TLR agonist prior to contacting the antigen presenting cells, ii) measuring a level of one or more agents selected from the group consisting of IFN- ⁇ , TNF
  • the instant invention provides method for a treatment, a prophylaxis or a combination thereof against hepatitis C in a human subject comprising the steps of: identifying the human subject in need of the treatment, the prophylaxis, or a combination thereof against the hepatisti and administering a vaccine composition comprising one or more antibodies or fragments thereof specific for a dendritic cell (DC) and one or more HCV antigens attached to the one or more antibodies or fragments thereof.
  • DC dendritic cell
  • the vaccine composition further comprises at least one Toll-Like Receptor (TLR) agonist which is selected from the group consisting of TLR1, TLR2, TLR3, TLR4, TLR5, TLR6, TLR7, and TLR8 agonists, and one or more optional pharmaceutically acceptable carriers and adjuvants, wherein the conjugate and agonist are each comprised in an amount such that, in combination with the other, are effective to produce an immune response, for the prophylaxis, the therapy or any combination thereof against the influenza in the human subject.
  • TLR Toll-Like Receptor
  • the vaccine composition further comprises one or more optional agents selected from the group consisting of an agonistic anti-CD40 antibody, an agonistic anti-CD40 antibody fragment, a CD40 ligand (CD40L) polypeptide, a CD40L polypeptide fragment, anti-4-1BB antibody, an anti-4-1BB antibody fragment, 4-1BB ligand polypeptide, a 4-1BB ligand polypeptide fragment, IFN- ⁇ , TNF- ⁇ , type 1 cytokines, type 2 cytokines or combinations and modifications thereof.
  • the vaccine is administered to the human subject by an oral route, a nasal route, topically or as an injection.
  • the one or more antibodies or fragments thereof specific for a dendritic cell comprises antibodies specifically binds to MHC class I, MHC class II, CD1, CD2, CD3, CD4, CD8, CD11b, CD14, CD15, CD16, CD19, CD20, CD29, CD31, CD40, CD43, CD44, CD45, CD54, CD56, CD57, CD58, CD83, CD86, CMRF-44, CMRF-56, DCIR, DC-ASPGR, CLEC-6, CD40, BDCA-2, MARCO, DEC-205, mannose receptor, Langerin, DECTIN-1, B7-1, B7-2, IFN- ⁇ receptor and IL-2 receptor, ICAM-1, Fc ⁇ receptor, LOX-1, or ASPGR.
  • the HCV antigen is selected from the group consisting of protein E1, envelope protein E2, non-structural protein NS3, non-structural protein NS4b, non-structural protein NS5b, and a fragment thereof, from the group consisting of SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5, SEQ ID NO: 6, SEQ ID NO: 7, and a fragment thereof, or from the group consisting of SEQ ID NO: 8, SEQ ID NO: 9, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, E1b, and a fragment thereof.
  • a method of providing immunostimulation by activation of one or more dendritic cells (DCs) to a human subject for a prophylaxis, a therapy or a combination thereof against HCV is described in one embodiment of the present invention.
  • the method comprises the steps of: a) identifying the human subject in need of immunostimulation for the prophylaxis, the therapy or a combination thereof against HCV, b) isolating one or more DCs from the human subject, c) exposing the isolated DCs to activating amounts of a composition or a vaccine comprising an anti-dendritic cell immunoreceptor (DCIR) monoclonal antibody or fragments thereof attached to one or more HCV antigens, and d) reintroducing the activated DC complex into the human subject.
  • DCIR anti-dendritic cell immunoreceptor
  • the method described above further comprises the steps of contacting the one or more DCs with at least one Toll-Like Receptor (TLR) agonist which is selected from the group consisting of TLR1, TLR2, TLR3, TLR4, TLR5, TLR6, TLR7, and TLR8 agonists and a pharmaceutically acceptable carrier to form an activated DC complex and the step of adding one or more optional agents selected from the group consisting of an agonistic anti-CD40 antibody, an agonistic anti-CD40 antibody fragment, a CD40 ligand (CD40L) polypeptide, a CD40L polypeptide fragment, anti-4-1BB antibody, an anti-4-1BB antibody fragment, 4-1BB ligand polypeptide, a 4-1BB ligand polypeptide fragment, IFN- ⁇ , TNF- ⁇ , type 1 cytokines, type 2 cytokines or combinations and modifications thereof to the conjugate and the TLR agonist prior to exposing the DCs.
  • TLR Toll-Like Receptor
  • the method disclosed hereinabove further comprises the optional step of measuring a level of one or more agents selected from the group consisting of IFN- ⁇ , TNF- ⁇ , IL-12p40, IL-4, IL-5, and IL-13, wherein a change in the level of the one or more agents is indicative of the immunostimulation.
  • the present invention also discloses a method to treat or prevent Hepatitis C in a subject comprising the step of administering to the subject a fusion protein comprising an antibody or fragment thereof specific for a dendritic cell (DC) and a Hepatitis C virus antigen or antigenic peptide fused to the antibody or fragment thereof.
  • a Hepatitis C virus antigen presenting dendritic cell (DC) is also disclosed in one embodiment of the present invention.
  • the HCV antigen presenting DC further comprises one or more isolated dendritic cells (DCs) in contact with a fusion protein comprising an antibody or fragment thereof specific for the DC, the fusion protein further comprising a HCV peptide.
  • the present invention describes one or more vaccines against HCV comprising one or more antibodies or fragments thereof specific for a dendritic cell (DC) and one or more HCV antigens or antigenic domains attached to the one or more antibodies or fragments thereof.
  • the vaccine has a general structure given by: H-w, H-w-x, H-w-x-y, or H-w-x-y-z, wherein H represents a heavy chain of an antibody or a fragment thereof specific for a DC, w, x, y, and z represent one or more HCV antigens or domains selected from the group consisting of protein E1, envelope protein E2, non-structural protein NS3, non-structural protein NS4b, non-structural protein NS5b, or any combinations thereof.
  • w comprises the HCV antigenic domains selected from the group consisting of ProtA, ProtB, HelB, Palm, E1b, and E2.
  • x comprises the HCV antigenic domains selected from the group consisting of HelC, HelA, Palm, ProtA, ProtB, and E1b.
  • z comprises HCV antigenic domains selected from E2, ProtA, and HelB.
  • the one or more HCV antigens or antigenic domains are linked or attached to one another by one or more flexible linkers.
  • a vaccine comprising one or more antibodies or fragments thereof specific for a dendritic cell (DC) and one or more HCV antigens or antigenic domains attached to the one or more antibodies or fragments thereof, wherein the vaccine has a general structure given by L-w-x-y-z, wherein L represents a light chain of an antibody or a fragment thereof specific for a DC, w, x, y, and z represent one or more HCV antigens or domains selected from the group consisting of protein E1, envelope protein E2, non-structural protein NS3, non-structural protein NS4b, non-structural protein NS5b, or any combinations thereof.
  • DC dendritic cell
  • HCV antigens or antigenic domains attached to the one or more antibodies or fragments thereof
  • the vaccine has a general structure given by L-w-x-y-z, wherein L represents a light chain of an antibody or a fragment thereof specific for a DC, w, x, y, and z represent one or
  • the present invention discloses a vaccine comprising one or more antibodies or fragments thereof specific for a dendritic cell (DC) and one or more HCV antigens or antigenic domains attached to the one or more antibodies or fragments thereof, wherein the vaccine has a general structure given by:
  • H represents a heavy chain of an antibody or a fragment thereof specific for a DC
  • L represents a light chain of an antibody or a fragment thereof specific for the DC
  • w, x, y, and z represent one or more HCV antigens or domains selected from the group consisting of protein E1, envelope protein E2, non-structural protein NS3, non-structural protein NS4b, non-structural protein NS5b, or any combinations thereof.
  • the present invention discloses a method for generating a Hepatitis C virus (HCV) presenting dendritic cells (DCs) in a human subject comprising the steps of: providing one or more DCs and incubating the dendritic cells with a fusion protein, wherein the fusion protein comprises an antibody or fragment thereof specific for a dendritic cell and a HCV antigen fused to the antibody or fragment thereof.
  • the method disclosed herein further comprises the step of administering to the subject an effective amount of IFNA, Ribavirin, or a combination thereof.
  • FIG. 1 provides a summary of HCV antigen combined constructs expressed at the C-terminus end of antibody heavy chain.
  • Each HCV domains, as defined in FIG. 2 is represented as color rectangle. Flexible linkers are shown as curved lines. Each color represents a different linker. Domains are fused to the carboxyl terminus end of antibody heavy chain. “Expressed” means that domains fused to the carboxyl terminus end of antibody heavy chain are expressed as fusion antibody after co-transfection with antibody light chain in 293F cells. All possible combination of HCV domains have been constructed, and FIG. 3 shows only those that were expressed as soluble fusion proteins in 293F cells and in CHO cells and purified as recombinant antibodies;
  • FIG. 2 provides a summary of HCV antigen combined constructs expressed at the C-terminus end of antibody light chain. All possible combinations of HCV domains have been constructed, and the figure shows only those that are expressed as soluble fusion proteins in 293F cells and in CHO cells and purified as recombinant antibodies. The same color code as in FIG. 1 is used;
  • FIGS. 3A-3B demonstrate the ability of recombinant anti-DCIR and anti-CD40 antibodies fused to HCV NS3HelB specific antigen to elicit the expansion of antigen-specific CD4+ T cells from a chronic HCV infected patient cured after IFNa-Ribavirin therapy.
  • Delivering NS3HelB to DCs through CD40 and DCIR induces IFN- ⁇ -TNFa-producing HCV NS3HelB-specific CD4+ T cells.
  • FIG. 3A after 2 days, culture supernatants were analyzed for measuring IFN ⁇ and FIG. 3B PBMC cells were stained for measuring the frequency of peptide-specific CD4+ T cells intracellular IFN ⁇ +TNF ⁇ + cells;
  • FIG. 4 demonstrates the ability of long HCV antigen bearing vaccine constructs to induce multi epitope CD4+ T cells.
  • HCV antigens from NS3 Helicase HelBC construct were delivered to DCs through CD40 or DCIR.
  • PBMC cells from chronic HCV infected patients; either cured after therapy or in treatment failure, were co-cultured with IFNDCs targeted with anti-CD40-NS3HelB, anti-CD40-NS3HelBC or anti-DCIR-NS3HelB, anti-DCIR-NS3HelBC for 10 days.
  • Cells were stimulated for 6 h with peptides clusters (10 ⁇ M; 10 peptides of 15-mers in each clusters) covering HCV NS3 HelB or HelBC constructs.
  • PBMC cells were stained for measuring the frequency of peptide-specific CD4+ T cells intracellular IFN ⁇ +TNF ⁇ + cells, an analyzed by FACS. Number of double positive CD4+ T cells induced after each peptide cluster stimulation were plotted for each vaccine targeting agent;
  • FIGS. 5A to 5C demonstrate the ability of recombinant anti-DCIR and anti-CD40 antibodies fused to HCV NS3HelB, HCV NS3ProtB and HCV NS5BPalm specific antigens to elicit the expansion of antigen-specific CD4+ T cells from a chronic HCV infected patient cured after IFNa-Ribavirin therapy.
  • Delivering HCV antigen to DCs through CD40 and DCIR induces IFN ⁇ -TNFa-producing HCV-specific CD4+ T cells, with multi epitopes, specific CD4 T cells.
  • PBMC cells from chronic HCV infected patients cured after therapy were co-cultured with autologous IFN ⁇ DCs targeted with anti-CD40-NS3HelB-NS3ProtB-NS5BPalm or anti-DCIR-NS3HelB-NS3ProtB-NS5BPalm for 10 days.
  • Cells were stimulated with peptides clusters (10 peptides of 15-mers in each clusters) covering HCV NS3HelB, NS3ProtB or NS5BPalm (2 ⁇ M).
  • PBMC cells were stained for measuring the frequency of peptide-specific CD4+ T cells intracellular IFN ⁇ +TNF ⁇ + cells;
  • FIGS. 6A to 6C demonstrate the ability of recombinant anti-DCIR and anti-CD40 antibodies fused to HCV NS3HelB, HCV NS3ProtB and HCV NS5BPalm specific antigens to elicit the expansion of antigen-specific CD8+ T cells from a chronic HCV infected patient cured after IFNa-Ribavirin therapy.
  • Delivering HCV antigen to DCs through CD40 and DCIR induces IFN ⁇ -TNFa-producing HCV-specific CD4+ T cells, with multi epitopes, specific CD4 T cells.
  • PBMC cells from chronic HCV infected patients cured after therapy were co-cultured with autologous IFN ⁇ DCs targeted with anti-CD40-NS3HelB-NS3ProtB-NS5BPalm or anti-DCIR-NS3HelB-NS3ProtB-NS5BPalm for 10 days.
  • Cells were stimulated with peptides clusters (10 peptides of 15-mers in each clusters) covering HCV NS3HelB, NS3ProtB or NS5BPalm (2 ⁇ M).
  • PBMC cells were stained for measuring the frequency of peptide-specific CD8+ T cells intracellular IFN ⁇ +TNF ⁇ + cells;
  • FIGS. 7A to 7D demonstrate the ability of recombinant anti-DCIR and anti-CD40 antibodies fused to HCV NS3HelB, HCV NS3ProtB or HCV NS5BPalm specific antigens to elicit the expansion of antigen-specific CD4+ T cells from chronic HCV infected patients cured after IFNa-Ribavirin therapy.
  • HCV antigens from were delivered to DCs through CD40 or DCIR.
  • IFN ⁇ DCs were targeted with anti-CD40-NS3HelB; anti-CD40-NS3ProtB; anti-CD40NS5bPalm or anti-DCIR-NS3HelB; anti-DCIR-NS3ProtB; anti-DCIRNS5bPalm and co-cultured for 10 days with PBMC cells from 3 chronic HCV infected patients cured after therapy.
  • PBMC cells were stimulated for 6 h with peptide clusters C7 and C9 (10 ⁇ M; 10 peptides of 15-mers) covering HCV NS3 HelB constructs; with peptide clusters C2 and C3 covering HCV NS3 ProtB constructs or peptide cluster C2 C4 C5 C6 C7 covering NS5bPalm construct.
  • PBMC cells were stained for measuring the frequency of peptide-specific CD4+ intracellular IFN ⁇ +TNF ⁇ + cells, an analyzed by FACS.
  • the left panel represent IFN- ⁇ amount secreted after 10 days culture of PBMCs with peptide cluster covering HCVNS3 and HCVNS5b entire proteins;
  • FIGS. 8A to 8D demonstrates the ability of recombinant anti-DCIR and anti-CD40 antibodies fused to HCV NS3HelB, HCV NS3ProtB or HCV NS5BPalm specific antigens to elicit the expansion of antigen-specific CD4+ T cells from chronic HCV infected patients in treatment failure.
  • HCV antigens from were delivered to DCs through CD40 or DCIR.
  • IFN ⁇ DCs were targeted with anti-CD40-NS3HelB; anti-CD40-NS3ProtB or anti-DCIR-NS3HelB; anti-CD40NS5bPalm or anti-DCIR-NS3HelB; anti-DCIR-NS3ProtB; anti-DCIRNS5bPalm and co-cultured for 10 days with PBMC cells from 3 chronic HCV infected patients in treatment failure (HCV+).
  • PBMC cells were stimulated for 6 h with peptide clusters C7 and C9 (10 ⁇ M; 10 peptides of 15-mers) covering HCV NS3 HelB constructs; with peptide clusters C2 and C3 covering HCV NS3 ProtB constructs or peptide cluster C2 C4 C5 C6 C7 covering NS5bPalm construct.
  • PBMC cells were stained for measuring the frequency of peptide-specific CD4+ intracellular IFN ⁇ +TNF ⁇ + cells, an analyzed by FACS.
  • the left panel represent IFN- ⁇ amount secreted after 10 days culture of PBMCs with peptide cluster covering HCVNS3 and HCVNS5b entire proteins;
  • FIGS. 9A and 9B demonstrate the ability of combination of TLR agonist and anti-DCIR HCV-NS3HelB can induced multi epitopes CD8+ T cells.
  • HCV antigens from NS3 Helicase HelB construct were delivered to DCs through CD40 or DCIR.
  • IFNDCs were targeted with anti-CD40-NS3HelB, or anti-DCIR-NS3HelB in presence of PAM3 (TLR2 agonist; 200 ng/ml), CL097 (TLR7/8 agonist; 5 ⁇ g/ml) or polyIC (TLR3 agonist; 25 ⁇ g/ml) before co-culture for 10 days with PBMC cells from chronic HCV infected patients; either cured after therapy or in treatment failure.
  • PAM3 TLR2 agonist
  • CL097 TLR7/8 agonist
  • polyIC TLR3 agonist
  • FIG. 9A PBMC cells were stained for measuring the frequency of peptide-specific CD4+ and CD8+ intracellular IFN ⁇ +TNF ⁇ + cells, an analyzed by FACS,
  • FIG. 9B Number of double positive CD4+ and CD8+ intracellular IFN ⁇ +TNF ⁇ +T cells induced after each TLR agonist stimulation were plotted;
  • FIGS. 10A-10D demonstrate the ability of combination of TLR agonist and anti-DCIR HCV-construct to increase CD4+ and induce CD8+ T cells responses in chronic HCV infected patients cured after therapy.
  • HCV antigens from NS3 Helicase HelB or from NS3 Protease ProtB constructs were delivered to DCs through CD40 or DCIR.
  • IFN ⁇ DCs were targeted with anti-CD40-NS3HelB, anti-DCIR-NS3HelB, anti-CD40-NS3ProtB, anti-DCIR-NS3ProtB, in presence of PAM3 (TLR2 agonist; 200 ng/ml), CL095 (TLR7/8 agonist; 5 ⁇ g/ml) or polyIC (TLR3 agonist; 25 ⁇ g/ml) or cyclic glucan (TLR4 agonist, 10 ⁇ g/ml) before co-culture for 10 days with PBMC cells from chronic HCV infected patients cured after therapy.
  • PAM3 TLR2 agonist
  • CL095 TLR7/8 agonist; 5 ⁇ g/ml
  • polyIC TLR3 agonist; 25 ⁇ g/ml
  • TLR4 agonist 10 ⁇ g/ml
  • FIGS. 10A and 10B PBMC cells were stained for measuring the frequency of peptide-specific CD4+ intracellular IFN ⁇ +TNF ⁇ + cells, and analyzed by FACS and FIGS. 10C and 10D PBMC cells were stained for measuring the frequency of peptide-specific CD8+ intracellular IFN ⁇ +TNF ⁇ + cells, an analyzed by FACS;
  • FIG. 11 demonstrates the ability of combination of TLR agonists and anti-CD40 HCV-constructs to increase CD4+ T cells responses in chronic HCV infected patients in treatment failure.
  • HCV antigens from NS3 Helicase HelB or from NS3 Protease ProtB constructs were delivered to DCs through CD40 or DCIR.
  • IFN ⁇ DCs were targeted with anti-CD40-NS3HelB, anti-DCIR-NS3HelB, anti-CD40-NS3ProtB, anti-DCIR-NS3ProtB, in presence of PAM3 (TLR2 agonist; 200 ng/ml), CL095 (TLR7/8 agonist; 5 ⁇ g/ml) or polyIC (TLR3 agonist; 25 ⁇ g/ml) or cyclic glucan (TLR4 agonist, 10 ⁇ g/ml) before co-culture for 10 days with PBMC cells from chronic HCV infected patients cured after therapy.
  • PAM3 TLR2 agonist
  • CL095 TLR7/8 agonist; 5 ⁇ g/ml
  • polyIC TLR3 agonist; 25 ⁇ g/ml
  • TLR4 agonist 10 ⁇ g/ml
  • PBMC cells were stimulated for 6 h with peptide clusters C7 (10 ⁇ M; 10 peptides of 15-mers) covering HCV NS3 HelB constructs or with peptide clusters C3 (10 ⁇ M; 10 peptides of 15-mers) covering HCV NS3 ProtB constructs.
  • PBMC cells were stained for measuring the frequency of peptide-specific CD4+ intracellular IFN ⁇ +TNF ⁇ + cells, an analyzed by FACS;
  • FIGS. 12A-12C demonstrate the ability of HCV vaccine candidates to recall CD4+ T cells responses in all chronic HCV infected patients (cured or in treatment failure).
  • HCV antigens from NS3 Helicase HelB, NS5b polymerase Palm or from NS3 Protease ProtB constructs were delivered to DCs through CD40 or DCIR.
  • IFN ⁇ DCs were targeted with anti-CD40-[NS3HelB ⁇ NS3ProtB ⁇ NS5bPalm on heavy chain], anti-DCIR-[NS3HelB ⁇ NS3ProtB ⁇ NS5bPalm on heavy chain] before co-culture for 10 days with PBMC cells from chronic HCV infected patients cured after therapy.
  • PBMC cells were stimulated for 6 h with peptide clusters C7, C9 (10 ⁇ M; 10 peptides of 15-mers) covering HCV NS3 HelB domain, with peptide clusters C2-C3-C4 (10 ⁇ M; 10 peptides of 15-mers) covering HCV NS3 ProtB domain or with peptide clusters C2-C4-C5-C6-C7 (10 ⁇ M; 10 peptides of 15-mers) covering HCV NS5b Palm domain.
  • PBMC cells were stained for measuring the frequency of peptide-specific CD4+ and CD8+ intracellular IFN ⁇ +TNF ⁇ + cells, and analyzed by FACS. The number of CD4+IFN ⁇ +TNF ⁇ + cells induced vaccine candidate is shown;
  • FIGS. 13A-13E demonstrate of the ability of different HCV antigen combination on vaccine candidate for recall CD4+ T cells responses in chronic HCV infected cured patients.
  • HCV antigens from NS3 Helicase HelB, NS5b polymerase Palm or from NS3 Protease ProtB combination constructs were delivered to DCs through CD40 or DCIR.
  • IFNaDCs were targeted with second-generation vaccines anti-CD40-[NS3HelB on light chain and NS3ProtB ⁇ NS5bPalm on heavy chain], anti-DCIR-[NS3HelB on light chain and NS3ProtB ⁇ NS5bPalm on heavy chain], or first-generation vaccines anti-CD40-[NS3HelB ⁇ NS3ProtB ⁇ NS5bPalm on heavy chain], anti-DCIR-[NS3HelB ⁇ NS3ProtB ⁇ NS5bPalm on heavy chain] before co-culture for 10 days with PBMC cells from chronic HCV infected patients cured after therapy.
  • PBMC cells were stimulated for 6 h with peptide clusters C7 and C9 (10 ⁇ M; 10 peptides of 15-mers) covering HCV NS3 HelB domain (shown in green on the figure), with peptide clusters C2-C3-C4 (10 ⁇ M; 10 peptides of 15-mers) covering HCV NS3 ProtB domain (shown in pink on the figure) or with peptide clusters C2-C4-C5-C6-C7 (10 ⁇ M; 10 peptides of 15-mers) covering HCV NS5b Palm domain (shown in orange in the figure).
  • PBMC cells were stained for measuring the frequency of peptide-specific CD4+ intracellular IFN ⁇ +TNFa+ cells, an analyzed by FACS. The number of CD4+IFN ⁇ +TNF ⁇ + cells induced by first-generation vaccine or second-generation vaccine is compared in the last panel; and
  • FIGS. 14A to 14H demonstrate the ability of vaccine candidate to recall CD4+ T cells responses in HCV patients infected with non 1 genotype and HCV-exposed but non-infected individual.
  • HCV antigens from NS3 Helicase HelB, NS5b polymerase Palm or from NS3 Protease ProtB combination constructs were delivered to DCs through CD40 or DCIR and DC loaded were co-culture for 10 days with PBMC cells from HCV patients infected with non 1 genotype HCV-infected patients (HCV-015, 2b) and HCV-exposed but non infected individual (HCV-029).
  • PBMC cells were stimulated for 6 h with peptide clusters C7 and C9 (10 ⁇ M; 10 peptides of 15-mers) covering HCV NS3 HelB domain, with peptide clusters C2-C3-C4 (10 ⁇ M; 10 peptides of 15-mers) covering HCV NS3 ProtB domain or with peptide clusters C2-C4-C5-C6-C7 (10 ⁇ M; 10 peptides of 15-mers) covering HCV NS5b Palm domain.
  • PBMC cells were stained for measuring the frequency of peptide-specific CD4+ intracellular IFN ⁇ +TNF ⁇ + cells, an analyzed by FACS.
  • FIGS. 15A to 15B shows the results from a 10 day expansion culture whereby a dose range of 1st generation anti-DCIR-HCV vaccine (left panels) is compared to second generation anti-DCIR-HCV vaccine (right panels).
  • Doses were 0.05 nM, 0.5 nM, and 5 nM and antigen-specific responses were ascertained by stimulation with no peptide (control) or ProtA, HelB, or Palm peptide pools in the presence of Brefeldin, followed by staining for CD3+, CD4+ and intracellular IFNg and TNFa. Samples were analyzed by FACS. Shown are comparable CD4+ HCV antigen-specific responses to the two generations of vaccines.
  • FIGS. 16A to 16B shows the results from a 10 day expansion culture whereby a dose range of 1st generation anti-CD40-HCV vaccine (left panels) is compared to second generation anti-CD40-HCV vaccine (right panels).
  • Doses were 0.05 nM, 0.5 nM, and 5 nM and antigen-specific responses were ascertained by stimulation with no peptide (control) or ProtA, HelB, or Palm peptide pools in the presence of Brefeldin, followed by staining for CD3+, CD4+ and intracellular IFNg and TNFa. Samples were analyzed by FACS. Shown are comparable CD4+ HCV antigen-specific responses to the two generations of vaccines.
  • the invention includes also variants and other modification of an antibody (or “Ab”) of fragments thereof, e.g., anti-CD40 fusion protein (antibody is used interchangeably with the term “immunoglobulin”).
  • antibody is used interchangeably with the term “immunoglobulin”.
  • the term “antibodies or fragments thereof,” includes whole antibodies or fragments of an antibody, e.g., Fv, Fab, Fab′, F(ab′)2, Fc, and single chain Fv fragments (ScFv) or any biologically effective fragments of an immunoglobulins that binds specifically to, e.g., CD40.
  • Antibodies from human origin or humanized antibodies have lowered or no immunogenicity in humans and have a lower number or no immunogenic epitopes compared to non-human antibodies.
  • Antibodies and their fragments will generally be selected to have a reduced level or no antigenicity in humans.
  • the terms “Ag” or “antigen” refer to a substance capable of either binding to an antigen binding region of an immunoglobulin molecule or of eliciting an immune response, e.g., a T cell-mediated immune response by the presentation of the antigen on Major Histocompatibility Antigen (MHC) cellular proteins.
  • antigen includes, but is not limited to, antigenic determinants, haptens, and immunogens, which may be peptides, small molecules, carbohydrates, lipids, nucleic acids or combinations thereof.
  • the term “antigen” refers to those portions of the antigen (e.g., a peptide fragment) that is a T cell epitope presented by MHC to the T cell receptor.
  • the portion of the antigen that binds to the complementarity determining regions of the variable domains of the antibody (light and heavy) the bound portion may be a linear or three-dimensional epitope.
  • the term antigen is used on both contexts, that is, the antibody is specific for a protein antigen (CD40), but also carries one or more peptide epitopes for presentation by MHC to T cells.
  • the antigens delivered by the vaccine or fusion protein of the present invention are internalized and processed by antigen presenting cells prior to presentation, e.g., by cleavage of one or more portions of the antibody or fusion protein.
  • conjugates refers to a protein having one or more targeting domains, e.g., an antibody, and at least one antigen, e.g., a small peptide or a protein.
  • conjugates include those produced by chemical methods, such as by chemical coupling, for example, coupling to sulfhydryl groups, and those produced by any other method whereby one or more antibody targeting domains and at least one antigen, are linked, directly or indirectly via linker(s) to a targeting agent.
  • An example of a linker is a cohesin-dockerin (coh-doc) pair, a biotin-avidin pair, histidine tags bound by Zn, and the like.
  • the term “Antigen Presenting Cells” refers to cells that are capable of activating T cells, and include, but are not limited to, certain macrophages, B cells and dendritic cells.
  • DCs Dendritic cells
  • DCs refers to any member of a diverse population of morphologically similar cell types found in lymphoid or non-lymphoid tissues. These cells are characterized by their distinctive morphology, high levels of surface MHC-class II expression (Steinman, et al., Ann. Rev. Immunol 9:271 (1991); incorporated herein by reference for its description of such cells). These cells can be isolated from a number of tissue sources, and conveniently, from peripheral blood, as described herein.
  • Dendritic cell binding proteins refers to any protein for which receptors are expressed on a dendritic cell. Examples include GM-CSF, IL-1, TNF, IL-4, CD40L, CTLA4, CD28, and FLT-3 ligand.
  • the term “vaccine composition” is intended to mean a composition that can be administered to humans or to animals in order to induce an immune system response; this immune system response can result in a production of antibodies or simply in the activation of certain cells, in particular antigen-presenting cells, T lymphocytes and B lymphocytes.
  • the vaccine composition can be a composition for prophylactic purposes or for therapeutic purposes, or both.
  • the term “antigen” refers to any antigen which can be used in a vaccine, whether it involves a whole microorganism or a subunit, and whatever its nature: peptide, protein, glycoprotein, polysaccharide, glycolipid, lipopeptide, etc.
  • the term “antigen” also comprises the polynucleotides, the sequences of which are chosen so as to encode the antigens whose expression by the individuals to which the polynucleotides are administered is desired, in the case of the immunization technique referred to as DNA immunization.
  • They may also be a set of antigens, in particular in the case of a multivalent vaccine composition which comprises antigens capable of protecting against several diseases, and which is then generally referred to as a vaccine combination, or in the case of a composition which comprises several different antigens in order to protect against a single disease, as is the case for certain vaccines against whooping cough or the flu, for example.
  • antibodies refers to immunoglobulins, whether natural or partially or wholly produced artificially, e.g. recombinant.
  • An antibody may be monoclonal or polyclonal.
  • the antibody may, in some cases, be a member of one, or a combination immunoglobulin classes, including: IgG, IgM, IgA, IgD, and IgE.
  • adjuvant refers to a substance that enhances, augments or potentiates the host's immune response to a vaccine antigen.
  • gene is used to refer to a functional protein, polypeptide or peptide-encoding unit. As will be understood by those in the art, this functional term includes both genomic sequences, cDNA sequences, and fragments or combinations thereof, as well as gene products, including those that may have been altered by the hand of man. Purified genes, nucleic acids, protein and the like are used to refer to these entities when identified and separated from at least one contaminating nucleic acid or protein with which it is ordinarily associated.
  • nucleic acid or “nucleic acid molecule” refers to polynucleotides, such as deoxyribonucleic acid (DNA) or ribonucleic acid (RNA), oligonucleotides, fragments generated by the polymerase chain reaction (PCR), and fragments generated by any of ligation, scission, endonuclease action, and exonuclease action.
  • DNA deoxyribonucleic acid
  • RNA ribonucleic acid
  • PCR polymerase chain reaction
  • Nucleic acid molecules can be composed of monomers that are naturally-occurring nucleotides (such as DNA and RNA), or analogs of naturally-occurring nucleotides (e.g., ⁇ -enantiomeric forms of naturally-occurring nucleotides), or a combination of both.
  • Modified nucleotides can have alterations in sugar moieties and/or in pyrimidine or purine base moieties.
  • Sugar modifications include, for example, replacement of one or more hydroxyl groups with halogens, alkyl groups, amines, and azido groups, or sugars can be functionalized as ethers or esters.
  • the entire sugar moiety can be replaced with sterically and electronically similar structures, such as aza-sugars and carbocyclic sugar analogs.
  • modifications in a base moiety include alkylated purines and pyrimidines, acylated purines or pyrimidines, or other well-known heterocyclic substitutes.
  • Nucleic acid monomers can be linked by phosphodiester bonds or analogs of such linkages. Analogs of phosphodiester linkages include phosphorothioate, phosphorodithioate, phosphoroselenoate, phosphorodiselenoate, phosphoroanilothioate, phosphoranilidate, phosphoramidate, and the like.
  • nucleic acid molecule also includes so-called “peptide nucleic acids,” which comprise naturally-occurring or modified nucleic acid bases attached to a polyamide backbone. Nucleic acids can be either single stranded or double stranded.
  • polynucleotide or “nucleic acid” refers to a strand of deoxyribonucleotides or ribonucleotides in either a single- or a double-stranded form (including known analogs of natural nucleotides).
  • a double-stranded nucleic acid sequence will include the complementary sequence.
  • the polynucleotide sequence may encode variable and/or constant region domains of immunoglobulin that are formed into a fusion protein with one or more linkers.
  • multiple cloning sites may be engineered into the locations at the carboxy-terminal end of the heavy and/or light chains of the antibodies to allow for in-frame insertion of peptide for expression between the linkers.
  • isolated polynucleotide refers to a polynucleotide of genomic, cDNA, or synthetic origin or some combination thereof.
  • the “isolated polynucleotide” (1) is not associated with all or a portion of a polynucleotide in which the “isolated polynucleotides” are found in nature, (2) is operably linked to a polynucleotide which it is not linked to in nature, or (3) does not occur in nature as part of a larger sequence.
  • the skilled artisan will recognize that to design and implement a vector can be manipulated at the nucleic acid level by using techniques known in the art, such as those taught in Current Protocols in Molecular Biology, 2007 by John Wiley and Sons, relevant portions incorporated herein by reference.
  • the encoding nucleic acid sequences can be inserted using polymerase chain reaction, enzymatic insertion of oligonucleotides or polymerase chain reaction fragments in a vector, which may be an expression vector.
  • a multiple cloning site may be engineered in sequence with the antibody sequences.
  • polypeptide refers to a polymer of amino acids and does not refer to a specific length of the product; thus, peptides, oligopeptides, and proteins are included within the definition of polypeptide. This term also does not refer to or exclude post expression modifications of the polypeptide, for example, glycosylations, acetylations, phosphorylations and the like. Included within the definition are, for example, polypeptides containing one or more analogs of an amino acid (including, for example, unnatural amino acids, etc.), polypeptides with substituted linkages, as well as other modifications known in the art, both naturally occurring and non-naturally occurring.
  • domain or “polypeptide domain” refers to that sequence of a polypeptide that folds into a single globular region in its native conformation, and that may exhibit discrete binding or functional properties.
  • amino acid means one of the naturally occurring amino carboxylic acids of which proteins are comprised.
  • polypeptide as described herein refers to a polymer of amino acid residues joined by peptide bonds, whether produced naturally or synthetically. Polypeptides of less than about 10 amino acid residues are commonly referred to as “peptides.”
  • a “protein” is a macromolecule comprising one or more polypeptide chains. A protein may also comprise non-peptidic components, such as carbohydrate groups. Carbohydrates and other non-peptidic substituents may be added to a protein by the cell in which the protein is produced, and will vary with the type of cell. Proteins are defined herein in terms of their amino acid backbone structures; substituents such as carbohydrate groups are generally not specified, but may be present nonetheless.
  • a polypeptide or amino acid sequence “derived from” a designated nucleic acid sequence refers to a polypeptide having an amino acid sequence identical to that of a polypeptide encoded in the sequence, or a portion thereof wherein the portion consists of at least 3-5 amino acids, preferably at least 4-7 amino acids, more preferably at least 8-10 amino acids, and even more preferably at least 11-15 amino acids, or which is immunologically identifiable with a polypeptide encoded in the sequence.
  • This terminology also includes a polypeptide expressed from a designated nucleic acid sequence.
  • the terms “stable,” “soluble,” or “unstable” when referring to proteins is used to describe a peptide or protein that maintains its three-dimensional structure and/or activity (stable) or that loses immediately or over time its three-dimensional structure and/or activity (unstable).
  • the term “insoluble” refers to those proteins that when produced in a cell (e.g., a recombinant protein expressed in a eukaryotic or prokaryotic cell or in vitro) are not soluble in solution absent the use of denaturing conditions or agents (e.g., heat or chemical denaturants, respectively).
  • the antibody or fragment thereof and the linkers taught herein have been found to convert antibody fusion proteins with the peptides from insoluble and/or unstable into proteins that are stable and/or soluble.
  • Another example of stability versus instability is when the domain of the protein with a stable conformation has a higher melting temperature (Tm) than the unstable domain of the protein when measured in the same solution.
  • Tm melting temperature
  • a domain is stable compared to another domain when the difference in the Tm is at least about 2° C., more preferably about 4° C., still more preferably about 7° C., yet more preferably about 10° C., even more preferably about 15° C., still more preferably about 20° C., even still more preferably about 25° C., and most preferably about 30° C., when measured in the same solution.
  • in vivo refers to being inside the body.
  • in vitro used as used in the present application is to be understood as indicating an operation carried out in a non-living system.
  • treatment means any administration of a compound of the present invention and includes (1) inhibiting the disease in an animal that is experiencing or displaying the pathology or symptomatology of the diseased (i.e., arresting further development of the pathology and/or symptomatology), or (2) ameliorating the disease in an animal that is experiencing or displaying the pathology or symptomatology of the diseased (i.e., reversing the pathology and/or symptomatology).
  • pharmaceutically acceptable carrier refers to any material that when combined with an immunoglobulin (Ig) fusion protein of the present invention allows the Ig to retain biological activity and is generally non-reactive with the subject's immune system.
  • examples include, but are not limited to, standard pharmaceutical carriers such as a phosphate buffered saline solution, water, emulsions such as an oil/water emulsion, and various types of wetting agents.
  • Certain diluents may be used with the present invention, e.g., for aerosol or parenteral administration, that may be phosphate buffered saline or normal (0.85%) saline.
  • Substantial similarity of a peptide refers to similarity of a peptide as reflected in the amino acid sequence of the peptide. Identity of a continuous stretch of least 8 amino acids in an antigenic epitope of the peptide may be sufficient to establish substantial identity that enables cross reactivity. A first peptide and a second peptide are substantially similar in this regard if they have substantial similar antigenic epitopes so that immunization with the first peptide causes an immune response against the second peptide.
  • a fragment of an antibody refers to a portion of an antibody, created by protein engineering including proteolysis, or genetic engineering including recombination of nucleic acids; the fragment of an antibody retains specificity for the antigen.
  • a fragment of a peptide used as antigen refers to a portion of the peptide that retains its immunogenicity.
  • a person of ordinary skill in the art will recognize that a continuous stretch of least 8 amino acids in an antigenic epitope of the peptide may be sufficient I order for a peptide to retain its immunogenicity.
  • Recombinant protein or antibody is generated by genetic engineering of nucleic acid encoding the protein or antibody and subsequent translation of the coding sequence by a cell or in a cell-free translation system.
  • the present invention describes a vaccine composition for delivering a HCV antigen specifically to DCs for the purpose of invoking an immune response
  • a sequence that is representative of most of circulating HCV sequence was selected. Based on sequence variation HCV can be classified into 6 genotypes that differs one to the other on the basis of sequence identity. World wide, 1 genotype is the most represented and also the most difficult to treat with the current IFNa-Ribavirin double therapy. More precisely, 1a genotype is the most represented subsequence in industrial country, and especially in US.
  • 1a genotype was used as target sequence to derive a vaccine. It was observed that sequence alignment with all available 1a sequences found in data bases (euHCVdb and Los Alamos National Laboratory) showed less than 70% of sequence identity and the sequence of the HCV antigen would have to be adjusted accordingly.
  • a mosaic sequence was derived using the mosaic vaccine tools at www.hiv.lanl.gov/content/sequence/MOSAIC/ interface choosing mosaic sequence cocktail, 1 as cocktail size and 9 as epitope size.
  • HCV antigen choice HCV is an RNA enveloped virus. Virions are consisted by 4 structural proteins Core, E1, E2 and p7. As an RNA virus replication is based on viral proteins that need to be expressed after infection. Six non-structural proteins (NS2, NS3, NS4a, NS4b, NS5a, NS5b) are necessary to establish and maintain replication and virus production. HCV targets the liver and can infect barely all the liver with 90% of hepatocytes infected. However, the virus is able to replicate only in 30% of hepatocytes. Infected cells presented at their surface epitopes coming from structural proteins, while infected virus-producing cells presented all HCV antigens, structural and non structural.
  • HCV targets a vital organ such as the liver
  • therapeutic vaccine need to be very specific in order to avoid complete liver destruction and death of the patients. Indeed, we choose for our therapeutic vaccine antigens that are only found in infected virus producing hepatocytes, and then target antigen will be non-structural proteins.
  • NS3 and NS4b are highly immunogenic in chronic infected patients, as efficient as structural core or E1 E2 structural proteins. Therefore the present inventors included NS5b as an antigen too.
  • NS3 and NS5b were chosen because of their possible expression as recombinant protein and the availability of their 3D structure.
  • a particular embodiment of a vaccine consisted of bifunctional antibodies, which were directed against Dendritic Cells specific receptors and have target antigens fused at C terminus part of heavy chain. This allows unique targeting of DC and more precisely different DC subset that expressed different receptors, DC activation through the targeted receptor, and direct delivery of antigen to DC. In turn antigens are presented more efficiently and APC function is associated to cytokine secretion that orient T cells activation towards different functions.
  • Domains were design as the minimal structured regions in between unfolded loops. Length of the loops was varied in order to increase expression of corresponding domains. Pymol software was used to visualize 3d structures. The domains that expressed at the C-terminal of the antibody heavy chain are represented by SEQ ID NOs: 7-14.
  • each single domain is separated from the next by flexible linkers, which can be as small as two amino acids (e.g., AS) but can also be longer, e.g., 3, 4, 5, 6, 7 8, 9, 10, 12, 15, 18, 20, 25 or 30 amino acids long.
  • FIG. 1 shows the summary of all combine constructs.
  • the linkers are found in the assembled sequences, can also be SSVSPTTSVHPTPTSVPPTPTKSSP (SEQ ID NO.: 166); PTSTPADSSTITPTATPTATPTIKG (SEQ ID NO.: 167); TVTPTATATPSAIVTTITPTATTKP (SEQ ID NO.: 168); TNGSITVAATAPTVTPTVNATPSAA (SEQ ID NO.: 169).
  • domains were also expressed at the C-terminus part of the light chain, and used in combination with heavy chain fused to multiple HCV domains. This allows the formation of a combine antibody with 3HCV domains fused to the heavy chain and one fused to the light chain.
  • FIG. 2 summarizes the construct obtain after fusion of HCV domains at the C-terminus end of light chain.
  • Target constructs Anti human DCIR and CD40 V region form H and L chain were cloned in a IgG4 backbone. Spe I cloning site was introduced at the end of the carboxy terminus to clone in frame antigen sequences. HCV antigens from NS3 and NS5b viral proteins represented as subdomains of these proteins were subcloned as a Spe-Not fragment in Nhe-Not linearized pIRES vector.
  • HCV-domains were designed based on the 3D-structure of the corresponding full-length proteins (PDB code IJXP for NS3protease, 1HEI for NS3Helicase and 1GX5 for NS5b). 3D-structures were visualized using PyMol software. Domains were designed as the minimal structured regions in between unfolded loops. Length of the loops was varied in order to increase expression of corresponding domains fused to the recombinant antibody. For multiple domains cloning, linkers were introduced between domains using Spe-Not/Nhe-Not strategy. Mosaic sequences, used in this study, corresponding to the maximum HCV-domains expressed as antibody-antigen recombinant fusion proteins are shown below.
  • amino acids 95 to 180 from NS3Protease amino acids 132 to 254 from NS3Helicase and a recombinant fusion of amino acids 55 to 80; 172 to 261 and 276 to 362 from NS5bPolymerase. Spe, Nhe and Not introduced cloning sites are underlined.
  • SEQ ID NOS: 1-6 show the amino acid sequence of the HCV proteins E1, E2, NS3, and NS5b mosaic sequences. Membrane domains are underlined.
  • the full-length protein NS3 contains 631 amino acids and is also presented as being cut in its two enzymatic activities proteins: NS3Protease and NS3Helicase. These may also be produced as recombinant proteins N-terminal fused to either histidine tag or Cohesin tag.
  • Envelop protein E1 (192 amino acids) (SEQ ID NO: 1): YQVRNSSGLYHVTNDCPNSSIVYEAADAILHTPGCVPCVREGNASRCWVAVTPTVATRDGKLPTTQ LRRHIDLLVGSATLCSALYVGDLCGSVFLVGQLFTFSPRRHWTTQDCNCSIYPGHITGHRMAWDMM MNWSPTTAVVAQLLRIPQAILDMIAG AHWGVLAGIAYFSMVGNWAKVLVVLLLFAGVDA
  • Envelop protein E2 (363 amino acids) (SEQ ID NO: 2): ETHVTGGSAARTTAGLAGLFTPGAKQNIQLINTNGSWHINRTALNCNDSLNTGWVAGLFYYHKFNS SGCPERLASCRPLTDFDQGWGPISYANGSGPDQRPYCWHYPPKPCGIVPAKSVCGPVYCFTPSPVVV V GTTDRSGAPTYNWGENDTDVFVLNNTRPPLGNWFGCTWMNSTGFTKVCGAPPCVIGG
  • SEQ ID NOS: 7-14 show the HCV antigen domains E1a, E2, ProtA, Prot B, Hel A, Hel B, HelC, and NS5 bpalm. These were expressed as antibody fusion proteins.
  • amino acids TS and AS shown in red
  • NS5b palm has been constructed based on NS5b 3D structure (1C2P). It is based on structural domain corresponding of the palm domain of NS5b polymerase and do not correspond to the linear amino acid sequence;
  • Envelop protein E1a construct (63 amino acids) (SEQ ID NO: 7): TS VGQLFTFSPRRHWTTQDCNCSIYPGHITGHRMAWDMMMNWSPTTAVVA QLLRIPQAILDMIAG AS
  • Envelop protein E2 mosaic sequence (342 amino acids) (SEQ ID NO: 8): TS ETHVTGGSAARTTAGLAGLFTPGAKQNIQLINTNGSWHINRTALNCND SLNTGWVAGLFYYHKFNSSGCPERLASCRPLTDFDQGWGPISYANGSGP DQRPYCWHYPPKPCGIVPAKSVCGPVYCFTPSPVVVGTTDRSGAPTYNW GENDTDVFVLNNTRPPLGNWFGCTWMNSTGFTKVCGAPPCVIGGVGNNT LHCPTDCFRKHPEATYSRCGSGPWITPRCLVDYPYRLWHYPCTINYTI FKIRMYVGGVEHRLEAACNWTRGERCDLEDRDRSELSPLLLSTTQWQVLP CSFTTLPALSTGLIHLHQNIVDVQYLYGVGSSIASWAIKWEYVVLLFLL AS
  • SEQ ID NO: 8 the membrane domain has been removed for E2 mosaic sequence.
  • NS3Protease has been cut in 2 structural domains based on its 3D structure (IJXP).
  • ProtA (SEQ ID NO: 9) TS APITAYAQQTRGLLGCIITSLTGRDKNQVEGEVQIVSTAAQTFLATC INGVCWTVYHGAGTRTI AS Prot B (SEQ ID NO: 10) TS TPCTCGSSDLYLVTRHADVIPVRRRGDSRGSLLSPRPISYLKGSSG GPLLCPAGHAVGIFRAAVCTRGVAKAVDFIPVENLETTMRSPVFTDNS SPPAVPQS AS
  • NS3 Helicase enzymatic protein has been cut in 3 structural domains based on NS3 Helicase 3D structure. (1HEI)
  • Hel A FQVAHLHAPTGSGKSTKVPAAYAAQGYKVLVLNPSVAATLGFGAYMSK AHGIDPNIRTGVRTITTGSPITYSTYGKFLADGGCSGGAYDIIICDECHS TDATSILGIGTVLDQAETAGARLVVLATATPPGS AS Hel B (SEQ ID NO: 12) VTVPHPNIEEVALSTTGEIPFYGKAIPLEVIKGGRHLIFCHSKKKCDE LAAKLVALGINAVAYYRGLDVSVIPTSGVVVVVATDALMTGFTGDFDSVI DCNTCVTQTVDFSLDPTFTIETTTLPQDAVSRTQRRGRTGRGKPGIYRFV APGER AS Hel C (SEQ ID NO: 13) PSGMFDSSVLCECYDAGCAWYELTPAETTVRLRAYMNTPGLPVCQDHL EFWEGVFTGLTHIDAHFLSQTKQSGENLPYLVAYQATVCARAQAPPPSWD QMWKCLIRLKPT
  • HCV sequence and HCV domains constructions Due to the high polymorphism of HCV, a sequence that is representative of most of circulating HCV sequence was selected.
  • a mosaic sequence was derived using the mosaic vaccine tools at http://www.hiv.lanl.gov/content/sequence/MOSAIC/ interface choosing mosaic sequence cocktail, 1 as cocktail size and 9 as epitope size.
  • NS3Protease domain B was construct using the synthetic gene cloned in pUC57 as template and the following primers: NS3Protease domain B forward: 5′-GAGCTCGGATCCACTAGTACTCCTTGTACCTGCGGCTCATCC-3′ (SEQ ID NO: 148) NS3Protease domain B reverse: 5′-GCCCGCGGCCGCGAATTCTCAGCTAGCACTCTGCGGCACTGCTGGGGG-3′ (SEQ ID NO: 149).
  • NS3Helicase domain B was ordered directly as a synthetic gene.
  • regions coding for amino acids 172 to 261 and 276 to 362 were amplified using NS5b synthetic gene and the respective following primers: Ns5b Palm (aa 172-261) forward: 5′-TCTAAAGTCAAAGCGAACGCTCTGTACGATGTCGTTTCC-3′ (SEQ ID NO: 150), Ns5b Palm (aa 172-261) reverse: 5′-ACCGGAAGCGCGACAGCGGCCAACGTACAGGCGTTCGGT-3′ (SEQ ID NO: 151), NS5b Palm (aa 276-362) forward: 5′-ACCGAACGCCTGTACGTTGGCCGCTGTCGCGCTTCCGGT-3′ (SEQ ID NO: 152), NS5b Palm (aa 276-362) reverse: 5′-GCGGCCGCGAATTCttAGCTAGCGGTGATCAGCTCCAG-3′ (SEQ ID NO: 153).
  • Amplified products were then used as templates together with annealed primers 5′-CAAGCCCAACCCCACTAGTGTGCTGGACTCTCACTACCAGGATGTCCTGAAGGAAGTAAAAG CAGCCGCTTCTAAAGTCAAAGCGAACGCTCTGTACGAT-3′ (SEQ ID NO: 154) and 5′-ATCGTACAGAGCGTTCGCTTTGACTTTAGAAGCGGCTGCTTTTACTTCCTTCAGGACATCCTG GTAGTGAGAGTCCAGCACACTAGTGGGGTTGGGCTTG-3′ (SEQ ID NO: 155) in a final PCR using primers 5′-CAAGCCCAACCCC-3′ (SEQ ID NO: 156) and 5′-GCGGCCGCGAATTCTTAGCTAGCGGTGATCAGCTCCAG-3′ (SEQ ID NO: 157).
  • the amplified NS5bPolymerase Palm domain was then cloned in TA vector and sub-cloned in XX vector using Nhe/Not strategy.
  • Chimeric Recombinant Antibodies Purification For construct selection, chimeric DC-specific antibodies were transiently expressed in HEK293 cells and purified from the supernatant using Protein A sepharose chromatograhy. DNA from chimeric constructs expressed in HEK293 was then sub-cloned in cetHSpuro vector as AgeI/NotI fragment for expression in CHO cells after stable transfection. Antibodies were purified from supernatants using ProteinA sepharose.
  • PBMCs were isolated from heparinized blood on Ficoll density gradients. Monocytes were enriched from the leukapheresis according to cellular density and size by elutriation (ElutraTM, CaridianBCT, Lakewood, Colo.) as per the manufacturer's recommendations. Elutriation Fraction 5 consisted mainly on monocytes (85% on average). Cells were cryopreserved in 10% DMSO 50% FCS 10% culture medium before use. For dendritic cell generation, monocytes were resuspended in serum-free CellGro DC culture medium (CellGenix Technologie Transfer Gmbh, Germany) at a concentration of 1 10 6 cells/ml.
  • GMCSF granulocyte-macrophage colony-stimulated factor
  • IFN- ⁇ Intro A, IFN- ⁇ -2b, Merck/Schering-Plough, Kenilworth, N.J.
  • recombinant antibody vaccines were added at various concentration (5 nM, 0.5 nM or 0.05 nM) or peptide cluster controls (2 mM each peptide) as indicated.
  • TLR agonists (polylC, 25 ⁇ g/ml; CL075 1 ⁇ g/ml; or PAM3, 200 ng/ml; all from Invivogen) were added in the culture at the same time as vaccine candidates or peptide controls. DC were pulsed for 16 h before harvest and used in PBMCs co-culture.
  • HCV Viral HLA HLA HLA HLA Patient ID Genotype Sex Ethnicity Race status Age Load HLA A* HLA B* Cw* DRB1 DQB1 HCV-VAC-001 1a M Hispanic White non 39 5 877033 0201; 1302; 0202; 0701; 0202; responder (H) 0205 5101 0602 1301 0603 HCV-VAC-002 1a F Non White cured 57 UnDectable 0101; 0818; 0701G; 1101; 0301; Hispanic after (UD) 0301 5108 1502 1301 0603 therapy HCV-VAC-003 1a M Non White cured 59 UD 0301; 0702; 0401; 0101; 0501; Hispanic after 3004 3501 0702 0402 0302 therapy HCV-VAC-004 1a M Non White cured 55 UD 0201; 0702; 0202; 0401; 0302; Hispanic after 3201 1002 0702
  • PBMCs from a 24-well plate were washed, distributed in 2 wells in a 96-well plates and rested for 24 h.
  • the specificity of the T-cell response elicited by vaccine candidate loaded-DC was assessed by restimulation of PBMCs with peptide clusters (2 ⁇ M each peptide). For each condition, a negative background control was included as a restimulation without peptides.
  • Flow cytometry After 1 hour of peptide clusters restimulation, BFA (Sigma) was added for the last 5-6 h to block cytokine secretion. The cells were stained for surface markers with a combination of fluorochrome antibodies (perCP-CD3, PE-CD8, APCH7-CD4), fixed, permeabilized and intracellular-stained with a mixture of APC-IFN ⁇ , FITC-IL2 and PEc ⁇ 7-TNF ⁇ antibodies. For CTL marker function analysis, FITC-CD107a antibody was added with BFA in the culture medium and the following antibodies combination was used for the surface staining.
  • fluorochrome antibodies perCP-CD3, PE-CD8, APCH7-CD4
  • Luminex Supernatants of DC-PBMCs co-culture were harvested 48 h after PBMCs restimulation with peptide clusters. Cytokine multiplex assays were employed to analyzed IFN- ⁇ , IL-10, and IL-13.
  • Vaccine candidate were tested in targeting experiment by co-culture of vaccine with PBMCs from chronic HCV infected patients or chronic HCV infected patients cured after IFNa-Ribavirin therapy.
  • the data show that anti-CD40 or anti-DCIR vaccines bearing a HCV NS3HelB antigen can recall a potent memory antigen-specific anti-CD4+ T cell response in vitro using immune cells from HCV infected patients.
  • anti-CD40 and anti-DCIR are equally potent vaccines—these DCs express both receptors.
  • Anti-DCIR vaccine construct bearing longer HCV antigen coverage induced multifunctional CD4+ antigen specific T cells against multiple HCV epitopes.
  • anti-DCIR vaccines bearing a HCV NS3HelBC antigen can recall a potent memory antigen-specific anti-CD4+ T cell response in vitro using immune cells from HCV infected patients. This response is directed against multiples HCV epitopes.
  • concentration used for anti-DCIR HCV-NS3HelBC targeting are equally potent in contrast to anti-DCIR HCV-NS3HelB vaccine.
  • FIGS. 3A-3B demonstrate the ability of recombinant anti-DCIR and anti-CD40 antibodies fused to HCV NS3HelB specific antigen to elicit the expansion of antigen-specific CD4+ T cells from a chronic HCV infected patient cured after IFNa-Ribavirin therapy.
  • Delivering NS3HelB to DCs through CD40 and DCIR induces IFN- ⁇ -TNFa-producing HCV NS3HelB-specific CD4+ T cells.
  • FIG. 3A after 2 days, culture supernatants were analyzed for measuring IFN ⁇ and FIG. 3B PBMC cells were stained for measuring the frequency of peptide-specific CD4+ T cells intracellular IFN ⁇ +TNF ⁇ + cells.
  • FIGS. 5A to 5C demonstrate the ability of recombinant anti-DCIR and anti-CD40 antibodies fused to HCV NS3HelB, HCV NS3ProtB and HCV NS5BPalm specific antigens to elicit the expansion of antigen-specific CD4+ T cells from a chronic HCV infected patient cured after IFNa-Ribavirin therapy.
  • Delivering HCV antigen to DCs through CD40 and DCIR induces IFN ⁇ -TNFa-producing HCV-specific CD4+ T cells, with multi epitopes, specific CD4 T cells.
  • PBMC cells from chronic HCV infected patients cured after therapy were co-cultured with autologous IFN ⁇ DCs targeted with anti-CD40-NS3HelB-NS3ProtB-NS5BPalm or anti-DCIR-NS3HelB-NS3ProtB-NS5BPalm for 10 days.
  • Cells were stimulated with peptides clusters (10 peptides of 15-mers in each clusters) covering HCV NS3HelB, NS3ProtB or NS5BPalm (2 ⁇ M).
  • PBMC cells were stained for measuring the frequency of peptide-specific CD4+ T cells intracellular IFN ⁇ +TNF ⁇ + cells.
  • FIGS. 6A to 6C demonstrate that anti-CD40 vaccines bearing HCV NS3HelB NS3ProtB and NS5BPalm antigens can recall a potent memory antigen-specific anti-CD8+ T cell response in vitro using immune cells from HCV infected patients cured after IFN-Ribavirin therapy. This response is directed against multiples HCV epitopes.
  • dose effect is observed consistent with clear targeting, of DC with an optimum concentration being at 5 nM for anti-CD40 constructs. At these concentrations IgG4 controls induce significantly no CD8+ T cells responses, consistent with antibody targeting of DC.
  • FIGS. 7A to 7D show that all chronic HCV infected patients cured after therapy are able to recall CD4+ T cells memory after co-culture of PBMCs with DC targeted with either anti-CD40 or anti-DCIR or both, construct bearing HCV antigens.
  • FIGS. 8A to 8D show that all chronic HCV infected patients in treatment failure are able to recall CD4+ T cells memory after co-culture of PBMCs with DC targeted with either anti-CD40 or anti-DCIR or both, construct bearing HCV antigens. Compare to chronic HCV infected patients cured after therapy, responses are low in chronic HCV infected patients in treatment failure and more antigen dependent since for example HCV-VAC-016 patient has no CD4+ T cells memory cells recalled after DC targeting with NS5bPalm construct.
  • CD8+ antigen specific T cells were obtained after TLR agonist introduction in the co-culture of vaccine with PBMC cells from HCV patients.
  • FIGS. 9A and 9B show that TLR2 triggering with PAM3 during DC targeting with anti-DCIR vaccines bearing a HCV NS3HelB antigen can recall a potent memory antigen-specific anti-CD4+ and CD8+ T cell response in vitro using immune cells from HCV infected patients.
  • Moderated CD8+ response is also induced by TLR3 triggering and no CD4+or CD8+ response is induced after TLR7/8 triggering by CL097 in this study. Similar responses are induced in multiple different chronic HCV infected patients either cured or after therapy or in treatment failure.
  • FIGS. 10A-10D show that TLR2 triggering with PAM3 during DC targeting with anti-CD40 or anti-DCIR vaccines bearing a HCV NS3HelB or HCV NS3ProtB antigen can recall a potent memory antigen-specific anti-CD4+ and CD8+ T cell responses in vitro using immune cells from HCV infected patients. Moderated CD8+ response is also induced by TLR3 triggering in some patients, and cyclic glucan can dramatically increase CD8+ T cells responses in one patient.
  • FIG. 11 demonstrates the ability of combination of TLR agonists and anti-CD40 HCV-constructs to increase CD4+ T cells responses in chronic HCV infected patients in treatment failure.
  • HCV antigens from NS3 Helicase HelB or from NS3 Protease ProtB constructs were delivered to DCs through CD40 or DCIR.
  • IFN ⁇ DCs were targeted with anti-CD40-NS3HelB, anti-DCIR-NS3HelB, anti-CD40-NS3ProtB, anti-DCIR-NS3ProtB, in presence of PAM3 (TLR2 agonist; 200 ng/ml), CL095 (TLR7/8 agonist; 5 ⁇ g/ml) or polyIC (TLR3 agonist; 25 ⁇ g/ml) or cyclic glucan (TLR4 agonist, 10 ⁇ g/ml) before co-culture for 10 days with PBMC cells from chronic HCV infected patients cured after therapy.
  • PAM3 TLR2 agonist
  • CL095 TLR7/8 agonist; 5 ⁇ g/ml
  • polyIC TLR3 agonist; 25 ⁇ g/ml
  • TLR4 agonist 10 ⁇ g/ml
  • PBMC cells were stimulated for 6 h with peptide clusters C7 (10 ⁇ M; 10 peptides of 15-mers) covering HCV NS3 HelB constructs or with peptide clusters C3 (10 ⁇ M; 10 peptides of 15-mers) covering HCV NS3 ProtB constructs.
  • PBMC cells were stained for measuring the frequency of peptide-specific CD4+ intracellular IFN ⁇ +TNF ⁇ + cells, an analyzed by FACS.
  • FIG. 12A to 12C demonstrate the ability of HCV vaccine candidates to recall CD4+ T cells responses in all chronic HCV infected patients (cured or in treatment failure).
  • HCV antigens from NS3 Helicase HelB, NS5b polymerase Palm or from NS3 Protease ProtB constructs were delivered to DCs through CD40 ( FIG. 12B ) or DCIR ( FIG. 12C ).
  • IFNaDCs were targeted with anti-CD40-[NS3HelB ⁇ NS3ProtB ⁇ NS5bPalm on heavy chain], anti-DCIR-[NS3HelB ⁇ NS3ProtB ⁇ NS5bPalm on heavy chain] before co-culture for 10 days with PBMC cells from chronic HCV infected patients cured after therapy.
  • PBMC cells were stimulated for 6 h with peptide clusters C7-C9 (10 ⁇ M; 10 peptides of 15-mers) covering HCV NS3 HelB domain, with peptide clusters C2-C3-C4 (10 ⁇ M; 10 peptides of 15-mers) covering HCV NS3 ProtB domain or with peptide clusters C2-C4-C5-C6-C7 (10 ⁇ M; 10 peptides of 15-mers) covering HCV NS5b Palm domain.
  • PBMC cells were stained for measuring the frequency of peptide-specific CD4+ and CD8+ intracellular IFN ⁇ +TNFa+ cells, and analyzed by FACS. The number of CD4+ IFNg+TNFa+ cells induced vaccine candidate is shown.
  • HCV domains on vaccine candidate are equally equivalent to recall CD4+ HCV memory.
  • HCV antigen combination where two domains are borne on heavy chain and one on light chain is more efficient than having the 3 borne by heavy chain.
  • FIGS. 13A-13E demonstrate the ability of different HCV antigen combination on vaccine candidate for recall CD4+ T cells responses in chronic HCV infected cured patients.
  • HCV antigens from NS3 Helicase HelB, NS5b polymerase Palm or from NS3 Protease ProtB combination constructs were delivered to DCs through CD40 or DCIR.
  • IFN ⁇ DCs were targeted with second-generation vaccines anti-CD40-[NS3HelB on light chain and NS3ProtB ⁇ NS5bPalm on heavy chain], anti-DCIR-[NS3HelB on light chain and NS3ProtB ⁇ NS5bPalm on heavy chain], or first-generation vaccines anti-CD40-[NS3HelB ⁇ NS3ProtB ⁇ NS5bPalm on heavy chain], anti-DCIR-[NS3HelB ⁇ NS3ProtB ⁇ NS5bPalm on heavy chain] before co-culture for 10 days with PBMC cells from chronic HCV infected patients cured after therapy.
  • PBMC cells were stimulated for 6 h with peptide clusters C7 and C9 (10 ⁇ M; 10 peptides of 15-mers) covering HCV NS3 HelB domain (shown in green on the figure), with peptide clusters C2-C3-C4 (10 ⁇ M; 10 peptides of 15-mers) covering HCV NS3 ProtB domain (shown in pink on the figure) or with peptide clusters C2-C4-C5-C6-C7 (10 ⁇ M; 10 peptides of 15-mers) covering HCV NS5b Palm domain (shown in orange in the figure).
  • PBMC cells were stained for measuring the frequency of peptide-specific CD4+ intracellular IFN ⁇ +TNF ⁇ + cells, an analyzed by FACS. The number of CD4+IFN ⁇ +TNF ⁇ + cells induced by first-generation vaccine or second-generation vaccine is compared in the last panel.
  • FIGS. 14A to 14H demonstrate ability of vaccine candidate to recall CD4+ T cells responses in HCV patients infected with non 1 genotype and HCV-exposed but non infected individual.
  • HCV antigens from NS3 Helicase HelB, NS5b polymerase Palm or from NS3 Protease ProtB combination constructs were delivered to DCs through CD40 or DCIR and DC loaded were co-culture for 10 days with PBMC cells from HCV patients infected with non 1 genotype HCV-infected patients (HCV-015, 2b) and HCV-exposed but non infected individual (HCV-029).
  • PBMC cells were stimulated for 6 h with peptide clusters C7 and C9 (10 ⁇ M; 10 peptides of 15-mers) covering HCV NS3 HelB domain, with peptide clusters C2-C3-C4 (10 ⁇ M; 10 peptides of 15-mers) covering HCV NS3 ProtB domain or with peptide clusters C2-C4-C5-C6-C7 (10 ⁇ M; 10 peptides of 15-mers) covering HCV NS5b Palm domain.
  • PBMC cells were stained for measuring the frequency of peptide-specific CD4+ intracellular IFN ⁇ +TNF ⁇ + cells, an analyzed by FACS.
  • FIGS. 15A and 15B show the results from a 10 day expansion culture whereby a dose range of 1st generation anti-DCIR-HCV vaccine (left panels) is compared to second generation anti-DCIR-HCV vaccine (right panels).
  • Doses were 0.05 nM, 0.5 nM, and 5 nM and antigen-specific responses were ascertained by stimulation with no peptide (control) or ProtA, HelB, or Palm peptide pools in the presence of Brefeldin, followed by staining for CD3+, CD4+ and intracellular IFNg and TNFa. Samples were analyzed by FACS. Shown are comparable CD4+ HCV antigen-specific responses to the two generations of vaccines.
  • FIGS. 16A and 16B show the results from a 10 day expansion culture whereby a dose range of 1st generation anti-CD40-HCV vaccine (left panels) is compared to second generation anti-CD40-HCV vaccine (right panels).
  • Doses were 0.05 nM, 0.5 nM, and 5 nM and antigen-specific responses were ascertained by stimulation with no peptide (control) or ProtA, HelB, or Palm peptide pools in the presence of Brefeldin, followed by staining for CD3+, CD4+ and intracellular IFNg and TNFa. Samples were analyzed by FACS. Shown are comparable CD4+ HCV antigen-specific responses to the two generations of vaccines.
  • Non-limiting examples different DC-specific antibodies or fragments (both nucleotide and protein sequences) that may be used in the preparation of the HCV vaccine of the present invention are shown herein below, the nomenclature corresponding to the target (e.g., Anti_CLEC — 6 — 9B9.2G12_Heavy Hv-V-hIgG4H-C—is an anti-CLEC-6 antibody from the mouse hybridoma clone “9B9.2G12” (which is the source of the anti-CLEC-6 antibody sequence); heavy chain “H” variable region “v” (which can be humanized) heavy and is an IgG4 constant region isotype.
  • the same nomenclature applies to light chains (from mouse Kappa light chains), and the antigens.
  • Anti-DCIR_31A6.1F5_H-var2-V-hIgG4H-C (SEQ ID NO: 45): ATGGAATGTAACTGGATACTTCCTTTTATTCTGTCGGTAATTTCAGGGGTCTACTCAGAGGTTCA GCTCCAGCAGTCTGGGACTGTGCTGGCAAGGCCTGGGGCTTCCGTGAATATGTCCTGTAAGGCT GCTGGCTACAGCTTTACCAGTTACTGGGTGTACTGGGTCAAACAGAGGCCTGGACAGGGTCTGG AATGGATTGGTGCTATTTACCCTAAAAATAGTAGAACTAGCTACAACCAGAAGTTCCAGGACAA GGCCACACTGACTGCAGTCACATCCGCCAGCACTGCCTACATGGAGCTCAGCAGCCTGACAAAT GAGGACTCTGCGGTCTATTACTGTACAAGACCTCACTATGATTCGTTTGGTTACTGGGGCCAAG GGACTCTGGTCACTGTCTCTGCAGCCAAAACAAAGGGCCCATGGTCACTGTCTCTGCAGCCAAAACAA
  • Anti-DCIR_3C2.2D9_K-LV-hIgGK-C (SEQ ID NO: 48): ATGGAGACAGACACACTCCTGCTATGGGTGCTGCTGCTCGGGGTTCCAGGTTCCACAGGTAACA TTGTGCTGACCCAGTCTCCAACTTCTTTCACTGTGTCTCTTGGGCAGAGGGCCACCATATCCTGC AGAGCCAGTGAAAGTGTTCATAGTTATGGCAATAGTTTTATGCACTGGTACCAGCAGAAACCAG GGCAGCCACCCAAACTCCTCATCTATCTTGCATCCAACGTAGAATCTGGGGTCCCTGCCAGGTT CAGTGGTAGTGGGTCCAGGACAGACTTCACCCTCACCATTGATCCTGTGGAGGCTGATGATGCT GCAACCTATTACTGTCAGCAAAATAGTGAGGATCCGTGGACGTTCGGTGGAGGCACCAAGCTC GAGATCAAACGAACTGTGGCTGCACCATCTGTCTTCATCTTCCCGCCATCTGATGAGCAGTTGA AATCTG
  • Anti-DC-SIGNL16E7K-LV-hIgGK-C (SEQ ID NO: 57): ATGGGCATCAAGATGGAGTCACAGATTCAGGCATTTGTATTCGTGTTTCTCTGGTTGTCTGGTGT TGGCGGAGACATTGTGATGACCCAGTCTCACAAATTCATGTCCACATCAGTAGGAGACAGGGTC AGCGTCACCTGCAAGGCCAGTCAGGATGTGACTTCTGCTGTAGCCTGGTATCAACAAAAACCAG GGCAATCCTAAACTACTGATTTACTGGGCATCCACCCGGCACACTGGAGTCCCTGATCGCTT CACAGGCAGTGGATCTGGGACAGATTATACTCTCACCATCAGCAGTGGGCAGGCTGAAGACCT GGCACTTTATTACTGTCACCAATATTATAGCGCTCCTCGGACGTTCGGTGGAGGCACCAAGCTC GAGATCAAACGAACTGTGGCTGCACCATCTGTCTTCATCTTCCCGCCATCTGATGAAATCTGGAACTGCCTG
  • Anti-Langerin15B10K-LV-hIgGK-C (SEQ ID NO: 65): ATGAAGTTGCCTGTTAGGCTGTTGGTGCTGATGTTCTGGATTCCTGCTTCCAGCAGTGATGTTGT GATGACCCAAACTCCACTCTCCCTGCCTGTCCGTCTTGGAGATCAAGCCTCCATCTCTTGCAGAT CTAGTCAGAGCCTTGTACACAGTAATGGAAACACCTATTTACATTGGTACCTGCAGAAGCCAGG CCAGTCCAAAGCTCCTGATCTACAAAGTTTCCAACCGATTTTCTGGGGTCCCAGACAGGTTC AGTGGCAGTGGATCAGGGACAAATTTCACACTCAAGATCAGCAGAGTGGAGGCTGAGGATCTG GGACTTTATTTCTGCTCTCAAAGTACACATGTTCCGTACACGTTCGGAGGGGGGACCAAGCTCG AGATCAAACGAACTGTGGCTGCACCATCTGTCTTCATCTTCCCGCCATCTGATGAGCAGTTGAA ATCTGGAACT
  • Humanized anti-CD40-HCV vaccine is: hAnti-CD40VK2-LV-hIgGK-C ⁇ hAnti-CD40VH3-LV-hIgG4H-C-Flex-v1-HelB-f1-ProtB-f2-NS5BPalm, wherein the portion of HelB are underlined, the portions of ProtB are bold and the portions of NS5BPalm are italicized.
  • the linker sequence (in bold italics) is flanked by the transition sequence “AS” that bracket the linker sequences
  • Humanized anti-DCIR-HCV 1 st generation vaccine is: [hAnti-DCIRVK4-LV-hIgGK-C] ⁇ [hAnti-DCIRVH1-LV-hIgG4H-C-Flex-v1-HelB-f1-ProtB-f2-NS5BPalm] wherein the portion of HelB are underlined, the portions of ProtB are bold and the portions of NS5BPalm are italicized.
  • the linker sequence (in bold italics) is flanked by the transition sequence “AS” that bracket the linker sequences
  • hAnti-DCIRVK4-LV-hIgGK-C (SEQ ID NO: 160) DIVMTQSPDSLAVSLGERATINCRASESIHSYGNSFLHWYQQKPGQPPKLLIYLASNLESGVPSRFSG SGSRTDFTLTISSLQPEDFATYYCQQNNEDPWTFGQGTKLEIKRTVAAPSVFIFPPSDEQLKSGTASV VCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVT HQGLSSPVTKSFNRGEC hAnti-DCIRVH1-LV-hIgG4H-C-Flex-v1-HelB-f1-ProtB-f2-NS5BPalm (SEQ ID NO: 161) QVTLKESGPAIVKPTQTLTLTCSFSGFSLSTSGMGLSWIRQPSGKALEWLAHIYWDDDKRYNPSLKS RLTI
  • Humanized anti-CD40-HCV vaccine is: hAnti-CD40VK2-LV-hIgGK-C-ViralHCVhelicasefgtB ⁇ hAnti-CD40VH3-LV-hIgG4H-C-Flex-v1-ProtB-f1-NS5BPalm, wherein the portion of ViralHCVhelicasefgtB are underlined, the portions of ProtB are bold and the portions of NS5BPalm are italicized.
  • the linker sequence (in bold italics) is flanked by the transition sequence “AS” that bracket the linker sequences.
  • hAnti-CD40VK2-LV-hIgGK-C-ViralHCVhelicasefgtB (SEQ ID NO: 162) DIQMTQSPSSLSASVGDRVTITCSASQGISNYLNWYQQKPGKAVKLLIYYTSILHSGVPSRFSGSGSG TDYTLTISSLQPEDFATYYCQQFNKLPPTFGGGTKLEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLN NFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLS SPVTKSFNRGECAS VTVPHPNIEEVALSTTGEIPFYGKAIPLEVIKGGRHLIFCHSKKKCDELAAKLVA LGINAVAYYRGLDVSVIPTSGVVVVVATDALMTGFTGDFDSVIDCNTCVTQTVDFSLDPTFTIETTTL PQDAVSRTQRRGRTGRGKPGIYRFVAPGER AS
  • Humanized anti-DCIR-HCV 2 nd generation vaccine is: [hAnti-DCIRVK4-LV-hIgGK-C-ViralHCVhelicasefgtB] ⁇ [hAnti-D CIRVH1-LV-hIgG4H-C—F lex-v1-ProtB-f1-NS5BPalm], wherein the portion of ViralHCVhelicasefgtB are underlined, the portions of ProtB are bold and the portions of NS5BPalm are italicized.
  • the linker sequence (in bold italics) is flanked by the transition sequence “AS” that bracket the linker sequences.
  • hAnti-DCIRVK4-LV-hIgGK-C-ViralHCVhelicasefgtB (SEQ ID NO: 164) DIVMTQSPDSLAVSLGERATINCRASESIHSYGNSFLHWYQQKPGQPPKLLIYLASNLESGVPSRFSG SGSRTDFTLTISSLQPEDFATYYCQQNNEDPWTFGQGTKLEIKRTVAAPSVFIFPPSDEQLKSGTASV VCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVT HQGLSSPVTKSFNRGECAS VTVPHPNIEEVALSTTGEIPFYGKAIPLEVIKGGRHLIFCHSKKKCDELA AKLVALGINAVAYYRGLDVSVIPTSGVVVVVATDALMTGFTGDFDSVIDCNTCVTQTVDFSLDPTF TIETTTLPQDAVSRTQRRGRTGRGKPGIYRF
  • Linkers can be a small as 2 amino acids, e.g., AS, but can also be longer, e.g., SSVSPTTSVHPTPTSVPPTPTKSSP (SEQ ID NO.: 166); PTSTPADSSTITPTATPTATPTIKG (SEQ ID NO.: 167); TVTPTATATPSAIVTTITPTATTKP (SEQ ID NO.: 168); TNGSITVAATAPTVTPTVNATPSAA (SEQ ID NO.: 169) or QTPTNTISVTPTNNSTPTNNSNPKPNP (SEQ ID NO:170).
  • SSVSPTTSVHPTPTSVPPTPTKSSP SEQ ID NO.: 166
  • PTSTPADSSTITPTATPTATPTIKG SEQ ID NO.: 167
  • TVTPTATATPSAIVTTITPTATTKP SEQ ID NO.: 168
  • TNGSITVAATAPTVTPTVNATPSAA SEQ ID NO.: 169
  • compositions of the invention can be used to achieve methods of the invention.
  • the words “comprising” (and any form of comprising, such as “comprise” and “comprises”), “having” (and any form of having, such as “have” and “has”), “including” (and any form of including, such as “includes” and “include”) or “containing” (and any form of containing, such as “contains” and “contain”) are inclusive or open-ended and do not exclude additional, unrecited elements or method steps.
  • A, B, C, or combinations thereof refers to all permutations and combinations of the listed items preceding the term.
  • “A, B, C, or combinations thereof” is intended to include at least one of: A, B, C, AB, AC, BC, or ABC, and if order is important in a particular context, also BA, CA, CB, CBA, BCA, ACB, BAC, or CAB.
  • expressly included are combinations that contain repeats of one or more item or term, such as BB, AAA, MB, BBC, AAABCCCC, CBBAAA, CABABB, and so forth.
  • BB BB
  • AAA AAA
  • MB BBC
  • AAABCCCCCC CBBAAA
  • CABABB CABABB
  • compositions and/or methods disclosed and claimed herein can be made and executed without undue experimentation in light of the present disclosure. While the compositions and methods of this invention have been described in terms of preferred embodiments, it will be apparent to those of skill in the art that variations may be applied to the compositions and/or methods and in the steps or in the sequence of steps of the method described herein without departing from the concept, spirit and scope of the invention. All such similar substitutes and modifications apparent to those skilled in the art are deemed to be within the spirit, scope and concept of the invention as defined by the appended claims.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Immunology (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Virology (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Mycology (AREA)
  • Epidemiology (AREA)
  • Communicable Diseases (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Hematology (AREA)
  • Cell Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Oncology (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

Compositions comprising viral antigens and antigenic peptides corresponding to or derived from Hepatitis C virus (HCV) proteins or fragments thereof, fused to heavy and/or light chain of antibodies, or fragments thereof specific for dendritic cells (DCs) are described herein. Included herein are immunostimulatory compositions (HCV vaccines, HCV antigen presenting dendritic cells, etc.) and methods for increasing effectiveness of HCV antigen presentation by an antigen presenting cell, for a treatment, a prophylaxis or a combination thereof against hepatitis C in a human subject, and methods of providing immunostimulation by activation of one or more dendritic cells, methods to treat or prevent hepatitis C.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application claims priority to U.S. Provisional Application Ser. No. 61/467,840, filed Mar. 25, 2011, and U.S. Provisional Application Ser. No. 61/529,700, filed Aug. 31, 2011, the entire contents of each of which are incorporated herein by reference.
  • TECHNICAL FIELD OF THE INVENTION
  • The present invention relates in general to the field of immunology, and more particularly, to hepatitis C virus (HCV) immunization, vaccines, and targeting of the HCV peptides to human dendritic cells. The application also describes a bi-functional antibody fused to a HCV target antigen(s) that is directed against a dendritic cell (DC)-specific receptor.
  • STATEMENT OF FEDERALLY FUNDED RESEARCH
  • None.
  • REFERENCE TO A SEQUENCE LISTING
  • The instant application contains a Sequence Listing which has been submitted in ASCII format via EFS-Web and is hereby incorporated by reference in its entirety. Said ASCII copy, created on Mar. 15, 2012, is named BHCS1118.txt and is 388,419 bytes in size.
  • BACKGROUND OF THE INVENTION
  • Without limiting the scope of the application, its background is described in connection with immunostimulatory methods and compositions, including vaccines, and increased effectiveness in antigen presentation of HCV peptides in relation to HCV immunization and vaccines.
  • U.S. Patent Application Publication No. 2009/0238822 (Rajan et al. 2009) relates to chimeric antigens for targeting and activating antigen presenting cells to elicit cellular and humoral immune responses. The Rajan invention describes compositions and methods that contain or use one or more chimeric antigens that contain one or more pre-selected HCV antigen(s), and an immunoglobulin fragment. The invention further discloses chimeric antigens, comprising an HCV antigen and a Fc fragment of an immunoglobulin for eliciting an immune response against said antigen. The immune response is said to be enhanced upon presenting the host immune system with an immune response domain (HCV antigen from HCV core, envelope, or non-structural protein fragments) and a target-binding domain (an Fc fragment).
  • U.S. Patent Application Publication No. 2008/0241170 (Zurawski et al. 2008) discloses compositions and methods for making and using vaccine that specifically target (deliver) antigens to antigen-presenting cells for the purpose of eliciting potent and broad immune responses directed against the antigen. The purpose is primarily to evoke protective or therapeutic immune responses against the agent (pathogen or cancer) from which the antigen was derived.
  • U.S. Patent Application Publication 2010/0239575 (Banchereau et al. 2010) refers to compositions and methods for the expression, secretion, and use of novel compositions for use as, e.g., vaccines and antigen delivery vectors, to delivery antigens to antigen presenting cells. In one embodiment, the vector is an anti-CD40 antibody, or fragments thereof, and one or more antigenic peptides linked to the anti-CD40 antibody or fragments thereof, including humanized antibodies.
  • SUMMARY OF THE INVENTION
  • The present invention describes immunostimulatory compositions, vaccines, HCV vaccines, HCV antigen presenting dendritic cells, methods for increasing effectiveness of HCV antigen presentation by an antigen presenting cell, methods for increasing effectiveness of HCV antigen presentation by an antigen presenting cell, methods for increasing effectiveness of antigen presentation by an antigen presenting cell, methods for a treatment, a prophylaxis or a combination thereof against hepatitis C in a human subject, methods of providing immunostimulation by activation of one or more dendritic cells, methods to treat or prevent hepatitis C in a subject, and methods for generating a HCV presenting dendritic cell. The present invention further describes virus antigens, e.g., proteins and peptides corresponding to HCV proteins or fragments thereof, fused to heavy and/or light chain of antibodies, or fragments thereof specific for dendritic cells (DCs). The vaccine composition as described herein delivers HCV antigen specifically to DCs for the purpose of invoking an immune response. The vaccine composition may also promote efficient recall memory in hepatitis C patients.
  • In one embodiment the instant invention discloses an immunostimulatory composition for generating an immune response for a prophylaxis, a therapy, or any combination thereof against a Hepatitis C infection in a human or animal subject comprising: one or more antibodies or fragments thereof specific for a dendritic cell (DC) and one or more HCV antigens attached to the one or more antibodies or fragments thereof. In one aspect the composition disclosed hereinabove further comprises at least one Toll-Like Receptor (TLR) agonist selected from the group consisting of TLR1, TLR2, TLR3, TLR4, TLR5, TLR6, TLR7, and TLR8 agonists. In another aspect the composition further comprises an optional pharmaceutically acceptable carrier that is effective, in combination, to produce the immune response for prophylaxis, for therapy, or any combination thereof in the human or animal subject in need of immunostimulation. In yet another aspect the DC-specific antibody or fragment is specific for a DC specific receptor, wherein the DC-specific antibody or fragment is selected from an antibody that specifically binds to MHC class I, MHC class II, CD1, CD2, CD3, CD4, CD8, CD11b, CD14, CD15, CD16, CD19, CD20, CD29, CD31, CD40, CD43, CD44, CD45, CD54, CD56, CD57, CD58, CD83, CD86, CMRF-44, CMRF-56, DCIR, DC-ASPGR, CLEC-6, CD40, BDCA-2, MARCO, DEC-205, mannose receptor, Langerin, DECTIN-1, B7-1, B7-2, IFN-γ receptor and IL-2 receptor, ICAM-1, Fcγ receptor, LOX-1, and ASPGR.
  • In the composition of the instant invention the HCV antigens comprises a peptide sequence derived from a HCV 1a genotype protein or a fragment thereof and the HCV antigens are selected from the group consisting of protein E1, envelope protein E2, non-structural protein NS3, non-structural protein NS4b, non-structural protein NS5b, and a fragment thereof. The one or more HCV antigens are selected from the group consisting of SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5, SEQ ID NO: 6, SEQ ID NO: 7, and a fragment thereof and from the group consisting of SEQ ID NO: 8, SEQ ID NO: 9, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, E1b, and a fragment thereof. In one aspect of the composition of the instant invention the composition comprises a recombinant antibody that comprises a fusion protein and the one or more HCV antigen are at a C-terminal position relative to the one or more antibody or fragment thereof within a fusion protein. In another aspect the composition comprises a recombinant antibody, and the one or more HCV antigens are fused to a C-terminus of a heavy chain of the antibody. In yet another aspect the composition comprises a recombinant antibody, and the one or more HCV antigens are fused to a C-terminus of a light chain of the one or more antibody or fragment thereof specific for a DC.
  • The one or more HCV antigens are selected from the group consisting of SEQ ID NO: 12-linker A-SEQ ID NO: 13, SEQ ID NO: 12-linker A-SEQ ID NO: 11, SEQ ID NO: 12-linker B-SEQ ID NO: 14, SEQ ID NO: 14-linker B-SEQ ID NO: 12, SEQ ID NO: 12-linker B-SEQ ID NO: 10, SEQ ID NO: 10-linker B-SEQ ID NO: 12, SEQ ID NO: 9-linker
  • B-SEQ ID NO: 10, SEQ ID NO: 10-linker B-SEQ ID NO: 9, SEQ ID NO: 10-linker B-SEQ ID NO: 14, SEQ ID NO: 14-linker B-SEQ ID NO: 10, SEQ ID NO: 9-linker B-SEQ ID NO: 12, SEQ ID NO: 12-linker B-SEQ ID NO: 9, SEQ ID NO: 8-linker B-E1b. SEQ ID NO: 12-linkerB-SEQ ID NO: 10-linker C-SEQ ID NO: 14, SEQ ID NO: 12-linker B-SEQ ID NO: 14-linker C-SEQ ID NO: 10, SEQ ID NO: 10-linker B-SEQ ID NO: 12-linker C-SEQ ID NO: 14, SEQ ID NO: 10-linker B-SEQ ID NO: 14-linker C-SEQ ID NO: 12, SEQ ID NO: 14-linker B-SEQ ID NO: 12-linker C-SEQ ID NO: 10, SEQ ID NO: 14-linker B-SEQ ID NO: 10-linker C-SEQ ID NO: 12, and SEQ ID NO: 12-linker B-SEQ ID NO: 10-linker C-SEQ ID NO: 14-linker D-SEQ ID NO: 8. In another aspect the one or more HCV antigens are attached to a C-terminus of a light chain of the recombinant antibody and selected from a group consisting of: SEQ ID NO: 9; SEQ ID NO: 11, and E1b. In yet another aspect the one or more HCV antigens are selected from the group consisting of SEQ ID NO: 9 fused to the C-terminus of a light chain and SEQ ID NO: 10-linker B-SEQ ID NO: 12-linker C-SEQ ID NO: 14 fused to the C-terminus of the heavy chain of the antibody. In a related aspect the one or more HCV antigen are chemically coupled to the one or more antibodies or fragments thereof or are attached to the one or more antibodies or fragments thereof via an affinity association. In a specific aspect the DC-specific antibody is humanized. In another aspect the composition is optimized to be administered to the human or animal subject by an oral route, a nasal route, topically, or as an injection.
  • Another embodiment of the present invention discloses a vaccine comprising: one or more antibodies or fragments thereof specific for a dendritic cell (DC); and one or more HCV antigens attached to the one or more antibodies or fragments thereof. The vaccine described herein further comprises at least one Toll-Like Receptor (TLR) agonist selected from the group consisting of TLR1, TLR2, TLR3, TLR4, TLR5, TLR6, TLR7, and TLR8 agonists and an optional pharmaceutically acceptable carrier or an adjuvant that is effective, in combination, to produce an immune response for prophylaxis, for therapy, or any combination thereof in the human or animal subject in need of immunostimulation. In one aspect of the vaccine the DC-specific antibody or fragment is specific for a dendritic cell specific receptor. In another aspect the HCV antigen comprises a peptide sequence derived from a HCV 1a genotype protein or a fragment thereof, wherein the HCV antigen is selected from the group consisting of protein E1, envelope protein E2, non-structural protein NS3, non-structural protein NS4b, non-structural protein NS5b, and a fragment thereof. In other related aspects the DC-specific antibody is humanized and the composition is optimized to be administered to the human or animal subject by an oral route, a nasal route, topically, or as an injection.
  • In yet another embodiment the instant invention discloses a Hepatitis C vaccine (HCV) comprising a fusion protein comprising: (i) one or more antibodies or fragments thereof specific for a dendritic cell (DC), (ii) one or more HCV antigens located C-terminal of the antibodies or fragments thereof, (iii) at least one Toll-Like Receptor (TLR) agonist which is selected from the group consisting of TLR1, TLR2, TLR3, TLR4, TLR5, TLR6, TLR7, and TLR8 agonists, and (iv) one or more optional pharmaceutically acceptable carriers and adjuvants, wherein the vaccine is effective to produce an immune response, for a prophylaxis, a therapy, or any combination thereof against hepatitis C in a human or an animal subject in need thereof. In one aspect the vaccine comprises one or more optional agents selected from the group consisting of an agonistic anti-CD40 antibody, an agonistic anti-CD40 antibody fragment, a CD40 ligand (CD40L) polypeptide, a CD40L polypeptide fragment, anti-4-1BB antibody, an anti-4-1BB antibody fragment, 4-1BB ligand polypeptide, a 4-1BB ligand polypeptide fragment, IFN-γ, TNF-α, type 1 cytokines, type 2 cytokines or combinations and modifications thereof.
  • The instant invention in one embodiment discloses a method for increasing effectiveness of Hepatitis C virus (HCV) antigen presentation by an antigen presenting cell (APC) comprising the steps of: (i) providing an antibody conjugate comprising a dendritic cell (DC) specific antibody or a fragment thereof and one or more native or engineered HCV antigenic peptides, (ii) providing one or more APCs; and (iii) contacting the APC with the conjugate, wherein the antibody-antigen complex is processed and presented for T cell recognition. In a specific aspect of the method the antigen presenting cell comprises a dendritic cell (DC).
  • In another embodiment the instant invention provides a method for increasing effectiveness of antigen presentation by an antigen presenting cell (APC) comprising the steps of: i) isolating and purifying one or more dendritic cell (DC)-specific antibody or a fragment thereof, ii) providing one or more HCV antigens or antigenic peptides, iii) loading or chemically coupling the one or more HCV antigens or antigenic peptides to the DC-specific antibody to form an antibody-antigen conjugate, and iv) contacting the antigen presenting cell with the conjugate, wherein the antibody-antigen complex is processed and presented for T cell recognition.
  • The method as described hereinabove further comprises adding at least one Toll-Like Receptor (TLR) agonist which is selected from the group consisting of TLR1, TLR2, TLR3, TLR4, TLR5, TLR6, TLR7, and TLR8 agonists and one or more optional steps comprising i) adding one or more optional agents selected from the group consisting of an agonistic anti-CD40 antibody, an agonistic anti-CD40 antibody fragment, a CD40 ligand (CD40L) polypeptide, a CD40L polypeptide fragment, anti-4-1BB antibody, an anti-4-1BB antibody fragment, 4-1BB ligand polypeptide, a 4-1BB ligand polypeptide fragment, IFN-γ, TNF-α, type 1 cytokines, type 2 cytokines or combinations and modifications thereof to the antibody-antigen conjugate and the TLR agonist prior to contacting the antigen presenting cells, ii) measuring a level of one or more agents selected from the group consisting of IFN-γ, TNF-α, IL-12p40, IL-4, IL-5, and IL-13, wherein a change in the level of the one or more agents is indicative of the increase in the effectiveness antigen presentation by the antigen presenting cell, and iii) adding one or more optional agents selected from the group consisting of an agonistic anti-CD40 antibody, an agonistic anti-CD40 antibody fragment, a CD40 ligand (CD40L) polypeptide, a CD40L polypeptide fragment, anti-4-1BB antibody, an anti-4-1BB antibody fragment, 4-1BB ligand polypeptide, a 4-1BB ligand polypeptide fragment, IFN-γ, TNF-α, type 1 cytokines, type 2 cytokines or combinations and modifications thereof.
  • In yet another embodiment the instant invention provides method for a treatment, a prophylaxis or a combination thereof against hepatitis C in a human subject comprising the steps of: identifying the human subject in need of the treatment, the prophylaxis, or a combination thereof against the hepatisti and administering a vaccine composition comprising one or more antibodies or fragments thereof specific for a dendritic cell (DC) and one or more HCV antigens attached to the one or more antibodies or fragments thereof. In one aspect of the method the vaccine composition further comprises at least one Toll-Like Receptor (TLR) agonist which is selected from the group consisting of TLR1, TLR2, TLR3, TLR4, TLR5, TLR6, TLR7, and TLR8 agonists, and one or more optional pharmaceutically acceptable carriers and adjuvants, wherein the conjugate and agonist are each comprised in an amount such that, in combination with the other, are effective to produce an immune response, for the prophylaxis, the therapy or any combination thereof against the influenza in the human subject. In another aspect the vaccine composition further comprises one or more optional agents selected from the group consisting of an agonistic anti-CD40 antibody, an agonistic anti-CD40 antibody fragment, a CD40 ligand (CD40L) polypeptide, a CD40L polypeptide fragment, anti-4-1BB antibody, an anti-4-1BB antibody fragment, 4-1BB ligand polypeptide, a 4-1BB ligand polypeptide fragment, IFN-γ, TNF-α, type 1 cytokines, type 2 cytokines or combinations and modifications thereof. In yet another aspect the vaccine is administered to the human subject by an oral route, a nasal route, topically or as an injection.
  • In another aspect the one or more antibodies or fragments thereof specific for a dendritic cell comprises antibodies specifically binds to MHC class I, MHC class II, CD1, CD2, CD3, CD4, CD8, CD11b, CD14, CD15, CD16, CD19, CD20, CD29, CD31, CD40, CD43, CD44, CD45, CD54, CD56, CD57, CD58, CD83, CD86, CMRF-44, CMRF-56, DCIR, DC-ASPGR, CLEC-6, CD40, BDCA-2, MARCO, DEC-205, mannose receptor, Langerin, DECTIN-1, B7-1, B7-2, IFN-γ receptor and IL-2 receptor, ICAM-1, Fcγ receptor, LOX-1, or ASPGR. In yet another aspect the HCV antigen is selected from the group consisting of protein E1, envelope protein E2, non-structural protein NS3, non-structural protein NS4b, non-structural protein NS5b, and a fragment thereof, from the group consisting of SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5, SEQ ID NO: 6, SEQ ID NO: 7, and a fragment thereof, or from the group consisting of SEQ ID NO: 8, SEQ ID NO: 9, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, E1b, and a fragment thereof.
  • A method of providing immunostimulation by activation of one or more dendritic cells (DCs) to a human subject for a prophylaxis, a therapy or a combination thereof against HCV is described in one embodiment of the present invention. The method comprises the steps of: a) identifying the human subject in need of immunostimulation for the prophylaxis, the therapy or a combination thereof against HCV, b) isolating one or more DCs from the human subject, c) exposing the isolated DCs to activating amounts of a composition or a vaccine comprising an anti-dendritic cell immunoreceptor (DCIR) monoclonal antibody or fragments thereof attached to one or more HCV antigens, and d) reintroducing the activated DC complex into the human subject.
  • The method described above further comprises the steps of contacting the one or more DCs with at least one Toll-Like Receptor (TLR) agonist which is selected from the group consisting of TLR1, TLR2, TLR3, TLR4, TLR5, TLR6, TLR7, and TLR8 agonists and a pharmaceutically acceptable carrier to form an activated DC complex and the step of adding one or more optional agents selected from the group consisting of an agonistic anti-CD40 antibody, an agonistic anti-CD40 antibody fragment, a CD40 ligand (CD40L) polypeptide, a CD40L polypeptide fragment, anti-4-1BB antibody, an anti-4-1BB antibody fragment, 4-1BB ligand polypeptide, a 4-1BB ligand polypeptide fragment, IFN-γ, TNF-α, type 1 cytokines, type 2 cytokines or combinations and modifications thereof to the conjugate and the TLR agonist prior to exposing the DCs. The method disclosed hereinabove further comprises the optional step of measuring a level of one or more agents selected from the group consisting of IFN-γ, TNF-α, IL-12p40, IL-4, IL-5, and IL-13, wherein a change in the level of the one or more agents is indicative of the immunostimulation.
  • The present invention also discloses a method to treat or prevent Hepatitis C in a subject comprising the step of administering to the subject a fusion protein comprising an antibody or fragment thereof specific for a dendritic cell (DC) and a Hepatitis C virus antigen or antigenic peptide fused to the antibody or fragment thereof. A Hepatitis C virus antigen presenting dendritic cell (DC) is also disclosed in one embodiment of the present invention. The HCV antigen presenting DC further comprises one or more isolated dendritic cells (DCs) in contact with a fusion protein comprising an antibody or fragment thereof specific for the DC, the fusion protein further comprising a HCV peptide.
  • The present invention describes one or more vaccines against HCV comprising one or more antibodies or fragments thereof specific for a dendritic cell (DC) and one or more HCV antigens or antigenic domains attached to the one or more antibodies or fragments thereof. The vaccine has a general structure given by: H-w, H-w-x, H-w-x-y, or H-w-x-y-z, wherein H represents a heavy chain of an antibody or a fragment thereof specific for a DC, w, x, y, and z represent one or more HCV antigens or domains selected from the group consisting of protein E1, envelope protein E2, non-structural protein NS3, non-structural protein NS4b, non-structural protein NS5b, or any combinations thereof. In one aspect w comprises the HCV antigenic domains selected from the group consisting of ProtA, ProtB, HelB, Palm, E1b, and E2. In another aspect x comprises the HCV antigenic domains selected from the group consisting of HelC, HelA, Palm, ProtA, ProtB, and E1b. In yet another aspect comprises the HCV antigenic domains selected from the group consisting of Palm, ProtB, and Protb. In another aspect z comprises HCV antigenic domains selected from E2, ProtA, and HelB. In a related aspect the one or more HCV antigens or antigenic domains are linked or attached to one another by one or more flexible linkers.
  • Another embodiment disclosed herein relates to a vaccine comprising one or more antibodies or fragments thereof specific for a dendritic cell (DC) and one or more HCV antigens or antigenic domains attached to the one or more antibodies or fragments thereof, wherein the vaccine has a general structure given by L-w-x-y-z, wherein L represents a light chain of an antibody or a fragment thereof specific for a DC, w, x, y, and z represent one or more HCV antigens or domains selected from the group consisting of protein E1, envelope protein E2, non-structural protein NS3, non-structural protein NS4b, non-structural protein NS5b, or any combinations thereof.
  • In yet another embodiment the present invention discloses a vaccine comprising one or more antibodies or fragments thereof specific for a dendritic cell (DC) and one or more HCV antigens or antigenic domains attached to the one or more antibodies or fragments thereof, wherein the vaccine has a general structure given by:
  • Figure US20120301465A1-20121129-C00001
  • Wherein H represents a heavy chain of an antibody or a fragment thereof specific for a DC, L represents a light chain of an antibody or a fragment thereof specific for the DC, w, x, y, and z represent one or more HCV antigens or domains selected from the group consisting of protein E1, envelope protein E2, non-structural protein NS3, non-structural protein NS4b, non-structural protein NS5b, or any combinations thereof.
  • Finally, the present invention discloses a method for generating a Hepatitis C virus (HCV) presenting dendritic cells (DCs) in a human subject comprising the steps of: providing one or more DCs and incubating the dendritic cells with a fusion protein, wherein the fusion protein comprises an antibody or fragment thereof specific for a dendritic cell and a HCV antigen fused to the antibody or fragment thereof. The method disclosed herein further comprises the step of administering to the subject an effective amount of IFNA, Ribavirin, or a combination thereof.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • For a more complete understanding of the features and advantages of the present invention, reference is now made to the detailed description of the invention along with the accompanying figures and in which:
  • FIG. 1 provides a summary of HCV antigen combined constructs expressed at the C-terminus end of antibody heavy chain. Each HCV domains, as defined in FIG. 2, is represented as color rectangle. Flexible linkers are shown as curved lines. Each color represents a different linker. Domains are fused to the carboxyl terminus end of antibody heavy chain. “Expressed” means that domains fused to the carboxyl terminus end of antibody heavy chain are expressed as fusion antibody after co-transfection with antibody light chain in 293F cells. All possible combination of HCV domains have been constructed, and FIG. 3 shows only those that were expressed as soluble fusion proteins in 293F cells and in CHO cells and purified as recombinant antibodies;
  • FIG. 2 provides a summary of HCV antigen combined constructs expressed at the C-terminus end of antibody light chain. All possible combinations of HCV domains have been constructed, and the figure shows only those that are expressed as soluble fusion proteins in 293F cells and in CHO cells and purified as recombinant antibodies. The same color code as in FIG. 1 is used;
  • FIGS. 3A-3B demonstrate the ability of recombinant anti-DCIR and anti-CD40 antibodies fused to HCV NS3HelB specific antigen to elicit the expansion of antigen-specific CD4+ T cells from a chronic HCV infected patient cured after IFNa-Ribavirin therapy. Delivering NS3HelB to DCs through CD40 and DCIR induces IFN-γ-TNFa-producing HCV NS3HelB-specific CD4+ T cells. PBMC cells from chronic HCV infected patients; either cured after therapy or in treatment failure, were co-cultured with IFNDCs targeted with anti-CD40-NS3HelB or anti-DCIR-NS3HelB for 10 days. Cells were stimulated with peptides clusters (10 peptides of 15-mers in each clusters) covering HCV NS3 HelB (10 μM): FIG. 3A after 2 days, culture supernatants were analyzed for measuring IFNγ and FIG. 3B PBMC cells were stained for measuring the frequency of peptide-specific CD4+ T cells intracellular IFNγ+TNFα+ cells;
  • FIG. 4 demonstrates the ability of long HCV antigen bearing vaccine constructs to induce multi epitope CD4+ T cells. HCV antigens from NS3 Helicase HelBC construct were delivered to DCs through CD40 or DCIR. PBMC cells from chronic HCV infected patients; either cured after therapy or in treatment failure, were co-cultured with IFNDCs targeted with anti-CD40-NS3HelB, anti-CD40-NS3HelBC or anti-DCIR-NS3HelB, anti-DCIR-NS3HelBC for 10 days. Cells were stimulated for 6 h with peptides clusters (10 μM; 10 peptides of 15-mers in each clusters) covering HCV NS3 HelB or HelBC constructs. PBMC cells were stained for measuring the frequency of peptide-specific CD4+ T cells intracellular IFNγ+TNFα+ cells, an analyzed by FACS. Number of double positive CD4+ T cells induced after each peptide cluster stimulation were plotted for each vaccine targeting agent;
  • FIGS. 5A to 5C demonstrate the ability of recombinant anti-DCIR and anti-CD40 antibodies fused to HCV NS3HelB, HCV NS3ProtB and HCV NS5BPalm specific antigens to elicit the expansion of antigen-specific CD4+ T cells from a chronic HCV infected patient cured after IFNa-Ribavirin therapy. Delivering HCV antigen to DCs through CD40 and DCIR induces IFNγ-TNFa-producing HCV-specific CD4+ T cells, with multi epitopes, specific CD4 T cells. PBMC cells from chronic HCV infected patients cured after therapy were co-cultured with autologous IFNαDCs targeted with anti-CD40-NS3HelB-NS3ProtB-NS5BPalm or anti-DCIR-NS3HelB-NS3ProtB-NS5BPalm for 10 days. Cells were stimulated with peptides clusters (10 peptides of 15-mers in each clusters) covering HCV NS3HelB, NS3ProtB or NS5BPalm (2 μM). PBMC cells were stained for measuring the frequency of peptide-specific CD4+ T cells intracellular IFNγ+TNFα+ cells;
  • FIGS. 6A to 6C demonstrate the ability of recombinant anti-DCIR and anti-CD40 antibodies fused to HCV NS3HelB, HCV NS3ProtB and HCV NS5BPalm specific antigens to elicit the expansion of antigen-specific CD8+ T cells from a chronic HCV infected patient cured after IFNa-Ribavirin therapy. Delivering HCV antigen to DCs through CD40 and DCIR induces IFNγ-TNFa-producing HCV-specific CD4+ T cells, with multi epitopes, specific CD4 T cells. PBMC cells from chronic HCV infected patients cured after therapy were co-cultured with autologous IFNαDCs targeted with anti-CD40-NS3HelB-NS3ProtB-NS5BPalm or anti-DCIR-NS3HelB-NS3ProtB-NS5BPalm for 10 days. Cells were stimulated with peptides clusters (10 peptides of 15-mers in each clusters) covering HCV NS3HelB, NS3ProtB or NS5BPalm (2 μM). PBMC cells were stained for measuring the frequency of peptide-specific CD8+ T cells intracellular IFNγ+TNFα+ cells;
  • FIGS. 7A to 7D demonstrate the ability of recombinant anti-DCIR and anti-CD40 antibodies fused to HCV NS3HelB, HCV NS3ProtB or HCV NS5BPalm specific antigens to elicit the expansion of antigen-specific CD4+ T cells from chronic HCV infected patients cured after IFNa-Ribavirin therapy. HCV antigens from were delivered to DCs through CD40 or DCIR. IFNαDCs were targeted with anti-CD40-NS3HelB; anti-CD40-NS3ProtB; anti-CD40NS5bPalm or anti-DCIR-NS3HelB; anti-DCIR-NS3ProtB; anti-DCIRNS5bPalm and co-cultured for 10 days with PBMC cells from 3 chronic HCV infected patients cured after therapy. Cells were stimulated for 6 h with peptide clusters C7 and C9 (10 μM; 10 peptides of 15-mers) covering HCV NS3 HelB constructs; with peptide clusters C2 and C3 covering HCV NS3 ProtB constructs or peptide cluster C2 C4 C5 C6 C7 covering NS5bPalm construct. PBMC cells were stained for measuring the frequency of peptide-specific CD4+ intracellular IFNγ+TNFα+ cells, an analyzed by FACS. The left panel represent IFN-γ amount secreted after 10 days culture of PBMCs with peptide cluster covering HCVNS3 and HCVNS5b entire proteins;
  • FIGS. 8A to 8D demonstrates the ability of recombinant anti-DCIR and anti-CD40 antibodies fused to HCV NS3HelB, HCV NS3ProtB or HCV NS5BPalm specific antigens to elicit the expansion of antigen-specific CD4+ T cells from chronic HCV infected patients in treatment failure. HCV antigens from were delivered to DCs through CD40 or DCIR. IFNαDCs were targeted with anti-CD40-NS3HelB; anti-CD40-NS3ProtB or anti-DCIR-NS3HelB; anti-CD40NS5bPalm or anti-DCIR-NS3HelB; anti-DCIR-NS3ProtB; anti-DCIRNS5bPalm and co-cultured for 10 days with PBMC cells from 3 chronic HCV infected patients in treatment failure (HCV+). Cells were stimulated for 6 h with peptide clusters C7 and C9 (10 μM; 10 peptides of 15-mers) covering HCV NS3 HelB constructs; with peptide clusters C2 and C3 covering HCV NS3 ProtB constructs or peptide cluster C2 C4 C5 C6 C7 covering NS5bPalm construct. PBMC cells were stained for measuring the frequency of peptide-specific CD4+ intracellular IFNγ+TNFα+ cells, an analyzed by FACS. The left panel represent IFN-γ amount secreted after 10 days culture of PBMCs with peptide cluster covering HCVNS3 and HCVNS5b entire proteins;
  • FIGS. 9A and 9B demonstrate the ability of combination of TLR agonist and anti-DCIR HCV-NS3HelB can induced multi epitopes CD8+ T cells. HCV antigens from NS3 Helicase HelB construct were delivered to DCs through CD40 or DCIR. IFNDCs were targeted with anti-CD40-NS3HelB, or anti-DCIR-NS3HelB in presence of PAM3 (TLR2 agonist; 200 ng/ml), CL097 (TLR7/8 agonist; 5 μg/ml) or polyIC (TLR3 agonist; 25 μg/ml) before co-culture for 10 days with PBMC cells from chronic HCV infected patients; either cured after therapy or in treatment failure. Cells were stimulated for 6 h with peptide clusters C7 (10 μM; 10 peptides of 15-mers) covering HCV NS3 HelB constructs: (FIG. 9A) PBMC cells were stained for measuring the frequency of peptide-specific CD4+ and CD8+ intracellular IFNγ+TNFα+ cells, an analyzed by FACS, (FIG. 9B) Number of double positive CD4+ and CD8+ intracellular IFNγ+TNFα+T cells induced after each TLR agonist stimulation were plotted;
  • FIGS. 10A-10D demonstrate the ability of combination of TLR agonist and anti-DCIR HCV-construct to increase CD4+ and induce CD8+ T cells responses in chronic HCV infected patients cured after therapy. HCV antigens from NS3 Helicase HelB or from NS3 Protease ProtB constructs were delivered to DCs through CD40 or DCIR. IFNαDCs were targeted with anti-CD40-NS3HelB, anti-DCIR-NS3HelB, anti-CD40-NS3ProtB, anti-DCIR-NS3ProtB, in presence of PAM3 (TLR2 agonist; 200 ng/ml), CL095 (TLR7/8 agonist; 5 μg/ml) or polyIC (TLR3 agonist; 25 μg/ml) or cyclic glucan (TLR4 agonist, 10 μg/ml) before co-culture for 10 days with PBMC cells from chronic HCV infected patients cured after therapy. Cells were stimulated for 6 h with peptide clusters C7 (10 μM; 10 peptides of 15-mers) covering HCV NS3 HelB constructs or with peptide clusters C3 (10 μM; 10 peptides of 15-mers) covering HCV NS3 ProtB constructs: FIGS. 10A and 10B PBMC cells were stained for measuring the frequency of peptide-specific CD4+ intracellular IFNγ+TNFα+ cells, and analyzed by FACS and FIGS. 10C and 10D PBMC cells were stained for measuring the frequency of peptide-specific CD8+ intracellular IFNγ+TNFα+ cells, an analyzed by FACS;
  • FIG. 11 demonstrates the ability of combination of TLR agonists and anti-CD40 HCV-constructs to increase CD4+ T cells responses in chronic HCV infected patients in treatment failure. HCV antigens from NS3 Helicase HelB or from NS3 Protease ProtB constructs were delivered to DCs through CD40 or DCIR. IFNαDCs were targeted with anti-CD40-NS3HelB, anti-DCIR-NS3HelB, anti-CD40-NS3ProtB, anti-DCIR-NS3ProtB, in presence of PAM3 (TLR2 agonist; 200 ng/ml), CL095 (TLR7/8 agonist; 5 μg/ml) or polyIC (TLR3 agonist; 25 μg/ml) or cyclic glucan (TLR4 agonist, 10 μg/ml) before co-culture for 10 days with PBMC cells from chronic HCV infected patients cured after therapy. Cells were stimulated for 6 h with peptide clusters C7 (10 μM; 10 peptides of 15-mers) covering HCV NS3 HelB constructs or with peptide clusters C3 (10 μM; 10 peptides of 15-mers) covering HCV NS3 ProtB constructs. PBMC cells were stained for measuring the frequency of peptide-specific CD4+ intracellular IFNγ+TNFα+ cells, an analyzed by FACS;
  • FIGS. 12A-12C demonstrate the ability of HCV vaccine candidates to recall CD4+ T cells responses in all chronic HCV infected patients (cured or in treatment failure). HCV antigens from NS3 Helicase HelB, NS5b polymerase Palm or from NS3 Protease ProtB constructs were delivered to DCs through CD40 or DCIR. IFNγDCs were targeted with anti-CD40-[NS3HelB˜NS3ProtB˜NS5bPalm on heavy chain], anti-DCIR-[NS3HelB˜NS3ProtB˜NS5bPalm on heavy chain] before co-culture for 10 days with PBMC cells from chronic HCV infected patients cured after therapy. Cells were stimulated for 6 h with peptide clusters C7, C9 (10 μM; 10 peptides of 15-mers) covering HCV NS3 HelB domain, with peptide clusters C2-C3-C4 (10 μM; 10 peptides of 15-mers) covering HCV NS3 ProtB domain or with peptide clusters C2-C4-C5-C6-C7 (10 μM; 10 peptides of 15-mers) covering HCV NS5b Palm domain. PBMC cells were stained for measuring the frequency of peptide-specific CD4+ and CD8+ intracellular IFNγ+TNFα+ cells, and analyzed by FACS. The number of CD4+IFNγ+TNFα+ cells induced vaccine candidate is shown;
  • FIGS. 13A-13E demonstrate of the ability of different HCV antigen combination on vaccine candidate for recall CD4+ T cells responses in chronic HCV infected cured patients. HCV antigens from NS3 Helicase HelB, NS5b polymerase Palm or from NS3 Protease ProtB combination constructs were delivered to DCs through CD40 or DCIR. IFNaDCs were targeted with second-generation vaccines anti-CD40-[NS3HelB on light chain and NS3ProtB˜NS5bPalm on heavy chain], anti-DCIR-[NS3HelB on light chain and NS3ProtB˜NS5bPalm on heavy chain], or first-generation vaccines anti-CD40-[NS3HelB˜NS3ProtB˜NS5bPalm on heavy chain], anti-DCIR-[NS3HelB˜NS3ProtB˜NS5bPalm on heavy chain] before co-culture for 10 days with PBMC cells from chronic HCV infected patients cured after therapy. Cells were stimulated for 6 h with peptide clusters C7 and C9 (10 μM; 10 peptides of 15-mers) covering HCV NS3 HelB domain (shown in green on the figure), with peptide clusters C2-C3-C4 (10 μM; 10 peptides of 15-mers) covering HCV NS3 ProtB domain (shown in pink on the figure) or with peptide clusters C2-C4-C5-C6-C7 (10 μM; 10 peptides of 15-mers) covering HCV NS5b Palm domain (shown in orange in the figure). PBMC cells were stained for measuring the frequency of peptide-specific CD4+ intracellular IFNγ+TNFa+ cells, an analyzed by FACS. The number of CD4+IFNγ+TNFα+ cells induced by first-generation vaccine or second-generation vaccine is compared in the last panel; and
  • FIGS. 14A to 14H demonstrate the ability of vaccine candidate to recall CD4+ T cells responses in HCV patients infected with non 1 genotype and HCV-exposed but non-infected individual. HCV antigens from NS3 Helicase HelB, NS5b polymerase Palm or from NS3 Protease ProtB combination constructs were delivered to DCs through CD40 or DCIR and DC loaded were co-culture for 10 days with PBMC cells from HCV patients infected with non 1 genotype HCV-infected patients (HCV-015, 2b) and HCV-exposed but non infected individual (HCV-029). Cells were stimulated for 6 h with peptide clusters C7 and C9 (10 μM; 10 peptides of 15-mers) covering HCV NS3 HelB domain, with peptide clusters C2-C3-C4 (10 μM; 10 peptides of 15-mers) covering HCV NS3 ProtB domain or with peptide clusters C2-C4-C5-C6-C7 (10 μM; 10 peptides of 15-mers) covering HCV NS5b Palm domain. PBMC cells were stained for measuring the frequency of peptide-specific CD4+ intracellular IFNγ+TNFα+ cells, an analyzed by FACS.
  • FIGS. 15A to 15B shows the results from a 10 day expansion culture whereby a dose range of 1st generation anti-DCIR-HCV vaccine (left panels) is compared to second generation anti-DCIR-HCV vaccine (right panels). Doses were 0.05 nM, 0.5 nM, and 5 nM and antigen-specific responses were ascertained by stimulation with no peptide (control) or ProtA, HelB, or Palm peptide pools in the presence of Brefeldin, followed by staining for CD3+, CD4+ and intracellular IFNg and TNFa. Samples were analyzed by FACS. Shown are comparable CD4+ HCV antigen-specific responses to the two generations of vaccines.
  • FIGS. 16A to 16B shows the results from a 10 day expansion culture whereby a dose range of 1st generation anti-CD40-HCV vaccine (left panels) is compared to second generation anti-CD40-HCV vaccine (right panels). Doses were 0.05 nM, 0.5 nM, and 5 nM and antigen-specific responses were ascertained by stimulation with no peptide (control) or ProtA, HelB, or Palm peptide pools in the presence of Brefeldin, followed by staining for CD3+, CD4+ and intracellular IFNg and TNFa. Samples were analyzed by FACS. Shown are comparable CD4+ HCV antigen-specific responses to the two generations of vaccines.
  • DETAILED DESCRIPTION OF THE INVENTION
  • While the making and using of various embodiments of the present invention are discussed in detail below, it should be appreciated that the present invention provides many applicable inventive concepts that can be embodied in a wide variety of specific contexts. The specific embodiments discussed herein are merely illustrative of specific ways to make and use the invention and do not delimit the scope of the invention.
  • To facilitate the understanding of this invention, a number of terms are defined below. Terms defined herein have meanings as commonly understood by a person of ordinary skill in the areas relevant to the present invention. Terms such as “a”, “an” and “the” are not intended to refer to only a singular entity, but include the general class of which a specific example may be used for illustration. The terminology herein is used to describe specific embodiments of the invention, but their usage does not delimit the invention, except as outlined in the claims.
  • The invention includes also variants and other modification of an antibody (or “Ab”) of fragments thereof, e.g., anti-CD40 fusion protein (antibody is used interchangeably with the term “immunoglobulin”). As used herein, the term “antibodies or fragments thereof,” includes whole antibodies or fragments of an antibody, e.g., Fv, Fab, Fab′, F(ab′)2, Fc, and single chain Fv fragments (ScFv) or any biologically effective fragments of an immunoglobulins that binds specifically to, e.g., CD40. Antibodies from human origin or humanized antibodies have lowered or no immunogenicity in humans and have a lower number or no immunogenic epitopes compared to non-human antibodies. Antibodies and their fragments will generally be selected to have a reduced level or no antigenicity in humans.
  • As used herein, the terms “Ag” or “antigen” refer to a substance capable of either binding to an antigen binding region of an immunoglobulin molecule or of eliciting an immune response, e.g., a T cell-mediated immune response by the presentation of the antigen on Major Histocompatibility Antigen (MHC) cellular proteins. As used herein, “antigen” includes, but is not limited to, antigenic determinants, haptens, and immunogens, which may be peptides, small molecules, carbohydrates, lipids, nucleic acids or combinations thereof. The skilled immunologist will recognize that when discussing antigens that are processed for presentation to T cells, the term “antigen” refers to those portions of the antigen (e.g., a peptide fragment) that is a T cell epitope presented by MHC to the T cell receptor. When used in the context of a B cell mediated immune response in the form of an antibody that is specific for an “antigen”, the portion of the antigen that binds to the complementarity determining regions of the variable domains of the antibody (light and heavy) the bound portion may be a linear or three-dimensional epitope. In the context of the present invention, the term antigen is used on both contexts, that is, the antibody is specific for a protein antigen (CD40), but also carries one or more peptide epitopes for presentation by MHC to T cells. In certain cases, the antigens delivered by the vaccine or fusion protein of the present invention are internalized and processed by antigen presenting cells prior to presentation, e.g., by cleavage of one or more portions of the antibody or fusion protein.
  • As used herein, the term “conjugate” refers to a protein having one or more targeting domains, e.g., an antibody, and at least one antigen, e.g., a small peptide or a protein. These conjugates include those produced by chemical methods, such as by chemical coupling, for example, coupling to sulfhydryl groups, and those produced by any other method whereby one or more antibody targeting domains and at least one antigen, are linked, directly or indirectly via linker(s) to a targeting agent. An example of a linker is a cohesin-dockerin (coh-doc) pair, a biotin-avidin pair, histidine tags bound by Zn, and the like.
  • As used herein, the term “Antigen Presenting Cells” (APC) refers to cells that are capable of activating T cells, and include, but are not limited to, certain macrophages, B cells and dendritic cells. “Dendritic cells” (DCs) refers to any member of a diverse population of morphologically similar cell types found in lymphoid or non-lymphoid tissues. These cells are characterized by their distinctive morphology, high levels of surface MHC-class II expression (Steinman, et al., Ann. Rev. Immunol 9:271 (1991); incorporated herein by reference for its description of such cells). These cells can be isolated from a number of tissue sources, and conveniently, from peripheral blood, as described herein. Dendritic cell binding proteins refers to any protein for which receptors are expressed on a dendritic cell. Examples include GM-CSF, IL-1, TNF, IL-4, CD40L, CTLA4, CD28, and FLT-3 ligand.
  • For the purpose of the present invention, the term “vaccine composition” is intended to mean a composition that can be administered to humans or to animals in order to induce an immune system response; this immune system response can result in a production of antibodies or simply in the activation of certain cells, in particular antigen-presenting cells, T lymphocytes and B lymphocytes. The vaccine composition can be a composition for prophylactic purposes or for therapeutic purposes, or both. As used herein, the term “antigen” refers to any antigen which can be used in a vaccine, whether it involves a whole microorganism or a subunit, and whatever its nature: peptide, protein, glycoprotein, polysaccharide, glycolipid, lipopeptide, etc. They may be viral antigens, bacterial antigens, or the like; the term “antigen” also comprises the polynucleotides, the sequences of which are chosen so as to encode the antigens whose expression by the individuals to which the polynucleotides are administered is desired, in the case of the immunization technique referred to as DNA immunization. They may also be a set of antigens, in particular in the case of a multivalent vaccine composition which comprises antigens capable of protecting against several diseases, and which is then generally referred to as a vaccine combination, or in the case of a composition which comprises several different antigens in order to protect against a single disease, as is the case for certain vaccines against whooping cough or the flu, for example. The term “antibodies” refers to immunoglobulins, whether natural or partially or wholly produced artificially, e.g. recombinant. An antibody may be monoclonal or polyclonal. The antibody may, in some cases, be a member of one, or a combination immunoglobulin classes, including: IgG, IgM, IgA, IgD, and IgE.
  • The term “adjuvant” refers to a substance that enhances, augments or potentiates the host's immune response to a vaccine antigen.
  • The term “gene” is used to refer to a functional protein, polypeptide or peptide-encoding unit. As will be understood by those in the art, this functional term includes both genomic sequences, cDNA sequences, and fragments or combinations thereof, as well as gene products, including those that may have been altered by the hand of man. Purified genes, nucleic acids, protein and the like are used to refer to these entities when identified and separated from at least one contaminating nucleic acid or protein with which it is ordinarily associated.
  • As used herein, the term “nucleic acid” or “nucleic acid molecule” refers to polynucleotides, such as deoxyribonucleic acid (DNA) or ribonucleic acid (RNA), oligonucleotides, fragments generated by the polymerase chain reaction (PCR), and fragments generated by any of ligation, scission, endonuclease action, and exonuclease action. Nucleic acid molecules can be composed of monomers that are naturally-occurring nucleotides (such as DNA and RNA), or analogs of naturally-occurring nucleotides (e.g., α-enantiomeric forms of naturally-occurring nucleotides), or a combination of both. Modified nucleotides can have alterations in sugar moieties and/or in pyrimidine or purine base moieties. Sugar modifications include, for example, replacement of one or more hydroxyl groups with halogens, alkyl groups, amines, and azido groups, or sugars can be functionalized as ethers or esters. Moreover, the entire sugar moiety can be replaced with sterically and electronically similar structures, such as aza-sugars and carbocyclic sugar analogs. Examples of modifications in a base moiety include alkylated purines and pyrimidines, acylated purines or pyrimidines, or other well-known heterocyclic substitutes. Nucleic acid monomers can be linked by phosphodiester bonds or analogs of such linkages. Analogs of phosphodiester linkages include phosphorothioate, phosphorodithioate, phosphoroselenoate, phosphorodiselenoate, phosphoroanilothioate, phosphoranilidate, phosphoramidate, and the like. The term “nucleic acid molecule” also includes so-called “peptide nucleic acids,” which comprise naturally-occurring or modified nucleic acid bases attached to a polyamide backbone. Nucleic acids can be either single stranded or double stranded.
  • As used herein, “polynucleotide” or “nucleic acid” refers to a strand of deoxyribonucleotides or ribonucleotides in either a single- or a double-stranded form (including known analogs of natural nucleotides). A double-stranded nucleic acid sequence will include the complementary sequence. The polynucleotide sequence may encode variable and/or constant region domains of immunoglobulin that are formed into a fusion protein with one or more linkers. For use with the present invention, multiple cloning sites (MCS) may be engineered into the locations at the carboxy-terminal end of the heavy and/or light chains of the antibodies to allow for in-frame insertion of peptide for expression between the linkers. As used herein, the term “isolated polynucleotide” refers to a polynucleotide of genomic, cDNA, or synthetic origin or some combination thereof. By virtue of its origin the “isolated polynucleotide” (1) is not associated with all or a portion of a polynucleotide in which the “isolated polynucleotides” are found in nature, (2) is operably linked to a polynucleotide which it is not linked to in nature, or (3) does not occur in nature as part of a larger sequence. The skilled artisan will recognize that to design and implement a vector can be manipulated at the nucleic acid level by using techniques known in the art, such as those taught in Current Protocols in Molecular Biology, 2007 by John Wiley and Sons, relevant portions incorporated herein by reference. Briefly, the encoding nucleic acid sequences can be inserted using polymerase chain reaction, enzymatic insertion of oligonucleotides or polymerase chain reaction fragments in a vector, which may be an expression vector. To facilitate the insertion of inserts at the carboxy terminus of the antibody light chain, the heavy chain, or both, a multiple cloning site (MCS) may be engineered in sequence with the antibody sequences.
  • As used herein, the term “polypeptide” refers to a polymer of amino acids and does not refer to a specific length of the product; thus, peptides, oligopeptides, and proteins are included within the definition of polypeptide. This term also does not refer to or exclude post expression modifications of the polypeptide, for example, glycosylations, acetylations, phosphorylations and the like. Included within the definition are, for example, polypeptides containing one or more analogs of an amino acid (including, for example, unnatural amino acids, etc.), polypeptides with substituted linkages, as well as other modifications known in the art, both naturally occurring and non-naturally occurring. The term “domain,” or “polypeptide domain” refers to that sequence of a polypeptide that folds into a single globular region in its native conformation, and that may exhibit discrete binding or functional properties.
  • As used in this application, the term “amino acid” means one of the naturally occurring amino carboxylic acids of which proteins are comprised. The term “polypeptide” as described herein refers to a polymer of amino acid residues joined by peptide bonds, whether produced naturally or synthetically. Polypeptides of less than about 10 amino acid residues are commonly referred to as “peptides.” A “protein” is a macromolecule comprising one or more polypeptide chains. A protein may also comprise non-peptidic components, such as carbohydrate groups. Carbohydrates and other non-peptidic substituents may be added to a protein by the cell in which the protein is produced, and will vary with the type of cell. Proteins are defined herein in terms of their amino acid backbone structures; substituents such as carbohydrate groups are generally not specified, but may be present nonetheless.
  • A polypeptide or amino acid sequence “derived from” a designated nucleic acid sequence refers to a polypeptide having an amino acid sequence identical to that of a polypeptide encoded in the sequence, or a portion thereof wherein the portion consists of at least 3-5 amino acids, preferably at least 4-7 amino acids, more preferably at least 8-10 amino acids, and even more preferably at least 11-15 amino acids, or which is immunologically identifiable with a polypeptide encoded in the sequence. This terminology also includes a polypeptide expressed from a designated nucleic acid sequence.
  • As used herein, the terms “stable,” “soluble,” or “unstable” when referring to proteins is used to describe a peptide or protein that maintains its three-dimensional structure and/or activity (stable) or that loses immediately or over time its three-dimensional structure and/or activity (unstable). As used herein, the term “insoluble” refers to those proteins that when produced in a cell (e.g., a recombinant protein expressed in a eukaryotic or prokaryotic cell or in vitro) are not soluble in solution absent the use of denaturing conditions or agents (e.g., heat or chemical denaturants, respectively). The antibody or fragment thereof and the linkers taught herein have been found to convert antibody fusion proteins with the peptides from insoluble and/or unstable into proteins that are stable and/or soluble. Another example of stability versus instability is when the domain of the protein with a stable conformation has a higher melting temperature (Tm) than the unstable domain of the protein when measured in the same solution. A domain is stable compared to another domain when the difference in the Tm is at least about 2° C., more preferably about 4° C., still more preferably about 7° C., yet more preferably about 10° C., even more preferably about 15° C., still more preferably about 20° C., even still more preferably about 25° C., and most preferably about 30° C., when measured in the same solution.
  • As used herein, the term “in vivo” refers to being inside the body. The term “in vitro” used as used in the present application is to be understood as indicating an operation carried out in a non-living system.
  • As used herein, the term “treatment” or “treating” means any administration of a compound of the present invention and includes (1) inhibiting the disease in an animal that is experiencing or displaying the pathology or symptomatology of the diseased (i.e., arresting further development of the pathology and/or symptomatology), or (2) ameliorating the disease in an animal that is experiencing or displaying the pathology or symptomatology of the diseased (i.e., reversing the pathology and/or symptomatology).
  • As used herein, “pharmaceutically acceptable carrier” refers to any material that when combined with an immunoglobulin (Ig) fusion protein of the present invention allows the Ig to retain biological activity and is generally non-reactive with the subject's immune system. Examples include, but are not limited to, standard pharmaceutical carriers such as a phosphate buffered saline solution, water, emulsions such as an oil/water emulsion, and various types of wetting agents. Certain diluents may be used with the present invention, e.g., for aerosol or parenteral administration, that may be phosphate buffered saline or normal (0.85%) saline.
  • Substantial similarity of a peptide refers to similarity of a peptide as reflected in the amino acid sequence of the peptide. Identity of a continuous stretch of least 8 amino acids in an antigenic epitope of the peptide may be sufficient to establish substantial identity that enables cross reactivity. A first peptide and a second peptide are substantially similar in this regard if they have substantial similar antigenic epitopes so that immunization with the first peptide causes an immune response against the second peptide.
  • A fragment of an antibody, as used in the present application, refers to a portion of an antibody, created by protein engineering including proteolysis, or genetic engineering including recombination of nucleic acids; the fragment of an antibody retains specificity for the antigen.
  • A fragment of a peptide used as antigen refers to a portion of the peptide that retains its immunogenicity. A person of ordinary skill in the art will recognize that a continuous stretch of least 8 amino acids in an antigenic epitope of the peptide may be sufficient I order for a peptide to retain its immunogenicity.
  • Recombinant protein or antibody is generated by genetic engineering of nucleic acid encoding the protein or antibody and subsequent translation of the coding sequence by a cell or in a cell-free translation system.
  • The present invention describes a vaccine composition for delivering a HCV antigen specifically to DCs for the purpose of invoking an immune response In one embodiment, due to the high polymorphism of HCV, a sequence that is representative of most of circulating HCV sequence was selected. Based on sequence variation HCV can be classified into 6 genotypes that differs one to the other on the basis of sequence identity. World wide, 1 genotype is the most represented and also the most difficult to treat with the current IFNa-Ribavirin double therapy. More precisely, 1a genotype is the most represented subsequence in industrial country, and especially in US.
  • In one embodiment, 1a genotype was used as target sequence to derive a vaccine. It was observed that sequence alignment with all available 1a sequences found in data bases (euHCVdb and Los Alamos National Laboratory) showed less than 70% of sequence identity and the sequence of the HCV antigen would have to be adjusted accordingly.
  • A mosaic sequence was derived using the mosaic vaccine tools at www.hiv.lanl.gov/content/sequence/MOSAIC/ interface choosing mosaic sequence cocktail, 1 as cocktail size and 9 as epitope size. We used 249 sequences for E1 mosaic, 656 sequences for E2 mosaic, 213 sequences for NS3 mosaic and 310 sequences for NS5b mosaic. All sequences correspond to complete genes of 576, 1089, 1893, 1773 nucleotides respectively and found in euHCVdb (euhcvdb.ibcp.fr/euHCVdb/).
  • HCV antigen choice: HCV is an RNA enveloped virus. Virions are consisted by 4 structural proteins Core, E1, E2 and p7. As an RNA virus replication is based on viral proteins that need to be expressed after infection. Six non-structural proteins (NS2, NS3, NS4a, NS4b, NS5a, NS5b) are necessary to establish and maintain replication and virus production. HCV targets the liver and can infect barely all the liver with 90% of hepatocytes infected. However, the virus is able to replicate only in 30% of hepatocytes. Infected cells presented at their surface epitopes coming from structural proteins, while infected virus-producing cells presented all HCV antigens, structural and non structural.
  • Because HCV targets a vital organ such as the liver, therapeutic vaccine need to be very specific in order to avoid complete liver destruction and death of the patients. Indeed, we choose for our therapeutic vaccine antigens that are only found in infected virus producing hepatocytes, and then target antigen will be non-structural proteins. Moreover, NS3 and NS4b are highly immunogenic in chronic infected patients, as efficient as structural core or E1 E2 structural proteins. Therefore the present inventors included NS5b as an antigen too.
  • In one embodiment, NS3 and NS5b were chosen because of their possible expression as recombinant protein and the availability of their 3D structure.
  • Description of an embodiment of a vaccine: A particular embodiment of a vaccine consisted of bifunctional antibodies, which were directed against Dendritic Cells specific receptors and have target antigens fused at C terminus part of heavy chain. This allows unique targeting of DC and more precisely different DC subset that expressed different receptors, DC activation through the targeted receptor, and direct delivery of antigen to DC. In turn antigens are presented more efficiently and APC function is associated to cytokine secretion that orient T cells activation towards different functions.
  • Design of domains: It is not readily predictable whether any particular non-structural viral protein will be efficiently expressed as a direct antibody-antigen fusion protein. Commonly, fusion proteins may not be soluble and not be secreted. The present application describes that by using flexible linker modules, fragmenting the antigen coding sequence, and varying the fragment order, efficient secretion of recombinant antibody-antigen vaccines bearing extensive stretches of non-structural proteins can be achieved. The current application describes a first testing of constructs by expression of antibody fused to individual HCV non-structural proteins, then linking those that are expressible as soluble protein to each other to maximize the antigen load. Domains were first designed based on the 3D structure of the corresponding full-length proteins. Domains were design as the minimal structured regions in between unfolded loops. Length of the loops was varied in order to increase expression of corresponding domains. Pymol software was used to visualize 3d structures. The domains that expressed at the C-terminal of the antibody heavy chain are represented by SEQ ID NOs: 7-14.
  • Multiple combinations of individual domains have been made in order to provide as much HCV antigen as possible. In some embodiments, each single domain is separated from the next by flexible linkers, which can be as small as two amino acids (e.g., AS) but can also be longer, e.g., 3, 4, 5, 6, 7 8, 9, 10, 12, 15, 18, 20, 25 or 30 amino acids long. FIG. 1 shows the summary of all combine constructs. The linkers are found in the assembled sequences, can also be SSVSPTTSVHPTPTSVPPTPTKSSP (SEQ ID NO.: 166); PTSTPADSSTITPTATPTATPTIKG (SEQ ID NO.: 167); TVTPTATATPSAIVTTITPTATTKP (SEQ ID NO.: 168); TNGSITVAATAPTVTPTVNATPSAA (SEQ ID NO.: 169).
  • In another embodiment, domains were also expressed at the C-terminus part of the light chain, and used in combination with heavy chain fused to multiple HCV domains. This allows the formation of a combine antibody with 3HCV domains fused to the heavy chain and one fused to the light chain. FIG. 2 summarizes the construct obtain after fusion of HCV domains at the C-terminus end of light chain.
  • Preparation of targeting constructs: Anti human DCIR and CD40 V region form H and L chain were cloned in a IgG4 backbone. Spe I cloning site was introduced at the end of the carboxy terminus to clone in frame antigen sequences. HCV antigens from NS3 and NS5b viral proteins represented as subdomains of these proteins were subcloned as a Spe-Not fragment in Nhe-Not linearized pIRES vector.
  • HCV-domains were designed based on the 3D-structure of the corresponding full-length proteins (PDB code IJXP for NS3protease, 1HEI for NS3Helicase and 1GX5 for NS5b). 3D-structures were visualized using PyMol software. Domains were designed as the minimal structured regions in between unfolded loops. Length of the loops was varied in order to increase expression of corresponding domains fused to the recombinant antibody. For multiple domains cloning, linkers were introduced between domains using Spe-Not/Nhe-Not strategy. Mosaic sequences, used in this study, corresponding to the maximum HCV-domains expressed as antibody-antigen recombinant fusion proteins are shown below. They included amino acids 95 to 180 from NS3Protease, amino acids 132 to 254 from NS3Helicase and a recombinant fusion of amino acids 55 to 80; 172 to 261 and 276 to 362 from NS5bPolymerase. Spe, Nhe and Not introduced cloning sites are underlined.
  • SEQ ID NOS: 1-6 show the amino acid sequence of the HCV proteins E1, E2, NS3, and NS5b mosaic sequences. Membrane domains are underlined. The full-length protein NS3 contains 631 amino acids and is also presented as being cut in its two enzymatic activities proteins: NS3Protease and NS3Helicase. These may also be produced as recombinant proteins N-terminal fused to either histidine tag or Cohesin tag.
  • Envelop protein E1 (192 amino acids) (SEQ ID NO: 1):
    YQVRNSSGLYHVTNDCPNSSIVYEAADAILHTPGCVPCVREGNASRCWVAVTPTVATRDGKLPTTQ
    LRRHIDLLVGSATLCSALYVGDLCGSVFLVGQLFTFSPRRHWTTQDCNCSIYPGHITGHRMAWDMM
    MNWSPTTAVVAQLLRIPQAILDMIAGAHWGVLAGIAYFSMVGNWAKVLVVLLLFAGVDA
    Envelop protein E2 (363 amino acids) (SEQ ID NO: 2):
    ETHVTGGSAARTTAGLAGLFTPGAKQNIQLINTNGSWHINRTALNCNDSLNTGWVAGLFYYHKFNS
    SGCPERLASCRPLTDFDQGWGPISYANGSGPDQRPYCWHYPPKPCGIVPAKSVCGPVYCFTPSPVVV
    GTTDRSGAPTYNWGENDTDVFVLNNTRPPLGNWFGCTWMNSTGFTKVCGAPPCVIGGVGNNTLH
    CPTDCFRKHPEATYSRCGSGPWITPRCLVDYPYRLWHYPCTINYTIFKIRMYVGGVEHRLEAACNW
    TRGERCDLEDRDRSELSPLLLSTTQWQVLPCSFTTLPALSTGLIHLHQNIVDVQYLYGVGSSIASWAI
    KWEYVVLLFLLLADARVCSCLWMMLLISQAEA
    Non structural protein 3 NS3 (FL 631 amino acids) (SEQ ID NO: 3):
    APITAYAQQTRGLLGCIITSLTGRDKNQVEGEVQIVSTAAQTFLATCINGVCWTVYHGAGTRTIASPK
    GPVIQMYTNVDQDLVGWPAPQGARSLTPCTCGSSDLYLVTRHADVIPVRRRGDSRGSLLSPRPISYL
    KGSSGGPLLCPAGHAVGIFRAAVCTRGVAKAVDFIPVENLETTMRSPVFTDNSSPPAVPQSFQVAHL
    HAPTGSGKSTKVPAAYAAQGYKVLVLNPSVAATLGFGAYMSKAHGIDPNIRTGVRTITTGSPITYST
    YGKFLADGGCSGGAYDIIICDECHSTDATSILGIGTVLDQAETAGARLVVLATATPPGSVTVPHPNIE
    EVALSTTGEIPFYGKAIPLEVIKGGRHLIFCHSKKKCDELAAKLVALGINAVAYYRGLDVSVIPTSGV
    VVVVATDALMTGFTGDFDSVIDCNTCVTQTVDFSLDPTFTIETTTLPQDAVSRTQRRGRTGRGKPGI
    YRFVAPGERPSGMFDSSVLCECYDAGCAWYELTPAETTVRLRAYMNTPGLPVCQDHLEFWEGVFT
    GLTHIDAHFLSQTKQSGENLPYLVAYQATVCARAQAPPPSWDQMWKCLIRLKPTLHGPTPLLYRLG
    AVQNEVTLTHPITKYIMTCMSADLEVVT
    NS3 (prot 189 amino acids) (SEQ ID NO: 4):
    APITAYAQQTRGLLGCIITSLTGRDKNQVEGEVQIVSTAAQTFLATCINGVCWTVYHGAGTRTIASPK
    GPVIQMYTNVDQDLVGWPAPQGARSLTPCTCGSSDLYLVTRHADVIPVRRRGDSRGSLLSPRPISYL
    KGSSGGPLLCPAGHAVGIFRAAVCTRGVAKAVDFIPVENLETTMRSPVFTDNSSPPAVPQS
    NS3 (hel 442 amino acids) (SEQ ID NO: 5):
    FQVAHLHAPTGSGKSTKVPAAYAAQGYKVLVLNPSVAATLGFGAYMSKAHGIDPNIRTGVRTITTG
    SPITYSTYGKFLADGGCSGGAYDIIICDECHSTDATSILGIGTVLDQAETAGARLVVLATATPPGSVTV
    PHPNIEEVALSTTGEIPFYGKAIPLEVIKGGRHLIFCHSKKKCDELAAKLVALGINAVAYYRGLDVSVI
    PTSGVVVVVATDALMTGFTGDFDSVIDCNTCVTQTVDFSLDPTFTIETTTLPQDAVSRTQRRGRTGR
    GKPGIYRFVAPGERPSGMFDSSVLCECYDAGCAWYELTPAETTVRLRAYMNTPGLPVCQDHLEFW
    EGVFTGLTHIDAHFLSQTKQSGENLPYLVAYQATVCARAQAPPPSWDQMWKCLIRLKPTLHGPTPL
    LYRLGAVQNEVTLTHPITKYIMTCMSADLEVVT
    Non structural NS5b (591 amino acids) (SEQ ID NO: 6):
    SMSYSWTGALVTPCAAEEQKLPINALSNSLLRHHNLVYSTTSRSACQRQKKVTFDRLQVLDSHYQD
    VLKEVKAAASKVKANLLSVEEACSLTPPHSAKSKFGYGAKDVRCHARKAVNHINSVWKDLLEDSV
    TPIDTTIMAKNEVFCVQPEKGGRKPARLIVFPDLGVRVCEKMALYDVVSKLPLAVMGSSYGFQYSP
    GQRVEFLVQAWKSKKTPMGFSYDTRCFDSTVTESDIRTEEAIYQCCDLDPQARVAIKSLTERLYVGG
    PLTNSRGENCGYRRCRASGVLTTSCGNTLTCYIKARAACRAAGLQDCTMLVCGDDLVVICESAGVQ
    EDAASLRAFTEAMTRYSAPPGDPPQPEYDLELITSCSSNVSVAHDGAGKRVYYLTRDPTTPLARAA
    WETARHTPVNSWLGNIIMFAPTLWARMILMTHFFSVLIARDQLEQALDCEIYGACYSIEPLDLPPIIQ
    RLHGLSAFSLHSYSPGEINRVAACLRKLGVPPLRAWRHRARSVRARLLSRGGRAAICGKYLFNWAV
    RTKLKLTPIAAAGQLDLSGWFTAGYSGGDIYHSVSHARPRWFWFCLLLLAAGVGIYLLPNR
  • The nucleotide sequences are presented herein below.
  • NS3Protease domain B (SEQ ID NO: 145)
    ACTAGT ACTCCTTGTACCTGCGGCTCATCCGACCTGTACCTGGTCACCCGGCACGCAGACGTCA
    TTCCTGTACGCCGACGCGGGGATAGTAGGGGGAGCCTGCTCTCTCCAAGACCCATATCCTACCT
    CAAGGGCAGCAGCGGTGGACCACTGCTGTGTCCCGCTGGTCATGCTGTGGGAATATTTAGGGCC
    GCAGTGTGTACCAGAGGCGTGGCCAAAGCTGTTGATTTTATTCCCGTCGAAAATCTTGAAACAA
    CCATGAGAAGCCCAGTGTTCACAGACAACTCATCTCCCCCAGCAGTGCCGCAGAGT GCTAGC T
    GAGAATTC GCGGCCGC
    NS3Helicase domain B (SEQ ID NO: 146):
    ACTAGT GTGACTGTGCCCCACCCCAATATCGAAGAGGTGGCCCTTAGTACTACCGGGGAAATTC
    CTTTCTACGGGAAGGCCATCCCTCTCGAGGTTATTAAAGGAGGGCGACATCTGATTTTTTGCCA
    CTCCAAGAAGAAGTGTGACGAGCTGGCCGCGAAACTGGTTGCCTTGGGCATCAACGCTGTCGC
    ATACTATCGGGGACTGGATGTATCAGTGATACCCACCAGCGGAGTGGTAGTTGTCGTCGCTACA
    GACGCATTGATGACCGGCTTTACAGGAGATTTCGACTCCGTCATCGACTGTAACACATGCGTGA
    CTCAGACAGTGGATTTCAGCCTTGACCCGACGTTTACGATTGAGACCACCACTCTCCCTCAGGA
    TGCTGTGTCTAGGACCCAAAGACGCGGTCGCACAGGCCGGGGCAAACCAGGCATCTATAGGTT
    CGTGGCACCAGGGGAAAGA GCTAGC TGAgaattc GCGGCCGC
    NS5bPalm (SEQ ID NO: 147):
    ACTAGT GTGCTGGACTCTCACTACCAGGATGTCCTGAAGGAAGTAAAAGCAGCCGCTTCTAAA
    GTCAAAGCGAACGCTCTGTACGATGTCGTTTCCAAACTGCCGCTGGCTGTCATGGGCTCTTCCTA
    CGGCTTTCAGTATTCCCCGGGTCAGCGCGTTGAGTTCCTGGTCCAGGCGTGGAAATCCAAAAAG
    ACTCCGATGGGTTTTTCCTATGACACTCGCTGCTTCGACAGCACCGTTACCGAAAGCGACATTC
    GCACCGAGGAAGCAATCTACCAGTGCTGCGACCTGGACCCACAGGCCCGCGTGGCGATCAAAT
    CTCTGACCGAACGCCTGTACGTTGGCCGCTGTCGCGCTTCCGGTGTTCTGACGACCTCCTGCGGT
    AATACGCTGACCTGCTACATCAAAGCACGCGCTGCCTGTCGCGCAGCCGGTCTGCAGGACTGCA
    CCATGCTGGTGTGTGGCGATGACCTGGTGGTGATCTGCGAAAGCGCTGGCGTGCAGGAAGACG
    CAGCAAGCCTGCGCGCTTTCACCGAAGCTATGACTCGCTACTCTGCGCCGCCGGGTGACCCGCC
    GCAGCCAGAATACGATCTGGAGCTGATCACC GCTAGC TAAGAATTC GCGGCCGC
  • SEQ ID NOS: 7-14 show the HCV antigen domains E1a, E2, ProtA, Prot B, Hel A, Hel B, HelC, and NS5 bpalm. These were expressed as antibody fusion proteins. For all constructs, amino acids TS and AS (shown in red) have been added for cloning purpose to the mosaic HCV sequence. NS5b palm has been constructed based on NS5b 3D structure (1C2P). It is based on structural domain corresponding of the palm domain of NS5b polymerase and do not correspond to the linear amino acid sequence;
  • Envelop protein E1a construct (63 amino acids)
    (SEQ ID NO: 7):
    TSVGQLFTFSPRRHWTTQDCNCSIYPGHITGHRMAWDMMMNWSPTTAVVA
    QLLRIPQAILDMIAGAS
  • In SEQ ID NO: 7 membrane domain and predicted unfolded regions have been removed from E1 mosaic 192 aa sequence to increase expression of the Ab fusion protein.
  • Envelop protein E2 mosaic sequence (342 amino
    acids) (SEQ ID NO: 8):
    TSETHVTGGSAARTTAGLAGLFTPGAKQNIQLINTNGSWHINRTALNCND
    SLNTGWVAGLFYYHKFNSSGCPERLASCRPLTDFDQGWGPISYANGSGP
    DQRPYCWHYPPKPCGIVPAKSVCGPVYCFTPSPVVVGTTDRSGAPTYNW
    GENDTDVFVLNNTRPPLGNWFGCTWMNSTGFTKVCGAPPCVIGGVGNNT
    LHCPTDCFRKHPEATYSRCGSGPWITPRCLVDYPYRLWHYPCTINYTI
    FKIRMYVGGVEHRLEAACNWTRGERCDLEDRDRSELSPLLLSTTQWQVLP
    CSFTTLPALSTGLIHLHQNIVDVQYLYGVGSSIASWAIKWEYVVLLFLL
    AS
  • In SEQ ID NO: 8 the membrane domain has been removed for E2 mosaic sequence.
  • NS3Protease has been cut in 2 structural domains based on its 3D structure (IJXP).
  • ProtA
    (SEQ ID NO: 9)
    TSAPITAYAQQTRGLLGCIITSLTGRDKNQVEGEVQIVSTAAQTFLATC
    INGVCWTVYHGAGTRTIAS
    Prot B
    (SEQ ID NO: 10)
    TSTPCTCGSSDLYLVTRHADVIPVRRRGDSRGSLLSPRPISYLKGSSG
    GPLLCPAGHAVGIFRAAVCTRGVAKAVDFIPVENLETTMRSPVFTDNS
    SPPAVPQSAS
  • NS3 Helicase enzymatic protein has been cut in 3 structural domains based on NS3 Helicase 3D structure. (1HEI)
  • Hel A
    (SEQ ID NO: 11)
    Figure US20120301465A1-20121129-P00001
     FQVAHLHAPTGSGKSTKVPAAYAAQGYKVLVLNPSVAATLGFGAYMSK
    AHGIDPNIRTGVRTITTGSPITYSTYGKFLADGGCSGGAYDIIICDECHS
    TDATSILGIGTVLDQAETAGARLVVLATATPPGSAS
    Hel B
    (SEQ ID NO: 12)
    Figure US20120301465A1-20121129-P00001
     VTVPHPNIEEVALSTTGEIPFYGKAIPLEVIKGGRHLIFCHSKKKCDE
    LAAKLVALGINAVAYYRGLDVSVIPTSGVVVVVATDALMTGFTGDFDSVI
    DCNTCVTQTVDFSLDPTFTIETTTLPQDAVSRTQRRGRTGRGKPGIYRFV
    APGERAS
    Hel C
    (SEQ ID NO: 13)
    Figure US20120301465A1-20121129-P00001
     PSGMFDSSVLCECYDAGCAWYELTPAETTVRLRAYMNTPGLPVCQDHL
    EFWEGVFTGLTHIDAHFLSQTKQSGENLPYLVAYQATVCARAQAPPPSWD
    QMWKCLIRLKPTLHGPTPLLYRLGAVQNEVTLTHPITKYIMTCMSADLEV
    VT AS
    NS5bpalm
    (SEQ ID NO: 14)
    TSVLDSHYQDVLKEVKAAASKVKANALYDVVSKLPLAVMGSSYGFQYSPG
    QRVEFLVQAWKSKKTPMGFSYDTRCFDSTVTESDIRTEEAIYQCCDLDPQ
    ARVAIKSLTERLYVGRCRASGVLTTSCGNTLTCYIKARAACRAAGLQDCT
    MLVCGDDLVVICESAGVQEDAASLRAFTEAMTRYSAPPGDPPQPEYDLEL
    ITAS
  • HCV sequence and HCV domains constructions: Due to the high polymorphism of HCV, a sequence that is representative of most of circulating HCV sequence was selected.
  • A mosaic sequence was derived using the mosaic vaccine tools at http://www.hiv.lanl.gov/content/sequence/MOSAIC/ interface choosing mosaic sequence cocktail, 1 as cocktail size and 9 as epitope size. We used 213 sequences for NS3 mosaic and 310 sequences for NS5b mosaic. All sequences correspond to complete genes of 1893, 1773 nucleotides respectively and found in euHCVdb (available on the internet at: euhcvdb.ibcp.fr/euHCVdb/).
  • Synthetic corresponding genes were purchased from Bio Basic Inc. (Ontario Canada). For cloning purposes, Spe cloning site was introduced at 5′ end and Nhe, EcoRI and Not I at the 3′ end. HCV domains were then constructed by PCR. NS3Protease domain B was construct using the synthetic gene cloned in pUC57 as template and the following primers: NS3Protease domain B forward: 5′-GAGCTCGGATCCACTAGTACTCCTTGTACCTGCGGCTCATCC-3′ (SEQ ID NO: 148) NS3Protease domain B reverse: 5′-GCCCGCGGCCGCGAATTCTCAGCTAGCACTCTGCGGCACTGCTGGGGG-3′ (SEQ ID NO: 149). NS3Helicase domain B was ordered directly as a synthetic gene. For NS5bPolymerase Palm domain construction, regions coding for amino acids 172 to 261 and 276 to 362 were amplified using NS5b synthetic gene and the respective following primers: Ns5b Palm (aa 172-261) forward: 5′-TCTAAAGTCAAAGCGAACGCTCTGTACGATGTCGTTTCC-3′ (SEQ ID NO: 150), Ns5b Palm (aa 172-261) reverse: 5′-ACCGGAAGCGCGACAGCGGCCAACGTACAGGCGTTCGGT-3′ (SEQ ID NO: 151), NS5b Palm (aa 276-362) forward: 5′-ACCGAACGCCTGTACGTTGGCCGCTGTCGCGCTTCCGGT-3′ (SEQ ID NO: 152), NS5b Palm (aa 276-362) reverse: 5′-GCGGCCGCGAATTCttAGCTAGCGGTGATCAGCTCCAG-3′ (SEQ ID NO: 153). Amplified products were then used as templates together with annealed primers 5′-CAAGCCCAACCCCACTAGTGTGCTGGACTCTCACTACCAGGATGTCCTGAAGGAAGTAAAAG CAGCCGCTTCTAAAGTCAAAGCGAACGCTCTGTACGAT-3′ (SEQ ID NO: 154) and 5′-ATCGTACAGAGCGTTCGCTTTGACTTTAGAAGCGGCTGCTTTTACTTCCTTCAGGACATCCTG GTAGTGAGAGTCCAGCACACTAGTGGGGTTGGGCTTG-3′ (SEQ ID NO: 155) in a final PCR using primers 5′-CAAGCCCAACCCC-3′ (SEQ ID NO: 156) and 5′-GCGGCCGCGAATTCTTAGCTAGCGGTGATCAGCTCCAG-3′ (SEQ ID NO: 157). The amplified NS5bPolymerase Palm domain was then cloned in TA vector and sub-cloned in XX vector using Nhe/Not strategy.
  • Chimeric Recombinant Antibodies Purification: For construct selection, chimeric DC-specific antibodies were transiently expressed in HEK293 cells and purified from the supernatant using Protein A sepharose chromatograhy. DNA from chimeric constructs expressed in HEK293 was then sub-cloned in cetHSpuro vector as AgeI/NotI fragment for expression in CHO cells after stable transfection. Antibodies were purified from supernatants using ProteinA sepharose.
  • Patients were recruited at the Baylor Hospital Liver Transplant Clinic (BHLTC, Dallas, Tex.) after obtaining informed consent. The study was approved by the Institutional Review Board of the Baylor Health Care System (Dallas, Tex.). Peripheral blood (100 ml) was collected at the BHLTC from 29 chronic HCV-infected adult patients and one healthy donor in contact with chronic HCV-infected patient. Leukapheresis were collected at Baylor University Medical Center Apharesis Collection Center (Dallas, Tex.) from all the enrolled individuals within 30 days after the first visit. Patient information is summarized in Table I.
  • Preparation of dendritic cells and PBMCs: PBMCs were isolated from heparinized blood on Ficoll density gradients. Monocytes were enriched from the leukapheresis according to cellular density and size by elutriation (Elutra™, CaridianBCT, Lakewood, Colo.) as per the manufacturer's recommendations. Elutriation Fraction 5 consisted mainly on monocytes (85% on average). Cells were cryopreserved in 10% DMSO 50% FCS 10% culture medium before use. For dendritic cell generation, monocytes were resuspended in serum-free CellGro DC culture medium (CellGenix Technologie Transfer Gmbh, Germany) at a concentration of 1 106 cells/ml. Media were supplemented with 100 ng/ml granulocyte-macrophage colony-stimulated factor (GMCSF, Leukine, Berlex, Wayne, N.J.) and 500 UI/ml alpha-interferon (IFN-α, Intro A, IFN-α-2b, Merck/Schering-Plough, Kenilworth, N.J.). After 24 h of culture at 37 degree Celsius, 5% CO2, fresh cytokines were added. On day 3, recombinant antibody vaccines were added at various concentration (5 nM, 0.5 nM or 0.05 nM) or peptide cluster controls (2 mM each peptide) as indicated. Alternatively, TLR agonists (polylC, 25 μg/ml; CL075 1 μg/ml; or PAM3, 200 ng/ml; all from Invivogen) were added in the culture at the same time as vaccine candidates or peptide controls. DC were pulsed for 16 h before harvest and used in PBMCs co-culture.
  • TABLE I
    Demographics of patients used in the study.
    HCV Viral HLA HLA HLA
    Patient ID Genotype Sex Ethnicity Race status Age Load HLA A* HLA B* Cw* DRB1 DQB1
    HCV-VAC-001 1a M Hispanic White non 39 5 877033 0201; 1302; 0202; 0701; 0202;
    responder (H) 0205 5101 0602 1301 0603
    HCV-VAC-002 1a F Non White cured 57 UnDectable 0101; 0818; 0701G; 1101; 0301;
    Hispanic after (UD) 0301 5108 1502 1301 0603
    therapy
    HCV-VAC-003 1a M Non White cured 59 UD 0301; 0702; 0401; 0101; 0501;
    Hispanic after 3004 3501 0702 0402 0302
    therapy
    HCV-VAC-004 1a M Non White cured 55 UD 0201; 0702; 0202; 0401; 0302;
    Hispanic after 3201 1002 0702 0901 0303
    therapy
    HCV-VAC-005 1a M Non White cured 58 UD 0101; 1801; 0501; 0301; 0503;
    Hispanic after 1101 5101 1402 1407 0201
    therapy
    HCV-VAC-006 3a M Non White cured 57 UD 0101; 0702; 0602; 0701; 0303;
    Hispanic after 2902 5701 0702
    therapy
    HCV-VAC-007 3a M Non White cured 48 UD no no no no no
    Hispanic after apheresis apheresis apheresis apheresis apheresis
    therapy
    HCV-VAC-008 1b M Non White non 63 0101; 0801; 0701; 0301; 0201;
    Hispanic responder 6901 3508 1203
    HCV-VAC-009 1a M Non White non 51 0101; 0801; 0701G; 0301; 0201;
    Hispanic responder 3004 0701 0303
    HCV-VAC-010 1a M Non White cured 48 UD 0201; 0801; 0202; 0301; 0201;
    Hispanic after 2402 4002 0701G 0701 0202
    therapy
    HCV-VAC-011 1a F Non White non 52 ? 0205; 1530; 0102; 0301; 0201;
    Hispanic responder 3101 4901 0707G 0802 0402
    HCV-VAC-012 1a M Non White cured 43 UD 0101; 4101; 1502; 0301; 0201;
    Hispanic after 1101 5101 1710G 1305 0301
    therapy
    HCV-VAC-013 1a M Non White non 55 0101; 0801; 0401; 0301; 0502;
    Hispanic responder 0201 3502 0701G 1601 0201
    HCV-VAC-014 1b F Non White non 56 3101; 0702; 0401; 0403; 0302;
    Hispanic responder 6801 3503 0702 1501 0602
    HCV-VAC-015 2b M Non White positive 50 0101; 0801; 0401; 0301; 0201;
    Hispanic untreated 0301 3501 0701G 0701 0303
    HCV-VAC-016 1a M Non White non 55 0101; 5001; 0303; 0701; 0503;
    Hispanic responder 5501 0602 1401 0202
    HCV-VAC-017 1a M Non White positive 52 2402; 3901; 0602; 0701; 0202;
    Hispanic untreated 2501 5701 1203 0303
    HCV-VAC-018 1a M Non White non 53 no no no no no
    Hispanic responder apheresis apheresis apheresis apheresis apheresis
    HCV-VAC-019 1a M Non White cured 62 UD 2402; 3901; 0102; 0701; 0202;
    Hispanic after 2501 4402 1203 1501 0602
    therapy
    HCV-VAC-020 1a F Non White cured 46 UD 0201; 1501; 0202; 0401; 0301;
    Hispanic after 0301 2705 0304 1101 0302
    therapy
    HCV-VAC-021 1a M Non White non 64 0101; 0801; 0304; 0101; 0501;
    Hispanic responder 3002 4001 0701G 0301 0201
    HCV-VAC-022 1b F Non White non 58 0301; 1801; 0304; 0301; 0201;
    Hispanic responder 6801 4001 0501 1302 0604
    HCV-VAC-023 2 F Non White positive 45 no no no no no
    Hispanic untreated apheresis apheresis apheresis apheresis apheresis
    HCV-VAC-024 2b M Non White positive 43 0301; 1402; 0202;
    Hispanic untreated 4701 0602
    HCV-VAC-025 3a F Non White positive 31 ? no no no no no
    Hispanic untreated apheresis apheresis apheresis apheresis apheresis
    HCV-VAC-026 3a M Non White positive 29 ? no no no no no
    Hispanic untreated apheresis apheresis apheresis apheresis apheresis
    HCV-VAC-027 1a F Non White positive 26 02; 26 15(62); 03(7);
    Hispanic untreated 51 05
    HCV-VAC-028 1a F Hispanic other positive 47 03; 25 07; 18 06;
    untreated
    HCV-VAC-029 Non F Non White uninfected 63 01; 11 44; 55 02; 05
    infected Hispanic
    HCV-VAC-030 1 M Non White positive 57 ? 03; 24 07; 27 03(7);
    Hispanic untreated 06
  • Expansion of Antigen-specific T cells in DC/PBMCs coculture. Frozen PBMCs from leukapharesis were thawed, washed by centrifugation and resuspended at 2×106 cells/ml in cRPMI medium. Autologous DC loaded with vaccine candidates or peptides cluster controls were co-cultured with PBMCs in a 24 well tissue plate at a ratio of 1/20 and incubated for a total of 10 days. IL2 (20 IU/ml, Aldesleukine, ProleukineR; Bayer Healthcare and Novartis, Emeryville, Calif.) was added every two days. At day 9, PBMCs from a 24-well plate were washed, distributed in 2 wells in a 96-well plates and rested for 24 h. The specificity of the T-cell response elicited by vaccine candidate loaded-DC was assessed by restimulation of PBMCs with peptide clusters (2 μM each peptide). For each condition, a negative background control was included as a restimulation without peptides.
  • Flow cytometry: After 1 hour of peptide clusters restimulation, BFA (Sigma) was added for the last 5-6 h to block cytokine secretion. The cells were stained for surface markers with a combination of fluorochrome antibodies (perCP-CD3, PE-CD8, APCH7-CD4), fixed, permeabilized and intracellular-stained with a mixture of APC-IFNγ, FITC-IL2 and PEcγ7-TNFα antibodies. For CTL marker function analysis, FITC-CD107a antibody was added with BFA in the culture medium and the following antibodies combination was used for the surface staining. PerCP-CD3, pacific blue-CD8, APCH7-CD4 and for the intracellular staining: PE-IFNγ, APC-GranzB, APCcy7-TNFα. All antibodies were purchased from BD sciences except APC-GranzB (Invitrogen). Cells were analyzed on a FACS-Canto collecting 500,000 events, and results analyzed using FlowJo software. Most of the data were displayed as two colors plot to measure IFN-γ and TNF-α production in CD3+CD8+ or CD3+CD4+ cells.
  • Luminex: Supernatants of DC-PBMCs co-culture were harvested 48 h after PBMCs restimulation with peptide clusters. Cytokine multiplex assays were employed to analyzed IFN-γ, IL-10, and IL-13.
  • Evaluation of embodiments of vaccines: Vaccine candidate were tested in targeting experiment by co-culture of vaccine with PBMCs from chronic HCV infected patients or chronic HCV infected patients cured after IFNa-Ribavirin therapy. The data show that anti-CD40 or anti-DCIR vaccines bearing a HCV NS3HelB antigen can recall a potent memory antigen-specific anti-CD4+ T cell response in vitro using immune cells from HCV infected patients. In this in vitro culture system anti-CD40 and anti-DCIR are equally potent vaccines—these DCs express both receptors. Anti-DCIR vaccine construct bearing longer HCV antigen coverage induced multifunctional CD4+ antigen specific T cells against multiple HCV epitopes.
  • The data further show that anti-DCIR vaccines bearing a HCV NS3HelBC antigen can recall a potent memory antigen-specific anti-CD4+ T cell response in vitro using immune cells from HCV infected patients. This response is directed against multiples HCV epitopes. In this in vitro culture system, both concentration used for anti-DCIR HCV-NS3HelBC targeting are equally potent in contrast to anti-DCIR HCV-NS3HelB vaccine.
  • FIGS. 3A-3B demonstrate the ability of recombinant anti-DCIR and anti-CD40 antibodies fused to HCV NS3HelB specific antigen to elicit the expansion of antigen-specific CD4+ T cells from a chronic HCV infected patient cured after IFNa-Ribavirin therapy. Delivering NS3HelB to DCs through CD40 and DCIR induces IFN-γ-TNFa-producing HCV NS3HelB-specific CD4+ T cells. PBMC cells from chronic HCV infected patients; either cured after therapy or in treatment failure, were co-cultured with IFNDCs targeted with anti-CD40-NS3HelB or anti-DCIR-NS3HelB for 10 days. Cells were stimulated with peptides clusters (10 peptides of 15-mers in each clusters) covering HCV NS3 HelB (10 μM): FIG. 3A after 2 days, culture supernatants were analyzed for measuring IFNγ and FIG. 3B PBMC cells were stained for measuring the frequency of peptide-specific CD4+ T cells intracellular IFNγ+TNFα+ cells.
  • Longer construct are equally potent to recall multi epitopes HCV specific T cells. The data in e.g., FIG. 4, show that both anti-CD40 and anti-DCIR vaccines bearing HCV NS3HelB NS3ProtB and NS5BPalm antigens can recall a potent memory antigen-specific anti-CD4+ T cell response in vitro using immune cells from HCV infected patients cured after IFN-Ribavirin therapy. This response is directed against multiples HCV epitopes. In this in vitro culture system, dose effect is observed consistent with clear targeting, with an optimum concentration being at 5 nM for anti-CD40 construct and 0.5 nM for anti-DCIR construct. At these concentrations IgG4 controls induce significantly lower CD4+ T cells responses, consistent with antibody targeting of DC.
  • FIGS. 5A to 5C demonstrate the ability of recombinant anti-DCIR and anti-CD40 antibodies fused to HCV NS3HelB, HCV NS3ProtB and HCV NS5BPalm specific antigens to elicit the expansion of antigen-specific CD4+ T cells from a chronic HCV infected patient cured after IFNa-Ribavirin therapy. Delivering HCV antigen to DCs through CD40 and DCIR induces IFNγ-TNFa-producing HCV-specific CD4+ T cells, with multi epitopes, specific CD4 T cells. PBMC cells from chronic HCV infected patients cured after therapy were co-cultured with autologous IFNαDCs targeted with anti-CD40-NS3HelB-NS3ProtB-NS5BPalm or anti-DCIR-NS3HelB-NS3ProtB-NS5BPalm for 10 days. Cells were stimulated with peptides clusters (10 peptides of 15-mers in each clusters) covering HCV NS3HelB, NS3ProtB or NS5BPalm (2 μM). PBMC cells were stained for measuring the frequency of peptide-specific CD4+ T cells intracellular IFNγ+TNFα+ cells.
  • The data in FIGS. 6A to 6C demonstrate that anti-CD40 vaccines bearing HCV NS3HelB NS3ProtB and NS5BPalm antigens can recall a potent memory antigen-specific anti-CD8+ T cell response in vitro using immune cells from HCV infected patients cured after IFN-Ribavirin therapy. This response is directed against multiples HCV epitopes. In this in vitro culture system, dose effect is observed consistent with clear targeting, of DC with an optimum concentration being at 5 nM for anti-CD40 constructs. At these concentrations IgG4 controls induce significantly no CD8+ T cells responses, consistent with antibody targeting of DC.
  • Similar responses are induced in multiple different chronic HCV infected patients either cured or after therapy or in treatment failure.
  • The data in FIGS. 7A to 7D show that all chronic HCV infected patients cured after therapy are able to recall CD4+ T cells memory after co-culture of PBMCs with DC targeted with either anti-CD40 or anti-DCIR or both, construct bearing HCV antigens.
  • The data in FIGS. 8A to 8D shows that all chronic HCV infected patients in treatment failure are able to recall CD4+ T cells memory after co-culture of PBMCs with DC targeted with either anti-CD40 or anti-DCIR or both, construct bearing HCV antigens. Compare to chronic HCV infected patients cured after therapy, responses are low in chronic HCV infected patients in treatment failure and more antigen dependent since for example HCV-VAC-016 patient has no CD4+ T cells memory cells recalled after DC targeting with NS5bPalm construct.
  • CD8+ antigen specific T cells were obtained after TLR agonist introduction in the co-culture of vaccine with PBMC cells from HCV patients.
  • The data in FIGS. 9A and 9B show that TLR2 triggering with PAM3 during DC targeting with anti-DCIR vaccines bearing a HCV NS3HelB antigen can recall a potent memory antigen-specific anti-CD4+ and CD8+ T cell response in vitro using immune cells from HCV infected patients. Moderated CD8+ response is also induced by TLR3 triggering and no CD4+or CD8+ response is induced after TLR7/8 triggering by CL097 in this study. Similar responses are induced in multiple different chronic HCV infected patients either cured or after therapy or in treatment failure.
  • The data in FIGS. 10A-10D show that TLR2 triggering with PAM3 during DC targeting with anti-CD40 or anti-DCIR vaccines bearing a HCV NS3HelB or HCV NS3ProtB antigen can recall a potent memory antigen-specific anti-CD4+ and CD8+ T cell responses in vitro using immune cells from HCV infected patients. Moderated CD8+ response is also induced by TLR3 triggering in some patients, and cyclic glucan can dramatically increase CD8+ T cells responses in one patient.
  • FIG. 11 demonstrates the ability of combination of TLR agonists and anti-CD40 HCV-constructs to increase CD4+ T cells responses in chronic HCV infected patients in treatment failure. HCV antigens from NS3 Helicase HelB or from NS3 Protease ProtB constructs were delivered to DCs through CD40 or DCIR. IFNαDCs were targeted with anti-CD40-NS3HelB, anti-DCIR-NS3HelB, anti-CD40-NS3ProtB, anti-DCIR-NS3ProtB, in presence of PAM3 (TLR2 agonist; 200 ng/ml), CL095 (TLR7/8 agonist; 5 μg/ml) or polyIC (TLR3 agonist; 25 μg/ml) or cyclic glucan (TLR4 agonist, 10 μg/ml) before co-culture for 10 days with PBMC cells from chronic HCV infected patients cured after therapy. Cells were stimulated for 6 h with peptide clusters C7 (10 μM; 10 peptides of 15-mers) covering HCV NS3 HelB constructs or with peptide clusters C3 (10 μM; 10 peptides of 15-mers) covering HCV NS3 ProtB constructs. PBMC cells were stained for measuring the frequency of peptide-specific CD4+ intracellular IFNγ+TNFα+ cells, an analyzed by FACS.
  • All tested HCV patients are able to recall CD4+ and CD8+ HCV specific memory after DC-targeting with HCV vaccine candidates.
  • FIG. 12A to 12C demonstrate the ability of HCV vaccine candidates to recall CD4+ T cells responses in all chronic HCV infected patients (cured or in treatment failure). HCV antigens from NS3 Helicase HelB, NS5b polymerase Palm or from NS3 Protease ProtB constructs were delivered to DCs through CD40 (FIG. 12B) or DCIR (FIG. 12C). IFNaDCs were targeted with anti-CD40-[NS3HelB˜NS3ProtB˜NS5bPalm on heavy chain], anti-DCIR-[NS3HelB˜NS3ProtB˜NS5bPalm on heavy chain] before co-culture for 10 days with PBMC cells from chronic HCV infected patients cured after therapy. Cells were stimulated for 6 h with peptide clusters C7-C9 (10 μM; 10 peptides of 15-mers) covering HCV NS3 HelB domain, with peptide clusters C2-C3-C4 (10 μM; 10 peptides of 15-mers) covering HCV NS3 ProtB domain or with peptide clusters C2-C4-C5-C6-C7 (10 μM; 10 peptides of 15-mers) covering HCV NS5b Palm domain. PBMC cells were stained for measuring the frequency of peptide-specific CD4+ and CD8+ intracellular IFNγ+TNFa+ cells, and analyzed by FACS. The number of CD4+ IFNg+TNFa+ cells induced vaccine candidate is shown.
  • It was also observed that different combinations of HCV domains on vaccine candidate are equally equivalent to recall CD4+ HCV memory. Moreover, HCV antigen combination where two domains are borne on heavy chain and one on light chain is more efficient than having the 3 borne by heavy chain.
  • FIGS. 13A-13E demonstrate the ability of different HCV antigen combination on vaccine candidate for recall CD4+ T cells responses in chronic HCV infected cured patients. HCV antigens from NS3 Helicase HelB, NS5b polymerase Palm or from NS3 Protease ProtB combination constructs were delivered to DCs through CD40 or DCIR. IFNαDCs were targeted with second-generation vaccines anti-CD40-[NS3HelB on light chain and NS3ProtB˜NS5bPalm on heavy chain], anti-DCIR-[NS3HelB on light chain and NS3ProtB˜NS5bPalm on heavy chain], or first-generation vaccines anti-CD40-[NS3HelB˜NS3ProtB˜NS5bPalm on heavy chain], anti-DCIR-[NS3HelB˜NS3ProtB˜NS5bPalm on heavy chain] before co-culture for 10 days with PBMC cells from chronic HCV infected patients cured after therapy. Cells were stimulated for 6 h with peptide clusters C7 and C9 (10 μM; 10 peptides of 15-mers) covering HCV NS3 HelB domain (shown in green on the figure), with peptide clusters C2-C3-C4 (10 μM; 10 peptides of 15-mers) covering HCV NS3 ProtB domain (shown in pink on the figure) or with peptide clusters C2-C4-C5-C6-C7 (10 μM; 10 peptides of 15-mers) covering HCV NS5b Palm domain (shown in orange in the figure). PBMC cells were stained for measuring the frequency of peptide-specific CD4+ intracellular IFNγ+TNFα+ cells, an analyzed by FACS. The number of CD4+IFNγ+TNFα+ cells induced by first-generation vaccine or second-generation vaccine is compared in the last panel.
  • The vaccine candidates described in the present invention also showed the ability induce cross reactivity recall memory responses in patients infected with an HCV genotype different from those used to build the vaccine (FIGS. 14A to 14H). FIGS. 14A to 14H demonstrate ability of vaccine candidate to recall CD4+ T cells responses in HCV patients infected with non 1 genotype and HCV-exposed but non infected individual. HCV antigens from NS3 Helicase HelB, NS5b polymerase Palm or from NS3 Protease ProtB combination constructs were delivered to DCs through CD40 or DCIR and DC loaded were co-culture for 10 days with PBMC cells from HCV patients infected with non 1 genotype HCV-infected patients (HCV-015, 2b) and HCV-exposed but non infected individual (HCV-029). Cells were stimulated for 6 h with peptide clusters C7 and C9 (10 μM; 10 peptides of 15-mers) covering HCV NS3 HelB domain, with peptide clusters C2-C3-C4 (10 μM; 10 peptides of 15-mers) covering HCV NS3 ProtB domain or with peptide clusters C2-C4-C5-C6-C7 (10 μM; 10 peptides of 15-mers) covering HCV NS5b Palm domain. PBMC cells were stained for measuring the frequency of peptide-specific CD4+ intracellular IFNγ+TNFα+ cells, an analyzed by FACS.
  • FIGS. 15A and 15B show the results from a 10 day expansion culture whereby a dose range of 1st generation anti-DCIR-HCV vaccine (left panels) is compared to second generation anti-DCIR-HCV vaccine (right panels). Doses were 0.05 nM, 0.5 nM, and 5 nM and antigen-specific responses were ascertained by stimulation with no peptide (control) or ProtA, HelB, or Palm peptide pools in the presence of Brefeldin, followed by staining for CD3+, CD4+ and intracellular IFNg and TNFa. Samples were analyzed by FACS. Shown are comparable CD4+ HCV antigen-specific responses to the two generations of vaccines.
  • FIGS. 16A and 16B show the results from a 10 day expansion culture whereby a dose range of 1st generation anti-CD40-HCV vaccine (left panels) is compared to second generation anti-CD40-HCV vaccine (right panels). Doses were 0.05 nM, 0.5 nM, and 5 nM and antigen-specific responses were ascertained by stimulation with no peptide (control) or ProtA, HelB, or Palm peptide pools in the presence of Brefeldin, followed by staining for CD3+, CD4+ and intracellular IFNg and TNFa. Samples were analyzed by FACS. Shown are comparable CD4+ HCV antigen-specific responses to the two generations of vaccines.
  • Non-limiting examples different DC-specific antibodies or fragments (both nucleotide and protein sequences) that may be used in the preparation of the HCV vaccine of the present invention are shown herein below, the nomenclature corresponding to the target (e.g., Anti_CLEC 69B9.2G12_Heavy Hv-V-hIgG4H-C—is an anti-CLEC-6 antibody from the mouse hybridoma clone “9B9.2G12” (which is the source of the anti-CLEC-6 antibody sequence); heavy chain “H” variable region “v” (which can be humanized) heavy and is an IgG4 constant region isotype. The same nomenclature applies to light chains (from mouse Kappa light chains), and the antigens.
  • Anti_CLEC_6_9B9.2G12_Hv-V-hIgG4H-C (SEQ ID NO: 15):
    ATGGGCAGGCTTACTTCTTCATTCTTGCTACTGATTGTCCCTGCATATGTCCTGTCCCAGGTTACT
    CTGAAAGAGTCTGGCCCTGGGATATTGCAGCCCTCCCAGACCCTCAGTCTGACCTGTTCTTTCTC
    TGGGTTTTCACTGAGCACTTCTGGTATGAGTGTAGGCTGGATTCGTCAGCCTTCAGGGAAGGGT
    CTGGAGTGGCTGGCTCACATTTGGTGGAATGATGATAAGTACTATAATCCAGTCCTGAAAAGCC
    GGCTCACAATCTCCAAGGAGACCTCCAACAACCAGGTATTCCTCAAGATCGCCAGTGTGGTCTC
    TGCAGATACTGCCACATACTACTGTGCTCGATTCTATGGTAACTGTCTTGACTACTGGGGCCAA
    GGCACCACTCTCACAGTCTCCTCGGCCAAAACAAAGGGCCCATCCGTCTTCCCCCTGGCGCCCT
    GCTCCAGGAGCACCTCCGAGAGCACAGCCGCCCTGGGCTGCCTGGTCAAGGACTACTTCCCCGA
    ACCGGTGACGGTGTCGTGGAACTCAGGCGCCCTGACCAGCGGCGTGCACACCTTCCCGGCTGTC
    CTACAGTCCTCAGGACTCTACTCCCTCAGCAGCGTGGTGACCGTGCCCTCCAGCAGCTTGGGCA
    CGAAGACCTACACCTGCAACGTAGATCACAAGCCCAGCAACACCAAGGTGGACAAGAGAGTTG
    AGTCCAAATATGGTCCCCCATGCCCACCCTGCCCAGCACCTGAGTTCGAAGGGGGACCATCAGT
    CTTCCTGTTCCCCCCAAAACCCAAGGACACTCTCATGATCTCCCGGACCCCTGAGGTCACGTGC
    GTGGTGGTGGACGTGAGCCAGGAAGACCCCGAGGTCCAGTTCAACTGGTACGTGGATGGCGTG
    GAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTTCAACAGCACGTACCGTGTGGTC
    AGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAACGGCAAGGAGTACAAGTGCAAGGTCTCC
    AACAAAGGCCTCCCGTCCTCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAG
    CCACAGGTGTACACCCTGCCCCCATCCCAGGAGGAGATGACCAAGAACCAGGTCAGCCTGACC
    TGCCTGGTCAAAGGCTTCTACCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCG
    GAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTACAGCA
    GGCTAACCGTGGACAAGAGCAGGTGGCAGGAGGGGAATGTCTTCTCATGCTCCGTGATGCATG
    AGGCTCTGCACAACCACTACACACAGAAGAGCCTCTCCCTGTCTCTGGGTAAAGCTAGCTGATT
    AATTAA
    Anti_CLEC_6_9B9.2G12_Heavy (H)v-V-hIgG4H-C (SEQ ID NO: 80):
    MGRLTSSFLLLIVPAYVLSQVTLKESGPGILQPSQTLSLTCSFSGFSLSTSGMSVGWIRQPSGKGLEWL
    AHIWWNDDKYYNPVLKSRLTISKETSNNQVFLKIASVVSADTATYYCARFYGNCLDYWGQGTTLT
    VSSAKTKGPSVFPLAPCSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSL
    SSVVTVPSSSLGTKTYTCNVDHKPSNTKVDKRVESKYGPPCPPCPAPEFEGGPSVFLFPPKPKDTLMI
    SRTPEVTCVVVDVSQEDPEVQFNWYVDGVEVHNAKTKPREEQFNSTYRVVSVLTVLHQDWLNGK
    EYKCKVSNKGLPSSIEKTISKAKGQPREPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWESN
    GQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQEGNVFSCSVMHEALHNHYTQKSLSLSLGKAS
    Anti_CLEC_6_9B9.2G12_Kv-V-hIgGK-C (SEQ ID NO: 16):
    ATGATGTCCTCTGCTCAGTTCCTTGGTCTCCTGTTGCTCTGTTTTCAAGGTACCAGATGTGATATC
    CAGATGACACAGACTACATCCTCCCTGTCTGCCTCTCTGGGAGACAGAGTCACCATCAGTTGCA
    GGGCAAGTCAGGACATTAGCAATTATTTAAACTGGTATCAGCAGAAACCAGATGGAACTGTTA
    AACTCCTGATCTACTACACATCAATATTACAATTAGGAGTCCCATCAAGATTCAGTGGCAGTGG
    GTCTGAAACAGATTATTCTCTCACCATTAGCAACCTGGAGCAAGAAGATATTGCCACTTACTTTT
    GCCAACAGGGTGATTCGCTTCCATTCACGTTCGGCTCGGGGACAAAGCTCGAGATCAAACGAAC
    TGTGGCTGCACCATCTGTCTTCATCTTCCCGCCATCTGATGAGCAGTTGAAATCTGGAACTGCCT
    CTGTTGTGTGCCTGCTGAATAACTTCTATCCCAGAGAGGCCAAAGTACAGTGGAAGGTGGATAA
    CGCCCTCCAATCGGGTAACTCCCAGGAGAGTGTCACAGAGCAGGACAGCAAGGACAGCACCTA
    CAGCCTCAGCAGCACCCTGACGCTGAGCAAAGCAGACTACGAGAAACACAAAGTCTATGCCTG
    CGAAGTCACCCATCAGGGCCTGAGCTCGCCCGTCACAAAGAGCTTCAACAGGGGAGAGTGTTAG
    Anti_CLEC_6_9B9.2G12_Light (K)v-V-hIgGK-C (SEQ ID NO: 81):
    MMSSAQFLGLLLLCFQGTRCDIQMTQTTSSLSASLGDRVTISCRASQDISNYLNWYQQKPDGTVKLL
    IYYTSILQLGVPSRFSGSGSETDYSLTISNLEQEDIATYFCQQGDSLPFTFGSGTKLEIKRTVAAPSVFIF
    PPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKA
    DYEKHKVYACEVTHQGLSSPVTKSFNRGEC
    Anti-ASGPR_49C11_7H-LV-hIgG4H-C (SEQ ID NO: 17):
    ATGAGAGCGCTGATTCTTTTGTGCCTGTTCACAGCCTTTCCTGGTATCCTGTCTGATGTGCAGCT
    TCAGGAGTCAGGACCTGACCTGGTGAAACCTTCTCAGTCACTTTCACTCACCTGCACTGTCACTG
    GCTACTCCATCACCAGTGGTTATAGCTGGCACTGGATCCGGCAGTTTCCAGGAAACAAACTGGA
    ATGGATGGGCTACATACTCTTCAGTGGTAGCACTAACTACAACCCATCTCTGAAAAGTCGAATC
    TCTATCACTCGAGACACATCCAAGAACCAGTTCTTCCTGCAGTTGAATTCTGTGACTACTGAGG
    ACACAGCCACATATTTCTGTGCAAGATCTAACTATGGTTCCTTTGCTTCCTGGGGCCAAGGGACT
    CTGGTCACTGTCTCTGCAGCCAAAACAACGGGCCCATCCGTCTTCCCCCTGGCGCCCTGCTCCA
    GGAGCACCTCCGAGAGCACAGCCGCCCTGGGCTGCCTGGTCAAGGACTACTTCCCCGAACCGGT
    GACGGTGTCGTGGAACTCAGGCGCCCTGACCAGCGGCGTGCACACCTTCCCGGCTGTCCTACAG
    TCCTCAGGACTCTACTCCCTCAGCAGCGTGGTGACCGTGCCCTCCAGCAGCTTGGGCACGAAGA
    CCTACACCTGCAACGTAGATCACAAGCCCAGCAACACCAAGGTGGACAAGAGAGTTGAGTCCA
    AATATGGTCCCCCATGCCCACCCTGCCCAGCACCTGAGTTCGAAGGGGGACCATCAGTCTTCCT
    GTTCCCCCCAAAACCCAAGGACACTCTCATGATCTCCCGGACCCCTGAGGTCACGTGCGTGGTG
    GTGGACGTGAGCCAGGAAGACCCCGAGGTCCAGTTCAACTGGTACGTGGATGGCGTGGAGGTG
    CATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTTCAACAGCACGTACCGTGTGGTCAGCGTC
    CTCACCGTCCTGCACCAGGACTGGCTGAACGGCAAGGAGTACAAGTGCAAGGTCTCCAACAAA
    GGCCTCCCGTCCTCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAGCCACAG
    GTGTACACCCTGCCCCCATCCCAGGAGGAGATGACCAAGAACCAGGTCAGCCTGACCTGCCTG
    GTCAAAGGCTTCTACCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAAC
    AACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTACAGCAGGCTAA
    CCGTGGACAAGAGCAGGTGGCAGGAGGGGAATGTCTTCTCATGCTCCGTGATGCATGAGGCTCT
    GCACAACCACTACACACAGAAGAGCCTCTCCCTGTCTCTGGGTAAAGCTAGCTGATTAATTAA
    Anti-ASGPR_49C11_7H-LV-hIgG4H-C (SEQ ID NO: 82):
    MRALILLCLFTAFPGILSDVQLQESGPDLVKPSQSLSLTCTVTGYSITSGYSWHWIRQFPGNKLEWM
    GYILFSGSTNYNPSLKSRISITRDTSKNQFFLQLNSVTTEDTATYFCARSNYGSFASWGQGTLVTVSA
    AKTTGPSVFPLAPCSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSV
    VTVPSSSLGTKTYTCNVDHKPSNTKVDKRVESKYGPPCPPCPAPEFEGGPSVFLFPPKPKDTLMISRT
    PEVTCVVVDVSQEDPEVQFNWYVDGVEVHNAKTKPREEQFNSTYRVVSVLTVLHQDWLNGKEYK
    CKVSNKGLPSSIEKTISKAKGQPREPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPE
    NNYKTTPPVLDSDGSFFLYSRLTVDKSRWQEGNVFSCSVMHEALHNHYTQKSLSLSLGKAS
    Anti-ASGPR_49C11_7K-LV-hIgGK-C (SEQ ID NO: 18):
    ATGGATTTTCAAGTGCAGATTTTCAGCTTCCTGCTAATCAGTGCCTCAGTCATAATATCCAGAGG
    ACAAATTGTTCTCACCCAGTCTCCAGCAATCATGTCTGCATCTCCAGGGGAGAAGGTCACCATG
    ACCTGCAGTGCCAGCTCAAGTGTAAGTCACATGCACTGGTACCAGCAGAAGTCAGGCACTTCCC
    CCAAAAGATGGATTTATGACACATCCAGACTGGCTTCTGGAGTCCCTGCTCGCTTCAGTGGCAG
    TGGGTCTGGGACCTCTTACTCTCTCACAATCAGCAGCATGGAGGCTGAAGATGCTGCCACTTAT
    TACTGCCAGCAGTGGAGTAGTCACCCATGGTCGTTCGGTGGAGGCACCAAACTCGAGATCAAA
    CGAACTGTGGCTGCACCATCTGTCTTCATCTTCCCGCCATCTGATGAGCAGTTGAAATCTGGAAC
    TGCCTCTGTTGTGTGCCTGCTGAATAACTTCTATCCCAGAGAGGCCAAAGTACAGTGGAAGGTG
    GATAACGCCCTCCAATCGGGTAACTCCCAGGAGAGTGTCACAGAGCAGGACAGCAAGGACAGC
    ACCTACAGCCTCAGCAGCACCCTGACGCTGAGCAAAGCAGACTACGAGAAACACAAAGTCTAT
    GCCTGCGAAGTCACCCATCAGGGCCTGAGCTCGCCCGTCACAAAGAGCTTCAACAGGGGAGAG
    TGTTAG
    Anti-ASGPR_49C11_7K-LV-hIgGK-C (SEQ ID NO: 83):
    MDFQVQIFSFLLISASVIISRGQIVLTQSPAIMSASPGEKVTMTCSASSSVSHMHWYQQKSGTSPKRWI
    YDTSRLASGVPARFSGSGSGTSYSLTISSMEAEDAATYYCQQWSSHPWSFGGGTKLEIKRTVAAPSV
    FIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLS
    KADYEKHKVYACEVTHQGLSSPVTKSFNRGEC
    Anti-ASGPR_4G2.2_Hv-V-hIgG4H-C (SEQ ID NO: 19):
    ATGGCTTGGGTGTGGACCTTGCTATTCCTGATGGCAGCTGCCCAAAGTGCCCAAGCACAGATCC
    AGTTGGTGCAGTCTGGACCTGAGCTGAAGAAGCCTGGAGAGACAGTCAAGATCTCCTGCAAGG
    CTTCTGGGTATACCTTCACAAACTATGGAATGAACTGGGTGAAGCAGGTTCCAGGAAAAGGTTT
    AAGGTGGATGGGCTGGATGGACACCTTCACTGGAGAGCCAACATATGCTGATGACTTCAAGGG
    ACGGTTTGCCTTCTCTTTGGAAACCTCTGCCAGCACTGCCTATTTGCAGATCAACAGCCTCAAAA
    ATGAGGACACGGCTACTTATTTCTGTGCAAGAGGGGGGATTTTACGACTCAACTACTTTGACTA
    CTGGGGCCAAGGCACCACTCTCACAGTCTCCTCAGCCAAAACGAAGGGCCCATCCGTCTTCCCC
    CTGGCGCCCTGCTCCAGGAGCACCTCCGAGAGCACAGCCGCCCTGGGCTGCCTGGTCAAGGACT
    ACTTCCCCGAACCGGTGACGGTGTCGTGGAACTCAGGCGCCCTGACCAGCGGCGTGCACACCTT
    CCCGGCTGTCCTACAGTCCTCAGGACTCTACTCCCTCAGCAGCGTGGTGACCGTGCCCTCCAGC
    AGCTTGGGCACGAAGACCTACACCTGCAACGTAGATCACAAGCCCAGCAACACCAAGGTGGAC
    AAGAGAGTTGAGTCCAAATATGGTCCCCCATGCCCACCCTGCCCAGCACCTGAGTTCGAAGGGG
    GACCATCAGTCTTCCTGTTCCCCCCAAAACCCAAGGACACTCTCATGATCTCCCGGACCCCTGA
    GGTCACGTGCGTGGTGGTGGACGTGAGCCAGGAAGACCCCGAGGTCCAGTTCAACTGGTACGT
    GGATGGCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTTCAACAGCACGTA
    CCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAACGGCAAGGAGTACAAGTGC
    AAGGTCTCCAACAAAGGCCTCCCGTCCTCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAG
    CCCCGAGAGCCACAGGTGTACACCCTGCCCCCATCCCAGGAGGAGATGACCAAGAACCAGGTC
    AGCCTGACCTGCCTGGTCAAAGGCTTCTACCCCAGCGACATCGCCGTGGAGTGGGAGAGCAAT
    GGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCC
    TCTACAGCAGGCTAACCGTGGACAAGAGCAGGTGGCAGGAGGGGAATGTCTTCTCATGCTCCG
    TGATGCATGAGGCTCTGCACAACCACTACACACAGAAGAGCCTCTCCCTGTCTCTGGGTAAAGC
    TAGCTGATTAATTAA
    Anti-ASGPR_4G2.2_Hv-V-hIgG4H-C (SEQ ID NO: 84):
    MAWVWTLLFLMAAAQSAQAQIQLVQSGPELKKPGETVKISCKASGYTFTNYGMNWVKQVPGKGL
    RWMGWMDTFTGEPTYADDFKGRFAFSLETSASTAYLQINSLKNEDTATYFCARGGILRLNYFDYW
    GQGTTLTVSSAKTKGPSVFPLAPCSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVL
    QSSGLYSLSSVVTVPSSSLGTKTYTCNVDHKPSNTKVDKRVESKYGPPCPPCPAPEFEGGPSVFLFPP
    KPKDTLMISRTPEVTCVVVDVSQEDPEVQFNWYVDGVEVHNAKTKPREEQFNSTYRVVSVLTVLH
    QDWLNGKEYKCKVSNKGLPSSIEKTISKAKGQPREPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDI
    AVEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQEGNVFSCSVMHEALHNHYTQKSLS
    LSLGKAS
    Anti-ASGPR_4G2.2_Kv-V-hIgGK-C (SEQ ID NO: 20):
    ATGAAGTTTCCTTCTCAACTTCTGCTCTTACTGCTGTTTGGAATCCCAGGCATGATATGTGACAT
    CCAGATGACACAATCTTCATCCTCCTTTTCTGTATCTCTAGGAGACAGAGTCACCATTACTTGCA
    AGGCAAGTGAGGACATATATAATCGGTTAGGCTGGTATCAGCAGAAACCAGGAAATGCTCCTA
    GGCTCTTAATATCTGGTGCAACCAGTTTGGAAACTGGGGTTCCTTCAAGATTCAGTGGCAGTGG
    ATCTGGAAAGGATTACGCTCTCAGCATTACCAGTCTTCAGACTGAAGATCTTGCTACTTATTACT
    GTCAACAGTGTTGGACTTCTCCGTACACGTTCGGAGGGGGGACCAAGCTCGAGATCAAACGAA
    CTGTGGCTGCACCATCTGTCTTCATCTTCCCGCCATCTGATGAGCAGTTGAAATCTGGAACTGCC
    TCTGTTGTGTGCCTGCTGAATAACTTCTATCCCAGAGAGGCCAAAGTACAGTGGAAGGTGGATA
    ACGCCCTCCAATCGGGTAACTCCCAGGAGAGTGTCACAGAGCAGGACAGCAAGGACAGCACCT
    ACAGCCTCAGCAGCACCCTGACGCTGAGCAAAGCAGACTACGAGAAACACAAAGTCTATGCCT
    GCGAAGTCACCCATCAGGGCCTGAGCTCGCCCGTCACAAAGAGCTTCAACAGGGGAGAGTGTT
    AG
    Anti-ASGPR_4G2.2_Kv-V-hIgGK-C (SEQ ID NO: 85):
    MKFPSQLLLLLLFGIPGMICDIQMTQSSSSFSVSLGDRVTITCKASEDIYNRLGWYQQKPGNAPRLLIS
    GATSLETGVPSRFSGSGSGKDYALSITSLQTEDLATYYCQQCWTSPYTFGGGTKLEIKRTVAAPSVFI
    FPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKA
    DYEKHKVYACEVTHQGLSSPVTKSFNRGEC
    Anti-ASGPR_5F10H-LV-hIgG4H-C (SEQ ID NO: 21):
    ATGGGATGGAGCTGGATCTTTCTCTTTCTCTTGTCAGGAACTGGAGGTGTCCTCTCTGAGGTCCA
    GCTGCAACAGTCTGGACCTGAGCTGGTGAAGCCTGGGGCTTCAGTGAAGATGTCCTGCAAGGCT
    TCTGGATACACCTTCACTGACTACTACATGAAGTGGGTGAAGCAGAGCCATGGAAAGAGCCTTG
    AGTGGATTGGAGATATTAATCCTAACTATGGTGATACTTTCTACAACCAGAAGTTCGAGGGCAA
    GGCCACATTGACTGTAGACAAATCCTCCAGGACAGCCTACATGCAGCTCAACAGCCTGACATCT
    GAGGACTCTGCAGTCTATTATTGTGGAAGAGGGGACTATGGATACTTCGATGTCTGGGGCGCAG
    GGACCACGGTCACCGTCTCCTCAGCCAAAACAAAGGGCCCATCCGTCTTCCCCCTGGCGCCCTG
    CTCCAGGAGCACCTCCGAGAGCACAGCCGCCCTGGGCTGCCTGGTCAAGGACTACTTCCCCGAA
    CCGGTGACGGTGTCGTGGAACTCAGGCGCCCTGACCAGCGGCGTGCACACCTTCCCGGCTGTCC
    TACAGTCCTCAGGACTCTACTCCCTCAGCAGCGTGGTGACCGTGCCCTCCAGCAGCTTGGGCAC
    GAAGACCTACACCTGCAACGTAGATCACAAGCCCAGCAACACCAAGGTGGACAAGAGAGTTGA
    GTCCAAATATGGTCCCCCATGCCCACCCTGCCCAGCACCTGAGTTCGAAGGGGGACCATCAGTC
    TTCCTGTTCCCCCCAAAACCCAAGGACACTCTCATGATCTCCCGGACCCCTGAGGTCACGTGCG
    TGGTGGTGGACGTGAGCCAGGAAGACCCCGAGGTCCAGTTCAACTGGTACGTGGATGGCGTGG
    AGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTTCAACAGCACGTACCGTGTGGTCA
    GCGTCCTCACCGTCCTGCACCAGGACTGGCTGAACGGCAAGGAGTACAAGTGCAAGGTCTCCA
    ACAAAGGCCTCCCGTCCTCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAGC
    CACAGGTGTACACCCTGCCCCCATCCCAGGAGGAGATGACCAAGAACCAGGTCAGCCTGACCT
    GCCTGGTCAAAGGCTTCTACCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGG
    AGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTACAGCAG
    GCTAACCGTGGACAAGAGCAGGTGGCAGGAGGGGAATGTCTTCTCATGCTCCGTGATGCATGA
    GGCTCTGCACAACCACTACACACAGAAGAGCCTCTCCCTGTCTCTGGGTAAAGCTAGCTGA
    Anti-ASGPR_5F10H-LV-hIgG4H-C (SEQ ID NO: 86):
    MGWSWIFLFLLSGTGGVLSEVQLQQSGPELVKPGASVKMSCKASGYTFTDYYMKWVKQSHGKSLE
    WIGDINPNYGDTFYNQKFEGKATLTVDKSSRTAYMQLNSLTSEDSAVYYCGRGDYGYFDVWGAGT
    TVTVSSAKTKGPSVFPLAPCSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGL
    YSLSSVVTVPSSSLGTKTYTCNVDHKPSNTKVDKRVESKYGPPCPPCPAPEFEGGPSVFLFPPKPKDT
    LMISRTPEVTCVVVDVSQEDPEVQFNWYVDGVEVHNAKTKPREEQFNSTYRVVSVLTVLHQDWLN
    GKEYKCKVSNKGLPSSIEKTISKAKGQPREPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWE
    SNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQEGNVFSCSVMHEALHNHYTQKSLLSLGKAS
    Anti-ASGPR_5F10K-LV-hIgGK-C (SEQ ID NO: 22):
    ATGGAGACACATTCTCAGGTCTTTGTATACATGTTGCTGTGGTTGTCTGGTGTTGAAGGAGACAT
    TGTGATGACCCAGTCTCACAAATTCATGTCCACATCAGTAGGAGACAGGGTCAGCATCACCTGC
    AAGGCCAGTCAGGATGTGGGTACTGCTGTAGCCTGGTATCAACAGAAACCAGGGCAATCTCCT
    AAACTACTGATTTACTGGGCATCCACCCGGCACACTGGAGTCCCTGATCGCTTCACAGGCAGTG
    GATCTGGGACAGATTTCACTCTCACCATTAACAATGTGCAGTCTGAAGACTTGGCAGATTATTT
    CTGTCAGCAATATAGCAGCAATCCGTACATGTTCGGAGGGGGGACCAAGCTCGAGATCAAACG
    AACTGTGGCTGCACCATCTGTCTTCATCTTCCCGCCATCTGATGAGCAGTTGAAATCTGGAACTG
    CCTCTGTTGTGTGCCTGCTGAATAACTTCTATCCCAGAGAGGCCAAAGTACAGTGGAAGGTGGA
    TAACGCCCTCCAATCGGGTAACTCCCAGGAGAGTGTCACAGAGCAGGACAGCAAGGACAGCAC
    CTACAGCCTCAGCAGCACCCTGACGCTGAGCAAAGCAGACTACGAGAAACACAAAGTCTATGC
    CTGCGAAGTCACCCATCAGGGCCTGAGCTCGCCCGTCACAAAGAGCTTCAACAGGGGAGAGTG
    TTAG
    Anti-ASGPR_5F10K-LV-hIgGK-C (SEQ ID NO: 87):
    METHSQVFVYMLLWLSGVEGDIVMTQSHKFMSTSVGDRVSITCKASQDVGTAVAWYQQKPGQSP
    KLLIYWASTRHTGVPDRFTGSGSGTDFTLTINNVQSEDLADYFCQQYSSNPYMFGGGTKLEIKRTVA
    APSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSST
    LTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC
    Anti-ASGPR1H11_H-V-hIgG4H-C (SEQ ID NO: 23):
    ATGGGATGGAGCTGGATCTTTCTCTTTCTCCTGTCAGGAACTGCAGGTGTCCTCTCTGAGGTCCA
    GCTGCAACAGTCTGGACCTGAGTTGGTGAAGCCTGGGGCTTCAGTGAAGATATCCTGCAAGACT
    TCTGGATACACATTCACTGAATACACCATGCACTGGGTGAGGCAGAGCCATGGAAAGAGCCTT
    GAGTGGATTGGAGGTATTAATCCTATCAATGGTGGTCCTACCTACAACCAGAAGTTCAAGGGCA
    AGGCCACATTGACTGTTGACAAGTCCTCCAGCACAGCCTACATGGAGCTCCGCAGCCTGACATC
    TGAGGACTCTGCAGTCTATTACTGTGCAAGATGGGACTATGGTAGTCGAGATGTTATGGACTAC
    TGGGGTCAAGGAACCTCAGTCACCGTCTCCTCAGCCAAAACGAAGGGCCCATCCGTCTTCCCCC
    TGGCGCCCTGCTCCAGGAGCACCTCCGAGAGCACAGCCGCCCTGGGCTGCCTGGTCAAGGACTA
    CTTCCCCGAACCGGTACCGGTGACGGTGTCGTGGAACTCAGGCGCCCTGACCAGCGGCGTGCAC
    ACCTTCCCGGCTGTCCTACAGTCCTCAGGACTCTACTCCCTCAGCAGCGTGGTGACCGTGCCCTC
    CAGCAGCTTGGGCACGAAGACCTACACCTGCAACGTAGATCACAAGCCCAGCAACACCAAGGT
    GGACAAGAGAGTTGAGTCCAAATATGGTCCCCCATGCCCACCCTGCCCAGCACCTGAGTTCGAA
    GGGGGACCATCAGTCTTCCTGTTCCCCCCAAAACCCAAGGACACTCTCATGATCTCCCGGACCC
    CTGAGGTCACGTGCGTGGTGGTGGACGTGAGCCAGGAAGACCCCGAGGTCCAGTTCAACTGGT
    ACGTGGATGGCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTTCAACAGCA
    CGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAACGGCAAGGAGTACAA
    GTGCAAGGTCTCCAACAAAGGCCTCCCGTCCTCCATCGAGAAAACCATCTCCAAAGCCAAAGG
    GCAGCCCCGAGAGCCACAGGTGTACACCCTGCCCCCATCCCAGGAGGAGATGACCAAGAACCA
    GGTCAGCCTGACCTGCCTGGTCAAAGGCTTCTACCCCAGCGACATCGCCGTGGAGTGGGAGAGC
    AATGGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCT
    TCCTCTACAGCAGGCTAACCGTGGACAAGAGCAGGTGGCAGGAGGGGAATGTCTTCTCATGCTC
    CGTGATGCATGAGGCTCTGCACAACCACTACACACAGAAGAGCCTCTCCCTGTCTCTGGGTAAA
    GCTAGCTGA
    Anti-ASGPR1H11_H-V-hIgG4H-C (SEQ ID NO: 88):
    MGWSWIFLFLLSGTAGVLSEVQLQQSGPELVKPGASVKISCKTSGYTFTEYTMHWVRSHGKSLEWI
    GGINPINGGPTYNQKFKGKATLTVDKSSSTAYMELRSLTSEDSAVYYCARWDYGSRDVMDYWGQ
    GTSVTVSSAKTKGPSVFPLAPCSRSTSESTAALGCLVKDYFPEPVPVTVSWNSGALTSGVHTFPAVL
    QSSGLYSLSSVVTVPSSSLGTKTYTCNVDHKPSNTKVDKRVESKYGPPCPPCPAPEFEGGPSVFLFPP
    KPKDTLMISRTPEVTCVVVDVSQEDPEVQFNWYVDGVEVHNAKTKPREEQFNSTYRVVSVLTVLH
    QDWLNGKEYKCKVSNKGLPSSIEKTISKAKGQPREPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDI
    AVEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQEGNVFSCSVMHEALHNHYTQKSLS
    LSLGKAS
    Anti-ASGPR1H11K-LV-var2-hIgGK-C (SEQ ID NO: 24):
    ATGGAATCACAGACTCTGGTCTTCATATCCATACTGCTCTGGTTATATGGTGCTGATGGGAACAT
    TGTAATGACTCAATCTCCCAAATCCATGTCCATGTCAGTAGGGGAGAGGGTCACCTTGAGCTGC
    AAGGCCAGTGAGAATGTGGGAACTTATGTATCCTGGTATCAACAGAGACCAGAACAGTCTCCA
    AAACTGCTGATATACGGGGCATCCAACCGGTACACTGGGGTCCCCGATCGCTTCACAGGCAGTG
    GATCTGCAACAGATTTCACTCTGACCATCAGCAGTGTGCAGGCTGAGGACCTTGCAGATTATCA
    CTGTGGACAGACTTACAGCTATATATTCACGTTCGGCTCGGGGACAAAGCTCGAGATCAAACGA
    ACTGTGGCTGCACCATCTGTCTTCATCTTCCCGCCATCTGATGAGCAGTTGAAATCTGGAACTGC
    CTCTGTTGTGTGCCTGCTGAATAACTTCTATCCCAGAGAGGCCAAAGTACAGTGGAAGGTGGAT
    AACGCCCTCCAATCGGGTAACTCCCAGGAGAGTGTCACAGAGCAGGACAGCAAGGACAGCACC
    TACAGCCTCAGCAGCACCCTGACGCTGAGCAAAGCAGACTACGAGAAACACAAAGTCTATGCC
    TGCGAAGTCACCCATCAGGGCCTGAGCTCGCCCGTCACAAAGAGCTTCAACAGGGGAGAGTGT
    TAG
    Anti-ASGPR1H11K-LV-var2-hIgGK-C (SEQ ID NO: 89):
    METHSQVFVYMLLWLSGVEGNIVMTQSPKSMSMSVGERVTLSCKASENVGTYVSWYQQRPEQSPK
    LLIYGASNRYTGVPDRFTGSGSATDFTLTISSVQAEDLADYHCGQTYSYIFTFGSGTKLEIKRTVAAP
    SVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLT
    LSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC
    Anti-CD1d_2B5.3G10_H-V-hIgG4H-C (SEQ ID NO: 25):
    ATGGGATGGAGCCGGATCTTTCTCTTCCTCCTGTCAATAACTGCAGGTGTCCATTGCCAGGTCCA
    GGTGCAGCAGTCGGGACCTGAGTTGGTGAAGCCTGGGGCCTCAGTGAAGATTTCCTGCAAAGC
    CTCTGGCGACGCATTCAGTAGTTCTTGGATGAACTGGGTGAAGCAGAGGCCTGGACAGGGTCTT
    GAGTGGATTGGACGGATTTATCTTGGAGATGGAGATATTAATTACAATGGGAAGTTCAAGGGC
    AGGGCCACACTGACTGCAGACAAATCCTCCAGCACAGCCTACATGCAGCTCAGCAGCCTGACCT
    CTGTGGACTCTGCGGTCTATTTCTGCGCGAGGCAGCTCGGGCTATGGTATGTTATGGACTACTG
    GGGTCAAGGAACCTCAGTCACCGTCTCCTCAGCCAAAACAAAGGGCCCATCCGTCTTCCCCCTG
    GCGCCCTGCTCCAGGAGCACCTCCGAGAGCACAGCCGCCCTGGGCTGCCTGGTCAAGGACTACT
    TCCCCGAACCGGTGACGGTGTCGTGGAACTCAGGCGCCCTGACCAGCGGCGTGCACACCTTCCC
    GGCTGTCCTACAGTCCTCAGGACTCTACTCCCTCAGCAGCGTGGTGACCGTGCCCTCCAGCAGC
    TTGGGCACGAAGACCTACACCTGCAACGTAGATCACAAGCCCAGCAACACCAAGGTGGACAAG
    AGAGTTGAGTCCAAATATGGTCCCCCATGCCCACCCTGCCCAGCACCTGAGTTCGAAGGGGGAC
    CATCAGTCTTCCTGTTCCCCCCAAAACCCAAGGACACTCTCATGATCTCCCGGACCCCTGAGGTC
    ACGTGCGTGGTGGTGGACGTGAGCCAGGAAGACCCCGAGGTCCAGTTCAACTGGTACGTGGAT
    GGCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTTCAACAGCACGTACCGT
    GTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAACGGCAAGGAGTACAAGTGCAAG
    GTCTCCAACAAAGGCCTCCCGTCCTCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCC
    GAGAGCCACAGGTGTACACCCTGCCCCCATCCCAGGAGGAGATGACCAAGAACCAGGTCAGCC
    TGACCTGCCTGGTCAAAGGCTTCTACCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGC
    AGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTA
    CAGCAGGCTAACCGTGGACAAGAGCAGGTGGCAGGAGGGGAATGTCTTCTCATGCTCCGTGAT
    GCATGAGGCTCTGCACAACCACTACACACAGAAGAGCCTCTCCCTGTCTCTGGGTAAAGCTAGC
    TGA
    Anti-CD1d_2B5.3G10_H-V-hIgG4H-C (SEQ ID NO: 90):
    MGWSRIFLFLLSITAGVHCQVQVQQSGPELVKPGASVKISCKASGDAFSSSWMNWVKQRPGQGLE
    WIGRIYLGDGDINYNGKFKGRATLTADKSSSTAYMQLSSLTSVDSAVYFCARQLGLWYVMDYWG
    QGTSVTVSSAKTKGPSVFPLAPCSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQ
    SSGLYSLSSVVTVPSSSLGTKTYTCNVDHKPSNTKVDKRVESKYGPPCPPCPAPEFEGGPSVFLFPPK
    PKDTLMISRTPEVTCVVVDVSQEDPEVQFNWYVDGVEVHNAKTKPREEQFNSTYRVVSVLTVLHQ
    DWLNGKEYKCKVSNKGLPSSIEKTISKAKGQPREPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIA
    VEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQEGNVFSCSVMHEALHNHYTQKSLSLS
    LGKAS
    Anti-CD1d_2B5.3G10_K-V-hIgGK-C (SEQ ID NO: 26):
    ATGAGTGTGCCCACTCAGGTCCTGGGGTTGCTGCTGCTGTGGCTTACAGGTGCCAGATGTGACA
    TCCAGATGGCTCAGTCTCCAGCCTCCCTATCTGCATCTGTGGGAGAAACTGTCACCATCACATGT
    CGAGCAAGTGAGAATATTTACAGTTATTTAGCATGGTATCAGCAGAAACAGGGAAAATCTCCTC
    AGCTCCTGGTCTATAATGCAAAAACCTTAGCAGAAGGTGTGCCATCAAGGTTCAGTGGCAGTGG
    ATCAGGCACACAGTTTTCTCTGAAGATCAACAGCCTGCAGCCTGAAGATTTTGGGAGTTATTAC
    TGTCAACATCATTATGGTTTTCCGTGGACGTTCGGTGGAGGCACCAAGCTCGAGATCAAACGAA
    CTGTGGCTGCACCATCTGTCTTCATCTTCCCGCCATCTGATGAGCAGTTGAAATCTGGAACTGCC
    TCTGTTGTGTGCCTGCTGAATAACTTCTATCCCAGAGAGGCCAAAGTACAGTGGAAGGTGGATA
    ACGCCCTCCAATCGGGTAACTCCCAGGAGAGTGTCACAGAGCAGGACAGCAAGGACAGCACCT
    ACAGCCTCAGCAGCACCCTGACGCTGAGCAAAGCAGACTACGAGAAACACAAAGTCTATGCCT
    GCGAAGTCACCCATCAGGGCCTGAGCTCGCCCGTCACAAAGAGCTTCAACAGGGGAGAGTGTT
    AG
    Anti-CD1d_2B5.3G10_K-V-hIgGK-C (SEQ ID NO: 91):
    MSVPTQVLGLLLLWLTGARCDIQMAQSPASLSASVGETVTITCRASENIYSYLAWYQQKQGKSPQL
    LVYNAKTLAEGVPSRFSGSGSGTQFSLKINSLQPEDFGSYYCQHHYGFPWTFGGGTKLEIKRTVAAP
    SVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLT
    LSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC
    Anti-CD1d_2H11.2G5_H-V-hIgG4H-C (SEQ ID NO: 27):
    ATGAACTTCGGGCTCAGCTTGATTTTCCTTGTCCTCATTTTAAAAGGTGTCCAGTGTGAGGTGCA
    GCTGGTGGAGTCTGGGGGAGACTTAGTGAAGCCTGGAGGGTCCCTGAAACTCTCCTGTGCAGCC
    TCTGGATTCACTTTCAGTAGCTATGGCATGTCTTGGGTTCGCCAGACTCCAGACAAGAGGCTGG
    AGTGGGTCGCAGTCATTAGTAGTGGTGGAAGTTCCACCTTCTATCCAGACAGTGTGAAGGGGCG
    ATTCACCATCTCCAGAGACAATGCCAAGAACACCCTGTACCTGCAAATGAGCAGTCTGAAGTCT
    GAGGACACAGCCGTGTATTACTGTTCAAGAGGAGGTTACTACTTTGACTACTGGGGCCAAGGCA
    CCACTCTCACAGTCTCCGCAGCCAAAACAAAGGGCCCATCCGTCTTCCCCCTGGCGCCCTGCTC
    CAGGAGCACCTCCGAGAGCACAGCCGCCCTGGGCTGCCTGGTCAAGGACTACTTCCCCGAACC
    GGTGACGGTGTCGTGGAACTCAGGCGCCCTGACCAGCGGCGTGCACACCTTCCCGGCTGTCCTA
    CAGTCCTCAGGACTCTACTCCCTCAGCAGCGTGGTGACCGTGCCCTCCAGCAGCTTGGGCACGA
    AGACCTACACCTGCAACGTAGATCACAAGCCCAGCAACACCAAGGTGGACAAGAGAGTTGAGT
    CCAAATATGGTCCCCCATGCCCACCCTGCCCAGCACCTGAGTTCGAAGGGGGACCATCAGTCTT
    CCTGTTCCCCCCAAAACCCAAGGACACTCTCATGATCTCCCGGACCCCTGAGGTCACGTGCGTG
    GTGGTGGACGTGAGCCAGGAAGACCCCGAGGTCCAGTTCAACTGGTACGTGGATGGCGTGGAG
    GTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTTCAACAGCACGTACCGTGTGGTCAGC
    GTCCTCACCGTCCTGCACCAGGACTGGCTGAACGGCAAGGAGTACAAGTGCAAGGTCTCCAAC
    AAAGGCCTCCCGTCCTCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAGCCA
    CAGGTGTACACCCTGCCCCCATCCCAGGAGGAGATGACCAAGAACCAGGTCAGCCTGACCTGC
    CTGGTCAAAGGCTTCTACCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAG
    AACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTACAGCAGGC
    TAACCGTGGACAAGAGCAGGTGGCAGGAGGGGAATGTCTTCTCATGCTCCGTGATGCATGAGG
    CTCTGCACAACCACTACACACAGAAGAGCCTCTCCCTGTCTCTGGGTAAAGCTAGCTGA
    Anti-CD1d_2H11.2G5_H-V-hIgG4H-C (SEQ ID NO: 92):
    MNFGLSLIFLVLILKGVQCEVQLVESGGDLVKPGGSLKLSCAASGFTFSSYGMSWVRQTPDKRLEW
    VAVISSGGSSTFYPDSVKGRFTISRDNAKNTLYLQMSSLKSEDTAVYYCSRGGYYFDYWGQGTTLT
    VSAAKTKGPSVFPLAPCSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYS
    LSSVVTVPSSSLGTKTYTCNVDHKPSNTKVDKRVESKYGPPCPPCPAPEFEGGPSVFLFPPKPKDTLM
    ISRTPEVTCVVVDVSQEDPEVQFNWYVDGVEVHNAKTKPREEQFNSTYRVVSVLTVLHQDWLNGK
    EYKCKVSNKGLPSSIEKTISKAKGQPREPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWESN
    GQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQEGNVFSCSVMHEALHNHYTQKSLSLSLGKAS
    Anti-CD1d_2H11.2G5_K-V-hIgGK-C (SEQ ID NO: 28):
    ATGAGGTTCCAGGTTCAGGTTCTGGGGCTCCTTCTGCTCTGGATATCAGGTGCCCAGTGTGATGT
    CCAGATAACCCAGTCTCCATCTTATCTTGCTGCATCTCCTGGAGAAACCATTACTATTAATTGCA
    GGGCAAGCAAGACCATTAGCAAATATTTAGCCTGGTATCAAGAGAAACCTGAGAAAACTGATA
    AGCTTCTTATCTACTCTGGATCCACTTTGCAATCTGGAATTCCATCAAGGTTCAGTGGCAGTGGA
    TCTGGTACAGATTTCACTCTCACCATCAGTGGCCTGGAGCCTGAAGATTTTGCAATGTATTACTG
    TCAACAGCATAATGAATACCCGTGGACGTTCGGTGGAGGCACCAAGCTCGAGATCAAACGAAC
    TGTGGCTGCACCATCTGTCTTCATCTTCCCGCCATCTGATGAGCAGTTGAAATCTGGAACTGCCT
    CTGTTGTGTGCCTGCTGAATAACTTCTATCCCAGAGAGGCCAAAGTACAGTGGAAGGTGGATAA
    CGCCCTCCAATCGGGTAACTCCCAGGAGAGTGTCACAGAGCAGGACAGCAAGGACAGCACCTA
    CAGCCTCAGCAGCACCCTGACGCTGAGCAAAGCAGACTACGAGAAACACAAAGTCTATGCCTG
    CGAAGTCACCCATCAGGGCCTGAGCTCGCCCGTCACAAAGAGCTTCAACAGGGGAGAGTGTTAG
    Anti-CD1d_2H11.2G5_K-V-hIgGK-C (SEQ ID NO: 93):
    MRFQVQVLGLLLLWISGAQCDVQITQSPSYLAASPGETITINCRASKTISKYLAWYQEKPEKTDKLLI
    YSGSTLQSGIPSRFSGSGSGTDFTLTISGLEPEDFAMYYCQQHNEYPWTFGGGTKLEIKRTVAAPSVFI
    FPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKA
    DYEKHKVYACEVTHQGLSSPVTKSFNRGEC
    Anti-CD40_11B6.1C3_H-LV-hIgG4H-C (SEQ ID NO: 29):
    ATGGGATGGAGCTGGATCTTTCTCTTTCTCCTGTCAGGAACTGCAGGTGTCCTCTCTGAGGTCCA
    GCTGCAACAGTCTGGACCTGAGCTGGTGAAGCCTGGGGCTTCAGTGAAGATATCCTGCAAGGCT
    TCTGGTTACTCATTCACTGGCTACTACATGCACTGGGTGAAGCAAAGCCATGTAAAGAGCCTTG
    AGTGGATTGGACGTATTAATCCTTACAATGGTGCTACTAGCTACAACCAGAATTTCAAGGACAA
    GGCCAGCTTGACTGTAGATAAGTCCTCCAGCACAGCCTACATGGAGCTCCACAGCCTGACATCT
    GAGGACTCTGCAGTCTATTACTGTGCAAGAGAGGACTACGTCTACTGGGGCCAAGGCACCACTC
    TCACAGTCTCCTCAGCCAAAACGAAGGGCCCATCCGTCTTCCCCCTGGCGCCCTGCTCCAGGAG
    CACCTCCGAGAGCACAGCCGCCCTGGGCTGCCTGGTCAAGGACTACTTCCCCGAACCGGTGACG
    GTGTCGTGGAACTCAGGCGCCCTGACCAGCGGCGTGCACACCTTCCCGGCTGTCCTACAGTCCT
    CAGGACTCTACTCCCTCAGCAGCGTGGTGACCGTGCCCTCCAGCAGCTTGGGCACGAAGACCTA
    CACCTGCAACGTAGATCACAAGCCCAGCAACACCAAGGTGGACAAGAGAGTTGAGTCCAAATA
    TGGTCCCCCATGCCCACCCTGCCCAGCACCTGAGTTCGAAGGGGGACCATCAGTCTTCCTGTTC
    CCCCCAAAACCCAAGGACACTCTCATGATCTCCCGGACCCCTGAGGTCACGTGCGTGGTGGTGG
    ACGTGAGCCAGGAAGACCCCGAGGTCCAGTTCAACTGGTACGTGGATGGCGTGGAGGTGCATA
    ATGCCAAGACAAAGCCGCGGGAGGAGCAGTTCAACAGCACGTACCGTGTGGTCAGCGTCCTCA
    CCGTCCTGCACCAGGACTGGCTGAACGGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAGGCC
    TCCCGTCCTCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAGCCACAGGTGT
    ACACCCTGCCCCCATCCCAGGAGGAGATGACCAAGAACCAGGTCAGCCTGACCTGCCTGGTCA
    AAGGCTTCTACCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAACT
    ACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTACAGCAGGCTAACCGT
    GGACAAGAGCAGGTGGCAGGAGGGGAATGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCA
    CAACCACTACACACAGAAGAGCCTCTCCCTGTCTCTGGGTAAAGCTAGCTGA
    Anti-CD40_11B6.1C3_H-LV-hIgG4H-C (SEQ ID NO: 94):
    MGWSWIFLFLLSGTAGVLSEVQLQQSGPELVKPGASVKISCKASGYSFTGYYMHWVKQSHVKSLE
    WIGRINPYNGATSYNQNFKDKASLTVDKSSSTAYMELHSLTSEDSAVYYCAREDYVYWGQGTTLT
    VSSAKTKGPSVFPLAPCSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSL
    SSVVTVPSSSLGTKTYTCNVDHKPSNTKVDKRVESKYGPPCPPCPAPEFEGGPSVFLFPPKPKDTLMI
    SRTPEVTCVVVDVSQEDPEVQFNWYVDGVEVHNAKTKPREEQFNSTYRVVSVLTVLHQDWLNGK
    EYKCKVSNKGLPSSIEKTISKAKGQPREPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWESN
    GQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQEGNVFSCSVMHEALHNHYTQKSLSLSLGKAS
    Anti-CD40_11B6.1C3_K-LV-hIgGK-C (SEQ ID NO: 30):
    ATGAAGTTGCCTGTTAGGCTGTTGGTGCTGATGTTCTGGATTCCTGCTTCCAGCAGTGATGTTGT
    GATGACCCAAACTCCACTCTCCCTGCCTGTCAGTCTTGGAGATCAAGCCTCCATCTCTTGCAGAT
    CTAGTCAGAGCCTTGTACACAGTAATGGAAACACCTATTTACATTGGTACCTGCAGAAGCCAGG
    CCAGTCTCCAAAGCTCCTGATCTACAAAGTTTCCAACCGATTTTCTGGGGTCCCAGACAGGTTC
    AGTGGCAGTGGATCAGGGACAGATTTCGCACTCAAGATCAGTAGAGTGGAGGCTGAGGATCTG
    GGAGTTTATTTCTGCTCTCAAAGTACACATGTTCCGTGGACGTTCGGTGGAGGCACCAAGCTCG
    AGATCAAACGAACTGTGGCTGCACCATCTGTCTTCATCTTCCCGCCATCTGATGAGCAGTTGAA
    ATCTGGAACTGCCTCTGTTGTGTGCCTGCTGAATAACTTCTATCCCAGAGAGGCCAAAGTACAG
    TGGAAGGTGGATAACGCCCTCCAATCGGGTAACTCCCAGGAGAGTGTCACAGAGCAGGACAGC
    AAGGACAGCACCTACAGCCTCAGCAGCACCCTGACGCTGAGCAAAGCAGACTACGAGAAACAC
    AAAGTCTATGCCTGCGAAGTCACCCATCAGGGCCTGAGCTCGCCCGTCACAAAGAGCTTCAACA
    GGGGAGAGTGTTAG
    Anti-CD40_11B6.1C3_K-LV-hIgGK-C (SEQ ID NO: 95):
    MKLPVRLLVLMFWIPASSSDVVMTQTPLSLPVSLGDQASISCRSSQSLVHSNGNTYLHWYLQKPGQ
    SPKLLIYKVSNRFSGVPDRFSGSGSGTDFALKISRVEAEDLGVYFCSQSTHVPWTFGGGTKLEIKRTV
    AAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSS
    TLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC
    Anti-CD40_12B4.2C10_H-LV-hIgG4H-C (SEQ ID NO: 31):
    ATGGAATGGAGTTGGATATTTCTCTTTCTTCTGTCAGGAACTGCAGGTGTCCACTCTGAGGTCCA
    GCTGCAGCAGTCTGGACCTGAGCTGGTAAAGCCTGGGGCTTCAGTGAAGATGTCCTGCAAGGCT
    TCTGGATACACATTCACTGACTATGTTTTGCACTGGGTGAAACAGAAGCCTGGGCAGGGCCTTG
    AGTGGATTGGATATATTAATCCTTACAATGATGGTACTAAGTACAATGAGAAGTTCAAAGGCAA
    GGCCACACTGACTTCAGACAAATCCTCCAGCACAGCCTACATGGAGCTCAGCAGCCTGACCTCT
    GAGGACTCTGCGGTCTATTACTGTGCAAGGGGCTATCCGGCCTACTCTGGGTATGCTATGGACT
    ACTGGGGTCAAGGAACCTCAGTCACCGTCTCCTCAGCCAAAACGAAGGGCCCATCCGTCTTCCC
    CCTGGCGCCCTGCTCCAGGAGCACCTCCGAGAGCACAGCCGCCCTGGGCTGCCTGGTCAAGGAC
    TACTTCCCCGAACCGGTGACGGTGTCGTGGAACTCAGGCGCCCTGACCAGCGGCGTGCACACCT
    TCCCGGCTGTCCTACAGTCCTCAGGACTCTACTCCCTCAGCAGCGTGGTGACCGTGCCCTCCAGC
    AGCTTGGGCACGAAGACCTACACCTGCAACGTAGATCACAAGCCCAGCAACACCAAGGTGGAC
    AAGAGAGTTGAGTCCAAATATGGTCCCCCATGCCCACCCTGCCCAGCACCTGAGTTCGAAGGGG
    GACCATCAGTCTTCCTGTTCCCCCCAAAACCCAAGGACACTCTCATGATCTCCCGGACCCCTGA
    GGTCACGTGCGTGGTGGTGGACGTGAGCCAGGAAGACCCCGAGGTCCAGTTCAACTGGTACGT
    GGATGGCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTTCAACAGCACGTA
    CCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAACGGCAAGGAGTACAAGTGC
    AAGGTCTCCAACAAAGGCCTCCCGTCCTCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAG
    CCCCGAGAGCCACAGGTGTACACCCTGCCCCCATCCCAGGAGGAGATGACCAAGAACCAGGTC
    AGCCTGACCTGCCTGGTCAAAGGCTTCTACCCCAGCGACATCGCCGTGGAGTGGGAGAGCAAT
    GGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCC
    TCTACAGCAGGCTAACCGTGGACAAGAGCAGGTGGCAGGAGGGGAATGTCTTCTCATGCTCCG
    TGATGCATGAGGCTCTGCACAACCACTACACACAGAAGAGCCTCTCCCTGTCTCTGGGTAAAGC
    TAGCTGA
    Anti-CD40_12B4.2C10_H-LV-hIgG4H-C (SEQ ID NO: 96):
    MEWSWIFLFLLSGTAGVHSEVQLQQSGPELVKPGASVKMSCKASGYTFTDYVLHWVKQKPGQGLE
    WIGYINPYNDGTKYNEKFKGKATLTSDKSSSTAYMELSSLTSEDSAVYYCARGYPAYSGYAMDYW
    GQGTSVTVSSAKTKGPSVFPLAPCSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVL
    QSSGLYSLSSVVTVPSSSLGTKTYTCNVDHKPSNTKVDKRVESKYGPPCPPCPAPEFEGGPSVFLFPP
    KPKDTLMISRTPEVTCVVVDVSQEDPEVQFNWYVDGVEVHNAKTKPREEQFNSTYRVVSVLTVLH
    QDWLNGKEYKCKVSNKGLPSSIEKTISKAKGQPREPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDI
    AVEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQEGNVFSCSVMHEALHNHYTQKSLS
    LSLGKAS
    Anti-CD40_12B4.2C10_K-LV-v2-hIgGK-C (SEQ ID NO: 32):
    ATGATGTCCTCTGCTCAGTTCCTTGGTCTCCTGTTGCTCTGTTTTCAAGGTACCAGATGTGATATC
    CAGATGACACAGACTACATCCTCCCTGTCTGCCTCTCTGGGAGACAGAGTCACCATCAGTTGCA
    GGGCAAGTCAGGACATTAGCAATTATTTAAACTGGTATCAGCAGAAACCAGATGGAACTGTTA
    AACTCCTGATCTACTACACATCAAGATTACACTCAGGAGTCCCATCAAGGTTCAGTGGCAGTGG
    GTCTGGAACAGATTATTCTCTCACCATTAGCAACCTGGAGCAAGAAGATATTGCCACTTACTTTT
    GCCATCATGGTAATACGCTTCCGTGGACGTTCGGTGGAGGCACCAAGCTCGAGATCAAACGAA
    CTGTGGCTGCACCATCTGTCTTCATCTTCCCGCCATCTGATGAGCAGTTGAAATCTGGAACTGCC
    TCTGTTGTGTGCCTGCTGAATAACTTCTATCCCAGAGAGGCCAAAGTACAGTGGAAGGTGGATA
    ACGCCCTCCAATCGGGTAACTCCCAGGAGAGTGTCACAGAGCAGGACAGCAAGGACAGCACCT
    ACAGCCTCAGCAGCACCCTGACGCTGAGCAAAGCAGACTACGAGAAACACAAAGTCTATGCCT
    GCGAAGTCACCCATCAGGGCCTGAGCTCGCCCGTCACAAAGAGCTTCAACAGGGGAGAGTGTT
    AG
    Anti-CD40_12B4.2C10_K-LV-v2-hIgGK-C (SEQ ID NO: 97):
    MMSSAQFLGLLLLCFQGTRCDIQMTQTTSSLSASLGDRVTISCRASQDISNYLNWYQQKPDGTVKLL
    IYYTSRLHSGVPSRFSGSGSGTDYSLTISNLEQEDIATYFCHHGNTLPWTFGGGTKLEIKRTVAAPSVF
    IFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSK
    ADYEKHKVYACEVTHQGLSSPVTKSFNRGEC
    Anti-CD40_12E12.3F3_H-V-hIgG4H-C (SEQ ID NO: 33):
    ATGAACTTGGGGCTCAGCTTGATTTTCCTTGTCCTTGTTTTAAAAGGTGTCCAGTGTGAAGTGAA
    GCTGGTGGAGTCTGGGGGAGGCTTAGTGCAGCCTGGAGGGTCCCTGAAACTCTCCTGTGCAACC
    TCTGGATTCACTTTCAGTGACTATTACATGTATTGGGTTCGCCAGACTCCAGAGAAGAGGCTGG
    AGTGGGTCGCATACATTAATTCTGGTGGTGGTAGCACCTATTATCCAGACACTGTAAAGGGCCG
    ATTCACCATCTCCAGAGACAATGCCAAGAACACCCTGTACCTGCAAATGAGCCGGCTGAAGTCT
    GAGGACACAGCCATGTATTACTGTGCAAGACGGGGGTTACCGTTCCATGCTATGGACTATTGGG
    GTCAAGGAACCTCAGTCACCGTCTCCTCAGCCAAAACGAAGGGCCCATCCGTCTTCCCCCTGGC
    GCCCTGCTCCAGGAGCACCTCCGAGAGCACAGCCGCCCTGGGCTGCCTGGTCAAGGACTACTTC
    CCCGAACCGGTGACGGTGTCGTGGAACTCAGGCGCCCTGACCAGCGGCGTGCACACCTTCCCGG
    CTGTCCTACAGTCCTCAGGACTCTACTCCCTCAGCAGCGTGGTGACCGTGCCCTCCAGCAGCTTG
    GGCACGAAGACCTACACCTGCAACGTAGATCACAAGCCCAGCAACACCAAGGTGGACAAGAGA
    GTTGAGTCCAAATATGGTCCCCCATGCCCACCCTGCCCAGCACCTGAGTTCGAAGGGGGACCAT
    CAGTCTTCCTGTTCCCCCCAAAACCCAAGGACACTCTCATGATCTCCCGGACCCCTGAGGTCAC
    GTGCGTGGTGGTGGACGTGAGCCAGGAAGACCCCGAGGTCCAGTTCAACTGGTACGTGGATGG
    CGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTTCAACAGCACGTACCGTGT
    GGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAACGGCAAGGAGTACAAGTGCAAGGT
    CTCCAACAAAGGCCTCCCGTCCTCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCG
    AGAGCCACAGGTGTACACCCTGCCCCCATCCCAGGAGGAGATGACCAAGAACCAGGTCAGCCT
    GACCTGCCTGGTCAAAGGCTTCTACCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCA
    GCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTAC
    AGCAGGCTAACCGTGGACAAGAGCAGGTGGCAGGAGGGGAATGTCTTCTCATGCTCCGTGATG
    CATGAGGCTCTGCACAACCACTACACACAGAAGAGCCTCTCCCTGTCTCTGGGTAAAGCTAGCT
    GA
    Anti-CD40_12E12.3F3_H-V-hIgG4H-C (SEQ ID NO: 98):
    MNLGLSLIFLVLVLKGVQCEVKLVESGGGLVQPGGSLKLSCATSGFTFSDYYMYWVRQTPEKRLE
    WVAYINSGGGSTYYPDTVKGRFTISRDNAKNTLYLQMSRLKSEDTAMYYCARRGLPFHAMDYWG
    QGTSVTVSSAKTKGPSVFPLAPCSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQ
    SSGLYSLSSVVTVPSSSLGTKTYTCNVDHKPSNTKVDKRVESKYGPPCPPCPAPEFEGGPSVFLFPPK
    PKDTLMISRTPEVTCVVVDVSQEDPEVQFNWYVDGVEVHNAKTKPREEQFNSTYRVVSVLTVLHQ
    DWLNGKEYKCKVSNKGLPSSIEKTISKAKGQPREPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIA
    VEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQEGNVFSCSVMHEALHNHYTQKSLSLS
    LGKAS
    Anti-CD40_12E12.3F3_K-LV-hIgGK-C (SEQ ID NO: 34):
    ATGATGTCCTCTGCTCAGTTCCTTGGTCTCCTGTTGCTCTGTTTTCAAGGTACCAGATGTGATATC
    CAGATGACACAGACTACATCCTCCCTGTCTGCCTCTCTAGGAGACAGAGTCACCATCAGTTGCA
    GTGCAAGTCAGGGCATTAGCAATTATTTAAACTGGTATCAGCAGAAACCAGATGGAACTGTTAA
    ACTCCTGATCTATTACACATCAATTTTACACTCAGGAGTCCCATCAAGGTTCAGTGGCAGTGGG
    TCTGGGACAGATTATTCTCTCACCATCGGCAACCTGGAACCTGAAGATATTGCCACTTACTATTG
    TCAGCAGTTTAATAAGCTTCCTCCGACGTTCGGTGGAGGCACCAAACTCGAGATCAAACGAACT
    GTGGCTGCACCATCTGTCTTCATCTTCCCGCCATCTGATGAGCAGTTGAAATCTGGAACTGCCTC
    TGTTGTGTGCCTGCTGAATAACTTCTATCCCAGAGAGGCCAAAGTACAGTGGAAGGTGGATAAC
    GCCCTCCAATCGGGTAACTCCCAGGAGAGTGTCACAGAGCAGGACAGCAAGGACAGCACCTAC
    AGCCTCAGCAGCACCCTGACGCTGAGCAAAGCAGACTACGAGAAACACAAAGTCTATGCCTGC
    GAAGTCACCCATCAGGGCCTGAGCTCGCCCGTCACAAAGAGCTTCAACAGGGGAGAGTGTTAG
    Anti-CD40_12E12.3F3_K-LV-hIgGK-C (SEQ ID NO: 99):
    MMSSAQFLGLLLLCFQGTRCDIQMTQTTSSLSASLGDRVTISCSASQGISNYLNWYQQKPDGTVKLL
    IYYTSILHSGVPSRFSGSGSGTDYSLTIGNLEPEDIATYYCQQFNKLPPTFGGGTKLEIKRTVAAPSVFI
    FPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKA
    DYEKHKVYACEVTHQGLSSPVTKSFNRGEC
    Anti-DCIR_24A5.4A5_H-V-hIgG4H-C (SEQ ID NO: 35):
    ATGGATTGGCTGTGGAACTTGCTATTCCTGATGGCAGCTGCCCAAAGTGCCCAAGCACAGATCC
    AGTTGGTGCAGTCTGGACCTGAGCTGAAGAAGCCTGGAGAGACAGTCAAGATCTCCTGCAAGG
    CTTCTGGGTATTCCTTCACAAACTATGGAATGAACTGGGTGAAACAGGCTCCAGGAAAGGGTTT
    AAAGTGGATGGGCTGGATAAACACCTACACTGGAGAGTCAACATATGCTGATGACTTCAAGGG
    ACGGTTTGCCTTCTCTTTGGAAACCTCTGCCAGCACTGCCTATTTGCAGATCAGTAACCTCAAAA
    ATGAGGACATGGCTACATATTTCTGTGCTAGAGGGGACTTTAGGTACTACTATTTTGACTACTG
    GGGCCAAGGCACCACTCTCACAGGCTCCTCAGCCAAAACGAAGGGCCCATCCGTCTTCCCCCTG
    GCGCCCTGCTCCAGGAGCACCTCCGAGAGCACAGCCGCCCTGGGCTGCCTGGTCAAGGACTACT
    TCCCCGAACCGGTGACGGTGTCGTGGAACTCAGGCGCCCTGACCAGCGGCGTGCACACCTTCCC
    GGCTGTCCTACAGTCCTCAGGACTCTACTCCCTCAGCAGCGTGGTGACCGTGCCCTCCAGCAGC
    TTGGGCACGAAGACCTACACCTGCAACGTAGATCACAAGCCCAGCAACACCAAGGTGGACAAG
    AGAGTTGAGTCCAAATATGGTCCCCCATGCCCACCCTGCCCAGCACCTGAGTTCGAAGGGGGAC
    CATCAGTCTTCCTGTTCCCCCCAAAACCCAAGGACACTCTCATGATCTCCCGGACCCCTGAGGTC
    ACGTGCGTGGTGGTGGACGTGAGCCAGGAAGACCCCGAGGTCCAGTTCAACTGGTACGTGGAT
    GGCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTTCAACAGCACGTACCGT
    GTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAACGGCAAGGAGTACAAGTGCAAG
    GTCTCCAACAAAGGCCTCCCGTCCTCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCC
    GAGAGCCACAGGTGTACACCCTGCCCCCATCCCAGGAGGAGATGACCAAGAACCAGGTCAGCC
    TGACCTGCCTGGTCAAAGGCTTCTACCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGC
    AGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTA
    CAGCAGGCTAACCGTGGACAAGAGCAGGTGGCAGGAGGGGAATGTCTTCTCATGCTCCGTGAT
    GCATGAGGCTCTGCACAACCACTACACACAGAAGAGCCTCTCCCTGTCTCTGGGTAAAGCTAGC
    TGAT
    Anti-DCIR_24A5.4A5_H-V-hIgG4H-C (SEQ ID NO: 100):
    MDWLWNLLFLMAAAQSAQAQIQLVQSGPELKKPGETVKISCKASGYSFTNYGMNWVKQAPGKGL
    KWMGWINTYTGESTYADDFKGRFAFSLETSASTAYLQISNLKNEDMATYFCARGDFRYYYFDYWG
    QGTTLTGSSAKTKGPSVFPLAPCSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQ
    SSGLYSLSSVVTVPSSSLGTKTYTCNVDHKPSNTKVDKRVESKYGPPCPPCPAPEFEGGPSVFLFPPK
    PKDTLMISRTPEVTCVVVDVSQEDPEVQFNWYVDGVEVHNAKTKPREEQFNSTYRVVSVLTVLHQ
    DWLNGKEYKCKVSNKGLPSSIEKTISKAKGQPREPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIA
    VEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQEGNVFSCSVMHEALHNHYTQKSLSLS
    LGKAS
    Anti-DCIR_24A5.4A5_K-V-hIgGK-C (SEQ ID NO: 36):
    ATGAGTGTGCTCACTCAGGTCCTGGCGTTGCTGCTGCTGTGGCTTACAGGTGCCAGATGTGACA
    TCCAGATGACTCAGTCTCCAGCCTCCCTATCTGCATCTGTGGGAGAAACTGTCACCATCACGTGT
    CGAGCAAGTGGGAATATTCACAATTATTTAGCATGGTATCAGCAGAAACAGGGAAAATCTCCTC
    AGCTCCTGGTCTATAATGCAAAAACCTTGGCAGATGGTGTGCCATCAAGGTTCAGTGGCAGTGG
    ATCAGGAACACAATATTCTCTCAAGATCAACACCCTGCAGCCTGAAGATTTTGGGAGTTATTAC
    TGTCAACATTTTTGGGATTCTTGGACGTTCGGTGGAGGCACCAAGCTCGAGATCAAACGAACTG
    TGGCTGCACCATCTGTCTTCATCTTCCCGCCATCTGATGAGCAGTTGAAATCTGGAACTGCCTCT
    GTTGTGTGCCTGCTGAATAACTTCTATCCCAGAGAGGCCAAAGTACAGTGGAAGGTGGATAACG
    CCCTCCAATCGGGTAACTCCCAGGAGAGTGTCACAGAGCAGGACAGCAAGGACAGCACCTACA
    GCCTCAGCAGCACCCTGACGCTGAGCAAAGCAGACTACGAGAAACACAAAGTCTATGCCTGCG
    AAGTCACCCATCAGGGCCTGAGCTCGCCCGTCACAAAGAGCTTCAACAGGGGAGAGTGTTAG
    Anti-DCIR_24A5.4A5_K-V-hIgGK-C (SEQ ID NO: 101):
    MSVLTQVLALLLLWLTGARCDIQMTQSPASLSASVGETVTITCRASGNIHNYLAWYQQKQGKSPQL
    LVYNAKTLADGVPSRFSGSGSGTQYSLKINTLQPEDFGSYYCQHFWDSWTFGGGTKLEIKRTVAAP
    SVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLT
    LSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC
    Anti-DCIR_24E7.3H9_H-V-hIgG4H-C (SEQ ID NO: 37):
    ATGGAATGGACCTGGGTCTTTCTCTTCCTCCTGTCAGTAACTGCAGGTGTCCACTCCCAGGTTCA
    GCTGCAGCAGTCTGGAGCTGAGCTGATGAAGCCTGGGGCCTCAGTGAAGATATCCTGCAAGGC
    TACTGGCTACACATTCAGTAGCTACTGGATAGAGTGGGTAAAGCAGAGGCCTGGACATGGCCTT
    GAGTGGATTGGAGAGATTTTACCTGGAAGTGGTAGGACTAACGACAATGAGAAGTTCAAGGGC
    AAGGCCACATTCACTGCAGATACATCCTCCAAGAAAGCCTACATGCAACTCAGCAGCCTGACAT
    CTGAGGACTCTGCCGTCTATTATTGTGCAAGAAGGGGTGGTTACTCCTTTGCTTACTGGGGCCA
    AGGGACTCTGGTCACTGTCTCTGCAGCCAAAACAAAGGGCCCATCCGTCTTCCCCCTGGCGCCC
    TGCTCCAGGAGCACCTCCGAGAGCACAGCCGCCCTGGGCTGCCTGGTCAAGGACTACTTCCCCG
    AACCGGTGACGGTGTCGTGGAACTCAGGCGCCCTGACCAGCGGCGTGCACACCTTCCCGGCTGT
    CCTACAGTCCTCAGGACTCTACTCCCTCAGCAGCGTGGTGACCGTGCCCTCCAGCAGCTTGGGC
    ACGAAGACCTACACCTGCAACGTAGATCACAAGCCCAGCAACACCAAGGTGGACAAGAGAGTT
    GAGTCCAAATATGGTCCCCCATGCCCACCCTGCCCAGCACCTGAGTTCGAAGGGGGACCATCAG
    TCTTCCTGTTCCCCCCAAAACCCAAGGACACTCTCATGATCTCCCGGACCCCTGAGGTCACGTGC
    GTGGTGGTGGACGTGAGCCAGGAAGACCCCGAGGTCCAGTTCAACTGGTACGTGGATGGCGTG
    GAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTTCAACAGCACGTACCGTGTGGTC
    AGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAACGGCAAGGAGTACAAGTGCAAGGTCTCC
    AACAAAGGCCTCCCGTCCTCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAG
    CCACAGGTGTACACCCTGCCCCCATCCCAGGAGGAGATGACCAAGAACCAGGTCAGCCTGACC
    TGCCTGGTCAAAGGCTTCTACCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCG
    GAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTACAGCA
    GGCTAACCGTGGACAAGAGCAGGTGGCAGGAGGGGAATGTCTTCTCATGCTCCGTGATGCATG
    AGGCTCTGCACAACCACTACACACAGAAGAGCCTCTCCCTGTCTCTGGGTAAAGCTAGCTGA
    Anti-DCIR_24E7.3H9_H-V-hIgG4H-C (SEQ ID NO: 102):
    MEWTWVFLFLLSVTAGVHSQVQLQQSGAELMKPGASVKISCKATGYTFSSYWIEWVKQRPGHGLE
    WIGEILPGSGRTNDNEKFKGKATFTADTSSKKAYMQLSSLTSEDSAVYYCARRGGYSFAYWGQGTL
    VTVSAAKTKGPSVFPLAPCSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGL
    YSLSSVVTVPSSSLGTKTYTCNVDHKPSNTKVDKRVESKYGPPCPPCPAPEFEGGPSVFLFPPKPKDT
    LMISRTPEVTCVVVDVSQEDPEVQFNWYVDGVEVHNAKTKPREEQFNSTYRVVSVLTVLHQDWLN
    GKEYKCKVSNKGLPSSIEKTISKAKGQPREPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWE
    SNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQEGNVFSCSVMHEALHNHYTQKSLSLSLGKAS
    Anti-DCIR_24E7.3H9_K-V-hIgGK-C (SEQ ID NO: 38):
    ATGACCATGTTCTCACTAGCTCTTCTCCTCAGTCTTCTTCTCCTCTGTGTCTCTGATTCTAGGGCA
    GAAACAACTGTGACCCAGTCTATGACCATGTTCTCACTAGCTCTTCTCCTCAGTCTTCTTCTCCT
    CTGTGTCTCTGATTCTAGGGCAGAAACAACTGTGACCCAGTCTCCAGCATCCCTGTCCATGGCT
    ATAGGGGAAAAAGTCACCATCAGATGCGTAACCAGCACTGATATTGATGATGATGTGAACTGG
    TACCAGCAGAAGCCAGGGGAACCTCCTAAACTCCTTATTTCAGAAGGCAATACTCTTCGTCCTG
    GAGTCCCATCCCGATTCTCCAGCAGTGGCTATGGTACAGATTTTGTTTTTACAATTGAGAACATG
    CTCTCAGAAGATGTTGCAGATTACTACTGTTTGCAAAGTGGTAACTTGCCGTACACGTTCGGAG
    GGGGGACCAAGCTCGAGATCAAACGAACTGTGGCTGCACCATCTGTCTTCATCTTCCCGCCATC
    TGATGAGCAGTTGAAATCTGGAACTGCCTCTGTTGTGTGCCTGCTGAATAACTTCTATCCCAGA
    GAGGCCAAAGTACAGTGGAAGGTGGATAACGCCCTCCAATCGGGTAACTCCCAGGAGAGTGTC
    ACAGAGCAGGACAGCAAGGACAGCACCTACAGCCTCAGCAGCACCCTGACGCTGAGCAAAGCA
    GACTACGAGAAACACAAAGTCTATGCCTGCGAAGTCACCCATCAGGGCCTGAGCTCGCCCGTC
    ACAAAGAGCTTCAACAGGGGAGAGTGTTAGCCAGCATCCCTGTCCATGGCTATAGGGGAAAAA
    GTCACCATCAGATGCGTAACCAGCACTGATATTGATGATGATGTGAACTGGTACCAGCAGAAGC
    CAGGGGAACCTCCTAAACTCCTTATTTCAGAAGGCAATACTCTTCGTCCTGGAGTCCCATCCCG
    ATTCTCCAGCAGTGGCTATGGTACAGATTTTGTTTTTACAATTGAGAACATGCTCTCAGAAGATG
    TTGCAGATTACTACTGTTTGCAAAGTGGTAACTTGCCGTACACGTTCGGAGGGGGGACCAAGCT
    CGAGATCAAACGAACTGTGGCTGCACCATCTGTCTTCATCTTCCCGCCATCTGATGAGCAGTTG
    AAATCTGGAACTGCCTCTGTTGTGTGCCTGCTGAATAACTTCTATCCCAGAGAGGCCAAAGTAC
    AGTGGAAGGTGGATAACGCCCTCCAATCGGGTAACTCCCAGGAGAGTGTCACAGAGCAGGACA
    GCAAGGACAGCACCTACAGCCTCAGCAGCACCCTGACGCTGAGCAAAGCAGACTACGAGAAAC
    ACAAAGTCTATGCCTGCGAAGTCACCCATCAGGGCCTGAGCTCGCCCGTCACAAAGAGCTTCAA
    CAGGGGAGAGTGTTAG
    Anti-DCIR_24E7.3H9_K-V-hIgGK-C (SEQ ID NO: 103):
    MTMFSLALLLSLLLLCVSDSRAETTVTQSPASLSMAIGEKVTIRCVTSTDIDDDVNWYQQKPGEPPK
    LLISEGNTLRPGVPSRFSSSGYGTDFVFTIENMLSEDVADYYCLQSGNLPYTFGGGTKLEIKRTVAAP
    SVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLT
    LSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC
    Anti-DCIR_29E9.2E2_H-VhIgG4H-C (SEQ ID NO: 39):
    ATGGCTTGGGTGTGGACCTTGCTATTCCTGATGGCAGCTGCCCAAAGTGCCCAAGCACAGATCC
    AGTTGGTGCAGTCTGGACCTGAGCTGAAGAAGCCTGGAGAGACAGTCAAGATCTCCTGCAAGG
    CTTCTGGGTATACCTTCACAAACTATGGAATGAACTGGGTGAAGCAGGCTCCAGGAAAGGGTTT
    AAAGTGGGTGGGCTGGATAAACACCTTCACTGGAGAGCCAACATATGTTGATGACTTCAAGGG
    ACGGTTTGCCTTCTCTTTGGAAACCTCTGCCAGCACTGCCTATTTGCAGATCAACAACCTCAAAA
    ATGAGGACACGGCTACATATTTCTGTGCAAGAGGGAATTTTAGGTACTACTACTTTGACTACTG
    GGGCCAAGGCACCACTCTCACAGTCTCCTCAGCCAAAACAAAGGGCCCATCCGTCTTCCCCCTG
    GCGCCCTGCTCCAGGAGCACCTCCGAGAGCACAGCCGCCCTGGGCTGCCTGGTCAAGGACTACT
    TCCCCGAACCGGTGACGGTGTCGTGGAACTCAGGCGCCCTGACCAGCGGCGTGCACACCTTCCC
    GGCTGTCCTACAGTCCTCAGGACTCTACTCCCTCAGCAGCGTGGTGACCGTGCCCTCCAGCAGC
    TTGGGCACGAAGACCTACACCTGCAACGTAGATCACAAGCCCAGCAACACCAAGGTGGACAAG
    AGAGTTGAGTCCAAATATGGTCCCCCATGCCCACCCTGCCCAGCACCTGAGTTCGAAGGGGGAC
    CATCAGTCTTCCTGTTCCCCCCAAAACCCAAGGACACTCTCATGATCTCCCGGACCCCTGAGGTC
    ACGTGCGTGGTGGTGGACGTGAGCCAGGAAGACCCCGAGGTCCAGTTCAACTGGTACGTGGAT
    GGCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTTCAACAGCACGTACCGT
    GTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAACGGCAAGGAGTACAAGTGCAAG
    GTCTCCAACAAAGGCCTCCCGTCCTCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCC
    GAGAGCCACAGGTGTACACCCTGCCCCCATCCCAGGAGGAGATGACCAAGAACCAGGTCAGCC
    TGACCTGCCTGGTCAAAGGCTTCTACCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGC
    AGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTA
    CAGCAGGCTAACCGTGGACAAGAGCAGGTGGCAGGAGGGGAATGTCTTCTCATGCTCCGTGAT
    GCATGAGGCTCTGCACAACCACTACACACAGAAGAGCCTCTCCCTGTCTCTGGGTAAAGCTAGC
    TGA
    Anti-DCIR_29E9.2E2_H-VhIgG4H-C (SEQ ID NO: 104):
    MAWVWTLLFLMAAAQSAQAQIQLVQSGPELKKPGETVKISCKASGYTFTNYGMNWVKQAPGKGL
    KWVGWINTFTGEPTYVDDFKGRFAFSLETSASTAYLQINNLKNEDTATYFCARGNFRYYYFDYWG
    QGTTLTVSSAKTKGPSVFPLAPCSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQ
    SSGLYSLSSVVTVPSSSLGTKTYTCNVDHKPSNTKVDKRVESKYGPPCPPCPAPEFEGGPSVFLFPPK
    PKDTLMISRTPEVTCVVVDVSQEDPEVQFNWYVDGVEVHNAKTKPREEQFNSTYRVVSVLTVLHQ
    DWLNGKEYKCKVSNKGLPSSIEKTISKAKGQPREPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIA
    VEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQEGNVFSCSVMHEALHNHYTQKSLSLS
    LGKAS
    Anti-DCIR_29E9.2E2_K-V-hIgGK-C (SEQ ID NO: 40):
    ATGAGTGTGCTCACTCAGGTCCTGGCGTTGCTGCTGCTGTGGCTTACAGGTGCCAGATGTGACA
    TCCAGATGACTCAGTCCCCAGCCTCCCTATCTGCATCTGTGGGAGAAACTGTCACCATCACATG
    TCGAACAAGTGGGAATATTCGCAATTATTTAGCATGGTATCAGCAGAAACAGGGAAAATCTCCT
    CAACTCCTGGTCTATAATGCAAAAACCTTAGCAGATGGTGTGCCATCAAGGTTCGGTGGCAGTG
    GATCAGGAACACAATATTCTCTCAAGATCAACAGCCTGCAGCCTGAAGATTTTGGGAATTATTA
    CTGTCAACATTTTTGGAGTAGTCCGTACACGTTCGGAGGGGGGACCAAGCTCGAGATCAAACGA
    ACTGTGGCTGCACCATCTGTCTTCATCTTCCCGCCATCTGATGAGCAGTTGAAATCTGGAACTGC
    CTCTGTTGTGTGCCTGCTGAATAACTTCTATCCCAGAGAGGCCAAAGTACAGTGGAAGGTGGAT
    AACGCCCTCCAATCGGGTAACTCCCAGGAGAGTGTCACAGAGCAGGACAGCAAGGACAGCACC
    TACAGCCTCAGCAGCACCCTGACGCTGAGCAAAGCAGACTACGAGAAACACAAAGTCTATGCC
    TGCGAAGTCACCCATCAGGGCCTGAGCTCGCCCGTCACAAAGAGCTTCAACAGGGGAGAGTGT
    TAG
    Anti-DCIR_29E9.2E2_K-V-hIgGK-C (SEQ ID NO: 105):
    MSVLTQVLALLLLWLTGARCDIQMTQSPASLSASVGETVTITCRTSGNIRNYLAWYQQKQGKSPQL
    LVYNAKTLADGVPSRFGGSGSGTQYSLKINSLQPEDFGNYYCQHFWSSPYTFGGGTKLEIKRTVAAP
    SVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLT
    LSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC
    Anti-DCIR_29G10.3D9_H-V-hIgG4H-C (SEQ ID NO: 41):
    ATGATGGGATGGAGCTATATCATCCTCTTTTTGGTAGCAACAGCTACAGATGTCCACTCCCAGG
    TCCAACTGCAGCAGCCTGGGGCTGAACTGGTGAAGCCTGGGGCTTCAGTGAAGCTGTCCTGCAA
    GGCTTCTGGCTACACCTTCACCAGCTACTGGATGCACTGGGTGAAGCAGAGGCCTGGAGAAGG
    CCTTGAGTGGATTGGAGAGATTAATCCTAGCTACGGTCGTACTGACTACAATGAGAAGTTCAAG
    AACAAGGCCACACTGACTGTAGCCAAATCCTCCAGCACAGCCTACATGCAACTCAGCAGCCTG
    ACATCTGAGGACTCTGCGGTCTATTACTGTGCAAGAGGAGATTACTACGGTAGTAGCTCGTTTG
    CTTACTGGGGCCAAGGGACTCTGGTCACTGTCTCTGCAGCCAAAACAAAGGGCCCATCCGTCTT
    CCCCCTGGCGCCCTGCTCCAGGAGCACCTCCGAGAGCACAGCCGCCCTGGGCTGCCTGGTCAAG
    GACTACTTCCCCGAACCGGTGACGGTGTCGTGGAACTCAGGCGCCCTGACCAGCGGCGTGCACA
    CCTTCCCGGCTGTCCTACAGTCCTCAGGACTCTACTCCCTCAGCAGCGTGGTGACCGTGCCCTCC
    AGCAGCTTGGGCACGAAGACCTACACCTGCAACGTAGATCACAAGCCCAGCAACACCAAGGTG
    GACAAGAGAGTTGAGTCCAAATATGGTCCCCCATGCCCACCCTGCCCAGCACCTGAGTTCGAAG
    GGGGACCATCAGTCTTCCTGTTCCCCCCAAAACCCAAGGACACTCTCATGATCTCCCGGACCCC
    TGAGGTCACGTGCGTGGTGGTGGACGTGAGCCAGGAAGACCCCGAGGTCCAGTTCAACTGGTA
    CGTGGATGGCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTTCAACAGCAC
    GTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAACGGCAAGGAGTACAA
    GTGCAAGGTCTCCAACAAAGGCCTCCCGTCCTCCATCGAGAAAACCATCTCCAAAGCCAAAGG
    GCAGCCCCGAGAGCCACAGGTGTACACCCTGCCCCCATCCCAGGAGGAGATGACCAAGAACCA
    GGTCAGCCTGACCTGCCTGGTCAAAGGCTTCTACCCCAGCGACATCGCCGTGGAGTGGGAGAGC
    AATGGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCT
    TCCTCTACAGCAGGCTAACCGTGGACAAGAGCAGGTGGCAGGAGGGGAATGTCTTCTCATGCTC
    CGTGATGCATGAGGCTCTGCACAACCACTACACACAGAAGAGCCTCTCCCTGTCTCTGGGTAAA
    GCTAGCGGATGGAGCTATATCATCCTCTTTTTGGTAGCAACAGCTACAGATGTCCACTCCCAGG
    TCCAACTGCAGCAGCCTGGGGCTGAACTGGTGAAGCCTGGGGCTTCAGTGAAGCTGTCCTGCAA
    GGCTTCTGGCTACACCTTCACCAGCTACTGGATGCACTGGGTGAAGCAGAGGCCTGGAGAAGG
    CCTTGAGTGGATTGGAGAGATTAATCCTAGCTACGGTCGTACTGACTACAATGGGAAGTTCAAG
    AACAAGGCCACACTGACTGTAGCCAAATCCTCCAGCACAGCCTACATGCAACTCAGCAGCCTG
    ACATCTGAGGACTCTGCGGTCTATTACTGTGCAAGAGGAGATTACTACGGTAGTAGCTCGTTTG
    CTTACTGGGGCCAAGGGACTCTGGTCACTGTCTCTGCAGCCAAAACAAAGGGCCCATCCGTCTT
    CCCCCTGGCGCCCTGCTCCAGGAGCACCTCCGAGAGCACAGCCGCCCTGGGCTGCCTGGTCAAG
    GACTACTTCCCCGAACCGGTGACGGTGTCGTGGAACTCAGGCGCCCTGACCAGCGGCGTGCACA
    CCTTCCCGGCTGTCCTACAGTCCTCAGGACTCTACTCCCTCAGCAGCGTGGTGACCGTGCCCTCC
    AGCAGCTTGGGCACGAAGACCTACACCTGCAACGTAGATCACAAGCCCAGCAACACCAAGGTG
    GACAAGAGAGTTGAGTCCAAATATGGTCCCCCATGCCCACCCTGCCCAGCACCTGAGTTCGAAG
    GGGGACCATCAGTCTTCCTGTTCCCCCCAAAACCCAAGGACACTCTCATGATCTCCCGGACCCC
    TGAGGTCACGTGCGTGGTGGTGGACGTGAGCCAGGAAGACCCCGAGGTCCAGTTCAACTGGTA
    CGTGGATGGCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTTCAACAGCAC
    GTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAACGGCAAGGAGTACAA
    GTGCAAGGTCTCCAACAAAGGCCTCCCGTCCTCCATCGAGAAAACCATCTCCAAAGCCAAAGG
    GCAGCCCCGAGAGCCACAGGTGTACACCCTGCCCCCATCCCAGGAGGAGATGACCAAGAACCA
    GGTCAGCCTGACCTGCCTGGTCAAAGGCTTCTACCCCAGCGACATCGCCGTGGAGTGGGAGAGC
    AATGGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCT
    TCCTCTACAGCAGGCTAACCGTGGACAAGAGCAGGTGGCAGGAGGGGAATGTCTTCTCATGCTC
    CGTGATGCATGAGGCTCTGCACAACCACTACACACAGAAGAGCCTCTCCCTGTCTCTGGGTAAA
    GCTAGCTGA
    Anti-DCIR_29G10.3D9_H-V-hIgG4H-C (SEQ ID NO: 106):
    MMGWSYIILFLVATATDVHSQVQLQQPGAELVKPGASVKLSCKASGYTFTSYWMHWVKQRPGEG
    LEWIGEINPSYGRTDYNEKFKNKATLTVAKSSSTAYMQLSSLTSEDSAVYYCARGDYYGSSSFAYW
    GQGTLVTVSAAKTKGPSVFPLAPCSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVL
    QSSGLYSLSSVVTVPSSSLGTKTYTCNVDHKPSNTKVDKRVESKYGPPCPPCPAPEFEGGPSVFLFPP
    KPKDTLMISRTPEVTCVVVDVSQEDPEVQFNWYVDGVEVHNAKTKPREEQFNSTYRVVSVLTVLH
    QDWLNGKEYKCKVSNKGLPSSIEKTISKAKGQPREPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDI
    AVEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQEGNVFSCSVMHEALHNHYTQKSLS
    LSLGKAS
    Anti-DCIR_29G10.3D9_K-Var1-V-hIgGK-C (SEQ ID NO: 42):
    ATGGATTTTCAAGTGCAGATTTTCAGCTTCCTGCTAATGAGTGCCTCAGTCATAATGTCCAGGGG
    ACAAATTGTTCTCACCCAGTCTCCAGCACTCATGTCTGCATCTCCAGGGGAGAAGGTCACCATG
    ACCTGCAGTGCCAGCTCAAATATAAGTTACATGTACTGGTACCAGCAGAAGCCAAGATCCTCCC
    CCAAACCCTGGATTTATCTCACATCCAACCTGGCTTCTGGAGTCCCTGCTCGCTTCAGTGGCAGT
    GGGTCTGGGACCTCTTACTCTCTCACAACCAGCAGCATGGAGGCTGAAGATGCTGCCACTTATT
    GCTGCCAGCAGTGGAGTAGTAACCCACCCACGTTCGGTGCTGGGACCAAGCTCGAGATCAAAC
    GAACTGTGGCTGCACCATCTGTCTTCATCTTCCCGCCATCTGATGAGCAGTTGAAATCTGGAACT
    GCCTCTGTTGTGTGCCTGCTGAATAACTTCTATCCCAGAGAGGCCAAAGTACAGTGGAAGGTGG
    ATAACGCCCTCCAATCGGGTAACTCCCAGGAGAGTGTCACAGAGCAGGACAGCAAGGACAGCA
    CCTACAGCCTCAGCAGCACCCTGACGCTGAGCAAAGCAGACTACGAGAAACACAAAGTCTATG
    CCTGCGAAGTCACCCATCAGGGCCTGAGCTCGCCCGTCACAAAGAGCTTCAACAGGGGAGAGT
    GTTAG
    Anti-DCIR_29G10.3D9_K-Var1-V-hIgGK-C (SEQ ID NO: 107):
    MDFQVQIFSFLLMSASVIMSRGQIVLTQSPALMSASPGEKVTMTCSASSNISYMYWYQQKPRSSPKP
    WIYLTSNLASGVPARFSGSGSGTSYSLTTSSMEAEDAATYCCQQWSSNPPTFGAGTKLEIKRTVAAP
    SVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLT
    LSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC
    Anti-DCIR_29G10.3D9_K-Var2-V-hIgGK-C (SEQ ID NO: 43):
    ATGGATTTTCGAGTGCAGATTTTCAGCTTCCTGCTAATGAGTGCCTCAGTCATAATGTCCAGGGG
    ACAAATTGTTCTCACCCAGTCTCCAGCACTCATGTCTGCATCTCCAGGGGAGAAGGTCACCATG
    ACCTGCAGTGCCAGCTCAAATATAAGTTACATGTACTGGTACCAGCAGAAGCCAAGATCCTCCC
    CCAAACCCTGGATTTATCTCACATCCAACCTGGCTTCTGGAGTCCCTGCTCGCTTCAGTGGCAGT
    GGGTCTGGGACCTCTTACTCTCTCACAATCAGCAGCATGGAGGCTGAAGATGCTGCCACTTATT
    ACTGCCAGCAGTGGAGTAGTAACCCACCCACGTTCGGTGCTGGGACCAAGCTCGAGATCAAAC
    GAACTGTGGCTGCACCATCTGTCTTCATCTTCCCGCCATCTGATGAGCAGTTGAAATCTGGAACT
    GCCTCTGTTGTGTGCCTGCTGAATAACTTCTATCCCAGAGAGGCCAAAGTACAGTGGAAGGTGG
    ATAACGCCCTCCAATCGGGTAACTCCCAGGAGAGTGTCACAGAGCAGGACAGCAAGGACAGCA
    CCTACAGCCTCAGCAGCACCCTGACGCTGAGCAAAGCAGACTACGAGAAACACAAAGTCTATG
    CCTGCGAAGTCACCCATCAGGGCCTGAGCTCGCCCGTCACAAAGAGCTTCAACAGGGGAGAGT
    GTTAG
    Anti-DCIR_29G10.3D9_K-Var2-V-hIgGK-C (SEQ ID NO: 108):
    MDFRVQIFSFLLMSASVIMSRGQIVLTQSPALMSASPGEKVTMTCSASSNISYMYWYQQKPRSSPKP
    WIYLTSNLASGVPARFSGSGSGTSYSLTISSMEAEDAATYYCQQWSSNPPTFGAGTKLEIKRTVAAPS
    VFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTL
    SKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC
    Anti-DCIR_2C9K-V-hIgGK-C (SEQ ID NO: 44):
    ATGGAGACAGACACACTCCTGCTATGGGTGCTGCTGCTCTGGGTTCCAGGTTCCACAGGTGACA
    TTGTGCTGATCCAATCTCCAGCTTCTTTGGCTGTGTCTCTAGGGCAGAGGGCCACCATATCCTGC
    AGAGCCAGTGAAAGTGTTGATAGTTATGTCAATAGTTTTATGCACTGGTACCAGCAGAAACCAG
    GACAGCCACCCAAACTCCTCATCTATCGTGTATCCAACCTAGAATCTGGGATCCCTGCCAGGTT
    CAGTGGCAGTGGGTCTAGGACAGACTTCACCCTCACCATTAATCCTGTGGAGGCTGATGATGTT
    GCAACCTATTACTGTCAGCAAAGTAATGAGGATCCATTCACGTTCGGCTCGGGGACAAAGCTCG
    AGATCAAACGAACTGTGGCTGCACCATCTGTCTTCATCTTCCCGCCATCTGATGAGCAGTTGAA
    ATCTGGAACTGCCTCTGTTGTGTGCCTGCTGAATAACTTCTATCCCAGAGAGGCCAAAGTACAG
    TGGAAGGTGGATAACGCCCTCCAATCGGGTAACTCCCAGGAGAGTGTCACAGAGCAGGACAGC
    AAGGACAGCACCTACAGCCTCAGCAGCACCCTGACGCTGAGCAAAGCAGACTACGAGAAACAC
    AAAGTCTATGCCTGCGAAGTCACCCATCAGGGCCTGAGCTCGCCCGTCACAAAGAGCTTCAACA
    GGGGAGAGTGTTAG
    Anti-DCIR_2C9K-V-hIgGK-C (SEQ ID NO: 109):
    METDTLLLWVLLLWVPGSTGDIVLIQSPASLAVSLGQRATISCRASESVDSYVNSFMHWYQQKPGQ
    PPKLLIYRVSNLESGIPARFSGSGSRTDFTLTINPVEADDVATYYCQQSNEDPFTFGSGTKLEIKRTVA
    APSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSST
    LTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC.
    Anti-DCIR_31A6.1F5_H-var2-V-hIgG4H-C (SEQ ID NO: 45):
    ATGGAATGTAACTGGATACTTCCTTTTATTCTGTCGGTAATTTCAGGGGTCTACTCAGAGGTTCA
    GCTCCAGCAGTCTGGGACTGTGCTGGCAAGGCCTGGGGCTTCCGTGAATATGTCCTGTAAGGCT
    GCTGGCTACAGCTTTACCAGTTACTGGGTGTACTGGGTCAAACAGAGGCCTGGACAGGGTCTGG
    AATGGATTGGTGCTATTTACCCTAAAAATAGTAGAACTAGCTACAACCAGAAGTTCCAGGACAA
    GGCCACACTGACTGCAGTCACATCCGCCAGCACTGCCTACATGGAGCTCAGCAGCCTGACAAAT
    GAGGACTCTGCGGTCTATTACTGTACAAGACCTCACTATGATTCGTTTGGTTACTGGGGCCAAG
    GGACTCTGGTCACTGTCTCTGCAGCCAAAACAAAGGGCCCATCCGTCTTCCCCCTGGCGCCCTG
    CTCCAGGAGCACCTCCGAGAGCACAGCCGCCCTGGGCTGCCTGGTCAAGGACTACTTCCCCGAA
    CCGGTGACGGTGTCGTGGAACTCAGGCGCCCTGACCAGCGGCGTGCACACCTTCCCGGCTGTCC
    TACAGTCCTCAGGACTCTACTCCCTCAGCAGCGTGGTGACCGTGCCCTCCAGCAGCTTGGGCAC
    GAAGACCTACACCTGCAACGTAGATCACAAGCCCAGCAACACCAAGGTGGACAAGAGAGTTGA
    GTCCAAATATGGTCCCCCATGCCCACCCTGCCCAGCACCTGAGTTCGAAGGGGGACCATCAGTC
    TTCCTGTTCCCCCCAAAACCCAAGGACACTCTCATGATCTCCCGGACCCCTGAGGTCACGTGCG
    TGGTGGTGGACGTGAGCCAGGAAGACCCCGAGGTCCAGTTCAACTGGTACGTGGATGGCGTGG
    AGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTTCAACAGCACGTACCGTGTGGTCA
    GCGTCCTCACCGTCCTGCACCAGGACTGGCTGAACGGCAAGGAGTACAAGTGCAAGGTCTCCA
    ACAAAGGCCTCCCGTCCTCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAGC
    CACAGGTGTACACCCTGCCCCCATCCCAGGAGGAGATGACCAAGAACCAGGTCAGCCTGACCT
    GCCTGGTCAAAGGCTTCTACCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGG
    AGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTACAGCAG
    GCTAACCGTGGACAAGAGCAGGTGGCAGGAGGGGAATGTCTTCTCATGCTCCGTGATGCATGA
    GGCTCTGCACAACCACTACACACAGAAGAGCCTCTCCCTGTCTCTGGGTAAAGCTAGCTGA
    Anti-DCIR_31A6.1F5_H-var2-V-hIgG4H-C (SEQ ID NO: 110):
    MECNWILPFILSVISGVYSEVQLQQSGTVLARPGASVNMSCKAAGYSFTSYWVYWVKQRPGQGLE
    WIGAIYPKNSRTSYNQKFQDKATLTAVTSASTAYMELSSLTNEDSAVYYCTRPHYDSFGYWGQGTL
    VTVSAAKTKGPSVFPLAPCSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGL
    YSLSSVVTVPSSSLGTKTYTCNVDHKPSNTKVDKRVESKYGPPCPPCPAPEFEGGPSVFLFPPKPKDT
    LMISRTPEVTCVVVDVSQEDPEVQFNWYVDGVEVHNAKTKPREEQFNSTYRVVSVLTVLHQDWLN
    GKEYKCKVSNKGLPSSIEKTISKAKGQPREPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWE
    SNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQEGNVFSCSVMHEALHNHYTQKSLSLSLGKAS
    Anti-DCIR_31A6.1F5_K-var2-V-hIgGK-C (SEQ ID NO: 46):
    ATGGAGACAGACACACTCCTGCTATGGGTGCTGCTGCTCTGGGTTCCAGGTTCCACAGGTGACA
    TTGTGCTGACCCAATCTCCAGCTTCTTTGGCTGTGTCTCTAGGGCAGAGGGCCACCATATCCTGC
    AGAGCCAGTGAAAGTGTAGATAGTTATGGCATTAGTTTTATGCACTGGTACCAGCAGAAACCAG
    GACAGCCACCCAAACTCCTCATCTATCGTGCATCCAACCAAGAATCTGGGATCCCTGCCAGGTT
    CAGTGGCAGTGGGTCTAGGACAGACTTCACCCTCACCATTAATCCTGTGGAGGCTGATGATGTT
    GCAACCTATTACTGTCAGCAAAGTAATGAGGATCCGCTCACGTTCGGTGCTGGGACCAAGCTCG
    AGATCAAACGAACTGTGGCTGCACCATCTGTCTTCATCTTCCCGCCATCTGATGAGCAGTTGAA
    ATCTGGAACTGCCTCTGTTGTGTGCCTGCTGAATAACTTCTATCCCAGAGAGGCCAAAGTACAG
    TGGAAGGTGGATAACGCCCTCCAATCGGGTAACTCCCAGGAGAGTGTCACAGAGCAGGACAGC
    AAGGACAGCACCTACAGCCTCAGCAGCACCCTGACGCTGAGCAAAGCAGACTACGAGAAACAC
    AAAGTCTATGCCTGCGAAGTCACCCATCAGGGCCTGAGCTCGCCCGTCACAAAGAGCTTCAACA
    GGGGAGAGTGTTAG
    Anti-DCIR_31A6.1F5_K-var2-V-hIgGK-C (SEQ ID NO: 111):
    METDTLLLWVLLLWVPGSTGDIVLTQSPASLAVSLGQRATISCRASESVDSYGISFMHWYQQKPGQ
    PPKLLIYRASNQESGIPARFSGSGSRTDFTLTINPVEADDVATYYCQQSNEDPLTFGAGTKLEIKRTVA
    APSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSST
    LTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC
    Anti-DCIR_3C2.2D9_H-LV-hIgG4H-C (SEQ ID NO: 47):
    ATGAACAGGCTTACTTCCTCATTGCTGCTGCTGATTGTCCCTGCATATGTCCTGTCCCAGGTTAC
    TCTGAAAGAGTCTGGCCCTGGGATATTGCAGCCCTCCCAGACCCTCAGTCTGACTTGTTCTTTCT
    CTGGGTTTTCACTGAGCACTTCTGGTATGGGTGTGAGCTGGATTCGTCAGCCTTCAGGAAAGGG
    TCTGGAGTGGCTGGCACACATTTACTGGGATGATGACAAGCGCTATAATCCATCCCTGAAGAGC
    CGGCTCACAATCTTTAAGGATCCCTCCAGCAACCAGGTATTCCTCAGGATCACCAGTGTGGACA
    CTGCAGATACTGCCACATACTACTGTGCTCGAAACTCCCATTACTACGGTAGTACTTACGGGGG
    ATACTTCGATGTCTGGGGCGCAGGGACCACGGTCACCGTCTCCTCAGCCAAAACAAAGGGCCC
    ATCCGTCTTCCCCCTGGCGCCCTGCTCCAGGAGCACCTCCGAGAGCACAGCCGCCCTGGGCTGC
    CTGGTCAAGGACTACTTCCCCGAACCGGTGACGGTGTCGTGGAACTCAGGCGCCCTGACCAGCG
    GCGTGCACACCTTCCCGGCTGTCCTACAGTCCTCAGGACTCTACTCCCTCAGCAGCGTGGTGAC
    CGTGCCCTCCAGCAGCTTGGGCACGAAGACCTACACCTGCAACGTAGATCACAAGCCCAGCAA
    CACCAAGGTGGACAAGAGAGTTGAGTCCAAATATGGTCCCCCATGCCCACCCTGCCCAGCACCT
    GAGTTCGAAGGGGGACCATCAGTCTTCCTGTTCCCCCCAAAACCCAAGGACACTCTCATGATCT
    CCCGGACCCCTGAGGTCACGTGCGTGGTGGTGGACGTGAGCCAGGAAGACCCCGAGGTCCAGT
    TCAACTGGTACGTGGATGGCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGT
    TCAACAGCACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAACGGCAA
    GGAGTACAAGTGCAAGGTCTCCAACAAAGGCCTCCCGTCCTCCATCGAGAAAACCATCTCCAA
    AGCCAAAGGGCAGCCCCGAGAGCCACAGGTGTACACCCTGCCCCCATCCCAGGAGGAGATGAC
    CAAGAACCAGGTCAGCCTGACCTGCCTGGTCAAAGGCTTCTACCCCAGCGACATCGCCGTGGAG
    TGGGAGAGCAATGGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGAC
    GGCTCCTTCTTCCTCTACAGCAGGCTAACCGTGGACAAGAGCAGGTGGCAGGAGGGGAATGTCT
    TCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCACTACACACAGAAGAGCCTCTCCCTGTC
    TCTGGGTAAAGCTAGCTGA
    Anti-DCIR_3C2.2D9_H-LV-hIgG4H-C (SEQ ID NO: 112):
    NRLTSSLLLLIVPAYVLSQQVTLKESGPGILQPSQTLSLTCSFSGFSLSTSGMGVSWIRQPSGKGLEWL
    AHIYWDDDKRYNPSLKSRLTIFKDPSSNQVFLRITSVDTADTATYYCARNSHYYGSTYGGYFDVWG
    AGTTVTVSSAKTKGPSVFPLAPCSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQ
    SSGLYSLSSVVTVPSSSLGTKTYTCNVDHKPSNTKVDKRVESKYGPPCPPCPAPEFEGGPSVFLFPPK
    PKDTLMISRTPEVTCVVVDVSQEDPEVQFNWYVDGVEVHNAKTKPREEQFNSTYRVVSVLTVLHQ
    DWLNGKEYKCKVSNKGLPSSIEKTISKAKGQPREPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIA
    VEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQEGNVFSCSVMHEALHNHYTQKSLSLS
    LGKAS.
    Anti-DCIR_3C2.2D9_K-LV-hIgGK-C (SEQ ID NO: 48):
    ATGGAGACAGACACACTCCTGCTATGGGTGCTGCTGCTCGGGGTTCCAGGTTCCACAGGTAACA
    TTGTGCTGACCCAGTCTCCAACTTCTTTCACTGTGTCTCTTGGGCAGAGGGCCACCATATCCTGC
    AGAGCCAGTGAAAGTGTTCATAGTTATGGCAATAGTTTTATGCACTGGTACCAGCAGAAACCAG
    GGCAGCCACCCAAACTCCTCATCTATCTTGCATCCAACGTAGAATCTGGGGTCCCTGCCAGGTT
    CAGTGGTAGTGGGTCCAGGACAGACTTCACCCTCACCATTGATCCTGTGGAGGCTGATGATGCT
    GCAACCTATTACTGTCAGCAAAATAGTGAGGATCCGTGGACGTTCGGTGGAGGCACCAAGCTC
    GAGATCAAACGAACTGTGGCTGCACCATCTGTCTTCATCTTCCCGCCATCTGATGAGCAGTTGA
    AATCTGGAACTGCCTCTGTTGTGTGCCTGCTGAATAACTTCTATCCCAGAGAGGCCAAAGTACA
    GTGGAAGGTGGATAACGCCCTCCAATCGGGTAACTCCCAGGAGAGTGTCACAGAGCAGGACAG
    CAAGGACAGCACCTACAGCCTCAGCAGCACCCTGACGCTGAGCAAAGCAGACTACGAGAAACA
    CAAAGTCTATGCCTGCGAAGTCACCCATCAGGGCCTGAGCTCGCCCGTCACAAAGAGCTTCAAC
    AGGGGAGAGTGTTAG
    Anti-DCIR_3C2.2D9_K-LV-hIgGK-C (SEQ ID NO: 113):
    METDTLLLWVLLLGVPGSTGNIVLTQSPTSFTVSLGQRATISCRASESVHSYGNSFMHWYQQKPGQP
    PKLLIYLASNVESGVPARFSGSGSRTDFTLTIDPVEADDAATYYCQQNSEDPWTFGGGTKLEIKRTV
    AAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSS
    TLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC
    Anti-DCIR_6C8.1G9_H-V-hIgG4H-C (SEQ ID NO: 49):
    ATGGAATGGACCTGGGTCTTTCTCTTCCTCCTGTCAGTAACTGCAGGTGTCCACTCCCAGGTTCA
    GCTGCAGCAGTCTGGAACTGAGCTGATGAAGCCTGGGGCCTCAGTGAAGATATCCTGCAAGGC
    TACTGGCTACACATTCAGTACCTACTGGATAGAGTGGGTAAAGCAGAGGCCTGGACATGGCCTT
    GAGTGGATTGGAGAGATTTTACCTGGAAGTGGTAGGACTAACGACAATGAGAAGTTCAAGGGC
    AAGGCCACAATCACTGCAGATACATCCTCCAAGAAAGCCTACATGCAACTCAGCAGCCTGACA
    TCTGAGGACTCTGCCGTCTATTACTGTGCAAGAAGGGGTGGTTACTCCTTTGCTTTCTGGGGCCA
    AGGGACTCTGGTCTCTGTCTCTGCAGCCAAAACAAAGGGCCCATCCGTCTTCCCCCTGGCGCCC
    TGCTCCAGGAGCACCTCCGAGAGCACAGCCGCCCTGGGCTGCCTGGTCAAGGACTACTTCCCCG
    AACCGGTGACGGTGTCGTGGAACTCAGGCGCCCTGACCAGCGGCGTGCACACCTTCCCGGCTGT
    CCTACAGTCCTCAGGACTCTACTCCCTCAGCAGCGTGGTGACCGTGCCCTCCAGCAGCTTGGGC
    ACGAAGACCTACACCTGCAACGTAGATCACAAGCCCAGCAACACCAAGGTGGACAAGAGAGTT
    GAGTCCAAATATGGTCCCCCATGCCCACCCTGCCCAGCACCTGAGTTCGAAGGGGGACCATCAG
    TCTTCCTGTTCCCCCCAAAACCCAAGGACACTCTCATGATCTCCCGGACCCCTGAGGTCACGTGC
    GTGGTGGTGGACGTGAGCCAGGAAGACCCCGAGGTCCAGTTCAACTGGTACGTGGATGGCGTG
    GAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTTCAACAGCACGTACCGTGTGGTC
    AGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAACGGCAAGGAGTACAAGTGCAAGGTCTCC
    AACAAAGGCCTCCCGTCCTCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAG
    CCACAGGTGTACACCCTGCCCCCATCCCAGGAGGAGATGACCAAGAACCAGGTCAGCCTGACC
    TGCCTGGTCAAAGGCTTCTACCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCG
    GAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTACAGCA
    GGCTAACCGTGGACAAGAGCAGGTGGCAGGAGGGGAATGTCTTCTCATGCTCCGTGATGCATG
    AGGCTCTGCACAACCACTACACACAGAAGAGCCTCTCCCTGTCTCTGGGTAAAGCTAGCTGA
    Anti-DCIR_6C8.1G9_H-V-hIgG4H-C (SEQ ID NO: 114):
    MEWTWVFLFLLSVTAGVHSQVQLQQSGTELMKPGASVKISCKATGYTFSTYWIEWVKQRPGHGLE
    WIGEILPGSGRTNDNEKFKGKATITADTSSKKAYMQLSSLTSEDSAVYYCARRGGYSFAFWGQGTL
    VSVSAAKTKGPSVFPLAPCSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGL
    YSLSSVVTVPSSSLGTKTYTCNVDHKPSNTKVDKRVESKYGPPCPPCPAPEFEGGPSVFLFPPKPKDT
    LMISRTPEVTCVVVDVSQEDPEVQFNWYVDGVEVHNAKTKPREEQFNSTYRVVSVLTVLHQDWLN
    GKEYKCKVSNKGLPSSIEKTISKAKGQPREPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWE
    SNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQEGNVFSCSVMHEALHNHYTQKSLSLSLGKAS
    Anti-DCIR_6C8.1G9_K-V-hIgGK-C (SEQ ID NO: 50):
    ATGACCATGTTCTCACTAGCTCTTCTCCTCAGTCTTCTTCTCCTCTGTGTCTCTGATTCTAGGGCA
    GAAACAACTGTGACCCAGTCTCCAGCATCCCTGTCCATGGCTATAGGAGAAAAAGTCACCATCA
    GATGCGTAACCAGCACTGATATTGATGATGATGTGAACTGGTACCAGCAGAAGCCAGGGGAAC
    CTCCTAAGCTCCTTATTTCAGAAGGCAATACTCTTCGTGCTGGAGTCCCATCCCGATTCTCCAGC
    AGTGGCTATGGTACAGATTTTGTTTTTACAATTGAGAACATGCTCTCAGAAGATGTTGCAGATT
    ACTACTGTTTGCAAAGTGGTAACTTGCCGTACACGTTCGGAGGGGGGACCAAGCTCGAGATCAA
    ACGAACTGTGGCTGCACCATCTGTCTTCATCTTCCCGCCATCTGATGAGCAGTTGAAATCTGGA
    ACTGCCTCTGTTGTGTGCCTGCTGAATAACTTCTATCCCAGAGAGGCCAAAGTACAGTGGAAGG
    TGGATAACGCCCTCCAATCGGGTAACTCCCAGGAGAGTGTCACAGAGCAGGACAGCAAGGACA
    GCACCTACAGCCTCAGCAGCACCCTGACGCTGAGCAAAGCAGACTACGAGAAACACAAAGTCT
    ATGCCTGCGAAGTCACCCATCAGGGCCTGAGCTCGCCCGTCACAAAGAGCTTCAACAGGGGAG
    AGTGTTAG
    Anti-DCIR_6C8.1G9_K-V-hIgGK-C (SEQ ID NO: 115):
    MTMFSLALLLSLLLLCVSDSRAETTVTQSPASLSMAIGEKVTIRCVTSTDIDDDVNWYQQKPGEPPK
    LLISEGNTLRAGVPSRFSSSGYGTDFVFTIENMLSEDVADYYCLQSGNLPYTFGGGTKLEIKRTVAAP
    SVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLT
    LSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC
    Anti-DCIR_9E8.1E3_H-V-hIgG4H-C (SEQ ID NO: 51):
    ATGAACAGGCTTACTTCCTCATTGCTGCTGCTGATTGTCCCTGCATATGTCCTGTCCCAGGTTAC
    TCTGAAAGAGTCTGGCCCTGGGATATTGCAGCCCTCCCAGACCCTCAGTCTGACTTGTTCTTTCT
    CTGGGTTTTCACTGAGCACTTCTGGTATGGGTCTGAGCTGGATTCGTCAGCCTTCAGGAAAGGG
    TCTGGAGTGGCTGGCACACATTTACTGGGATGATGACAAGCGCTATAACCCATCCCTGAAGAGC
    CGGCTCACAATCTCCAAGGATACCTCCAGCAACCAGGTTTTCCTCAAGATCACCATTGTGGACA
    CTGCAGATGCTGCCACATACTACTGTGCTCGAAGCTCCCATTACTACGGTTATGGCTACGGGGG
    ATACTTCGATGTCTGGGGCGCAGGGACCACGGTCACCGTCTCCTCAGCCAAAACGAAGGGCCC
    ATCCGTCTTCCCCCTGGCGCCCTGCTCCAGGAGCACCTCCGAGAGCACAGCCGCCCTGGGCTGC
    CTGGTCAAGGACTACTTCCCCGAACCGGTGACGGTGTCGTGGAACTCAGGCGCCCTGACCAGCG
    GCGTGCACACCTTCCCGGCTGTCCTACAGTCCTCAGGACTCTACTCCCTCAGCAGCGTGGTGAC
    CGTGCCCTCCAGCAGCTTGGGCACGAAGACCTACACCTGCAACGTAGATCACAAGCCCAGCAA
    CACCAAGGTGGACAAGAGAGTTGAGTCCAAATATGGTCCCCCATGCCCACCCTGCCCAGCACCT
    GAGTTCGAAGGGGGACCATCAGTCTTCCTGTTCCCCCCAAAACCCAAGGACACTCTCATGATCT
    CCCGGACCCCTGAGGTCACGTGCGTGGTGGTGGACGTGAGCCAGGAAGACCCCGAGGTCCAGT
    TCAACTGGTACGTGGATGGCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGT
    TCAACAGCACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAACGGCAA
    GGAGTACAAGTGCAAGGTCTCCAACAAAGGCCTCCCGTCCTCCATCGAGAAAACCATCTCCAA
    AGCCAAAGGGCAGCCCCGAGAGCCACAGGTGTACACCCTGCCCCCATCCCAGGAGGAGATGAC
    CAAGAACCAGGTCAGCCTGACCTGCCTGGTCAAAGGCTTCTACCCCAGCGACATCGCCGTGGAG
    TGGGAGAGCAATGGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGAC
    GGCTCCTTCTTCCTCTACAGCAGGCTAACCGTGGACAAGAGCAGGTGGCAGGAGGGGAATGTCT
    TCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCACTACACACAGAAGAGCCTCTCCCTGTC
    TCTGGGTAAAGCTAGCTGA
    Anti-DCIR_9E8.1E3_H-V-hIgG4H-C (SEQ ID NO: 116):
    MNRLTSSLLLLIVPAYVLSQVTLKESGPGILQPSQTLSLTCSFSGFSLSTSGMGLSWIRQPSGKGLEWL
    AHIYWDDDKRYNPSLKSRLTISKDTSSNQVFLKITIVDTADAATYYCARSSHYYGYGYGGYFDVWG
    AGTTVTVSSAKTKGPSVFPLAPCSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQ
    SSGLYSLSSVVTVPSSSLGTKTYTCNVDHKPSNTKVDKRVESKYGPPCPPCPAPEFEGGPSVFLFPPK
    PKDTLMISRTPEVTCVVVDVSQEDPEVQFNWYVDGVEVHNAKTKPREEQFNSTYRVVSVLTVLHQ
    DWLNGKEYKCKVSNKGLPSSIEKTISKAKGQPREPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIA
    VEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQEGNVFSCSVMHEALHNHYTQKSLSLS
    LGKAS
    Anti-DCIR_9E8.1E3_K-LV-hIgGK-C (SEQ ID NO: 52):
    ATGGAGACAGACACACTCCTGCTATGGGTGCTGCTGCTCTGGGTTCCAGGTTCCACAGGTAACA
    TTGTGCTGACCCAATCTCCAGCTTCTTTGGCTGTGTCTCTAGGGCAGAGGGCCACCATATCCTGC
    AGAGCCAGTGAAAGTATTCATAGTTATGGCAATAGTTTTCTGCACTGGTACCAGCAGAAACCAG
    GACAGCCACCCAAACTCCTCATCTATCTTGCATCCAACCTAGAATCTGGGGTCCCTGCCAGGTT
    CAGCGGCAGTGGGTCTAGGACAGACTTCACCCTCACCATTGATCCTGTGGAGGCTGATGATGCT
    GCAACCTATTACTGTCAGCAAAATAATGAGGATCCGTGGACGTTCGGTGGAGGCACCAAGCTC
    GAGATCAAACGAACTGTGGCTGCACCATCTGTCTTCATCTTCCCGCCATCTGATGAGCAGTTGA
    AATCTGGAACTGCCTCTGTTGTGTGCCTGCTGAATAACTTCTATCCCAGAGAGGCCAAAGTACA
    GTGGAAGGTGGATAACGCCCTCCAATCGGGTAACTCCCAGGAGAGTGTCACAGAGCAGGACAG
    CAAGGACAGCACCTACAGCCTCAGCAGCACCCTGACGCTGAGCAAAGCAGACTACGAGAAACA
    CAAAGTCTATGCCTGCGAAGTCACCCATCAGGGCCTGAGCTCGCCCGTCACAAAGAGCTTCAAC
    AGGGGAGAGTGTTAGGCGGCCGCACTAGCGCGGGCCGCATTCGAAGAGCTCGGTACCCGGGGA
    TCCTCTAGAGTCGACCTGCAGGCATGCAAGCTGGCCGCGACTCTAGATCATAATCAGC
    Anti-DCIR_9E8.1E3_K-LV-hIgGK-C (SEQ ID NO: 117):
    METDTLLLWVLLLWVPGSTGNIVLTQSPASLAVSLGQRATISCRASESIHSYGNSFLHWYQQKPGQP
    PKLLIYLASNLESGVPARFSGSGSRTDFTLTIDPVEADDAATYYCQQNNEDPWTFGGGTKLEIKRTV
    AAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSS
    TLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC
    Anti-DCIR2C9H-LV-hIgG4H-V-hIgG4H-C (SEQ ID NO: 53):
    ATGAAATGCAGCTGGGTCATCTTCTTCCTGATGGCAGTGGTTACAGGGGTCAATTCAGAGGTTC
    AGCTGCAGCAGTCTGGGGCTGAGCTTGTGAGGCCAGGGGCCTTAGTCAAGTTGTCCTGCAAAGC
    TTCTGGCTTCAACATTAATGACTACTATATCCACTGGGTGAAGCAGCGGCCTGAACAGGGCCTG
    GAGCGGATTGGATGGATTGATCCTGACAATGGTAATACTATATATGACCCGAAGTTCCAGGGCA
    AGGCCAGTATAACAGCAGACACATCCCCCAACACAGCCTACCTGCAGCTCAGCAGCCTGACAT
    CTGAGGACACTGCCGTCTATTACTGTGCTAGAACCCGATCTCCTATGGTTACGACGGGGTTTGTT
    TACTGGGGCCAAGGGACTGTGGTCACTGTCTCTGCAGCCAAAACGAAGGGCCCATCCGTCTTCC
    CCCTGGCGCCCTGCTCCAGGAGCACCTCCGAGAGCACAGCCGCCCTGGGCTGCCTGGTCAAGGA
    CTACTTCCCCGAACCGGTGACGGTGTCGTGGAACTCAGGCGCCCTGACCAGCGGCGTGCACACC
    TTCCCGGCTGTCCTACAGTCCTCAGGACTCTACTCCCTCAGCAGCGTGGTGACCGTGCCCTCCAG
    CAGCTTGGGCACGAAGACCTACACCTGCAACGTAGATCACAAGCCCAGCAACACCAAGGTGGA
    CAAGAGAGTTGAGTCCAAATATGGTCCCCCATGCCCACCCTGCCCAGCACCTGAGTTCGAAGGG
    GGACCATCAGTCTTCCTGTTCCCCCCAAAACCCAAGGACACTCTCATGATCTCCCGGACCCCTG
    AGGTCACGTGCGTGGTGGTGGACGTGAGCCAGGAAGACCCCGAGGTCCAGTTCAACTGGTACG
    TGGATGGCGTGGAGGTGCATAATGCCAAGACRAAGCCGCGGGAGGAGCAGTTCAACAGCACGT
    ACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAACGGCAAGGAGTACAAGT
    GCAAGGTCTCCAACAAAGGCCTCCCGTCCTCCATCGAGAAAACCATCTCCAAAGCCAAAGGGC
    AGCCCCGAGAGCCACAGGTGTACACCCTGCCCCCATCCCAGGAGGAGATGACCAAGAACCAGG
    TCAGCCTGACCTGCCTGGTCAAAGGCTTCTACCCCAGCGACATCGCCGTGGAGTGGGAGAGCAA
    TGGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTC
    CTCTACAGCAGGCTAACCGTGGACAAGAGCAGGTGGCAGGAGGGGAATGTCTTCTCATGCTCC
    GTGATGCATGAGGCTCTGCACAACCACTACACACAGAAGAGCCTCTCCCTGTCTCTGGGTAAAT
    GA
    Anti-DCIR2C9H-LV-hIgG4H-V-hIgG4H-C (SEQ ID NO: 118):
    MKCSWVIFFLMAVVTGVNSEVQLQQSGAELVRPGALVKLSCKASGFNINDYYIHWVKQRPEQGLE
    RIGWIDPDNGNTIYDPKFQGKASITADTSPNTAYLQLSSLTSEDTAVYYCARTRSPMVTTGFVYWGQ
    GTVVTVSAAKTKGPSVFPLAPCSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQS
    SGLYSLSSVVTVPSSSLGTKTYTCNVDHKPSNTKVDKRVESKYGPPCPPCPAPEFEGGPSVFLFPPKP
    KDTLMISRTPEVTCVVVDVSQEDPEVQFNWYVDGVEVHNAKXKPREEQFNSTYRVVSVLTVLHQD
    WLNGKEYKCKVSNKGLPSSIEKTISKAKGQPREPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIAV
    EWESNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQEGNVFSCSVMHEALHNHYTQKSLSLSL
    GK
    Anti-DC-SIGNL16E3H (SEQ ID NO: 54):
    ATGGAAAGGCACTGGATCTTTCTCTTCCTGTTTTCAGTAACTGCAGGTGTCCACTCCCAGGTCCA
    GCTTCAGCAGTCTGGGGCTGAGCTGGCAAAACCTGGGGCCTCAGTGAAGATGTCCTGCAAGGCT
    TCTGGCTACACCTTTACTACCTACTGGATGCACTGGGTAAAACAGAGGCCTGGACAGGGTCTGG
    AATGGATTGGATACATTAATCCTATCACTGGTTATACTGAGTACAATCAGAAGTTCAAGGACAA
    GGCCACCTTGACTGCAGACAAATCCTCCAGCACAGCCTACATGCAACTGAGCAGCCTGACATCT
    GAGGACTCTGCAGTCTATTACTGTGCAAGAGAGGGTTTAAGTGCTATGGACTATTGGGGTCAGG
    GAACCTCAGTCACCGTCACCTCAGCCAAAACAACAGCCCCATCGGTCTATCCACTGGCCCCTGT
    GTGTGGAGATACAACTGGCTCCTCGGTAACTCTAGGATGCCTGGTCAAGGGTTATTTCCCTGAG
    CCAGTGACCTTGACCTGGAACTCTGGATCCCTGTCCAGTGGTGTGCACACCTTCCCAGCTGTCCT
    GCAGTCTGACCTCTACACCCTCAGCAGCTCAGTGACTGTAACCTCGAGCACCTGGCCCAGCCAG
    ACCGTCACCTGCAGCGTTGCTCACCCAGCCAGCAGCACCACGGTGGACAAAAAACTTGAGCCC
    AGCGGGCCCATTTCAACAATCAACCCCTGTCCTCCATGCAAGGAGTGTCACAAATGCCCAGCTC
    CTAACCTCGAGGGTGGACCATCCGTCTTCATCTTCCCTCCAAATATCAAGGATGTACTCATGATC
    TCCCTGACACCCAAGGTCACGTGTGTGGTGGTGGATGTGAGCGAGGATGACCCAGACGTCCAG
    ATCAGCTGGTTTGTGAACAACGTGGAAGTACACACAGCTCAGACACAAACCCATAGAGAGGAT
    TACAACAGTACTATCCGGGTGGTCAGCACCCTCCCCATCCAGCACCAGGACTGGATGAGTGGCA
    AGGAGTTCAAATGCAAGGTCAACAACAAAGACCTCCCATCACCCATCGAGAGAACCATCTCAA
    AAATTAAAGGGCTAGTCAGAGCTCCACAAGTATACATCTTGCCGCCACCAGCAGAGCAGTTGTC
    CAGGAAAGATGTCAGTCTCACTTGCCTGGTCGTGGGCTTCAACCCTGGAGACATCAGTGTGGAG
    TGGACCAGCAATGGGCATACAGAGGAGAACTACAAGGACACCGCACCAGTCCTGGACTCTGAC
    GGTTCTTACTTCATATATAGCAAGCTCAATATGAAAACAAGCAAGTGGGAGAAAACAGATTCCT
    TCTCATGCAACGTGAGACACGAGGGTCTGAAAAATTACTACCTGAAGAAGACCATCTCCCGGTC
    TCCGGGTAAAGCTAGCTGA
    Anti-DC-SIGNL16E3H (SEQ ID NO: 119):
    MERHWIFLFLFSVTAGVHSQVQLQQSGAELAKPGASVKMSCKASGYTFTTYWMHWVKQRPGQGL
    EWIGYINPITGYTEYNQKFKDKATLTADKSSSTAYMQLSSLTSEDSAVYYCAREGLSAMDYWGQGT
    SVTVTSAKTTAPSVYPLAPVCGDTTGSSVTLGCLVKGYFPEPVTLTWNSGSLSSGVHTFPAVLQSDL
    YTLSSSVTVTSSTWPSQTVTCSVAHPASSTTVDKKLEPSGPISTINPCPPCKECHKCPAPNLEGGPSVFI
    FPPNIKDVLMISLTPKVTCVVVDVSEDDPDVQISWFVNNVEVHTAQTQTHREDYNSTIRVVSTLPIQ
    HQDWMSGKEFKCKVNNKDLPSPIERTISKIKGLVRAPQVYILPPPAEQLSRKDVSLTCLVVGFNPGDI
    SVEWTSNGHTEENYKDTAPVLDSDGSYFIYSKLNMKTSKWEKTDSFSCNVRHEGLKNYYLKKTISR
    SPGKAS
    Anti-DC-SIGNL16E3K (SEQ ID NO: 55):
    ATGGGCATCAAGATGGAGTCACGGATTCAGGCATTTGTATTCGTGTTTCTCTGGTTGTCTGGTGT
    TGGCGGAGACATTGTGATGACCCAGTCTCACAAATTCATGTCCACATCAGTAGGAGACAGGGTC
    AGCGTCACCTGCAAGGCCAGTCAGGATGTGACTTCTGCTGTAGCCTGGTATCAACAAAAACCAG
    GGCAATCTCCTAAACTACTGATTTACTGGGCATCCACCCGGCACACTGGAGTCCCTGATCGCTT
    CACAGGCAGTGGATCTGGGACAGATTATACTCTCACCATCAGCAGTGGGCAGGCTGAAGACCT
    GGCACTTTATTACTGTCACCAATATTATAGCGCTCCTCGGACGTTCGGTGGAGGCACCAAGCTG
    GAAGTCAAACGGGCTGATGCTGCACCAACTGTATCCATCTTCCCACCATCCAGTGAGCAGTTAA
    CATCTGGAGGTGCCTCAGTCGTGTGCTTCTTGAACAACTTCTACCCCAAAGACATCAATGTCAA
    GTGGAAGATTGATGGCAGTGAACGACAAAATGGCGTCCTGAACAGTTGGACTGATCAGGACAG
    CAAAGACAGCACCTACAGCATGAGCAGCACCCTCACGTTGACCAAGGACGAGTATGAACGACA
    TAACAGCTATACCTGTGAGGCCACTCACAAGACATCAACTTCACCCATCGTCAAGAGCTTCAAT
    AGGAATGAGTGTTAG
    Anti-DC-SIGNL16E3K (SEQ ID NO: 120):
    MESRIQAFVFVFLWLSGVGGDIVMTQSHKFMSTSVGDRVSVTCKASQDVTSAVAWYQQKPGQSPK
    LLIYWASTRHTGVPDRFTGSGSGTDYTLTISSGQAEDLALYYCHQYYSAPRTFGGGTKLEVKRADA
    APTVSIFPPSSEQLTSGGASVVCFLNNFYPKDINVKWKIDGSERQNGVLNSWTDQDSKDSTYSMSST
    LTLTKDEYERHNSYTCEATHKTSTSPIVKSFNRNEC
    Anti-DC-SIGNL16E7H-LV-hIgG4H-C (SEQ ID NO: 56):
    ATGGAAAGGCACTGGATCTTTCTCTTCCTGTTTTCAGTAACTGCAGGTGTCCACTCCCAGGTCCA
    GCTTCAGCAGTCTGGGGCTGAGCTGGCAAAACCTGGGGCCTCAGTGAAGATGTCCTGCAAGGCT
    TCTGGCTACACCTTTACTACCTACTGGATGCACTGGGTAAAACAGAGGCCTGGACAGGGTCTGG
    AATGGATTGGATACATTAATCCTATCACTGGTTATACTGAGTACAATCAGAAGTTCAAGGACAA
    GGCCACCTTGACTGCAGACAAATCCTCCAGCACAGCCTACATGCAACTGAGCAGCCTGACATCT
    GAGGACTCTGCAGTCTATTACTGTGCAAGAGAGGGTTTAAGTGCTATGGACTATTGGGGTCAGG
    GAACCTCAGTCACCGTCACCTCAGCCAAAACAACGGGCCCATCCGTCTTCCCCCTGGCGCCCTG
    CTCCAGGAGCACCTCCGAGAGCACAGCCGCCCTGGGCTGCCTGGTCAAGGACTACTTCCCCGAA
    CCGGTGACGGTGTCGTGGAACTCAGGCGCCCTGACCAGCGGCGTGCACACCTTCCCGGCTGTCC
    TACAGTCCTCAGGACTCTACTCCCTCAGCAGCGTGGTGACCGTGCCCTCCAGCAGCTTGGGCAC
    GAAGACCTACACCTGCAACGTAGATCACAAGCCCAGCAACACCAAGGTGGACAAGAGAGTTGA
    GTCCAAATATGGTCCCCCATGCCCACCCTGCCCAGCACCTGAGTTCGAAGGGGGACCATCAGTC
    TTCCTGTTCCCCCCAAAACCCAAGGACACTCTCATGATCTCCCGGACCCCTGAGGTCACGTGCG
    TGGTGGTGGACGTGAGCCAGGAAGACCCCGAGGTCCAGTTCAACTGGTACGTGGATGGCGTGG
    AGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTTCAACAGCACGTACCGTGTGGTCA
    GCGTCCTCACCGTCCTGCACCAGGACTGGCTGAACGGCAAGGAGTACAAGTGCAAGGTCTCCA
    ACAAAGGCCTCCCGTCCTCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAGC
    CACAGGTGTACACCCTGCCCCCATCCCAGGAGGAGATGACCAAGAACCAGGTCAGCCTGACCT
    GCCTGGTCAAAGGCTTCTACCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGG
    AGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTACAGCAG
    GCTAACCGTGGACAAGAGCAGGTGGCAGGAGGGGAATGTCTTCTCATGCTCCGTGATGCATGA
    GGCTCTGCACAACCACTACACACAGAAGAGCCTCTCCCTGTCTCTGGGTAAAGCTAGCTGA
    Anti-DC-SIGNL16E7H-LV-hIgG4H-C (SEQ ID NO: 121):
    MERHWIFLFLFSVTAGVHSQVQLQQSGAELAKPGASVKMSCKASGYTFTTYWMHWVKQRPGQGL
    EWIGYINPITGYTEYNQKFKDKATLTADKSSSTAYMQLSSLTSEDSAVYYCAREGLSAMDYWGQGT
    SVTVTSAKTTGPSVFPLAPCSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGL
    YSLSSVVTVPSSSLGTKTYTCNVDHKPSNTKVDKRVESKYGPPCPPCPAPEFEGGPSVFLFPPKPKDT
    LMISRTPEVTCVVVDVSQEDPEVQFNWYVDGVEVHNAKTKPREEQFNSTYRVVSVLTVLHQDWLN
    GKEYKCKVSNKGLPSSIEKTISKAKGQPREPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWE
    SNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQEGNVFSCSVMHEALHNHYTQKSLSLSLGKA
    S.
    Anti-DC-SIGNL16E7K-LV-hIgGK-C (SEQ ID NO: 57):
    ATGGGCATCAAGATGGAGTCACAGATTCAGGCATTTGTATTCGTGTTTCTCTGGTTGTCTGGTGT
    TGGCGGAGACATTGTGATGACCCAGTCTCACAAATTCATGTCCACATCAGTAGGAGACAGGGTC
    AGCGTCACCTGCAAGGCCAGTCAGGATGTGACTTCTGCTGTAGCCTGGTATCAACAAAAACCAG
    GGCAATCTCCTAAACTACTGATTTACTGGGCATCCACCCGGCACACTGGAGTCCCTGATCGCTT
    CACAGGCAGTGGATCTGGGACAGATTATACTCTCACCATCAGCAGTGGGCAGGCTGAAGACCT
    GGCACTTTATTACTGTCACCAATATTATAGCGCTCCTCGGACGTTCGGTGGAGGCACCAAGCTC
    GAGATCAAACGAACTGTGGCTGCACCATCTGTCTTCATCTTCCCGCCATCTGATGAGCAGTTGA
    AATCTGGAACTGCCTCTGTTGTGTGCCTGCTGAATAACTTCTATCCCAGAGAGGCCAAAGTACA
    GTGGAAGGTGGATAACGCCCTCCAATCGGGTAACTCCCAGGAGAGTGTCACAGAGCAGGACAG
    CAAGGACAGCACCTACAGCCTCAGCAGCACCCTGACGCTGAGCAAAGCAGACTACGAGAAACA
    CAAAGTCTATGCCTGCGAAGTCACCCATCAGGGCCTGAGCTCGCCCGTCACAAAGAGCTTCAAC
    AGGGGAGAGTGTTAG
    Anti-DC-SIGNL16E7K-LV-hIgGK-C (SEQ ID NO: 122):
    MESQIQAFVFVFLWLSGVGGDIVMTQSHKFMSTSVGDRVSVTCKASQDVTSAVAWYQQKPGQSPK
    LLIYWASTRHTGVPDRFTGSGSGTDYTLTISSGQAEDLALYYCHQYYSAPRTFGGGTKLEIKRTVAA
    PSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTL
    TLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC
    Anti-Dectin_1_11B6.4_H-V-hIgG4H-C (SEQ ID NO: 58):
    ATGGCTGTCCTGGCACTACTCCTCTGCCTGGTGGCTTTCCCAACTTGTACCCTGTCCCAGGTGCA
    ACTGAAGGAGTCAGGACCTGGCCTGGTGGCGCCCTCACAGAGCCTGTCCATTACCTGCTCTGTC
    TCTGGGTTCTCATTAAGCAACTATGATATAAGCTGGATTCGCCAGCCACCAGGAAAGGGTCTGG
    AGTGGCTTGGAGTAATGTGGACTGGTGGAGGCGCAAATTATAATTCAGCTTTCATGTCCAGACT
    GAGCATCAACAAGGACAACTCCAAGAGCCAAGTTTTTTTAAAAATGAACAATCTGCAAACTGA
    TGACACAGCCATTTATTACTGTGTCAGAGATGCGGTGAGGTACTGGAACTTCGATGTCTGGGGC
    GCAGGGACCACGGTCACCGTCTCCTCAGCCAAAACGAAGGGCCCATCCGTCTTCCCCCTGGCGC
    CCTGCTCCAGGAGCACCTCCGAGAGCACAGCCGCCCTGGGCTGCCTGGTCAAGGACTACTTCCC
    CGAACCGGTGACGGTGTCGTGGAACTCAGGCGCCCTGACCAGCGGCGTGCACACCTTCCCGGCT
    GTCCTACAGTCCTCAGGACTCTACTCCCTCAGCAGCGTGGTGACCGTGCCCTCCAGCAGCTTGG
    GCACGAAGACCTACACCTGCAACGTAGATCACAAGCCCAGCAACACCAAGGTGGACAAGAGAG
    TTGAGTCCAAATATGGTCCCCCATGCCCACCCTGCCCAGCACCTGAGTTCGAAGGGGGACCATC
    AGTCTTCCTGTTCCCCCCAAAACCCAAGGACACTCTCATGATCTCCCGGACCCCTGAGGTCACG
    TGCGTGGTGGTGGACGTGAGCCAGGAAGACCCCGAGGTCCAGTTCAACTGGTACGTGGATGGC
    GTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTTCAACAGCACGTACCGTGTG
    GTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAACGGCAAGGAGTACAAGTGCAAGGTC
    TCCAACAAAGGCCTCCCGTCCTCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGA
    GAGCCACAGGTGTACACCCTGCCCCCATCCCAGGAGGAGATGACCAAGAACCAGGTCAGCCTG
    ACCTGCCTGGTCAAAGGCTTCTACCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAG
    CCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTACA
    GCAGGCTAACCGTGGACAAGAGCAGGTGGCAGGAGGGGAATGTCTTCTCATGCTCCGTGATGC
    ATGAGGCTCTGCACAACCACTACACACAGAAGAGCCTCTCCCTGTCTCTGGGTAAAGCTAGCTGA
    Anti-Dectin_1_11B6.4_H-V-hIgG4H-C (SEQ ID NO: 123):
    MAVLALLLCLVAFPTCTLSQVQLKESGPGLVAPSQSLSITCSVSGFSLSNYDISWIRQPPGKGLEWLG
    VMWTGGGANYNSAFMSRLSINKDNSKSQVFLKMNNLQTDDTAIYYCVRDAVRYWNFDVWGAGT
    TVTVSSAKTKGPSVFPLAPCSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGL
    YSLSSVVTVPSSSLGTKTYTCNVDHKPSNTKVDKRVESKYGPPCPPCPAPEFEGGPSVFLFPPKPKDT
    LMISRTPEVTCVVVDVSQEDPEVQFNWYVDGVEVHNAKTKPREEQFNSTYRVVSVLTVLHQDWLN
    GKEYKCKVSNKGLPSSIEKTISKAKGQPREPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWE
    SNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQEGNVFSCSVMHEALHNHYTQKSLSLSLGKAS
    Anti-Dectin_1_11B6.4_K-LV-hIgGK-C (SEQ ID NO: 59):
    ATGGATTTTCAAGCGCAGATTTTCAGCTTCCTGCTAATCAGTGCTTCAGTCATAATGTCCAGAGG
    ACAAATTGTTCTCTCCCAGTCACCAGCAATCCTGTCTGCATCTCCAGGGGAGAAGGTCACAATG
    ACTTGCAGGGCCAGCTCAAGTGTAAGTTACATACACTGGTACCAGCAGAAGCCAGGATCCTCCC
    CCAAACCCTGGATTTATGCCACATCCCACCTGGCTTCTGGAGTCCCTGCTCGCTTCAGTGGCAGT
    GGGTCTGGGACCTCTTACTCTCTCACAATCAGCAGAGTGGAGGCTGAAGATACTGCCACTTATT
    ACTGCCAGCAGTGGAGTAGTAACCCATTCACGTTCGGCTCGGGGACAAAGCTCGAGATCAAAC
    GAACTGTGGCTGCACCATCTGTCTTCATCTTCCCGCCATCTGATGAGCAGTTGAAATCTGGAACT
    GCCTCTGTTGTGTGCCTGCTGAATAACTTCTATCCCAGAGAGGCCAAAGTACAGTGGAAGGTGG
    ATAACGCCCTCCAATCGGGTAACTCCCAGGAGAGTGTCACAGAGCAGGACAGCAAGGACAGCA
    CCTACAGCCTCAGCAGCACCCTGACGCTGAGCAAAGCAGACTACGAGAAACACAAAGTCTATG
    CCTGCGAAGTCACCCATCAGGGCCTGAGCTCGCCCGTCACAAAGAGCTTCAACAGGGGAGAGT
    GTTAG
    Anti-Dectin_1_11B6.4_K-LV-hIgGK-C (SEQ ID NO: 124):
    MDFQAQIFSFLLISASVIMSRGQIVLSQSPAILSASPGEKVTMTCRASSSVSYIHWYQQKPGSSPKPWI
    YATSHLASGVPARFSGSGSGTSYSLTISRVEAEDTATYYCQQWSSNPFTFGSGTKLEIKRTVAAPSVF
    IFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSK
    ADYEKHKVYACEVTHQGLSSPVTKSFNRGEC
    Anti-Dectin_1_15E2.5_H-V-hIgG4H-C (SEQ ID NO: 60):
    ATGGAAAGGCACTGGATCTTTCTACTCCTGTTGTCAGTAACTGCAGGTGTCCACTCCCAGGTCC
    AGCTGCAGCAGTCTGGGGCTGAACTGGCAAGACCTGGGGCCTCAGTGAAGATGTCCTGCAAGG
    CTTCTGGCTACACCTTTACTACCTACACTATGCACTGGGTAAAACAGAGGCCTGGACAGGGTCT
    GGAATGGATTGGATACATTAATCCTAGCAGTGGTTATACTAATTACAATCAGAAGTTCAAGGAC
    AAGGCCACATTGACTGCAGACAAATCCTCCAGCACAGCCTCCATGCAACTGAGCAGCCTGACAT
    CTGAGGACTCTGCAGTCTATTACTGTGCAAGAGAGAGGGCGGTATTAGTCCCCTATGCTATGGA
    CTACTGGGGTCAAGGAACCTCAGTCACCGTCTCCTCAGCCAAAACAAAGGGCCCATCCGTCTTC
    CCCCTGGCGCCCTGCTCCAGGAGCACCTCCGAGAGCACAGCCGCCCTGGGCTGCCTGGTCAAGG
    ACTACTTCCCCGAACCGGTGACGGTGTCGTGGAACTCAGGCGCCCTGACCAGCGGCGTGCACAC
    CTTCCCGGCTGTCCTACAGTCCTCAGGACTCTACTCCCTCAGCAGCGTGGTGACCGTGCCCTCCA
    GCAGCTTGGGCACGAAGACCTACACCTGCAACGTAGATCACAAGCCCAGCAACACCAAGGTGG
    ACAAGAGAGTTGAGTCCAAATATGGTCCCCCATGCCCACCCTGCCCAGCACCTGAGTTCGAAGG
    GGGACCATCAGTCTTCCTGTTCCCCCCAAAACCCAAGGACACTCTCATGATCTCCCGGACCCCT
    GAGGTCACGTGCGTGGTGGTGGACGTGAGCCAGGAAGACCCCGAGGTCCAGTTCAACTGGTAC
    GTGGATGGCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTTCAACAGCACG
    TACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAACGGCAAGGAGTACAAGT
    GCAAGGTCTCCAACAAAGGCCTCCCGTCCTCCATCGAGAAAACCATCTCCAAAGCCAAAGGGC
    AGCCCCGAGAGCCACAGGTGTACACCCTGCCCCCATCCCAGGAGGAGATGACCAAGAACCAGG
    TCAGCCTGACCTGCCTGGTCAAAGGCTTCTACCCCAGCGACATCGCCGTGGAGTGGGAGAGCAA
    TGGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTC
    CTCTACAGCAGGCTAACCGTGGACAAGAGCAGGTGGCAGGAGGGGAATGTCTTCTCATGCTCC
    GTGATGCATGAGGCTCTGCACAACCACTACACACAGAAGAGCCTCTCCCTGTCTCTGGGTAAAG
    CTAGCTGA
    Anti-Dectin_1_15E2.5_H-V-hIgG4H-C (SEQ ID NO: 125):
    MERHWIFLLLLSVTAGVHSQVQLQQSGAELARPGASVKMSCKASGYTFTTYTMHWVKQRPGQGL
    EWIGYINPSSGYTNYNQKFKDKATLTADKSSSTASMQLSSLTSEDSAVYYCARERAVLVPYAMDY
    WGQGTSVTVSSAKTKGPSVFPLAPCSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAV
    LQSSGLYSLSSVVTVPSSSLGTKTYTCNVDHKPSNTKVDKRVESKYGPPCPPCPAPEFEGGPSVFLFP
    PKPKDTLMISRTPEVTCVVVDVSQEDPEVQFNWYVDGVEVHNAKTKPREEQFNSTYRVVSVLTVL
    HQDWLNGKEYKCKVSNKGLPSSIEKTISKAKGQPREPQVYTLPPSQEEMTKNQVSLTCLVKGFYPS
    DIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQEGNVFSCSVMHEALHNHYTQKSL
    SLSLGKAS
    Anti-Dectin_1_15E2.5_K-V-hIgGK-C (SEQ ID NO: 61):
    ATGCATTTTCAAGTGCAGATTTTCAGCTTCCTGCTAATCAGTGCCTCAGTCATAATGTCCAGAGG
    ACAAATTGTTCTCACCCAGTCTCCAGCAGTCATGTCTGCATCTCCAGGGGAGAAGGTCACCATA
    ACCTGCACTGCCAGCTCAAGTTTAAGTTACATGCACTGGTTCCAGCAGAAGCCAGGCACTTCTC
    CCAAACTCTGGCTTTATAGCACATCCATCCTGGCTTCTGGAGTCCCTACTCGCTTCAGTGGCAGT
    GGATCTGGGACCTCTTACTCTCTCACAATCAGCCGAATGGAGGCTGAAGATGCTGCCACTTATT
    ACTGCCAGCAAAGGAGTAGTTCCCCATTCACGTTCGGCTCGGGGACAAAGCTCGAGATCAAAC
    GAACTGTGGCTGCACCATCTGTCTTCATCTTCCCGCCATCTGATGAGCAGTTGAAATCTGGAACT
    GCCTCTGTTGTGTGCCTGCTGAATAACTTCTATCCCAGAGAGGCCAAAGTACAGTGGAAGGTGG
    ATAACGCCCTCCAATCGGGTAACTCCCAGGAGAGTGTCACAGAGCAGGACAGCAAGGACAGCA
    CCTACAGCCTCAGCAGCACCCTGACGCTGAGCAAAGCAGACTACGAGAAACACAAAGTCTATG
    CCTGCGAAGTCACCCATCAGGGCCTGAGCTCGCCCGTCACAAAGAGCTTCAACAGGGGAGAGT
    GTTAG
    Anti-Dectin_1_15E2.5_K-V-hIgGK-C (SEQ ID NO: 126):
    MHFQVQIFSFLLISASVIMSRGQIVLTQSPAVMSASPGEKVTITCTASSSLSYMHWFQQKPGTSPKLW
    LYSTSILASGVPTRFSGSGSGTSYSLTISRMEAEDAATYYCQQRSSSPFTFGSGTKLEIKRTVAAPSVFI
    FPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKA
    DYEKHKVYACEVTHQGLSSPVTKSFNRGEC
    Anti-Dectin_1_2D8.2D4H-V-hIgG4H-C (SEQ ID NO: 62):
    ATGGGATGGACCTGGATCTTTATTTTAATCCTGTCAGTTACTACAGGTGTCCACTCTGAGGTCCA
    GCTGCAGCAGTCTGGACCTGAGCTGGAGAAGCCTGGCGCTTCAGTGAAGATATCCTGCAAGGCT
    TCTGGTTACTCCTTCACTGGCTACAACATGAACTGGGTGAAACAGAGCAATGGAAAGAGCCTTG
    AGTGGATTGGAAATATTGATCCTTACTATGGTGATACTAACTACAACCAGAAGTTCAAGGGCAA
    GGCCACATTGACTGTAGACAAATCCTCCAGCACAGCCTACATGCACCTCAAGAGCCTGACATCT
    GAGGACTCTGCAGTCTATTACTGTGCAAGACCCTACGGTAGTGAGGCCTACTTTGCTTACTGGG
    GCCAAGGGACTCTGGTCACTGTCTCTGCAGCCAAAACGAAGGGCCCATCCGTCTTCCCCCTGGC
    GCCCTGCTCCAGGAGCACCTCCGAGAGCACAGCCGCCCTGGGCTGCCTGGTCAAGGACTACTTC
    CCCGAACCGGTGACGGTGTCGTGGAACTCAGGCGCCCTGACCAGCGGCGTGCACACCTTCCCGG
    CTGTCCTACAGTCCTCAGGACTCTACTCCCTCAGCAGCGTGGTGACCGTGCCCTCCAGCAGCTTG
    GGCACGAAGACCTACACCTGCAACGTAGATCACAAGCCCAGCAACACCAAGGTGGACAAGAGA
    GTTGAGTCCAAATATGGTCCCCCATGCCCACCCTGCCCAGCACCTGAGTTCGAAGGGGGACCAT
    CAGTCTTCCTGTTCCCCCCAAAACCCAAGGACACTCTCATGATCTCCCGGACCCCTGAGGTCAC
    GTGCGTGGTGGTGGACGTGAGCCAGGAAGACCCCGAGGTCCAGTTCAACTGGTACGTGGATGG
    CGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTTCAACAGCACGTACCGTGT
    GGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAACGGCAAGGAGTACAAGTGCAAGGT
    CTCCAACAAAGGCCTCCCGTCCTCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCG
    AGAGCCACAGGTGTACACCCTGCCCCCATCCCAGGAGGAGATGACCAAGAACCAGGTCAGCCT
    GACCTGCCTGGTCAAAGGCTTCTACCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCA
    GCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTAC
    AGCAGGCTAACCGTGGACAAGAGCAGGTGGCAGGAGGGGAATGTCTTCTCATGCTCCGTGATG
    CATGAGGCTCTGCACAACCACTACACACAGAAGAGCCTCTCCCTGTCTCTGGGTAAAGCTAGCT
    GA
    Anti-Dectin_1_2D8.2D4H-V-hIgG4H-C (SEQ ID NO: 127):
    MGWTWIFILILSVTTGVHSEVQLQQSGPELEKPGASVKISCKASGYSFTGYNMNWVKQSNGKSLEW
    IGNIDPYYGDTNYNQKFKGKATLTVDKSSSTAYMHLKSLTSEDSAVYYCARPYGSEAYFAYWGQG
    TLVTVSAAKTKGPSVFPLAPCSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSS
    GLYSLSSVVTVPSSSLGTKTYTCNVDHKPSNTKVDKRVESKYGPPCPPCPAPEFEGGPSVFLFPPKPK
    DTLMISRTPEVTCVVVDVSQEDPEVQFNWYVDGVEVHNAKTKPREEQFNSTYRVVSVLTVLHQDW
    LNGKEYKCKVSNKGLPSSIEKTISKAKGQPREPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIAVE
    WESNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQEGNVFSCSVMHEALHNHYTQKSLSLSLG
    KAS
    Anti-Dectin_1_2D8.2D4K-V-hIgGK-C (SEQ ID NO: 63):
    ATGGTGTCCACTTCTCAGCTCCTTGGACTTTTGCTTTTCTGGACTTCAGCCTCCAGATGTGACATT
    GTGATGACTCAGTCTCCAGCCACCCTGTCTGTGACTCCAGGAGATAGAGTCTCTCTTTCCTGCAG
    GGCCAGCCAGAGTATTAGCGACTACTTACACTGGTATCAACAAAAATCACATGAGTCTCCAAGG
    CTTCTCATCAAATATGCTGCCCAATCCATCTCTGGGATCCCCTCCAGGTTCAGTGGCAGTGGATC
    AGGGTCAGATTTCACTCTCAGTATCAACGGTGTGGAACCTGAAGATGTTGGAGTGTATTACTGT
    CAAAATGGTCACAGCTTTCCGTACACGTTCGGAGGGGGGACCAAGCTCGAGATCAAACGAACT
    GTGGCTGCACCATCTGTCTTCATCTTCCCGCCATCTGATGAGCAGTTGAAATCTGGAACTGCCTC
    TGTTGTGTGCCTGCTGAATAACTTCTATCCCAGAGAGGCCAAAGTACAGTGGAAGGTGGATAAC
    GCCCTCCAATCGGGTAACTCCCAGGAGAGTGTCACAGAGCAGGACAGCAAGGACAGCACCTAC
    AGCCTCAGCAGCACCCTGACGCTGAGCAAAGCAGACTACGAGAAACACAAAGTCTATGCCTGC
    GAAGTCACCCATCAGGGCCTGAGCTCGCCCGTCACAAAGAGCTTCAACAGGGGAGAGTGTTAG
    Anti-Dectin_1_2D8.2D4K-V-hIgGK-C (SEQ ID NO: 128):
    DIVMTQSPATLSVTPGDRVSLSCRASQSISDYLHWYQQKSHESPRLLIKYAAQSISGIPSRFSGSGSGS
    DFTLSINGVEPEDVGVYYCQNGHSFPYTFGGGTKLEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLN
    NFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLS
    SPVTKSFNRGEC
    Anti-Langerin15B10H-LV-hIgG4H-C (SEQ ID NO: 64):
    ATGGAATGGAGGATCTTTCTCTTCATCCTGTCAGGAACTGCAGGTGTCCACTCCCAGGTTCAGCT
    GCGGCAGTCTGGACCTGAGCTGGTGAAGCCTGGGGCTTCAGTGAAGATGTCCTGCAAGGCTTCT
    GGATACACATTTACTGACTATGTTATAAGTTGGGTGAAGCAGAGAACTGGACAGGGCCTTGAGT
    GGATTGGAGATATTTATCCTGGAAGTGGTTATTCTTTCTACAATGAGAACTTCAAGGGCAAGGC
    CACACTGACTGCAGACAAATCCTCCACCACAGCCTACATGCAGCTCAGCAGCCTGACATCTGAG
    GACTCTGCGGTCTATTTCTGTGCAACCTACTATAACTACCCTTTTGCTTACTGGGGCCAAGGGAC
    TCTGGTCACTGTCTCTGCAGCCAAAACAACGGGCCCATCCGTCTTCCCCCTGGCGCCCTGCTCCA
    GGAGCACCTCCGAGAGCACAGCCGCCCTGGGCTGCCTGGTCAAGGACTACTTCCCCGAACCGGT
    GACGGTGTCGTGGAACTCAGGCGCCCTGACCAGCGGCGTGCACACCTTCCCGGCTGTCCTACAG
    TCCTCAGGACTCTACTCCCTCAGCAGCGTGGTGACCGTGCCCTCCAGCAGCTTGGGCACGAAGA
    CCTACACCTGCAACGTAGATCACAAGCCCAGCAACACCAAGGTGGACAAGAGAGTTGAGTCCA
    AATATGGTCCCCCATGCCCACCCTGCCCAGCACCTGAGTTCGAAGGGGGACCATCAGTCTTCCT
    GTTCCCCCCAAAACCCAAGGACACTCTCATGATCTCCCGGACCCCTGAGGTCACGTGCGTGGTG
    GTGGACGTGAGCCAGGAAGACCCCGAGGTCCAGTTCAACTGGTACGTGGATGGCGTGGAGGTG
    CATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTTCAACAGCACGTACCGTGTGGTCAGCGTC
    CTCACCGTCCTGCACCAGGACTGGCTGAACGGCAAGGAGTACAAGTGCAAGGTCTCCAACAAA
    GGCCTCCCGTCCTCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAGCCACAG
    GTGTACACCCTGCCCCCATCCCAGGAGGAGATGACCAAGAACCAGGTCAGCCTGACCTGCCTG
    GTCAAAGGCTTCTACCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAAC
    AACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTACAGCAGGCTAA
    CCGTGGACAAGAGCAGGTGGCAGGAGGGGAATGTCTTCTCATGCTCCGTGATGCATGAGGCTCT
    GCACAACCACTACACACAGAAGAGCCTCTCCCTGTCTCTGGGTAAAGCTAGCTGA
    Anti-Langerin15B10H-LV-hIgG4H-C (SEQ ID NO: 129):
    QVQLRQSGPELVKPGASVKMSCKASGYTFTDYVISWVKQRTGQGLEWIGDIYPGSGYSFYNENFKG
    KATLTADKSSTTAYMQLSSLTSEDSAVYFCATYYNYPFAYWGQGTLVTVSAAKTTGPSVFPLAPCS
    RSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTKTYTC
    NVDHKPSNTKVDKRVESKYGPPCPPCPAPEFEGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSQEDP
    EVQFNWYVDGVEVHNAKTKPREEQFNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKGLPSSIEKTI
    SKAKGQPREPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDG
    SFFLYSRLTVDKSRWQEGNVFSCSVMHEALHNHYTQKSLSLSLGKAS.
    Anti-Langerin15B10K-LV-hIgGK-C (SEQ ID NO: 65):
    ATGAAGTTGCCTGTTAGGCTGTTGGTGCTGATGTTCTGGATTCCTGCTTCCAGCAGTGATGTTGT
    GATGACCCAAACTCCACTCTCCCTGCCTGTCCGTCTTGGAGATCAAGCCTCCATCTCTTGCAGAT
    CTAGTCAGAGCCTTGTACACAGTAATGGAAACACCTATTTACATTGGTACCTGCAGAAGCCAGG
    CCAGTCTCCAAAGCTCCTGATCTACAAAGTTTCCAACCGATTTTCTGGGGTCCCAGACAGGTTC
    AGTGGCAGTGGATCAGGGACAAATTTCACACTCAAGATCAGCAGAGTGGAGGCTGAGGATCTG
    GGACTTTATTTCTGCTCTCAAAGTACACATGTTCCGTACACGTTCGGAGGGGGGACCAAGCTCG
    AGATCAAACGAACTGTGGCTGCACCATCTGTCTTCATCTTCCCGCCATCTGATGAGCAGTTGAA
    ATCTGGAACTGCCTCTGTTGTGTGCCTGCTGAATAACTTCTATCCCAGAGAGGCCAAAGTACAG
    TGGAAGGTGGATAACGCCCTCCAATCGGGTAACTCCCAGGAGAGTGTCACAGAGCAGGACAGC
    AAGGACAGCACCTACAGCCTCAGCAGCACCCTGACGCTGAGCAAAGCAGACTACGAGAAACAC
    AAAGTCTATGCCTGCGAAGTCACCCATCAGGGCCTGAGCTCGCCCGTCACAAAGAGCTTCAACA
    GGGGAGAGTGTTAG
    Anti-Langerin15B10K-LV-hIgGK-C (SEQ ID NO: 130):
    DVVMTQTPLSLPVRLGDQASISCRSSQSLVHSNGNTYLHWYLQKPGQSPKLLIYKVSNRFSGVPDRF
    SGSGSGTNFTLKISRVEAEDLGLYFCSQSTHVPYTFGGGTKLEIKRTVAAPSVFIFPPSDEQLKSGTAS
    VVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEV
    THQGLSSPVTKSFNRGEC
    Anti-Langerin2G3H-LV-hIgG4H-C (SEQ ID NO: 66):
    ATGACATTGAACATGCTGTTGGGGCTGAGGTGGGTTTTCTTTGTTGTTTTTTATCAAGGTGTGCA
    TTGTGAGGTGCAGCTTGTTGAGTCTGGTGGAGGATTGGTGCAGCCTAAAGGGTCATTGAAACTC
    TCATGTGCAGCCTCTGGATTAACCTTCAATATCTACGCCATGAACTGGGTCCGCCAGGCTCCAG
    GAAAGGGTTTGGAATGGGTTGCTCGCATAAGAAATAAAAGTAATAATTATGCAACATATTATGC
    CGATTCAGTGAAAGACAGGTTCACCATCTCCAGAGATGATTCACAAAGCTTGCTCTATCTGCAA
    ATGAACAACTTGAAAACTGAGGACACAGCCATGTATTACTGTGTGGGACGGGACTGGTTTGATT
    ACTGGGGCCAAGGGACTCTGGTCACTGTCTCTGCAGCCAAAACGAAGGGCCCATCCGTCTTCCC
    CCTGGCGCCCTGCTCCAGGAGCACCTCCGAGAGCACAGCCGCCCTGGGCTGCCTGGTCAAGGAC
    TACTTCCCCGAACCGGTGACGGTGTCGTGGAACTCAGGCGCCCTGACCAGCGGCGTGCACACCT
    TCCCGGCTGTCCTACAGTCCTCAGGACTCTACTCCCTCAGCAGCGTGGTGACCGTGCCCTCCAGC
    AGCTTGGGCACGAAGACCTACACCTGCAACGTAGATCACAAGCCCAGCAACACCAAGGTGGAC
    AAGAGAGTTGAGTCCAAATATGGTCCCCCATGCCCACCCTGCCCAGCACCTGAGTTCGAAGGGG
    GACCATCAGTCTTCCTGTTCCCCCCAAAACCCAAGGACACTCTCATGATCTCCCGGACCCCTGA
    GGTCACGTGCGTGGTGGTGGACGTGAGCCAGGAAGACCCCGAGGTCCAGTTCAACTGGTACGT
    GGATGGCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTTCAACAGCACGTA
    CCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAACGGCAAGGAGTACAAGTGC
    AAGGTCTCCAACAAAGGCCTCCCGTCCTCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAG
    CCCCGAGAGCCACAGGTGTACACCCTGCCCCCATCCCAGGAGGAGATGACCAAGAACCAGGTC
    AGCCTGACCTGCCTGGTCAAAGGCTTCTACCCCAGCGACATCGCCGTGGAGTGGGAGAGCAAT
    GGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCC
    TCTACAGCAGGCTAACCGTGGACAAGAGCAGGTGGCAGGAGGGGAATGTCTTCTCATGCTCCG
    TGATGCATGAGGCTCTGCACAACCACTACACACAGAAGAGCCTCTCCCTGTCTCTGGGTAAAGC
    TAGCTGA
    Anti-Langerin2G3H-LV-hIgG4H-C (SEQ ID NO: 131):
    MTLNMLLGLRWVFFVVFYQGVHCEVQLVESGGGLVQPKGSLKLSCAASGLTFNIYAMNWVRQAP
    GKGLEWVARIRNKSNNYATYYADSVKDRFTISRDDSQSLLYLQMNNLKTEDTAMYYCVGRDWFD
    YWGQGTLVTVSAAKTKGPSVFPLAPCSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFP
    AVLQSSGLYSLSSVVTVPSSSLGTKTYTCNVDHKPSNTKVDKRVESKYGPPCPPCPAPEFEGGPSVFL
    FPPKPKDTLMISRTPEVTCVVVDVSQEDPEVQFNWYVDGVEVHNAKTKPREEQFNSTYRVVSVLTV
    LHQDWLNGKEYKCKVSNKGLPSSIEKTISKAKGQPREPQVYTLPPSQEEMTKNQVSLTCLVKGFYPS
    DIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQEGNVFSCSVMHEALHNHYTQKSL
    SLSLGKAS
    Anti-Langerin2G3L-LV-hIgGK-C (SEQ ID NO: 67):
    ATGGCCTGGATTTCACTTATACTCTCTCTCCTGGCTCTCAGCTCAGGGGCCATTTCCCAGGCTGT
    TGTGACTCAGGAATCTGCACTCACCACATCACCTGGTGAAACAGTCACACTCACTTGTCGCTCA
    AGTACTGGGGCTGTTACAACTAGTAACTATGCCAACTGGGTCCAAGAAAAACCAGATCATTTAT
    TCACTGGTCTAATAGGTGGTACCAACAACCGAGTTTCAGGTGTTCCTGCCAGATTCTCAGGCTC
    CCTGATTGGAGACAAGGCTGCCCTCACCATCACAGGGGCACAGACTGAGGATGAGGCAATATA
    TTTCTGTGCTCTATGGTACAGCAACCATTGGGTGTTCGGTGGAGGAACCAAACTCGAGATCAAA
    CGAACTGTGGCTGCACCATCTGTCTTCATCTTCCCGCCATCTGATGAGCAGTTGAAATCTGGAAC
    TGCCTCTGTTGTGTGCCTGCTGAATAACTTCTATCCCAGAGAGGCCAAAGTACAGTGGAAGGTG
    GATAACGCCCTCCAATCGGGTAACTCCCAGGAGAGTGTCACAGAGCAGGACAGCAAGGACAGC
    ACCTACAGCCTCAGCAGCACCCTGACGCTGAGCAAAGCAGACTACGAGAAACACAAAGTCTAT
    GCCTGCGAAGTCACCCATCAGGGCCTGAGCTCGCCCGTCACAAAGAGCTTCAACAGGGGAGAG
    TGTTAG
    Anti-Langerin2G3L-LV-hIgGK-C (SEQ ID NO: 132):
    MAWISLILSLLALSSGAISQAVVTQESALTTSPGETVTLTCRSSTGAVTTSNYANWVQEKPDHLFTGL
    IGGTNNRVSGVPARFSGSLIGDKAALTITGAQTEDEAIYFCALWYSNHWVFGGGTKLEIKRTVAAPS
    VFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTL
    SKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC
    Anti-Lox_1_10F9H-LV-hIgG4H-C (SEQ ID NO: 68):
    ATGGAATGGACCTGGGTCTTTCTCTTCCTCCTGTCAGTAACTGCAGGTGTCCACTCCCAGGTTCA
    GCTGCAGCAGTCTGGAGCTGAGCTGATGAAGCCTGGGGCCTCAGTGAAGATATCCTGCAAGGC
    TACTGGCTACACATTCGGTAGCTACTGGATAGAGTGGGTAAAGCAGAGGCCTGGACATGGCCTT
    GAGTGGATTGGAGAGATTTTACCTGGAAGTGGTAATACTAACTACAATGAGAACTTCAAGGGC
    AAGGCCACATTCACTGCAGATACATCCTCCAACACAGCCTACATGCAACTCACCAGTCTGACAT
    CTGAGGACTCTGCCGTCTATTACTGTGCTAGGGCGGGGATTTATTGGGGCCAAGGGACTCTGGT
    CACTGTCTCTGCAGCCAAAACGAAGGGCCCATCCGTCTTCCCCCTGGCGCCCTGCTCCAGGAGC
    ACCTCCGAGAGCACAGCCGCCCTGGGCTGCCTGGTCAAGGACTACTTCCCCGAACCGGTGACGG
    TGTCGTGGAACTCAGGCGCCCTGACCAGCGGCGTGCACACCTTCCCGGCTGTCCTACAGTCCTC
    AGGACTCTACTCCCTCAGCAGCGTGGTGACCGTGCCCTCCAGCAGCTTGGGCACGAAGACCTAC
    ACCTGCAACGTAGATCACAAGCCCAGCAACACCAAGGTGGACAAGAGAGTTGAGTCCAAATAT
    GGTCCCCCATGCCCACCCTGCCCAGCACCTGAGTTCGAAGGGGGACCATCAGTCTTCCTGTTCC
    CCCCAAAACCCAAGGACACTCTCATGATCTCCCGGACCCCTGAGGTCACGTGCGTGGTGGTGGA
    CGTGAGCCAGGAAGACCCCGAGGTCCAGTTCAACTGGTACGTGGATGGCGTGGAGGTGCATAA
    TGCCAAGACAAAGCCGCGGGAGGAGCAGTTCAACAGCACGTACCGTGTGGTCAGCGTCCTCAC
    CGTCCTGCACCAGGACTGGCTGAACGGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAGGCCT
    CCCGTCCTCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAGCCACAGGTGTA
    CACCCTGCCCCCATCCCAGGAGGAGATGACCAAGAACCAGGTCAGCCTGACCTGCCTGGTCAA
    AGGCTTCTACCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAACTA
    CAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTACAGCAGGCTAACCGTG
    GACAAGAGCAGGTGGCAGGAGGGGAATGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCAC
    AACCACTACACACAGAAGAGCCTCTCCCTGTCTCTGGGTAAAGCTAGCTGA
    Anti-Lox_1_10F9H-LV-hIgG4H-C (SEQ ID NO: 133):
    MEWTWVFLFLLSVTAGVHSQVQLQQSGAELMKPGASVKISCKATGYTFGSYWIEWVKQRPGHGLE
    WIGEILPGSGNTNYNENFKGKATFTADTSSNTAYMQLTSLTSEDSAVYYCARAGIYWGQGTLVTVS
    AAKTKGPSVFPLAPCSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSS
    VVTVPSSSLGTKTYTCNVDHKPSNTKVDKRVESKYGPPCPPCPAPEFEGGPSVFLFPPKPKDTLMISR
    TPEVTCVVVDVSQEDPEVQFNWYVDGVEVHNAKTKPREEQFNSTYRVVSVLTVLHQDWLNGKEY
    KCKVSNKGLPSSIEKTISKAKGQPREPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWESNGQ
    PENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQEGNVFSCSVMHEALHNHYTQKSLSLSLGKAS
    Anti-Lox_1_10F9K-LV-hIgGK-C (SEQ ID NO: 69):
    ATGGAGAAAGACACACTCCTGCTATGGGTCCTGCTTCTCTGGGTTCCAGGTTCCACAGGTGACA
    TTGTGCTGACCCAATCTCCAGCTTTTTTGGCTGTGTCTCTAGGGCAGAGGGCCACCATCTCCTGC
    AGAGCCAGCGAAAGTGTTGATAATTATGGCATTAGTTTTATGAACTGGTTCCAACAGAAACCAG
    GACAGCCACCCAAACTCCTCATCTATGTTGCATCCAAGCAAGGATCCGGGGTCCCTGCCAGGTT
    TAGTGGCAGTGGGTCTGGGACAGACTTCAGCCTCAACATCCATCCTATGGAGGAGGATGATACT
    GCAATGTATTTCTGTCAGCAAAGTAAGGAGGTTCCTCGGACGTTCGGTGGAGGCACCAAGCTCG
    AGATCAAACGAACTGTGGCTGCACCATCTGTCTTCATCTTCCCGCCATCTGATGAGCAGTTGAA
    ATCTGGAACTGCCTCTGTTGTGTGCCTGCTGAATAACTTCTATCCCAGAGAGGCCAAAGTACAG
    TGGAAGGTGGATAACGCCCTCCAATCGGGTAACTCCCAGGAGAGTGTCACAGAGCAGGACAGC
    AAGGACAGCACCTACAGCCTCAGCAGCACCCTGACGCTGAGCAAAGCAGACTACGAGAAACAC
    AAAGTCTATGCCTGCGAAGTCACCCATCAGGGCCTGAGCTCGCCCGTCACAAAGAGCTTCAACA
    GGGGAGAGTGTTAG
    Anti-Lox_1_10F9K-LV-hIgGK-C (SEQ ID NO: 134):
    MEKDTLLLWVLLLWVPGSTGDIVLTQSPAFLAVSLGQRATISCRASESVDNYGISFMNWFQQKPGQ
    PPKLLIYVASKQGSGVPARFSGSGSGTDFSLNIHPMEEDDTAMYFCQQSKEVPRTFGGGTKLEIKRT
    VAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLS
    STLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC
    Anti-LOX-111C8H-LV-hIgG4H-C (SEQ ID NO: 70):
    ATGGAATGTAACTGGATACTTCCTTTTATTCTGTCGGTAACTTCAGGGGTCTACTCAGAGGTTCA
    GCTCCAGCAGTCTGGGACTGTGCTGGCAAGGCCTGGGGCTTCAGTGAAGATGTCCTGCAAGGCT
    TCTGGCTACACCTTTACCAGCTACTGGATGCACTGGGTAAAACAGAGGCCTGGACAGGGTCTGG
    AATGGATTGGCGCTATTTATCCTGGAAATAGTGATACTACCTACAACCAGAAGTTCAAGGGCAA
    GGCCAAACTGACTGCAGTCACATCCACCAGCACTGCCTACATGGAGCTCAGCAGCCTGACAAAT
    GAGGACTCTGCGGTCTATTACTGTACACCTACTTACTACTTTGACTACTGGGGCCAAGGCACCTC
    TCTCACAGTCTCCTCAGCCAAAACGAAGGGCCCATCCGTCTTCCCCCTGGCGCCCTGCTCCAGG
    AGCACCTCCGAGAGCACAGCCGCCCTGGGCTGCCTGGTCAAGGACTACTTCCCCGAACCGGTGA
    CGGTGTCGTGGAACTCAGGCGCCCTGACCAGCGGCGTGCACACCTTCCCGGCTGTCCTACAGTC
    CTCAGGACTCTACTCCCTCAGCAGCGTGGTGACCGTGCCCTCCAGCAGCTTGGGCACGAAGACC
    TACACCTGCAACGTAGATCACAAGCCCAGCAACACCAAGGTGGACAAGAGAGTTGAGTCCAAA
    TATGGTCCCCCATGCCCACCCTGCCCAGCACCTGAGTTCGAAGGGGGACCATCAGTCTTCCTGT
    TCCCCCCAAAACCCAAGGACACTCTCATGATCTCCCGGACCCCTGAGGTCACGTGCGTGGTGGT
    GGACGTGAGCCAGGAAGACCCCGAGGTCCAGTTCAACTGGTACGTGGATGGCGTGGAGGTGCA
    TAATGCCAAGACAAAGCCGCGGGAGGAGCAGTTCAACAGCACGTACCGTGTGGTCAGCGTCCT
    CACCGTCCTGCACCAGGACTGGCTGAACGGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAGG
    CCTCCCGTCCTCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAGCCACAGGT
    GTACACCCTGCCCCCATCCCAGGAGGAGATGACCAAGAACCAGGTCAGCCTGACCTGCCTGGTC
    AAAGGCTTCTACCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAAC
    TACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTACAGCAGGCTAACCG
    TGGACAAGAGCAGGTGGCAGGAGGGGAATGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGC
    ACAACCACTACACACAGAAGAGCCTCTCCCTGTCTCTGGGTAAAGCTAGCTGA
    Anti-LOX-111C8H-LV-hIgG4H-C (SEQ ID NO: 135):
    MECNWILPFILSVTSGVYSEVQLQQSGTVLARPGASVKMSCKASGYTFTSYWMHWVKQRPGQGLE
    WIGAIYPGNSDTTYNQKFKGKAKLTAVTSTSTAYMELSSLTNEDSAVYYCTPTYYFDYWGQGTSLT
    VSSAKTKGPSVFPLAPCSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSL
    SSVVTVPSSSLGTKTYTCNVDHKPSNTKVDKRVESKYGPPCPPCPAPEFEGGPSVFLFPPKPKDTLMI
    SRTPEVTCVVVDVSQEDPEVQFNWYVDGVEVHNAKTKPREEQFNSTYRVVSVLTVLHQDWLNGK
    EYKCKVSNKGLPSSIEKTISKAKGQPREPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWESN
    GQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQEGNVFSCSVMHEALHNHYTQKSLSLSLGKAS
    Anti-LOX-111C8K-LV-hIgGK-C (SEQ ID NO: 71):
    ATGAGTCCTGCCCAATTCCTGTTTCTGTTAGTGCTCTGGATTCGGGAAACCAACGGTGATGTTGT
    GATGACCCAGACTCCACTCACTTTGTCGGTTACCATTGGACAACCAGCCTCCATCTCTTGCAAGT
    CAAGTCAGAGCCTCTTAGATAGTGATGGAAAGACATATTTGAATTGGTTCTTACAGAGGCCAGG
    CCAGTCTCCAAAGCGCCTAATCTATCTGGTGTCTAAACTGGACTCTGGAGTCCCTGACAGGTTC
    ACTGGCAGTGGATCAGGGACAGATTTCACACTGAAAATCAGCAGAGTGGAGGCTGAGGATTTG
    GGAGTTTATTATTGCTGGCAAGGTACACATTTTCCGTGGACGTTCGGTGGAGGCACCAAGCTCG
    AGATCAAACGAACTGTGGCTGCACCATCTGTCTTCATCTTCCCGCCATCTGATGAGCAGTTGAA
    ATCTGGAACTGCCTCTGTTGTGTGCCTGCTGAATAACTTCTATCCCAGAGAGGCCAAAGTACAG
    TGGAAGGTGGATAACGCCCTCCAATCGGGTAACTCCCAGGAGAGTGTCACAGAGCAGGACAGC
    AAGGACAGCACCTACAGCCTCAGCAGCACCCTGACGCTGAGCAAAGCAGACTACGAGAAACAC
    AAAGTCTATGCCTGCGAAGTCACCCATCAGGGCCTGAGCTCGCCCGTCACAAAGAGCTTCAACA
    GGGGAGAGTGTTAG
    Anti-LOX-111C8K-LV-hIgGK-C (SEQ ID NO: 136):
    MSPAQFLFLLVLWIRETNGDVVMTQTPLTLSVTIGQPASISCKSSQSLLDSDGKTYLNWFLQRPGQSP
    KRLIYLVSKLDSGVPDRFTGSGSGTDFTLKISRVEAEDLGVYYCWQGTHFPWTFGGGTKLEIKRTVA
    APSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSST
    LTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC
    Anti-LOX-115C4H-LV-hIgG4H-C (SEQ ID NO: 72):
    ATGGGAGGGATCTGGATCTTTCTCTTCCTCCTGTCAGGAACTGCAGGTGCCCACTCTGAGATCC
    AGCTGCAGCAGACTGGACCTGAGCTGGTGAAGCCTGGGGCTTCAGTGAAGATATCCTGCAAGG
    CTTCTGGTTATCCATTCACTGACTACATCATGGTCTGGGTGAAGCAGAGCCATGGAAAGAGCCT
    TGAGTGGATTGGAAATATTAGTCCTTACTATGGTACTACTAACTACAATCTGAAGTTCAAGGGC
    AAGGCCACATTGACTGTAGACAAATCTTCCAGCACAGCCTACATGCAGCTCAACAGTCTGACAT
    CTGAGGACTCTGCAGTCTATTACTGTGCAAGATCCCCTAACTGGGACGGGGCCTGGTTTGCTCA
    CTGGGGCCAAGGGGCTCTGGTCACTGTCTCTGCAGCCAAAACAAAGGGCCCATCCGTCTTCCCC
    CTGGCGCCCTGCTCCAGGAGCACCTCCGAGAGCACAGCCGCCCTGGGCTGCCTGGTCAAGGACT
    ACTTCCCCGAACCGGTGACGGTGTCGTGGAACTCAGGCGCCCTGACCAGCGGCGTGCACACCTT
    CCCGGCTGTCCTACAGTCCTCAGGACTCTACTCCCTCAGCAGCGTGGTGACCGTGCCCTCCAGC
    AGCTTGGGCACGAAGACCTACACCTGCAACGTAGATCACAAGCCCAGCAACACCAAGGTGGAC
    AAGAGAGTTGAGTCCAAATATGGTCCCCCATGCCCACCCTGCCCAGCACCTGAGTTCGAAGGGG
    GACCATCAGTCTTCCTGTTCCCCCCAAAACCCAAGGACACTCTCATGATCTCCCGGACCCCTGA
    GGTCACGTGCGTGGTGGTGGACGTGAGCCAGGAAGACCCCGAGGTCCAGTTCAACTGGTACGT
    GGATGGCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTTCAACAGCACGTA
    CCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAACGGCAAGGAGTACAAGTGC
    AAGGTCTCCAACAAAGGCCTCCCGTCCTCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAG
    CCCCGAGAGCCACAGGTGTACACCCTGCCCCCATCCCAGGAGGAGATGACCAAGAACCAGGTC
    AGCCTGACCTGCCTGGTCAAAGGCTTCTACCCCAGCGACATCGCCGTGGAGTGGGAGAGCAAT
    GGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCC
    TCTACAGCAGGCTAACCGTGGACAAGAGCAGGTGGCAGGAGGGGAATGTCTTCTCATGCTCCG
    TGATGCATGAGGCTCTGCACAACCACTACACACAGAAGAGCCTCTCCCTGTCTCTGGGTAAAGC
    TAGCTGATTAATTAA
    Anti-LOX-115C4H-LV-hIgG4H-C (SEQ ID NO: 137):
    MGGIWIFLFLLSGTAGAHSEIQLQQTGPELVKPGASVKISCKASGYPFTDYIMVWVKQSHGKSLEWI
    GNISPYYGTTNYNLKFKGKATLTVDKSSSTAYMQLNSLTSEDSAVYYCARSPNWDGAWFAHWGQ
    GALVTVSAAKTKGPSVFPLAPCSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQS
    SGLYSLSSVVTVPSSSLGTKTYTCNVDHKPSNTKVDKRVESKYGPPCPPCPAPEFEGGPSVFLFPPKP
    KDTLMISRTPEVTCVVVDVSQEDPEVQFNWYVDGVEVHNAKTKPREEQFNSTYRVVSVLTVLHQD
    WLNGKEYKCKVSNKGLPSSIEKTISKAKGQPREPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIAV
    EWESNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQEGNVFSCSVMHEALHNHYTQKSLSLSL
    GKAS
    Anti-LOX-115C4K-LV-hIgGK-C (SEQ ID NO: 73):
    ATGGAGACAGACACAATCCTGCTATGGGTGCTGCTGCTCTGGGTTCCAGGCTCCACTGGTGACA
    TTGTGCTGACCCAATCTCCAGCTTCTTTGGCTGTGTCTCTAGGGCAGAGGGCCACCATCTCCTGC
    AAGGCCAGCCAAAGTGTTGATTATGATGGTGATAGTTATATGAACTGGTTCCAACAGAAACCAG
    GACAGCCACCCAAACTCCTCATCTATGCTGCATCCAATCTAGAATCTGGGATCCCAGCCAGGTT
    TAGTGGCAGTGGGTCTGGGACAGACTTCACCCTCAACATCCATCCTGTGGAGGAGGAGGATGCT
    GCAACCTATTACTGTCAGCAAAGTAATGAGGATCCATTCACGTTCGGCTCGGGGACAAAGCTCG
    AGATCAAACGAACTGTGGCTGCACCATCTGTCTTCATCTTCCCGCCATCTGATGAGCAGTTGAA
    ATCTGGAACTGCCTCTGTTGTGTGCCTGCTGAATAACTTCTATCCCAGAGAGGCCAAAGTACAG
    TGGAAGGTGGATAACGCCCTCCAATCGGGTAACTCCCAGGAGAGTGTCACAGAGCAGGACAGC
    AAGGACAGCACCTACAGCCTCAGCAGCACCCTGACGCTGAGCAAAGCAGACTACGAGAAACAC
    AAAGTCTATGCCTGCGAAGTCACCCATCAGGGCCTGAGCTCGCCCGTCACAAAGAGCTTCAACA
    GGGGAGAGTGTTAG
    Anti-LOX-115C4K-LV-hIgGK-C (SEQ ID NO: 138):
    METDTILLWVLLLWVPGSTGDIVLTQSPASLAVSLGQRATISCKASQSVDYDGDSYMNWFQQKPGQ
    PPKLLIYAASNLESGIPARFSGSGSGTDFTLNIHPVEEEDAATYYCQQSNEDPFTFGSGTKLEIKRTVA
    APSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSST
    LTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC
    Anti-Marco_10B7.3G4H-LV-hIgG4H-C (SEQ ID NO: 74):
    ATGGCTGTCCTGGGGCTGCTTCTCTGCCTGGTGACGTTCCCAAGCTGTGTCCTGTCCCAGGTGCA
    GCTGAAGGAGTCAGGACCTGGCCTGGTGGCACCCTCACAGAGCCTGTCCATCACATGCACTGTC
    TCTGGGTTCTCATTATCCAGATATAGTGTATTTTGGGTTCGCCAGCCTCCAGGAAAGGGTCTGGA
    GTGGCTGGGATTGATATGGGGTGGTGGAAGCACAGACTATAATTCAGCTCTCAAATCCAGACTG
    AGCATCAGCAAGGACAACTCCAAGAGCCAAGTTTTCTTAAAAATGAACAGTCTGCAAACTGAT
    GACACAGCCATGTACTACTGTGCCAGAATCTACTTTGATTACGACGGGGCTATGGACTACTGGG
    GTCAAGGAACCTCAGTCACCGTCTCCTCAGCCAAAACAACGGGCCCATCCGTCTTCCCCCTGGC
    GCCCTGCTCCAGGAGCACCTCCGAGAGCACAGCCGCCCTGGGCTGCCTGGTCAAGGACTACTTC
    CCCGAACCGGTGACGGTGTCGTGGAACTCAGGCGCCCTGACCAGCGGCGTGCACACCTTCCCGG
    CTGTCCTACAGTCCTCAGGACTCTACTCCCTCAGCAGCGTGGTGACCGTGCCCTCCAGCAGCTTG
    GGCACGAAGACCTACACCTGCAACGTAGATCACAAGCCCAGCAACACCAAGGTGGACAAGAGA
    GTTGAGTCCAAATATGGTCCCCCATGCCCACCCTGCCCAGCACCTGAGTTCGAAGGGGGACCAT
    CAGTCTTCCTGTTCCCCCCAAAACCCAAGGACACTCTCATGATCTCCCGGACCCCTGAGGTCAC
    GTGCGTGGTGGTGGACGTGAGCCAGGAAGACCCCGAGGTCCAGTTCAACTGGTACGTGGATGG
    CGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTTCAACAGCACGTACCGTGT
    GGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAACGGCAAGGAGTACAAGTGCAAGGT
    CTCCAACAAAGGCCTCCCGTCCTCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCG
    AGAGCCACAGGTGTACACCCTGCCCCCATCCCAGGAGGAGATGACCAAGAACCAGGTCAGCCT
    GACCTGCCTGGTCAAAGGCTTCTACCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCA
    GCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTAC
    AGCAGGCTAACCGTGGACAAGAGCAGGTGGCAGGAGGGGAATGTCTTCTCATGCTCCGTGATG
    CATGAGGCTCTGCACAACCACTACACACAGAAGAGCCTCTCCCTGTCTCTGGGTAAAGCTAGCTG
    Anti-Marco_10B7.3G4H-LV-hIgG4H-C (SEQ ID NO: 139):
    MAVLGLLLCLVTFPSCVLSQVQLKESGPGLVAPSQSLSITCTVSGFSLSRYSVFWVRQPPGKGLEWL
    GLIWGGGSTDYNSALKSRLSISKDNSKSQVFLKMNSLQTDDTAMYYCARIYFDYDGAMDYWGQGT
    SVTVSSAKTTGPSVFPLAPCSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGL
    YSLSSVVTVPSSSLGTKTYTCNVDHKPSNTKVDKRVESKYGPPCPPCPAPEFEGGPSVFLFPPKPKDT
    LMISRTPEVTCVVVDVSQEDPEVQFNWYVDGVEVHNAKTKPREEQFNSTYRVVSVLTVLHQDWLN
    GKEYKCKVSNKGLPSSIEKTISKAKGQPREPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWE
    SNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQEGNVFSCSVMHEALHNHYTQKSLSLSLGKAS
    AntiMarco_10B7.3G4K_H-V-hIgGK-C (SEQ ID NO: 75):
    ATGCATCGCACCAGCATGGGCATCAAGATGGAGTCACGGATTCAGGCATTTGTATTCGTGTTTC
    TCTGGTTGTCTGGTGTTGGCGGAGACATTGTGATGACCCAGTCTCACAAATTCATGTCCACATCA
    GTAGGAGACAGGGTCAGCGTCACCTGCAAGGCCAGTCAGGATGTGACTTCTGCTGTAGCCTGGT
    ATCAACAAAAACCAGGGCAATCTCCTAAACTACTGATTTACTGGGCATCCACCCGGCACACTGG
    AGTCCCTGATCGCTTCACAGGCAGTGGATCTGGGACAGATTATACTCTCACCATCAGCAGTGGG
    CAGGCTGAAGACCTGGCACTTTATTACTGTCACCAATATTATAGCGCTCCTCGGACGTTCGGTG
    GAGGCACCAAGCTCGAGATCAAACGAACTGTGGCTGCACCATCTGTCTTCATCTTCCCGCCATC
    TGATGAGCAGTTGAAATCTGGAACTGCCTCTGTTGTGTGCCTGCTGAATAACTTCTATCCCAGA
    GAGGCCAAAGTACAGTGGAAGGTGGATAACGCCCTCCAATCGGGTAACTCCCAGGAGAGTGTC
    ACAGAGCAGGACAGCAAGGACAGCACCTACAGCCTCAGCAGCACCCTGACGCTGAGCAAAGCA
    GACTACGAGAAACACAAAGTCTATGCCTGCGAAGTCACCCATCAGGGCCTGAGCTCGCCCGTC
    ACAAAGAGCTTCAACAGGGGAGAGTGTTAG
    AntiMarco_10B7.3G4K_H-V-hIgGK-C (SEQ ID NO: 140):
    MHRTSMGIKMESRIQAFVFVFLWLSGVGGDIVMTQSHKFMSTSVGDRVSVTCKASQDVTSAVAWY
    QQKPGQSPKLLIYWASTRHTGVPDRFTGSGSGTDYTLTISSGQAEDLALYYCHQYYSAPRTFGGGTK
    LEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKD
    STYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC
    Anti-Marco_11A8.3C9_H-V-hIgG4H-C (SEQ ID NO: 76):
    ATGGAATGGAACTGGGTCGTTCTCTTCCTCCTGTCATTAACTGCAGGTGTCTATGCCCAGGGTCA
    GATGCAGCAGTCTGGAGCTGAGCTGGTGAAGCCTGGGGCTTCAGTGAAGCTGTCCTGCAAGACT
    TCTGGCTTCACCTTCAGCAGTAACTATATAAGTTGGTTGAAGCAAAAGCCTGGACAGAGTCTTG
    AGTGGATTGCATGGATTTATGCTGGAACTGGTGGTATTACCTATAATCAGAAGTTCAGAGGCAG
    GGCCCAACTGACTGTAGACACATCCTCCAGCACAGCCTACATGCAGTTCAGCAGCCTGACAACT
    GATGACTCTGCCATCTATTACTGTGCAAGACACGTGAGGGGTTACCATCCTATGGACTACTGGG
    GTCAAGGAACCTCAGTCACCGTCTCCTCAGCCAAAACGAAGGGCCCATCCGTCTTCCCCCTGGC
    GCCCTGCTCCAGGAGCACCTCCGAGAGCACAGCCGCCCTGGGCTGCCTGGTCAAGGACTACTTC
    CCCGAACCGGTGACGGTGTCGTGGAACTCAGGCGCCCTGACCAGCGGCGTGCACACCTTCCCGG
    CTGTCCTACAGTCCTCAGGACTCTACTCCCTCAGCAGCGTGGTGACCGTGCCCTCCAGCAGCTTG
    GGCACGAAGACCTACACCTGCAACGTAGATCACAAGCCCAGCAACACCAAGGTGGACAAGAGA
    GTTGAGTCCAAATATGGTCCCCCATGCCCACCCTGCCCAGCACCTGAGTTCGAAGGGGGACCAT
    CAGTCTTCCTGTTCCCCCCAAAACCCAAGGACACTCTCATGATCTCCCGGACCCCTGAGGTCAC
    GTGCGTGGTGGTGGACGTGAGCCAGGAAGACCCCGAGGTCCAGTTCAACTGGTACGTGGATGG
    CGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTTCAACAGCACGTACCGTGT
    GGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAACGGCAAGGAGTACAAGTGCAAGGT
    CTCCAACAAAGGCCTCCCGTCCTCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCG
    AGAGCCACAGGTGTACACCCTGCCCCCATCCCAGGAGGAGATGACCAAGAACCAGGTCAGCCT
    GACCTGCCTGGTCAAAGGCTTCTACCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCA
    GCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTAC
    AGCAGGCTAACCGTGGACAAGAGCAGGTGGCAGGAGGGGAATGTCTTCTCATGCTCCGTGATG
    CATGAGGCTCTGCACAACCACTACACACAGAAGAGCCTCTCCCTGTCTCTGGGTAAAGCTAGCT
    GA
    Anti-Marco_11A8.3C9_H-V-hIgG4H-C (SEQ ID NO: 141):
    MEWNWVVLFLLSLTAGVYAQGQMQQSGAELVKPGASVKLSCKTSGFTFSSNYISWLKQKPGQSLE
    WIAWIYAGTGGITYNQKFRGRAQLTVDTSSSTAYMQFSSLTTDDSAIYYCARHVRGYHPMDYWGQ
    GTSVTVSSAKTKGPSVFPLAPCSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSS
    GLYSLSSVVTVPSSSLGTKTYTCNVDHKPSNTKVDKRVESKYGPPCPPCPAPEFEGGPSVFLFPPKPK
    DTLMISRTPEVTCVVVDVSQEDPEVQFNWYVDGVEVHNAKTKPREEQFNSTYRVVSVLTVLHQDW
    LNGKEYKCKVSNKGLPSSIEKTISKAKGQPREPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIAVE
    WESNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQEGNVFSCSVMHEALHNHYTQKSLSLSLG
    KAS
    Anti-Marco_11A8.3C9_H-V-hIgGK-C (SEQ ID NO: 77):
    ATGGAGTCACAGACTCAGGTCTTTGTATACATGTTGCTGTGGTTGTCTGGTGTTGATGGAGACAT
    TGTGATGACCCAGTCTCAAAAATTCATGTCCGCATCAGTAGGGGACAGGGTCAGCGTCACCTGC
    AGGGCCAGTCAGAATGTGGTTACTAATGTAGGCTGGTATCAACAGAAACCAGGGCAATCTCCT
    AAAGTACTGATTTACTCGGCATCCTTCCGGTACAGTGGAGTCCCTGATCGCTTCACAGGCAGTG
    GATCTGGGACAGATTTCACTCTCACCATCACCAATGTGCAGTCTGAAGACTTGGCAGAGTATTT
    CTGTCAGCAATATAACAACTATCCGTACACGTTCGGAGGGGGGACCAAGCTCGAGATCAAACG
    AACTGTGGCTGCACCATCTGTCTTCATCTTCCCGCCATCTGATGAGCAGTTGAAATCTGGAACTG
    CCTCTGTTGTGTGCCTGCTGAATAACTTCTATCCCAGAGAGGCCAAAGTACAGTGGAAGGTGGA
    TAACGCCCTCCAATCGGGTAACTCCCAGGAGAGTGTCACAGAGCAGGACAGCAAGGACAGCAC
    CTACAGCCTCAGCAGCACCCTGACGCTGAGCAAAGCAGACTACGAGAAACACAAAGTCTATGC
    CTGCGAAGTCACCCATCAGGGCCTGAGCTCGCCCGTCACAAAGAGCTTCAACAGGGGAGAGTG
    TTAG
    Anti-Marco_11A8.3C9_H-V-hIgGK-C (SEQ ID NO: 142):
    MESQTQVFVYMLLWLSGVDGDIVMTQSQKFMSASVGDRVSVTCRASQNVVTNVGWYQQKPGQSP
    KVLIYSASFRYSGVPDRFTGSGSGTDFTLTITNVQSEDLAEYFCQQYNNYPYTFGGGTKLEIKRTVAA
    PSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTL
    TLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC
    Anti-Marco_3H10.1F3_H-V-hIgG4H-C (SEQ ID NO: 78):
    ATGGGATGGAGCTATATCATCCTCTTTTTGGTAGCAACAGCTACAGATGTCCACTCCCAGGTCC
    AACTGCAGCAGCCTGGGGCTGAACTGGTGAAGCCTGGGGCTTCAGTGAAGCTGTCCTGCAAGG
    CTTCTGGCTACACCTTCACCAGCTACTGGATGCACTGGGTGAAGCAGAGGCCTGGAGAAGGCCT
    TGAGTGGATTGGAGAGATTAATCCTAGCTACGGTCGTACTGACTACAATGGGAAGTTCAAGAAC
    AAGGCCACACTGACTGTAGCCAAATCCTCCAGCACAGCCTACATGCAACTCAGCAGCCTGACAT
    CTGAGGACTCTGCGGTCTATTACTGTGCAAGAGGAGATTACTACGGTAGTAGCTCGTTTGCTTA
    CTGGGGCCAAGGGACTCTGGTCACTGTCTCTGCAGCCAAAACAAAGGGCCCATCCGTCTTCCCC
    CTGGCGCCCTGCTCCAGGAGCACCTCCGAGAGCACAGCCGCCCTGGGCTGCCTGGTCAAGGACT
    ACTTCCCCGAACCGGTGACGGTGTCGTGGAACTCAGGCGCCCTGACCAGCGGCGTGCACACCTT
    CCCGGCTGTCCTACAGTCCTCAGGACTCTACTCCCTCAGCAGCGTGGTGACCGTGCCCTCCAGC
    AGCTTGGGCACGAAGACCTACACCTGCAACGTAGATCACAAGCCCAGCAACACCAAGGTGGAC
    AAGAGAGTTGAGTCCAAATATGGTCCCCCATGCCCACCCTGCCCAGCACCTGAGTTCGAAGGGG
    GACCATCAGTCTTCCTGTTCCCCCCAAAACCCAAGGACACTCTCATGATCTCCCGGACCCCTGA
    GGTCACGTGCGTGGTGGTGGACGTGAGCCAGGAAGACCCCGAGGTCCAGTTCAACTGGTACGT
    GGATGGCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTTCAACAGCACGTA
    CCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAACGGCAAGGAGTACAAGTGC
    AAGGTCTCCAACAAAGGCCTCCCGTCCTCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAG
    CCCCGAGAGCCACAGGTGTACACCCTGCCCCCATCCCAGGAGGAGATGACCAAGAACCAGGTC
    AGCCTGACCTGCCTGGTCAAAGGCTTCTACCCCAGCGACATCGCCGTGGAGTGGGAGAGCAAT
    GGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCC
    TCTACAGCAGGCTAACCGTGGACAAGAGCAGGTGGCAGGAGGGGAATGTCTTCTCATGCTCCG
    TGATGCATGAGGCTCTGCACAACCACTACACACAGAAGAGCCTCTCCCTGTCTCTGGGTAAAGC
    TAGCTGA
    Anti-Marco_3H10.1F3_H-V-hIgG4H-C (SEQ ID NO: 143):
    MGWSYIILFLVATATDVHSQVQLQQPGAELVKPGASVKLSCKASGYTFTSYWMHWVKQRPGEGLE
    WIGEINPSYGRTDYNGKFKNKATLTVAKSSSTAYMQLSSLTSEDSAVYYCARGDYYGSSSFAYWGQ
    GTLVTVSAAKTKGPSVFPLAPCSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQS
    SGLYSLSSVVTVPSSSLGTKTYTCNVDHKPSNTKVDKRVESKYGPPCPPCPAPEFEGGPSVFLFPPKP
    KDTLMISRTPEVTCVVVDVSQEDPEVQFNWYVDGVEVHNAKTKPREEQFNSTYRVVSVLTVLHQD
    WLNGKEYKCKVSNKGLPSSIEKTISKAKGQPREPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIAV
    EWESNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQEGNVFSCSVMHEALHNHYTQKSLSLSL
    GKAS
    Anti-Marco_3H10.1F3_K-V-hIgGK-C (SEQ ID NO: 79):
    ATGGAGTCACAGACTCAGGTCTTTGTATACATGTTGCTGTGGTTGTCTGGTGTTGATGGAGACAT
    TGTGATGACCCAGTCTCAAAAATTCATGTCCACATCATTAGGAGACAGGGTCAGCGTCACCTGC
    AAGGCCAGTCAGAATGTGGGTACTAATGTAGCCTGGTATCAACAGAAACCAGGGCACTCTCCT
    AAAGCACTGATTTACTCGGCATCCTACCGGTACAGTGGAGTCCCTGATCGCTTCACAGGCAGTG
    GATCTGGGACAGATTTCACTCTCACCATCAGCAATGTGCAGTCTGAAGACTTGGCAGAGTTTTT
    CTGTCAGCAATATAACAACTATCCGTACACGTTCGGAGGGGGGACCACGCTCGAGATCAAACG
    AACTGTGGCTGCACCATCTGTCTTCATCTTCCCGCCATCTGATGAGCAGTTGAAATCTGGAACTG
    CCTCTGTTGTGTGCCTGCTGAATAACTTCTATCCCAGAGAGGCCAAAGTACAGTGGAAGGTGGA
    TAACGCCCTCCAATCGGGTAACTCCCAGGAGAGTGTCACAGAGCAGGACAGCAAGGACAGCAC
    CTACAGCCTCAGCAGCACCCTGACGCTGAGCAAAGCAGACTACGAGAAACACAAAGTCTATGC
    CTGCGAAGTCACCCATCAGGGCCTGAGCTCGCCCGTCACAAAGAGCTTCAACAGGGGAGAGTG
    TTAG
    Anti-Marco_3H10.1F3_K-V-hIgGK-C (SEQ ID NO: 144):
    MESQTQVFVYMLLWLSGVDGDIVMTQSQKFMSTSLGDRVSVTCKASQNVGTNVAWYQQKPGHSP
    KALIYSASYRYSGVPDRFTGSGSGTDFTLTISNVQSEDLAEFFCQQYNNYPYTFGGGTTLEIKRTVAA
    PSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTL
    TLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC
  • Humanized anti-CD40-HCV vaccine is: hAnti-CD40VK2-LV-hIgGK-C×hAnti-CD40VH3-LV-hIgG4H-C-Flex-v1-HelB-f1-ProtB-f2-NS5BPalm, wherein the portion of HelB are underlined, the portions of ProtB are bold and the portions of NS5BPalm are italicized. The linker sequence (in bold italics) is flanked by the transition sequence “AS” that bracket the linker sequences
  • [hAnti-CD40VK2-LV-hIgGK-C]
    (SEQ ID NO: 158)
    DIQMTQSPSSLSASVGDRVTITCSASQGISNYLNWYQQKPGKAVKLLIYYTSILHSGVPSRFSGSGSG
    TDYTLTISSLQPEDFATYYCQQFNKLPPTFGGGTKLEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLN
    NFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLS
    SPVTKSFNRGEC
    hAnti-CD40VH3-LV-hIgG4H-C-Flex-v1-HelB-f1-ProtB-f2-NS5BPalm
    (SEQ ID NO: 159)
    EVQLVESGGGLVQPGGSLKLSCATSGFTFSDYYMYWVRQAPGKGLEWVAYINSGGGSTYYPDTVK
    GRFTISRDNAKNTLYLQMNSLRAEDTAVYYCARRGLPFHAMDYWGQGTLVTVSSAKTKGPSVFPL
    APCSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTK
    TYTCNVDHKPSNTKVDKRVESKYGPPCPPCPAPEFEGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVS
    QEDPEVQFNWYVDGVEVHNAKTKPREEQFNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKGLPSSI
    EKTISKAKGQPREPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLD
    SDGSFFLYSRLTVDKSRWQEGNVFSCSVMHEALHNHYTQKSLSLSLGKAS
    Figure US20120301465A1-20121129-P00002
    Figure US20120301465A1-20121129-P00003
    Figure US20120301465A1-20121129-P00004
    Figure US20120301465A1-20121129-P00005
    ASVTVPHPNIEEVALSTTGEIPFYGKAIPLEVIKGGRHLIFCHSKKKCDELAAKLVAL
    GINAVAYYRGLDVSVIPTSGVVVVVATDALMTGFTGDFDSVIDCNTCVTQTVDFSLDPTFTIETTTLP
    QDAVSRTQRRGRTGRGKPGIYRFVAPGERAS
    Figure US20120301465A1-20121129-P00006
    Figure US20120301465A1-20121129-P00007
    Figure US20120301465A1-20121129-P00008
    Figure US20120301465A1-20121129-P00009
    ASTPCTCGSSDL
    YLVTRHADVIPVRRRGDSRGSLLSPRPISYLKGSSGGPLLCPAGHAVGIFRAAVCTRGVAKAVD
    FIPVENLETTMRSPVFTDNSSPPAVPQSAS
    Figure US20120301465A1-20121129-P00010
    Figure US20120301465A1-20121129-P00011
    Figure US20120301465A1-20121129-P00012
    Figure US20120301465A1-20121129-P00013
    ASVLDSHYQDVLKE
    VKAAASKVKANALYDVVSKLPLAVMGSSYGFQYSPGQRVEFLVQAWKSKKTPMGFSYDTRCFDSTVTESDI
    RTEEAIYQCCDLDPQARVAIKSLTERLYVGRCRASGVLTTSCGNTLTCYIKARAACRAAGLQDCTMLVCGD
    DLVVICESAGVQEDAASLRAFTEAMTRYSAPPGDPPQPEYDLELITAS
  • Humanized anti-DCIR-HCV 1st generation vaccine is: [hAnti-DCIRVK4-LV-hIgGK-C]×[hAnti-DCIRVH1-LV-hIgG4H-C-Flex-v1-HelB-f1-ProtB-f2-NS5BPalm] wherein the portion of HelB are underlined, the portions of ProtB are bold and the portions of NS5BPalm are italicized. The linker sequence (in bold italics) is flanked by the transition sequence “AS” that bracket the linker sequences
  • hAnti-DCIRVK4-LV-hIgGK-C
    (SEQ ID NO: 160)
    DIVMTQSPDSLAVSLGERATINCRASESIHSYGNSFLHWYQQKPGQPPKLLIYLASNLESGVPSRFSG
    SGSRTDFTLTISSLQPEDFATYYCQQNNEDPWTFGQGTKLEIKRTVAAPSVFIFPPSDEQLKSGTASV
    VCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVT
    HQGLSSPVTKSFNRGEC
    hAnti-DCIRVH1-LV-hIgG4H-C-Flex-v1-HelB-f1-ProtB-f2-NS5BPalm
    (SEQ ID NO: 161)
    QVTLKESGPAIVKPTQTLTLTCSFSGFSLSTSGMGLSWIRQPSGKALEWLAHIYWDDDKRYNPSLKS
    RLTISKDTSKNQVVLTMTIVDTVDAATYYCARSSHYYGYGYGGYFDVWGQGTTVTVSSAKTKGPS
    VFPLAPCSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSS
    LGTKTYTCNVDHKPSNTKVDKRVESKYGPPCPPCPAPEFEGGPSVFLFPPKPKDTLMISRTPEVTCVV
    VDVSQEDPEVQFNWYVDGVEVHNAKTKPREEQFNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKG
    LPSSIEKTISKAKGQPREPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTP
    PVLDSDGSFFLYSRLTVDKSRWQEGNVFSCSVMHEALHNHYTQKSLSLSLGKAS
    Figure US20120301465A1-20121129-P00014
    Figure US20120301465A1-20121129-P00015
    Figure US20120301465A1-20121129-P00016
    Figure US20120301465A1-20121129-P00017
    ASVTVPHPNIEEVALSTTGEIPFYGKAIPLEVIKGGRHLIFCHSKKKCDELAAKL
    VALGINAVAYYRGLDVSVIPTSGVVVVVATDALMTGFTGDFDSVIDCNTCVTQTVDFSLDPTFTIET
    TTLPQDAVSRTQRRGRTGRGKPGIYRFVAPGERAS
    Figure US20120301465A1-20121129-P00018
    Figure US20120301465A1-20121129-P00019
    Figure US20120301465A1-20121129-P00020
    Figure US20120301465A1-20121129-P00021
    ASTPCTCG
    SSDLYLVTRHADVIPVRRRGDSRGSLLSPRPISYLKGSSGGPLLCPAGHAVGIFRAAVCTRGVA
    KAVDFIPVENLETTMRSPVFTDNSSPPAVPQSAS
    Figure US20120301465A1-20121129-P00022
    Figure US20120301465A1-20121129-P00023
    Figure US20120301465A1-20121129-P00024
    Figure US20120301465A1-20121129-P00025
    ASVLDSHYQ
    DVLKEVKAAASKVKANALYDVVSKLPLAVMGSSYGFQYSPGQRVEFLVQAWKSKKTPMGFSYDTRCFDST
    VTESDIRTEEAIYQCCDLDPQARVAIKSLTERLYVGRCRASGVLTTSCGNTLTCYIKARAACRAAGLQDCTM
    LVCGDDLVVICESAGVQEDAASLRAFTEAMTRYSAPPGDPPQPEYDLELITAS
  • Humanized anti-CD40-HCV vaccine is: hAnti-CD40VK2-LV-hIgGK-C-ViralHCVhelicasefgtB×hAnti-CD40VH3-LV-hIgG4H-C-Flex-v1-ProtB-f1-NS5BPalm, wherein the portion of ViralHCVhelicasefgtB are underlined, the portions of ProtB are bold and the portions of NS5BPalm are italicized. The linker sequence (in bold italics) is flanked by the transition sequence “AS” that bracket the linker sequences.
  • hAnti-CD40VK2-LV-hIgGK-C-ViralHCVhelicasefgtB
    (SEQ ID NO: 162)
    DIQMTQSPSSLSASVGDRVTITCSASQGISNYLNWYQQKPGKAVKLLIYYTSILHSGVPSRFSGSGSG
    TDYTLTISSLQPEDFATYYCQQFNKLPPTFGGGTKLEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLN
    NFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLS
    SPVTKSFNRGECASVTVPHPNIEEVALSTTGEIPFYGKAIPLEVIKGGRHLIFCHSKKKCDELAAKLVA
    LGINAVAYYRGLDVSVIPTSGVVVVVATDALMTGFTGDFDSVIDCNTCVTQTVDFSLDPTFTIETTTL
    PQDAVSRTQRRGRTGRGKPGIYRFVAPGERAS
    hAnti-CD40VH3-LV-hIgG4H-C-Flex-v1-ProtB-f1-NS5BPalm
    (SEQ ID NO: 163)
    EVQLVESGGGLVQPGGSLKLSCATSGFTFSDYYMYWVRQAPGKGLEWVAYINSGGGSTYYPDTVK
    GRFTISRDNAKNTLYLQMNSLRAEDTAVYYCARRGLPFHAMDYWGQGTLVTVSSAKTKGPSVFPL
    APCSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTK
    TYTCNVDHKPSNTKVDKRVESKYGPPCPPCPAPEFEGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVS
    QEDPEVQFNWYVDGVEVHNAKTKPREEQFNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKGLPSSI
    EKTISKAKGQPREPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLD
    SDGSFFLYSRLTVDKSRWQEGNVFSCSVMHEALHNHYTQKSLSLSLGKAS
    Figure US20120301465A1-20121129-P00026
    Figure US20120301465A1-20121129-P00027
    Figure US20120301465A1-20121129-P00028
    Figure US20120301465A1-20121129-P00029
    Figure US20120301465A1-20121129-P00030
    ASTPCTCGSSDLYLVTRHADVIPVRRRGDSRGSLLSPRPISYLKGSSGGPLLCPA
    GHAVGIFRAAVCTRGVAKAVDFIPVENLETTMRSPVFTDNSSPPAVPQSAS
    Figure US20120301465A1-20121129-P00031
    Figure US20120301465A1-20121129-P00032
    Figure US20120301465A1-20121129-P00033
    Figure US20120301465A1-20121129-P00034
    Figure US20120301465A1-20121129-P00035
    ASVLDSHYQDVLKEVKAAASKVKANALYDVVSKLPLAVMGSSYGFQYSPGQRVEFLVQAW
    KSKKTPMGFSYDTRCFDSTVTESDIRTEEAIYQCCDLDPQARVAIKSLTERLYVGRCRASGVLTTSCGNTLT
    CYIKARAACRAAGLQDCTMLVCGDDLVVICESAGVQEDAASLRAFTEAMTRYSAPPGDPPQPEYDLELITA
    S
  • Humanized anti-DCIR-HCV 2nd generation vaccine is: [hAnti-DCIRVK4-LV-hIgGK-C-ViralHCVhelicasefgtB]×[hAnti-D CIRVH1-LV-hIgG4H-C—F lex-v1-ProtB-f1-NS5BPalm], wherein the portion of ViralHCVhelicasefgtB are underlined, the portions of ProtB are bold and the portions of NS5BPalm are italicized. The linker sequence (in bold italics) is flanked by the transition sequence “AS” that bracket the linker sequences.
  • hAnti-DCIRVK4-LV-hIgGK-C-ViralHCVhelicasefgtB
    (SEQ ID NO: 164)
    DIVMTQSPDSLAVSLGERATINCRASESIHSYGNSFLHWYQQKPGQPPKLLIYLASNLESGVPSRFSG
    SGSRTDFTLTISSLQPEDFATYYCQQNNEDPWTFGQGTKLEIKRTVAAPSVFIFPPSDEQLKSGTASV
    VCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVT
    HQGLSSPVTKSFNRGECASVTVPHPNIEEVALSTTGEIPFYGKAIPLEVIKGGRHLIFCHSKKKCDELA
    AKLVALGINAVAYYRGLDVSVIPTSGVVVVVATDALMTGFTGDFDSVIDCNTCVTQTVDFSLDPTF
    TIETTTLPQDAVSRTQRRGRTGRGKPGIYRFVAPGERAS
    hAnti-DCIRVH1-LV-hIgG4H-C-Flex-v1-ProtB-f1-NS5BPalm
    (SEQ ID NO: 165)
    QVTLKESGPAIVKPTQTLTLTCSFSGFSLSTSGMGLSWIRQPSGKALEWLAHIYWDDDKRYNPSLKS
    RLTISKDTSKNQVVLTMTIVDTVDAATYYCARSSHYYGYGYGGYFDVWGQGTTVTVSSAKTKGPS
    VFPLAPCSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSS
    LGTKTYTCNVDHKPSNTKVDKRVESKYGPPCPPCPAPEFEGGPSVFLFPPKPKDTLMISRTPEVTCVV
    VDVSQEDPEVQFNWYVDGVEVHNAKTKPREEQFNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKG
    LPSSIEKTISKAKGQPREPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTP
    PVLDSDGSFFLYSRLTVDKSRWQEGNVFSCSVMHEALHNHYTQKSLSLSLGKAS
    Figure US20120301465A1-20121129-P00036
    Figure US20120301465A1-20121129-P00037
    Figure US20120301465A1-20121129-P00038
    Figure US20120301465A1-20121129-P00039
    ASTPCTCGSSDLYLVTRHADVIPVRRRGDSRGSLLSPRPISYLKGSSGGPLL
    CPAGHAVGIFRAAVCTRGVAKAVDFIPVENLETTMRSPVFTDNSSPPAVPQSAS
    Figure US20120301465A1-20121129-P00040
    Figure US20120301465A1-20121129-P00041
    Figure US20120301465A1-20121129-P00042
    Figure US20120301465A1-20121129-P00043
    ASVLDSHYQDVLKEVKAAASKVKANALYDVVSKLPLAVMGSSYGFQYSPGQRVEFLV
    QAWKSKKTPMGFSYDTRCFDSTVTESDIRTEEAIYQCCDLDPQARVAIKSLTERLYVGRCRASGVLTTSCGN
    TLTCYIKARAACRAAGLQDCTMLVCGDDLVVICESAGVQEDAASLRAFTEAMTRYSAPPGDPPQPEYDLEL
    ITAS
  • Linkers can be a small as 2 amino acids, e.g., AS, but can also be longer, e.g., SSVSPTTSVHPTPTSVPPTPTKSSP (SEQ ID NO.: 166); PTSTPADSSTITPTATPTATPTIKG (SEQ ID NO.: 167); TVTPTATATPSAIVTTITPTATTKP (SEQ ID NO.: 168); TNGSITVAATAPTVTPTVNATPSAA (SEQ ID NO.: 169) or QTPTNTISVTPTNNSTPTNNSNPKPNP (SEQ ID NO:170).
  • It is contemplated that any embodiment discussed in this specification can be implemented with respect to any method, kit, reagent, or composition of the invention, and vice versa. Furthermore, compositions of the invention can be used to achieve methods of the invention.
  • It will be understood that particular embodiments described herein are shown by way of illustration and not as limitations of the invention. The principal features of this invention can be employed in various embodiments without departing from the scope of the invention. Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, numerous equivalents to the specific procedures described herein. Such equivalents are considered to be within the scope of this invention and are covered by the claims.
  • All publications and patent applications mentioned in the specification are indicative of the level of skill of those skilled in the art to which this invention pertains. All publications and patent applications are herein incorporated by reference to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference.
  • The use of the word “a” or “an” when used in conjunction with the term “comprising” in the claims and/or the specification may mean “one,” but it is also consistent with the meaning of “one or more,” “at least one,” and “one or more than one.” The use of the term “or” in the claims is used to mean “and/or” unless explicitly indicated to refer to alternatives only or the alternatives are mutually exclusive, although the disclosure supports a definition that refers to only alternatives and “and/or.” Throughout this application, the term “about” is used to indicate that a value includes the inherent variation of error for the device, the method being employed to determine the value, or the variation that exists among the study subjects.
  • As used in this specification and claim(s), the words “comprising” (and any form of comprising, such as “comprise” and “comprises”), “having” (and any form of having, such as “have” and “has”), “including” (and any form of including, such as “includes” and “include”) or “containing” (and any form of containing, such as “contains” and “contain”) are inclusive or open-ended and do not exclude additional, unrecited elements or method steps.
  • The term “or combinations thereof” as used herein refers to all permutations and combinations of the listed items preceding the term. For example, “A, B, C, or combinations thereof” is intended to include at least one of: A, B, C, AB, AC, BC, or ABC, and if order is important in a particular context, also BA, CA, CB, CBA, BCA, ACB, BAC, or CAB. Continuing with this example, expressly included are combinations that contain repeats of one or more item or term, such as BB, AAA, MB, BBC, AAABCCCC, CBBAAA, CABABB, and so forth. The skilled artisan will understand that typically there is no limit on the number of items or terms in any combination, unless otherwise apparent from the context.
  • All of the compositions and/or methods disclosed and claimed herein can be made and executed without undue experimentation in light of the present disclosure. While the compositions and methods of this invention have been described in terms of preferred embodiments, it will be apparent to those of skill in the art that variations may be applied to the compositions and/or methods and in the steps or in the sequence of steps of the method described herein without departing from the concept, spirit and scope of the invention. All such similar substitutes and modifications apparent to those skilled in the art are deemed to be within the spirit, scope and concept of the invention as defined by the appended claims.
  • REFERENCES
    • U.S. Patent Application Publication No. 2009/0238822: Chimeric HCV Antigens for Eliciting an Immune Response.
    • U.S. Patent Application Publication No. 2008/0241170: Vaccines Based on Targeting Antigen to DCIR Expressed on Antigen-Presenting Cells.
    • U.S. Patent Application Publication No. 2010/0239575: Anti-CD-40 Antibodies and Uses Thereof

Claims (57)

1. An immunostimulatory composition for generating an immune response for a prophylaxis, a therapy, or any combination thereof against a Hepatitis C infection in a human or animal subject comprising:
one or more antibodies or fragments thereof specific for a dendritic cell (DC); and
one or more HCV antigens attached to the one or more antibodies or fragments thereof.
2. The composition of claim 1, further comprising at least one Toll-Like Receptor (TLR) agonist selected from the group consisting of TLR1, TLR2, TLR3, TLR4, TLR5, TLR6, TLR7, and TLR8 agonists.
3. The composition of claim 1, further comprising an optional pharmaceutically acceptable carrier that is effective, in combination, to produce the immune response for prophylaxis, for therapy, or any combination thereof in the human or animal subject in need of immunostimulation.
4. The composition of claim 1, wherein the antibody or fragment specific for the DC is specific for a DC specific cell surface receptor selected from an antibody that specifically binds to MHC class I, MHC class II, CD1, CD2, CD3, CD4, CD8, CD11b, CD14, CD15, CD16, CD19, CD20, CD29, CD31, CD40, CD43, CD44, CD45, CD54, CD56, CD57, CD58, CD83, CD86, CMRF-44, CMRF-56, DCIR, DC-ASPGR, CLEC-6, CD40, BDCA-2, MARCO, DEC-205, mannose receptor, Langerin, DECTIN-1, B7-1, B7-2, IFN-γ receptor and IL-2 receptor, ICAM-1, Fcγ receptor, LOX-1, and ASPGR.
5. The composition of claim 1, wherein the HCV antigens comprise a peptide sequence derived from a HCV 1a genotype protein or a fragment thereof.
6. The composition of claim 1, wherein the HCV antigens are selected from the group consisting of protein E1, envelope protein E2, non-structural protein NS3, non-structural protein NS4b, non-structural protein NS5b, and a fragment thereof.
7. The composition of claim 1, wherein the one or more HCV antigens are selected from the group consisting of SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5, SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 8, SEQ ID NO: 9, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, or a fragment thereof.
8. The composition of claim 1, wherein the composition comprises a recombinant antibody that comprises a fusion protein and the one or more HCV antigens at a C-terminal position relative to the one or more antibody or fragment thereof; a recombinant antibody or fragment thereof specific for the DC and one or more HCV antigens are fused to a C-terminus of a heavy chain of the antibody; a recombinant antibody or fragment thereof specific for the DC and one or more HCV antigens are fused to a C-terminus of a light chain of the antibody; or a recombinant antibody or fragment thereof specific for the DC and three HCV antigens or antigenic domains fused to the C-terminus of the heavy chain of the antibody or two HCV antigens or antigenic domains fused to the heavy chain of the antibody and one HCV antigen or antigenic domain fused to the light chain of the antibody.
9. The composition of claim 1, wherein the one or more HCV antigens are selected from the group consisting of SEQ ID NO: 12-linker A-SEQ ID NO: 13, SEQ ID NO: 12-linker A-SEQ ID NO: 11, SEQ ID NO: 12-linker B-SEQ ID NO: 14, SEQ ID NO: 14-linker B-SEQ ID NO: 12, SEQ ID NO: 12-linker B-SEQ ID NO: 10, SEQ ID NO: 10-linker B-SEQ ID NO: 12, SEQ ID NO: 9-linker B-SEQ ID NO: 10, SEQ ID NO: 10-linker B-SEQ ID NO: 9, SEQ ID NO: 10-linker B-SEQ ID NO: 14, SEQ ID NO: 14-linker B-SEQ ID NO: 10, SEQ ID NO: 9-linker B-SEQ ID NO: 12, SEQ ID NO: 12-linker B-SEQ ID NO: 9, SEQ ID NO: 8-linker B-E1b. SEQ ID NO: 12-linkerB-SEQ ID NO: 10-linker C-SEQ ID NO: 14, SEQ ID NO: 12-linker B-SEQ ID NO: 14-linker C-SEQ ID NO: 10, SEQ ID NO: 10-linker B-SEQ ID NO: 12-linker C-SEQ ID NO: 14, SEQ ID NO: 10-linker B-SEQ ID NO: 14-linker C-SEQ ID NO: 12, SEQ ID NO: 14-linker B-SEQ ID NO: 12-linker C-SEQ ID NO: 10, SEQ ID NO: 14-linker B-SEQ ID NO: 10-linker C-SEQ ID NO: 12, and SEQ ID NO: 12-linker B-SEQ ID NO: 10-linker C-SEQ ID NO: 14-linker D-SEQ ID NO: 8.
10. The composition of claim 1, wherein the one or more HCV antigens are attached to a C-terminus of a light chain of the recombinant antibody and selected from a group consisting of: SEQ ID NO: 9; SEQ ID NO: 11; or SEQ ID NO: 9 fused to the C-terminus of a light chain and SEQ ID NO: 10-linker B-SEQ ID NO: 12-linker C-SEQ ID NO: 14 fused to the C-terminus of the heavy chain of the antibody.
11. The composition of claim 1, wherein the one or more HCV antigen are chemically coupled to the one or more antibodies or fragments thereof or are attached to the one or more antibodies or fragments thereof via an affinity association.
12. The composition of claim 1, wherein the DC-specific antibody is humanized.
13. The composition of claim 1, wherein the one or more HCV antigens are selected from antibodies having a heavy and a light chain combination of sequences SEQ ID NOS: 80 and 81; 82 and 83; 84 and 85; 86 and 87; 88 and 89; 90 and 91; 92 and 93; 94 and 95; 96 and 97; 98 and 99; 100 and 101; 102 and 103; 104 and 105; 106 and 107; 108 and 109; 110 and 111; 112 and 113; 114 and 115; 116 and 117; 118 and 119; 120 and 121; 122 and 123; 124 and 125; 126 and 127; 128 and 129; 130 and 131; 132 and 134; 136 and 137; 138 and 139; 140 and 141; 158 and 159; 160 and 161; 162 and 163; 164 and 165.
14. A vaccine comprising:
one or more antibodies or fragments thereof specific for a dendritic cell (DC); and
one or more HCV antigens attached to the one or more antibodies or fragments thereof and optionally a pharmaceutically acceptable carrier or an adjuvant that is effective, in combination, to produce an immune response for prophylaxis, for therapy, or any combination thereof in a subject in need of immunostimulation.
15. The vaccine of claim 14, further comprising at least one Toll-Like Receptor (TLR) agonist selected from the group consisting of TLR1, TLR2, TLR3, TLR4, TLR5, TLR6, TLR7, and TLR8 agonists.
16. The vaccine of claim 14, wherein the HCV antigen comprises a peptide sequence derived from a HCV 1a genotype protein or a fragment thereof, protein E1, envelope protein E2, non-structural protein NS3, non-structural protein NS4b, non-structural protein NS5b, and a fragment thereof.
17. The vaccine of claim 14, wherein the one or more HCV antigens is selected from the group consisting of SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5, SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 8, SEQ ID NO: 9, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, or a fragment thereof.
18. The vaccine of claim 14, wherein the composition comprises a recombinant antibody that comprises a fusion protein and the one or more HCV antigens are at a C-terminal position relative to the one or more antibody or fragment thereof within a fusion protein; one or more HCV antigens are fused to a C-terminus of a heavy chain of the antibody; one or more HCV antigens are fused to a C-terminus of a light chain of the one or more antibody or fragment thereof specific for a dendritic cell; or one or more HCV antigens or antigenic domains fused to a C-terminus of the heavy chain of the antibody and at least one HCV antigen or antigenic domain fused to the C-terminus of the light chain of the antibody.
19. The vaccine of claim 14, wherein the vaccine comprises a recombinant antibody or fragment thereof specific for the DC and three HCV antigens or antigenic domains fused to the C-terminus of the heavy chain of the antibody or two HCV antigens or antigenic domains fused to the heavy chain of the antibody and one HCV antigen or antigenic domain fused to the light chain of the antibody.
20. The vaccine of claim 14, wherein the one or more HCV antigens are selected from the group consisting of SEQ ID NO: 12-linker A-SEQ ID NO: 13, SEQ ID NO: 12-linker A-SEQ ID NO: 11, SEQ ID NO: 12-linker B-SEQ ID NO: 14, SEQ ID NO: 14-linker B-SEQ ID NO: 12, SEQ ID NO: 12-linker B-SEQ ID NO: 10, SEQ ID NO: 10-linker B-SEQ ID NO: 12, SEQ ID NO: 9-linker B-SEQ ID NO: 10, SEQ ID NO: 10-linker B-SEQ ID NO: 9, SEQ ID NO: 10-linker B-SEQ ID NO: 14, SEQ ID NO: 14-linker B-SEQ ID NO: 10, SEQ ID NO: 9-linker B-SEQ ID NO: 12, SEQ ID NO: 12-linker B-SEQ ID NO: 9, SEQ ID NO: 8-linker B-E1b. SEQ ID NO: 12-linkerB-SEQ ID NO: 10-linker C-SEQ ID NO: 14, SEQ ID NO: 12-linker B-SEQ ID NO: 14-linker C-SEQ ID NO: 10, SEQ ID NO: 10-linker B-SEQ ID NO: 12-linker C-SEQ ID NO: 14, SEQ ID NO: 10-linker B-SEQ ID NO: 14-linker C—SEQ ID NO: 12, SEQ ID NO: 14-linker B-SEQ ID NO: 12-linker C-SEQ ID NO: 10, SEQ ID NO: 14-linker B-SEQ ID NO: 10-linker C-SEQ ID NO: 12, and SEQ ID NO: 12-linker B-SEQ ID NO: 10-linker C-SEQ ID NO: 14-linker D-SEQ ID NO: 8.
21. The vaccine of claim 14, wherein the one or more HCV antigens are chemically coupled to the one or more antibodies or fragments thereof or are attached to the one or more antibodies or fragments thereof via an affinity association.
22. The vaccine of claim 14, wherein the DC-specific antibody is humanized.
23. The vaccine of claim 14, wherein the vaccine comprises an antibody with a heavy and a light chain combination of sequences SEQ ID NOS: 80 and 81; 82 and 83; 84 and 85; 86 and 87; 88 and 89; 90 and 91; 92 and 93; 94 and 95; 96 and 97; 98 and 99; 100 and 101; 102 and 103; 104 and 105; 106 and 107; 108 and 109; 110 and 111; 112 and 113; 114 and 115; 116 and 117; 118 and 119; 120 and 121; 122 and 123; 124 and 125; 126 and 127; 128 and 129; 130 and 131; 132 and 134; 136 and 137; 138 and 139; 140 and 141; 158 and 159; 160 and 161; 162 and 163; 164 and 165.
24. A Hepatitis C vaccine (HCV) comprising a fusion protein comprising:
one or more antibodies or fragments thereof specific for a dendritic cell (DC);
one or more HCV antigens located C-terminal of the antibodies or fragments thereof;
at least one Toll-Like Receptor (TLR) agonist which is selected from the group consisting of TLR1, TLR2, TLR3, TLR4, TLR5, TLR6, TLR7, and TLR8 agonists; and
one or more optional pharmaceutically acceptable carriers and adjuvants, wherein the vaccine is effective to produce an immune response, for a prophylaxis, a therapy, or any combination thereof against hepatitis C in a human or an animal subject in need thereof.
25. The vaccine of claim 24, wherein the vaccine comprises one or more optional agents selected from the group consisting of an agonistic anti-CD40 antibody, an agonistic anti-CD40 antibody fragment, a CD40 ligand (CD40L) polypeptide, a CD40L polypeptide fragment, anti-4-1BB antibody, an anti-4-1BB antibody fragment, 4-1BB ligand polypeptide, a 4-1BB ligand polypeptide fragment, IFN-γ, TNF-α, type 1 cytokines, type 2 cytokines or combinations and modifications thereof.
26. The vaccine of claim 24, wherein the antibody or fragment specific for the DC is selected from an antibody that specifically binds to MHC class I, MHC class II, CD1, CD2, CD3, CD4, CD8, CD11b, CD14, CD15, CD16, CD19, CD20, CD29, CD31, CD40, CD43, CD44, CD45, CD54, CD56, CD57, CD58, CD83, CD86, CMRF-44, CMRF-56, DCIR, DC-ASPGR, CLEC-6, CD40, BDCA-2, MARCO, DEC-205, mannose receptor, Langerin, DECTIN-1, B7-1, B7-2, IFN-γ receptor and IL-2 receptor, ICAM-1, Fcγ receptor, LOX-1, and ASPGR.
27. A method for increasing effectiveness of Hepatitis C virus (HCV) antigen presentation by an antigen presenting cell (APC) comprising the steps of:
providing an antibody conjugate comprising a dendritic cell (DC) specific antibody or a fragment thereof and one or more native or engineered HCV antigenic peptides;
providing one or more APCs; and
contacting the APC with the conjugate, wherein the antibody-antigen complex is processed and presented for T cell recognition.
28. The method of claim 27, wherein the antigen presenting cell comprises a dendritic cell (DC).
29. The method of claim 27, wherein the DC-specific antibody or fragment is selected from an antibody that specifically binds to MHC class I, MHC class II, CD1, CD2, CD3, CD4, CD8, CD11b, CD 14, CD 15, CD 16, CD19, CD20, CD29, CD31, CD40, CD43, CD44, CD45, CD54, CD56, CD57, CD58, CD83, CD86, CMRF-44, CMRF-56, DCIR, DC-ASPGR, CLEC-6, CD40, BDCA-2, MARCO, DEC-205, mannose receptor, Langerin, DECTIN-1, B7-1, B7-2, IFN-γ receptor and IL-2 receptor, ICAM-1, Fcγ receptor, LOX-1, and ASPGR.
30. The method of claim 27, wherein the one or more native or engineered HCV antigenic peptide is selected from the group consisting of: SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5, SEQ ID NO: 6, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 9, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, E1b, and a fragment thereof.
31. The method of claim 27, wherein the DC-specific antibody is humanized.
32. A method for increasing effectiveness of antigen presentation by an antigen presenting cell (APC) comprising the steps of:
isolating and purifying one or more dendritic cell (DC)-specific antibodies or a fragments thereof;
providing one or more HCV antigens or antigenic peptides;
loading or chemically coupling the one or more HCV antigens or antigenic peptides to the DC-specific antibody to form an antibody-antigen conjugate; and
contacting the antigen presenting cell with the conjugate, wherein the antibody-antigen complex is processed and presented for T cell recognition.
33. The method of claim 32, further comprising the optional steps of:
adding one or more optional agents selected from the group consisting of an agonistic anti-CD40 antibody, an agonistic anti-CD40 antibody fragment, a CD40 ligand (CD40L) polypeptide, a CD40L polypeptide fragment, anti-4-1BB antibody, an anti-4-1BB antibody fragment, 4-1BB ligand polypeptide, a 4-1BB ligand polypeptide fragment, IFN-γ, TNF-α, type 1 cytokines, type 2 cytokines or combinations and modifications thereof to the antibody-antigen conjugate and the TLR agonist prior to contacting the antigen presenting cells; and
measuring a level of one or more agents selected from the group consisting of IFN-γ, TNF-α, IL-12p40, IL-4, IL-5, and IL-13, wherein a change in the level of the one or more agents is indicative of the increase in the effectiveness antigen presentation by the antigen presenting cell.
34. The method of claim 32, wherein the APC comprises a dendritic cell (DC).
35. The method of claim 32, wherein the DC-specific antibody or fragment is selected from an antibody that specifically binds to MHC class I, MHC class II, CD1, CD2, CD3, CD4, CD8, CD11b, CD14, CD 15, CD16, CD19, CD20, CD29, CD31, CD40, CD43, CD44, CD45, CD54, CD56, CD57, CD58, CD83, CD86, CMRF-44, CMRF-56, DCIR, DC-ASPGR, CLEC-6, CD40, BDCA-2, MARCO, DEC-205, mannose receptor, Langerin, DECTIN-1, B7-1, B7-2, IFN-γ receptor and IL-2 receptor, ICAM-1, Fcγ receptor, LOX-1, and ASPGR.
36. The method of claim 32, wherein the HCV antigen is selected from the group consisting of protein E1, envelope protein E2, non-structural protein NS3, non-structural protein NS4b, non-structural protein NS5b, and a fragment thereof.
37. The method of claim 32, wherein the one or more HCV antigens is selected from the group consisting of SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5, SEQ ID NO: 6, SEQ ID NO: 7, and a fragment thereof.
38. The method of claim 32, wherein the DC-specific antibody is humanized.
39. The method of claim 32, further comprising the optional step of adding one or more optional agents selected from the group consisting of an agonistic anti-CD40 antibody, an agonistic anti-CD40 antibody fragment, a CD40 ligand (CD40L) polypeptide, a CD40L polypeptide fragment, anti-4-1BB antibody, an anti-4-1BB antibody fragment, 4-1BB ligand polypeptide, a 4-1BB ligand polypeptide fragment, IFN-γ, TNF-α, type 1 cytokines, type 2 cytokines or combinations and modifications thereof.
40. The method of claim 32, further comprising adding at least one Toll-Like Receptor (TLR) agonist which is selected from the group consisting of TLR1, TLR2, TLR3, TLR4, TLR5, TLR6, TLR7, and TLR8 agonists.
41. A Hepatitis C virus antigen presenting dendritic cell (DC) comprising one or more isolated dendritic cells (DCs) in contact with a fusion protein comprising an antibody or fragment thereof specific for the DC, the fusion protein further comprising a HCV peptide.
42. A method for generating a Hepatitis C virus (HCV) presenting dendritic cells (DCs) in a human subject comprising the steps of
providing one or more DCs;
incubating the dendritic cells with a fusion protein, wherein the fusion protein comprises an antibody or fragment thereof specific for a dendritic cell and a HCV antigen fused to the antibody or fragment thereof.
43. The method of claim 42, further comprising administering to the subject an effective amount of IFNA, Ribavirin, or a combination thereof.
44. A vaccine comprising one or more antibodies or fragments thereof specific for a dendritic cell (DC) and one or more HCV antigens or antigenic domains attached to the one or more antibodies or fragments thereof, wherein the vaccine has a general structure given by:
H-w,
H-w-x,
H-w-x-y, or
H-w-x-y-z,
wherein H represents a heavy chain of an antibody or a fragment thereof specific for a DC, w, x, y, and z represent one or more HCV antigens or domains selected from the group consisting of protein E1, envelope protein E2, non-structural protein NS3, non-structural protein NS4b, non-structural protein NS5b, or any combinations thereof.
45. The vaccine of claim 44, wherein w comprises the HCV antigenic domains selected from the group consisting of ProtA, ProtB, HelB, Palm, E1b, and E2.
46. The vaccine of claim 44, wherein x comprises the HCV antigenic domains selected from the group consisting of HelC, HelA, Palm, ProtA, ProtB, and E1b.
47. The vaccine of claim 44, wherein y comprises the HCV antigenic domains selected from the group consisting of Palm, ProtB, and Protb.
48. The vaccine of claim 44, wherein z comprises HCV antigenic domains selected from E2, ProtA, and HelB.
49. The vaccine of claim 44, wherein the one or more HCV antigens or antigenic domains are linked or attached to one another by one or more flexible linkers.
50. The vaccine of claim 44, wherein the vaccine comprises H-ProtA, H-ProtB, H-HelB, H-Palm, H-E1b, H-E2, H-HelB-HelC, H-HelB-HelA, H-HelB-Palm, H-Palm-HelB, H-HelB-ProtB, H-ProtB-HelB, H-ProtA-ProtB, H-ProtB-ProtA, H-ProtB-Palm, H-Palm-ProtB, H-ProtA-HelB, H-HelB-ProtA, H-E2-E1b, H-HelB-ProtB-Palm, H-HelB-Palm-ProtB, H-ProtB-HelB-Palm, H-ProtB-Palm-HelB, H-Palm-HelB-ProtB, H-Palm-ProtB-HelB, H-HelB-ProtB-Palm-E2, or any combinations thereof.
51. A vaccine comprising one or more antibodies or fragments thereof specific for a dendritic cell (DC) and one or more HCV antigens or antigenic domains attached to the one or more antibodies or fragments thereof, wherein the vaccine has a general structure given by L-w-x-y-z, wherein L represents a light chain of an antibody or a fragment thereof specific for a DC, w, x, y, and z represent one or more HCV antigens or domains selected from the group consisting of protein E1, envelope protein E2, non-structural protein NS3, non-structural protein NS4b, non-structural protein NS5b, or any combinations thereof.
52. The composition of claim 51, wherein w, x, y, and z comprise HCV antigenic domains selected from the group consisting of ProtA, ProtB, HelB, HelA, HelC, Palm, E1a, E1b, and E2.
53. The composition of claim 51, wherein the vaccine comprises L-ProtA-HelA-E1b-HelB.
54. A vaccine comprising one or more antibodies or fragments thereof specific for a dendritic cell (DC) and one or more HCV antigens or antigenic domains attached to the one or more antibodies or fragments thereof, wherein the vaccine has a general structure given by:
Figure US20120301465A1-20121129-C00002
wherein H represents a heavy chain of an antibody or a fragment thereof specific for a DC, L represents a light chain of an antibody or a fragment thereof specific for the DC, w, x, y, and z represent one or more HCV antigens or domains selected from the group consisting of protein E1, envelope protein E2, non-structural protein NS3, non-structural protein NS4b, non-structural protein NS5b, or any combinations thereof.
55. The composition of claim 54, wherein w, x, y, and z comprise HCV antigenic domains selected from the group consisting of ProtA, ProtB, HelB, HelA, HelC, Palm, E1a, E1b, and E2.
56. The composition of claim 54, wherein the vaccine comprises
Figure US20120301465A1-20121129-C00003
57. The composition of claim 54, wherein the vaccine comprises
Figure US20120301465A1-20121129-C00004
US13/430,206 2011-03-25 2012-03-26 Compositions and methods to immunize against hepatitis c virus Abandoned US20120301465A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/430,206 US20120301465A1 (en) 2011-03-25 2012-03-26 Compositions and methods to immunize against hepatitis c virus
US14/152,448 US9885017B2 (en) 2011-03-25 2014-01-10 Compositions and methods to immunize against hepatitis C virus

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201161467840P 2011-03-25 2011-03-25
US201161529700P 2011-08-31 2011-08-31
US13/430,206 US20120301465A1 (en) 2011-03-25 2012-03-26 Compositions and methods to immunize against hepatitis c virus

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/152,448 Division US9885017B2 (en) 2011-03-25 2014-01-10 Compositions and methods to immunize against hepatitis C virus

Publications (1)

Publication Number Publication Date
US20120301465A1 true US20120301465A1 (en) 2012-11-29

Family

ID=46931875

Family Applications (2)

Application Number Title Priority Date Filing Date
US13/430,206 Abandoned US20120301465A1 (en) 2011-03-25 2012-03-26 Compositions and methods to immunize against hepatitis c virus
US14/152,448 Expired - Fee Related US9885017B2 (en) 2011-03-25 2014-01-10 Compositions and methods to immunize against hepatitis C virus

Family Applications After (1)

Application Number Title Priority Date Filing Date
US14/152,448 Expired - Fee Related US9885017B2 (en) 2011-03-25 2014-01-10 Compositions and methods to immunize against hepatitis C virus

Country Status (6)

Country Link
US (2) US20120301465A1 (en)
EP (1) EP2688592A4 (en)
AR (1) AR085573A1 (en)
CA (1) CA2831294A1 (en)
TW (1) TW201300418A (en)
WO (1) WO2012135132A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8728481B2 (en) 2007-02-02 2014-05-20 Baylor Research Institute Agents that engage antigen-presenting cells through dendritic cell asialoglycoprotein receptor (DC-ASGPR)
US9884921B2 (en) 2014-07-01 2018-02-06 Pfizer Inc. Bispecific heterodimeric diabodies and uses thereof
US10675358B2 (en) 2016-07-07 2020-06-09 The Board Of Trustees Of The Leland Stanford Junior University Antibody adjuvant conjugates
US10993990B2 (en) 2014-05-16 2021-05-04 Baylor Research Institute Methods and compositions for treating autoimmune and inflammatory conditions
US11186615B2 (en) 2015-10-08 2021-11-30 The Governors Of The University Of Alberta Hepatitis C virus E1/E2 heterodimers and methods of producing same
US11400164B2 (en) 2019-03-15 2022-08-02 Bolt Biotherapeutics, Inc. Immunoconjugates targeting HER2

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2925779A1 (en) * 2012-11-30 2015-10-07 Institut Pasteur Use of anti-fcyri and/or anti-fcyriia antibodies for treating arthritis, inflammation, thrombocytopenia and allergic shock
EP3094652B1 (en) * 2014-01-13 2021-09-29 Baylor Research Institute Novel vaccines against hpv and hpv-related diseases
EP2939690A1 (en) * 2014-04-29 2015-11-04 Medizinische Hochschule Hannover Vaccine
ES2893584T3 (en) * 2015-06-10 2022-02-09 Univ Tokyo Adjuvant for vaccines, vaccine and immunity induction procedure
UY37141A (en) 2016-03-04 2017-09-29 Jn Biosciences Llc ANTIBODIES DIRECTED TO TIGIT
EP3446702A1 (en) 2017-08-23 2019-02-27 Medizinische Hochschule Hannover Synthetic vaccine
PE20231078A1 (en) 2020-06-02 2023-07-17 Arcus Biosciences Inc ANTI-TIGIT ANTIBODIES
CN113683684B (en) * 2021-06-21 2023-07-18 深圳市新产业生物医学工程股份有限公司 Anti-hepatitis B virus surface antigen antibody, antibody pair, detection reagent containing same and kit

Family Cites Families (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4235871A (en) 1978-02-24 1980-11-25 Papahadjopoulos Demetrios P Method of encapsulating biologically active materials in lipid vesicles
JPS5938877A (en) 1982-08-30 1984-03-02 Musashi Eng Kk Paper leaf discriminating method
US4501728A (en) 1983-01-06 1985-02-26 Technology Unlimited, Inc. Masking of liposomes from RES recognition
US4599230A (en) 1984-03-09 1986-07-08 Scripps Clinic And Research Foundation Synthetic hepatitis B virus vaccine including both T cell and B cell determinants
US4599231A (en) 1984-03-09 1986-07-08 Scripps Clinic And Research Foundation Synthetic hepatitis B virus vaccine including both T cell and B cell determinants
US4957735A (en) 1984-06-12 1990-09-18 The University Of Tennessee Research Corporation Target-sensitive immunoliposomes- preparation and characterization
US5019369A (en) 1984-10-22 1991-05-28 Vestar, Inc. Method of targeting tumors in humans
US4608251A (en) 1984-11-09 1986-08-26 Pitman-Moore, Inc. LHRH analogues useful in stimulating anti-LHRH antibodies and vaccines containing such analogues
US4601903A (en) 1985-05-01 1986-07-22 The United States Of America As Represented By The Department Of Health And Human Services Vaccine against Neisseria meningitidis Group B serotype 2 invasive disease
US4902505A (en) 1986-07-30 1990-02-20 Alkermes Chimeric peptides for neuropeptide delivery through the blood-brain barrier
WO1988001649A1 (en) 1986-09-02 1988-03-10 Genex Corporation Single polypeptide chain binding molecules
US4837028A (en) 1986-12-24 1989-06-06 Liposome Technology, Inc. Liposomes with enhanced circulation time
US5004697A (en) 1987-08-17 1991-04-02 Univ. Of Ca Cationized antibodies for delivery through the blood-brain barrier
GB8823869D0 (en) 1988-10-12 1988-11-16 Medical Res Council Production of antibodies
IL162181A (en) 1988-12-28 2006-04-10 Pdl Biopharma Inc A method of producing humanized immunoglubulin, and polynucleotides encoding the same
US5055303A (en) 1989-01-31 1991-10-08 Kv Pharmaceutical Company Solid controlled release bioadherent emulsions
US5271961A (en) 1989-11-06 1993-12-21 Alkermes Controlled Therapeutics, Inc. Method for producing protein microspheres
US5188837A (en) 1989-11-13 1993-02-23 Nova Pharmaceutical Corporation Lipsopheres for controlled delivery of substances
WO1991010741A1 (en) 1990-01-12 1991-07-25 Cell Genesys, Inc. Generation of xenogeneic antibodies
US5268164A (en) 1990-04-23 1993-12-07 Alkermes, Inc. Increasing blood-brain barrier permeability with permeabilizer peptides
CA2089661C (en) 1990-08-29 2007-04-03 Nils Lonberg Transgenic non-human animals capable of producing heterologous antibodies
US5770429A (en) 1990-08-29 1998-06-23 Genpharm International, Inc. Transgenic non-human animals capable of producing heterologous antibodies
US5661016A (en) 1990-08-29 1997-08-26 Genpharm International Inc. Transgenic non-human animals capable of producing heterologous antibodies of various isotypes
US5633425A (en) 1990-08-29 1997-05-27 Genpharm International, Inc. Transgenic non-human animals capable of producing heterologous antibodies
US5625126A (en) 1990-08-29 1997-04-29 Genpharm International, Inc. Transgenic non-human animals for producing heterologous antibodies
US5545806A (en) 1990-08-29 1996-08-13 Genpharm International, Inc. Ransgenic non-human animals for producing heterologous antibodies
FR2670787B1 (en) 1990-12-18 1995-06-23 Pasteur Institut LIPOPEPTIDES INDUCING CYTOTOXIC T CELLS AND USE AS VACCINES.
US5871746A (en) 1990-12-18 1999-02-16 Institut National De La Sainte Et De La Recherche Medicale (Inserm) Cytotoxic T lymphocyte-inducing lipopeptides and use as vaccines
US5254342A (en) 1991-09-30 1993-10-19 University Of Southern California Compositions and methods for enhanced transepithelial and transendothelial transport or active agents
JPH07507768A (en) 1992-03-12 1995-08-31 アルカーメス コントロールド セラピューティクス,インコーポレイテッド Controlled release of ACTH-containing microspheres
US5534496A (en) 1992-07-07 1996-07-09 University Of Southern California Methods and compositions to enhance epithelial drug transport
DE4233152A1 (en) 1992-10-02 1994-04-07 Behringwerke Ag Antibody-enzyme conjugates for prodrug activation
US6140059A (en) 1993-01-16 2000-10-31 Schawaller; Manfred Methods for the obtention of human immunodeficiency virsus Type 1 envelope glycoproteins in native and oligomeric form employing recombinant chimeric antigens containing collagenase recognition sites.
US5514670A (en) 1993-08-13 1996-05-07 Pharmos Corporation Submicron emulsions for delivery of peptides
US6040137A (en) 1995-04-27 2000-03-21 Tripep Ab Antigen/antibody specification exchanger
US6541011B2 (en) 1998-02-11 2003-04-01 Maxygen, Inc. Antigen library immunization
BR9909472A (en) 1998-04-07 2001-09-11 Corixa Corp Purified polypeptide, process to prevent tuberculosis, and pharmaceutical composition
EP1073667A2 (en) 1998-04-28 2001-02-07 Galenica Pharmaceuticals, Inc. Polysaccharide-antigen conjugates
WO2001026608A2 (en) 1999-10-14 2001-04-19 Ledbetter Jeffrey A Dna vaccines encoding antigen linked to a domain that binds cd40
US20050074465A1 (en) * 1999-11-24 2005-04-07 Michael Houghton HCV fusion proteins with modified NS3 domains
EP1255560B1 (en) 2000-02-02 2008-10-29 UNITED STATES GOVERNMENT as represented by THE SECRETARY OF THE DEPARTMENT OF HEALTH AND HUMAN SERVICES, CENTERS FOR DISEASE Cd40 ligand adjuvant for respiratory syncytial virus vaccine
AU2001259215A1 (en) 2000-04-28 2001-11-12 La Jolla Institute For Allergy And Immunology Human anti-cd40 antibodies and methods of making and using same
US20030059427A1 (en) 2000-04-28 2003-03-27 Force Walker R. Isolation and characterization of highly active anti-CD40 antibody
US7560534B2 (en) 2000-05-08 2009-07-14 Celldex Research Corporation Molecular conjugates comprising human monoclonal antibodies to dendritic cells
CA2424296A1 (en) 2000-10-02 2002-04-11 Chiron Corporation Human anti-cd40 antibodies
WO2003029296A1 (en) 2001-10-02 2003-04-10 Chiron Corporation Human anti-cd40 antibodies
US20080199471A1 (en) 2002-03-01 2008-08-21 Bernett Matthew J Optimized cd40 antibodies and methods of using the same
AU2003243651B2 (en) 2002-06-17 2008-10-16 The Government Of The United States Of America, As Represented By The Secretary Of The Department Of Health And Human Services Specificity grafting of a murine antibody onto a human framework
US8025873B2 (en) 2002-06-20 2011-09-27 Paladin Labs, Inc. Chimeric antigens for eliciting an immune response
CN100381463C (en) 2002-09-18 2008-04-16 中国人民解放军免疫学研究所 Immunogen for producing vaccine or medicine to treat hepatitis B, its preparation process and use
US20040146948A1 (en) 2002-10-18 2004-07-29 Centenary Institute Of Cancer Medicine And Cell Biology Compositions and methods for targeting antigen-presenting cells with antibody single-chain variable region fragments
US8277810B2 (en) 2003-11-04 2012-10-02 Novartis Vaccines & Diagnostics, Inc. Antagonist anti-CD40 antibodies
PL1885399T3 (en) 2005-05-26 2011-04-29 Seattle Genetics Inc Humanized anti-cd40 antibodies and their methods of use
CA2620667A1 (en) 2005-08-30 2007-04-12 Board Of Regents Of The University Of Nebraska Methods and compositions for vaccination of animals with prrsv antigens with improved immunogenicity
AU2006301846A1 (en) * 2005-10-13 2007-04-19 Akshaya Bio Inc. Chimeric antigen containing hepatitis C virus polypeptide and FC fragment for eliciting an immune response
US20080241139A1 (en) 2006-10-31 2008-10-02 Regents Of The University Of Colorado Adjuvant combinations comprising a microbial tlr agonist, a cd40 or 4-1bb agonist, and optionally an antigen and the use thereof for inducing a synergistic enhancement in cellular immunity
TWI422594B (en) * 2007-02-02 2014-01-11 Baylor Res Inst Agents that engage antigen-presenting cells through dendritic cell asialoglycoprotein receptor (dc-asgpr)
EP2527363A1 (en) 2007-02-02 2012-11-28 Baylor Research Institute Vaccines based on targeting antigen to dcir expressed on antigen-presenting cells
US20090023822A1 (en) 2007-07-19 2009-01-22 Tijm Peter J Method for activating and regenerating catalyst for a fischer-tropsch synthesis reaction
NZ596171A (en) * 2008-07-16 2012-05-25 Baylor Res Inst Hiv vaccine based on targeting maximized gag and nef to dendritic cells
AU2010222942B2 (en) * 2009-03-10 2013-01-10 Baylor Research Institute Anti-CD40 antibodies and uses thereof
AU2010291939B2 (en) * 2009-09-14 2012-11-15 Baylor Research Institute Vaccines directed to Langerhans cells
US20110274653A1 (en) * 2010-05-07 2011-11-10 Baylor Research Institute Dendritic cell immunoreceptors (dcir)-mediated crosspriming of human cd8+ t cells

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Li, Synergistic antibody induction by antigen-CD40 ligand fusion protein as improved immunogen, 2005, Immunology, 115:215-222. *
Zhang et al., Characterization of a Monoclonal Antibody and Its Single-Chain Antibody Fragment Recognizing the Nucleoside Triphosphatase/Helicase Domain of the Hepatitis C Virus Nonstructural 3 Protein, 2000, Clinical and Diagnostic Laboratory Immunology, 7(1):58-63. *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9453074B2 (en) 2007-02-02 2016-09-27 Baylor Research Institute Agents that engage antigen-presenting cells through dendritic cell asialoglycoprotein receptor (DC-ASGPR)
US10279030B2 (en) 2007-02-02 2019-05-07 Baylor Research Institute Agents that engage antigen-presenting cells through dendritic cell asialoglycoprotein receptor (DC-ASGPR)
US12016915B2 (en) 2007-02-02 2024-06-25 Baylor Research Institute Agents that engage antigen-presenting cells through dendritic cell asialoglycoprotein receptor (DC-ASGPR)
US8728481B2 (en) 2007-02-02 2014-05-20 Baylor Research Institute Agents that engage antigen-presenting cells through dendritic cell asialoglycoprotein receptor (DC-ASGPR)
US11173202B2 (en) 2007-02-02 2021-11-16 Baylor Research Institute Agents that engage antigen-presenting cells through dendritic cell asialoglycoprotein receptor (DC-ASGPR)
US11957734B2 (en) 2014-05-16 2024-04-16 Baylor Research Institute Methods and compositions for treating autoimmune and inflammatory conditions
US10993990B2 (en) 2014-05-16 2021-05-04 Baylor Research Institute Methods and compositions for treating autoimmune and inflammatory conditions
US9884921B2 (en) 2014-07-01 2018-02-06 Pfizer Inc. Bispecific heterodimeric diabodies and uses thereof
US11186615B2 (en) 2015-10-08 2021-11-30 The Governors Of The University Of Alberta Hepatitis C virus E1/E2 heterodimers and methods of producing same
US11110178B2 (en) 2016-07-07 2021-09-07 The Board Of Trustees Of The Leland Standford Junior University Antibody adjuvant conjugates
US11547761B1 (en) 2016-07-07 2023-01-10 The Board Of Trustees Of The Leland Stanford Junior University Antibody adjuvant conjugates
US10675358B2 (en) 2016-07-07 2020-06-09 The Board Of Trustees Of The Leland Stanford Junior University Antibody adjuvant conjugates
US11400164B2 (en) 2019-03-15 2022-08-02 Bolt Biotherapeutics, Inc. Immunoconjugates targeting HER2

Also Published As

Publication number Publication date
EP2688592A1 (en) 2014-01-29
US20140199763A1 (en) 2014-07-17
WO2012135132A1 (en) 2012-10-04
TW201300418A (en) 2013-01-01
CA2831294A1 (en) 2012-10-04
US9885017B2 (en) 2018-02-06
AR085573A1 (en) 2013-10-09
EP2688592A4 (en) 2015-07-22

Similar Documents

Publication Publication Date Title
US9885017B2 (en) Compositions and methods to immunize against hepatitis C virus
JP6914851B2 (en) Enhancement of effect of CAR-manipulated T cells by nucleic acid vaccination
Sparwasser et al. Bacterial CpG‐DNA activates dendritic cells in vivo: T helper cell‐independent cytotoxic T cell responses to soluble proteins
ES2890230T3 (en) HIV vaccine based on maximized Gag and Nef targeting to dendritic cells
US20110274653A1 (en) Dendritic cell immunoreceptors (dcir)-mediated crosspriming of human cd8+ t cells
US20120231023A1 (en) Novel Vaccine Adjuvants Based on Targeting Adjuvants to Antibodies Directly to Antigen-Presenting Cells
CN111148533A (en) Compositions for chimeric antigen receptor T cell therapy and uses thereof
JP2015110582A (en) Vaccines directed to langerhans cells
US11352416B2 (en) Mosaic chimeric viral vaccine particle
TW201100099A (en) Anti-CD40 antibodies and uses thereof
TW201305193A (en) Dendritic cells (DCs) targeting for tuberculosis (TB) vaccine
JP2023533871A (en) APC targeting unit for immunotherapy
CN101426533A (en) Immunostimulatory compositions and methods
Pordanjani et al. Extracellular vesicles in vaccine development and therapeutic approaches for viral diseases
Zhou et al. Antitumor immunity induced by VE-cadherin modified DC vaccine
CN107109365A (en) The preparation of multiple dose injection dendritic cell vaccine and the therapeutic alliance for blocking HER2 and HER3
JP7304421B2 (en) CHIMERIC ANTIGEN HAVING STRENGTHENED MULTIPLE IMMUNITY FUNCTIONS BY BINDING SPECIFIC TO TARGET CELLS AND USES THEREOF
Teixeira et al. Immunization with CSP and a RIG-I agonist is effective in inducing a functional and protective humoral response against Plasmodium
Moynihan Engineering immunity: Enhancing T Cell vaccines and combination immunotherapies for the treatment of cancer
Volckmar Characterizing the potential of DEC-205-mediated antigen delivery to dendritic cells as a tool to induce adaptive immunity against hepatitis C virus infection
Li Using Dendritic Cell Receptors To Enhance Immunity
Xiao Dendritic cell-specific vaccine utilizing antibody-mimetic ligand and lentivector system
Moran Characterization of dendritic cells transduced with Venezuelan equine encephalitis virus replicon particles as therapeutic cancer vaccines
AU2012261597A1 (en) Vaccines directed to langerhans cells

Legal Events

Date Code Title Description
AS Assignment

Owner name: BAYLOR RESEARCH INSTITUTE, TEXAS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BANCHEREAU, JACQUES F.;ZURAWSKI, GERARD;SIGNING DATES FROM 20110816 TO 20110817;REEL/FRAME:028355/0327

Owner name: INSTITUT NATIONAL DE LA SANTE ET DE LA RECHERCHE M

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:DUTARTRE, HELENE;LEVY, YVES;SIGNING DATES FROM 20110824 TO 20110922;REEL/FRAME:028355/0410

AS Assignment

Owner name: INSTITUT NATIONAL DE LA SANTE ET DE LA RCHERCHE ME

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:DUTARTRE, HELENE;LEVY, YVES;SIGNING DATES FROM 20110929 TO 20111003;REEL/FRAME:028360/0628

Owner name: BAYLOR RESEARCH INSTITUTE, TEXAS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BANCHEREAU, JACQUES F.;ZURAWSKI, GERARD;SIGNING DATES FROM 20110928 TO 20110930;REEL/FRAME:028360/0577

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION