US20120301465A1 - Compositions and methods to immunize against hepatitis c virus - Google Patents
Compositions and methods to immunize against hepatitis c virus Download PDFInfo
- Publication number
- US20120301465A1 US20120301465A1 US13/430,206 US201213430206A US2012301465A1 US 20120301465 A1 US20120301465 A1 US 20120301465A1 US 201213430206 A US201213430206 A US 201213430206A US 2012301465 A1 US2012301465 A1 US 2012301465A1
- Authority
- US
- United States
- Prior art keywords
- seq
- hcv
- antibody
- linker
- fragment
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 241000711549 Hepacivirus C Species 0.000 title claims abstract description 261
- 239000000203 mixture Substances 0.000 title claims abstract description 58
- 238000000034 method Methods 0.000 title claims abstract description 57
- 239000000427 antigen Substances 0.000 claims abstract description 205
- 102000036639 antigens Human genes 0.000 claims abstract description 199
- 108091007433 antigens Proteins 0.000 claims abstract description 199
- 108090000765 processed proteins & peptides Proteins 0.000 claims abstract description 173
- 210000004443 dendritic cell Anatomy 0.000 claims abstract description 165
- 239000012634 fragment Substances 0.000 claims abstract description 128
- 229960005486 vaccine Drugs 0.000 claims abstract description 113
- 102000004196 processed proteins & peptides Human genes 0.000 claims abstract description 80
- 108090000623 proteins and genes Proteins 0.000 claims abstract description 59
- 102000004169 proteins and genes Human genes 0.000 claims abstract description 56
- 230000000890 antigenic effect Effects 0.000 claims abstract description 40
- 210000000612 antigen-presenting cell Anatomy 0.000 claims abstract description 32
- 241000282414 Homo sapiens Species 0.000 claims abstract description 25
- 238000011321 prophylaxis Methods 0.000 claims abstract description 15
- 230000003308 immunostimulating effect Effects 0.000 claims abstract description 14
- 208000005176 Hepatitis C Diseases 0.000 claims abstract description 11
- 230000030741 antigen processing and presentation Effects 0.000 claims abstract description 11
- 101000716102 Homo sapiens T-cell surface glycoprotein CD4 Proteins 0.000 claims description 70
- 102100036011 T-cell surface glycoprotein CD4 Human genes 0.000 claims description 70
- 229940124737 hepatitis-C vaccine Drugs 0.000 claims description 56
- 238000002560 therapeutic procedure Methods 0.000 claims description 51
- 210000001744 T-lymphocyte Anatomy 0.000 claims description 48
- 101100284555 Mus musculus Helb gene Proteins 0.000 claims description 37
- 108060008682 Tumor Necrosis Factor Proteins 0.000 claims description 32
- 108020001507 fusion proteins Proteins 0.000 claims description 28
- 102000037865 fusion proteins Human genes 0.000 claims description 28
- 101000766908 Homo sapiens C-type lectin domain family 4 member A Proteins 0.000 claims description 27
- 102100028667 C-type lectin domain family 4 member A Human genes 0.000 claims description 26
- 108010029697 CD40 Ligand Proteins 0.000 claims description 25
- 102100032937 CD40 ligand Human genes 0.000 claims description 25
- 102000000852 Tumor Necrosis Factor-alpha Human genes 0.000 claims description 25
- 229920001184 polypeptide Polymers 0.000 claims description 24
- 239000000556 agonist Substances 0.000 claims description 22
- 102100037850 Interferon gamma Human genes 0.000 claims description 21
- 108010074328 Interferon-gamma Proteins 0.000 claims description 21
- 239000003795 chemical substances by application Substances 0.000 claims description 21
- 102000004127 Cytokines Human genes 0.000 claims description 20
- 108090000695 Cytokines Proteins 0.000 claims description 20
- 101710172711 Structural protein Proteins 0.000 claims description 20
- 230000028993 immune response Effects 0.000 claims description 20
- 101000946843 Homo sapiens T-cell surface glycoprotein CD8 alpha chain Proteins 0.000 claims description 19
- 102100034922 T-cell surface glycoprotein CD8 alpha chain Human genes 0.000 claims description 19
- 108010021625 Immunoglobulin Fragments Proteins 0.000 claims description 17
- 102000008394 Immunoglobulin Fragments Human genes 0.000 claims description 17
- 108010082808 4-1BB Ligand Proteins 0.000 claims description 16
- 101000831567 Homo sapiens Toll-like receptor 2 Proteins 0.000 claims description 16
- 101000831496 Homo sapiens Toll-like receptor 3 Proteins 0.000 claims description 16
- 102100024333 Toll-like receptor 2 Human genes 0.000 claims description 16
- 102100024324 Toll-like receptor 3 Human genes 0.000 claims description 16
- 102100032101 Tumor necrosis factor ligand superfamily member 9 Human genes 0.000 claims description 16
- 230000001270 agonistic effect Effects 0.000 claims description 16
- -1 CD31 Proteins 0.000 claims description 15
- 230000004048 modification Effects 0.000 claims description 14
- 238000012986 modification Methods 0.000 claims description 14
- 102000005962 receptors Human genes 0.000 claims description 14
- 108020003175 receptors Proteins 0.000 claims description 14
- 101000669447 Homo sapiens Toll-like receptor 4 Proteins 0.000 claims description 13
- 102100039360 Toll-like receptor 4 Human genes 0.000 claims description 13
- 102000017420 CD3 protein, epsilon/gamma/delta subunit Human genes 0.000 claims description 12
- 108050005493 CD3 protein, epsilon/gamma/delta subunit Proteins 0.000 claims description 12
- 101710091045 Envelope protein Proteins 0.000 claims description 12
- 102100037877 Intercellular adhesion molecule 1 Human genes 0.000 claims description 12
- 241001465754 Metazoa Species 0.000 claims description 12
- 101800000515 Non-structural protein 3 Proteins 0.000 claims description 12
- 101710188653 Non-structural protein 4b Proteins 0.000 claims description 12
- 101710188315 Protein X Proteins 0.000 claims description 12
- 229960000329 ribavirin Drugs 0.000 claims description 12
- MZOFCQQQCNRIBI-VMXHOPILSA-N (3s)-4-[[(2s)-1-[[(2s)-1-[[(1s)-1-carboxy-2-hydroxyethyl]amino]-4-methyl-1-oxopentan-2-yl]amino]-5-(diaminomethylideneamino)-1-oxopentan-2-yl]amino]-3-[[2-[[(2s)-2,6-diaminohexanoyl]amino]acetyl]amino]-4-oxobutanoic acid Chemical compound OC[C@@H](C(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCCN=C(N)N)NC(=O)[C@H](CC(O)=O)NC(=O)CNC(=O)[C@@H](N)CCCCN MZOFCQQQCNRIBI-VMXHOPILSA-N 0.000 claims description 11
- 101000669402 Homo sapiens Toll-like receptor 7 Proteins 0.000 claims description 11
- 102100039390 Toll-like receptor 7 Human genes 0.000 claims description 11
- 101000763579 Homo sapiens Toll-like receptor 1 Proteins 0.000 claims description 10
- 101000669460 Homo sapiens Toll-like receptor 5 Proteins 0.000 claims description 10
- 101000669406 Homo sapiens Toll-like receptor 6 Proteins 0.000 claims description 10
- 229940124614 TLR 8 agonist Drugs 0.000 claims description 10
- 102000002689 Toll-like receptor Human genes 0.000 claims description 10
- 108020000411 Toll-like receptor Proteins 0.000 claims description 10
- 229940123384 Toll-like receptor (TLR) agonist Drugs 0.000 claims description 10
- 102100027010 Toll-like receptor 1 Human genes 0.000 claims description 10
- 102100039357 Toll-like receptor 5 Human genes 0.000 claims description 10
- 102100039387 Toll-like receptor 6 Human genes 0.000 claims description 10
- 239000003937 drug carrier Substances 0.000 claims description 10
- DAZSWUUAFHBCGE-KRWDZBQOSA-N n-[(2s)-3-methyl-1-oxo-1-pyrrolidin-1-ylbutan-2-yl]-3-phenylpropanamide Chemical compound N([C@@H](C(C)C)C(=O)N1CCCC1)C(=O)CCC1=CC=CC=C1 DAZSWUUAFHBCGE-KRWDZBQOSA-N 0.000 claims description 10
- 229940044616 toll-like receptor 7 agonist Drugs 0.000 claims description 10
- 210000004899 c-terminal region Anatomy 0.000 claims description 8
- 239000000562 conjugate Substances 0.000 claims description 8
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 claims description 7
- 102100024222 B-lymphocyte antigen CD19 Human genes 0.000 claims description 6
- 102100022005 B-lymphocyte antigen CD20 Human genes 0.000 claims description 6
- 102100028668 C-type lectin domain family 4 member C Human genes 0.000 claims description 6
- 102100028672 C-type lectin domain family 4 member D Human genes 0.000 claims description 6
- 102100028681 C-type lectin domain family 4 member K Human genes 0.000 claims description 6
- 101710183165 C-type lectin domain family 4 member K Proteins 0.000 claims description 6
- 102100040840 C-type lectin domain family 7 member A Human genes 0.000 claims description 6
- 102100032912 CD44 antigen Human genes 0.000 claims description 6
- 102100035793 CD83 antigen Human genes 0.000 claims description 6
- 102100021260 Galactosylgalactosylxylosylprotein 3-beta-glucuronosyltransferase 1 Human genes 0.000 claims description 6
- 101000980825 Homo sapiens B-lymphocyte antigen CD19 Proteins 0.000 claims description 6
- 101000897405 Homo sapiens B-lymphocyte antigen CD20 Proteins 0.000 claims description 6
- 101000766907 Homo sapiens C-type lectin domain family 4 member C Proteins 0.000 claims description 6
- 101000766905 Homo sapiens C-type lectin domain family 4 member D Proteins 0.000 claims description 6
- 101000868273 Homo sapiens CD44 antigen Proteins 0.000 claims description 6
- 101000946856 Homo sapiens CD83 antigen Proteins 0.000 claims description 6
- 101000894906 Homo sapiens Galactosylgalactosylxylosylprotein 3-beta-glucuronosyltransferase 1 Proteins 0.000 claims description 6
- 101001046686 Homo sapiens Integrin alpha-M Proteins 0.000 claims description 6
- 101000935043 Homo sapiens Integrin beta-1 Proteins 0.000 claims description 6
- 101000599852 Homo sapiens Intercellular adhesion molecule 1 Proteins 0.000 claims description 6
- 101000608935 Homo sapiens Leukosialin Proteins 0.000 claims description 6
- 101001063392 Homo sapiens Lymphocyte function-associated antigen 3 Proteins 0.000 claims description 6
- 101001018258 Homo sapiens Macrophage receptor MARCO Proteins 0.000 claims description 6
- 101000581981 Homo sapiens Neural cell adhesion molecule 1 Proteins 0.000 claims description 6
- 101000738771 Homo sapiens Receptor-type tyrosine-protein phosphatase C Proteins 0.000 claims description 6
- 101000934346 Homo sapiens T-cell surface antigen CD2 Proteins 0.000 claims description 6
- 101000980827 Homo sapiens T-cell surface glycoprotein CD1a Proteins 0.000 claims description 6
- 101000716149 Homo sapiens T-cell surface glycoprotein CD1b Proteins 0.000 claims description 6
- 101000716124 Homo sapiens T-cell surface glycoprotein CD1c Proteins 0.000 claims description 6
- 108010073807 IgG Receptors Proteins 0.000 claims description 6
- 102000009490 IgG Receptors Human genes 0.000 claims description 6
- 102100022338 Integrin alpha-M Human genes 0.000 claims description 6
- 102100025304 Integrin beta-1 Human genes 0.000 claims description 6
- 108010064593 Intercellular Adhesion Molecule-1 Proteins 0.000 claims description 6
- 102000010789 Interleukin-2 Receptors Human genes 0.000 claims description 6
- 108010038453 Interleukin-2 Receptors Proteins 0.000 claims description 6
- 102100039564 Leukosialin Human genes 0.000 claims description 6
- 102100033486 Lymphocyte antigen 75 Human genes 0.000 claims description 6
- 101710157884 Lymphocyte antigen 75 Proteins 0.000 claims description 6
- 102100030984 Lymphocyte function-associated antigen 3 Human genes 0.000 claims description 6
- 102000043129 MHC class I family Human genes 0.000 claims description 6
- 108091054437 MHC class I family Proteins 0.000 claims description 6
- 102000043131 MHC class II family Human genes 0.000 claims description 6
- 108091054438 MHC class II family Proteins 0.000 claims description 6
- 102100033272 Macrophage receptor MARCO Human genes 0.000 claims description 6
- 108010031099 Mannose Receptor Proteins 0.000 claims description 6
- 102100027347 Neural cell adhesion molecule 1 Human genes 0.000 claims description 6
- 102100025386 Oxidized low-density lipoprotein receptor 1 Human genes 0.000 claims description 6
- 101710199789 Oxidized low-density lipoprotein receptor 1 Proteins 0.000 claims description 6
- 102100024616 Platelet endothelial cell adhesion molecule Human genes 0.000 claims description 6
- 102100037422 Receptor-type tyrosine-protein phosphatase C Human genes 0.000 claims description 6
- 102100025237 T-cell surface antigen CD2 Human genes 0.000 claims description 6
- 102100024219 T-cell surface glycoprotein CD1a Human genes 0.000 claims description 6
- 239000002671 adjuvant Substances 0.000 claims description 6
- 108010025838 dectin 1 Proteins 0.000 claims description 6
- 101000917858 Homo sapiens Low affinity immunoglobulin gamma Fc region receptor III-A Proteins 0.000 claims description 5
- 101000917839 Homo sapiens Low affinity immunoglobulin gamma Fc region receptor III-B Proteins 0.000 claims description 5
- 101000946889 Homo sapiens Monocyte differentiation antigen CD14 Proteins 0.000 claims description 5
- 102100029185 Low affinity immunoglobulin gamma Fc region receptor III-B Human genes 0.000 claims description 5
- 102100035877 Monocyte differentiation antigen CD14 Human genes 0.000 claims description 5
- 102100035248 Alpha-(1,3)-fucosyltransferase 4 Human genes 0.000 claims description 4
- 101001022185 Homo sapiens Alpha-(1,3)-fucosyltransferase 4 Proteins 0.000 claims description 4
- 102000003816 Interleukin-13 Human genes 0.000 claims description 4
- 108090000176 Interleukin-13 Proteins 0.000 claims description 4
- 108090000978 Interleukin-4 Proteins 0.000 claims description 4
- 102000004388 Interleukin-4 Human genes 0.000 claims description 4
- 239000001988 antibody-antigen conjugate Substances 0.000 claims description 4
- 230000005859 cell recognition Effects 0.000 claims description 4
- 102000014158 Interleukin-12 Subunit p40 Human genes 0.000 claims description 3
- 108010011429 Interleukin-12 Subunit p40 Proteins 0.000 claims description 3
- 108010002616 Interleukin-5 Proteins 0.000 claims description 3
- 102000000743 Interleukin-5 Human genes 0.000 claims description 3
- 230000008859 change Effects 0.000 claims description 3
- 230000008878 coupling Effects 0.000 claims description 3
- 238000010168 coupling process Methods 0.000 claims description 3
- 238000005859 coupling reaction Methods 0.000 claims description 3
- 102100034540 Adenomatous polyposis coli protein Human genes 0.000 claims description 2
- 101000924577 Homo sapiens Adenomatous polyposis coli protein Proteins 0.000 claims description 2
- 101000959794 Homo sapiens Interferon alpha-2 Proteins 0.000 claims description 2
- 102100040018 Interferon alpha-2 Human genes 0.000 claims description 2
- IWUCXVSUMQZMFG-AFCXAGJDSA-N Ribavirin Chemical compound N1=C(C(=O)N)N=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](CO)O1 IWUCXVSUMQZMFG-AFCXAGJDSA-N 0.000 claims description 2
- 208000010710 hepatitis C virus infection Diseases 0.000 claims description 2
- 229940127121 immunoconjugate Drugs 0.000 claims description 2
- HZCAHMRRMINHDJ-DBRKOABJSA-N ribavirin Natural products O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1N=CN=C1 HZCAHMRRMINHDJ-DBRKOABJSA-N 0.000 claims description 2
- 101150013553 CD40 gene Proteins 0.000 claims 8
- 102100040245 Tumor necrosis factor receptor superfamily member 5 Human genes 0.000 claims 8
- 102100027723 Endogenous retrovirus group K member 6 Rec protein Human genes 0.000 claims 6
- 102000000844 Cell Surface Receptors Human genes 0.000 claims 1
- 108010001857 Cell Surface Receptors Proteins 0.000 claims 1
- 230000004913 activation Effects 0.000 abstract description 5
- 238000011282 treatment Methods 0.000 abstract description 5
- 230000003612 virological effect Effects 0.000 abstract description 3
- 210000004027 cell Anatomy 0.000 description 65
- 210000003819 peripheral blood mononuclear cell Anatomy 0.000 description 52
- 230000001684 chronic effect Effects 0.000 description 41
- 101710144111 Non-structural protein 3 Proteins 0.000 description 36
- 150000001413 amino acids Chemical class 0.000 description 32
- 230000004044 response Effects 0.000 description 30
- 101100291369 Mus musculus Mip gene Proteins 0.000 description 27
- 101150116466 PALM gene Proteins 0.000 description 27
- 238000002617 apheresis Methods 0.000 description 25
- 230000003834 intracellular effect Effects 0.000 description 25
- 101800001838 Serine protease/helicase NS3 Proteins 0.000 description 22
- 238000001943 fluorescence-activated cell sorting Methods 0.000 description 18
- 150000007523 nucleic acids Chemical class 0.000 description 18
- 230000008685 targeting Effects 0.000 description 18
- 238000003501 co-culture Methods 0.000 description 16
- 229940125575 vaccine candidate Drugs 0.000 description 15
- 206010066901 Treatment failure Diseases 0.000 description 14
- 102000039446 nucleic acids Human genes 0.000 description 14
- 108020004707 nucleic acids Proteins 0.000 description 14
- 238000000338 in vitro Methods 0.000 description 12
- 108091033319 polynucleotide Proteins 0.000 description 11
- 102000040430 polynucleotide Human genes 0.000 description 11
- 239000002157 polynucleotide Substances 0.000 description 11
- 230000003389 potentiating effect Effects 0.000 description 10
- 108060003951 Immunoglobulin Proteins 0.000 description 8
- 102100040247 Tumor necrosis factor Human genes 0.000 description 8
- 238000010367 cloning Methods 0.000 description 8
- 102000018358 immunoglobulin Human genes 0.000 description 8
- 125000003729 nucleotide group Chemical group 0.000 description 8
- 239000013598 vector Substances 0.000 description 8
- 230000005867 T cell response Effects 0.000 description 7
- 108700012920 TNF Proteins 0.000 description 7
- 239000002773 nucleotide Substances 0.000 description 7
- 210000001266 CD8-positive T-lymphocyte Anatomy 0.000 description 6
- 102100038132 Endogenous retrovirus group K member 6 Pro protein Human genes 0.000 description 6
- 241000700605 Viruses Species 0.000 description 6
- 210000002865 immune cell Anatomy 0.000 description 6
- 238000003752 polymerase chain reaction Methods 0.000 description 6
- 230000000638 stimulation Effects 0.000 description 6
- 108020004414 DNA Proteins 0.000 description 5
- 102000053602 DNA Human genes 0.000 description 5
- 101150106931 IFNG gene Proteins 0.000 description 5
- 108010008281 Recombinant Fusion Proteins Proteins 0.000 description 5
- 102000007056 Recombinant Fusion Proteins Human genes 0.000 description 5
- 230000003053 immunization Effects 0.000 description 5
- 238000002649 immunization Methods 0.000 description 5
- 210000004185 liver Anatomy 0.000 description 5
- 238000010186 staining Methods 0.000 description 5
- 235000000346 sugar Nutrition 0.000 description 5
- FBFJOZZTIXSPPR-UHFFFAOYSA-N 1-(4-aminobutyl)-2-(ethoxymethyl)imidazo[4,5-c]quinolin-4-amine Chemical compound C1=CC=CC2=C(N(C(COCC)=N3)CCCCN)C3=C(N)N=C21 FBFJOZZTIXSPPR-UHFFFAOYSA-N 0.000 description 4
- 0 C.C.C.C.C.C.C.C*[H]C.C*[H]C.CC.CC.CC Chemical compound C.C.C.C.C.C.C.C*[H]C.C*[H]C.CC.CC.CC 0.000 description 4
- 229920001503 Glucan Polymers 0.000 description 4
- 108091028043 Nucleic acid sequence Proteins 0.000 description 4
- 229940124613 TLR 7/8 agonist Drugs 0.000 description 4
- 125000004122 cyclic group Chemical group 0.000 description 4
- 201000010099 disease Diseases 0.000 description 4
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 230000007170 pathology Effects 0.000 description 4
- 229920002477 rna polymer Polymers 0.000 description 4
- 230000028327 secretion Effects 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 230000007704 transition Effects 0.000 description 4
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 3
- 241000282412 Homo Species 0.000 description 3
- 108700005078 Synthetic Genes Proteins 0.000 description 3
- 108010067390 Viral Proteins Proteins 0.000 description 3
- 230000003213 activating effect Effects 0.000 description 3
- 210000003719 b-lymphocyte Anatomy 0.000 description 3
- 210000004978 chinese hamster ovary cell Anatomy 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 230000002255 enzymatic effect Effects 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 230000004927 fusion Effects 0.000 description 3
- 239000001963 growth medium Substances 0.000 description 3
- 210000003494 hepatocyte Anatomy 0.000 description 3
- 230000005847 immunogenicity Effects 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 238000003780 insertion Methods 0.000 description 3
- 230000037431 insertion Effects 0.000 description 3
- 239000012528 membrane Substances 0.000 description 3
- 210000001616 monocyte Anatomy 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 230000002441 reversible effect Effects 0.000 description 3
- 239000006228 supernatant Substances 0.000 description 3
- 108091026890 Coding region Proteins 0.000 description 2
- 102100039620 Granulocyte-macrophage colony-stimulating factor Human genes 0.000 description 2
- 102000018071 Immunoglobulin Fc Fragments Human genes 0.000 description 2
- 108010091135 Immunoglobulin Fc Fragments Proteins 0.000 description 2
- 108010047761 Interferon-alpha Proteins 0.000 description 2
- 102000006992 Interferon-alpha Human genes 0.000 description 2
- 108091005461 Nucleic proteins Proteins 0.000 description 2
- 108091034117 Oligonucleotide Proteins 0.000 description 2
- 101710132593 Protein E2 Proteins 0.000 description 2
- 229920002684 Sepharose Polymers 0.000 description 2
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 125000000539 amino acid group Chemical group 0.000 description 2
- 125000000837 carbohydrate group Chemical group 0.000 description 2
- 150000001720 carbohydrates Chemical class 0.000 description 2
- 235000014633 carbohydrates Nutrition 0.000 description 2
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 2
- 230000001413 cellular effect Effects 0.000 description 2
- 239000002299 complementary DNA Substances 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 230000009260 cross reactivity Effects 0.000 description 2
- 239000012228 culture supernatant Substances 0.000 description 2
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 2
- 239000000839 emulsion Substances 0.000 description 2
- 238000010353 genetic engineering Methods 0.000 description 2
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 2
- 210000000987 immune system Anatomy 0.000 description 2
- 230000000899 immune system response Effects 0.000 description 2
- 230000002163 immunogen Effects 0.000 description 2
- 229940072221 immunoglobulins Drugs 0.000 description 2
- 206010022000 influenza Diseases 0.000 description 2
- 230000021633 leukocyte mediated immunity Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000178 monomer Substances 0.000 description 2
- 210000005259 peripheral blood Anatomy 0.000 description 2
- 239000011886 peripheral blood Substances 0.000 description 2
- 239000002953 phosphate buffered saline Substances 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 150000003212 purines Chemical class 0.000 description 2
- 150000003230 pyrimidines Chemical class 0.000 description 2
- 230000007017 scission Effects 0.000 description 2
- 125000001424 substituent group Chemical group 0.000 description 2
- 230000001225 therapeutic effect Effects 0.000 description 2
- 229940021747 therapeutic vaccine Drugs 0.000 description 2
- 210000001519 tissue Anatomy 0.000 description 2
- 238000013519 translation Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- NVKAWKQGWWIWPM-ABEVXSGRSA-N 17-β-hydroxy-5-α-Androstan-3-one Chemical compound C1C(=O)CC[C@]2(C)[C@H]3CC[C@](C)([C@H](CC4)O)[C@@H]4[C@@H]3CC[C@H]21 NVKAWKQGWWIWPM-ABEVXSGRSA-N 0.000 description 1
- GOJUJUVQIVIZAV-UHFFFAOYSA-N 2-amino-4,6-dichloropyrimidine-5-carbaldehyde Chemical group NC1=NC(Cl)=C(C=O)C(Cl)=N1 GOJUJUVQIVIZAV-UHFFFAOYSA-N 0.000 description 1
- HVCOBJNICQPDBP-UHFFFAOYSA-N 3-[3-[3,5-dihydroxy-6-methyl-4-(3,4,5-trihydroxy-6-methyloxan-2-yl)oxyoxan-2-yl]oxydecanoyloxy]decanoic acid;hydrate Chemical compound O.OC1C(OC(CC(=O)OC(CCCCCCC)CC(O)=O)CCCCCCC)OC(C)C(O)C1OC1C(O)C(O)C(O)C(C)O1 HVCOBJNICQPDBP-UHFFFAOYSA-N 0.000 description 1
- KDCGOANMDULRCW-UHFFFAOYSA-N 7H-purine Chemical group N1=CNC2=NC=NC2=C1 KDCGOANMDULRCW-UHFFFAOYSA-N 0.000 description 1
- 101100284398 Bos taurus BoLA-DQB gene Proteins 0.000 description 1
- KXDHJXZQYSOELW-UHFFFAOYSA-N Carbamic acid Chemical class NC(O)=O KXDHJXZQYSOELW-UHFFFAOYSA-N 0.000 description 1
- 102000014914 Carrier Proteins Human genes 0.000 description 1
- 108010047041 Complementarity Determining Regions Proteins 0.000 description 1
- 102100039498 Cytotoxic T-lymphocyte protein 4 Human genes 0.000 description 1
- WQZGKKKJIJFFOK-QTVWNMPRSA-N D-mannopyranose Chemical compound OC[C@H]1OC(O)[C@@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-QTVWNMPRSA-N 0.000 description 1
- 102100031780 Endonuclease Human genes 0.000 description 1
- 108010042407 Endonucleases Proteins 0.000 description 1
- 108060002716 Exonuclease Proteins 0.000 description 1
- 229920001917 Ficoll Polymers 0.000 description 1
- 229930186217 Glycolipid Natural products 0.000 description 1
- 102000003886 Glycoproteins Human genes 0.000 description 1
- 108090000288 Glycoproteins Proteins 0.000 description 1
- 108010017213 Granulocyte-Macrophage Colony-Stimulating Factor Proteins 0.000 description 1
- 108700039791 Hepatitis C virus nucleocapsid Proteins 0.000 description 1
- 101100099884 Homo sapiens CD40 gene Proteins 0.000 description 1
- 101000889276 Homo sapiens Cytotoxic T-lymphocyte protein 4 Proteins 0.000 description 1
- 101000746373 Homo sapiens Granulocyte-macrophage colony-stimulating factor Proteins 0.000 description 1
- 101001100327 Homo sapiens RNA-binding protein 45 Proteins 0.000 description 1
- 101000914514 Homo sapiens T-cell-specific surface glycoprotein CD28 Proteins 0.000 description 1
- 101000611183 Homo sapiens Tumor necrosis factor Proteins 0.000 description 1
- 108010067060 Immunoglobulin Variable Region Proteins 0.000 description 1
- 102000017727 Immunoglobulin Variable Region Human genes 0.000 description 1
- 108010002352 Interleukin-1 Proteins 0.000 description 1
- 102000000589 Interleukin-1 Human genes 0.000 description 1
- 102000000588 Interleukin-2 Human genes 0.000 description 1
- 108010002350 Interleukin-2 Proteins 0.000 description 1
- 108010028921 Lipopeptides Proteins 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- 108010038807 Oligopeptides Proteins 0.000 description 1
- 102000015636 Oligopeptides Human genes 0.000 description 1
- 102000007079 Peptide Fragments Human genes 0.000 description 1
- 108010033276 Peptide Fragments Proteins 0.000 description 1
- 108091093037 Peptide nucleic acid Proteins 0.000 description 1
- 201000005702 Pertussis Diseases 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- CZPWVGJYEJSRLH-UHFFFAOYSA-N Pyrimidine Chemical compound C1=CN=CN=C1 CZPWVGJYEJSRLH-UHFFFAOYSA-N 0.000 description 1
- 102100038823 RNA-binding protein 45 Human genes 0.000 description 1
- 108091028664 Ribonucleotide Proteins 0.000 description 1
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 1
- 101710174009 Suppressor of RNA silencing p3 Proteins 0.000 description 1
- 230000006044 T cell activation Effects 0.000 description 1
- 230000024932 T cell mediated immunity Effects 0.000 description 1
- 108091008874 T cell receptors Proteins 0.000 description 1
- 102000016266 T-Cell Antigen Receptors Human genes 0.000 description 1
- 102100027213 T-cell-specific surface glycoprotein CD28 Human genes 0.000 description 1
- 230000021736 acetylation Effects 0.000 description 1
- 238000006640 acetylation reaction Methods 0.000 description 1
- 239000000443 aerosol Substances 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 125000000852 azido group Chemical group *N=[N+]=[N-] 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000001588 bifunctional effect Effects 0.000 description 1
- 108091008324 binding proteins Proteins 0.000 description 1
- 230000004071 biological effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 238000010504 bond cleavage reaction Methods 0.000 description 1
- 201000011510 cancer Diseases 0.000 description 1
- 125000002837 carbocyclic group Chemical group 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 238000012412 chemical coupling Methods 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 238000012761 co-transfection Methods 0.000 description 1
- 108010045512 cohesins Proteins 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 239000003398 denaturant Substances 0.000 description 1
- 239000005547 deoxyribonucleotide Substances 0.000 description 1
- 125000002637 deoxyribonucleotide group Chemical group 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- PGUYAANYCROBRT-UHFFFAOYSA-N dihydroxy-selanyl-selanylidene-lambda5-phosphane Chemical compound OP(O)([SeH])=[Se] PGUYAANYCROBRT-UHFFFAOYSA-N 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- NAGJZTKCGNOGPW-UHFFFAOYSA-K dioxido-sulfanylidene-sulfido-$l^{5}-phosphane Chemical compound [O-]P([O-])([S-])=S NAGJZTKCGNOGPW-UHFFFAOYSA-K 0.000 description 1
- BFMYDTVEBKDAKJ-UHFFFAOYSA-L disodium;(2',7'-dibromo-3',6'-dioxido-3-oxospiro[2-benzofuran-1,9'-xanthene]-4'-yl)mercury;hydrate Chemical compound O.[Na+].[Na+].O1C(=O)C2=CC=CC=C2C21C1=CC(Br)=C([O-])C([Hg])=C1OC1=C2C=C(Br)C([O-])=C1 BFMYDTVEBKDAKJ-UHFFFAOYSA-L 0.000 description 1
- 241001493065 dsRNA viruses Species 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 210000003527 eukaryotic cell Anatomy 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 102000013165 exonuclease Human genes 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000013604 expression vector Substances 0.000 description 1
- 238000000684 flow cytometry Methods 0.000 description 1
- 108700014844 flt3 ligand Proteins 0.000 description 1
- 150000004676 glycans Chemical class 0.000 description 1
- 230000013595 glycosylation Effects 0.000 description 1
- 238000006206 glycosylation reaction Methods 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 238000003306 harvesting Methods 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 125000000623 heterocyclic group Chemical group 0.000 description 1
- 102000053234 human CLEC4A Human genes 0.000 description 1
- 230000028996 humoral immune response Effects 0.000 description 1
- 210000004408 hybridoma Anatomy 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 208000015181 infectious disease Diseases 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 238000010212 intracellular staining Methods 0.000 description 1
- 229940087875 leukine Drugs 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 210000003563 lymphoid tissue Anatomy 0.000 description 1
- 229920002521 macromolecule Polymers 0.000 description 1
- 210000002540 macrophage Anatomy 0.000 description 1
- 239000003550 marker Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000002609 medium Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 238000007837 multiplex assay Methods 0.000 description 1
- 229940031348 multivalent vaccine Drugs 0.000 description 1
- OHDXDNUPVVYWOV-UHFFFAOYSA-N n-methyl-1-(2-naphthalen-1-ylsulfanylphenyl)methanamine Chemical compound CNCC1=CC=CC=C1SC1=CC=CC2=CC=CC=C12 OHDXDNUPVVYWOV-UHFFFAOYSA-N 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 238000007911 parenteral administration Methods 0.000 description 1
- 244000052769 pathogen Species 0.000 description 1
- 230000001717 pathogenic effect Effects 0.000 description 1
- 150000004713 phosphodiesters Chemical class 0.000 description 1
- PTMHPRAIXMAOOB-UHFFFAOYSA-L phosphoramidate Chemical compound NP([O-])([O-])=O PTMHPRAIXMAOOB-UHFFFAOYSA-L 0.000 description 1
- 230000026731 phosphorylation Effects 0.000 description 1
- 238000006366 phosphorylation reaction Methods 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 210000001236 prokaryotic cell Anatomy 0.000 description 1
- 230000000069 prophylactic effect Effects 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 230000017854 proteolysis Effects 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 230000010076 replication Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 239000002336 ribonucleotide Substances 0.000 description 1
- 125000002652 ribonucleotide group Chemical group 0.000 description 1
- 108010038379 sargramostim Proteins 0.000 description 1
- JRPHGDYSKGJTKZ-UHFFFAOYSA-K selenophosphate Chemical compound [O-]P([O-])([O-])=[Se] JRPHGDYSKGJTKZ-UHFFFAOYSA-K 0.000 description 1
- 238000002864 sequence alignment Methods 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- VIDRYROWYFWGSY-UHFFFAOYSA-N sotalol hydrochloride Chemical compound Cl.CC(C)NCC(O)C1=CC=C(NS(C)(=O)=O)C=C1 VIDRYROWYFWGSY-UHFFFAOYSA-N 0.000 description 1
- 238000003153 stable transfection Methods 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 125000003396 thiol group Chemical group [H]S* 0.000 description 1
- RYYWUUFWQRZTIU-UHFFFAOYSA-K thiophosphate Chemical compound [O-]P([O-])([O-])=S RYYWUUFWQRZTIU-UHFFFAOYSA-K 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000006433 tumor necrosis factor production Effects 0.000 description 1
- 230000029812 viral genome replication Effects 0.000 description 1
- 210000002845 virion Anatomy 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/12—Viral antigens
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/12—Viral antigens
- A61K39/29—Hepatitis virus
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/12—Antivirals
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/12—Antivirals
- A61P31/14—Antivirals for RNA viruses
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
- A61P37/02—Immunomodulators
- A61P37/04—Immunostimulants
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/005—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/28—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
- C07K16/2851—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the lectin superfamily, e.g. CD23, CD72
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/28—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
- C07K16/2878—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the NGF-receptor/TNF-receptor superfamily, e.g. CD27, CD30, CD40, CD95
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/06—Animal cells or tissues; Human cells or tissues
- C12N5/0602—Vertebrate cells
- C12N5/0634—Cells from the blood or the immune system
- C12N5/0639—Dendritic cells, e.g. Langherhans cells in the epidermis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/60—Medicinal preparations containing antigens or antibodies characteristics by the carrier linked to the antigen
- A61K2039/6031—Proteins
- A61K2039/6056—Antibodies
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
- C07K2319/33—Fusion polypeptide fusions for targeting to specific cell types, e.g. tissue specific targeting, targeting of a bacterial subspecies
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2770/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses positive-sense
- C12N2770/00011—Details
- C12N2770/24011—Flaviviridae
- C12N2770/24211—Hepacivirus, e.g. hepatitis C virus, hepatitis G virus
- C12N2770/24222—New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2770/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses positive-sense
- C12N2770/00011—Details
- C12N2770/24011—Flaviviridae
- C12N2770/24211—Hepacivirus, e.g. hepatitis C virus, hepatitis G virus
- C12N2770/24234—Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein
Definitions
- the present invention relates in general to the field of immunology, and more particularly, to hepatitis C virus (HCV) immunization, vaccines, and targeting of the HCV peptides to human dendritic cells.
- HCV hepatitis C virus
- the application also describes a bi-functional antibody fused to a HCV target antigen(s) that is directed against a dendritic cell (DC)-specific receptor.
- DC dendritic cell
- U.S. Patent Application Publication No. 2009/0238822 (Rajan et al. 2009) relates to chimeric antigens for targeting and activating antigen presenting cells to elicit cellular and humoral immune responses.
- the Rajan invention describes compositions and methods that contain or use one or more chimeric antigens that contain one or more pre-selected HCV antigen(s), and an immunoglobulin fragment.
- the invention further discloses chimeric antigens, comprising an HCV antigen and a Fc fragment of an immunoglobulin for eliciting an immune response against said antigen.
- the immune response is said to be enhanced upon presenting the host immune system with an immune response domain (HCV antigen from HCV core, envelope, or non-structural protein fragments) and a target-binding domain (an Fc fragment).
- U.S. Patent Application Publication No. 2008/0241170 discloses compositions and methods for making and using vaccine that specifically target (deliver) antigens to antigen-presenting cells for the purpose of eliciting potent and broad immune responses directed against the antigen.
- the purpose is primarily to evoke protective or therapeutic immune responses against the agent (pathogen or cancer) from which the antigen was derived.
- U.S. Patent Application Publication 2010/0239575 refers to compositions and methods for the expression, secretion, and use of novel compositions for use as, e.g., vaccines and antigen delivery vectors, to delivery antigens to antigen presenting cells.
- the vector is an anti-CD40 antibody, or fragments thereof, and one or more antigenic peptides linked to the anti-CD40 antibody or fragments thereof, including humanized antibodies.
- the present invention describes immunostimulatory compositions, vaccines, HCV vaccines, HCV antigen presenting dendritic cells, methods for increasing effectiveness of HCV antigen presentation by an antigen presenting cell, methods for increasing effectiveness of HCV antigen presentation by an antigen presenting cell, methods for increasing effectiveness of antigen presentation by an antigen presenting cell, methods for a treatment, a prophylaxis or a combination thereof against hepatitis C in a human subject, methods of providing immunostimulation by activation of one or more dendritic cells, methods to treat or prevent hepatitis C in a subject, and methods for generating a HCV presenting dendritic cell.
- the present invention further describes virus antigens, e.g., proteins and peptides corresponding to HCV proteins or fragments thereof, fused to heavy and/or light chain of antibodies, or fragments thereof specific for dendritic cells (DCs).
- the vaccine composition as described herein delivers HCV antigen specifically to DCs for the purpose of invoking an immune response.
- the vaccine composition may also promote efficient recall memory in hepatitis C patients.
- the instant invention discloses an immunostimulatory composition for generating an immune response for a prophylaxis, a therapy, or any combination thereof against a Hepatitis C infection in a human or animal subject comprising: one or more antibodies or fragments thereof specific for a dendritic cell (DC) and one or more HCV antigens attached to the one or more antibodies or fragments thereof.
- the composition disclosed hereinabove further comprises at least one Toll-Like Receptor (TLR) agonist selected from the group consisting of TLR1, TLR2, TLR3, TLR4, TLR5, TLR6, TLR7, and TLR8 agonists.
- TLR Toll-Like Receptor
- composition further comprises an optional pharmaceutically acceptable carrier that is effective, in combination, to produce the immune response for prophylaxis, for therapy, or any combination thereof in the human or animal subject in need of immunostimulation.
- the DC-specific antibody or fragment is specific for a DC specific receptor, wherein the DC-specific antibody or fragment is selected from an antibody that specifically binds to MHC class I, MHC class II, CD1, CD2, CD3, CD4, CD8, CD11b, CD14, CD15, CD16, CD19, CD20, CD29, CD31, CD40, CD43, CD44, CD45, CD54, CD56, CD57, CD58, CD83, CD86, CMRF-44, CMRF-56, DCIR, DC-ASPGR, CLEC-6, CD40, BDCA-2, MARCO, DEC-205, mannose receptor, Langerin, DECTIN-1, B7-1, B7-2, IFN- ⁇ receptor and IL-2 receptor, ICAM-1, Fc ⁇ receptor, LOX-1, and
- the HCV antigens comprises a peptide sequence derived from a HCV 1a genotype protein or a fragment thereof and the HCV antigens are selected from the group consisting of protein E1, envelope protein E2, non-structural protein NS3, non-structural protein NS4b, non-structural protein NS5b, and a fragment thereof.
- the one or more HCV antigens are selected from the group consisting of SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5, SEQ ID NO: 6, SEQ ID NO: 7, and a fragment thereof and from the group consisting of SEQ ID NO: 8, SEQ ID NO: 9, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, E1b, and a fragment thereof.
- the composition comprises a recombinant antibody that comprises a fusion protein and the one or more HCV antigen are at a C-terminal position relative to the one or more antibody or fragment thereof within a fusion protein.
- composition comprises a recombinant antibody, and the one or more HCV antigens are fused to a C-terminus of a heavy chain of the antibody.
- composition comprises a recombinant antibody, and the one or more HCV antigens are fused to a C-terminus of a light chain of the one or more antibody or fragment thereof specific for a DC.
- the one or more HCV antigens are selected from the group consisting of SEQ ID NO: 12-linker A-SEQ ID NO: 13, SEQ ID NO: 12-linker A-SEQ ID NO: 11, SEQ ID NO: 12-linker B-SEQ ID NO: 14, SEQ ID NO: 14-linker B-SEQ ID NO: 12, SEQ ID NO: 12-linker B-SEQ ID NO: 10, SEQ ID NO: 10-linker B-SEQ ID NO: 12, SEQ ID NO: 9-linker
- B-SEQ ID NO: 10 SEQ ID NO: 10-linker B-SEQ ID NO: 9, SEQ ID NO: 10-linker B-SEQ ID NO: 14, SEQ ID NO: 14-linker B-SEQ ID NO: 10, SEQ ID NO: 9-linker B-SEQ ID NO: 12, SEQ ID NO: 12-linker B-SEQ ID NO: 9, SEQ ID NO: 8-linker B-E1b.
- SEQ ID NO: 12-linkerB-SEQ ID NO: 10-linker C-SEQ ID NO: 14 SEQ ID NO: 12-linker B-SEQ ID NO: 14-linker C-SEQ ID NO: 10 SEQ ID NO: 10-linker B-SEQ ID NO: 12-linker C-SEQ ID NO: 14, SEQ ID NO: 10-linker B-SEQ ID NO: 14-linker C-SEQ ID NO: 12, SEQ ID NO: 14-linker B-SEQ ID NO: 12-linker C-SEQ ID NO: 10, SEQ ID NO: 14-linker B-SEQ ID NO: 10-linker C-SEQ ID NO: 12, and SEQ ID NO: 12-linker B-SEQ ID NO: 10-linker C-SEQ ID NO: 14-linker D-SEQ ID NO: 8.
- the one or more HCV antigens are attached to a C-terminus of a light chain of the recombinant antibody and selected from a group consisting of: SEQ ID NO: 9; SEQ ID NO: 11, and E1b.
- the one or more HCV antigens are selected from the group consisting of SEQ ID NO: 9 fused to the C-terminus of a light chain and SEQ ID NO: 10-linker B-SEQ ID NO: 12-linker C-SEQ ID NO: 14 fused to the C-terminus of the heavy chain of the antibody.
- the one or more HCV antigen are chemically coupled to the one or more antibodies or fragments thereof or are attached to the one or more antibodies or fragments thereof via an affinity association.
- the DC-specific antibody is humanized.
- the composition is optimized to be administered to the human or animal subject by an oral route, a nasal route, topically, or as an injection.
- a vaccine comprising: one or more antibodies or fragments thereof specific for a dendritic cell (DC); and one or more HCV antigens attached to the one or more antibodies or fragments thereof.
- the vaccine described herein further comprises at least one Toll-Like Receptor (TLR) agonist selected from the group consisting of TLR1, TLR2, TLR3, TLR4, TLR5, TLR6, TLR7, and TLR8 agonists and an optional pharmaceutically acceptable carrier or an adjuvant that is effective, in combination, to produce an immune response for prophylaxis, for therapy, or any combination thereof in the human or animal subject in need of immunostimulation.
- TLR Toll-Like Receptor
- the DC-specific antibody or fragment is specific for a dendritic cell specific receptor.
- the HCV antigen comprises a peptide sequence derived from a HCV 1a genotype protein or a fragment thereof, wherein the HCV antigen is selected from the group consisting of protein E1, envelope protein E2, non-structural protein NS3, non-structural protein NS4b, non-structural protein NS5b, and a fragment thereof.
- the DC-specific antibody is humanized and the composition is optimized to be administered to the human or animal subject by an oral route, a nasal route, topically, or as an injection.
- the instant invention discloses a Hepatitis C vaccine (HCV) comprising a fusion protein comprising: (i) one or more antibodies or fragments thereof specific for a dendritic cell (DC), (ii) one or more HCV antigens located C-terminal of the antibodies or fragments thereof, (iii) at least one Toll-Like Receptor (TLR) agonist which is selected from the group consisting of TLR1, TLR2, TLR3, TLR4, TLR5, TLR6, TLR7, and TLR8 agonists, and (iv) one or more optional pharmaceutically acceptable carriers and adjuvants, wherein the vaccine is effective to produce an immune response, for a prophylaxis, a therapy, or any combination thereof against hepatitis C in a human or an animal subject in need thereof.
- DC dendritic cell
- TLR Toll-Like Receptor
- the vaccine comprises one or more optional agents selected from the group consisting of an agonistic anti-CD40 antibody, an agonistic anti-CD40 antibody fragment, a CD40 ligand (CD40L) polypeptide, a CD40L polypeptide fragment, anti-4-1BB antibody, an anti-4-1BB antibody fragment, 4-1BB ligand polypeptide, a 4-1BB ligand polypeptide fragment, IFN- ⁇ , TNF- ⁇ , type 1 cytokines, type 2 cytokines or combinations and modifications thereof.
- CD40L CD40 ligand
- the instant invention in one embodiment discloses a method for increasing effectiveness of Hepatitis C virus (HCV) antigen presentation by an antigen presenting cell (APC) comprising the steps of: (i) providing an antibody conjugate comprising a dendritic cell (DC) specific antibody or a fragment thereof and one or more native or engineered HCV antigenic peptides, (ii) providing one or more APCs; and (iii) contacting the APC with the conjugate, wherein the antibody-antigen complex is processed and presented for T cell recognition.
- the antigen presenting cell comprises a dendritic cell (DC).
- the instant invention provides a method for increasing effectiveness of antigen presentation by an antigen presenting cell (APC) comprising the steps of: i) isolating and purifying one or more dendritic cell (DC)-specific antibody or a fragment thereof, ii) providing one or more HCV antigens or antigenic peptides, iii) loading or chemically coupling the one or more HCV antigens or antigenic peptides to the DC-specific antibody to form an antibody-antigen conjugate, and iv) contacting the antigen presenting cell with the conjugate, wherein the antibody-antigen complex is processed and presented for T cell recognition.
- APC antigen presenting cell
- the method as described hereinabove further comprises adding at least one Toll-Like Receptor (TLR) agonist which is selected from the group consisting of TLR1, TLR2, TLR3, TLR4, TLR5, TLR6, TLR7, and TLR8 agonists and one or more optional steps comprising i) adding one or more optional agents selected from the group consisting of an agonistic anti-CD40 antibody, an agonistic anti-CD40 antibody fragment, a CD40 ligand (CD40L) polypeptide, a CD40L polypeptide fragment, anti-4-1BB antibody, an anti-4-1BB antibody fragment, 4-1BB ligand polypeptide, a 4-1BB ligand polypeptide fragment, IFN- ⁇ , TNF- ⁇ , type 1 cytokines, type 2 cytokines or combinations and modifications thereof to the antibody-antigen conjugate and the TLR agonist prior to contacting the antigen presenting cells, ii) measuring a level of one or more agents selected from the group consisting of IFN- ⁇ , TNF
- the instant invention provides method for a treatment, a prophylaxis or a combination thereof against hepatitis C in a human subject comprising the steps of: identifying the human subject in need of the treatment, the prophylaxis, or a combination thereof against the hepatisti and administering a vaccine composition comprising one or more antibodies or fragments thereof specific for a dendritic cell (DC) and one or more HCV antigens attached to the one or more antibodies or fragments thereof.
- DC dendritic cell
- the vaccine composition further comprises at least one Toll-Like Receptor (TLR) agonist which is selected from the group consisting of TLR1, TLR2, TLR3, TLR4, TLR5, TLR6, TLR7, and TLR8 agonists, and one or more optional pharmaceutically acceptable carriers and adjuvants, wherein the conjugate and agonist are each comprised in an amount such that, in combination with the other, are effective to produce an immune response, for the prophylaxis, the therapy or any combination thereof against the influenza in the human subject.
- TLR Toll-Like Receptor
- the vaccine composition further comprises one or more optional agents selected from the group consisting of an agonistic anti-CD40 antibody, an agonistic anti-CD40 antibody fragment, a CD40 ligand (CD40L) polypeptide, a CD40L polypeptide fragment, anti-4-1BB antibody, an anti-4-1BB antibody fragment, 4-1BB ligand polypeptide, a 4-1BB ligand polypeptide fragment, IFN- ⁇ , TNF- ⁇ , type 1 cytokines, type 2 cytokines or combinations and modifications thereof.
- the vaccine is administered to the human subject by an oral route, a nasal route, topically or as an injection.
- the one or more antibodies or fragments thereof specific for a dendritic cell comprises antibodies specifically binds to MHC class I, MHC class II, CD1, CD2, CD3, CD4, CD8, CD11b, CD14, CD15, CD16, CD19, CD20, CD29, CD31, CD40, CD43, CD44, CD45, CD54, CD56, CD57, CD58, CD83, CD86, CMRF-44, CMRF-56, DCIR, DC-ASPGR, CLEC-6, CD40, BDCA-2, MARCO, DEC-205, mannose receptor, Langerin, DECTIN-1, B7-1, B7-2, IFN- ⁇ receptor and IL-2 receptor, ICAM-1, Fc ⁇ receptor, LOX-1, or ASPGR.
- the HCV antigen is selected from the group consisting of protein E1, envelope protein E2, non-structural protein NS3, non-structural protein NS4b, non-structural protein NS5b, and a fragment thereof, from the group consisting of SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5, SEQ ID NO: 6, SEQ ID NO: 7, and a fragment thereof, or from the group consisting of SEQ ID NO: 8, SEQ ID NO: 9, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, E1b, and a fragment thereof.
- a method of providing immunostimulation by activation of one or more dendritic cells (DCs) to a human subject for a prophylaxis, a therapy or a combination thereof against HCV is described in one embodiment of the present invention.
- the method comprises the steps of: a) identifying the human subject in need of immunostimulation for the prophylaxis, the therapy or a combination thereof against HCV, b) isolating one or more DCs from the human subject, c) exposing the isolated DCs to activating amounts of a composition or a vaccine comprising an anti-dendritic cell immunoreceptor (DCIR) monoclonal antibody or fragments thereof attached to one or more HCV antigens, and d) reintroducing the activated DC complex into the human subject.
- DCIR anti-dendritic cell immunoreceptor
- the method described above further comprises the steps of contacting the one or more DCs with at least one Toll-Like Receptor (TLR) agonist which is selected from the group consisting of TLR1, TLR2, TLR3, TLR4, TLR5, TLR6, TLR7, and TLR8 agonists and a pharmaceutically acceptable carrier to form an activated DC complex and the step of adding one or more optional agents selected from the group consisting of an agonistic anti-CD40 antibody, an agonistic anti-CD40 antibody fragment, a CD40 ligand (CD40L) polypeptide, a CD40L polypeptide fragment, anti-4-1BB antibody, an anti-4-1BB antibody fragment, 4-1BB ligand polypeptide, a 4-1BB ligand polypeptide fragment, IFN- ⁇ , TNF- ⁇ , type 1 cytokines, type 2 cytokines or combinations and modifications thereof to the conjugate and the TLR agonist prior to exposing the DCs.
- TLR Toll-Like Receptor
- the method disclosed hereinabove further comprises the optional step of measuring a level of one or more agents selected from the group consisting of IFN- ⁇ , TNF- ⁇ , IL-12p40, IL-4, IL-5, and IL-13, wherein a change in the level of the one or more agents is indicative of the immunostimulation.
- the present invention also discloses a method to treat or prevent Hepatitis C in a subject comprising the step of administering to the subject a fusion protein comprising an antibody or fragment thereof specific for a dendritic cell (DC) and a Hepatitis C virus antigen or antigenic peptide fused to the antibody or fragment thereof.
- a Hepatitis C virus antigen presenting dendritic cell (DC) is also disclosed in one embodiment of the present invention.
- the HCV antigen presenting DC further comprises one or more isolated dendritic cells (DCs) in contact with a fusion protein comprising an antibody or fragment thereof specific for the DC, the fusion protein further comprising a HCV peptide.
- the present invention describes one or more vaccines against HCV comprising one or more antibodies or fragments thereof specific for a dendritic cell (DC) and one or more HCV antigens or antigenic domains attached to the one or more antibodies or fragments thereof.
- the vaccine has a general structure given by: H-w, H-w-x, H-w-x-y, or H-w-x-y-z, wherein H represents a heavy chain of an antibody or a fragment thereof specific for a DC, w, x, y, and z represent one or more HCV antigens or domains selected from the group consisting of protein E1, envelope protein E2, non-structural protein NS3, non-structural protein NS4b, non-structural protein NS5b, or any combinations thereof.
- w comprises the HCV antigenic domains selected from the group consisting of ProtA, ProtB, HelB, Palm, E1b, and E2.
- x comprises the HCV antigenic domains selected from the group consisting of HelC, HelA, Palm, ProtA, ProtB, and E1b.
- z comprises HCV antigenic domains selected from E2, ProtA, and HelB.
- the one or more HCV antigens or antigenic domains are linked or attached to one another by one or more flexible linkers.
- a vaccine comprising one or more antibodies or fragments thereof specific for a dendritic cell (DC) and one or more HCV antigens or antigenic domains attached to the one or more antibodies or fragments thereof, wherein the vaccine has a general structure given by L-w-x-y-z, wherein L represents a light chain of an antibody or a fragment thereof specific for a DC, w, x, y, and z represent one or more HCV antigens or domains selected from the group consisting of protein E1, envelope protein E2, non-structural protein NS3, non-structural protein NS4b, non-structural protein NS5b, or any combinations thereof.
- DC dendritic cell
- HCV antigens or antigenic domains attached to the one or more antibodies or fragments thereof
- the vaccine has a general structure given by L-w-x-y-z, wherein L represents a light chain of an antibody or a fragment thereof specific for a DC, w, x, y, and z represent one or
- the present invention discloses a vaccine comprising one or more antibodies or fragments thereof specific for a dendritic cell (DC) and one or more HCV antigens or antigenic domains attached to the one or more antibodies or fragments thereof, wherein the vaccine has a general structure given by:
- H represents a heavy chain of an antibody or a fragment thereof specific for a DC
- L represents a light chain of an antibody or a fragment thereof specific for the DC
- w, x, y, and z represent one or more HCV antigens or domains selected from the group consisting of protein E1, envelope protein E2, non-structural protein NS3, non-structural protein NS4b, non-structural protein NS5b, or any combinations thereof.
- the present invention discloses a method for generating a Hepatitis C virus (HCV) presenting dendritic cells (DCs) in a human subject comprising the steps of: providing one or more DCs and incubating the dendritic cells with a fusion protein, wherein the fusion protein comprises an antibody or fragment thereof specific for a dendritic cell and a HCV antigen fused to the antibody or fragment thereof.
- the method disclosed herein further comprises the step of administering to the subject an effective amount of IFNA, Ribavirin, or a combination thereof.
- FIG. 1 provides a summary of HCV antigen combined constructs expressed at the C-terminus end of antibody heavy chain.
- Each HCV domains, as defined in FIG. 2 is represented as color rectangle. Flexible linkers are shown as curved lines. Each color represents a different linker. Domains are fused to the carboxyl terminus end of antibody heavy chain. “Expressed” means that domains fused to the carboxyl terminus end of antibody heavy chain are expressed as fusion antibody after co-transfection with antibody light chain in 293F cells. All possible combination of HCV domains have been constructed, and FIG. 3 shows only those that were expressed as soluble fusion proteins in 293F cells and in CHO cells and purified as recombinant antibodies;
- FIG. 2 provides a summary of HCV antigen combined constructs expressed at the C-terminus end of antibody light chain. All possible combinations of HCV domains have been constructed, and the figure shows only those that are expressed as soluble fusion proteins in 293F cells and in CHO cells and purified as recombinant antibodies. The same color code as in FIG. 1 is used;
- FIGS. 3A-3B demonstrate the ability of recombinant anti-DCIR and anti-CD40 antibodies fused to HCV NS3HelB specific antigen to elicit the expansion of antigen-specific CD4+ T cells from a chronic HCV infected patient cured after IFNa-Ribavirin therapy.
- Delivering NS3HelB to DCs through CD40 and DCIR induces IFN- ⁇ -TNFa-producing HCV NS3HelB-specific CD4+ T cells.
- FIG. 3A after 2 days, culture supernatants were analyzed for measuring IFN ⁇ and FIG. 3B PBMC cells were stained for measuring the frequency of peptide-specific CD4+ T cells intracellular IFN ⁇ +TNF ⁇ + cells;
- FIG. 4 demonstrates the ability of long HCV antigen bearing vaccine constructs to induce multi epitope CD4+ T cells.
- HCV antigens from NS3 Helicase HelBC construct were delivered to DCs through CD40 or DCIR.
- PBMC cells from chronic HCV infected patients; either cured after therapy or in treatment failure, were co-cultured with IFNDCs targeted with anti-CD40-NS3HelB, anti-CD40-NS3HelBC or anti-DCIR-NS3HelB, anti-DCIR-NS3HelBC for 10 days.
- Cells were stimulated for 6 h with peptides clusters (10 ⁇ M; 10 peptides of 15-mers in each clusters) covering HCV NS3 HelB or HelBC constructs.
- PBMC cells were stained for measuring the frequency of peptide-specific CD4+ T cells intracellular IFN ⁇ +TNF ⁇ + cells, an analyzed by FACS. Number of double positive CD4+ T cells induced after each peptide cluster stimulation were plotted for each vaccine targeting agent;
- FIGS. 5A to 5C demonstrate the ability of recombinant anti-DCIR and anti-CD40 antibodies fused to HCV NS3HelB, HCV NS3ProtB and HCV NS5BPalm specific antigens to elicit the expansion of antigen-specific CD4+ T cells from a chronic HCV infected patient cured after IFNa-Ribavirin therapy.
- Delivering HCV antigen to DCs through CD40 and DCIR induces IFN ⁇ -TNFa-producing HCV-specific CD4+ T cells, with multi epitopes, specific CD4 T cells.
- PBMC cells from chronic HCV infected patients cured after therapy were co-cultured with autologous IFN ⁇ DCs targeted with anti-CD40-NS3HelB-NS3ProtB-NS5BPalm or anti-DCIR-NS3HelB-NS3ProtB-NS5BPalm for 10 days.
- Cells were stimulated with peptides clusters (10 peptides of 15-mers in each clusters) covering HCV NS3HelB, NS3ProtB or NS5BPalm (2 ⁇ M).
- PBMC cells were stained for measuring the frequency of peptide-specific CD4+ T cells intracellular IFN ⁇ +TNF ⁇ + cells;
- FIGS. 6A to 6C demonstrate the ability of recombinant anti-DCIR and anti-CD40 antibodies fused to HCV NS3HelB, HCV NS3ProtB and HCV NS5BPalm specific antigens to elicit the expansion of antigen-specific CD8+ T cells from a chronic HCV infected patient cured after IFNa-Ribavirin therapy.
- Delivering HCV antigen to DCs through CD40 and DCIR induces IFN ⁇ -TNFa-producing HCV-specific CD4+ T cells, with multi epitopes, specific CD4 T cells.
- PBMC cells from chronic HCV infected patients cured after therapy were co-cultured with autologous IFN ⁇ DCs targeted with anti-CD40-NS3HelB-NS3ProtB-NS5BPalm or anti-DCIR-NS3HelB-NS3ProtB-NS5BPalm for 10 days.
- Cells were stimulated with peptides clusters (10 peptides of 15-mers in each clusters) covering HCV NS3HelB, NS3ProtB or NS5BPalm (2 ⁇ M).
- PBMC cells were stained for measuring the frequency of peptide-specific CD8+ T cells intracellular IFN ⁇ +TNF ⁇ + cells;
- FIGS. 7A to 7D demonstrate the ability of recombinant anti-DCIR and anti-CD40 antibodies fused to HCV NS3HelB, HCV NS3ProtB or HCV NS5BPalm specific antigens to elicit the expansion of antigen-specific CD4+ T cells from chronic HCV infected patients cured after IFNa-Ribavirin therapy.
- HCV antigens from were delivered to DCs through CD40 or DCIR.
- IFN ⁇ DCs were targeted with anti-CD40-NS3HelB; anti-CD40-NS3ProtB; anti-CD40NS5bPalm or anti-DCIR-NS3HelB; anti-DCIR-NS3ProtB; anti-DCIRNS5bPalm and co-cultured for 10 days with PBMC cells from 3 chronic HCV infected patients cured after therapy.
- PBMC cells were stimulated for 6 h with peptide clusters C7 and C9 (10 ⁇ M; 10 peptides of 15-mers) covering HCV NS3 HelB constructs; with peptide clusters C2 and C3 covering HCV NS3 ProtB constructs or peptide cluster C2 C4 C5 C6 C7 covering NS5bPalm construct.
- PBMC cells were stained for measuring the frequency of peptide-specific CD4+ intracellular IFN ⁇ +TNF ⁇ + cells, an analyzed by FACS.
- the left panel represent IFN- ⁇ amount secreted after 10 days culture of PBMCs with peptide cluster covering HCVNS3 and HCVNS5b entire proteins;
- FIGS. 8A to 8D demonstrates the ability of recombinant anti-DCIR and anti-CD40 antibodies fused to HCV NS3HelB, HCV NS3ProtB or HCV NS5BPalm specific antigens to elicit the expansion of antigen-specific CD4+ T cells from chronic HCV infected patients in treatment failure.
- HCV antigens from were delivered to DCs through CD40 or DCIR.
- IFN ⁇ DCs were targeted with anti-CD40-NS3HelB; anti-CD40-NS3ProtB or anti-DCIR-NS3HelB; anti-CD40NS5bPalm or anti-DCIR-NS3HelB; anti-DCIR-NS3ProtB; anti-DCIRNS5bPalm and co-cultured for 10 days with PBMC cells from 3 chronic HCV infected patients in treatment failure (HCV+).
- PBMC cells were stimulated for 6 h with peptide clusters C7 and C9 (10 ⁇ M; 10 peptides of 15-mers) covering HCV NS3 HelB constructs; with peptide clusters C2 and C3 covering HCV NS3 ProtB constructs or peptide cluster C2 C4 C5 C6 C7 covering NS5bPalm construct.
- PBMC cells were stained for measuring the frequency of peptide-specific CD4+ intracellular IFN ⁇ +TNF ⁇ + cells, an analyzed by FACS.
- the left panel represent IFN- ⁇ amount secreted after 10 days culture of PBMCs with peptide cluster covering HCVNS3 and HCVNS5b entire proteins;
- FIGS. 9A and 9B demonstrate the ability of combination of TLR agonist and anti-DCIR HCV-NS3HelB can induced multi epitopes CD8+ T cells.
- HCV antigens from NS3 Helicase HelB construct were delivered to DCs through CD40 or DCIR.
- IFNDCs were targeted with anti-CD40-NS3HelB, or anti-DCIR-NS3HelB in presence of PAM3 (TLR2 agonist; 200 ng/ml), CL097 (TLR7/8 agonist; 5 ⁇ g/ml) or polyIC (TLR3 agonist; 25 ⁇ g/ml) before co-culture for 10 days with PBMC cells from chronic HCV infected patients; either cured after therapy or in treatment failure.
- PAM3 TLR2 agonist
- CL097 TLR7/8 agonist
- polyIC TLR3 agonist
- FIG. 9A PBMC cells were stained for measuring the frequency of peptide-specific CD4+ and CD8+ intracellular IFN ⁇ +TNF ⁇ + cells, an analyzed by FACS,
- FIG. 9B Number of double positive CD4+ and CD8+ intracellular IFN ⁇ +TNF ⁇ +T cells induced after each TLR agonist stimulation were plotted;
- FIGS. 10A-10D demonstrate the ability of combination of TLR agonist and anti-DCIR HCV-construct to increase CD4+ and induce CD8+ T cells responses in chronic HCV infected patients cured after therapy.
- HCV antigens from NS3 Helicase HelB or from NS3 Protease ProtB constructs were delivered to DCs through CD40 or DCIR.
- IFN ⁇ DCs were targeted with anti-CD40-NS3HelB, anti-DCIR-NS3HelB, anti-CD40-NS3ProtB, anti-DCIR-NS3ProtB, in presence of PAM3 (TLR2 agonist; 200 ng/ml), CL095 (TLR7/8 agonist; 5 ⁇ g/ml) or polyIC (TLR3 agonist; 25 ⁇ g/ml) or cyclic glucan (TLR4 agonist, 10 ⁇ g/ml) before co-culture for 10 days with PBMC cells from chronic HCV infected patients cured after therapy.
- PAM3 TLR2 agonist
- CL095 TLR7/8 agonist; 5 ⁇ g/ml
- polyIC TLR3 agonist; 25 ⁇ g/ml
- TLR4 agonist 10 ⁇ g/ml
- FIGS. 10A and 10B PBMC cells were stained for measuring the frequency of peptide-specific CD4+ intracellular IFN ⁇ +TNF ⁇ + cells, and analyzed by FACS and FIGS. 10C and 10D PBMC cells were stained for measuring the frequency of peptide-specific CD8+ intracellular IFN ⁇ +TNF ⁇ + cells, an analyzed by FACS;
- FIG. 11 demonstrates the ability of combination of TLR agonists and anti-CD40 HCV-constructs to increase CD4+ T cells responses in chronic HCV infected patients in treatment failure.
- HCV antigens from NS3 Helicase HelB or from NS3 Protease ProtB constructs were delivered to DCs through CD40 or DCIR.
- IFN ⁇ DCs were targeted with anti-CD40-NS3HelB, anti-DCIR-NS3HelB, anti-CD40-NS3ProtB, anti-DCIR-NS3ProtB, in presence of PAM3 (TLR2 agonist; 200 ng/ml), CL095 (TLR7/8 agonist; 5 ⁇ g/ml) or polyIC (TLR3 agonist; 25 ⁇ g/ml) or cyclic glucan (TLR4 agonist, 10 ⁇ g/ml) before co-culture for 10 days with PBMC cells from chronic HCV infected patients cured after therapy.
- PAM3 TLR2 agonist
- CL095 TLR7/8 agonist; 5 ⁇ g/ml
- polyIC TLR3 agonist; 25 ⁇ g/ml
- TLR4 agonist 10 ⁇ g/ml
- PBMC cells were stimulated for 6 h with peptide clusters C7 (10 ⁇ M; 10 peptides of 15-mers) covering HCV NS3 HelB constructs or with peptide clusters C3 (10 ⁇ M; 10 peptides of 15-mers) covering HCV NS3 ProtB constructs.
- PBMC cells were stained for measuring the frequency of peptide-specific CD4+ intracellular IFN ⁇ +TNF ⁇ + cells, an analyzed by FACS;
- FIGS. 12A-12C demonstrate the ability of HCV vaccine candidates to recall CD4+ T cells responses in all chronic HCV infected patients (cured or in treatment failure).
- HCV antigens from NS3 Helicase HelB, NS5b polymerase Palm or from NS3 Protease ProtB constructs were delivered to DCs through CD40 or DCIR.
- IFN ⁇ DCs were targeted with anti-CD40-[NS3HelB ⁇ NS3ProtB ⁇ NS5bPalm on heavy chain], anti-DCIR-[NS3HelB ⁇ NS3ProtB ⁇ NS5bPalm on heavy chain] before co-culture for 10 days with PBMC cells from chronic HCV infected patients cured after therapy.
- PBMC cells were stimulated for 6 h with peptide clusters C7, C9 (10 ⁇ M; 10 peptides of 15-mers) covering HCV NS3 HelB domain, with peptide clusters C2-C3-C4 (10 ⁇ M; 10 peptides of 15-mers) covering HCV NS3 ProtB domain or with peptide clusters C2-C4-C5-C6-C7 (10 ⁇ M; 10 peptides of 15-mers) covering HCV NS5b Palm domain.
- PBMC cells were stained for measuring the frequency of peptide-specific CD4+ and CD8+ intracellular IFN ⁇ +TNF ⁇ + cells, and analyzed by FACS. The number of CD4+IFN ⁇ +TNF ⁇ + cells induced vaccine candidate is shown;
- FIGS. 13A-13E demonstrate of the ability of different HCV antigen combination on vaccine candidate for recall CD4+ T cells responses in chronic HCV infected cured patients.
- HCV antigens from NS3 Helicase HelB, NS5b polymerase Palm or from NS3 Protease ProtB combination constructs were delivered to DCs through CD40 or DCIR.
- IFNaDCs were targeted with second-generation vaccines anti-CD40-[NS3HelB on light chain and NS3ProtB ⁇ NS5bPalm on heavy chain], anti-DCIR-[NS3HelB on light chain and NS3ProtB ⁇ NS5bPalm on heavy chain], or first-generation vaccines anti-CD40-[NS3HelB ⁇ NS3ProtB ⁇ NS5bPalm on heavy chain], anti-DCIR-[NS3HelB ⁇ NS3ProtB ⁇ NS5bPalm on heavy chain] before co-culture for 10 days with PBMC cells from chronic HCV infected patients cured after therapy.
- PBMC cells were stimulated for 6 h with peptide clusters C7 and C9 (10 ⁇ M; 10 peptides of 15-mers) covering HCV NS3 HelB domain (shown in green on the figure), with peptide clusters C2-C3-C4 (10 ⁇ M; 10 peptides of 15-mers) covering HCV NS3 ProtB domain (shown in pink on the figure) or with peptide clusters C2-C4-C5-C6-C7 (10 ⁇ M; 10 peptides of 15-mers) covering HCV NS5b Palm domain (shown in orange in the figure).
- PBMC cells were stained for measuring the frequency of peptide-specific CD4+ intracellular IFN ⁇ +TNFa+ cells, an analyzed by FACS. The number of CD4+IFN ⁇ +TNF ⁇ + cells induced by first-generation vaccine or second-generation vaccine is compared in the last panel; and
- FIGS. 14A to 14H demonstrate the ability of vaccine candidate to recall CD4+ T cells responses in HCV patients infected with non 1 genotype and HCV-exposed but non-infected individual.
- HCV antigens from NS3 Helicase HelB, NS5b polymerase Palm or from NS3 Protease ProtB combination constructs were delivered to DCs through CD40 or DCIR and DC loaded were co-culture for 10 days with PBMC cells from HCV patients infected with non 1 genotype HCV-infected patients (HCV-015, 2b) and HCV-exposed but non infected individual (HCV-029).
- PBMC cells were stimulated for 6 h with peptide clusters C7 and C9 (10 ⁇ M; 10 peptides of 15-mers) covering HCV NS3 HelB domain, with peptide clusters C2-C3-C4 (10 ⁇ M; 10 peptides of 15-mers) covering HCV NS3 ProtB domain or with peptide clusters C2-C4-C5-C6-C7 (10 ⁇ M; 10 peptides of 15-mers) covering HCV NS5b Palm domain.
- PBMC cells were stained for measuring the frequency of peptide-specific CD4+ intracellular IFN ⁇ +TNF ⁇ + cells, an analyzed by FACS.
- FIGS. 15A to 15B shows the results from a 10 day expansion culture whereby a dose range of 1st generation anti-DCIR-HCV vaccine (left panels) is compared to second generation anti-DCIR-HCV vaccine (right panels).
- Doses were 0.05 nM, 0.5 nM, and 5 nM and antigen-specific responses were ascertained by stimulation with no peptide (control) or ProtA, HelB, or Palm peptide pools in the presence of Brefeldin, followed by staining for CD3+, CD4+ and intracellular IFNg and TNFa. Samples were analyzed by FACS. Shown are comparable CD4+ HCV antigen-specific responses to the two generations of vaccines.
- FIGS. 16A to 16B shows the results from a 10 day expansion culture whereby a dose range of 1st generation anti-CD40-HCV vaccine (left panels) is compared to second generation anti-CD40-HCV vaccine (right panels).
- Doses were 0.05 nM, 0.5 nM, and 5 nM and antigen-specific responses were ascertained by stimulation with no peptide (control) or ProtA, HelB, or Palm peptide pools in the presence of Brefeldin, followed by staining for CD3+, CD4+ and intracellular IFNg and TNFa. Samples were analyzed by FACS. Shown are comparable CD4+ HCV antigen-specific responses to the two generations of vaccines.
- the invention includes also variants and other modification of an antibody (or “Ab”) of fragments thereof, e.g., anti-CD40 fusion protein (antibody is used interchangeably with the term “immunoglobulin”).
- antibody is used interchangeably with the term “immunoglobulin”.
- the term “antibodies or fragments thereof,” includes whole antibodies or fragments of an antibody, e.g., Fv, Fab, Fab′, F(ab′)2, Fc, and single chain Fv fragments (ScFv) or any biologically effective fragments of an immunoglobulins that binds specifically to, e.g., CD40.
- Antibodies from human origin or humanized antibodies have lowered or no immunogenicity in humans and have a lower number or no immunogenic epitopes compared to non-human antibodies.
- Antibodies and their fragments will generally be selected to have a reduced level or no antigenicity in humans.
- the terms “Ag” or “antigen” refer to a substance capable of either binding to an antigen binding region of an immunoglobulin molecule or of eliciting an immune response, e.g., a T cell-mediated immune response by the presentation of the antigen on Major Histocompatibility Antigen (MHC) cellular proteins.
- antigen includes, but is not limited to, antigenic determinants, haptens, and immunogens, which may be peptides, small molecules, carbohydrates, lipids, nucleic acids or combinations thereof.
- the term “antigen” refers to those portions of the antigen (e.g., a peptide fragment) that is a T cell epitope presented by MHC to the T cell receptor.
- the portion of the antigen that binds to the complementarity determining regions of the variable domains of the antibody (light and heavy) the bound portion may be a linear or three-dimensional epitope.
- the term antigen is used on both contexts, that is, the antibody is specific for a protein antigen (CD40), but also carries one or more peptide epitopes for presentation by MHC to T cells.
- the antigens delivered by the vaccine or fusion protein of the present invention are internalized and processed by antigen presenting cells prior to presentation, e.g., by cleavage of one or more portions of the antibody or fusion protein.
- conjugates refers to a protein having one or more targeting domains, e.g., an antibody, and at least one antigen, e.g., a small peptide or a protein.
- conjugates include those produced by chemical methods, such as by chemical coupling, for example, coupling to sulfhydryl groups, and those produced by any other method whereby one or more antibody targeting domains and at least one antigen, are linked, directly or indirectly via linker(s) to a targeting agent.
- An example of a linker is a cohesin-dockerin (coh-doc) pair, a biotin-avidin pair, histidine tags bound by Zn, and the like.
- the term “Antigen Presenting Cells” refers to cells that are capable of activating T cells, and include, but are not limited to, certain macrophages, B cells and dendritic cells.
- DCs Dendritic cells
- DCs refers to any member of a diverse population of morphologically similar cell types found in lymphoid or non-lymphoid tissues. These cells are characterized by their distinctive morphology, high levels of surface MHC-class II expression (Steinman, et al., Ann. Rev. Immunol 9:271 (1991); incorporated herein by reference for its description of such cells). These cells can be isolated from a number of tissue sources, and conveniently, from peripheral blood, as described herein.
- Dendritic cell binding proteins refers to any protein for which receptors are expressed on a dendritic cell. Examples include GM-CSF, IL-1, TNF, IL-4, CD40L, CTLA4, CD28, and FLT-3 ligand.
- the term “vaccine composition” is intended to mean a composition that can be administered to humans or to animals in order to induce an immune system response; this immune system response can result in a production of antibodies or simply in the activation of certain cells, in particular antigen-presenting cells, T lymphocytes and B lymphocytes.
- the vaccine composition can be a composition for prophylactic purposes or for therapeutic purposes, or both.
- the term “antigen” refers to any antigen which can be used in a vaccine, whether it involves a whole microorganism or a subunit, and whatever its nature: peptide, protein, glycoprotein, polysaccharide, glycolipid, lipopeptide, etc.
- the term “antigen” also comprises the polynucleotides, the sequences of which are chosen so as to encode the antigens whose expression by the individuals to which the polynucleotides are administered is desired, in the case of the immunization technique referred to as DNA immunization.
- They may also be a set of antigens, in particular in the case of a multivalent vaccine composition which comprises antigens capable of protecting against several diseases, and which is then generally referred to as a vaccine combination, or in the case of a composition which comprises several different antigens in order to protect against a single disease, as is the case for certain vaccines against whooping cough or the flu, for example.
- antibodies refers to immunoglobulins, whether natural or partially or wholly produced artificially, e.g. recombinant.
- An antibody may be monoclonal or polyclonal.
- the antibody may, in some cases, be a member of one, or a combination immunoglobulin classes, including: IgG, IgM, IgA, IgD, and IgE.
- adjuvant refers to a substance that enhances, augments or potentiates the host's immune response to a vaccine antigen.
- gene is used to refer to a functional protein, polypeptide or peptide-encoding unit. As will be understood by those in the art, this functional term includes both genomic sequences, cDNA sequences, and fragments or combinations thereof, as well as gene products, including those that may have been altered by the hand of man. Purified genes, nucleic acids, protein and the like are used to refer to these entities when identified and separated from at least one contaminating nucleic acid or protein with which it is ordinarily associated.
- nucleic acid or “nucleic acid molecule” refers to polynucleotides, such as deoxyribonucleic acid (DNA) or ribonucleic acid (RNA), oligonucleotides, fragments generated by the polymerase chain reaction (PCR), and fragments generated by any of ligation, scission, endonuclease action, and exonuclease action.
- DNA deoxyribonucleic acid
- RNA ribonucleic acid
- PCR polymerase chain reaction
- Nucleic acid molecules can be composed of monomers that are naturally-occurring nucleotides (such as DNA and RNA), or analogs of naturally-occurring nucleotides (e.g., ⁇ -enantiomeric forms of naturally-occurring nucleotides), or a combination of both.
- Modified nucleotides can have alterations in sugar moieties and/or in pyrimidine or purine base moieties.
- Sugar modifications include, for example, replacement of one or more hydroxyl groups with halogens, alkyl groups, amines, and azido groups, or sugars can be functionalized as ethers or esters.
- the entire sugar moiety can be replaced with sterically and electronically similar structures, such as aza-sugars and carbocyclic sugar analogs.
- modifications in a base moiety include alkylated purines and pyrimidines, acylated purines or pyrimidines, or other well-known heterocyclic substitutes.
- Nucleic acid monomers can be linked by phosphodiester bonds or analogs of such linkages. Analogs of phosphodiester linkages include phosphorothioate, phosphorodithioate, phosphoroselenoate, phosphorodiselenoate, phosphoroanilothioate, phosphoranilidate, phosphoramidate, and the like.
- nucleic acid molecule also includes so-called “peptide nucleic acids,” which comprise naturally-occurring or modified nucleic acid bases attached to a polyamide backbone. Nucleic acids can be either single stranded or double stranded.
- polynucleotide or “nucleic acid” refers to a strand of deoxyribonucleotides or ribonucleotides in either a single- or a double-stranded form (including known analogs of natural nucleotides).
- a double-stranded nucleic acid sequence will include the complementary sequence.
- the polynucleotide sequence may encode variable and/or constant region domains of immunoglobulin that are formed into a fusion protein with one or more linkers.
- multiple cloning sites may be engineered into the locations at the carboxy-terminal end of the heavy and/or light chains of the antibodies to allow for in-frame insertion of peptide for expression between the linkers.
- isolated polynucleotide refers to a polynucleotide of genomic, cDNA, or synthetic origin or some combination thereof.
- the “isolated polynucleotide” (1) is not associated with all or a portion of a polynucleotide in which the “isolated polynucleotides” are found in nature, (2) is operably linked to a polynucleotide which it is not linked to in nature, or (3) does not occur in nature as part of a larger sequence.
- the skilled artisan will recognize that to design and implement a vector can be manipulated at the nucleic acid level by using techniques known in the art, such as those taught in Current Protocols in Molecular Biology, 2007 by John Wiley and Sons, relevant portions incorporated herein by reference.
- the encoding nucleic acid sequences can be inserted using polymerase chain reaction, enzymatic insertion of oligonucleotides or polymerase chain reaction fragments in a vector, which may be an expression vector.
- a multiple cloning site may be engineered in sequence with the antibody sequences.
- polypeptide refers to a polymer of amino acids and does not refer to a specific length of the product; thus, peptides, oligopeptides, and proteins are included within the definition of polypeptide. This term also does not refer to or exclude post expression modifications of the polypeptide, for example, glycosylations, acetylations, phosphorylations and the like. Included within the definition are, for example, polypeptides containing one or more analogs of an amino acid (including, for example, unnatural amino acids, etc.), polypeptides with substituted linkages, as well as other modifications known in the art, both naturally occurring and non-naturally occurring.
- domain or “polypeptide domain” refers to that sequence of a polypeptide that folds into a single globular region in its native conformation, and that may exhibit discrete binding or functional properties.
- amino acid means one of the naturally occurring amino carboxylic acids of which proteins are comprised.
- polypeptide as described herein refers to a polymer of amino acid residues joined by peptide bonds, whether produced naturally or synthetically. Polypeptides of less than about 10 amino acid residues are commonly referred to as “peptides.”
- a “protein” is a macromolecule comprising one or more polypeptide chains. A protein may also comprise non-peptidic components, such as carbohydrate groups. Carbohydrates and other non-peptidic substituents may be added to a protein by the cell in which the protein is produced, and will vary with the type of cell. Proteins are defined herein in terms of their amino acid backbone structures; substituents such as carbohydrate groups are generally not specified, but may be present nonetheless.
- a polypeptide or amino acid sequence “derived from” a designated nucleic acid sequence refers to a polypeptide having an amino acid sequence identical to that of a polypeptide encoded in the sequence, or a portion thereof wherein the portion consists of at least 3-5 amino acids, preferably at least 4-7 amino acids, more preferably at least 8-10 amino acids, and even more preferably at least 11-15 amino acids, or which is immunologically identifiable with a polypeptide encoded in the sequence.
- This terminology also includes a polypeptide expressed from a designated nucleic acid sequence.
- the terms “stable,” “soluble,” or “unstable” when referring to proteins is used to describe a peptide or protein that maintains its three-dimensional structure and/or activity (stable) or that loses immediately or over time its three-dimensional structure and/or activity (unstable).
- the term “insoluble” refers to those proteins that when produced in a cell (e.g., a recombinant protein expressed in a eukaryotic or prokaryotic cell or in vitro) are not soluble in solution absent the use of denaturing conditions or agents (e.g., heat or chemical denaturants, respectively).
- the antibody or fragment thereof and the linkers taught herein have been found to convert antibody fusion proteins with the peptides from insoluble and/or unstable into proteins that are stable and/or soluble.
- Another example of stability versus instability is when the domain of the protein with a stable conformation has a higher melting temperature (Tm) than the unstable domain of the protein when measured in the same solution.
- Tm melting temperature
- a domain is stable compared to another domain when the difference in the Tm is at least about 2° C., more preferably about 4° C., still more preferably about 7° C., yet more preferably about 10° C., even more preferably about 15° C., still more preferably about 20° C., even still more preferably about 25° C., and most preferably about 30° C., when measured in the same solution.
- in vivo refers to being inside the body.
- in vitro used as used in the present application is to be understood as indicating an operation carried out in a non-living system.
- treatment means any administration of a compound of the present invention and includes (1) inhibiting the disease in an animal that is experiencing or displaying the pathology or symptomatology of the diseased (i.e., arresting further development of the pathology and/or symptomatology), or (2) ameliorating the disease in an animal that is experiencing or displaying the pathology or symptomatology of the diseased (i.e., reversing the pathology and/or symptomatology).
- pharmaceutically acceptable carrier refers to any material that when combined with an immunoglobulin (Ig) fusion protein of the present invention allows the Ig to retain biological activity and is generally non-reactive with the subject's immune system.
- examples include, but are not limited to, standard pharmaceutical carriers such as a phosphate buffered saline solution, water, emulsions such as an oil/water emulsion, and various types of wetting agents.
- Certain diluents may be used with the present invention, e.g., for aerosol or parenteral administration, that may be phosphate buffered saline or normal (0.85%) saline.
- Substantial similarity of a peptide refers to similarity of a peptide as reflected in the amino acid sequence of the peptide. Identity of a continuous stretch of least 8 amino acids in an antigenic epitope of the peptide may be sufficient to establish substantial identity that enables cross reactivity. A first peptide and a second peptide are substantially similar in this regard if they have substantial similar antigenic epitopes so that immunization with the first peptide causes an immune response against the second peptide.
- a fragment of an antibody refers to a portion of an antibody, created by protein engineering including proteolysis, or genetic engineering including recombination of nucleic acids; the fragment of an antibody retains specificity for the antigen.
- a fragment of a peptide used as antigen refers to a portion of the peptide that retains its immunogenicity.
- a person of ordinary skill in the art will recognize that a continuous stretch of least 8 amino acids in an antigenic epitope of the peptide may be sufficient I order for a peptide to retain its immunogenicity.
- Recombinant protein or antibody is generated by genetic engineering of nucleic acid encoding the protein or antibody and subsequent translation of the coding sequence by a cell or in a cell-free translation system.
- the present invention describes a vaccine composition for delivering a HCV antigen specifically to DCs for the purpose of invoking an immune response
- a sequence that is representative of most of circulating HCV sequence was selected. Based on sequence variation HCV can be classified into 6 genotypes that differs one to the other on the basis of sequence identity. World wide, 1 genotype is the most represented and also the most difficult to treat with the current IFNa-Ribavirin double therapy. More precisely, 1a genotype is the most represented subsequence in industrial country, and especially in US.
- 1a genotype was used as target sequence to derive a vaccine. It was observed that sequence alignment with all available 1a sequences found in data bases (euHCVdb and Los Alamos National Laboratory) showed less than 70% of sequence identity and the sequence of the HCV antigen would have to be adjusted accordingly.
- a mosaic sequence was derived using the mosaic vaccine tools at www.hiv.lanl.gov/content/sequence/MOSAIC/ interface choosing mosaic sequence cocktail, 1 as cocktail size and 9 as epitope size.
- HCV antigen choice HCV is an RNA enveloped virus. Virions are consisted by 4 structural proteins Core, E1, E2 and p7. As an RNA virus replication is based on viral proteins that need to be expressed after infection. Six non-structural proteins (NS2, NS3, NS4a, NS4b, NS5a, NS5b) are necessary to establish and maintain replication and virus production. HCV targets the liver and can infect barely all the liver with 90% of hepatocytes infected. However, the virus is able to replicate only in 30% of hepatocytes. Infected cells presented at their surface epitopes coming from structural proteins, while infected virus-producing cells presented all HCV antigens, structural and non structural.
- HCV targets a vital organ such as the liver
- therapeutic vaccine need to be very specific in order to avoid complete liver destruction and death of the patients. Indeed, we choose for our therapeutic vaccine antigens that are only found in infected virus producing hepatocytes, and then target antigen will be non-structural proteins.
- NS3 and NS4b are highly immunogenic in chronic infected patients, as efficient as structural core or E1 E2 structural proteins. Therefore the present inventors included NS5b as an antigen too.
- NS3 and NS5b were chosen because of their possible expression as recombinant protein and the availability of their 3D structure.
- a particular embodiment of a vaccine consisted of bifunctional antibodies, which were directed against Dendritic Cells specific receptors and have target antigens fused at C terminus part of heavy chain. This allows unique targeting of DC and more precisely different DC subset that expressed different receptors, DC activation through the targeted receptor, and direct delivery of antigen to DC. In turn antigens are presented more efficiently and APC function is associated to cytokine secretion that orient T cells activation towards different functions.
- Domains were design as the minimal structured regions in between unfolded loops. Length of the loops was varied in order to increase expression of corresponding domains. Pymol software was used to visualize 3d structures. The domains that expressed at the C-terminal of the antibody heavy chain are represented by SEQ ID NOs: 7-14.
- each single domain is separated from the next by flexible linkers, which can be as small as two amino acids (e.g., AS) but can also be longer, e.g., 3, 4, 5, 6, 7 8, 9, 10, 12, 15, 18, 20, 25 or 30 amino acids long.
- FIG. 1 shows the summary of all combine constructs.
- the linkers are found in the assembled sequences, can also be SSVSPTTSVHPTPTSVPPTPTKSSP (SEQ ID NO.: 166); PTSTPADSSTITPTATPTATPTIKG (SEQ ID NO.: 167); TVTPTATATPSAIVTTITPTATTKP (SEQ ID NO.: 168); TNGSITVAATAPTVTPTVNATPSAA (SEQ ID NO.: 169).
- domains were also expressed at the C-terminus part of the light chain, and used in combination with heavy chain fused to multiple HCV domains. This allows the formation of a combine antibody with 3HCV domains fused to the heavy chain and one fused to the light chain.
- FIG. 2 summarizes the construct obtain after fusion of HCV domains at the C-terminus end of light chain.
- Target constructs Anti human DCIR and CD40 V region form H and L chain were cloned in a IgG4 backbone. Spe I cloning site was introduced at the end of the carboxy terminus to clone in frame antigen sequences. HCV antigens from NS3 and NS5b viral proteins represented as subdomains of these proteins were subcloned as a Spe-Not fragment in Nhe-Not linearized pIRES vector.
- HCV-domains were designed based on the 3D-structure of the corresponding full-length proteins (PDB code IJXP for NS3protease, 1HEI for NS3Helicase and 1GX5 for NS5b). 3D-structures were visualized using PyMol software. Domains were designed as the minimal structured regions in between unfolded loops. Length of the loops was varied in order to increase expression of corresponding domains fused to the recombinant antibody. For multiple domains cloning, linkers were introduced between domains using Spe-Not/Nhe-Not strategy. Mosaic sequences, used in this study, corresponding to the maximum HCV-domains expressed as antibody-antigen recombinant fusion proteins are shown below.
- amino acids 95 to 180 from NS3Protease amino acids 132 to 254 from NS3Helicase and a recombinant fusion of amino acids 55 to 80; 172 to 261 and 276 to 362 from NS5bPolymerase. Spe, Nhe and Not introduced cloning sites are underlined.
- SEQ ID NOS: 1-6 show the amino acid sequence of the HCV proteins E1, E2, NS3, and NS5b mosaic sequences. Membrane domains are underlined.
- the full-length protein NS3 contains 631 amino acids and is also presented as being cut in its two enzymatic activities proteins: NS3Protease and NS3Helicase. These may also be produced as recombinant proteins N-terminal fused to either histidine tag or Cohesin tag.
- Envelop protein E1 (192 amino acids) (SEQ ID NO: 1): YQVRNSSGLYHVTNDCPNSSIVYEAADAILHTPGCVPCVREGNASRCWVAVTPTVATRDGKLPTTQ LRRHIDLLVGSATLCSALYVGDLCGSVFLVGQLFTFSPRRHWTTQDCNCSIYPGHITGHRMAWDMM MNWSPTTAVVAQLLRIPQAILDMIAG AHWGVLAGIAYFSMVGNWAKVLVVLLLFAGVDA
- Envelop protein E2 (363 amino acids) (SEQ ID NO: 2): ETHVTGGSAARTTAGLAGLFTPGAKQNIQLINTNGSWHINRTALNCNDSLNTGWVAGLFYYHKFNS SGCPERLASCRPLTDFDQGWGPISYANGSGPDQRPYCWHYPPKPCGIVPAKSVCGPVYCFTPSPVVV V GTTDRSGAPTYNWGENDTDVFVLNNTRPPLGNWFGCTWMNSTGFTKVCGAPPCVIGG
- SEQ ID NOS: 7-14 show the HCV antigen domains E1a, E2, ProtA, Prot B, Hel A, Hel B, HelC, and NS5 bpalm. These were expressed as antibody fusion proteins.
- amino acids TS and AS shown in red
- NS5b palm has been constructed based on NS5b 3D structure (1C2P). It is based on structural domain corresponding of the palm domain of NS5b polymerase and do not correspond to the linear amino acid sequence;
- Envelop protein E1a construct (63 amino acids) (SEQ ID NO: 7): TS VGQLFTFSPRRHWTTQDCNCSIYPGHITGHRMAWDMMMNWSPTTAVVA QLLRIPQAILDMIAG AS
- Envelop protein E2 mosaic sequence (342 amino acids) (SEQ ID NO: 8): TS ETHVTGGSAARTTAGLAGLFTPGAKQNIQLINTNGSWHINRTALNCND SLNTGWVAGLFYYHKFNSSGCPERLASCRPLTDFDQGWGPISYANGSGP DQRPYCWHYPPKPCGIVPAKSVCGPVYCFTPSPVVVGTTDRSGAPTYNW GENDTDVFVLNNTRPPLGNWFGCTWMNSTGFTKVCGAPPCVIGGVGNNT LHCPTDCFRKHPEATYSRCGSGPWITPRCLVDYPYRLWHYPCTINYTI FKIRMYVGGVEHRLEAACNWTRGERCDLEDRDRSELSPLLLSTTQWQVLP CSFTTLPALSTGLIHLHQNIVDVQYLYGVGSSIASWAIKWEYVVLLFLL AS
- SEQ ID NO: 8 the membrane domain has been removed for E2 mosaic sequence.
- NS3Protease has been cut in 2 structural domains based on its 3D structure (IJXP).
- ProtA (SEQ ID NO: 9) TS APITAYAQQTRGLLGCIITSLTGRDKNQVEGEVQIVSTAAQTFLATC INGVCWTVYHGAGTRTI AS Prot B (SEQ ID NO: 10) TS TPCTCGSSDLYLVTRHADVIPVRRRGDSRGSLLSPRPISYLKGSSG GPLLCPAGHAVGIFRAAVCTRGVAKAVDFIPVENLETTMRSPVFTDNS SPPAVPQS AS
- NS3 Helicase enzymatic protein has been cut in 3 structural domains based on NS3 Helicase 3D structure. (1HEI)
- Hel A FQVAHLHAPTGSGKSTKVPAAYAAQGYKVLVLNPSVAATLGFGAYMSK AHGIDPNIRTGVRTITTGSPITYSTYGKFLADGGCSGGAYDIIICDECHS TDATSILGIGTVLDQAETAGARLVVLATATPPGS AS Hel B (SEQ ID NO: 12) VTVPHPNIEEVALSTTGEIPFYGKAIPLEVIKGGRHLIFCHSKKKCDE LAAKLVALGINAVAYYRGLDVSVIPTSGVVVVVATDALMTGFTGDFDSVI DCNTCVTQTVDFSLDPTFTIETTTLPQDAVSRTQRRGRTGRGKPGIYRFV APGER AS Hel C (SEQ ID NO: 13) PSGMFDSSVLCECYDAGCAWYELTPAETTVRLRAYMNTPGLPVCQDHL EFWEGVFTGLTHIDAHFLSQTKQSGENLPYLVAYQATVCARAQAPPPSWD QMWKCLIRLKPT
- HCV sequence and HCV domains constructions Due to the high polymorphism of HCV, a sequence that is representative of most of circulating HCV sequence was selected.
- a mosaic sequence was derived using the mosaic vaccine tools at http://www.hiv.lanl.gov/content/sequence/MOSAIC/ interface choosing mosaic sequence cocktail, 1 as cocktail size and 9 as epitope size.
- NS3Protease domain B was construct using the synthetic gene cloned in pUC57 as template and the following primers: NS3Protease domain B forward: 5′-GAGCTCGGATCCACTAGTACTCCTTGTACCTGCGGCTCATCC-3′ (SEQ ID NO: 148) NS3Protease domain B reverse: 5′-GCCCGCGGCCGCGAATTCTCAGCTAGCACTCTGCGGCACTGCTGGGGG-3′ (SEQ ID NO: 149).
- NS3Helicase domain B was ordered directly as a synthetic gene.
- regions coding for amino acids 172 to 261 and 276 to 362 were amplified using NS5b synthetic gene and the respective following primers: Ns5b Palm (aa 172-261) forward: 5′-TCTAAAGTCAAAGCGAACGCTCTGTACGATGTCGTTTCC-3′ (SEQ ID NO: 150), Ns5b Palm (aa 172-261) reverse: 5′-ACCGGAAGCGCGACAGCGGCCAACGTACAGGCGTTCGGT-3′ (SEQ ID NO: 151), NS5b Palm (aa 276-362) forward: 5′-ACCGAACGCCTGTACGTTGGCCGCTGTCGCGCTTCCGGT-3′ (SEQ ID NO: 152), NS5b Palm (aa 276-362) reverse: 5′-GCGGCCGCGAATTCttAGCTAGCGGTGATCAGCTCCAG-3′ (SEQ ID NO: 153).
- Amplified products were then used as templates together with annealed primers 5′-CAAGCCCAACCCCACTAGTGTGCTGGACTCTCACTACCAGGATGTCCTGAAGGAAGTAAAAG CAGCCGCTTCTAAAGTCAAAGCGAACGCTCTGTACGAT-3′ (SEQ ID NO: 154) and 5′-ATCGTACAGAGCGTTCGCTTTGACTTTAGAAGCGGCTGCTTTTACTTCCTTCAGGACATCCTG GTAGTGAGAGTCCAGCACACTAGTGGGGTTGGGCTTG-3′ (SEQ ID NO: 155) in a final PCR using primers 5′-CAAGCCCAACCCC-3′ (SEQ ID NO: 156) and 5′-GCGGCCGCGAATTCTTAGCTAGCGGTGATCAGCTCCAG-3′ (SEQ ID NO: 157).
- the amplified NS5bPolymerase Palm domain was then cloned in TA vector and sub-cloned in XX vector using Nhe/Not strategy.
- Chimeric Recombinant Antibodies Purification For construct selection, chimeric DC-specific antibodies were transiently expressed in HEK293 cells and purified from the supernatant using Protein A sepharose chromatograhy. DNA from chimeric constructs expressed in HEK293 was then sub-cloned in cetHSpuro vector as AgeI/NotI fragment for expression in CHO cells after stable transfection. Antibodies were purified from supernatants using ProteinA sepharose.
- PBMCs were isolated from heparinized blood on Ficoll density gradients. Monocytes were enriched from the leukapheresis according to cellular density and size by elutriation (ElutraTM, CaridianBCT, Lakewood, Colo.) as per the manufacturer's recommendations. Elutriation Fraction 5 consisted mainly on monocytes (85% on average). Cells were cryopreserved in 10% DMSO 50% FCS 10% culture medium before use. For dendritic cell generation, monocytes were resuspended in serum-free CellGro DC culture medium (CellGenix Technologie Transfer Gmbh, Germany) at a concentration of 1 10 6 cells/ml.
- GMCSF granulocyte-macrophage colony-stimulated factor
- IFN- ⁇ Intro A, IFN- ⁇ -2b, Merck/Schering-Plough, Kenilworth, N.J.
- recombinant antibody vaccines were added at various concentration (5 nM, 0.5 nM or 0.05 nM) or peptide cluster controls (2 mM each peptide) as indicated.
- TLR agonists (polylC, 25 ⁇ g/ml; CL075 1 ⁇ g/ml; or PAM3, 200 ng/ml; all from Invivogen) were added in the culture at the same time as vaccine candidates or peptide controls. DC were pulsed for 16 h before harvest and used in PBMCs co-culture.
- HCV Viral HLA HLA HLA HLA Patient ID Genotype Sex Ethnicity Race status Age Load HLA A* HLA B* Cw* DRB1 DQB1 HCV-VAC-001 1a M Hispanic White non 39 5 877033 0201; 1302; 0202; 0701; 0202; responder (H) 0205 5101 0602 1301 0603 HCV-VAC-002 1a F Non White cured 57 UnDectable 0101; 0818; 0701G; 1101; 0301; Hispanic after (UD) 0301 5108 1502 1301 0603 therapy HCV-VAC-003 1a M Non White cured 59 UD 0301; 0702; 0401; 0101; 0501; Hispanic after 3004 3501 0702 0402 0302 therapy HCV-VAC-004 1a M Non White cured 55 UD 0201; 0702; 0202; 0401; 0302; Hispanic after 3201 1002 0702
- PBMCs from a 24-well plate were washed, distributed in 2 wells in a 96-well plates and rested for 24 h.
- the specificity of the T-cell response elicited by vaccine candidate loaded-DC was assessed by restimulation of PBMCs with peptide clusters (2 ⁇ M each peptide). For each condition, a negative background control was included as a restimulation without peptides.
- Flow cytometry After 1 hour of peptide clusters restimulation, BFA (Sigma) was added for the last 5-6 h to block cytokine secretion. The cells were stained for surface markers with a combination of fluorochrome antibodies (perCP-CD3, PE-CD8, APCH7-CD4), fixed, permeabilized and intracellular-stained with a mixture of APC-IFN ⁇ , FITC-IL2 and PEc ⁇ 7-TNF ⁇ antibodies. For CTL marker function analysis, FITC-CD107a antibody was added with BFA in the culture medium and the following antibodies combination was used for the surface staining.
- fluorochrome antibodies perCP-CD3, PE-CD8, APCH7-CD4
- Luminex Supernatants of DC-PBMCs co-culture were harvested 48 h after PBMCs restimulation with peptide clusters. Cytokine multiplex assays were employed to analyzed IFN- ⁇ , IL-10, and IL-13.
- Vaccine candidate were tested in targeting experiment by co-culture of vaccine with PBMCs from chronic HCV infected patients or chronic HCV infected patients cured after IFNa-Ribavirin therapy.
- the data show that anti-CD40 or anti-DCIR vaccines bearing a HCV NS3HelB antigen can recall a potent memory antigen-specific anti-CD4+ T cell response in vitro using immune cells from HCV infected patients.
- anti-CD40 and anti-DCIR are equally potent vaccines—these DCs express both receptors.
- Anti-DCIR vaccine construct bearing longer HCV antigen coverage induced multifunctional CD4+ antigen specific T cells against multiple HCV epitopes.
- anti-DCIR vaccines bearing a HCV NS3HelBC antigen can recall a potent memory antigen-specific anti-CD4+ T cell response in vitro using immune cells from HCV infected patients. This response is directed against multiples HCV epitopes.
- concentration used for anti-DCIR HCV-NS3HelBC targeting are equally potent in contrast to anti-DCIR HCV-NS3HelB vaccine.
- FIGS. 3A-3B demonstrate the ability of recombinant anti-DCIR and anti-CD40 antibodies fused to HCV NS3HelB specific antigen to elicit the expansion of antigen-specific CD4+ T cells from a chronic HCV infected patient cured after IFNa-Ribavirin therapy.
- Delivering NS3HelB to DCs through CD40 and DCIR induces IFN- ⁇ -TNFa-producing HCV NS3HelB-specific CD4+ T cells.
- FIG. 3A after 2 days, culture supernatants were analyzed for measuring IFN ⁇ and FIG. 3B PBMC cells were stained for measuring the frequency of peptide-specific CD4+ T cells intracellular IFN ⁇ +TNF ⁇ + cells.
- FIGS. 5A to 5C demonstrate the ability of recombinant anti-DCIR and anti-CD40 antibodies fused to HCV NS3HelB, HCV NS3ProtB and HCV NS5BPalm specific antigens to elicit the expansion of antigen-specific CD4+ T cells from a chronic HCV infected patient cured after IFNa-Ribavirin therapy.
- Delivering HCV antigen to DCs through CD40 and DCIR induces IFN ⁇ -TNFa-producing HCV-specific CD4+ T cells, with multi epitopes, specific CD4 T cells.
- PBMC cells from chronic HCV infected patients cured after therapy were co-cultured with autologous IFN ⁇ DCs targeted with anti-CD40-NS3HelB-NS3ProtB-NS5BPalm or anti-DCIR-NS3HelB-NS3ProtB-NS5BPalm for 10 days.
- Cells were stimulated with peptides clusters (10 peptides of 15-mers in each clusters) covering HCV NS3HelB, NS3ProtB or NS5BPalm (2 ⁇ M).
- PBMC cells were stained for measuring the frequency of peptide-specific CD4+ T cells intracellular IFN ⁇ +TNF ⁇ + cells.
- FIGS. 6A to 6C demonstrate that anti-CD40 vaccines bearing HCV NS3HelB NS3ProtB and NS5BPalm antigens can recall a potent memory antigen-specific anti-CD8+ T cell response in vitro using immune cells from HCV infected patients cured after IFN-Ribavirin therapy. This response is directed against multiples HCV epitopes.
- dose effect is observed consistent with clear targeting, of DC with an optimum concentration being at 5 nM for anti-CD40 constructs. At these concentrations IgG4 controls induce significantly no CD8+ T cells responses, consistent with antibody targeting of DC.
- FIGS. 7A to 7D show that all chronic HCV infected patients cured after therapy are able to recall CD4+ T cells memory after co-culture of PBMCs with DC targeted with either anti-CD40 or anti-DCIR or both, construct bearing HCV antigens.
- FIGS. 8A to 8D show that all chronic HCV infected patients in treatment failure are able to recall CD4+ T cells memory after co-culture of PBMCs with DC targeted with either anti-CD40 or anti-DCIR or both, construct bearing HCV antigens. Compare to chronic HCV infected patients cured after therapy, responses are low in chronic HCV infected patients in treatment failure and more antigen dependent since for example HCV-VAC-016 patient has no CD4+ T cells memory cells recalled after DC targeting with NS5bPalm construct.
- CD8+ antigen specific T cells were obtained after TLR agonist introduction in the co-culture of vaccine with PBMC cells from HCV patients.
- FIGS. 9A and 9B show that TLR2 triggering with PAM3 during DC targeting with anti-DCIR vaccines bearing a HCV NS3HelB antigen can recall a potent memory antigen-specific anti-CD4+ and CD8+ T cell response in vitro using immune cells from HCV infected patients.
- Moderated CD8+ response is also induced by TLR3 triggering and no CD4+or CD8+ response is induced after TLR7/8 triggering by CL097 in this study. Similar responses are induced in multiple different chronic HCV infected patients either cured or after therapy or in treatment failure.
- FIGS. 10A-10D show that TLR2 triggering with PAM3 during DC targeting with anti-CD40 or anti-DCIR vaccines bearing a HCV NS3HelB or HCV NS3ProtB antigen can recall a potent memory antigen-specific anti-CD4+ and CD8+ T cell responses in vitro using immune cells from HCV infected patients. Moderated CD8+ response is also induced by TLR3 triggering in some patients, and cyclic glucan can dramatically increase CD8+ T cells responses in one patient.
- FIG. 11 demonstrates the ability of combination of TLR agonists and anti-CD40 HCV-constructs to increase CD4+ T cells responses in chronic HCV infected patients in treatment failure.
- HCV antigens from NS3 Helicase HelB or from NS3 Protease ProtB constructs were delivered to DCs through CD40 or DCIR.
- IFN ⁇ DCs were targeted with anti-CD40-NS3HelB, anti-DCIR-NS3HelB, anti-CD40-NS3ProtB, anti-DCIR-NS3ProtB, in presence of PAM3 (TLR2 agonist; 200 ng/ml), CL095 (TLR7/8 agonist; 5 ⁇ g/ml) or polyIC (TLR3 agonist; 25 ⁇ g/ml) or cyclic glucan (TLR4 agonist, 10 ⁇ g/ml) before co-culture for 10 days with PBMC cells from chronic HCV infected patients cured after therapy.
- PAM3 TLR2 agonist
- CL095 TLR7/8 agonist; 5 ⁇ g/ml
- polyIC TLR3 agonist; 25 ⁇ g/ml
- TLR4 agonist 10 ⁇ g/ml
- PBMC cells were stimulated for 6 h with peptide clusters C7 (10 ⁇ M; 10 peptides of 15-mers) covering HCV NS3 HelB constructs or with peptide clusters C3 (10 ⁇ M; 10 peptides of 15-mers) covering HCV NS3 ProtB constructs.
- PBMC cells were stained for measuring the frequency of peptide-specific CD4+ intracellular IFN ⁇ +TNF ⁇ + cells, an analyzed by FACS.
- FIG. 12A to 12C demonstrate the ability of HCV vaccine candidates to recall CD4+ T cells responses in all chronic HCV infected patients (cured or in treatment failure).
- HCV antigens from NS3 Helicase HelB, NS5b polymerase Palm or from NS3 Protease ProtB constructs were delivered to DCs through CD40 ( FIG. 12B ) or DCIR ( FIG. 12C ).
- IFNaDCs were targeted with anti-CD40-[NS3HelB ⁇ NS3ProtB ⁇ NS5bPalm on heavy chain], anti-DCIR-[NS3HelB ⁇ NS3ProtB ⁇ NS5bPalm on heavy chain] before co-culture for 10 days with PBMC cells from chronic HCV infected patients cured after therapy.
- PBMC cells were stimulated for 6 h with peptide clusters C7-C9 (10 ⁇ M; 10 peptides of 15-mers) covering HCV NS3 HelB domain, with peptide clusters C2-C3-C4 (10 ⁇ M; 10 peptides of 15-mers) covering HCV NS3 ProtB domain or with peptide clusters C2-C4-C5-C6-C7 (10 ⁇ M; 10 peptides of 15-mers) covering HCV NS5b Palm domain.
- PBMC cells were stained for measuring the frequency of peptide-specific CD4+ and CD8+ intracellular IFN ⁇ +TNFa+ cells, and analyzed by FACS. The number of CD4+ IFNg+TNFa+ cells induced vaccine candidate is shown.
- HCV domains on vaccine candidate are equally equivalent to recall CD4+ HCV memory.
- HCV antigen combination where two domains are borne on heavy chain and one on light chain is more efficient than having the 3 borne by heavy chain.
- FIGS. 13A-13E demonstrate the ability of different HCV antigen combination on vaccine candidate for recall CD4+ T cells responses in chronic HCV infected cured patients.
- HCV antigens from NS3 Helicase HelB, NS5b polymerase Palm or from NS3 Protease ProtB combination constructs were delivered to DCs through CD40 or DCIR.
- IFN ⁇ DCs were targeted with second-generation vaccines anti-CD40-[NS3HelB on light chain and NS3ProtB ⁇ NS5bPalm on heavy chain], anti-DCIR-[NS3HelB on light chain and NS3ProtB ⁇ NS5bPalm on heavy chain], or first-generation vaccines anti-CD40-[NS3HelB ⁇ NS3ProtB ⁇ NS5bPalm on heavy chain], anti-DCIR-[NS3HelB ⁇ NS3ProtB ⁇ NS5bPalm on heavy chain] before co-culture for 10 days with PBMC cells from chronic HCV infected patients cured after therapy.
- PBMC cells were stimulated for 6 h with peptide clusters C7 and C9 (10 ⁇ M; 10 peptides of 15-mers) covering HCV NS3 HelB domain (shown in green on the figure), with peptide clusters C2-C3-C4 (10 ⁇ M; 10 peptides of 15-mers) covering HCV NS3 ProtB domain (shown in pink on the figure) or with peptide clusters C2-C4-C5-C6-C7 (10 ⁇ M; 10 peptides of 15-mers) covering HCV NS5b Palm domain (shown in orange in the figure).
- PBMC cells were stained for measuring the frequency of peptide-specific CD4+ intracellular IFN ⁇ +TNF ⁇ + cells, an analyzed by FACS. The number of CD4+IFN ⁇ +TNF ⁇ + cells induced by first-generation vaccine or second-generation vaccine is compared in the last panel.
- FIGS. 14A to 14H demonstrate ability of vaccine candidate to recall CD4+ T cells responses in HCV patients infected with non 1 genotype and HCV-exposed but non infected individual.
- HCV antigens from NS3 Helicase HelB, NS5b polymerase Palm or from NS3 Protease ProtB combination constructs were delivered to DCs through CD40 or DCIR and DC loaded were co-culture for 10 days with PBMC cells from HCV patients infected with non 1 genotype HCV-infected patients (HCV-015, 2b) and HCV-exposed but non infected individual (HCV-029).
- PBMC cells were stimulated for 6 h with peptide clusters C7 and C9 (10 ⁇ M; 10 peptides of 15-mers) covering HCV NS3 HelB domain, with peptide clusters C2-C3-C4 (10 ⁇ M; 10 peptides of 15-mers) covering HCV NS3 ProtB domain or with peptide clusters C2-C4-C5-C6-C7 (10 ⁇ M; 10 peptides of 15-mers) covering HCV NS5b Palm domain.
- PBMC cells were stained for measuring the frequency of peptide-specific CD4+ intracellular IFN ⁇ +TNF ⁇ + cells, an analyzed by FACS.
- FIGS. 15A and 15B show the results from a 10 day expansion culture whereby a dose range of 1st generation anti-DCIR-HCV vaccine (left panels) is compared to second generation anti-DCIR-HCV vaccine (right panels).
- Doses were 0.05 nM, 0.5 nM, and 5 nM and antigen-specific responses were ascertained by stimulation with no peptide (control) or ProtA, HelB, or Palm peptide pools in the presence of Brefeldin, followed by staining for CD3+, CD4+ and intracellular IFNg and TNFa. Samples were analyzed by FACS. Shown are comparable CD4+ HCV antigen-specific responses to the two generations of vaccines.
- FIGS. 16A and 16B show the results from a 10 day expansion culture whereby a dose range of 1st generation anti-CD40-HCV vaccine (left panels) is compared to second generation anti-CD40-HCV vaccine (right panels).
- Doses were 0.05 nM, 0.5 nM, and 5 nM and antigen-specific responses were ascertained by stimulation with no peptide (control) or ProtA, HelB, or Palm peptide pools in the presence of Brefeldin, followed by staining for CD3+, CD4+ and intracellular IFNg and TNFa. Samples were analyzed by FACS. Shown are comparable CD4+ HCV antigen-specific responses to the two generations of vaccines.
- Non-limiting examples different DC-specific antibodies or fragments (both nucleotide and protein sequences) that may be used in the preparation of the HCV vaccine of the present invention are shown herein below, the nomenclature corresponding to the target (e.g., Anti_CLEC — 6 — 9B9.2G12_Heavy Hv-V-hIgG4H-C—is an anti-CLEC-6 antibody from the mouse hybridoma clone “9B9.2G12” (which is the source of the anti-CLEC-6 antibody sequence); heavy chain “H” variable region “v” (which can be humanized) heavy and is an IgG4 constant region isotype.
- the same nomenclature applies to light chains (from mouse Kappa light chains), and the antigens.
- Anti-DCIR_31A6.1F5_H-var2-V-hIgG4H-C (SEQ ID NO: 45): ATGGAATGTAACTGGATACTTCCTTTTATTCTGTCGGTAATTTCAGGGGTCTACTCAGAGGTTCA GCTCCAGCAGTCTGGGACTGTGCTGGCAAGGCCTGGGGCTTCCGTGAATATGTCCTGTAAGGCT GCTGGCTACAGCTTTACCAGTTACTGGGTGTACTGGGTCAAACAGAGGCCTGGACAGGGTCTGG AATGGATTGGTGCTATTTACCCTAAAAATAGTAGAACTAGCTACAACCAGAAGTTCCAGGACAA GGCCACACTGACTGCAGTCACATCCGCCAGCACTGCCTACATGGAGCTCAGCAGCCTGACAAAT GAGGACTCTGCGGTCTATTACTGTACAAGACCTCACTATGATTCGTTTGGTTACTGGGGCCAAG GGACTCTGGTCACTGTCTCTGCAGCCAAAACAAAGGGCCCATGGTCACTGTCTCTGCAGCCAAAACAA
- Anti-DCIR_3C2.2D9_K-LV-hIgGK-C (SEQ ID NO: 48): ATGGAGACAGACACACTCCTGCTATGGGTGCTGCTGCTCGGGGTTCCAGGTTCCACAGGTAACA TTGTGCTGACCCAGTCTCCAACTTCTTTCACTGTGTCTCTTGGGCAGAGGGCCACCATATCCTGC AGAGCCAGTGAAAGTGTTCATAGTTATGGCAATAGTTTTATGCACTGGTACCAGCAGAAACCAG GGCAGCCACCCAAACTCCTCATCTATCTTGCATCCAACGTAGAATCTGGGGTCCCTGCCAGGTT CAGTGGTAGTGGGTCCAGGACAGACTTCACCCTCACCATTGATCCTGTGGAGGCTGATGATGCT GCAACCTATTACTGTCAGCAAAATAGTGAGGATCCGTGGACGTTCGGTGGAGGCACCAAGCTC GAGATCAAACGAACTGTGGCTGCACCATCTGTCTTCATCTTCCCGCCATCTGATGAGCAGTTGA AATCTG
- Anti-DC-SIGNL16E7K-LV-hIgGK-C (SEQ ID NO: 57): ATGGGCATCAAGATGGAGTCACAGATTCAGGCATTTGTATTCGTGTTTCTCTGGTTGTCTGGTGT TGGCGGAGACATTGTGATGACCCAGTCTCACAAATTCATGTCCACATCAGTAGGAGACAGGGTC AGCGTCACCTGCAAGGCCAGTCAGGATGTGACTTCTGCTGTAGCCTGGTATCAACAAAAACCAG GGCAATCCTAAACTACTGATTTACTGGGCATCCACCCGGCACACTGGAGTCCCTGATCGCTT CACAGGCAGTGGATCTGGGACAGATTATACTCTCACCATCAGCAGTGGGCAGGCTGAAGACCT GGCACTTTATTACTGTCACCAATATTATAGCGCTCCTCGGACGTTCGGTGGAGGCACCAAGCTC GAGATCAAACGAACTGTGGCTGCACCATCTGTCTTCATCTTCCCGCCATCTGATGAAATCTGGAACTGCCTG
- Anti-Langerin15B10K-LV-hIgGK-C (SEQ ID NO: 65): ATGAAGTTGCCTGTTAGGCTGTTGGTGCTGATGTTCTGGATTCCTGCTTCCAGCAGTGATGTTGT GATGACCCAAACTCCACTCTCCCTGCCTGTCCGTCTTGGAGATCAAGCCTCCATCTCTTGCAGAT CTAGTCAGAGCCTTGTACACAGTAATGGAAACACCTATTTACATTGGTACCTGCAGAAGCCAGG CCAGTCCAAAGCTCCTGATCTACAAAGTTTCCAACCGATTTTCTGGGGTCCCAGACAGGTTC AGTGGCAGTGGATCAGGGACAAATTTCACACTCAAGATCAGCAGAGTGGAGGCTGAGGATCTG GGACTTTATTTCTGCTCTCAAAGTACACATGTTCCGTACACGTTCGGAGGGGGGACCAAGCTCG AGATCAAACGAACTGTGGCTGCACCATCTGTCTTCATCTTCCCGCCATCTGATGAGCAGTTGAA ATCTGGAACT
- Humanized anti-CD40-HCV vaccine is: hAnti-CD40VK2-LV-hIgGK-C ⁇ hAnti-CD40VH3-LV-hIgG4H-C-Flex-v1-HelB-f1-ProtB-f2-NS5BPalm, wherein the portion of HelB are underlined, the portions of ProtB are bold and the portions of NS5BPalm are italicized.
- the linker sequence (in bold italics) is flanked by the transition sequence “AS” that bracket the linker sequences
- Humanized anti-DCIR-HCV 1 st generation vaccine is: [hAnti-DCIRVK4-LV-hIgGK-C] ⁇ [hAnti-DCIRVH1-LV-hIgG4H-C-Flex-v1-HelB-f1-ProtB-f2-NS5BPalm] wherein the portion of HelB are underlined, the portions of ProtB are bold and the portions of NS5BPalm are italicized.
- the linker sequence (in bold italics) is flanked by the transition sequence “AS” that bracket the linker sequences
- hAnti-DCIRVK4-LV-hIgGK-C (SEQ ID NO: 160) DIVMTQSPDSLAVSLGERATINCRASESIHSYGNSFLHWYQQKPGQPPKLLIYLASNLESGVPSRFSG SGSRTDFTLTISSLQPEDFATYYCQQNNEDPWTFGQGTKLEIKRTVAAPSVFIFPPSDEQLKSGTASV VCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVT HQGLSSPVTKSFNRGEC hAnti-DCIRVH1-LV-hIgG4H-C-Flex-v1-HelB-f1-ProtB-f2-NS5BPalm (SEQ ID NO: 161) QVTLKESGPAIVKPTQTLTLTCSFSGFSLSTSGMGLSWIRQPSGKALEWLAHIYWDDDKRYNPSLKS RLTI
- Humanized anti-CD40-HCV vaccine is: hAnti-CD40VK2-LV-hIgGK-C-ViralHCVhelicasefgtB ⁇ hAnti-CD40VH3-LV-hIgG4H-C-Flex-v1-ProtB-f1-NS5BPalm, wherein the portion of ViralHCVhelicasefgtB are underlined, the portions of ProtB are bold and the portions of NS5BPalm are italicized.
- the linker sequence (in bold italics) is flanked by the transition sequence “AS” that bracket the linker sequences.
- hAnti-CD40VK2-LV-hIgGK-C-ViralHCVhelicasefgtB (SEQ ID NO: 162) DIQMTQSPSSLSASVGDRVTITCSASQGISNYLNWYQQKPGKAVKLLIYYTSILHSGVPSRFSGSGSG TDYTLTISSLQPEDFATYYCQQFNKLPPTFGGGTKLEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLN NFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLS SPVTKSFNRGECAS VTVPHPNIEEVALSTTGEIPFYGKAIPLEVIKGGRHLIFCHSKKKCDELAAKLVA LGINAVAYYRGLDVSVIPTSGVVVVVATDALMTGFTGDFDSVIDCNTCVTQTVDFSLDPTFTIETTTL PQDAVSRTQRRGRTGRGKPGIYRFVAPGER AS
- Humanized anti-DCIR-HCV 2 nd generation vaccine is: [hAnti-DCIRVK4-LV-hIgGK-C-ViralHCVhelicasefgtB] ⁇ [hAnti-D CIRVH1-LV-hIgG4H-C—F lex-v1-ProtB-f1-NS5BPalm], wherein the portion of ViralHCVhelicasefgtB are underlined, the portions of ProtB are bold and the portions of NS5BPalm are italicized.
- the linker sequence (in bold italics) is flanked by the transition sequence “AS” that bracket the linker sequences.
- hAnti-DCIRVK4-LV-hIgGK-C-ViralHCVhelicasefgtB (SEQ ID NO: 164) DIVMTQSPDSLAVSLGERATINCRASESIHSYGNSFLHWYQQKPGQPPKLLIYLASNLESGVPSRFSG SGSRTDFTLTISSLQPEDFATYYCQQNNEDPWTFGQGTKLEIKRTVAAPSVFIFPPSDEQLKSGTASV VCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVT HQGLSSPVTKSFNRGECAS VTVPHPNIEEVALSTTGEIPFYGKAIPLEVIKGGRHLIFCHSKKKCDELA AKLVALGINAVAYYRGLDVSVIPTSGVVVVVATDALMTGFTGDFDSVIDCNTCVTQTVDFSLDPTF TIETTTLPQDAVSRTQRRGRTGRGKPGIYRF
- Linkers can be a small as 2 amino acids, e.g., AS, but can also be longer, e.g., SSVSPTTSVHPTPTSVPPTPTKSSP (SEQ ID NO.: 166); PTSTPADSSTITPTATPTATPTIKG (SEQ ID NO.: 167); TVTPTATATPSAIVTTITPTATTKP (SEQ ID NO.: 168); TNGSITVAATAPTVTPTVNATPSAA (SEQ ID NO.: 169) or QTPTNTISVTPTNNSTPTNNSNPKPNP (SEQ ID NO:170).
- SSVSPTTSVHPTPTSVPPTPTKSSP SEQ ID NO.: 166
- PTSTPADSSTITPTATPTATPTIKG SEQ ID NO.: 167
- TVTPTATATPSAIVTTITPTATTKP SEQ ID NO.: 168
- TNGSITVAATAPTVTPTVNATPSAA SEQ ID NO.: 169
- compositions of the invention can be used to achieve methods of the invention.
- the words “comprising” (and any form of comprising, such as “comprise” and “comprises”), “having” (and any form of having, such as “have” and “has”), “including” (and any form of including, such as “includes” and “include”) or “containing” (and any form of containing, such as “contains” and “contain”) are inclusive or open-ended and do not exclude additional, unrecited elements or method steps.
- A, B, C, or combinations thereof refers to all permutations and combinations of the listed items preceding the term.
- “A, B, C, or combinations thereof” is intended to include at least one of: A, B, C, AB, AC, BC, or ABC, and if order is important in a particular context, also BA, CA, CB, CBA, BCA, ACB, BAC, or CAB.
- expressly included are combinations that contain repeats of one or more item or term, such as BB, AAA, MB, BBC, AAABCCCC, CBBAAA, CABABB, and so forth.
- BB BB
- AAA AAA
- MB BBC
- AAABCCCCCC CBBAAA
- CABABB CABABB
- compositions and/or methods disclosed and claimed herein can be made and executed without undue experimentation in light of the present disclosure. While the compositions and methods of this invention have been described in terms of preferred embodiments, it will be apparent to those of skill in the art that variations may be applied to the compositions and/or methods and in the steps or in the sequence of steps of the method described herein without departing from the concept, spirit and scope of the invention. All such similar substitutes and modifications apparent to those skilled in the art are deemed to be within the spirit, scope and concept of the invention as defined by the appended claims.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Immunology (AREA)
- General Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Virology (AREA)
- Genetics & Genomics (AREA)
- Engineering & Computer Science (AREA)
- Biochemistry (AREA)
- Molecular Biology (AREA)
- Pharmacology & Pharmacy (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Biomedical Technology (AREA)
- Microbiology (AREA)
- Biophysics (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biotechnology (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Mycology (AREA)
- Epidemiology (AREA)
- Communicable Diseases (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Hematology (AREA)
- Cell Biology (AREA)
- General Engineering & Computer Science (AREA)
- Gastroenterology & Hepatology (AREA)
- Oncology (AREA)
- Peptides Or Proteins (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
Abstract
Description
- This application claims priority to U.S. Provisional Application Ser. No. 61/467,840, filed Mar. 25, 2011, and U.S. Provisional Application Ser. No. 61/529,700, filed Aug. 31, 2011, the entire contents of each of which are incorporated herein by reference.
- The present invention relates in general to the field of immunology, and more particularly, to hepatitis C virus (HCV) immunization, vaccines, and targeting of the HCV peptides to human dendritic cells. The application also describes a bi-functional antibody fused to a HCV target antigen(s) that is directed against a dendritic cell (DC)-specific receptor.
- None.
- The instant application contains a Sequence Listing which has been submitted in ASCII format via EFS-Web and is hereby incorporated by reference in its entirety. Said ASCII copy, created on Mar. 15, 2012, is named BHCS1118.txt and is 388,419 bytes in size.
- Without limiting the scope of the application, its background is described in connection with immunostimulatory methods and compositions, including vaccines, and increased effectiveness in antigen presentation of HCV peptides in relation to HCV immunization and vaccines.
- U.S. Patent Application Publication No. 2009/0238822 (Rajan et al. 2009) relates to chimeric antigens for targeting and activating antigen presenting cells to elicit cellular and humoral immune responses. The Rajan invention describes compositions and methods that contain or use one or more chimeric antigens that contain one or more pre-selected HCV antigen(s), and an immunoglobulin fragment. The invention further discloses chimeric antigens, comprising an HCV antigen and a Fc fragment of an immunoglobulin for eliciting an immune response against said antigen. The immune response is said to be enhanced upon presenting the host immune system with an immune response domain (HCV antigen from HCV core, envelope, or non-structural protein fragments) and a target-binding domain (an Fc fragment).
- U.S. Patent Application Publication No. 2008/0241170 (Zurawski et al. 2008) discloses compositions and methods for making and using vaccine that specifically target (deliver) antigens to antigen-presenting cells for the purpose of eliciting potent and broad immune responses directed against the antigen. The purpose is primarily to evoke protective or therapeutic immune responses against the agent (pathogen or cancer) from which the antigen was derived.
- U.S. Patent Application Publication 2010/0239575 (Banchereau et al. 2010) refers to compositions and methods for the expression, secretion, and use of novel compositions for use as, e.g., vaccines and antigen delivery vectors, to delivery antigens to antigen presenting cells. In one embodiment, the vector is an anti-CD40 antibody, or fragments thereof, and one or more antigenic peptides linked to the anti-CD40 antibody or fragments thereof, including humanized antibodies.
- The present invention describes immunostimulatory compositions, vaccines, HCV vaccines, HCV antigen presenting dendritic cells, methods for increasing effectiveness of HCV antigen presentation by an antigen presenting cell, methods for increasing effectiveness of HCV antigen presentation by an antigen presenting cell, methods for increasing effectiveness of antigen presentation by an antigen presenting cell, methods for a treatment, a prophylaxis or a combination thereof against hepatitis C in a human subject, methods of providing immunostimulation by activation of one or more dendritic cells, methods to treat or prevent hepatitis C in a subject, and methods for generating a HCV presenting dendritic cell. The present invention further describes virus antigens, e.g., proteins and peptides corresponding to HCV proteins or fragments thereof, fused to heavy and/or light chain of antibodies, or fragments thereof specific for dendritic cells (DCs). The vaccine composition as described herein delivers HCV antigen specifically to DCs for the purpose of invoking an immune response. The vaccine composition may also promote efficient recall memory in hepatitis C patients.
- In one embodiment the instant invention discloses an immunostimulatory composition for generating an immune response for a prophylaxis, a therapy, or any combination thereof against a Hepatitis C infection in a human or animal subject comprising: one or more antibodies or fragments thereof specific for a dendritic cell (DC) and one or more HCV antigens attached to the one or more antibodies or fragments thereof. In one aspect the composition disclosed hereinabove further comprises at least one Toll-Like Receptor (TLR) agonist selected from the group consisting of TLR1, TLR2, TLR3, TLR4, TLR5, TLR6, TLR7, and TLR8 agonists. In another aspect the composition further comprises an optional pharmaceutically acceptable carrier that is effective, in combination, to produce the immune response for prophylaxis, for therapy, or any combination thereof in the human or animal subject in need of immunostimulation. In yet another aspect the DC-specific antibody or fragment is specific for a DC specific receptor, wherein the DC-specific antibody or fragment is selected from an antibody that specifically binds to MHC class I, MHC class II, CD1, CD2, CD3, CD4, CD8, CD11b, CD14, CD15, CD16, CD19, CD20, CD29, CD31, CD40, CD43, CD44, CD45, CD54, CD56, CD57, CD58, CD83, CD86, CMRF-44, CMRF-56, DCIR, DC-ASPGR, CLEC-6, CD40, BDCA-2, MARCO, DEC-205, mannose receptor, Langerin, DECTIN-1, B7-1, B7-2, IFN-γ receptor and IL-2 receptor, ICAM-1, Fcγ receptor, LOX-1, and ASPGR.
- In the composition of the instant invention the HCV antigens comprises a peptide sequence derived from a HCV 1a genotype protein or a fragment thereof and the HCV antigens are selected from the group consisting of protein E1, envelope protein E2, non-structural protein NS3, non-structural protein NS4b, non-structural protein NS5b, and a fragment thereof. The one or more HCV antigens are selected from the group consisting of SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5, SEQ ID NO: 6, SEQ ID NO: 7, and a fragment thereof and from the group consisting of SEQ ID NO: 8, SEQ ID NO: 9, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, E1b, and a fragment thereof. In one aspect of the composition of the instant invention the composition comprises a recombinant antibody that comprises a fusion protein and the one or more HCV antigen are at a C-terminal position relative to the one or more antibody or fragment thereof within a fusion protein. In another aspect the composition comprises a recombinant antibody, and the one or more HCV antigens are fused to a C-terminus of a heavy chain of the antibody. In yet another aspect the composition comprises a recombinant antibody, and the one or more HCV antigens are fused to a C-terminus of a light chain of the one or more antibody or fragment thereof specific for a DC.
- The one or more HCV antigens are selected from the group consisting of SEQ ID NO: 12-linker A-SEQ ID NO: 13, SEQ ID NO: 12-linker A-SEQ ID NO: 11, SEQ ID NO: 12-linker B-SEQ ID NO: 14, SEQ ID NO: 14-linker B-SEQ ID NO: 12, SEQ ID NO: 12-linker B-SEQ ID NO: 10, SEQ ID NO: 10-linker B-SEQ ID NO: 12, SEQ ID NO: 9-linker
- B-SEQ ID NO: 10, SEQ ID NO: 10-linker B-SEQ ID NO: 9, SEQ ID NO: 10-linker B-SEQ ID NO: 14, SEQ ID NO: 14-linker B-SEQ ID NO: 10, SEQ ID NO: 9-linker B-SEQ ID NO: 12, SEQ ID NO: 12-linker B-SEQ ID NO: 9, SEQ ID NO: 8-linker B-E1b. SEQ ID NO: 12-linkerB-SEQ ID NO: 10-linker C-SEQ ID NO: 14, SEQ ID NO: 12-linker B-SEQ ID NO: 14-linker C-SEQ ID NO: 10, SEQ ID NO: 10-linker B-SEQ ID NO: 12-linker C-SEQ ID NO: 14, SEQ ID NO: 10-linker B-SEQ ID NO: 14-linker C-SEQ ID NO: 12, SEQ ID NO: 14-linker B-SEQ ID NO: 12-linker C-SEQ ID NO: 10, SEQ ID NO: 14-linker B-SEQ ID NO: 10-linker C-SEQ ID NO: 12, and SEQ ID NO: 12-linker B-SEQ ID NO: 10-linker C-SEQ ID NO: 14-linker D-SEQ ID NO: 8. In another aspect the one or more HCV antigens are attached to a C-terminus of a light chain of the recombinant antibody and selected from a group consisting of: SEQ ID NO: 9; SEQ ID NO: 11, and E1b. In yet another aspect the one or more HCV antigens are selected from the group consisting of SEQ ID NO: 9 fused to the C-terminus of a light chain and SEQ ID NO: 10-linker B-SEQ ID NO: 12-linker C-SEQ ID NO: 14 fused to the C-terminus of the heavy chain of the antibody. In a related aspect the one or more HCV antigen are chemically coupled to the one or more antibodies or fragments thereof or are attached to the one or more antibodies or fragments thereof via an affinity association. In a specific aspect the DC-specific antibody is humanized. In another aspect the composition is optimized to be administered to the human or animal subject by an oral route, a nasal route, topically, or as an injection.
- Another embodiment of the present invention discloses a vaccine comprising: one or more antibodies or fragments thereof specific for a dendritic cell (DC); and one or more HCV antigens attached to the one or more antibodies or fragments thereof. The vaccine described herein further comprises at least one Toll-Like Receptor (TLR) agonist selected from the group consisting of TLR1, TLR2, TLR3, TLR4, TLR5, TLR6, TLR7, and TLR8 agonists and an optional pharmaceutically acceptable carrier or an adjuvant that is effective, in combination, to produce an immune response for prophylaxis, for therapy, or any combination thereof in the human or animal subject in need of immunostimulation. In one aspect of the vaccine the DC-specific antibody or fragment is specific for a dendritic cell specific receptor. In another aspect the HCV antigen comprises a peptide sequence derived from a HCV 1a genotype protein or a fragment thereof, wherein the HCV antigen is selected from the group consisting of protein E1, envelope protein E2, non-structural protein NS3, non-structural protein NS4b, non-structural protein NS5b, and a fragment thereof. In other related aspects the DC-specific antibody is humanized and the composition is optimized to be administered to the human or animal subject by an oral route, a nasal route, topically, or as an injection.
- In yet another embodiment the instant invention discloses a Hepatitis C vaccine (HCV) comprising a fusion protein comprising: (i) one or more antibodies or fragments thereof specific for a dendritic cell (DC), (ii) one or more HCV antigens located C-terminal of the antibodies or fragments thereof, (iii) at least one Toll-Like Receptor (TLR) agonist which is selected from the group consisting of TLR1, TLR2, TLR3, TLR4, TLR5, TLR6, TLR7, and TLR8 agonists, and (iv) one or more optional pharmaceutically acceptable carriers and adjuvants, wherein the vaccine is effective to produce an immune response, for a prophylaxis, a therapy, or any combination thereof against hepatitis C in a human or an animal subject in need thereof. In one aspect the vaccine comprises one or more optional agents selected from the group consisting of an agonistic anti-CD40 antibody, an agonistic anti-CD40 antibody fragment, a CD40 ligand (CD40L) polypeptide, a CD40L polypeptide fragment, anti-4-1BB antibody, an anti-4-1BB antibody fragment, 4-1BB ligand polypeptide, a 4-1BB ligand polypeptide fragment, IFN-γ, TNF-α,
type 1 cytokines,type 2 cytokines or combinations and modifications thereof. - The instant invention in one embodiment discloses a method for increasing effectiveness of Hepatitis C virus (HCV) antigen presentation by an antigen presenting cell (APC) comprising the steps of: (i) providing an antibody conjugate comprising a dendritic cell (DC) specific antibody or a fragment thereof and one or more native or engineered HCV antigenic peptides, (ii) providing one or more APCs; and (iii) contacting the APC with the conjugate, wherein the antibody-antigen complex is processed and presented for T cell recognition. In a specific aspect of the method the antigen presenting cell comprises a dendritic cell (DC).
- In another embodiment the instant invention provides a method for increasing effectiveness of antigen presentation by an antigen presenting cell (APC) comprising the steps of: i) isolating and purifying one or more dendritic cell (DC)-specific antibody or a fragment thereof, ii) providing one or more HCV antigens or antigenic peptides, iii) loading or chemically coupling the one or more HCV antigens or antigenic peptides to the DC-specific antibody to form an antibody-antigen conjugate, and iv) contacting the antigen presenting cell with the conjugate, wherein the antibody-antigen complex is processed and presented for T cell recognition.
- The method as described hereinabove further comprises adding at least one Toll-Like Receptor (TLR) agonist which is selected from the group consisting of TLR1, TLR2, TLR3, TLR4, TLR5, TLR6, TLR7, and TLR8 agonists and one or more optional steps comprising i) adding one or more optional agents selected from the group consisting of an agonistic anti-CD40 antibody, an agonistic anti-CD40 antibody fragment, a CD40 ligand (CD40L) polypeptide, a CD40L polypeptide fragment, anti-4-1BB antibody, an anti-4-1BB antibody fragment, 4-1BB ligand polypeptide, a 4-1BB ligand polypeptide fragment, IFN-γ, TNF-α,
type 1 cytokines,type 2 cytokines or combinations and modifications thereof to the antibody-antigen conjugate and the TLR agonist prior to contacting the antigen presenting cells, ii) measuring a level of one or more agents selected from the group consisting of IFN-γ, TNF-α, IL-12p40, IL-4, IL-5, and IL-13, wherein a change in the level of the one or more agents is indicative of the increase in the effectiveness antigen presentation by the antigen presenting cell, and iii) adding one or more optional agents selected from the group consisting of an agonistic anti-CD40 antibody, an agonistic anti-CD40 antibody fragment, a CD40 ligand (CD40L) polypeptide, a CD40L polypeptide fragment, anti-4-1BB antibody, an anti-4-1BB antibody fragment, 4-1BB ligand polypeptide, a 4-1BB ligand polypeptide fragment, IFN-γ, TNF-α,type 1 cytokines,type 2 cytokines or combinations and modifications thereof. - In yet another embodiment the instant invention provides method for a treatment, a prophylaxis or a combination thereof against hepatitis C in a human subject comprising the steps of: identifying the human subject in need of the treatment, the prophylaxis, or a combination thereof against the hepatisti and administering a vaccine composition comprising one or more antibodies or fragments thereof specific for a dendritic cell (DC) and one or more HCV antigens attached to the one or more antibodies or fragments thereof. In one aspect of the method the vaccine composition further comprises at least one Toll-Like Receptor (TLR) agonist which is selected from the group consisting of TLR1, TLR2, TLR3, TLR4, TLR5, TLR6, TLR7, and TLR8 agonists, and one or more optional pharmaceutically acceptable carriers and adjuvants, wherein the conjugate and agonist are each comprised in an amount such that, in combination with the other, are effective to produce an immune response, for the prophylaxis, the therapy or any combination thereof against the influenza in the human subject. In another aspect the vaccine composition further comprises one or more optional agents selected from the group consisting of an agonistic anti-CD40 antibody, an agonistic anti-CD40 antibody fragment, a CD40 ligand (CD40L) polypeptide, a CD40L polypeptide fragment, anti-4-1BB antibody, an anti-4-1BB antibody fragment, 4-1BB ligand polypeptide, a 4-1BB ligand polypeptide fragment, IFN-γ, TNF-α,
type 1 cytokines,type 2 cytokines or combinations and modifications thereof. In yet another aspect the vaccine is administered to the human subject by an oral route, a nasal route, topically or as an injection. - In another aspect the one or more antibodies or fragments thereof specific for a dendritic cell comprises antibodies specifically binds to MHC class I, MHC class II, CD1, CD2, CD3, CD4, CD8, CD11b, CD14, CD15, CD16, CD19, CD20, CD29, CD31, CD40, CD43, CD44, CD45, CD54, CD56, CD57, CD58, CD83, CD86, CMRF-44, CMRF-56, DCIR, DC-ASPGR, CLEC-6, CD40, BDCA-2, MARCO, DEC-205, mannose receptor, Langerin, DECTIN-1, B7-1, B7-2, IFN-γ receptor and IL-2 receptor, ICAM-1, Fcγ receptor, LOX-1, or ASPGR. In yet another aspect the HCV antigen is selected from the group consisting of protein E1, envelope protein E2, non-structural protein NS3, non-structural protein NS4b, non-structural protein NS5b, and a fragment thereof, from the group consisting of SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5, SEQ ID NO: 6, SEQ ID NO: 7, and a fragment thereof, or from the group consisting of SEQ ID NO: 8, SEQ ID NO: 9, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, E1b, and a fragment thereof.
- A method of providing immunostimulation by activation of one or more dendritic cells (DCs) to a human subject for a prophylaxis, a therapy or a combination thereof against HCV is described in one embodiment of the present invention. The method comprises the steps of: a) identifying the human subject in need of immunostimulation for the prophylaxis, the therapy or a combination thereof against HCV, b) isolating one or more DCs from the human subject, c) exposing the isolated DCs to activating amounts of a composition or a vaccine comprising an anti-dendritic cell immunoreceptor (DCIR) monoclonal antibody or fragments thereof attached to one or more HCV antigens, and d) reintroducing the activated DC complex into the human subject.
- The method described above further comprises the steps of contacting the one or more DCs with at least one Toll-Like Receptor (TLR) agonist which is selected from the group consisting of TLR1, TLR2, TLR3, TLR4, TLR5, TLR6, TLR7, and TLR8 agonists and a pharmaceutically acceptable carrier to form an activated DC complex and the step of adding one or more optional agents selected from the group consisting of an agonistic anti-CD40 antibody, an agonistic anti-CD40 antibody fragment, a CD40 ligand (CD40L) polypeptide, a CD40L polypeptide fragment, anti-4-1BB antibody, an anti-4-1BB antibody fragment, 4-1BB ligand polypeptide, a 4-1BB ligand polypeptide fragment, IFN-γ, TNF-α,
type 1 cytokines,type 2 cytokines or combinations and modifications thereof to the conjugate and the TLR agonist prior to exposing the DCs. The method disclosed hereinabove further comprises the optional step of measuring a level of one or more agents selected from the group consisting of IFN-γ, TNF-α, IL-12p40, IL-4, IL-5, and IL-13, wherein a change in the level of the one or more agents is indicative of the immunostimulation. - The present invention also discloses a method to treat or prevent Hepatitis C in a subject comprising the step of administering to the subject a fusion protein comprising an antibody or fragment thereof specific for a dendritic cell (DC) and a Hepatitis C virus antigen or antigenic peptide fused to the antibody or fragment thereof. A Hepatitis C virus antigen presenting dendritic cell (DC) is also disclosed in one embodiment of the present invention. The HCV antigen presenting DC further comprises one or more isolated dendritic cells (DCs) in contact with a fusion protein comprising an antibody or fragment thereof specific for the DC, the fusion protein further comprising a HCV peptide.
- The present invention describes one or more vaccines against HCV comprising one or more antibodies or fragments thereof specific for a dendritic cell (DC) and one or more HCV antigens or antigenic domains attached to the one or more antibodies or fragments thereof. The vaccine has a general structure given by: H-w, H-w-x, H-w-x-y, or H-w-x-y-z, wherein H represents a heavy chain of an antibody or a fragment thereof specific for a DC, w, x, y, and z represent one or more HCV antigens or domains selected from the group consisting of protein E1, envelope protein E2, non-structural protein NS3, non-structural protein NS4b, non-structural protein NS5b, or any combinations thereof. In one aspect w comprises the HCV antigenic domains selected from the group consisting of ProtA, ProtB, HelB, Palm, E1b, and E2. In another aspect x comprises the HCV antigenic domains selected from the group consisting of HelC, HelA, Palm, ProtA, ProtB, and E1b. In yet another aspect comprises the HCV antigenic domains selected from the group consisting of Palm, ProtB, and Protb. In another aspect z comprises HCV antigenic domains selected from E2, ProtA, and HelB. In a related aspect the one or more HCV antigens or antigenic domains are linked or attached to one another by one or more flexible linkers.
- Another embodiment disclosed herein relates to a vaccine comprising one or more antibodies or fragments thereof specific for a dendritic cell (DC) and one or more HCV antigens or antigenic domains attached to the one or more antibodies or fragments thereof, wherein the vaccine has a general structure given by L-w-x-y-z, wherein L represents a light chain of an antibody or a fragment thereof specific for a DC, w, x, y, and z represent one or more HCV antigens or domains selected from the group consisting of protein E1, envelope protein E2, non-structural protein NS3, non-structural protein NS4b, non-structural protein NS5b, or any combinations thereof.
- In yet another embodiment the present invention discloses a vaccine comprising one or more antibodies or fragments thereof specific for a dendritic cell (DC) and one or more HCV antigens or antigenic domains attached to the one or more antibodies or fragments thereof, wherein the vaccine has a general structure given by:
- Wherein H represents a heavy chain of an antibody or a fragment thereof specific for a DC, L represents a light chain of an antibody or a fragment thereof specific for the DC, w, x, y, and z represent one or more HCV antigens or domains selected from the group consisting of protein E1, envelope protein E2, non-structural protein NS3, non-structural protein NS4b, non-structural protein NS5b, or any combinations thereof.
- Finally, the present invention discloses a method for generating a Hepatitis C virus (HCV) presenting dendritic cells (DCs) in a human subject comprising the steps of: providing one or more DCs and incubating the dendritic cells with a fusion protein, wherein the fusion protein comprises an antibody or fragment thereof specific for a dendritic cell and a HCV antigen fused to the antibody or fragment thereof. The method disclosed herein further comprises the step of administering to the subject an effective amount of IFNA, Ribavirin, or a combination thereof.
- For a more complete understanding of the features and advantages of the present invention, reference is now made to the detailed description of the invention along with the accompanying figures and in which:
-
FIG. 1 provides a summary of HCV antigen combined constructs expressed at the C-terminus end of antibody heavy chain. Each HCV domains, as defined inFIG. 2 , is represented as color rectangle. Flexible linkers are shown as curved lines. Each color represents a different linker. Domains are fused to the carboxyl terminus end of antibody heavy chain. “Expressed” means that domains fused to the carboxyl terminus end of antibody heavy chain are expressed as fusion antibody after co-transfection with antibody light chain in 293F cells. All possible combination of HCV domains have been constructed, andFIG. 3 shows only those that were expressed as soluble fusion proteins in 293F cells and in CHO cells and purified as recombinant antibodies; -
FIG. 2 provides a summary of HCV antigen combined constructs expressed at the C-terminus end of antibody light chain. All possible combinations of HCV domains have been constructed, and the figure shows only those that are expressed as soluble fusion proteins in 293F cells and in CHO cells and purified as recombinant antibodies. The same color code as inFIG. 1 is used; -
FIGS. 3A-3B demonstrate the ability of recombinant anti-DCIR and anti-CD40 antibodies fused to HCV NS3HelB specific antigen to elicit the expansion of antigen-specific CD4+ T cells from a chronic HCV infected patient cured after IFNa-Ribavirin therapy. Delivering NS3HelB to DCs through CD40 and DCIR induces IFN-γ-TNFa-producing HCV NS3HelB-specific CD4+ T cells. PBMC cells from chronic HCV infected patients; either cured after therapy or in treatment failure, were co-cultured with IFNDCs targeted with anti-CD40-NS3HelB or anti-DCIR-NS3HelB for 10 days. Cells were stimulated with peptides clusters (10 peptides of 15-mers in each clusters) covering HCV NS3 HelB (10 μM):FIG. 3A after 2 days, culture supernatants were analyzed for measuring IFNγ andFIG. 3B PBMC cells were stained for measuring the frequency of peptide-specific CD4+ T cells intracellular IFNγ+TNFα+ cells; -
FIG. 4 demonstrates the ability of long HCV antigen bearing vaccine constructs to induce multi epitope CD4+ T cells. HCV antigens from NS3 Helicase HelBC construct were delivered to DCs through CD40 or DCIR. PBMC cells from chronic HCV infected patients; either cured after therapy or in treatment failure, were co-cultured with IFNDCs targeted with anti-CD40-NS3HelB, anti-CD40-NS3HelBC or anti-DCIR-NS3HelB, anti-DCIR-NS3HelBC for 10 days. Cells were stimulated for 6 h with peptides clusters (10 μM; 10 peptides of 15-mers in each clusters) covering HCV NS3 HelB or HelBC constructs. PBMC cells were stained for measuring the frequency of peptide-specific CD4+ T cells intracellular IFNγ+TNFα+ cells, an analyzed by FACS. Number of double positive CD4+ T cells induced after each peptide cluster stimulation were plotted for each vaccine targeting agent; -
FIGS. 5A to 5C demonstrate the ability of recombinant anti-DCIR and anti-CD40 antibodies fused to HCV NS3HelB, HCV NS3ProtB and HCV NS5BPalm specific antigens to elicit the expansion of antigen-specific CD4+ T cells from a chronic HCV infected patient cured after IFNa-Ribavirin therapy. Delivering HCV antigen to DCs through CD40 and DCIR induces IFNγ-TNFa-producing HCV-specific CD4+ T cells, with multi epitopes, specific CD4 T cells. PBMC cells from chronic HCV infected patients cured after therapy were co-cultured with autologous IFNαDCs targeted with anti-CD40-NS3HelB-NS3ProtB-NS5BPalm or anti-DCIR-NS3HelB-NS3ProtB-NS5BPalm for 10 days. Cells were stimulated with peptides clusters (10 peptides of 15-mers in each clusters) covering HCV NS3HelB, NS3ProtB or NS5BPalm (2 μM). PBMC cells were stained for measuring the frequency of peptide-specific CD4+ T cells intracellular IFNγ+TNFα+ cells; -
FIGS. 6A to 6C demonstrate the ability of recombinant anti-DCIR and anti-CD40 antibodies fused to HCV NS3HelB, HCV NS3ProtB and HCV NS5BPalm specific antigens to elicit the expansion of antigen-specific CD8+ T cells from a chronic HCV infected patient cured after IFNa-Ribavirin therapy. Delivering HCV antigen to DCs through CD40 and DCIR induces IFNγ-TNFa-producing HCV-specific CD4+ T cells, with multi epitopes, specific CD4 T cells. PBMC cells from chronic HCV infected patients cured after therapy were co-cultured with autologous IFNαDCs targeted with anti-CD40-NS3HelB-NS3ProtB-NS5BPalm or anti-DCIR-NS3HelB-NS3ProtB-NS5BPalm for 10 days. Cells were stimulated with peptides clusters (10 peptides of 15-mers in each clusters) covering HCV NS3HelB, NS3ProtB or NS5BPalm (2 μM). PBMC cells were stained for measuring the frequency of peptide-specific CD8+ T cells intracellular IFNγ+TNFα+ cells; -
FIGS. 7A to 7D demonstrate the ability of recombinant anti-DCIR and anti-CD40 antibodies fused to HCV NS3HelB, HCV NS3ProtB or HCV NS5BPalm specific antigens to elicit the expansion of antigen-specific CD4+ T cells from chronic HCV infected patients cured after IFNa-Ribavirin therapy. HCV antigens from were delivered to DCs through CD40 or DCIR. IFNαDCs were targeted with anti-CD40-NS3HelB; anti-CD40-NS3ProtB; anti-CD40NS5bPalm or anti-DCIR-NS3HelB; anti-DCIR-NS3ProtB; anti-DCIRNS5bPalm and co-cultured for 10 days with PBMC cells from 3 chronic HCV infected patients cured after therapy. Cells were stimulated for 6 h with peptide clusters C7 and C9 (10 μM; 10 peptides of 15-mers) covering HCV NS3 HelB constructs; with peptide clusters C2 and C3 covering HCV NS3 ProtB constructs or peptide cluster C2 C4 C5 C6 C7 covering NS5bPalm construct. PBMC cells were stained for measuring the frequency of peptide-specific CD4+ intracellular IFNγ+TNFα+ cells, an analyzed by FACS. The left panel represent IFN-γ amount secreted after 10 days culture of PBMCs with peptide cluster covering HCVNS3 and HCVNS5b entire proteins; -
FIGS. 8A to 8D demonstrates the ability of recombinant anti-DCIR and anti-CD40 antibodies fused to HCV NS3HelB, HCV NS3ProtB or HCV NS5BPalm specific antigens to elicit the expansion of antigen-specific CD4+ T cells from chronic HCV infected patients in treatment failure. HCV antigens from were delivered to DCs through CD40 or DCIR. IFNαDCs were targeted with anti-CD40-NS3HelB; anti-CD40-NS3ProtB or anti-DCIR-NS3HelB; anti-CD40NS5bPalm or anti-DCIR-NS3HelB; anti-DCIR-NS3ProtB; anti-DCIRNS5bPalm and co-cultured for 10 days with PBMC cells from 3 chronic HCV infected patients in treatment failure (HCV+). Cells were stimulated for 6 h with peptide clusters C7 and C9 (10 μM; 10 peptides of 15-mers) covering HCV NS3 HelB constructs; with peptide clusters C2 and C3 covering HCV NS3 ProtB constructs or peptide cluster C2 C4 C5 C6 C7 covering NS5bPalm construct. PBMC cells were stained for measuring the frequency of peptide-specific CD4+ intracellular IFNγ+TNFα+ cells, an analyzed by FACS. The left panel represent IFN-γ amount secreted after 10 days culture of PBMCs with peptide cluster covering HCVNS3 and HCVNS5b entire proteins; -
FIGS. 9A and 9B demonstrate the ability of combination of TLR agonist and anti-DCIR HCV-NS3HelB can induced multi epitopes CD8+ T cells. HCV antigens from NS3 Helicase HelB construct were delivered to DCs through CD40 or DCIR. IFNDCs were targeted with anti-CD40-NS3HelB, or anti-DCIR-NS3HelB in presence of PAM3 (TLR2 agonist; 200 ng/ml), CL097 (TLR7/8 agonist; 5 μg/ml) or polyIC (TLR3 agonist; 25 μg/ml) before co-culture for 10 days with PBMC cells from chronic HCV infected patients; either cured after therapy or in treatment failure. Cells were stimulated for 6 h with peptide clusters C7 (10 μM; 10 peptides of 15-mers) covering HCV NS3 HelB constructs: (FIG. 9A ) PBMC cells were stained for measuring the frequency of peptide-specific CD4+ and CD8+ intracellular IFNγ+TNFα+ cells, an analyzed by FACS, (FIG. 9B ) Number of double positive CD4+ and CD8+ intracellular IFNγ+TNFα+T cells induced after each TLR agonist stimulation were plotted; -
FIGS. 10A-10D demonstrate the ability of combination of TLR agonist and anti-DCIR HCV-construct to increase CD4+ and induce CD8+ T cells responses in chronic HCV infected patients cured after therapy. HCV antigens from NS3 Helicase HelB or from NS3 Protease ProtB constructs were delivered to DCs through CD40 or DCIR. IFNαDCs were targeted with anti-CD40-NS3HelB, anti-DCIR-NS3HelB, anti-CD40-NS3ProtB, anti-DCIR-NS3ProtB, in presence of PAM3 (TLR2 agonist; 200 ng/ml), CL095 (TLR7/8 agonist; 5 μg/ml) or polyIC (TLR3 agonist; 25 μg/ml) or cyclic glucan (TLR4 agonist, 10 μg/ml) before co-culture for 10 days with PBMC cells from chronic HCV infected patients cured after therapy. Cells were stimulated for 6 h with peptide clusters C7 (10 μM; 10 peptides of 15-mers) covering HCV NS3 HelB constructs or with peptide clusters C3 (10 μM; 10 peptides of 15-mers) covering HCV NS3 ProtB constructs:FIGS. 10A and 10B PBMC cells were stained for measuring the frequency of peptide-specific CD4+ intracellular IFNγ+TNFα+ cells, and analyzed by FACS andFIGS. 10C and 10D PBMC cells were stained for measuring the frequency of peptide-specific CD8+ intracellular IFNγ+TNFα+ cells, an analyzed by FACS; -
FIG. 11 demonstrates the ability of combination of TLR agonists and anti-CD40 HCV-constructs to increase CD4+ T cells responses in chronic HCV infected patients in treatment failure. HCV antigens from NS3 Helicase HelB or from NS3 Protease ProtB constructs were delivered to DCs through CD40 or DCIR. IFNαDCs were targeted with anti-CD40-NS3HelB, anti-DCIR-NS3HelB, anti-CD40-NS3ProtB, anti-DCIR-NS3ProtB, in presence of PAM3 (TLR2 agonist; 200 ng/ml), CL095 (TLR7/8 agonist; 5 μg/ml) or polyIC (TLR3 agonist; 25 μg/ml) or cyclic glucan (TLR4 agonist, 10 μg/ml) before co-culture for 10 days with PBMC cells from chronic HCV infected patients cured after therapy. Cells were stimulated for 6 h with peptide clusters C7 (10 μM; 10 peptides of 15-mers) covering HCV NS3 HelB constructs or with peptide clusters C3 (10 μM; 10 peptides of 15-mers) covering HCV NS3 ProtB constructs. PBMC cells were stained for measuring the frequency of peptide-specific CD4+ intracellular IFNγ+TNFα+ cells, an analyzed by FACS; -
FIGS. 12A-12C demonstrate the ability of HCV vaccine candidates to recall CD4+ T cells responses in all chronic HCV infected patients (cured or in treatment failure). HCV antigens from NS3 Helicase HelB, NS5b polymerase Palm or from NS3 Protease ProtB constructs were delivered to DCs through CD40 or DCIR. IFNγDCs were targeted with anti-CD40-[NS3HelB˜NS3ProtB˜NS5bPalm on heavy chain], anti-DCIR-[NS3HelB˜NS3ProtB˜NS5bPalm on heavy chain] before co-culture for 10 days with PBMC cells from chronic HCV infected patients cured after therapy. Cells were stimulated for 6 h with peptide clusters C7, C9 (10 μM; 10 peptides of 15-mers) covering HCV NS3 HelB domain, with peptide clusters C2-C3-C4 (10 μM; 10 peptides of 15-mers) covering HCV NS3 ProtB domain or with peptide clusters C2-C4-C5-C6-C7 (10 μM; 10 peptides of 15-mers) covering HCV NS5b Palm domain. PBMC cells were stained for measuring the frequency of peptide-specific CD4+ and CD8+ intracellular IFNγ+TNFα+ cells, and analyzed by FACS. The number of CD4+IFNγ+TNFα+ cells induced vaccine candidate is shown; -
FIGS. 13A-13E demonstrate of the ability of different HCV antigen combination on vaccine candidate for recall CD4+ T cells responses in chronic HCV infected cured patients. HCV antigens from NS3 Helicase HelB, NS5b polymerase Palm or from NS3 Protease ProtB combination constructs were delivered to DCs through CD40 or DCIR. IFNaDCs were targeted with second-generation vaccines anti-CD40-[NS3HelB on light chain and NS3ProtB˜NS5bPalm on heavy chain], anti-DCIR-[NS3HelB on light chain and NS3ProtB˜NS5bPalm on heavy chain], or first-generation vaccines anti-CD40-[NS3HelB˜NS3ProtB˜NS5bPalm on heavy chain], anti-DCIR-[NS3HelB˜NS3ProtB˜NS5bPalm on heavy chain] before co-culture for 10 days with PBMC cells from chronic HCV infected patients cured after therapy. Cells were stimulated for 6 h with peptide clusters C7 and C9 (10 μM; 10 peptides of 15-mers) covering HCV NS3 HelB domain (shown in green on the figure), with peptide clusters C2-C3-C4 (10 μM; 10 peptides of 15-mers) covering HCV NS3 ProtB domain (shown in pink on the figure) or with peptide clusters C2-C4-C5-C6-C7 (10 μM; 10 peptides of 15-mers) covering HCV NS5b Palm domain (shown in orange in the figure). PBMC cells were stained for measuring the frequency of peptide-specific CD4+ intracellular IFNγ+TNFa+ cells, an analyzed by FACS. The number of CD4+IFNγ+TNFα+ cells induced by first-generation vaccine or second-generation vaccine is compared in the last panel; and -
FIGS. 14A to 14H demonstrate the ability of vaccine candidate to recall CD4+ T cells responses in HCV patients infected withnon 1 genotype and HCV-exposed but non-infected individual. HCV antigens from NS3 Helicase HelB, NS5b polymerase Palm or from NS3 Protease ProtB combination constructs were delivered to DCs through CD40 or DCIR and DC loaded were co-culture for 10 days with PBMC cells from HCV patients infected withnon 1 genotype HCV-infected patients (HCV-015, 2b) and HCV-exposed but non infected individual (HCV-029). Cells were stimulated for 6 h with peptide clusters C7 and C9 (10 μM; 10 peptides of 15-mers) covering HCV NS3 HelB domain, with peptide clusters C2-C3-C4 (10 μM; 10 peptides of 15-mers) covering HCV NS3 ProtB domain or with peptide clusters C2-C4-C5-C6-C7 (10 μM; 10 peptides of 15-mers) covering HCV NS5b Palm domain. PBMC cells were stained for measuring the frequency of peptide-specific CD4+ intracellular IFNγ+TNFα+ cells, an analyzed by FACS. -
FIGS. 15A to 15B shows the results from a 10 day expansion culture whereby a dose range of 1st generation anti-DCIR-HCV vaccine (left panels) is compared to second generation anti-DCIR-HCV vaccine (right panels). Doses were 0.05 nM, 0.5 nM, and 5 nM and antigen-specific responses were ascertained by stimulation with no peptide (control) or ProtA, HelB, or Palm peptide pools in the presence of Brefeldin, followed by staining for CD3+, CD4+ and intracellular IFNg and TNFa. Samples were analyzed by FACS. Shown are comparable CD4+ HCV antigen-specific responses to the two generations of vaccines. -
FIGS. 16A to 16B shows the results from a 10 day expansion culture whereby a dose range of 1st generation anti-CD40-HCV vaccine (left panels) is compared to second generation anti-CD40-HCV vaccine (right panels). Doses were 0.05 nM, 0.5 nM, and 5 nM and antigen-specific responses were ascertained by stimulation with no peptide (control) or ProtA, HelB, or Palm peptide pools in the presence of Brefeldin, followed by staining for CD3+, CD4+ and intracellular IFNg and TNFa. Samples were analyzed by FACS. Shown are comparable CD4+ HCV antigen-specific responses to the two generations of vaccines. - While the making and using of various embodiments of the present invention are discussed in detail below, it should be appreciated that the present invention provides many applicable inventive concepts that can be embodied in a wide variety of specific contexts. The specific embodiments discussed herein are merely illustrative of specific ways to make and use the invention and do not delimit the scope of the invention.
- To facilitate the understanding of this invention, a number of terms are defined below. Terms defined herein have meanings as commonly understood by a person of ordinary skill in the areas relevant to the present invention. Terms such as “a”, “an” and “the” are not intended to refer to only a singular entity, but include the general class of which a specific example may be used for illustration. The terminology herein is used to describe specific embodiments of the invention, but their usage does not delimit the invention, except as outlined in the claims.
- The invention includes also variants and other modification of an antibody (or “Ab”) of fragments thereof, e.g., anti-CD40 fusion protein (antibody is used interchangeably with the term “immunoglobulin”). As used herein, the term “antibodies or fragments thereof,” includes whole antibodies or fragments of an antibody, e.g., Fv, Fab, Fab′, F(ab′)2, Fc, and single chain Fv fragments (ScFv) or any biologically effective fragments of an immunoglobulins that binds specifically to, e.g., CD40. Antibodies from human origin or humanized antibodies have lowered or no immunogenicity in humans and have a lower number or no immunogenic epitopes compared to non-human antibodies. Antibodies and their fragments will generally be selected to have a reduced level or no antigenicity in humans.
- As used herein, the terms “Ag” or “antigen” refer to a substance capable of either binding to an antigen binding region of an immunoglobulin molecule or of eliciting an immune response, e.g., a T cell-mediated immune response by the presentation of the antigen on Major Histocompatibility Antigen (MHC) cellular proteins. As used herein, “antigen” includes, but is not limited to, antigenic determinants, haptens, and immunogens, which may be peptides, small molecules, carbohydrates, lipids, nucleic acids or combinations thereof. The skilled immunologist will recognize that when discussing antigens that are processed for presentation to T cells, the term “antigen” refers to those portions of the antigen (e.g., a peptide fragment) that is a T cell epitope presented by MHC to the T cell receptor. When used in the context of a B cell mediated immune response in the form of an antibody that is specific for an “antigen”, the portion of the antigen that binds to the complementarity determining regions of the variable domains of the antibody (light and heavy) the bound portion may be a linear or three-dimensional epitope. In the context of the present invention, the term antigen is used on both contexts, that is, the antibody is specific for a protein antigen (CD40), but also carries one or more peptide epitopes for presentation by MHC to T cells. In certain cases, the antigens delivered by the vaccine or fusion protein of the present invention are internalized and processed by antigen presenting cells prior to presentation, e.g., by cleavage of one or more portions of the antibody or fusion protein.
- As used herein, the term “conjugate” refers to a protein having one or more targeting domains, e.g., an antibody, and at least one antigen, e.g., a small peptide or a protein. These conjugates include those produced by chemical methods, such as by chemical coupling, for example, coupling to sulfhydryl groups, and those produced by any other method whereby one or more antibody targeting domains and at least one antigen, are linked, directly or indirectly via linker(s) to a targeting agent. An example of a linker is a cohesin-dockerin (coh-doc) pair, a biotin-avidin pair, histidine tags bound by Zn, and the like.
- As used herein, the term “Antigen Presenting Cells” (APC) refers to cells that are capable of activating T cells, and include, but are not limited to, certain macrophages, B cells and dendritic cells. “Dendritic cells” (DCs) refers to any member of a diverse population of morphologically similar cell types found in lymphoid or non-lymphoid tissues. These cells are characterized by their distinctive morphology, high levels of surface MHC-class II expression (Steinman, et al., Ann. Rev. Immunol 9:271 (1991); incorporated herein by reference for its description of such cells). These cells can be isolated from a number of tissue sources, and conveniently, from peripheral blood, as described herein. Dendritic cell binding proteins refers to any protein for which receptors are expressed on a dendritic cell. Examples include GM-CSF, IL-1, TNF, IL-4, CD40L, CTLA4, CD28, and FLT-3 ligand.
- For the purpose of the present invention, the term “vaccine composition” is intended to mean a composition that can be administered to humans or to animals in order to induce an immune system response; this immune system response can result in a production of antibodies or simply in the activation of certain cells, in particular antigen-presenting cells, T lymphocytes and B lymphocytes. The vaccine composition can be a composition for prophylactic purposes or for therapeutic purposes, or both. As used herein, the term “antigen” refers to any antigen which can be used in a vaccine, whether it involves a whole microorganism or a subunit, and whatever its nature: peptide, protein, glycoprotein, polysaccharide, glycolipid, lipopeptide, etc. They may be viral antigens, bacterial antigens, or the like; the term “antigen” also comprises the polynucleotides, the sequences of which are chosen so as to encode the antigens whose expression by the individuals to which the polynucleotides are administered is desired, in the case of the immunization technique referred to as DNA immunization. They may also be a set of antigens, in particular in the case of a multivalent vaccine composition which comprises antigens capable of protecting against several diseases, and which is then generally referred to as a vaccine combination, or in the case of a composition which comprises several different antigens in order to protect against a single disease, as is the case for certain vaccines against whooping cough or the flu, for example. The term “antibodies” refers to immunoglobulins, whether natural or partially or wholly produced artificially, e.g. recombinant. An antibody may be monoclonal or polyclonal. The antibody may, in some cases, be a member of one, or a combination immunoglobulin classes, including: IgG, IgM, IgA, IgD, and IgE.
- The term “adjuvant” refers to a substance that enhances, augments or potentiates the host's immune response to a vaccine antigen.
- The term “gene” is used to refer to a functional protein, polypeptide or peptide-encoding unit. As will be understood by those in the art, this functional term includes both genomic sequences, cDNA sequences, and fragments or combinations thereof, as well as gene products, including those that may have been altered by the hand of man. Purified genes, nucleic acids, protein and the like are used to refer to these entities when identified and separated from at least one contaminating nucleic acid or protein with which it is ordinarily associated.
- As used herein, the term “nucleic acid” or “nucleic acid molecule” refers to polynucleotides, such as deoxyribonucleic acid (DNA) or ribonucleic acid (RNA), oligonucleotides, fragments generated by the polymerase chain reaction (PCR), and fragments generated by any of ligation, scission, endonuclease action, and exonuclease action. Nucleic acid molecules can be composed of monomers that are naturally-occurring nucleotides (such as DNA and RNA), or analogs of naturally-occurring nucleotides (e.g., α-enantiomeric forms of naturally-occurring nucleotides), or a combination of both. Modified nucleotides can have alterations in sugar moieties and/or in pyrimidine or purine base moieties. Sugar modifications include, for example, replacement of one or more hydroxyl groups with halogens, alkyl groups, amines, and azido groups, or sugars can be functionalized as ethers or esters. Moreover, the entire sugar moiety can be replaced with sterically and electronically similar structures, such as aza-sugars and carbocyclic sugar analogs. Examples of modifications in a base moiety include alkylated purines and pyrimidines, acylated purines or pyrimidines, or other well-known heterocyclic substitutes. Nucleic acid monomers can be linked by phosphodiester bonds or analogs of such linkages. Analogs of phosphodiester linkages include phosphorothioate, phosphorodithioate, phosphoroselenoate, phosphorodiselenoate, phosphoroanilothioate, phosphoranilidate, phosphoramidate, and the like. The term “nucleic acid molecule” also includes so-called “peptide nucleic acids,” which comprise naturally-occurring or modified nucleic acid bases attached to a polyamide backbone. Nucleic acids can be either single stranded or double stranded.
- As used herein, “polynucleotide” or “nucleic acid” refers to a strand of deoxyribonucleotides or ribonucleotides in either a single- or a double-stranded form (including known analogs of natural nucleotides). A double-stranded nucleic acid sequence will include the complementary sequence. The polynucleotide sequence may encode variable and/or constant region domains of immunoglobulin that are formed into a fusion protein with one or more linkers. For use with the present invention, multiple cloning sites (MCS) may be engineered into the locations at the carboxy-terminal end of the heavy and/or light chains of the antibodies to allow for in-frame insertion of peptide for expression between the linkers. As used herein, the term “isolated polynucleotide” refers to a polynucleotide of genomic, cDNA, or synthetic origin or some combination thereof. By virtue of its origin the “isolated polynucleotide” (1) is not associated with all or a portion of a polynucleotide in which the “isolated polynucleotides” are found in nature, (2) is operably linked to a polynucleotide which it is not linked to in nature, or (3) does not occur in nature as part of a larger sequence. The skilled artisan will recognize that to design and implement a vector can be manipulated at the nucleic acid level by using techniques known in the art, such as those taught in Current Protocols in Molecular Biology, 2007 by John Wiley and Sons, relevant portions incorporated herein by reference. Briefly, the encoding nucleic acid sequences can be inserted using polymerase chain reaction, enzymatic insertion of oligonucleotides or polymerase chain reaction fragments in a vector, which may be an expression vector. To facilitate the insertion of inserts at the carboxy terminus of the antibody light chain, the heavy chain, or both, a multiple cloning site (MCS) may be engineered in sequence with the antibody sequences.
- As used herein, the term “polypeptide” refers to a polymer of amino acids and does not refer to a specific length of the product; thus, peptides, oligopeptides, and proteins are included within the definition of polypeptide. This term also does not refer to or exclude post expression modifications of the polypeptide, for example, glycosylations, acetylations, phosphorylations and the like. Included within the definition are, for example, polypeptides containing one or more analogs of an amino acid (including, for example, unnatural amino acids, etc.), polypeptides with substituted linkages, as well as other modifications known in the art, both naturally occurring and non-naturally occurring. The term “domain,” or “polypeptide domain” refers to that sequence of a polypeptide that folds into a single globular region in its native conformation, and that may exhibit discrete binding or functional properties.
- As used in this application, the term “amino acid” means one of the naturally occurring amino carboxylic acids of which proteins are comprised. The term “polypeptide” as described herein refers to a polymer of amino acid residues joined by peptide bonds, whether produced naturally or synthetically. Polypeptides of less than about 10 amino acid residues are commonly referred to as “peptides.” A “protein” is a macromolecule comprising one or more polypeptide chains. A protein may also comprise non-peptidic components, such as carbohydrate groups. Carbohydrates and other non-peptidic substituents may be added to a protein by the cell in which the protein is produced, and will vary with the type of cell. Proteins are defined herein in terms of their amino acid backbone structures; substituents such as carbohydrate groups are generally not specified, but may be present nonetheless.
- A polypeptide or amino acid sequence “derived from” a designated nucleic acid sequence refers to a polypeptide having an amino acid sequence identical to that of a polypeptide encoded in the sequence, or a portion thereof wherein the portion consists of at least 3-5 amino acids, preferably at least 4-7 amino acids, more preferably at least 8-10 amino acids, and even more preferably at least 11-15 amino acids, or which is immunologically identifiable with a polypeptide encoded in the sequence. This terminology also includes a polypeptide expressed from a designated nucleic acid sequence.
- As used herein, the terms “stable,” “soluble,” or “unstable” when referring to proteins is used to describe a peptide or protein that maintains its three-dimensional structure and/or activity (stable) or that loses immediately or over time its three-dimensional structure and/or activity (unstable). As used herein, the term “insoluble” refers to those proteins that when produced in a cell (e.g., a recombinant protein expressed in a eukaryotic or prokaryotic cell or in vitro) are not soluble in solution absent the use of denaturing conditions or agents (e.g., heat or chemical denaturants, respectively). The antibody or fragment thereof and the linkers taught herein have been found to convert antibody fusion proteins with the peptides from insoluble and/or unstable into proteins that are stable and/or soluble. Another example of stability versus instability is when the domain of the protein with a stable conformation has a higher melting temperature (Tm) than the unstable domain of the protein when measured in the same solution. A domain is stable compared to another domain when the difference in the Tm is at least about 2° C., more preferably about 4° C., still more preferably about 7° C., yet more preferably about 10° C., even more preferably about 15° C., still more preferably about 20° C., even still more preferably about 25° C., and most preferably about 30° C., when measured in the same solution.
- As used herein, the term “in vivo” refers to being inside the body. The term “in vitro” used as used in the present application is to be understood as indicating an operation carried out in a non-living system.
- As used herein, the term “treatment” or “treating” means any administration of a compound of the present invention and includes (1) inhibiting the disease in an animal that is experiencing or displaying the pathology or symptomatology of the diseased (i.e., arresting further development of the pathology and/or symptomatology), or (2) ameliorating the disease in an animal that is experiencing or displaying the pathology or symptomatology of the diseased (i.e., reversing the pathology and/or symptomatology).
- As used herein, “pharmaceutically acceptable carrier” refers to any material that when combined with an immunoglobulin (Ig) fusion protein of the present invention allows the Ig to retain biological activity and is generally non-reactive with the subject's immune system. Examples include, but are not limited to, standard pharmaceutical carriers such as a phosphate buffered saline solution, water, emulsions such as an oil/water emulsion, and various types of wetting agents. Certain diluents may be used with the present invention, e.g., for aerosol or parenteral administration, that may be phosphate buffered saline or normal (0.85%) saline.
- Substantial similarity of a peptide refers to similarity of a peptide as reflected in the amino acid sequence of the peptide. Identity of a continuous stretch of least 8 amino acids in an antigenic epitope of the peptide may be sufficient to establish substantial identity that enables cross reactivity. A first peptide and a second peptide are substantially similar in this regard if they have substantial similar antigenic epitopes so that immunization with the first peptide causes an immune response against the second peptide.
- A fragment of an antibody, as used in the present application, refers to a portion of an antibody, created by protein engineering including proteolysis, or genetic engineering including recombination of nucleic acids; the fragment of an antibody retains specificity for the antigen.
- A fragment of a peptide used as antigen refers to a portion of the peptide that retains its immunogenicity. A person of ordinary skill in the art will recognize that a continuous stretch of least 8 amino acids in an antigenic epitope of the peptide may be sufficient I order for a peptide to retain its immunogenicity.
- Recombinant protein or antibody is generated by genetic engineering of nucleic acid encoding the protein or antibody and subsequent translation of the coding sequence by a cell or in a cell-free translation system.
- The present invention describes a vaccine composition for delivering a HCV antigen specifically to DCs for the purpose of invoking an immune response In one embodiment, due to the high polymorphism of HCV, a sequence that is representative of most of circulating HCV sequence was selected. Based on sequence variation HCV can be classified into 6 genotypes that differs one to the other on the basis of sequence identity. World wide, 1 genotype is the most represented and also the most difficult to treat with the current IFNa-Ribavirin double therapy. More precisely, 1a genotype is the most represented subsequence in industrial country, and especially in US.
- In one embodiment, 1a genotype was used as target sequence to derive a vaccine. It was observed that sequence alignment with all available 1a sequences found in data bases (euHCVdb and Los Alamos National Laboratory) showed less than 70% of sequence identity and the sequence of the HCV antigen would have to be adjusted accordingly.
- A mosaic sequence was derived using the mosaic vaccine tools at www.hiv.lanl.gov/content/sequence/MOSAIC/ interface choosing mosaic sequence cocktail, 1 as cocktail size and 9 as epitope size. We used 249 sequences for E1 mosaic, 656 sequences for E2 mosaic, 213 sequences for NS3 mosaic and 310 sequences for NS5b mosaic. All sequences correspond to complete genes of 576, 1089, 1893, 1773 nucleotides respectively and found in euHCVdb (euhcvdb.ibcp.fr/euHCVdb/).
- HCV antigen choice: HCV is an RNA enveloped virus. Virions are consisted by 4 structural proteins Core, E1, E2 and p7. As an RNA virus replication is based on viral proteins that need to be expressed after infection. Six non-structural proteins (NS2, NS3, NS4a, NS4b, NS5a, NS5b) are necessary to establish and maintain replication and virus production. HCV targets the liver and can infect barely all the liver with 90% of hepatocytes infected. However, the virus is able to replicate only in 30% of hepatocytes. Infected cells presented at their surface epitopes coming from structural proteins, while infected virus-producing cells presented all HCV antigens, structural and non structural.
- Because HCV targets a vital organ such as the liver, therapeutic vaccine need to be very specific in order to avoid complete liver destruction and death of the patients. Indeed, we choose for our therapeutic vaccine antigens that are only found in infected virus producing hepatocytes, and then target antigen will be non-structural proteins. Moreover, NS3 and NS4b are highly immunogenic in chronic infected patients, as efficient as structural core or E1 E2 structural proteins. Therefore the present inventors included NS5b as an antigen too.
- In one embodiment, NS3 and NS5b were chosen because of their possible expression as recombinant protein and the availability of their 3D structure.
- Description of an embodiment of a vaccine: A particular embodiment of a vaccine consisted of bifunctional antibodies, which were directed against Dendritic Cells specific receptors and have target antigens fused at C terminus part of heavy chain. This allows unique targeting of DC and more precisely different DC subset that expressed different receptors, DC activation through the targeted receptor, and direct delivery of antigen to DC. In turn antigens are presented more efficiently and APC function is associated to cytokine secretion that orient T cells activation towards different functions.
- Design of domains: It is not readily predictable whether any particular non-structural viral protein will be efficiently expressed as a direct antibody-antigen fusion protein. Commonly, fusion proteins may not be soluble and not be secreted. The present application describes that by using flexible linker modules, fragmenting the antigen coding sequence, and varying the fragment order, efficient secretion of recombinant antibody-antigen vaccines bearing extensive stretches of non-structural proteins can be achieved. The current application describes a first testing of constructs by expression of antibody fused to individual HCV non-structural proteins, then linking those that are expressible as soluble protein to each other to maximize the antigen load. Domains were first designed based on the 3D structure of the corresponding full-length proteins. Domains were design as the minimal structured regions in between unfolded loops. Length of the loops was varied in order to increase expression of corresponding domains. Pymol software was used to visualize 3d structures. The domains that expressed at the C-terminal of the antibody heavy chain are represented by SEQ ID NOs: 7-14.
- Multiple combinations of individual domains have been made in order to provide as much HCV antigen as possible. In some embodiments, each single domain is separated from the next by flexible linkers, which can be as small as two amino acids (e.g., AS) but can also be longer, e.g., 3, 4, 5, 6, 7 8, 9, 10, 12, 15, 18, 20, 25 or 30 amino acids long.
FIG. 1 shows the summary of all combine constructs. The linkers are found in the assembled sequences, can also be SSVSPTTSVHPTPTSVPPTPTKSSP (SEQ ID NO.: 166); PTSTPADSSTITPTATPTATPTIKG (SEQ ID NO.: 167); TVTPTATATPSAIVTTITPTATTKP (SEQ ID NO.: 168); TNGSITVAATAPTVTPTVNATPSAA (SEQ ID NO.: 169). - In another embodiment, domains were also expressed at the C-terminus part of the light chain, and used in combination with heavy chain fused to multiple HCV domains. This allows the formation of a combine antibody with 3HCV domains fused to the heavy chain and one fused to the light chain.
FIG. 2 summarizes the construct obtain after fusion of HCV domains at the C-terminus end of light chain. - Preparation of targeting constructs: Anti human DCIR and CD40 V region form H and L chain were cloned in a IgG4 backbone. Spe I cloning site was introduced at the end of the carboxy terminus to clone in frame antigen sequences. HCV antigens from NS3 and NS5b viral proteins represented as subdomains of these proteins were subcloned as a Spe-Not fragment in Nhe-Not linearized pIRES vector.
- HCV-domains were designed based on the 3D-structure of the corresponding full-length proteins (PDB code IJXP for NS3protease, 1HEI for NS3Helicase and 1GX5 for NS5b). 3D-structures were visualized using PyMol software. Domains were designed as the minimal structured regions in between unfolded loops. Length of the loops was varied in order to increase expression of corresponding domains fused to the recombinant antibody. For multiple domains cloning, linkers were introduced between domains using Spe-Not/Nhe-Not strategy. Mosaic sequences, used in this study, corresponding to the maximum HCV-domains expressed as antibody-antigen recombinant fusion proteins are shown below. They included amino acids 95 to 180 from NS3Protease, amino acids 132 to 254 from NS3Helicase and a recombinant fusion of amino acids 55 to 80; 172 to 261 and 276 to 362 from NS5bPolymerase. Spe, Nhe and Not introduced cloning sites are underlined.
- SEQ ID NOS: 1-6 show the amino acid sequence of the HCV proteins E1, E2, NS3, and NS5b mosaic sequences. Membrane domains are underlined. The full-length protein NS3 contains 631 amino acids and is also presented as being cut in its two enzymatic activities proteins: NS3Protease and NS3Helicase. These may also be produced as recombinant proteins N-terminal fused to either histidine tag or Cohesin tag.
-
Envelop protein E1 (192 amino acids) (SEQ ID NO: 1): YQVRNSSGLYHVTNDCPNSSIVYEAADAILHTPGCVPCVREGNASRCWVAVTPTVATRDGKLPTTQ LRRHIDLLVGSATLCSALYVGDLCGSVFLVGQLFTFSPRRHWTTQDCNCSIYPGHITGHRMAWDMM MNWSPTTAVVAQLLRIPQAILDMIAGAHWGVLAGIAYFSMVGNWAKVLVVLLLFAGVDA Envelop protein E2 (363 amino acids) (SEQ ID NO: 2): ETHVTGGSAARTTAGLAGLFTPGAKQNIQLINTNGSWHINRTALNCNDSLNTGWVAGLFYYHKFNS SGCPERLASCRPLTDFDQGWGPISYANGSGPDQRPYCWHYPPKPCGIVPAKSVCGPVYCFTPSPVVV GTTDRSGAPTYNWGENDTDVFVLNNTRPPLGNWFGCTWMNSTGFTKVCGAPPCVIGGVGNNTLH CPTDCFRKHPEATYSRCGSGPWITPRCLVDYPYRLWHYPCTINYTIFKIRMYVGGVEHRLEAACNW TRGERCDLEDRDRSELSPLLLSTTQWQVLPCSFTTLPALSTGLIHLHQNIVDVQYLYGVGSSIASWAI KWEYVVLLFLLLADARVCSCLWMMLLISQAEA Non structural protein 3 NS3 (FL 631 amino acids) (SEQ ID NO: 3):APITAYAQQTRGLLGCIITSLTGRDKNQVEGEVQIVSTAAQTFLATCINGVCWTVYHGAGTRTIASPK GPVIQMYTNVDQDLVGWPAPQGARSLTPCTCGSSDLYLVTRHADVIPVRRRGDSRGSLLSPRPISYL KGSSGGPLLCPAGHAVGIFRAAVCTRGVAKAVDFIPVENLETTMRSPVFTDNSSPPAVPQSFQVAHL HAPTGSGKSTKVPAAYAAQGYKVLVLNPSVAATLGFGAYMSKAHGIDPNIRTGVRTITTGSPITYST YGKFLADGGCSGGAYDIIICDECHSTDATSILGIGTVLDQAETAGARLVVLATATPPGSVTVPHPNIE EVALSTTGEIPFYGKAIPLEVIKGGRHLIFCHSKKKCDELAAKLVALGINAVAYYRGLDVSVIPTSGV VVVVATDALMTGFTGDFDSVIDCNTCVTQTVDFSLDPTFTIETTTLPQDAVSRTQRRGRTGRGKPGI YRFVAPGERPSGMFDSSVLCECYDAGCAWYELTPAETTVRLRAYMNTPGLPVCQDHLEFWEGVFT GLTHIDAHFLSQTKQSGENLPYLVAYQATVCARAQAPPPSWDQMWKCLIRLKPTLHGPTPLLYRLG AVQNEVTLTHPITKYIMTCMSADLEVVT NS3 (prot 189 amino acids) (SEQ ID NO: 4): APITAYAQQTRGLLGCIITSLTGRDKNQVEGEVQIVSTAAQTFLATCINGVCWTVYHGAGTRTIASPK GPVIQMYTNVDQDLVGWPAPQGARSLTPCTCGSSDLYLVTRHADVIPVRRRGDSRGSLLSPRPISYL KGSSGGPLLCPAGHAVGIFRAAVCTRGVAKAVDFIPVENLETTMRSPVFTDNSSPPAVPQS NS3 (hel 442 amino acids) (SEQ ID NO: 5): FQVAHLHAPTGSGKSTKVPAAYAAQGYKVLVLNPSVAATLGFGAYMSKAHGIDPNIRTGVRTITTG SPITYSTYGKFLADGGCSGGAYDIIICDECHSTDATSILGIGTVLDQAETAGARLVVLATATPPGSVTV PHPNIEEVALSTTGEIPFYGKAIPLEVIKGGRHLIFCHSKKKCDELAAKLVALGINAVAYYRGLDVSVI PTSGVVVVVATDALMTGFTGDFDSVIDCNTCVTQTVDFSLDPTFTIETTTLPQDAVSRTQRRGRTGR GKPGIYRFVAPGERPSGMFDSSVLCECYDAGCAWYELTPAETTVRLRAYMNTPGLPVCQDHLEFW EGVFTGLTHIDAHFLSQTKQSGENLPYLVAYQATVCARAQAPPPSWDQMWKCLIRLKPTLHGPTPL LYRLGAVQNEVTLTHPITKYIMTCMSADLEVVT Non structural NS5b (591 amino acids) (SEQ ID NO: 6): SMSYSWTGALVTPCAAEEQKLPINALSNSLLRHHNLVYSTTSRSACQRQKKVTFDRLQVLDSHYQD VLKEVKAAASKVKANLLSVEEACSLTPPHSAKSKFGYGAKDVRCHARKAVNHINSVWKDLLEDSV TPIDTTIMAKNEVFCVQPEKGGRKPARLIVFPDLGVRVCEKMALYDVVSKLPLAVMGSSYGFQYSP GQRVEFLVQAWKSKKTPMGFSYDTRCFDSTVTESDIRTEEAIYQCCDLDPQARVAIKSLTERLYVGG PLTNSRGENCGYRRCRASGVLTTSCGNTLTCYIKARAACRAAGLQDCTMLVCGDDLVVICESAGVQ EDAASLRAFTEAMTRYSAPPGDPPQPEYDLELITSCSSNVSVAHDGAGKRVYYLTRDPTTPLARAA WETARHTPVNSWLGNIIMFAPTLWARMILMTHFFSVLIARDQLEQALDCEIYGACYSIEPLDLPPIIQ RLHGLSAFSLHSYSPGEINRVAACLRKLGVPPLRAWRHRARSVRARLLSRGGRAAICGKYLFNWAV RTKLKLTPIAAAGQLDLSGWFTAGYSGGDIYHSVSHARPRWFWFCLLLLAAGVGIYLLPNR - The nucleotide sequences are presented herein below.
-
NS3Protease domain B (SEQ ID NO: 145) ACTAGT ACTCCTTGTACCTGCGGCTCATCCGACCTGTACCTGGTCACCCGGCACGCAGACGTCA TTCCTGTACGCCGACGCGGGGATAGTAGGGGGAGCCTGCTCTCTCCAAGACCCATATCCTACCT CAAGGGCAGCAGCGGTGGACCACTGCTGTGTCCCGCTGGTCATGCTGTGGGAATATTTAGGGCC GCAGTGTGTACCAGAGGCGTGGCCAAAGCTGTTGATTTTATTCCCGTCGAAAATCTTGAAACAA CCATGAGAAGCCCAGTGTTCACAGACAACTCATCTCCCCCAGCAGTGCCGCAGAGT GCTAGC T GAGAATTC GCGGCCGC NS3Helicase domain B (SEQ ID NO: 146): ACTAGT GTGACTGTGCCCCACCCCAATATCGAAGAGGTGGCCCTTAGTACTACCGGGGAAATTC CTTTCTACGGGAAGGCCATCCCTCTCGAGGTTATTAAAGGAGGGCGACATCTGATTTTTTGCCA CTCCAAGAAGAAGTGTGACGAGCTGGCCGCGAAACTGGTTGCCTTGGGCATCAACGCTGTCGC ATACTATCGGGGACTGGATGTATCAGTGATACCCACCAGCGGAGTGGTAGTTGTCGTCGCTACA GACGCATTGATGACCGGCTTTACAGGAGATTTCGACTCCGTCATCGACTGTAACACATGCGTGA CTCAGACAGTGGATTTCAGCCTTGACCCGACGTTTACGATTGAGACCACCACTCTCCCTCAGGA TGCTGTGTCTAGGACCCAAAGACGCGGTCGCACAGGCCGGGGCAAACCAGGCATCTATAGGTT CGTGGCACCAGGGGAAAGA GCTAGC TGAgaattc GCGGCCGC NS5bPalm (SEQ ID NO: 147): ACTAGT GTGCTGGACTCTCACTACCAGGATGTCCTGAAGGAAGTAAAAGCAGCCGCTTCTAAA GTCAAAGCGAACGCTCTGTACGATGTCGTTTCCAAACTGCCGCTGGCTGTCATGGGCTCTTCCTA CGGCTTTCAGTATTCCCCGGGTCAGCGCGTTGAGTTCCTGGTCCAGGCGTGGAAATCCAAAAAG ACTCCGATGGGTTTTTCCTATGACACTCGCTGCTTCGACAGCACCGTTACCGAAAGCGACATTC GCACCGAGGAAGCAATCTACCAGTGCTGCGACCTGGACCCACAGGCCCGCGTGGCGATCAAAT CTCTGACCGAACGCCTGTACGTTGGCCGCTGTCGCGCTTCCGGTGTTCTGACGACCTCCTGCGGT AATACGCTGACCTGCTACATCAAAGCACGCGCTGCCTGTCGCGCAGCCGGTCTGCAGGACTGCA CCATGCTGGTGTGTGGCGATGACCTGGTGGTGATCTGCGAAAGCGCTGGCGTGCAGGAAGACG CAGCAAGCCTGCGCGCTTTCACCGAAGCTATGACTCGCTACTCTGCGCCGCCGGGTGACCCGCC GCAGCCAGAATACGATCTGGAGCTGATCACC GCTAGC TAAGAATTC GCGGCCGC - SEQ ID NOS: 7-14 show the HCV antigen domains E1a, E2, ProtA, Prot B, Hel A, Hel B, HelC, and NS5 bpalm. These were expressed as antibody fusion proteins. For all constructs, amino acids TS and AS (shown in red) have been added for cloning purpose to the mosaic HCV sequence. NS5b palm has been constructed based on NS5b 3D structure (1C2P). It is based on structural domain corresponding of the palm domain of NS5b polymerase and do not correspond to the linear amino acid sequence;
-
Envelop protein E1a construct (63 amino acids) (SEQ ID NO: 7): TSVGQLFTFSPRRHWTTQDCNCSIYPGHITGHRMAWDMMMNWSPTTAVVA QLLRIPQAILDMIAGAS - In SEQ ID NO: 7 membrane domain and predicted unfolded regions have been removed from E1 mosaic 192 aa sequence to increase expression of the Ab fusion protein.
-
Envelop protein E2 mosaic sequence (342 amino acids) (SEQ ID NO: 8): TSETHVTGGSAARTTAGLAGLFTPGAKQNIQLINTNGSWHINRTALNCND SLNTGWVAGLFYYHKFNSSGCPERLASCRPLTDFDQGWGPISYANGSGP DQRPYCWHYPPKPCGIVPAKSVCGPVYCFTPSPVVVGTTDRSGAPTYNW GENDTDVFVLNNTRPPLGNWFGCTWMNSTGFTKVCGAPPCVIGGVGNNT LHCPTDCFRKHPEATYSRCGSGPWITPRCLVDYPYRLWHYPCTINYTI FKIRMYVGGVEHRLEAACNWTRGERCDLEDRDRSELSPLLLSTTQWQVLP CSFTTLPALSTGLIHLHQNIVDVQYLYGVGSSIASWAIKWEYVVLLFLL AS - In SEQ ID NO: 8 the membrane domain has been removed for E2 mosaic sequence.
- NS3Protease has been cut in 2 structural domains based on its 3D structure (IJXP).
-
ProtA (SEQ ID NO: 9) TSAPITAYAQQTRGLLGCIITSLTGRDKNQVEGEVQIVSTAAQTFLATC INGVCWTVYHGAGTRTIAS Prot B (SEQ ID NO: 10) TSTPCTCGSSDLYLVTRHADVIPVRRRGDSRGSLLSPRPISYLKGSSG GPLLCPAGHAVGIFRAAVCTRGVAKAVDFIPVENLETTMRSPVFTDNS SPPAVPQSAS - NS3 Helicase enzymatic protein has been cut in 3 structural domains based on NS3 Helicase 3D structure. (1HEI)
-
Hel A (SEQ ID NO: 11) FQVAHLHAPTGSGKSTKVPAAYAAQGYKVLVLNPSVAATLGFGAYMSK AHGIDPNIRTGVRTITTGSPITYSTYGKFLADGGCSGGAYDIIICDECHS TDATSILGIGTVLDQAETAGARLVVLATATPPGSAS Hel B (SEQ ID NO: 12) VTVPHPNIEEVALSTTGEIPFYGKAIPLEVIKGGRHLIFCHSKKKCDE LAAKLVALGINAVAYYRGLDVSVIPTSGVVVVVATDALMTGFTGDFDSVI DCNTCVTQTVDFSLDPTFTIETTTLPQDAVSRTQRRGRTGRGKPGIYRFV APGERAS Hel C (SEQ ID NO: 13) PSGMFDSSVLCECYDAGCAWYELTPAETTVRLRAYMNTPGLPVCQDHL EFWEGVFTGLTHIDAHFLSQTKQSGENLPYLVAYQATVCARAQAPPPSWD QMWKCLIRLKPTLHGPTPLLYRLGAVQNEVTLTHPITKYIMTCMSADLEV VT AS NS5bpalm (SEQ ID NO: 14) TSVLDSHYQDVLKEVKAAASKVKANALYDVVSKLPLAVMGSSYGFQYSPG QRVEFLVQAWKSKKTPMGFSYDTRCFDSTVTESDIRTEEAIYQCCDLDPQ ARVAIKSLTERLYVGRCRASGVLTTSCGNTLTCYIKARAACRAAGLQDCT MLVCGDDLVVICESAGVQEDAASLRAFTEAMTRYSAPPGDPPQPEYDLEL ITAS - HCV sequence and HCV domains constructions: Due to the high polymorphism of HCV, a sequence that is representative of most of circulating HCV sequence was selected.
- A mosaic sequence was derived using the mosaic vaccine tools at http://www.hiv.lanl.gov/content/sequence/MOSAIC/ interface choosing mosaic sequence cocktail, 1 as cocktail size and 9 as epitope size. We used 213 sequences for NS3 mosaic and 310 sequences for NS5b mosaic. All sequences correspond to complete genes of 1893, 1773 nucleotides respectively and found in euHCVdb (available on the internet at: euhcvdb.ibcp.fr/euHCVdb/).
- Synthetic corresponding genes were purchased from Bio Basic Inc. (Ontario Canada). For cloning purposes, Spe cloning site was introduced at 5′ end and Nhe, EcoRI and Not I at the 3′ end. HCV domains were then constructed by PCR. NS3Protease domain B was construct using the synthetic gene cloned in pUC57 as template and the following primers: NS3Protease domain B forward: 5′-GAGCTCGGATCCACTAGTACTCCTTGTACCTGCGGCTCATCC-3′ (SEQ ID NO: 148) NS3Protease domain B reverse: 5′-GCCCGCGGCCGCGAATTCTCAGCTAGCACTCTGCGGCACTGCTGGGGG-3′ (SEQ ID NO: 149). NS3Helicase domain B was ordered directly as a synthetic gene. For NS5bPolymerase Palm domain construction, regions coding for amino acids 172 to 261 and 276 to 362 were amplified using NS5b synthetic gene and the respective following primers: Ns5b Palm (aa 172-261) forward: 5′-TCTAAAGTCAAAGCGAACGCTCTGTACGATGTCGTTTCC-3′ (SEQ ID NO: 150), Ns5b Palm (aa 172-261) reverse: 5′-ACCGGAAGCGCGACAGCGGCCAACGTACAGGCGTTCGGT-3′ (SEQ ID NO: 151), NS5b Palm (aa 276-362) forward: 5′-ACCGAACGCCTGTACGTTGGCCGCTGTCGCGCTTCCGGT-3′ (SEQ ID NO: 152), NS5b Palm (aa 276-362) reverse: 5′-GCGGCCGCGAATTCttAGCTAGCGGTGATCAGCTCCAG-3′ (SEQ ID NO: 153). Amplified products were then used as templates together with annealed
primers 5′-CAAGCCCAACCCCACTAGTGTGCTGGACTCTCACTACCAGGATGTCCTGAAGGAAGTAAAAG CAGCCGCTTCTAAAGTCAAAGCGAACGCTCTGTACGAT-3′ (SEQ ID NO: 154) and 5′-ATCGTACAGAGCGTTCGCTTTGACTTTAGAAGCGGCTGCTTTTACTTCCTTCAGGACATCCTG GTAGTGAGAGTCCAGCACACTAGTGGGGTTGGGCTTG-3′ (SEQ ID NO: 155) in a finalPCR using primers 5′-CAAGCCCAACCCC-3′ (SEQ ID NO: 156) and 5′-GCGGCCGCGAATTCTTAGCTAGCGGTGATCAGCTCCAG-3′ (SEQ ID NO: 157). The amplified NS5bPolymerase Palm domain was then cloned in TA vector and sub-cloned in XX vector using Nhe/Not strategy. - Chimeric Recombinant Antibodies Purification: For construct selection, chimeric DC-specific antibodies were transiently expressed in HEK293 cells and purified from the supernatant using Protein A sepharose chromatograhy. DNA from chimeric constructs expressed in HEK293 was then sub-cloned in cetHSpuro vector as AgeI/NotI fragment for expression in CHO cells after stable transfection. Antibodies were purified from supernatants using ProteinA sepharose.
- Patients were recruited at the Baylor Hospital Liver Transplant Clinic (BHLTC, Dallas, Tex.) after obtaining informed consent. The study was approved by the Institutional Review Board of the Baylor Health Care System (Dallas, Tex.). Peripheral blood (100 ml) was collected at the BHLTC from 29 chronic HCV-infected adult patients and one healthy donor in contact with chronic HCV-infected patient. Leukapheresis were collected at Baylor University Medical Center Apharesis Collection Center (Dallas, Tex.) from all the enrolled individuals within 30 days after the first visit. Patient information is summarized in Table I.
- Preparation of dendritic cells and PBMCs: PBMCs were isolated from heparinized blood on Ficoll density gradients. Monocytes were enriched from the leukapheresis according to cellular density and size by elutriation (Elutra™, CaridianBCT, Lakewood, Colo.) as per the manufacturer's recommendations.
Elutriation Fraction 5 consisted mainly on monocytes (85% on average). Cells were cryopreserved in 10% DMSO 50% FCS 10% culture medium before use. For dendritic cell generation, monocytes were resuspended in serum-free CellGro DC culture medium (CellGenix Technologie Transfer Gmbh, Germany) at a concentration of 1 106 cells/ml. Media were supplemented with 100 ng/ml granulocyte-macrophage colony-stimulated factor (GMCSF, Leukine, Berlex, Wayne, N.J.) and 500 UI/ml alpha-interferon (IFN-α, Intro A, IFN-α-2b, Merck/Schering-Plough, Kenilworth, N.J.). After 24 h of culture at 37 degree Celsius, 5% CO2, fresh cytokines were added. Onday 3, recombinant antibody vaccines were added at various concentration (5 nM, 0.5 nM or 0.05 nM) or peptide cluster controls (2 mM each peptide) as indicated. Alternatively, TLR agonists (polylC, 25 μg/ml;CL075 1 μg/ml; or PAM3, 200 ng/ml; all from Invivogen) were added in the culture at the same time as vaccine candidates or peptide controls. DC were pulsed for 16 h before harvest and used in PBMCs co-culture. -
TABLE I Demographics of patients used in the study. HCV Viral HLA HLA HLA Patient ID Genotype Sex Ethnicity Race status Age Load HLA A* HLA B* Cw* DRB1 DQB1 HCV-VAC-001 1a M Hispanic White non 39 5 877033 0201; 1302; 0202; 0701; 0202; responder (H) 0205 5101 0602 1301 0603 HCV-VAC-002 1a F Non White cured 57 UnDectable 0101; 0818; 0701G; 1101; 0301; Hispanic after (UD) 0301 5108 1502 1301 0603 therapy HCV-VAC-003 1a M Non White cured 59 UD 0301; 0702; 0401; 0101; 0501; Hispanic after 3004 3501 0702 0402 0302 therapy HCV-VAC-004 1a M Non White cured 55 UD 0201; 0702; 0202; 0401; 0302; Hispanic after 3201 1002 0702 0901 0303 therapy HCV-VAC-005 1a M Non White cured 58 UD 0101; 1801; 0501; 0301; 0503; Hispanic after 1101 5101 1402 1407 0201 therapy HCV-VAC-006 3a M Non White cured 57 UD 0101; 0702; 0602; 0701; 0303; Hispanic after 2902 5701 0702 therapy HCV-VAC-007 3a M Non White cured 48 UD no no no no no Hispanic after apheresis apheresis apheresis apheresis apheresis therapy HCV-VAC-008 1b M Non White non 63 0101; 0801; 0701; 0301; 0201; Hispanic responder 6901 3508 1203 HCV-VAC-009 1a M Non White non 51 0101; 0801; 0701G; 0301; 0201; Hispanic responder 3004 0701 0303 HCV-VAC-010 1a M Non White cured 48 UD 0201; 0801; 0202; 0301; 0201; Hispanic after 2402 4002 0701G 0701 0202 therapy HCV-VAC-011 1a F Non White non 52 ? 0205; 1530; 0102; 0301; 0201; Hispanic responder 3101 4901 0707G 0802 0402 HCV-VAC-012 1a M Non White cured 43 UD 0101; 4101; 1502; 0301; 0201; Hispanic after 1101 5101 1710G 1305 0301 therapy HCV-VAC-013 1a M Non White non 55 0101; 0801; 0401; 0301; 0502; Hispanic responder 0201 3502 0701G 1601 0201 HCV-VAC-014 1b F Non White non 56 3101; 0702; 0401; 0403; 0302; Hispanic responder 6801 3503 0702 1501 0602 HCV-VAC-015 2b M Non White positive 50 0101; 0801; 0401; 0301; 0201; Hispanic untreated 0301 3501 0701G 0701 0303 HCV-VAC-016 1a M Non White non 55 0101; 5001; 0303; 0701; 0503; Hispanic responder 5501 0602 1401 0202 HCV-VAC-017 1a M Non White positive 52 2402; 3901; 0602; 0701; 0202; Hispanic untreated 2501 5701 1203 0303 HCV-VAC-018 1a M Non White non 53 no no no no no Hispanic responder apheresis apheresis apheresis apheresis apheresis HCV-VAC-019 1a M Non White cured 62 UD 2402; 3901; 0102; 0701; 0202; Hispanic after 2501 4402 1203 1501 0602 therapy HCV-VAC-020 1a F Non White cured 46 UD 0201; 1501; 0202; 0401; 0301; Hispanic after 0301 2705 0304 1101 0302 therapy HCV-VAC-021 1a M Non White non 64 0101; 0801; 0304; 0101; 0501; Hispanic responder 3002 4001 0701G 0301 0201 HCV-VAC-022 1b F Non White non 58 0301; 1801; 0304; 0301; 0201; Hispanic responder 6801 4001 0501 1302 0604 HCV-VAC-023 2 F Non White positive 45 no no no no no Hispanic untreated apheresis apheresis apheresis apheresis apheresis HCV-VAC-024 2b M Non White positive 43 0301; 1402; 0202; Hispanic untreated 4701 0602 HCV-VAC-025 3a F Non White positive 31 ? no no no no no Hispanic untreated apheresis apheresis apheresis apheresis apheresis HCV-VAC-026 3a M Non White positive 29 ? no no no no no Hispanic untreated apheresis apheresis apheresis apheresis apheresis HCV-VAC-027 1a F Non White positive 26 02; 26 15(62); 03(7); Hispanic untreated 51 05 HCV-VAC-028 1a F Hispanic other positive 47 03; 25 07; 18 06; untreated HCV-VAC-029 Non F Non White uninfected 63 01; 11 44; 55 02; 05 infected Hispanic HCV-VAC-030 1 M Non White positive 57 ? 03; 24 07; 27 03(7); Hispanic untreated 06 - Expansion of Antigen-specific T cells in DC/PBMCs coculture. Frozen PBMCs from leukapharesis were thawed, washed by centrifugation and resuspended at 2×106 cells/ml in cRPMI medium. Autologous DC loaded with vaccine candidates or peptides cluster controls were co-cultured with PBMCs in a 24 well tissue plate at a ratio of 1/20 and incubated for a total of 10 days. IL2 (20 IU/ml, Aldesleukine, ProleukineR; Bayer Healthcare and Novartis, Emeryville, Calif.) was added every two days. At day 9, PBMCs from a 24-well plate were washed, distributed in 2 wells in a 96-well plates and rested for 24 h. The specificity of the T-cell response elicited by vaccine candidate loaded-DC was assessed by restimulation of PBMCs with peptide clusters (2 μM each peptide). For each condition, a negative background control was included as a restimulation without peptides.
- Flow cytometry: After 1 hour of peptide clusters restimulation, BFA (Sigma) was added for the last 5-6 h to block cytokine secretion. The cells were stained for surface markers with a combination of fluorochrome antibodies (perCP-CD3, PE-CD8, APCH7-CD4), fixed, permeabilized and intracellular-stained with a mixture of APC-IFNγ, FITC-IL2 and PEcγ7-TNFα antibodies. For CTL marker function analysis, FITC-CD107a antibody was added with BFA in the culture medium and the following antibodies combination was used for the surface staining. PerCP-CD3, pacific blue-CD8, APCH7-CD4 and for the intracellular staining: PE-IFNγ, APC-GranzB, APCcy7-TNFα. All antibodies were purchased from BD sciences except APC-GranzB (Invitrogen). Cells were analyzed on a FACS-Canto collecting 500,000 events, and results analyzed using FlowJo software. Most of the data were displayed as two colors plot to measure IFN-γ and TNF-α production in CD3+CD8+ or CD3+CD4+ cells.
- Luminex: Supernatants of DC-PBMCs co-culture were harvested 48 h after PBMCs restimulation with peptide clusters. Cytokine multiplex assays were employed to analyzed IFN-γ, IL-10, and IL-13.
- Evaluation of embodiments of vaccines: Vaccine candidate were tested in targeting experiment by co-culture of vaccine with PBMCs from chronic HCV infected patients or chronic HCV infected patients cured after IFNa-Ribavirin therapy. The data show that anti-CD40 or anti-DCIR vaccines bearing a HCV NS3HelB antigen can recall a potent memory antigen-specific anti-CD4+ T cell response in vitro using immune cells from HCV infected patients. In this in vitro culture system anti-CD40 and anti-DCIR are equally potent vaccines—these DCs express both receptors. Anti-DCIR vaccine construct bearing longer HCV antigen coverage induced multifunctional CD4+ antigen specific T cells against multiple HCV epitopes.
- The data further show that anti-DCIR vaccines bearing a HCV NS3HelBC antigen can recall a potent memory antigen-specific anti-CD4+ T cell response in vitro using immune cells from HCV infected patients. This response is directed against multiples HCV epitopes. In this in vitro culture system, both concentration used for anti-DCIR HCV-NS3HelBC targeting are equally potent in contrast to anti-DCIR HCV-NS3HelB vaccine.
-
FIGS. 3A-3B demonstrate the ability of recombinant anti-DCIR and anti-CD40 antibodies fused to HCV NS3HelB specific antigen to elicit the expansion of antigen-specific CD4+ T cells from a chronic HCV infected patient cured after IFNa-Ribavirin therapy. Delivering NS3HelB to DCs through CD40 and DCIR induces IFN-γ-TNFa-producing HCV NS3HelB-specific CD4+ T cells. PBMC cells from chronic HCV infected patients; either cured after therapy or in treatment failure, were co-cultured with IFNDCs targeted with anti-CD40-NS3HelB or anti-DCIR-NS3HelB for 10 days. Cells were stimulated with peptides clusters (10 peptides of 15-mers in each clusters) covering HCV NS3 HelB (10 μM):FIG. 3A after 2 days, culture supernatants were analyzed for measuring IFNγ andFIG. 3B PBMC cells were stained for measuring the frequency of peptide-specific CD4+ T cells intracellular IFNγ+TNFα+ cells. - Longer construct are equally potent to recall multi epitopes HCV specific T cells. The data in e.g.,
FIG. 4 , show that both anti-CD40 and anti-DCIR vaccines bearing HCV NS3HelB NS3ProtB and NS5BPalm antigens can recall a potent memory antigen-specific anti-CD4+ T cell response in vitro using immune cells from HCV infected patients cured after IFN-Ribavirin therapy. This response is directed against multiples HCV epitopes. In this in vitro culture system, dose effect is observed consistent with clear targeting, with an optimum concentration being at 5 nM for anti-CD40 construct and 0.5 nM for anti-DCIR construct. At these concentrations IgG4 controls induce significantly lower CD4+ T cells responses, consistent with antibody targeting of DC. -
FIGS. 5A to 5C demonstrate the ability of recombinant anti-DCIR and anti-CD40 antibodies fused to HCV NS3HelB, HCV NS3ProtB and HCV NS5BPalm specific antigens to elicit the expansion of antigen-specific CD4+ T cells from a chronic HCV infected patient cured after IFNa-Ribavirin therapy. Delivering HCV antigen to DCs through CD40 and DCIR induces IFNγ-TNFa-producing HCV-specific CD4+ T cells, with multi epitopes, specific CD4 T cells. PBMC cells from chronic HCV infected patients cured after therapy were co-cultured with autologous IFNαDCs targeted with anti-CD40-NS3HelB-NS3ProtB-NS5BPalm or anti-DCIR-NS3HelB-NS3ProtB-NS5BPalm for 10 days. Cells were stimulated with peptides clusters (10 peptides of 15-mers in each clusters) covering HCV NS3HelB, NS3ProtB or NS5BPalm (2 μM). PBMC cells were stained for measuring the frequency of peptide-specific CD4+ T cells intracellular IFNγ+TNFα+ cells. - The data in
FIGS. 6A to 6C demonstrate that anti-CD40 vaccines bearing HCV NS3HelB NS3ProtB and NS5BPalm antigens can recall a potent memory antigen-specific anti-CD8+ T cell response in vitro using immune cells from HCV infected patients cured after IFN-Ribavirin therapy. This response is directed against multiples HCV epitopes. In this in vitro culture system, dose effect is observed consistent with clear targeting, of DC with an optimum concentration being at 5 nM for anti-CD40 constructs. At these concentrations IgG4 controls induce significantly no CD8+ T cells responses, consistent with antibody targeting of DC. - Similar responses are induced in multiple different chronic HCV infected patients either cured or after therapy or in treatment failure.
- The data in
FIGS. 7A to 7D show that all chronic HCV infected patients cured after therapy are able to recall CD4+ T cells memory after co-culture of PBMCs with DC targeted with either anti-CD40 or anti-DCIR or both, construct bearing HCV antigens. - The data in
FIGS. 8A to 8D shows that all chronic HCV infected patients in treatment failure are able to recall CD4+ T cells memory after co-culture of PBMCs with DC targeted with either anti-CD40 or anti-DCIR or both, construct bearing HCV antigens. Compare to chronic HCV infected patients cured after therapy, responses are low in chronic HCV infected patients in treatment failure and more antigen dependent since for example HCV-VAC-016 patient has no CD4+ T cells memory cells recalled after DC targeting with NS5bPalm construct. - CD8+ antigen specific T cells were obtained after TLR agonist introduction in the co-culture of vaccine with PBMC cells from HCV patients.
- The data in
FIGS. 9A and 9B show that TLR2 triggering with PAM3 during DC targeting with anti-DCIR vaccines bearing a HCV NS3HelB antigen can recall a potent memory antigen-specific anti-CD4+ and CD8+ T cell response in vitro using immune cells from HCV infected patients. Moderated CD8+ response is also induced by TLR3 triggering and no CD4+or CD8+ response is induced after TLR7/8 triggering by CL097 in this study. Similar responses are induced in multiple different chronic HCV infected patients either cured or after therapy or in treatment failure. - The data in
FIGS. 10A-10D show that TLR2 triggering with PAM3 during DC targeting with anti-CD40 or anti-DCIR vaccines bearing a HCV NS3HelB or HCV NS3ProtB antigen can recall a potent memory antigen-specific anti-CD4+ and CD8+ T cell responses in vitro using immune cells from HCV infected patients. Moderated CD8+ response is also induced by TLR3 triggering in some patients, and cyclic glucan can dramatically increase CD8+ T cells responses in one patient. -
FIG. 11 demonstrates the ability of combination of TLR agonists and anti-CD40 HCV-constructs to increase CD4+ T cells responses in chronic HCV infected patients in treatment failure. HCV antigens from NS3 Helicase HelB or from NS3 Protease ProtB constructs were delivered to DCs through CD40 or DCIR. IFNαDCs were targeted with anti-CD40-NS3HelB, anti-DCIR-NS3HelB, anti-CD40-NS3ProtB, anti-DCIR-NS3ProtB, in presence of PAM3 (TLR2 agonist; 200 ng/ml), CL095 (TLR7/8 agonist; 5 μg/ml) or polyIC (TLR3 agonist; 25 μg/ml) or cyclic glucan (TLR4 agonist, 10 μg/ml) before co-culture for 10 days with PBMC cells from chronic HCV infected patients cured after therapy. Cells were stimulated for 6 h with peptide clusters C7 (10 μM; 10 peptides of 15-mers) covering HCV NS3 HelB constructs or with peptide clusters C3 (10 μM; 10 peptides of 15-mers) covering HCV NS3 ProtB constructs. PBMC cells were stained for measuring the frequency of peptide-specific CD4+ intracellular IFNγ+TNFα+ cells, an analyzed by FACS. - All tested HCV patients are able to recall CD4+ and CD8+ HCV specific memory after DC-targeting with HCV vaccine candidates.
-
FIG. 12A to 12C demonstrate the ability of HCV vaccine candidates to recall CD4+ T cells responses in all chronic HCV infected patients (cured or in treatment failure). HCV antigens from NS3 Helicase HelB, NS5b polymerase Palm or from NS3 Protease ProtB constructs were delivered to DCs through CD40 (FIG. 12B ) or DCIR (FIG. 12C ). IFNaDCs were targeted with anti-CD40-[NS3HelB˜NS3ProtB˜NS5bPalm on heavy chain], anti-DCIR-[NS3HelB˜NS3ProtB˜NS5bPalm on heavy chain] before co-culture for 10 days with PBMC cells from chronic HCV infected patients cured after therapy. Cells were stimulated for 6 h with peptide clusters C7-C9 (10 μM; 10 peptides of 15-mers) covering HCV NS3 HelB domain, with peptide clusters C2-C3-C4 (10 μM; 10 peptides of 15-mers) covering HCV NS3 ProtB domain or with peptide clusters C2-C4-C5-C6-C7 (10 μM; 10 peptides of 15-mers) covering HCV NS5b Palm domain. PBMC cells were stained for measuring the frequency of peptide-specific CD4+ and CD8+ intracellular IFNγ+TNFa+ cells, and analyzed by FACS. The number of CD4+ IFNg+TNFa+ cells induced vaccine candidate is shown. - It was also observed that different combinations of HCV domains on vaccine candidate are equally equivalent to recall CD4+ HCV memory. Moreover, HCV antigen combination where two domains are borne on heavy chain and one on light chain is more efficient than having the 3 borne by heavy chain.
-
FIGS. 13A-13E demonstrate the ability of different HCV antigen combination on vaccine candidate for recall CD4+ T cells responses in chronic HCV infected cured patients. HCV antigens from NS3 Helicase HelB, NS5b polymerase Palm or from NS3 Protease ProtB combination constructs were delivered to DCs through CD40 or DCIR. IFNαDCs were targeted with second-generation vaccines anti-CD40-[NS3HelB on light chain and NS3ProtB˜NS5bPalm on heavy chain], anti-DCIR-[NS3HelB on light chain and NS3ProtB˜NS5bPalm on heavy chain], or first-generation vaccines anti-CD40-[NS3HelB˜NS3ProtB˜NS5bPalm on heavy chain], anti-DCIR-[NS3HelB˜NS3ProtB˜NS5bPalm on heavy chain] before co-culture for 10 days with PBMC cells from chronic HCV infected patients cured after therapy. Cells were stimulated for 6 h with peptide clusters C7 and C9 (10 μM; 10 peptides of 15-mers) covering HCV NS3 HelB domain (shown in green on the figure), with peptide clusters C2-C3-C4 (10 μM; 10 peptides of 15-mers) covering HCV NS3 ProtB domain (shown in pink on the figure) or with peptide clusters C2-C4-C5-C6-C7 (10 μM; 10 peptides of 15-mers) covering HCV NS5b Palm domain (shown in orange in the figure). PBMC cells were stained for measuring the frequency of peptide-specific CD4+ intracellular IFNγ+TNFα+ cells, an analyzed by FACS. The number of CD4+IFNγ+TNFα+ cells induced by first-generation vaccine or second-generation vaccine is compared in the last panel. - The vaccine candidates described in the present invention also showed the ability induce cross reactivity recall memory responses in patients infected with an HCV genotype different from those used to build the vaccine (
FIGS. 14A to 14H ).FIGS. 14A to 14H demonstrate ability of vaccine candidate to recall CD4+ T cells responses in HCV patients infected withnon 1 genotype and HCV-exposed but non infected individual. HCV antigens from NS3 Helicase HelB, NS5b polymerase Palm or from NS3 Protease ProtB combination constructs were delivered to DCs through CD40 or DCIR and DC loaded were co-culture for 10 days with PBMC cells from HCV patients infected withnon 1 genotype HCV-infected patients (HCV-015, 2b) and HCV-exposed but non infected individual (HCV-029). Cells were stimulated for 6 h with peptide clusters C7 and C9 (10 μM; 10 peptides of 15-mers) covering HCV NS3 HelB domain, with peptide clusters C2-C3-C4 (10 μM; 10 peptides of 15-mers) covering HCV NS3 ProtB domain or with peptide clusters C2-C4-C5-C6-C7 (10 μM; 10 peptides of 15-mers) covering HCV NS5b Palm domain. PBMC cells were stained for measuring the frequency of peptide-specific CD4+ intracellular IFNγ+TNFα+ cells, an analyzed by FACS. -
FIGS. 15A and 15B show the results from a 10 day expansion culture whereby a dose range of 1st generation anti-DCIR-HCV vaccine (left panels) is compared to second generation anti-DCIR-HCV vaccine (right panels). Doses were 0.05 nM, 0.5 nM, and 5 nM and antigen-specific responses were ascertained by stimulation with no peptide (control) or ProtA, HelB, or Palm peptide pools in the presence of Brefeldin, followed by staining for CD3+, CD4+ and intracellular IFNg and TNFa. Samples were analyzed by FACS. Shown are comparable CD4+ HCV antigen-specific responses to the two generations of vaccines. -
FIGS. 16A and 16B show the results from a 10 day expansion culture whereby a dose range of 1st generation anti-CD40-HCV vaccine (left panels) is compared to second generation anti-CD40-HCV vaccine (right panels). Doses were 0.05 nM, 0.5 nM, and 5 nM and antigen-specific responses were ascertained by stimulation with no peptide (control) or ProtA, HelB, or Palm peptide pools in the presence of Brefeldin, followed by staining for CD3+, CD4+ and intracellular IFNg and TNFa. Samples were analyzed by FACS. Shown are comparable CD4+ HCV antigen-specific responses to the two generations of vaccines. - Non-limiting examples different DC-specific antibodies or fragments (both nucleotide and protein sequences) that may be used in the preparation of the HCV vaccine of the present invention are shown herein below, the nomenclature corresponding to the target (e.g.,
Anti_CLEC —6—9B9.2G12_Heavy Hv-V-hIgG4H-C—is an anti-CLEC-6 antibody from the mouse hybridoma clone “9B9.2G12” (which is the source of the anti-CLEC-6 antibody sequence); heavy chain “H” variable region “v” (which can be humanized) heavy and is an IgG4 constant region isotype. The same nomenclature applies to light chains (from mouse Kappa light chains), and the antigens. -
Anti_CLEC_6_9B9.2G12_Hv-V-hIgG4H-C (SEQ ID NO: 15): ATGGGCAGGCTTACTTCTTCATTCTTGCTACTGATTGTCCCTGCATATGTCCTGTCCCAGGTTACT CTGAAAGAGTCTGGCCCTGGGATATTGCAGCCCTCCCAGACCCTCAGTCTGACCTGTTCTTTCTC TGGGTTTTCACTGAGCACTTCTGGTATGAGTGTAGGCTGGATTCGTCAGCCTTCAGGGAAGGGT CTGGAGTGGCTGGCTCACATTTGGTGGAATGATGATAAGTACTATAATCCAGTCCTGAAAAGCC GGCTCACAATCTCCAAGGAGACCTCCAACAACCAGGTATTCCTCAAGATCGCCAGTGTGGTCTC TGCAGATACTGCCACATACTACTGTGCTCGATTCTATGGTAACTGTCTTGACTACTGGGGCCAA GGCACCACTCTCACAGTCTCCTCGGCCAAAACAAAGGGCCCATCCGTCTTCCCCCTGGCGCCCT GCTCCAGGAGCACCTCCGAGAGCACAGCCGCCCTGGGCTGCCTGGTCAAGGACTACTTCCCCGA ACCGGTGACGGTGTCGTGGAACTCAGGCGCCCTGACCAGCGGCGTGCACACCTTCCCGGCTGTC CTACAGTCCTCAGGACTCTACTCCCTCAGCAGCGTGGTGACCGTGCCCTCCAGCAGCTTGGGCA CGAAGACCTACACCTGCAACGTAGATCACAAGCCCAGCAACACCAAGGTGGACAAGAGAGTTG AGTCCAAATATGGTCCCCCATGCCCACCCTGCCCAGCACCTGAGTTCGAAGGGGGACCATCAGT CTTCCTGTTCCCCCCAAAACCCAAGGACACTCTCATGATCTCCCGGACCCCTGAGGTCACGTGC GTGGTGGTGGACGTGAGCCAGGAAGACCCCGAGGTCCAGTTCAACTGGTACGTGGATGGCGTG GAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTTCAACAGCACGTACCGTGTGGTC AGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAACGGCAAGGAGTACAAGTGCAAGGTCTCC AACAAAGGCCTCCCGTCCTCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAG CCACAGGTGTACACCCTGCCCCCATCCCAGGAGGAGATGACCAAGAACCAGGTCAGCCTGACC TGCCTGGTCAAAGGCTTCTACCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCG GAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTACAGCA GGCTAACCGTGGACAAGAGCAGGTGGCAGGAGGGGAATGTCTTCTCATGCTCCGTGATGCATG AGGCTCTGCACAACCACTACACACAGAAGAGCCTCTCCCTGTCTCTGGGTAAAGCTAGCTGATT AATTAA Anti_CLEC_6_9B9.2G12_Heavy (H)v-V-hIgG4H-C (SEQ ID NO: 80): MGRLTSSFLLLIVPAYVLSQVTLKESGPGILQPSQTLSLTCSFSGFSLSTSGMSVGWIRQPSGKGLEWL AHIWWNDDKYYNPVLKSRLTISKETSNNQVFLKIASVVSADTATYYCARFYGNCLDYWGQGTTLT VSSAKTKGPSVFPLAPCSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSL SSVVTVPSSSLGTKTYTCNVDHKPSNTKVDKRVESKYGPPCPPCPAPEFEGGPSVFLFPPKPKDTLMI SRTPEVTCVVVDVSQEDPEVQFNWYVDGVEVHNAKTKPREEQFNSTYRVVSVLTVLHQDWLNGK EYKCKVSNKGLPSSIEKTISKAKGQPREPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWESN GQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQEGNVFSCSVMHEALHNHYTQKSLSLSLGKAS Anti_CLEC_6_9B9.2G12_Kv-V-hIgGK-C (SEQ ID NO: 16): ATGATGTCCTCTGCTCAGTTCCTTGGTCTCCTGTTGCTCTGTTTTCAAGGTACCAGATGTGATATC CAGATGACACAGACTACATCCTCCCTGTCTGCCTCTCTGGGAGACAGAGTCACCATCAGTTGCA GGGCAAGTCAGGACATTAGCAATTATTTAAACTGGTATCAGCAGAAACCAGATGGAACTGTTA AACTCCTGATCTACTACACATCAATATTACAATTAGGAGTCCCATCAAGATTCAGTGGCAGTGG GTCTGAAACAGATTATTCTCTCACCATTAGCAACCTGGAGCAAGAAGATATTGCCACTTACTTTT GCCAACAGGGTGATTCGCTTCCATTCACGTTCGGCTCGGGGACAAAGCTCGAGATCAAACGAAC TGTGGCTGCACCATCTGTCTTCATCTTCCCGCCATCTGATGAGCAGTTGAAATCTGGAACTGCCT CTGTTGTGTGCCTGCTGAATAACTTCTATCCCAGAGAGGCCAAAGTACAGTGGAAGGTGGATAA CGCCCTCCAATCGGGTAACTCCCAGGAGAGTGTCACAGAGCAGGACAGCAAGGACAGCACCTA CAGCCTCAGCAGCACCCTGACGCTGAGCAAAGCAGACTACGAGAAACACAAAGTCTATGCCTG CGAAGTCACCCATCAGGGCCTGAGCTCGCCCGTCACAAAGAGCTTCAACAGGGGAGAGTGTTAG Anti_CLEC_6_9B9.2G12_Light (K)v-V-hIgGK-C (SEQ ID NO: 81): MMSSAQFLGLLLLCFQGTRCDIQMTQTTSSLSASLGDRVTISCRASQDISNYLNWYQQKPDGTVKLL IYYTSILQLGVPSRFSGSGSETDYSLTISNLEQEDIATYFCQQGDSLPFTFGSGTKLEIKRTVAAPSVFIF PPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKA DYEKHKVYACEVTHQGLSSPVTKSFNRGEC Anti-ASGPR_49C11_7H-LV-hIgG4H-C (SEQ ID NO: 17): ATGAGAGCGCTGATTCTTTTGTGCCTGTTCACAGCCTTTCCTGGTATCCTGTCTGATGTGCAGCT TCAGGAGTCAGGACCTGACCTGGTGAAACCTTCTCAGTCACTTTCACTCACCTGCACTGTCACTG GCTACTCCATCACCAGTGGTTATAGCTGGCACTGGATCCGGCAGTTTCCAGGAAACAAACTGGA ATGGATGGGCTACATACTCTTCAGTGGTAGCACTAACTACAACCCATCTCTGAAAAGTCGAATC TCTATCACTCGAGACACATCCAAGAACCAGTTCTTCCTGCAGTTGAATTCTGTGACTACTGAGG ACACAGCCACATATTTCTGTGCAAGATCTAACTATGGTTCCTTTGCTTCCTGGGGCCAAGGGACT CTGGTCACTGTCTCTGCAGCCAAAACAACGGGCCCATCCGTCTTCCCCCTGGCGCCCTGCTCCA GGAGCACCTCCGAGAGCACAGCCGCCCTGGGCTGCCTGGTCAAGGACTACTTCCCCGAACCGGT GACGGTGTCGTGGAACTCAGGCGCCCTGACCAGCGGCGTGCACACCTTCCCGGCTGTCCTACAG TCCTCAGGACTCTACTCCCTCAGCAGCGTGGTGACCGTGCCCTCCAGCAGCTTGGGCACGAAGA CCTACACCTGCAACGTAGATCACAAGCCCAGCAACACCAAGGTGGACAAGAGAGTTGAGTCCA AATATGGTCCCCCATGCCCACCCTGCCCAGCACCTGAGTTCGAAGGGGGACCATCAGTCTTCCT GTTCCCCCCAAAACCCAAGGACACTCTCATGATCTCCCGGACCCCTGAGGTCACGTGCGTGGTG GTGGACGTGAGCCAGGAAGACCCCGAGGTCCAGTTCAACTGGTACGTGGATGGCGTGGAGGTG CATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTTCAACAGCACGTACCGTGTGGTCAGCGTC CTCACCGTCCTGCACCAGGACTGGCTGAACGGCAAGGAGTACAAGTGCAAGGTCTCCAACAAA GGCCTCCCGTCCTCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAGCCACAG GTGTACACCCTGCCCCCATCCCAGGAGGAGATGACCAAGAACCAGGTCAGCCTGACCTGCCTG GTCAAAGGCTTCTACCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAAC AACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTACAGCAGGCTAA CCGTGGACAAGAGCAGGTGGCAGGAGGGGAATGTCTTCTCATGCTCCGTGATGCATGAGGCTCT GCACAACCACTACACACAGAAGAGCCTCTCCCTGTCTCTGGGTAAAGCTAGCTGATTAATTAA Anti-ASGPR_49C11_7H-LV-hIgG4H-C (SEQ ID NO: 82): MRALILLCLFTAFPGILSDVQLQESGPDLVKPSQSLSLTCTVTGYSITSGYSWHWIRQFPGNKLEWM GYILFSGSTNYNPSLKSRISITRDTSKNQFFLQLNSVTTEDTATYFCARSNYGSFASWGQGTLVTVSA AKTTGPSVFPLAPCSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSV VTVPSSSLGTKTYTCNVDHKPSNTKVDKRVESKYGPPCPPCPAPEFEGGPSVFLFPPKPKDTLMISRT PEVTCVVVDVSQEDPEVQFNWYVDGVEVHNAKTKPREEQFNSTYRVVSVLTVLHQDWLNGKEYK CKVSNKGLPSSIEKTISKAKGQPREPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPE NNYKTTPPVLDSDGSFFLYSRLTVDKSRWQEGNVFSCSVMHEALHNHYTQKSLSLSLGKAS Anti-ASGPR_49C11_7K-LV-hIgGK-C (SEQ ID NO: 18): ATGGATTTTCAAGTGCAGATTTTCAGCTTCCTGCTAATCAGTGCCTCAGTCATAATATCCAGAGG ACAAATTGTTCTCACCCAGTCTCCAGCAATCATGTCTGCATCTCCAGGGGAGAAGGTCACCATG ACCTGCAGTGCCAGCTCAAGTGTAAGTCACATGCACTGGTACCAGCAGAAGTCAGGCACTTCCC CCAAAAGATGGATTTATGACACATCCAGACTGGCTTCTGGAGTCCCTGCTCGCTTCAGTGGCAG TGGGTCTGGGACCTCTTACTCTCTCACAATCAGCAGCATGGAGGCTGAAGATGCTGCCACTTAT TACTGCCAGCAGTGGAGTAGTCACCCATGGTCGTTCGGTGGAGGCACCAAACTCGAGATCAAA CGAACTGTGGCTGCACCATCTGTCTTCATCTTCCCGCCATCTGATGAGCAGTTGAAATCTGGAAC TGCCTCTGTTGTGTGCCTGCTGAATAACTTCTATCCCAGAGAGGCCAAAGTACAGTGGAAGGTG GATAACGCCCTCCAATCGGGTAACTCCCAGGAGAGTGTCACAGAGCAGGACAGCAAGGACAGC ACCTACAGCCTCAGCAGCACCCTGACGCTGAGCAAAGCAGACTACGAGAAACACAAAGTCTAT GCCTGCGAAGTCACCCATCAGGGCCTGAGCTCGCCCGTCACAAAGAGCTTCAACAGGGGAGAG TGTTAG Anti-ASGPR_49C11_7K-LV-hIgGK-C (SEQ ID NO: 83): MDFQVQIFSFLLISASVIISRGQIVLTQSPAIMSASPGEKVTMTCSASSSVSHMHWYQQKSGTSPKRWI YDTSRLASGVPARFSGSGSGTSYSLTISSMEAEDAATYYCQQWSSHPWSFGGGTKLEIKRTVAAPSV FIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLS KADYEKHKVYACEVTHQGLSSPVTKSFNRGEC Anti-ASGPR_4G2.2_Hv-V-hIgG4H-C (SEQ ID NO: 19): ATGGCTTGGGTGTGGACCTTGCTATTCCTGATGGCAGCTGCCCAAAGTGCCCAAGCACAGATCC AGTTGGTGCAGTCTGGACCTGAGCTGAAGAAGCCTGGAGAGACAGTCAAGATCTCCTGCAAGG CTTCTGGGTATACCTTCACAAACTATGGAATGAACTGGGTGAAGCAGGTTCCAGGAAAAGGTTT AAGGTGGATGGGCTGGATGGACACCTTCACTGGAGAGCCAACATATGCTGATGACTTCAAGGG ACGGTTTGCCTTCTCTTTGGAAACCTCTGCCAGCACTGCCTATTTGCAGATCAACAGCCTCAAAA ATGAGGACACGGCTACTTATTTCTGTGCAAGAGGGGGGATTTTACGACTCAACTACTTTGACTA CTGGGGCCAAGGCACCACTCTCACAGTCTCCTCAGCCAAAACGAAGGGCCCATCCGTCTTCCCC CTGGCGCCCTGCTCCAGGAGCACCTCCGAGAGCACAGCCGCCCTGGGCTGCCTGGTCAAGGACT ACTTCCCCGAACCGGTGACGGTGTCGTGGAACTCAGGCGCCCTGACCAGCGGCGTGCACACCTT CCCGGCTGTCCTACAGTCCTCAGGACTCTACTCCCTCAGCAGCGTGGTGACCGTGCCCTCCAGC AGCTTGGGCACGAAGACCTACACCTGCAACGTAGATCACAAGCCCAGCAACACCAAGGTGGAC AAGAGAGTTGAGTCCAAATATGGTCCCCCATGCCCACCCTGCCCAGCACCTGAGTTCGAAGGGG GACCATCAGTCTTCCTGTTCCCCCCAAAACCCAAGGACACTCTCATGATCTCCCGGACCCCTGA GGTCACGTGCGTGGTGGTGGACGTGAGCCAGGAAGACCCCGAGGTCCAGTTCAACTGGTACGT GGATGGCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTTCAACAGCACGTA CCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAACGGCAAGGAGTACAAGTGC AAGGTCTCCAACAAAGGCCTCCCGTCCTCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAG CCCCGAGAGCCACAGGTGTACACCCTGCCCCCATCCCAGGAGGAGATGACCAAGAACCAGGTC AGCCTGACCTGCCTGGTCAAAGGCTTCTACCCCAGCGACATCGCCGTGGAGTGGGAGAGCAAT GGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCC TCTACAGCAGGCTAACCGTGGACAAGAGCAGGTGGCAGGAGGGGAATGTCTTCTCATGCTCCG TGATGCATGAGGCTCTGCACAACCACTACACACAGAAGAGCCTCTCCCTGTCTCTGGGTAAAGC TAGCTGATTAATTAA Anti-ASGPR_4G2.2_Hv-V-hIgG4H-C (SEQ ID NO: 84): MAWVWTLLFLMAAAQSAQAQIQLVQSGPELKKPGETVKISCKASGYTFTNYGMNWVKQVPGKGL RWMGWMDTFTGEPTYADDFKGRFAFSLETSASTAYLQINSLKNEDTATYFCARGGILRLNYFDYW GQGTTLTVSSAKTKGPSVFPLAPCSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVL QSSGLYSLSSVVTVPSSSLGTKTYTCNVDHKPSNTKVDKRVESKYGPPCPPCPAPEFEGGPSVFLFPP KPKDTLMISRTPEVTCVVVDVSQEDPEVQFNWYVDGVEVHNAKTKPREEQFNSTYRVVSVLTVLH QDWLNGKEYKCKVSNKGLPSSIEKTISKAKGQPREPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDI AVEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQEGNVFSCSVMHEALHNHYTQKSLS LSLGKAS Anti-ASGPR_4G2.2_Kv-V-hIgGK-C (SEQ ID NO: 20): ATGAAGTTTCCTTCTCAACTTCTGCTCTTACTGCTGTTTGGAATCCCAGGCATGATATGTGACAT CCAGATGACACAATCTTCATCCTCCTTTTCTGTATCTCTAGGAGACAGAGTCACCATTACTTGCA AGGCAAGTGAGGACATATATAATCGGTTAGGCTGGTATCAGCAGAAACCAGGAAATGCTCCTA GGCTCTTAATATCTGGTGCAACCAGTTTGGAAACTGGGGTTCCTTCAAGATTCAGTGGCAGTGG ATCTGGAAAGGATTACGCTCTCAGCATTACCAGTCTTCAGACTGAAGATCTTGCTACTTATTACT GTCAACAGTGTTGGACTTCTCCGTACACGTTCGGAGGGGGGACCAAGCTCGAGATCAAACGAA CTGTGGCTGCACCATCTGTCTTCATCTTCCCGCCATCTGATGAGCAGTTGAAATCTGGAACTGCC TCTGTTGTGTGCCTGCTGAATAACTTCTATCCCAGAGAGGCCAAAGTACAGTGGAAGGTGGATA ACGCCCTCCAATCGGGTAACTCCCAGGAGAGTGTCACAGAGCAGGACAGCAAGGACAGCACCT ACAGCCTCAGCAGCACCCTGACGCTGAGCAAAGCAGACTACGAGAAACACAAAGTCTATGCCT GCGAAGTCACCCATCAGGGCCTGAGCTCGCCCGTCACAAAGAGCTTCAACAGGGGAGAGTGTT AG Anti-ASGPR_4G2.2_Kv-V-hIgGK-C (SEQ ID NO: 85): MKFPSQLLLLLLFGIPGMICDIQMTQSSSSFSVSLGDRVTITCKASEDIYNRLGWYQQKPGNAPRLLIS GATSLETGVPSRFSGSGSGKDYALSITSLQTEDLATYYCQQCWTSPYTFGGGTKLEIKRTVAAPSVFI FPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKA DYEKHKVYACEVTHQGLSSPVTKSFNRGEC Anti-ASGPR_5F10H-LV-hIgG4H-C (SEQ ID NO: 21): ATGGGATGGAGCTGGATCTTTCTCTTTCTCTTGTCAGGAACTGGAGGTGTCCTCTCTGAGGTCCA GCTGCAACAGTCTGGACCTGAGCTGGTGAAGCCTGGGGCTTCAGTGAAGATGTCCTGCAAGGCT TCTGGATACACCTTCACTGACTACTACATGAAGTGGGTGAAGCAGAGCCATGGAAAGAGCCTTG AGTGGATTGGAGATATTAATCCTAACTATGGTGATACTTTCTACAACCAGAAGTTCGAGGGCAA GGCCACATTGACTGTAGACAAATCCTCCAGGACAGCCTACATGCAGCTCAACAGCCTGACATCT GAGGACTCTGCAGTCTATTATTGTGGAAGAGGGGACTATGGATACTTCGATGTCTGGGGCGCAG GGACCACGGTCACCGTCTCCTCAGCCAAAACAAAGGGCCCATCCGTCTTCCCCCTGGCGCCCTG CTCCAGGAGCACCTCCGAGAGCACAGCCGCCCTGGGCTGCCTGGTCAAGGACTACTTCCCCGAA CCGGTGACGGTGTCGTGGAACTCAGGCGCCCTGACCAGCGGCGTGCACACCTTCCCGGCTGTCC TACAGTCCTCAGGACTCTACTCCCTCAGCAGCGTGGTGACCGTGCCCTCCAGCAGCTTGGGCAC GAAGACCTACACCTGCAACGTAGATCACAAGCCCAGCAACACCAAGGTGGACAAGAGAGTTGA GTCCAAATATGGTCCCCCATGCCCACCCTGCCCAGCACCTGAGTTCGAAGGGGGACCATCAGTC TTCCTGTTCCCCCCAAAACCCAAGGACACTCTCATGATCTCCCGGACCCCTGAGGTCACGTGCG TGGTGGTGGACGTGAGCCAGGAAGACCCCGAGGTCCAGTTCAACTGGTACGTGGATGGCGTGG AGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTTCAACAGCACGTACCGTGTGGTCA GCGTCCTCACCGTCCTGCACCAGGACTGGCTGAACGGCAAGGAGTACAAGTGCAAGGTCTCCA ACAAAGGCCTCCCGTCCTCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAGC CACAGGTGTACACCCTGCCCCCATCCCAGGAGGAGATGACCAAGAACCAGGTCAGCCTGACCT GCCTGGTCAAAGGCTTCTACCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGG AGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTACAGCAG GCTAACCGTGGACAAGAGCAGGTGGCAGGAGGGGAATGTCTTCTCATGCTCCGTGATGCATGA GGCTCTGCACAACCACTACACACAGAAGAGCCTCTCCCTGTCTCTGGGTAAAGCTAGCTGA Anti-ASGPR_5F10H-LV-hIgG4H-C (SEQ ID NO: 86): MGWSWIFLFLLSGTGGVLSEVQLQQSGPELVKPGASVKMSCKASGYTFTDYYMKWVKQSHGKSLE WIGDINPNYGDTFYNQKFEGKATLTVDKSSRTAYMQLNSLTSEDSAVYYCGRGDYGYFDVWGAGT TVTVSSAKTKGPSVFPLAPCSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGL YSLSSVVTVPSSSLGTKTYTCNVDHKPSNTKVDKRVESKYGPPCPPCPAPEFEGGPSVFLFPPKPKDT LMISRTPEVTCVVVDVSQEDPEVQFNWYVDGVEVHNAKTKPREEQFNSTYRVVSVLTVLHQDWLN GKEYKCKVSNKGLPSSIEKTISKAKGQPREPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWE SNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQEGNVFSCSVMHEALHNHYTQKSLLSLGKAS Anti-ASGPR_5F10K-LV-hIgGK-C (SEQ ID NO: 22): ATGGAGACACATTCTCAGGTCTTTGTATACATGTTGCTGTGGTTGTCTGGTGTTGAAGGAGACAT TGTGATGACCCAGTCTCACAAATTCATGTCCACATCAGTAGGAGACAGGGTCAGCATCACCTGC AAGGCCAGTCAGGATGTGGGTACTGCTGTAGCCTGGTATCAACAGAAACCAGGGCAATCTCCT AAACTACTGATTTACTGGGCATCCACCCGGCACACTGGAGTCCCTGATCGCTTCACAGGCAGTG GATCTGGGACAGATTTCACTCTCACCATTAACAATGTGCAGTCTGAAGACTTGGCAGATTATTT CTGTCAGCAATATAGCAGCAATCCGTACATGTTCGGAGGGGGGACCAAGCTCGAGATCAAACG AACTGTGGCTGCACCATCTGTCTTCATCTTCCCGCCATCTGATGAGCAGTTGAAATCTGGAACTG CCTCTGTTGTGTGCCTGCTGAATAACTTCTATCCCAGAGAGGCCAAAGTACAGTGGAAGGTGGA TAACGCCCTCCAATCGGGTAACTCCCAGGAGAGTGTCACAGAGCAGGACAGCAAGGACAGCAC CTACAGCCTCAGCAGCACCCTGACGCTGAGCAAAGCAGACTACGAGAAACACAAAGTCTATGC CTGCGAAGTCACCCATCAGGGCCTGAGCTCGCCCGTCACAAAGAGCTTCAACAGGGGAGAGTG TTAG Anti-ASGPR_5F10K-LV-hIgGK-C (SEQ ID NO: 87): METHSQVFVYMLLWLSGVEGDIVMTQSHKFMSTSVGDRVSITCKASQDVGTAVAWYQQKPGQSP KLLIYWASTRHTGVPDRFTGSGSGTDFTLTINNVQSEDLADYFCQQYSSNPYMFGGGTKLEIKRTVA APSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSST LTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC Anti-ASGPR1H11_H-V-hIgG4H-C (SEQ ID NO: 23): ATGGGATGGAGCTGGATCTTTCTCTTTCTCCTGTCAGGAACTGCAGGTGTCCTCTCTGAGGTCCA GCTGCAACAGTCTGGACCTGAGTTGGTGAAGCCTGGGGCTTCAGTGAAGATATCCTGCAAGACT TCTGGATACACATTCACTGAATACACCATGCACTGGGTGAGGCAGAGCCATGGAAAGAGCCTT GAGTGGATTGGAGGTATTAATCCTATCAATGGTGGTCCTACCTACAACCAGAAGTTCAAGGGCA AGGCCACATTGACTGTTGACAAGTCCTCCAGCACAGCCTACATGGAGCTCCGCAGCCTGACATC TGAGGACTCTGCAGTCTATTACTGTGCAAGATGGGACTATGGTAGTCGAGATGTTATGGACTAC TGGGGTCAAGGAACCTCAGTCACCGTCTCCTCAGCCAAAACGAAGGGCCCATCCGTCTTCCCCC TGGCGCCCTGCTCCAGGAGCACCTCCGAGAGCACAGCCGCCCTGGGCTGCCTGGTCAAGGACTA CTTCCCCGAACCGGTACCGGTGACGGTGTCGTGGAACTCAGGCGCCCTGACCAGCGGCGTGCAC ACCTTCCCGGCTGTCCTACAGTCCTCAGGACTCTACTCCCTCAGCAGCGTGGTGACCGTGCCCTC CAGCAGCTTGGGCACGAAGACCTACACCTGCAACGTAGATCACAAGCCCAGCAACACCAAGGT GGACAAGAGAGTTGAGTCCAAATATGGTCCCCCATGCCCACCCTGCCCAGCACCTGAGTTCGAA GGGGGACCATCAGTCTTCCTGTTCCCCCCAAAACCCAAGGACACTCTCATGATCTCCCGGACCC CTGAGGTCACGTGCGTGGTGGTGGACGTGAGCCAGGAAGACCCCGAGGTCCAGTTCAACTGGT ACGTGGATGGCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTTCAACAGCA CGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAACGGCAAGGAGTACAA GTGCAAGGTCTCCAACAAAGGCCTCCCGTCCTCCATCGAGAAAACCATCTCCAAAGCCAAAGG GCAGCCCCGAGAGCCACAGGTGTACACCCTGCCCCCATCCCAGGAGGAGATGACCAAGAACCA GGTCAGCCTGACCTGCCTGGTCAAAGGCTTCTACCCCAGCGACATCGCCGTGGAGTGGGAGAGC AATGGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCT TCCTCTACAGCAGGCTAACCGTGGACAAGAGCAGGTGGCAGGAGGGGAATGTCTTCTCATGCTC CGTGATGCATGAGGCTCTGCACAACCACTACACACAGAAGAGCCTCTCCCTGTCTCTGGGTAAA GCTAGCTGA Anti-ASGPR1H11_H-V-hIgG4H-C (SEQ ID NO: 88): MGWSWIFLFLLSGTAGVLSEVQLQQSGPELVKPGASVKISCKTSGYTFTEYTMHWVRSHGKSLEWI GGINPINGGPTYNQKFKGKATLTVDKSSSTAYMELRSLTSEDSAVYYCARWDYGSRDVMDYWGQ GTSVTVSSAKTKGPSVFPLAPCSRSTSESTAALGCLVKDYFPEPVPVTVSWNSGALTSGVHTFPAVL QSSGLYSLSSVVTVPSSSLGTKTYTCNVDHKPSNTKVDKRVESKYGPPCPPCPAPEFEGGPSVFLFPP KPKDTLMISRTPEVTCVVVDVSQEDPEVQFNWYVDGVEVHNAKTKPREEQFNSTYRVVSVLTVLH QDWLNGKEYKCKVSNKGLPSSIEKTISKAKGQPREPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDI AVEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQEGNVFSCSVMHEALHNHYTQKSLS LSLGKAS Anti-ASGPR1H11K-LV-var2-hIgGK-C (SEQ ID NO: 24): ATGGAATCACAGACTCTGGTCTTCATATCCATACTGCTCTGGTTATATGGTGCTGATGGGAACAT TGTAATGACTCAATCTCCCAAATCCATGTCCATGTCAGTAGGGGAGAGGGTCACCTTGAGCTGC AAGGCCAGTGAGAATGTGGGAACTTATGTATCCTGGTATCAACAGAGACCAGAACAGTCTCCA AAACTGCTGATATACGGGGCATCCAACCGGTACACTGGGGTCCCCGATCGCTTCACAGGCAGTG GATCTGCAACAGATTTCACTCTGACCATCAGCAGTGTGCAGGCTGAGGACCTTGCAGATTATCA CTGTGGACAGACTTACAGCTATATATTCACGTTCGGCTCGGGGACAAAGCTCGAGATCAAACGA ACTGTGGCTGCACCATCTGTCTTCATCTTCCCGCCATCTGATGAGCAGTTGAAATCTGGAACTGC CTCTGTTGTGTGCCTGCTGAATAACTTCTATCCCAGAGAGGCCAAAGTACAGTGGAAGGTGGAT AACGCCCTCCAATCGGGTAACTCCCAGGAGAGTGTCACAGAGCAGGACAGCAAGGACAGCACC TACAGCCTCAGCAGCACCCTGACGCTGAGCAAAGCAGACTACGAGAAACACAAAGTCTATGCC TGCGAAGTCACCCATCAGGGCCTGAGCTCGCCCGTCACAAAGAGCTTCAACAGGGGAGAGTGT TAG Anti-ASGPR1H11K-LV-var2-hIgGK-C (SEQ ID NO: 89): METHSQVFVYMLLWLSGVEGNIVMTQSPKSMSMSVGERVTLSCKASENVGTYVSWYQQRPEQSPK LLIYGASNRYTGVPDRFTGSGSATDFTLTISSVQAEDLADYHCGQTYSYIFTFGSGTKLEIKRTVAAP SVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLT LSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC Anti-CD1d_2B5.3G10_H-V-hIgG4H-C (SEQ ID NO: 25): ATGGGATGGAGCCGGATCTTTCTCTTCCTCCTGTCAATAACTGCAGGTGTCCATTGCCAGGTCCA GGTGCAGCAGTCGGGACCTGAGTTGGTGAAGCCTGGGGCCTCAGTGAAGATTTCCTGCAAAGC CTCTGGCGACGCATTCAGTAGTTCTTGGATGAACTGGGTGAAGCAGAGGCCTGGACAGGGTCTT GAGTGGATTGGACGGATTTATCTTGGAGATGGAGATATTAATTACAATGGGAAGTTCAAGGGC AGGGCCACACTGACTGCAGACAAATCCTCCAGCACAGCCTACATGCAGCTCAGCAGCCTGACCT CTGTGGACTCTGCGGTCTATTTCTGCGCGAGGCAGCTCGGGCTATGGTATGTTATGGACTACTG GGGTCAAGGAACCTCAGTCACCGTCTCCTCAGCCAAAACAAAGGGCCCATCCGTCTTCCCCCTG GCGCCCTGCTCCAGGAGCACCTCCGAGAGCACAGCCGCCCTGGGCTGCCTGGTCAAGGACTACT TCCCCGAACCGGTGACGGTGTCGTGGAACTCAGGCGCCCTGACCAGCGGCGTGCACACCTTCCC GGCTGTCCTACAGTCCTCAGGACTCTACTCCCTCAGCAGCGTGGTGACCGTGCCCTCCAGCAGC TTGGGCACGAAGACCTACACCTGCAACGTAGATCACAAGCCCAGCAACACCAAGGTGGACAAG AGAGTTGAGTCCAAATATGGTCCCCCATGCCCACCCTGCCCAGCACCTGAGTTCGAAGGGGGAC CATCAGTCTTCCTGTTCCCCCCAAAACCCAAGGACACTCTCATGATCTCCCGGACCCCTGAGGTC ACGTGCGTGGTGGTGGACGTGAGCCAGGAAGACCCCGAGGTCCAGTTCAACTGGTACGTGGAT GGCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTTCAACAGCACGTACCGT GTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAACGGCAAGGAGTACAAGTGCAAG GTCTCCAACAAAGGCCTCCCGTCCTCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCC GAGAGCCACAGGTGTACACCCTGCCCCCATCCCAGGAGGAGATGACCAAGAACCAGGTCAGCC TGACCTGCCTGGTCAAAGGCTTCTACCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGC AGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTA CAGCAGGCTAACCGTGGACAAGAGCAGGTGGCAGGAGGGGAATGTCTTCTCATGCTCCGTGAT GCATGAGGCTCTGCACAACCACTACACACAGAAGAGCCTCTCCCTGTCTCTGGGTAAAGCTAGC TGA Anti-CD1d_2B5.3G10_H-V-hIgG4H-C (SEQ ID NO: 90): MGWSRIFLFLLSITAGVHCQVQVQQSGPELVKPGASVKISCKASGDAFSSSWMNWVKQRPGQGLE WIGRIYLGDGDINYNGKFKGRATLTADKSSSTAYMQLSSLTSVDSAVYFCARQLGLWYVMDYWG QGTSVTVSSAKTKGPSVFPLAPCSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQ SSGLYSLSSVVTVPSSSLGTKTYTCNVDHKPSNTKVDKRVESKYGPPCPPCPAPEFEGGPSVFLFPPK PKDTLMISRTPEVTCVVVDVSQEDPEVQFNWYVDGVEVHNAKTKPREEQFNSTYRVVSVLTVLHQ DWLNGKEYKCKVSNKGLPSSIEKTISKAKGQPREPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIA VEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQEGNVFSCSVMHEALHNHYTQKSLSLS LGKAS Anti-CD1d_2B5.3G10_K-V-hIgGK-C (SEQ ID NO: 26): ATGAGTGTGCCCACTCAGGTCCTGGGGTTGCTGCTGCTGTGGCTTACAGGTGCCAGATGTGACA TCCAGATGGCTCAGTCTCCAGCCTCCCTATCTGCATCTGTGGGAGAAACTGTCACCATCACATGT CGAGCAAGTGAGAATATTTACAGTTATTTAGCATGGTATCAGCAGAAACAGGGAAAATCTCCTC AGCTCCTGGTCTATAATGCAAAAACCTTAGCAGAAGGTGTGCCATCAAGGTTCAGTGGCAGTGG ATCAGGCACACAGTTTTCTCTGAAGATCAACAGCCTGCAGCCTGAAGATTTTGGGAGTTATTAC TGTCAACATCATTATGGTTTTCCGTGGACGTTCGGTGGAGGCACCAAGCTCGAGATCAAACGAA CTGTGGCTGCACCATCTGTCTTCATCTTCCCGCCATCTGATGAGCAGTTGAAATCTGGAACTGCC TCTGTTGTGTGCCTGCTGAATAACTTCTATCCCAGAGAGGCCAAAGTACAGTGGAAGGTGGATA ACGCCCTCCAATCGGGTAACTCCCAGGAGAGTGTCACAGAGCAGGACAGCAAGGACAGCACCT ACAGCCTCAGCAGCACCCTGACGCTGAGCAAAGCAGACTACGAGAAACACAAAGTCTATGCCT GCGAAGTCACCCATCAGGGCCTGAGCTCGCCCGTCACAAAGAGCTTCAACAGGGGAGAGTGTT AG Anti-CD1d_2B5.3G10_K-V-hIgGK-C (SEQ ID NO: 91): MSVPTQVLGLLLLWLTGARCDIQMAQSPASLSASVGETVTITCRASENIYSYLAWYQQKQGKSPQL LVYNAKTLAEGVPSRFSGSGSGTQFSLKINSLQPEDFGSYYCQHHYGFPWTFGGGTKLEIKRTVAAP SVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLT LSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC Anti-CD1d_2H11.2G5_H-V-hIgG4H-C (SEQ ID NO: 27): ATGAACTTCGGGCTCAGCTTGATTTTCCTTGTCCTCATTTTAAAAGGTGTCCAGTGTGAGGTGCA GCTGGTGGAGTCTGGGGGAGACTTAGTGAAGCCTGGAGGGTCCCTGAAACTCTCCTGTGCAGCC TCTGGATTCACTTTCAGTAGCTATGGCATGTCTTGGGTTCGCCAGACTCCAGACAAGAGGCTGG AGTGGGTCGCAGTCATTAGTAGTGGTGGAAGTTCCACCTTCTATCCAGACAGTGTGAAGGGGCG ATTCACCATCTCCAGAGACAATGCCAAGAACACCCTGTACCTGCAAATGAGCAGTCTGAAGTCT GAGGACACAGCCGTGTATTACTGTTCAAGAGGAGGTTACTACTTTGACTACTGGGGCCAAGGCA CCACTCTCACAGTCTCCGCAGCCAAAACAAAGGGCCCATCCGTCTTCCCCCTGGCGCCCTGCTC CAGGAGCACCTCCGAGAGCACAGCCGCCCTGGGCTGCCTGGTCAAGGACTACTTCCCCGAACC GGTGACGGTGTCGTGGAACTCAGGCGCCCTGACCAGCGGCGTGCACACCTTCCCGGCTGTCCTA CAGTCCTCAGGACTCTACTCCCTCAGCAGCGTGGTGACCGTGCCCTCCAGCAGCTTGGGCACGA AGACCTACACCTGCAACGTAGATCACAAGCCCAGCAACACCAAGGTGGACAAGAGAGTTGAGT CCAAATATGGTCCCCCATGCCCACCCTGCCCAGCACCTGAGTTCGAAGGGGGACCATCAGTCTT CCTGTTCCCCCCAAAACCCAAGGACACTCTCATGATCTCCCGGACCCCTGAGGTCACGTGCGTG GTGGTGGACGTGAGCCAGGAAGACCCCGAGGTCCAGTTCAACTGGTACGTGGATGGCGTGGAG GTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTTCAACAGCACGTACCGTGTGGTCAGC GTCCTCACCGTCCTGCACCAGGACTGGCTGAACGGCAAGGAGTACAAGTGCAAGGTCTCCAAC AAAGGCCTCCCGTCCTCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAGCCA CAGGTGTACACCCTGCCCCCATCCCAGGAGGAGATGACCAAGAACCAGGTCAGCCTGACCTGC CTGGTCAAAGGCTTCTACCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAG AACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTACAGCAGGC TAACCGTGGACAAGAGCAGGTGGCAGGAGGGGAATGTCTTCTCATGCTCCGTGATGCATGAGG CTCTGCACAACCACTACACACAGAAGAGCCTCTCCCTGTCTCTGGGTAAAGCTAGCTGA Anti-CD1d_2H11.2G5_H-V-hIgG4H-C (SEQ ID NO: 92): MNFGLSLIFLVLILKGVQCEVQLVESGGDLVKPGGSLKLSCAASGFTFSSYGMSWVRQTPDKRLEW VAVISSGGSSTFYPDSVKGRFTISRDNAKNTLYLQMSSLKSEDTAVYYCSRGGYYFDYWGQGTTLT VSAAKTKGPSVFPLAPCSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYS LSSVVTVPSSSLGTKTYTCNVDHKPSNTKVDKRVESKYGPPCPPCPAPEFEGGPSVFLFPPKPKDTLM ISRTPEVTCVVVDVSQEDPEVQFNWYVDGVEVHNAKTKPREEQFNSTYRVVSVLTVLHQDWLNGK EYKCKVSNKGLPSSIEKTISKAKGQPREPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWESN GQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQEGNVFSCSVMHEALHNHYTQKSLSLSLGKAS Anti-CD1d_2H11.2G5_K-V-hIgGK-C (SEQ ID NO: 28): ATGAGGTTCCAGGTTCAGGTTCTGGGGCTCCTTCTGCTCTGGATATCAGGTGCCCAGTGTGATGT CCAGATAACCCAGTCTCCATCTTATCTTGCTGCATCTCCTGGAGAAACCATTACTATTAATTGCA GGGCAAGCAAGACCATTAGCAAATATTTAGCCTGGTATCAAGAGAAACCTGAGAAAACTGATA AGCTTCTTATCTACTCTGGATCCACTTTGCAATCTGGAATTCCATCAAGGTTCAGTGGCAGTGGA TCTGGTACAGATTTCACTCTCACCATCAGTGGCCTGGAGCCTGAAGATTTTGCAATGTATTACTG TCAACAGCATAATGAATACCCGTGGACGTTCGGTGGAGGCACCAAGCTCGAGATCAAACGAAC TGTGGCTGCACCATCTGTCTTCATCTTCCCGCCATCTGATGAGCAGTTGAAATCTGGAACTGCCT CTGTTGTGTGCCTGCTGAATAACTTCTATCCCAGAGAGGCCAAAGTACAGTGGAAGGTGGATAA CGCCCTCCAATCGGGTAACTCCCAGGAGAGTGTCACAGAGCAGGACAGCAAGGACAGCACCTA CAGCCTCAGCAGCACCCTGACGCTGAGCAAAGCAGACTACGAGAAACACAAAGTCTATGCCTG CGAAGTCACCCATCAGGGCCTGAGCTCGCCCGTCACAAAGAGCTTCAACAGGGGAGAGTGTTAG Anti-CD1d_2H11.2G5_K-V-hIgGK-C (SEQ ID NO: 93): MRFQVQVLGLLLLWISGAQCDVQITQSPSYLAASPGETITINCRASKTISKYLAWYQEKPEKTDKLLI YSGSTLQSGIPSRFSGSGSGTDFTLTISGLEPEDFAMYYCQQHNEYPWTFGGGTKLEIKRTVAAPSVFI FPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKA DYEKHKVYACEVTHQGLSSPVTKSFNRGEC Anti-CD40_11B6.1C3_H-LV-hIgG4H-C (SEQ ID NO: 29): ATGGGATGGAGCTGGATCTTTCTCTTTCTCCTGTCAGGAACTGCAGGTGTCCTCTCTGAGGTCCA GCTGCAACAGTCTGGACCTGAGCTGGTGAAGCCTGGGGCTTCAGTGAAGATATCCTGCAAGGCT TCTGGTTACTCATTCACTGGCTACTACATGCACTGGGTGAAGCAAAGCCATGTAAAGAGCCTTG AGTGGATTGGACGTATTAATCCTTACAATGGTGCTACTAGCTACAACCAGAATTTCAAGGACAA GGCCAGCTTGACTGTAGATAAGTCCTCCAGCACAGCCTACATGGAGCTCCACAGCCTGACATCT GAGGACTCTGCAGTCTATTACTGTGCAAGAGAGGACTACGTCTACTGGGGCCAAGGCACCACTC TCACAGTCTCCTCAGCCAAAACGAAGGGCCCATCCGTCTTCCCCCTGGCGCCCTGCTCCAGGAG CACCTCCGAGAGCACAGCCGCCCTGGGCTGCCTGGTCAAGGACTACTTCCCCGAACCGGTGACG GTGTCGTGGAACTCAGGCGCCCTGACCAGCGGCGTGCACACCTTCCCGGCTGTCCTACAGTCCT CAGGACTCTACTCCCTCAGCAGCGTGGTGACCGTGCCCTCCAGCAGCTTGGGCACGAAGACCTA CACCTGCAACGTAGATCACAAGCCCAGCAACACCAAGGTGGACAAGAGAGTTGAGTCCAAATA TGGTCCCCCATGCCCACCCTGCCCAGCACCTGAGTTCGAAGGGGGACCATCAGTCTTCCTGTTC CCCCCAAAACCCAAGGACACTCTCATGATCTCCCGGACCCCTGAGGTCACGTGCGTGGTGGTGG ACGTGAGCCAGGAAGACCCCGAGGTCCAGTTCAACTGGTACGTGGATGGCGTGGAGGTGCATA ATGCCAAGACAAAGCCGCGGGAGGAGCAGTTCAACAGCACGTACCGTGTGGTCAGCGTCCTCA CCGTCCTGCACCAGGACTGGCTGAACGGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAGGCC TCCCGTCCTCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAGCCACAGGTGT ACACCCTGCCCCCATCCCAGGAGGAGATGACCAAGAACCAGGTCAGCCTGACCTGCCTGGTCA AAGGCTTCTACCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAACT ACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTACAGCAGGCTAACCGT GGACAAGAGCAGGTGGCAGGAGGGGAATGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCA CAACCACTACACACAGAAGAGCCTCTCCCTGTCTCTGGGTAAAGCTAGCTGA Anti-CD40_11B6.1C3_H-LV-hIgG4H-C (SEQ ID NO: 94): MGWSWIFLFLLSGTAGVLSEVQLQQSGPELVKPGASVKISCKASGYSFTGYYMHWVKQSHVKSLE WIGRINPYNGATSYNQNFKDKASLTVDKSSSTAYMELHSLTSEDSAVYYCAREDYVYWGQGTTLT VSSAKTKGPSVFPLAPCSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSL SSVVTVPSSSLGTKTYTCNVDHKPSNTKVDKRVESKYGPPCPPCPAPEFEGGPSVFLFPPKPKDTLMI SRTPEVTCVVVDVSQEDPEVQFNWYVDGVEVHNAKTKPREEQFNSTYRVVSVLTVLHQDWLNGK EYKCKVSNKGLPSSIEKTISKAKGQPREPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWESN GQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQEGNVFSCSVMHEALHNHYTQKSLSLSLGKAS Anti-CD40_11B6.1C3_K-LV-hIgGK-C (SEQ ID NO: 30): ATGAAGTTGCCTGTTAGGCTGTTGGTGCTGATGTTCTGGATTCCTGCTTCCAGCAGTGATGTTGT GATGACCCAAACTCCACTCTCCCTGCCTGTCAGTCTTGGAGATCAAGCCTCCATCTCTTGCAGAT CTAGTCAGAGCCTTGTACACAGTAATGGAAACACCTATTTACATTGGTACCTGCAGAAGCCAGG CCAGTCTCCAAAGCTCCTGATCTACAAAGTTTCCAACCGATTTTCTGGGGTCCCAGACAGGTTC AGTGGCAGTGGATCAGGGACAGATTTCGCACTCAAGATCAGTAGAGTGGAGGCTGAGGATCTG GGAGTTTATTTCTGCTCTCAAAGTACACATGTTCCGTGGACGTTCGGTGGAGGCACCAAGCTCG AGATCAAACGAACTGTGGCTGCACCATCTGTCTTCATCTTCCCGCCATCTGATGAGCAGTTGAA ATCTGGAACTGCCTCTGTTGTGTGCCTGCTGAATAACTTCTATCCCAGAGAGGCCAAAGTACAG TGGAAGGTGGATAACGCCCTCCAATCGGGTAACTCCCAGGAGAGTGTCACAGAGCAGGACAGC AAGGACAGCACCTACAGCCTCAGCAGCACCCTGACGCTGAGCAAAGCAGACTACGAGAAACAC AAAGTCTATGCCTGCGAAGTCACCCATCAGGGCCTGAGCTCGCCCGTCACAAAGAGCTTCAACA GGGGAGAGTGTTAG Anti-CD40_11B6.1C3_K-LV-hIgGK-C (SEQ ID NO: 95): MKLPVRLLVLMFWIPASSSDVVMTQTPLSLPVSLGDQASISCRSSQSLVHSNGNTYLHWYLQKPGQ SPKLLIYKVSNRFSGVPDRFSGSGSGTDFALKISRVEAEDLGVYFCSQSTHVPWTFGGGTKLEIKRTV AAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSS TLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC Anti-CD40_12B4.2C10_H-LV-hIgG4H-C (SEQ ID NO: 31): ATGGAATGGAGTTGGATATTTCTCTTTCTTCTGTCAGGAACTGCAGGTGTCCACTCTGAGGTCCA GCTGCAGCAGTCTGGACCTGAGCTGGTAAAGCCTGGGGCTTCAGTGAAGATGTCCTGCAAGGCT TCTGGATACACATTCACTGACTATGTTTTGCACTGGGTGAAACAGAAGCCTGGGCAGGGCCTTG AGTGGATTGGATATATTAATCCTTACAATGATGGTACTAAGTACAATGAGAAGTTCAAAGGCAA GGCCACACTGACTTCAGACAAATCCTCCAGCACAGCCTACATGGAGCTCAGCAGCCTGACCTCT GAGGACTCTGCGGTCTATTACTGTGCAAGGGGCTATCCGGCCTACTCTGGGTATGCTATGGACT ACTGGGGTCAAGGAACCTCAGTCACCGTCTCCTCAGCCAAAACGAAGGGCCCATCCGTCTTCCC CCTGGCGCCCTGCTCCAGGAGCACCTCCGAGAGCACAGCCGCCCTGGGCTGCCTGGTCAAGGAC TACTTCCCCGAACCGGTGACGGTGTCGTGGAACTCAGGCGCCCTGACCAGCGGCGTGCACACCT TCCCGGCTGTCCTACAGTCCTCAGGACTCTACTCCCTCAGCAGCGTGGTGACCGTGCCCTCCAGC AGCTTGGGCACGAAGACCTACACCTGCAACGTAGATCACAAGCCCAGCAACACCAAGGTGGAC AAGAGAGTTGAGTCCAAATATGGTCCCCCATGCCCACCCTGCCCAGCACCTGAGTTCGAAGGGG GACCATCAGTCTTCCTGTTCCCCCCAAAACCCAAGGACACTCTCATGATCTCCCGGACCCCTGA GGTCACGTGCGTGGTGGTGGACGTGAGCCAGGAAGACCCCGAGGTCCAGTTCAACTGGTACGT GGATGGCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTTCAACAGCACGTA CCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAACGGCAAGGAGTACAAGTGC AAGGTCTCCAACAAAGGCCTCCCGTCCTCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAG CCCCGAGAGCCACAGGTGTACACCCTGCCCCCATCCCAGGAGGAGATGACCAAGAACCAGGTC AGCCTGACCTGCCTGGTCAAAGGCTTCTACCCCAGCGACATCGCCGTGGAGTGGGAGAGCAAT GGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCC TCTACAGCAGGCTAACCGTGGACAAGAGCAGGTGGCAGGAGGGGAATGTCTTCTCATGCTCCG TGATGCATGAGGCTCTGCACAACCACTACACACAGAAGAGCCTCTCCCTGTCTCTGGGTAAAGC TAGCTGA Anti-CD40_12B4.2C10_H-LV-hIgG4H-C (SEQ ID NO: 96): MEWSWIFLFLLSGTAGVHSEVQLQQSGPELVKPGASVKMSCKASGYTFTDYVLHWVKQKPGQGLE WIGYINPYNDGTKYNEKFKGKATLTSDKSSSTAYMELSSLTSEDSAVYYCARGYPAYSGYAMDYW GQGTSVTVSSAKTKGPSVFPLAPCSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVL QSSGLYSLSSVVTVPSSSLGTKTYTCNVDHKPSNTKVDKRVESKYGPPCPPCPAPEFEGGPSVFLFPP KPKDTLMISRTPEVTCVVVDVSQEDPEVQFNWYVDGVEVHNAKTKPREEQFNSTYRVVSVLTVLH QDWLNGKEYKCKVSNKGLPSSIEKTISKAKGQPREPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDI AVEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQEGNVFSCSVMHEALHNHYTQKSLS LSLGKAS Anti-CD40_12B4.2C10_K-LV-v2-hIgGK-C (SEQ ID NO: 32): ATGATGTCCTCTGCTCAGTTCCTTGGTCTCCTGTTGCTCTGTTTTCAAGGTACCAGATGTGATATC CAGATGACACAGACTACATCCTCCCTGTCTGCCTCTCTGGGAGACAGAGTCACCATCAGTTGCA GGGCAAGTCAGGACATTAGCAATTATTTAAACTGGTATCAGCAGAAACCAGATGGAACTGTTA AACTCCTGATCTACTACACATCAAGATTACACTCAGGAGTCCCATCAAGGTTCAGTGGCAGTGG GTCTGGAACAGATTATTCTCTCACCATTAGCAACCTGGAGCAAGAAGATATTGCCACTTACTTTT GCCATCATGGTAATACGCTTCCGTGGACGTTCGGTGGAGGCACCAAGCTCGAGATCAAACGAA CTGTGGCTGCACCATCTGTCTTCATCTTCCCGCCATCTGATGAGCAGTTGAAATCTGGAACTGCC TCTGTTGTGTGCCTGCTGAATAACTTCTATCCCAGAGAGGCCAAAGTACAGTGGAAGGTGGATA ACGCCCTCCAATCGGGTAACTCCCAGGAGAGTGTCACAGAGCAGGACAGCAAGGACAGCACCT ACAGCCTCAGCAGCACCCTGACGCTGAGCAAAGCAGACTACGAGAAACACAAAGTCTATGCCT GCGAAGTCACCCATCAGGGCCTGAGCTCGCCCGTCACAAAGAGCTTCAACAGGGGAGAGTGTT AG Anti-CD40_12B4.2C10_K-LV-v2-hIgGK-C (SEQ ID NO: 97): MMSSAQFLGLLLLCFQGTRCDIQMTQTTSSLSASLGDRVTISCRASQDISNYLNWYQQKPDGTVKLL IYYTSRLHSGVPSRFSGSGSGTDYSLTISNLEQEDIATYFCHHGNTLPWTFGGGTKLEIKRTVAAPSVF IFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSK ADYEKHKVYACEVTHQGLSSPVTKSFNRGEC Anti-CD40_12E12.3F3_H-V-hIgG4H-C (SEQ ID NO: 33): ATGAACTTGGGGCTCAGCTTGATTTTCCTTGTCCTTGTTTTAAAAGGTGTCCAGTGTGAAGTGAA GCTGGTGGAGTCTGGGGGAGGCTTAGTGCAGCCTGGAGGGTCCCTGAAACTCTCCTGTGCAACC TCTGGATTCACTTTCAGTGACTATTACATGTATTGGGTTCGCCAGACTCCAGAGAAGAGGCTGG AGTGGGTCGCATACATTAATTCTGGTGGTGGTAGCACCTATTATCCAGACACTGTAAAGGGCCG ATTCACCATCTCCAGAGACAATGCCAAGAACACCCTGTACCTGCAAATGAGCCGGCTGAAGTCT GAGGACACAGCCATGTATTACTGTGCAAGACGGGGGTTACCGTTCCATGCTATGGACTATTGGG GTCAAGGAACCTCAGTCACCGTCTCCTCAGCCAAAACGAAGGGCCCATCCGTCTTCCCCCTGGC GCCCTGCTCCAGGAGCACCTCCGAGAGCACAGCCGCCCTGGGCTGCCTGGTCAAGGACTACTTC CCCGAACCGGTGACGGTGTCGTGGAACTCAGGCGCCCTGACCAGCGGCGTGCACACCTTCCCGG CTGTCCTACAGTCCTCAGGACTCTACTCCCTCAGCAGCGTGGTGACCGTGCCCTCCAGCAGCTTG GGCACGAAGACCTACACCTGCAACGTAGATCACAAGCCCAGCAACACCAAGGTGGACAAGAGA GTTGAGTCCAAATATGGTCCCCCATGCCCACCCTGCCCAGCACCTGAGTTCGAAGGGGGACCAT CAGTCTTCCTGTTCCCCCCAAAACCCAAGGACACTCTCATGATCTCCCGGACCCCTGAGGTCAC GTGCGTGGTGGTGGACGTGAGCCAGGAAGACCCCGAGGTCCAGTTCAACTGGTACGTGGATGG CGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTTCAACAGCACGTACCGTGT GGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAACGGCAAGGAGTACAAGTGCAAGGT CTCCAACAAAGGCCTCCCGTCCTCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCG AGAGCCACAGGTGTACACCCTGCCCCCATCCCAGGAGGAGATGACCAAGAACCAGGTCAGCCT GACCTGCCTGGTCAAAGGCTTCTACCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCA GCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTAC AGCAGGCTAACCGTGGACAAGAGCAGGTGGCAGGAGGGGAATGTCTTCTCATGCTCCGTGATG CATGAGGCTCTGCACAACCACTACACACAGAAGAGCCTCTCCCTGTCTCTGGGTAAAGCTAGCT GA Anti-CD40_12E12.3F3_H-V-hIgG4H-C (SEQ ID NO: 98): MNLGLSLIFLVLVLKGVQCEVKLVESGGGLVQPGGSLKLSCATSGFTFSDYYMYWVRQTPEKRLE WVAYINSGGGSTYYPDTVKGRFTISRDNAKNTLYLQMSRLKSEDTAMYYCARRGLPFHAMDYWG QGTSVTVSSAKTKGPSVFPLAPCSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQ SSGLYSLSSVVTVPSSSLGTKTYTCNVDHKPSNTKVDKRVESKYGPPCPPCPAPEFEGGPSVFLFPPK PKDTLMISRTPEVTCVVVDVSQEDPEVQFNWYVDGVEVHNAKTKPREEQFNSTYRVVSVLTVLHQ DWLNGKEYKCKVSNKGLPSSIEKTISKAKGQPREPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIA VEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQEGNVFSCSVMHEALHNHYTQKSLSLS LGKAS Anti-CD40_12E12.3F3_K-LV-hIgGK-C (SEQ ID NO: 34): ATGATGTCCTCTGCTCAGTTCCTTGGTCTCCTGTTGCTCTGTTTTCAAGGTACCAGATGTGATATC CAGATGACACAGACTACATCCTCCCTGTCTGCCTCTCTAGGAGACAGAGTCACCATCAGTTGCA GTGCAAGTCAGGGCATTAGCAATTATTTAAACTGGTATCAGCAGAAACCAGATGGAACTGTTAA ACTCCTGATCTATTACACATCAATTTTACACTCAGGAGTCCCATCAAGGTTCAGTGGCAGTGGG TCTGGGACAGATTATTCTCTCACCATCGGCAACCTGGAACCTGAAGATATTGCCACTTACTATTG TCAGCAGTTTAATAAGCTTCCTCCGACGTTCGGTGGAGGCACCAAACTCGAGATCAAACGAACT GTGGCTGCACCATCTGTCTTCATCTTCCCGCCATCTGATGAGCAGTTGAAATCTGGAACTGCCTC TGTTGTGTGCCTGCTGAATAACTTCTATCCCAGAGAGGCCAAAGTACAGTGGAAGGTGGATAAC GCCCTCCAATCGGGTAACTCCCAGGAGAGTGTCACAGAGCAGGACAGCAAGGACAGCACCTAC AGCCTCAGCAGCACCCTGACGCTGAGCAAAGCAGACTACGAGAAACACAAAGTCTATGCCTGC GAAGTCACCCATCAGGGCCTGAGCTCGCCCGTCACAAAGAGCTTCAACAGGGGAGAGTGTTAG Anti-CD40_12E12.3F3_K-LV-hIgGK-C (SEQ ID NO: 99): MMSSAQFLGLLLLCFQGTRCDIQMTQTTSSLSASLGDRVTISCSASQGISNYLNWYQQKPDGTVKLL IYYTSILHSGVPSRFSGSGSGTDYSLTIGNLEPEDIATYYCQQFNKLPPTFGGGTKLEIKRTVAAPSVFI FPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKA DYEKHKVYACEVTHQGLSSPVTKSFNRGEC Anti-DCIR_24A5.4A5_H-V-hIgG4H-C (SEQ ID NO: 35): ATGGATTGGCTGTGGAACTTGCTATTCCTGATGGCAGCTGCCCAAAGTGCCCAAGCACAGATCC AGTTGGTGCAGTCTGGACCTGAGCTGAAGAAGCCTGGAGAGACAGTCAAGATCTCCTGCAAGG CTTCTGGGTATTCCTTCACAAACTATGGAATGAACTGGGTGAAACAGGCTCCAGGAAAGGGTTT AAAGTGGATGGGCTGGATAAACACCTACACTGGAGAGTCAACATATGCTGATGACTTCAAGGG ACGGTTTGCCTTCTCTTTGGAAACCTCTGCCAGCACTGCCTATTTGCAGATCAGTAACCTCAAAA ATGAGGACATGGCTACATATTTCTGTGCTAGAGGGGACTTTAGGTACTACTATTTTGACTACTG GGGCCAAGGCACCACTCTCACAGGCTCCTCAGCCAAAACGAAGGGCCCATCCGTCTTCCCCCTG GCGCCCTGCTCCAGGAGCACCTCCGAGAGCACAGCCGCCCTGGGCTGCCTGGTCAAGGACTACT TCCCCGAACCGGTGACGGTGTCGTGGAACTCAGGCGCCCTGACCAGCGGCGTGCACACCTTCCC GGCTGTCCTACAGTCCTCAGGACTCTACTCCCTCAGCAGCGTGGTGACCGTGCCCTCCAGCAGC TTGGGCACGAAGACCTACACCTGCAACGTAGATCACAAGCCCAGCAACACCAAGGTGGACAAG AGAGTTGAGTCCAAATATGGTCCCCCATGCCCACCCTGCCCAGCACCTGAGTTCGAAGGGGGAC CATCAGTCTTCCTGTTCCCCCCAAAACCCAAGGACACTCTCATGATCTCCCGGACCCCTGAGGTC ACGTGCGTGGTGGTGGACGTGAGCCAGGAAGACCCCGAGGTCCAGTTCAACTGGTACGTGGAT GGCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTTCAACAGCACGTACCGT GTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAACGGCAAGGAGTACAAGTGCAAG GTCTCCAACAAAGGCCTCCCGTCCTCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCC GAGAGCCACAGGTGTACACCCTGCCCCCATCCCAGGAGGAGATGACCAAGAACCAGGTCAGCC TGACCTGCCTGGTCAAAGGCTTCTACCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGC AGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTA CAGCAGGCTAACCGTGGACAAGAGCAGGTGGCAGGAGGGGAATGTCTTCTCATGCTCCGTGAT GCATGAGGCTCTGCACAACCACTACACACAGAAGAGCCTCTCCCTGTCTCTGGGTAAAGCTAGC TGAT Anti-DCIR_24A5.4A5_H-V-hIgG4H-C (SEQ ID NO: 100): MDWLWNLLFLMAAAQSAQAQIQLVQSGPELKKPGETVKISCKASGYSFTNYGMNWVKQAPGKGL KWMGWINTYTGESTYADDFKGRFAFSLETSASTAYLQISNLKNEDMATYFCARGDFRYYYFDYWG QGTTLTGSSAKTKGPSVFPLAPCSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQ SSGLYSLSSVVTVPSSSLGTKTYTCNVDHKPSNTKVDKRVESKYGPPCPPCPAPEFEGGPSVFLFPPK PKDTLMISRTPEVTCVVVDVSQEDPEVQFNWYVDGVEVHNAKTKPREEQFNSTYRVVSVLTVLHQ DWLNGKEYKCKVSNKGLPSSIEKTISKAKGQPREPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIA VEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQEGNVFSCSVMHEALHNHYTQKSLSLS LGKAS Anti-DCIR_24A5.4A5_K-V-hIgGK-C (SEQ ID NO: 36): ATGAGTGTGCTCACTCAGGTCCTGGCGTTGCTGCTGCTGTGGCTTACAGGTGCCAGATGTGACA TCCAGATGACTCAGTCTCCAGCCTCCCTATCTGCATCTGTGGGAGAAACTGTCACCATCACGTGT CGAGCAAGTGGGAATATTCACAATTATTTAGCATGGTATCAGCAGAAACAGGGAAAATCTCCTC AGCTCCTGGTCTATAATGCAAAAACCTTGGCAGATGGTGTGCCATCAAGGTTCAGTGGCAGTGG ATCAGGAACACAATATTCTCTCAAGATCAACACCCTGCAGCCTGAAGATTTTGGGAGTTATTAC TGTCAACATTTTTGGGATTCTTGGACGTTCGGTGGAGGCACCAAGCTCGAGATCAAACGAACTG TGGCTGCACCATCTGTCTTCATCTTCCCGCCATCTGATGAGCAGTTGAAATCTGGAACTGCCTCT GTTGTGTGCCTGCTGAATAACTTCTATCCCAGAGAGGCCAAAGTACAGTGGAAGGTGGATAACG CCCTCCAATCGGGTAACTCCCAGGAGAGTGTCACAGAGCAGGACAGCAAGGACAGCACCTACA GCCTCAGCAGCACCCTGACGCTGAGCAAAGCAGACTACGAGAAACACAAAGTCTATGCCTGCG AAGTCACCCATCAGGGCCTGAGCTCGCCCGTCACAAAGAGCTTCAACAGGGGAGAGTGTTAG Anti-DCIR_24A5.4A5_K-V-hIgGK-C (SEQ ID NO: 101): MSVLTQVLALLLLWLTGARCDIQMTQSPASLSASVGETVTITCRASGNIHNYLAWYQQKQGKSPQL LVYNAKTLADGVPSRFSGSGSGTQYSLKINTLQPEDFGSYYCQHFWDSWTFGGGTKLEIKRTVAAP SVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLT LSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC Anti-DCIR_24E7.3H9_H-V-hIgG4H-C (SEQ ID NO: 37): ATGGAATGGACCTGGGTCTTTCTCTTCCTCCTGTCAGTAACTGCAGGTGTCCACTCCCAGGTTCA GCTGCAGCAGTCTGGAGCTGAGCTGATGAAGCCTGGGGCCTCAGTGAAGATATCCTGCAAGGC TACTGGCTACACATTCAGTAGCTACTGGATAGAGTGGGTAAAGCAGAGGCCTGGACATGGCCTT GAGTGGATTGGAGAGATTTTACCTGGAAGTGGTAGGACTAACGACAATGAGAAGTTCAAGGGC AAGGCCACATTCACTGCAGATACATCCTCCAAGAAAGCCTACATGCAACTCAGCAGCCTGACAT CTGAGGACTCTGCCGTCTATTATTGTGCAAGAAGGGGTGGTTACTCCTTTGCTTACTGGGGCCA AGGGACTCTGGTCACTGTCTCTGCAGCCAAAACAAAGGGCCCATCCGTCTTCCCCCTGGCGCCC TGCTCCAGGAGCACCTCCGAGAGCACAGCCGCCCTGGGCTGCCTGGTCAAGGACTACTTCCCCG AACCGGTGACGGTGTCGTGGAACTCAGGCGCCCTGACCAGCGGCGTGCACACCTTCCCGGCTGT CCTACAGTCCTCAGGACTCTACTCCCTCAGCAGCGTGGTGACCGTGCCCTCCAGCAGCTTGGGC ACGAAGACCTACACCTGCAACGTAGATCACAAGCCCAGCAACACCAAGGTGGACAAGAGAGTT GAGTCCAAATATGGTCCCCCATGCCCACCCTGCCCAGCACCTGAGTTCGAAGGGGGACCATCAG TCTTCCTGTTCCCCCCAAAACCCAAGGACACTCTCATGATCTCCCGGACCCCTGAGGTCACGTGC GTGGTGGTGGACGTGAGCCAGGAAGACCCCGAGGTCCAGTTCAACTGGTACGTGGATGGCGTG GAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTTCAACAGCACGTACCGTGTGGTC AGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAACGGCAAGGAGTACAAGTGCAAGGTCTCC AACAAAGGCCTCCCGTCCTCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAG CCACAGGTGTACACCCTGCCCCCATCCCAGGAGGAGATGACCAAGAACCAGGTCAGCCTGACC TGCCTGGTCAAAGGCTTCTACCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCG GAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTACAGCA GGCTAACCGTGGACAAGAGCAGGTGGCAGGAGGGGAATGTCTTCTCATGCTCCGTGATGCATG AGGCTCTGCACAACCACTACACACAGAAGAGCCTCTCCCTGTCTCTGGGTAAAGCTAGCTGA Anti-DCIR_24E7.3H9_H-V-hIgG4H-C (SEQ ID NO: 102): MEWTWVFLFLLSVTAGVHSQVQLQQSGAELMKPGASVKISCKATGYTFSSYWIEWVKQRPGHGLE WIGEILPGSGRTNDNEKFKGKATFTADTSSKKAYMQLSSLTSEDSAVYYCARRGGYSFAYWGQGTL VTVSAAKTKGPSVFPLAPCSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGL YSLSSVVTVPSSSLGTKTYTCNVDHKPSNTKVDKRVESKYGPPCPPCPAPEFEGGPSVFLFPPKPKDT LMISRTPEVTCVVVDVSQEDPEVQFNWYVDGVEVHNAKTKPREEQFNSTYRVVSVLTVLHQDWLN GKEYKCKVSNKGLPSSIEKTISKAKGQPREPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWE SNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQEGNVFSCSVMHEALHNHYTQKSLSLSLGKAS Anti-DCIR_24E7.3H9_K-V-hIgGK-C (SEQ ID NO: 38): ATGACCATGTTCTCACTAGCTCTTCTCCTCAGTCTTCTTCTCCTCTGTGTCTCTGATTCTAGGGCA GAAACAACTGTGACCCAGTCTATGACCATGTTCTCACTAGCTCTTCTCCTCAGTCTTCTTCTCCT CTGTGTCTCTGATTCTAGGGCAGAAACAACTGTGACCCAGTCTCCAGCATCCCTGTCCATGGCT ATAGGGGAAAAAGTCACCATCAGATGCGTAACCAGCACTGATATTGATGATGATGTGAACTGG TACCAGCAGAAGCCAGGGGAACCTCCTAAACTCCTTATTTCAGAAGGCAATACTCTTCGTCCTG GAGTCCCATCCCGATTCTCCAGCAGTGGCTATGGTACAGATTTTGTTTTTACAATTGAGAACATG CTCTCAGAAGATGTTGCAGATTACTACTGTTTGCAAAGTGGTAACTTGCCGTACACGTTCGGAG GGGGGACCAAGCTCGAGATCAAACGAACTGTGGCTGCACCATCTGTCTTCATCTTCCCGCCATC TGATGAGCAGTTGAAATCTGGAACTGCCTCTGTTGTGTGCCTGCTGAATAACTTCTATCCCAGA GAGGCCAAAGTACAGTGGAAGGTGGATAACGCCCTCCAATCGGGTAACTCCCAGGAGAGTGTC ACAGAGCAGGACAGCAAGGACAGCACCTACAGCCTCAGCAGCACCCTGACGCTGAGCAAAGCA GACTACGAGAAACACAAAGTCTATGCCTGCGAAGTCACCCATCAGGGCCTGAGCTCGCCCGTC ACAAAGAGCTTCAACAGGGGAGAGTGTTAGCCAGCATCCCTGTCCATGGCTATAGGGGAAAAA GTCACCATCAGATGCGTAACCAGCACTGATATTGATGATGATGTGAACTGGTACCAGCAGAAGC CAGGGGAACCTCCTAAACTCCTTATTTCAGAAGGCAATACTCTTCGTCCTGGAGTCCCATCCCG ATTCTCCAGCAGTGGCTATGGTACAGATTTTGTTTTTACAATTGAGAACATGCTCTCAGAAGATG TTGCAGATTACTACTGTTTGCAAAGTGGTAACTTGCCGTACACGTTCGGAGGGGGGACCAAGCT CGAGATCAAACGAACTGTGGCTGCACCATCTGTCTTCATCTTCCCGCCATCTGATGAGCAGTTG AAATCTGGAACTGCCTCTGTTGTGTGCCTGCTGAATAACTTCTATCCCAGAGAGGCCAAAGTAC AGTGGAAGGTGGATAACGCCCTCCAATCGGGTAACTCCCAGGAGAGTGTCACAGAGCAGGACA GCAAGGACAGCACCTACAGCCTCAGCAGCACCCTGACGCTGAGCAAAGCAGACTACGAGAAAC ACAAAGTCTATGCCTGCGAAGTCACCCATCAGGGCCTGAGCTCGCCCGTCACAAAGAGCTTCAA CAGGGGAGAGTGTTAG Anti-DCIR_24E7.3H9_K-V-hIgGK-C (SEQ ID NO: 103): MTMFSLALLLSLLLLCVSDSRAETTVTQSPASLSMAIGEKVTIRCVTSTDIDDDVNWYQQKPGEPPK LLISEGNTLRPGVPSRFSSSGYGTDFVFTIENMLSEDVADYYCLQSGNLPYTFGGGTKLEIKRTVAAP SVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLT LSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC Anti-DCIR_29E9.2E2_H-VhIgG4H-C (SEQ ID NO: 39): ATGGCTTGGGTGTGGACCTTGCTATTCCTGATGGCAGCTGCCCAAAGTGCCCAAGCACAGATCC AGTTGGTGCAGTCTGGACCTGAGCTGAAGAAGCCTGGAGAGACAGTCAAGATCTCCTGCAAGG CTTCTGGGTATACCTTCACAAACTATGGAATGAACTGGGTGAAGCAGGCTCCAGGAAAGGGTTT AAAGTGGGTGGGCTGGATAAACACCTTCACTGGAGAGCCAACATATGTTGATGACTTCAAGGG ACGGTTTGCCTTCTCTTTGGAAACCTCTGCCAGCACTGCCTATTTGCAGATCAACAACCTCAAAA ATGAGGACACGGCTACATATTTCTGTGCAAGAGGGAATTTTAGGTACTACTACTTTGACTACTG GGGCCAAGGCACCACTCTCACAGTCTCCTCAGCCAAAACAAAGGGCCCATCCGTCTTCCCCCTG GCGCCCTGCTCCAGGAGCACCTCCGAGAGCACAGCCGCCCTGGGCTGCCTGGTCAAGGACTACT TCCCCGAACCGGTGACGGTGTCGTGGAACTCAGGCGCCCTGACCAGCGGCGTGCACACCTTCCC GGCTGTCCTACAGTCCTCAGGACTCTACTCCCTCAGCAGCGTGGTGACCGTGCCCTCCAGCAGC TTGGGCACGAAGACCTACACCTGCAACGTAGATCACAAGCCCAGCAACACCAAGGTGGACAAG AGAGTTGAGTCCAAATATGGTCCCCCATGCCCACCCTGCCCAGCACCTGAGTTCGAAGGGGGAC CATCAGTCTTCCTGTTCCCCCCAAAACCCAAGGACACTCTCATGATCTCCCGGACCCCTGAGGTC ACGTGCGTGGTGGTGGACGTGAGCCAGGAAGACCCCGAGGTCCAGTTCAACTGGTACGTGGAT GGCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTTCAACAGCACGTACCGT GTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAACGGCAAGGAGTACAAGTGCAAG GTCTCCAACAAAGGCCTCCCGTCCTCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCC GAGAGCCACAGGTGTACACCCTGCCCCCATCCCAGGAGGAGATGACCAAGAACCAGGTCAGCC TGACCTGCCTGGTCAAAGGCTTCTACCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGC AGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTA CAGCAGGCTAACCGTGGACAAGAGCAGGTGGCAGGAGGGGAATGTCTTCTCATGCTCCGTGAT GCATGAGGCTCTGCACAACCACTACACACAGAAGAGCCTCTCCCTGTCTCTGGGTAAAGCTAGC TGA Anti-DCIR_29E9.2E2_H-VhIgG4H-C (SEQ ID NO: 104): MAWVWTLLFLMAAAQSAQAQIQLVQSGPELKKPGETVKISCKASGYTFTNYGMNWVKQAPGKGL KWVGWINTFTGEPTYVDDFKGRFAFSLETSASTAYLQINNLKNEDTATYFCARGNFRYYYFDYWG QGTTLTVSSAKTKGPSVFPLAPCSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQ SSGLYSLSSVVTVPSSSLGTKTYTCNVDHKPSNTKVDKRVESKYGPPCPPCPAPEFEGGPSVFLFPPK PKDTLMISRTPEVTCVVVDVSQEDPEVQFNWYVDGVEVHNAKTKPREEQFNSTYRVVSVLTVLHQ DWLNGKEYKCKVSNKGLPSSIEKTISKAKGQPREPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIA VEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQEGNVFSCSVMHEALHNHYTQKSLSLS LGKAS Anti-DCIR_29E9.2E2_K-V-hIgGK-C (SEQ ID NO: 40): ATGAGTGTGCTCACTCAGGTCCTGGCGTTGCTGCTGCTGTGGCTTACAGGTGCCAGATGTGACA TCCAGATGACTCAGTCCCCAGCCTCCCTATCTGCATCTGTGGGAGAAACTGTCACCATCACATG TCGAACAAGTGGGAATATTCGCAATTATTTAGCATGGTATCAGCAGAAACAGGGAAAATCTCCT CAACTCCTGGTCTATAATGCAAAAACCTTAGCAGATGGTGTGCCATCAAGGTTCGGTGGCAGTG GATCAGGAACACAATATTCTCTCAAGATCAACAGCCTGCAGCCTGAAGATTTTGGGAATTATTA CTGTCAACATTTTTGGAGTAGTCCGTACACGTTCGGAGGGGGGACCAAGCTCGAGATCAAACGA ACTGTGGCTGCACCATCTGTCTTCATCTTCCCGCCATCTGATGAGCAGTTGAAATCTGGAACTGC CTCTGTTGTGTGCCTGCTGAATAACTTCTATCCCAGAGAGGCCAAAGTACAGTGGAAGGTGGAT AACGCCCTCCAATCGGGTAACTCCCAGGAGAGTGTCACAGAGCAGGACAGCAAGGACAGCACC TACAGCCTCAGCAGCACCCTGACGCTGAGCAAAGCAGACTACGAGAAACACAAAGTCTATGCC TGCGAAGTCACCCATCAGGGCCTGAGCTCGCCCGTCACAAAGAGCTTCAACAGGGGAGAGTGT TAG Anti-DCIR_29E9.2E2_K-V-hIgGK-C (SEQ ID NO: 105): MSVLTQVLALLLLWLTGARCDIQMTQSPASLSASVGETVTITCRTSGNIRNYLAWYQQKQGKSPQL LVYNAKTLADGVPSRFGGSGSGTQYSLKINSLQPEDFGNYYCQHFWSSPYTFGGGTKLEIKRTVAAP SVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLT LSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC Anti-DCIR_29G10.3D9_H-V-hIgG4H-C (SEQ ID NO: 41): ATGATGGGATGGAGCTATATCATCCTCTTTTTGGTAGCAACAGCTACAGATGTCCACTCCCAGG TCCAACTGCAGCAGCCTGGGGCTGAACTGGTGAAGCCTGGGGCTTCAGTGAAGCTGTCCTGCAA GGCTTCTGGCTACACCTTCACCAGCTACTGGATGCACTGGGTGAAGCAGAGGCCTGGAGAAGG CCTTGAGTGGATTGGAGAGATTAATCCTAGCTACGGTCGTACTGACTACAATGAGAAGTTCAAG AACAAGGCCACACTGACTGTAGCCAAATCCTCCAGCACAGCCTACATGCAACTCAGCAGCCTG ACATCTGAGGACTCTGCGGTCTATTACTGTGCAAGAGGAGATTACTACGGTAGTAGCTCGTTTG CTTACTGGGGCCAAGGGACTCTGGTCACTGTCTCTGCAGCCAAAACAAAGGGCCCATCCGTCTT CCCCCTGGCGCCCTGCTCCAGGAGCACCTCCGAGAGCACAGCCGCCCTGGGCTGCCTGGTCAAG GACTACTTCCCCGAACCGGTGACGGTGTCGTGGAACTCAGGCGCCCTGACCAGCGGCGTGCACA CCTTCCCGGCTGTCCTACAGTCCTCAGGACTCTACTCCCTCAGCAGCGTGGTGACCGTGCCCTCC AGCAGCTTGGGCACGAAGACCTACACCTGCAACGTAGATCACAAGCCCAGCAACACCAAGGTG GACAAGAGAGTTGAGTCCAAATATGGTCCCCCATGCCCACCCTGCCCAGCACCTGAGTTCGAAG GGGGACCATCAGTCTTCCTGTTCCCCCCAAAACCCAAGGACACTCTCATGATCTCCCGGACCCC TGAGGTCACGTGCGTGGTGGTGGACGTGAGCCAGGAAGACCCCGAGGTCCAGTTCAACTGGTA CGTGGATGGCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTTCAACAGCAC GTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAACGGCAAGGAGTACAA GTGCAAGGTCTCCAACAAAGGCCTCCCGTCCTCCATCGAGAAAACCATCTCCAAAGCCAAAGG GCAGCCCCGAGAGCCACAGGTGTACACCCTGCCCCCATCCCAGGAGGAGATGACCAAGAACCA GGTCAGCCTGACCTGCCTGGTCAAAGGCTTCTACCCCAGCGACATCGCCGTGGAGTGGGAGAGC AATGGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCT TCCTCTACAGCAGGCTAACCGTGGACAAGAGCAGGTGGCAGGAGGGGAATGTCTTCTCATGCTC CGTGATGCATGAGGCTCTGCACAACCACTACACACAGAAGAGCCTCTCCCTGTCTCTGGGTAAA GCTAGCGGATGGAGCTATATCATCCTCTTTTTGGTAGCAACAGCTACAGATGTCCACTCCCAGG TCCAACTGCAGCAGCCTGGGGCTGAACTGGTGAAGCCTGGGGCTTCAGTGAAGCTGTCCTGCAA GGCTTCTGGCTACACCTTCACCAGCTACTGGATGCACTGGGTGAAGCAGAGGCCTGGAGAAGG CCTTGAGTGGATTGGAGAGATTAATCCTAGCTACGGTCGTACTGACTACAATGGGAAGTTCAAG AACAAGGCCACACTGACTGTAGCCAAATCCTCCAGCACAGCCTACATGCAACTCAGCAGCCTG ACATCTGAGGACTCTGCGGTCTATTACTGTGCAAGAGGAGATTACTACGGTAGTAGCTCGTTTG CTTACTGGGGCCAAGGGACTCTGGTCACTGTCTCTGCAGCCAAAACAAAGGGCCCATCCGTCTT CCCCCTGGCGCCCTGCTCCAGGAGCACCTCCGAGAGCACAGCCGCCCTGGGCTGCCTGGTCAAG GACTACTTCCCCGAACCGGTGACGGTGTCGTGGAACTCAGGCGCCCTGACCAGCGGCGTGCACA CCTTCCCGGCTGTCCTACAGTCCTCAGGACTCTACTCCCTCAGCAGCGTGGTGACCGTGCCCTCC AGCAGCTTGGGCACGAAGACCTACACCTGCAACGTAGATCACAAGCCCAGCAACACCAAGGTG GACAAGAGAGTTGAGTCCAAATATGGTCCCCCATGCCCACCCTGCCCAGCACCTGAGTTCGAAG GGGGACCATCAGTCTTCCTGTTCCCCCCAAAACCCAAGGACACTCTCATGATCTCCCGGACCCC TGAGGTCACGTGCGTGGTGGTGGACGTGAGCCAGGAAGACCCCGAGGTCCAGTTCAACTGGTA CGTGGATGGCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTTCAACAGCAC GTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAACGGCAAGGAGTACAA GTGCAAGGTCTCCAACAAAGGCCTCCCGTCCTCCATCGAGAAAACCATCTCCAAAGCCAAAGG GCAGCCCCGAGAGCCACAGGTGTACACCCTGCCCCCATCCCAGGAGGAGATGACCAAGAACCA GGTCAGCCTGACCTGCCTGGTCAAAGGCTTCTACCCCAGCGACATCGCCGTGGAGTGGGAGAGC AATGGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCT TCCTCTACAGCAGGCTAACCGTGGACAAGAGCAGGTGGCAGGAGGGGAATGTCTTCTCATGCTC CGTGATGCATGAGGCTCTGCACAACCACTACACACAGAAGAGCCTCTCCCTGTCTCTGGGTAAA GCTAGCTGA Anti-DCIR_29G10.3D9_H-V-hIgG4H-C (SEQ ID NO: 106): MMGWSYIILFLVATATDVHSQVQLQQPGAELVKPGASVKLSCKASGYTFTSYWMHWVKQRPGEG LEWIGEINPSYGRTDYNEKFKNKATLTVAKSSSTAYMQLSSLTSEDSAVYYCARGDYYGSSSFAYW GQGTLVTVSAAKTKGPSVFPLAPCSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVL QSSGLYSLSSVVTVPSSSLGTKTYTCNVDHKPSNTKVDKRVESKYGPPCPPCPAPEFEGGPSVFLFPP KPKDTLMISRTPEVTCVVVDVSQEDPEVQFNWYVDGVEVHNAKTKPREEQFNSTYRVVSVLTVLH QDWLNGKEYKCKVSNKGLPSSIEKTISKAKGQPREPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDI AVEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQEGNVFSCSVMHEALHNHYTQKSLS LSLGKAS Anti-DCIR_29G10.3D9_K-Var1-V-hIgGK-C (SEQ ID NO: 42): ATGGATTTTCAAGTGCAGATTTTCAGCTTCCTGCTAATGAGTGCCTCAGTCATAATGTCCAGGGG ACAAATTGTTCTCACCCAGTCTCCAGCACTCATGTCTGCATCTCCAGGGGAGAAGGTCACCATG ACCTGCAGTGCCAGCTCAAATATAAGTTACATGTACTGGTACCAGCAGAAGCCAAGATCCTCCC CCAAACCCTGGATTTATCTCACATCCAACCTGGCTTCTGGAGTCCCTGCTCGCTTCAGTGGCAGT GGGTCTGGGACCTCTTACTCTCTCACAACCAGCAGCATGGAGGCTGAAGATGCTGCCACTTATT GCTGCCAGCAGTGGAGTAGTAACCCACCCACGTTCGGTGCTGGGACCAAGCTCGAGATCAAAC GAACTGTGGCTGCACCATCTGTCTTCATCTTCCCGCCATCTGATGAGCAGTTGAAATCTGGAACT GCCTCTGTTGTGTGCCTGCTGAATAACTTCTATCCCAGAGAGGCCAAAGTACAGTGGAAGGTGG ATAACGCCCTCCAATCGGGTAACTCCCAGGAGAGTGTCACAGAGCAGGACAGCAAGGACAGCA CCTACAGCCTCAGCAGCACCCTGACGCTGAGCAAAGCAGACTACGAGAAACACAAAGTCTATG CCTGCGAAGTCACCCATCAGGGCCTGAGCTCGCCCGTCACAAAGAGCTTCAACAGGGGAGAGT GTTAG Anti-DCIR_29G10.3D9_K-Var1-V-hIgGK-C (SEQ ID NO: 107): MDFQVQIFSFLLMSASVIMSRGQIVLTQSPALMSASPGEKVTMTCSASSNISYMYWYQQKPRSSPKP WIYLTSNLASGVPARFSGSGSGTSYSLTTSSMEAEDAATYCCQQWSSNPPTFGAGTKLEIKRTVAAP SVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLT LSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC Anti-DCIR_29G10.3D9_K-Var2-V-hIgGK-C (SEQ ID NO: 43): ATGGATTTTCGAGTGCAGATTTTCAGCTTCCTGCTAATGAGTGCCTCAGTCATAATGTCCAGGGG ACAAATTGTTCTCACCCAGTCTCCAGCACTCATGTCTGCATCTCCAGGGGAGAAGGTCACCATG ACCTGCAGTGCCAGCTCAAATATAAGTTACATGTACTGGTACCAGCAGAAGCCAAGATCCTCCC CCAAACCCTGGATTTATCTCACATCCAACCTGGCTTCTGGAGTCCCTGCTCGCTTCAGTGGCAGT GGGTCTGGGACCTCTTACTCTCTCACAATCAGCAGCATGGAGGCTGAAGATGCTGCCACTTATT ACTGCCAGCAGTGGAGTAGTAACCCACCCACGTTCGGTGCTGGGACCAAGCTCGAGATCAAAC GAACTGTGGCTGCACCATCTGTCTTCATCTTCCCGCCATCTGATGAGCAGTTGAAATCTGGAACT GCCTCTGTTGTGTGCCTGCTGAATAACTTCTATCCCAGAGAGGCCAAAGTACAGTGGAAGGTGG ATAACGCCCTCCAATCGGGTAACTCCCAGGAGAGTGTCACAGAGCAGGACAGCAAGGACAGCA CCTACAGCCTCAGCAGCACCCTGACGCTGAGCAAAGCAGACTACGAGAAACACAAAGTCTATG CCTGCGAAGTCACCCATCAGGGCCTGAGCTCGCCCGTCACAAAGAGCTTCAACAGGGGAGAGT GTTAG Anti-DCIR_29G10.3D9_K-Var2-V-hIgGK-C (SEQ ID NO: 108): MDFRVQIFSFLLMSASVIMSRGQIVLTQSPALMSASPGEKVTMTCSASSNISYMYWYQQKPRSSPKP WIYLTSNLASGVPARFSGSGSGTSYSLTISSMEAEDAATYYCQQWSSNPPTFGAGTKLEIKRTVAAPS VFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTL SKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC Anti-DCIR_2C9K-V-hIgGK-C (SEQ ID NO: 44): ATGGAGACAGACACACTCCTGCTATGGGTGCTGCTGCTCTGGGTTCCAGGTTCCACAGGTGACA TTGTGCTGATCCAATCTCCAGCTTCTTTGGCTGTGTCTCTAGGGCAGAGGGCCACCATATCCTGC AGAGCCAGTGAAAGTGTTGATAGTTATGTCAATAGTTTTATGCACTGGTACCAGCAGAAACCAG GACAGCCACCCAAACTCCTCATCTATCGTGTATCCAACCTAGAATCTGGGATCCCTGCCAGGTT CAGTGGCAGTGGGTCTAGGACAGACTTCACCCTCACCATTAATCCTGTGGAGGCTGATGATGTT GCAACCTATTACTGTCAGCAAAGTAATGAGGATCCATTCACGTTCGGCTCGGGGACAAAGCTCG AGATCAAACGAACTGTGGCTGCACCATCTGTCTTCATCTTCCCGCCATCTGATGAGCAGTTGAA ATCTGGAACTGCCTCTGTTGTGTGCCTGCTGAATAACTTCTATCCCAGAGAGGCCAAAGTACAG TGGAAGGTGGATAACGCCCTCCAATCGGGTAACTCCCAGGAGAGTGTCACAGAGCAGGACAGC AAGGACAGCACCTACAGCCTCAGCAGCACCCTGACGCTGAGCAAAGCAGACTACGAGAAACAC AAAGTCTATGCCTGCGAAGTCACCCATCAGGGCCTGAGCTCGCCCGTCACAAAGAGCTTCAACA GGGGAGAGTGTTAG Anti-DCIR_2C9K-V-hIgGK-C (SEQ ID NO: 109): METDTLLLWVLLLWVPGSTGDIVLIQSPASLAVSLGQRATISCRASESVDSYVNSFMHWYQQKPGQ PPKLLIYRVSNLESGIPARFSGSGSRTDFTLTINPVEADDVATYYCQQSNEDPFTFGSGTKLEIKRTVA APSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSST LTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC. Anti-DCIR_31A6.1F5_H-var2-V-hIgG4H-C (SEQ ID NO: 45): ATGGAATGTAACTGGATACTTCCTTTTATTCTGTCGGTAATTTCAGGGGTCTACTCAGAGGTTCA GCTCCAGCAGTCTGGGACTGTGCTGGCAAGGCCTGGGGCTTCCGTGAATATGTCCTGTAAGGCT GCTGGCTACAGCTTTACCAGTTACTGGGTGTACTGGGTCAAACAGAGGCCTGGACAGGGTCTGG AATGGATTGGTGCTATTTACCCTAAAAATAGTAGAACTAGCTACAACCAGAAGTTCCAGGACAA GGCCACACTGACTGCAGTCACATCCGCCAGCACTGCCTACATGGAGCTCAGCAGCCTGACAAAT GAGGACTCTGCGGTCTATTACTGTACAAGACCTCACTATGATTCGTTTGGTTACTGGGGCCAAG GGACTCTGGTCACTGTCTCTGCAGCCAAAACAAAGGGCCCATCCGTCTTCCCCCTGGCGCCCTG CTCCAGGAGCACCTCCGAGAGCACAGCCGCCCTGGGCTGCCTGGTCAAGGACTACTTCCCCGAA CCGGTGACGGTGTCGTGGAACTCAGGCGCCCTGACCAGCGGCGTGCACACCTTCCCGGCTGTCC TACAGTCCTCAGGACTCTACTCCCTCAGCAGCGTGGTGACCGTGCCCTCCAGCAGCTTGGGCAC GAAGACCTACACCTGCAACGTAGATCACAAGCCCAGCAACACCAAGGTGGACAAGAGAGTTGA GTCCAAATATGGTCCCCCATGCCCACCCTGCCCAGCACCTGAGTTCGAAGGGGGACCATCAGTC TTCCTGTTCCCCCCAAAACCCAAGGACACTCTCATGATCTCCCGGACCCCTGAGGTCACGTGCG TGGTGGTGGACGTGAGCCAGGAAGACCCCGAGGTCCAGTTCAACTGGTACGTGGATGGCGTGG AGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTTCAACAGCACGTACCGTGTGGTCA GCGTCCTCACCGTCCTGCACCAGGACTGGCTGAACGGCAAGGAGTACAAGTGCAAGGTCTCCA ACAAAGGCCTCCCGTCCTCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAGC CACAGGTGTACACCCTGCCCCCATCCCAGGAGGAGATGACCAAGAACCAGGTCAGCCTGACCT GCCTGGTCAAAGGCTTCTACCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGG AGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTACAGCAG GCTAACCGTGGACAAGAGCAGGTGGCAGGAGGGGAATGTCTTCTCATGCTCCGTGATGCATGA GGCTCTGCACAACCACTACACACAGAAGAGCCTCTCCCTGTCTCTGGGTAAAGCTAGCTGA Anti-DCIR_31A6.1F5_H-var2-V-hIgG4H-C (SEQ ID NO: 110): MECNWILPFILSVISGVYSEVQLQQSGTVLARPGASVNMSCKAAGYSFTSYWVYWVKQRPGQGLE WIGAIYPKNSRTSYNQKFQDKATLTAVTSASTAYMELSSLTNEDSAVYYCTRPHYDSFGYWGQGTL VTVSAAKTKGPSVFPLAPCSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGL YSLSSVVTVPSSSLGTKTYTCNVDHKPSNTKVDKRVESKYGPPCPPCPAPEFEGGPSVFLFPPKPKDT LMISRTPEVTCVVVDVSQEDPEVQFNWYVDGVEVHNAKTKPREEQFNSTYRVVSVLTVLHQDWLN GKEYKCKVSNKGLPSSIEKTISKAKGQPREPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWE SNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQEGNVFSCSVMHEALHNHYTQKSLSLSLGKAS Anti-DCIR_31A6.1F5_K-var2-V-hIgGK-C (SEQ ID NO: 46): ATGGAGACAGACACACTCCTGCTATGGGTGCTGCTGCTCTGGGTTCCAGGTTCCACAGGTGACA TTGTGCTGACCCAATCTCCAGCTTCTTTGGCTGTGTCTCTAGGGCAGAGGGCCACCATATCCTGC AGAGCCAGTGAAAGTGTAGATAGTTATGGCATTAGTTTTATGCACTGGTACCAGCAGAAACCAG GACAGCCACCCAAACTCCTCATCTATCGTGCATCCAACCAAGAATCTGGGATCCCTGCCAGGTT CAGTGGCAGTGGGTCTAGGACAGACTTCACCCTCACCATTAATCCTGTGGAGGCTGATGATGTT GCAACCTATTACTGTCAGCAAAGTAATGAGGATCCGCTCACGTTCGGTGCTGGGACCAAGCTCG AGATCAAACGAACTGTGGCTGCACCATCTGTCTTCATCTTCCCGCCATCTGATGAGCAGTTGAA ATCTGGAACTGCCTCTGTTGTGTGCCTGCTGAATAACTTCTATCCCAGAGAGGCCAAAGTACAG TGGAAGGTGGATAACGCCCTCCAATCGGGTAACTCCCAGGAGAGTGTCACAGAGCAGGACAGC AAGGACAGCACCTACAGCCTCAGCAGCACCCTGACGCTGAGCAAAGCAGACTACGAGAAACAC AAAGTCTATGCCTGCGAAGTCACCCATCAGGGCCTGAGCTCGCCCGTCACAAAGAGCTTCAACA GGGGAGAGTGTTAG Anti-DCIR_31A6.1F5_K-var2-V-hIgGK-C (SEQ ID NO: 111): METDTLLLWVLLLWVPGSTGDIVLTQSPASLAVSLGQRATISCRASESVDSYGISFMHWYQQKPGQ PPKLLIYRASNQESGIPARFSGSGSRTDFTLTINPVEADDVATYYCQQSNEDPLTFGAGTKLEIKRTVA APSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSST LTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC Anti-DCIR_3C2.2D9_H-LV-hIgG4H-C (SEQ ID NO: 47): ATGAACAGGCTTACTTCCTCATTGCTGCTGCTGATTGTCCCTGCATATGTCCTGTCCCAGGTTAC TCTGAAAGAGTCTGGCCCTGGGATATTGCAGCCCTCCCAGACCCTCAGTCTGACTTGTTCTTTCT CTGGGTTTTCACTGAGCACTTCTGGTATGGGTGTGAGCTGGATTCGTCAGCCTTCAGGAAAGGG TCTGGAGTGGCTGGCACACATTTACTGGGATGATGACAAGCGCTATAATCCATCCCTGAAGAGC CGGCTCACAATCTTTAAGGATCCCTCCAGCAACCAGGTATTCCTCAGGATCACCAGTGTGGACA CTGCAGATACTGCCACATACTACTGTGCTCGAAACTCCCATTACTACGGTAGTACTTACGGGGG ATACTTCGATGTCTGGGGCGCAGGGACCACGGTCACCGTCTCCTCAGCCAAAACAAAGGGCCC ATCCGTCTTCCCCCTGGCGCCCTGCTCCAGGAGCACCTCCGAGAGCACAGCCGCCCTGGGCTGC CTGGTCAAGGACTACTTCCCCGAACCGGTGACGGTGTCGTGGAACTCAGGCGCCCTGACCAGCG GCGTGCACACCTTCCCGGCTGTCCTACAGTCCTCAGGACTCTACTCCCTCAGCAGCGTGGTGAC CGTGCCCTCCAGCAGCTTGGGCACGAAGACCTACACCTGCAACGTAGATCACAAGCCCAGCAA CACCAAGGTGGACAAGAGAGTTGAGTCCAAATATGGTCCCCCATGCCCACCCTGCCCAGCACCT GAGTTCGAAGGGGGACCATCAGTCTTCCTGTTCCCCCCAAAACCCAAGGACACTCTCATGATCT CCCGGACCCCTGAGGTCACGTGCGTGGTGGTGGACGTGAGCCAGGAAGACCCCGAGGTCCAGT TCAACTGGTACGTGGATGGCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGT TCAACAGCACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAACGGCAA GGAGTACAAGTGCAAGGTCTCCAACAAAGGCCTCCCGTCCTCCATCGAGAAAACCATCTCCAA AGCCAAAGGGCAGCCCCGAGAGCCACAGGTGTACACCCTGCCCCCATCCCAGGAGGAGATGAC CAAGAACCAGGTCAGCCTGACCTGCCTGGTCAAAGGCTTCTACCCCAGCGACATCGCCGTGGAG TGGGAGAGCAATGGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGAC GGCTCCTTCTTCCTCTACAGCAGGCTAACCGTGGACAAGAGCAGGTGGCAGGAGGGGAATGTCT TCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCACTACACACAGAAGAGCCTCTCCCTGTC TCTGGGTAAAGCTAGCTGA Anti-DCIR_3C2.2D9_H-LV-hIgG4H-C (SEQ ID NO: 112): NRLTSSLLLLIVPAYVLSQQVTLKESGPGILQPSQTLSLTCSFSGFSLSTSGMGVSWIRQPSGKGLEWL AHIYWDDDKRYNPSLKSRLTIFKDPSSNQVFLRITSVDTADTATYYCARNSHYYGSTYGGYFDVWG AGTTVTVSSAKTKGPSVFPLAPCSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQ SSGLYSLSSVVTVPSSSLGTKTYTCNVDHKPSNTKVDKRVESKYGPPCPPCPAPEFEGGPSVFLFPPK PKDTLMISRTPEVTCVVVDVSQEDPEVQFNWYVDGVEVHNAKTKPREEQFNSTYRVVSVLTVLHQ DWLNGKEYKCKVSNKGLPSSIEKTISKAKGQPREPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIA VEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQEGNVFSCSVMHEALHNHYTQKSLSLS LGKAS. Anti-DCIR_3C2.2D9_K-LV-hIgGK-C (SEQ ID NO: 48): ATGGAGACAGACACACTCCTGCTATGGGTGCTGCTGCTCGGGGTTCCAGGTTCCACAGGTAACA TTGTGCTGACCCAGTCTCCAACTTCTTTCACTGTGTCTCTTGGGCAGAGGGCCACCATATCCTGC AGAGCCAGTGAAAGTGTTCATAGTTATGGCAATAGTTTTATGCACTGGTACCAGCAGAAACCAG GGCAGCCACCCAAACTCCTCATCTATCTTGCATCCAACGTAGAATCTGGGGTCCCTGCCAGGTT CAGTGGTAGTGGGTCCAGGACAGACTTCACCCTCACCATTGATCCTGTGGAGGCTGATGATGCT GCAACCTATTACTGTCAGCAAAATAGTGAGGATCCGTGGACGTTCGGTGGAGGCACCAAGCTC GAGATCAAACGAACTGTGGCTGCACCATCTGTCTTCATCTTCCCGCCATCTGATGAGCAGTTGA AATCTGGAACTGCCTCTGTTGTGTGCCTGCTGAATAACTTCTATCCCAGAGAGGCCAAAGTACA GTGGAAGGTGGATAACGCCCTCCAATCGGGTAACTCCCAGGAGAGTGTCACAGAGCAGGACAG CAAGGACAGCACCTACAGCCTCAGCAGCACCCTGACGCTGAGCAAAGCAGACTACGAGAAACA CAAAGTCTATGCCTGCGAAGTCACCCATCAGGGCCTGAGCTCGCCCGTCACAAAGAGCTTCAAC AGGGGAGAGTGTTAG Anti-DCIR_3C2.2D9_K-LV-hIgGK-C (SEQ ID NO: 113): METDTLLLWVLLLGVPGSTGNIVLTQSPTSFTVSLGQRATISCRASESVHSYGNSFMHWYQQKPGQP PKLLIYLASNVESGVPARFSGSGSRTDFTLTIDPVEADDAATYYCQQNSEDPWTFGGGTKLEIKRTV AAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSS TLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC Anti-DCIR_6C8.1G9_H-V-hIgG4H-C (SEQ ID NO: 49): ATGGAATGGACCTGGGTCTTTCTCTTCCTCCTGTCAGTAACTGCAGGTGTCCACTCCCAGGTTCA GCTGCAGCAGTCTGGAACTGAGCTGATGAAGCCTGGGGCCTCAGTGAAGATATCCTGCAAGGC TACTGGCTACACATTCAGTACCTACTGGATAGAGTGGGTAAAGCAGAGGCCTGGACATGGCCTT GAGTGGATTGGAGAGATTTTACCTGGAAGTGGTAGGACTAACGACAATGAGAAGTTCAAGGGC AAGGCCACAATCACTGCAGATACATCCTCCAAGAAAGCCTACATGCAACTCAGCAGCCTGACA TCTGAGGACTCTGCCGTCTATTACTGTGCAAGAAGGGGTGGTTACTCCTTTGCTTTCTGGGGCCA AGGGACTCTGGTCTCTGTCTCTGCAGCCAAAACAAAGGGCCCATCCGTCTTCCCCCTGGCGCCC TGCTCCAGGAGCACCTCCGAGAGCACAGCCGCCCTGGGCTGCCTGGTCAAGGACTACTTCCCCG AACCGGTGACGGTGTCGTGGAACTCAGGCGCCCTGACCAGCGGCGTGCACACCTTCCCGGCTGT CCTACAGTCCTCAGGACTCTACTCCCTCAGCAGCGTGGTGACCGTGCCCTCCAGCAGCTTGGGC ACGAAGACCTACACCTGCAACGTAGATCACAAGCCCAGCAACACCAAGGTGGACAAGAGAGTT GAGTCCAAATATGGTCCCCCATGCCCACCCTGCCCAGCACCTGAGTTCGAAGGGGGACCATCAG TCTTCCTGTTCCCCCCAAAACCCAAGGACACTCTCATGATCTCCCGGACCCCTGAGGTCACGTGC GTGGTGGTGGACGTGAGCCAGGAAGACCCCGAGGTCCAGTTCAACTGGTACGTGGATGGCGTG GAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTTCAACAGCACGTACCGTGTGGTC AGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAACGGCAAGGAGTACAAGTGCAAGGTCTCC AACAAAGGCCTCCCGTCCTCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAG CCACAGGTGTACACCCTGCCCCCATCCCAGGAGGAGATGACCAAGAACCAGGTCAGCCTGACC TGCCTGGTCAAAGGCTTCTACCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCG GAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTACAGCA GGCTAACCGTGGACAAGAGCAGGTGGCAGGAGGGGAATGTCTTCTCATGCTCCGTGATGCATG AGGCTCTGCACAACCACTACACACAGAAGAGCCTCTCCCTGTCTCTGGGTAAAGCTAGCTGA Anti-DCIR_6C8.1G9_H-V-hIgG4H-C (SEQ ID NO: 114): MEWTWVFLFLLSVTAGVHSQVQLQQSGTELMKPGASVKISCKATGYTFSTYWIEWVKQRPGHGLE WIGEILPGSGRTNDNEKFKGKATITADTSSKKAYMQLSSLTSEDSAVYYCARRGGYSFAFWGQGTL VSVSAAKTKGPSVFPLAPCSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGL YSLSSVVTVPSSSLGTKTYTCNVDHKPSNTKVDKRVESKYGPPCPPCPAPEFEGGPSVFLFPPKPKDT LMISRTPEVTCVVVDVSQEDPEVQFNWYVDGVEVHNAKTKPREEQFNSTYRVVSVLTVLHQDWLN GKEYKCKVSNKGLPSSIEKTISKAKGQPREPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWE SNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQEGNVFSCSVMHEALHNHYTQKSLSLSLGKAS Anti-DCIR_6C8.1G9_K-V-hIgGK-C (SEQ ID NO: 50): ATGACCATGTTCTCACTAGCTCTTCTCCTCAGTCTTCTTCTCCTCTGTGTCTCTGATTCTAGGGCA GAAACAACTGTGACCCAGTCTCCAGCATCCCTGTCCATGGCTATAGGAGAAAAAGTCACCATCA GATGCGTAACCAGCACTGATATTGATGATGATGTGAACTGGTACCAGCAGAAGCCAGGGGAAC CTCCTAAGCTCCTTATTTCAGAAGGCAATACTCTTCGTGCTGGAGTCCCATCCCGATTCTCCAGC AGTGGCTATGGTACAGATTTTGTTTTTACAATTGAGAACATGCTCTCAGAAGATGTTGCAGATT ACTACTGTTTGCAAAGTGGTAACTTGCCGTACACGTTCGGAGGGGGGACCAAGCTCGAGATCAA ACGAACTGTGGCTGCACCATCTGTCTTCATCTTCCCGCCATCTGATGAGCAGTTGAAATCTGGA ACTGCCTCTGTTGTGTGCCTGCTGAATAACTTCTATCCCAGAGAGGCCAAAGTACAGTGGAAGG TGGATAACGCCCTCCAATCGGGTAACTCCCAGGAGAGTGTCACAGAGCAGGACAGCAAGGACA GCACCTACAGCCTCAGCAGCACCCTGACGCTGAGCAAAGCAGACTACGAGAAACACAAAGTCT ATGCCTGCGAAGTCACCCATCAGGGCCTGAGCTCGCCCGTCACAAAGAGCTTCAACAGGGGAG AGTGTTAG Anti-DCIR_6C8.1G9_K-V-hIgGK-C (SEQ ID NO: 115): MTMFSLALLLSLLLLCVSDSRAETTVTQSPASLSMAIGEKVTIRCVTSTDIDDDVNWYQQKPGEPPK LLISEGNTLRAGVPSRFSSSGYGTDFVFTIENMLSEDVADYYCLQSGNLPYTFGGGTKLEIKRTVAAP SVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLT LSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC Anti-DCIR_9E8.1E3_H-V-hIgG4H-C (SEQ ID NO: 51): ATGAACAGGCTTACTTCCTCATTGCTGCTGCTGATTGTCCCTGCATATGTCCTGTCCCAGGTTAC TCTGAAAGAGTCTGGCCCTGGGATATTGCAGCCCTCCCAGACCCTCAGTCTGACTTGTTCTTTCT CTGGGTTTTCACTGAGCACTTCTGGTATGGGTCTGAGCTGGATTCGTCAGCCTTCAGGAAAGGG TCTGGAGTGGCTGGCACACATTTACTGGGATGATGACAAGCGCTATAACCCATCCCTGAAGAGC CGGCTCACAATCTCCAAGGATACCTCCAGCAACCAGGTTTTCCTCAAGATCACCATTGTGGACA CTGCAGATGCTGCCACATACTACTGTGCTCGAAGCTCCCATTACTACGGTTATGGCTACGGGGG ATACTTCGATGTCTGGGGCGCAGGGACCACGGTCACCGTCTCCTCAGCCAAAACGAAGGGCCC ATCCGTCTTCCCCCTGGCGCCCTGCTCCAGGAGCACCTCCGAGAGCACAGCCGCCCTGGGCTGC CTGGTCAAGGACTACTTCCCCGAACCGGTGACGGTGTCGTGGAACTCAGGCGCCCTGACCAGCG GCGTGCACACCTTCCCGGCTGTCCTACAGTCCTCAGGACTCTACTCCCTCAGCAGCGTGGTGAC CGTGCCCTCCAGCAGCTTGGGCACGAAGACCTACACCTGCAACGTAGATCACAAGCCCAGCAA CACCAAGGTGGACAAGAGAGTTGAGTCCAAATATGGTCCCCCATGCCCACCCTGCCCAGCACCT GAGTTCGAAGGGGGACCATCAGTCTTCCTGTTCCCCCCAAAACCCAAGGACACTCTCATGATCT CCCGGACCCCTGAGGTCACGTGCGTGGTGGTGGACGTGAGCCAGGAAGACCCCGAGGTCCAGT TCAACTGGTACGTGGATGGCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGT TCAACAGCACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAACGGCAA GGAGTACAAGTGCAAGGTCTCCAACAAAGGCCTCCCGTCCTCCATCGAGAAAACCATCTCCAA AGCCAAAGGGCAGCCCCGAGAGCCACAGGTGTACACCCTGCCCCCATCCCAGGAGGAGATGAC CAAGAACCAGGTCAGCCTGACCTGCCTGGTCAAAGGCTTCTACCCCAGCGACATCGCCGTGGAG TGGGAGAGCAATGGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGAC GGCTCCTTCTTCCTCTACAGCAGGCTAACCGTGGACAAGAGCAGGTGGCAGGAGGGGAATGTCT TCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCACTACACACAGAAGAGCCTCTCCCTGTC TCTGGGTAAAGCTAGCTGA Anti-DCIR_9E8.1E3_H-V-hIgG4H-C (SEQ ID NO: 116): MNRLTSSLLLLIVPAYVLSQVTLKESGPGILQPSQTLSLTCSFSGFSLSTSGMGLSWIRQPSGKGLEWL AHIYWDDDKRYNPSLKSRLTISKDTSSNQVFLKITIVDTADAATYYCARSSHYYGYGYGGYFDVWG AGTTVTVSSAKTKGPSVFPLAPCSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQ SSGLYSLSSVVTVPSSSLGTKTYTCNVDHKPSNTKVDKRVESKYGPPCPPCPAPEFEGGPSVFLFPPK PKDTLMISRTPEVTCVVVDVSQEDPEVQFNWYVDGVEVHNAKTKPREEQFNSTYRVVSVLTVLHQ DWLNGKEYKCKVSNKGLPSSIEKTISKAKGQPREPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIA VEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQEGNVFSCSVMHEALHNHYTQKSLSLS LGKAS Anti-DCIR_9E8.1E3_K-LV-hIgGK-C (SEQ ID NO: 52): ATGGAGACAGACACACTCCTGCTATGGGTGCTGCTGCTCTGGGTTCCAGGTTCCACAGGTAACA TTGTGCTGACCCAATCTCCAGCTTCTTTGGCTGTGTCTCTAGGGCAGAGGGCCACCATATCCTGC AGAGCCAGTGAAAGTATTCATAGTTATGGCAATAGTTTTCTGCACTGGTACCAGCAGAAACCAG GACAGCCACCCAAACTCCTCATCTATCTTGCATCCAACCTAGAATCTGGGGTCCCTGCCAGGTT CAGCGGCAGTGGGTCTAGGACAGACTTCACCCTCACCATTGATCCTGTGGAGGCTGATGATGCT GCAACCTATTACTGTCAGCAAAATAATGAGGATCCGTGGACGTTCGGTGGAGGCACCAAGCTC GAGATCAAACGAACTGTGGCTGCACCATCTGTCTTCATCTTCCCGCCATCTGATGAGCAGTTGA AATCTGGAACTGCCTCTGTTGTGTGCCTGCTGAATAACTTCTATCCCAGAGAGGCCAAAGTACA GTGGAAGGTGGATAACGCCCTCCAATCGGGTAACTCCCAGGAGAGTGTCACAGAGCAGGACAG CAAGGACAGCACCTACAGCCTCAGCAGCACCCTGACGCTGAGCAAAGCAGACTACGAGAAACA CAAAGTCTATGCCTGCGAAGTCACCCATCAGGGCCTGAGCTCGCCCGTCACAAAGAGCTTCAAC AGGGGAGAGTGTTAGGCGGCCGCACTAGCGCGGGCCGCATTCGAAGAGCTCGGTACCCGGGGA TCCTCTAGAGTCGACCTGCAGGCATGCAAGCTGGCCGCGACTCTAGATCATAATCAGC Anti-DCIR_9E8.1E3_K-LV-hIgGK-C (SEQ ID NO: 117): METDTLLLWVLLLWVPGSTGNIVLTQSPASLAVSLGQRATISCRASESIHSYGNSFLHWYQQKPGQP PKLLIYLASNLESGVPARFSGSGSRTDFTLTIDPVEADDAATYYCQQNNEDPWTFGGGTKLEIKRTV AAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSS TLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC Anti-DCIR2C9H-LV-hIgG4H-V-hIgG4H-C (SEQ ID NO: 53): ATGAAATGCAGCTGGGTCATCTTCTTCCTGATGGCAGTGGTTACAGGGGTCAATTCAGAGGTTC AGCTGCAGCAGTCTGGGGCTGAGCTTGTGAGGCCAGGGGCCTTAGTCAAGTTGTCCTGCAAAGC TTCTGGCTTCAACATTAATGACTACTATATCCACTGGGTGAAGCAGCGGCCTGAACAGGGCCTG GAGCGGATTGGATGGATTGATCCTGACAATGGTAATACTATATATGACCCGAAGTTCCAGGGCA AGGCCAGTATAACAGCAGACACATCCCCCAACACAGCCTACCTGCAGCTCAGCAGCCTGACAT CTGAGGACACTGCCGTCTATTACTGTGCTAGAACCCGATCTCCTATGGTTACGACGGGGTTTGTT TACTGGGGCCAAGGGACTGTGGTCACTGTCTCTGCAGCCAAAACGAAGGGCCCATCCGTCTTCC CCCTGGCGCCCTGCTCCAGGAGCACCTCCGAGAGCACAGCCGCCCTGGGCTGCCTGGTCAAGGA CTACTTCCCCGAACCGGTGACGGTGTCGTGGAACTCAGGCGCCCTGACCAGCGGCGTGCACACC TTCCCGGCTGTCCTACAGTCCTCAGGACTCTACTCCCTCAGCAGCGTGGTGACCGTGCCCTCCAG CAGCTTGGGCACGAAGACCTACACCTGCAACGTAGATCACAAGCCCAGCAACACCAAGGTGGA CAAGAGAGTTGAGTCCAAATATGGTCCCCCATGCCCACCCTGCCCAGCACCTGAGTTCGAAGGG GGACCATCAGTCTTCCTGTTCCCCCCAAAACCCAAGGACACTCTCATGATCTCCCGGACCCCTG AGGTCACGTGCGTGGTGGTGGACGTGAGCCAGGAAGACCCCGAGGTCCAGTTCAACTGGTACG TGGATGGCGTGGAGGTGCATAATGCCAAGACRAAGCCGCGGGAGGAGCAGTTCAACAGCACGT ACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAACGGCAAGGAGTACAAGT GCAAGGTCTCCAACAAAGGCCTCCCGTCCTCCATCGAGAAAACCATCTCCAAAGCCAAAGGGC AGCCCCGAGAGCCACAGGTGTACACCCTGCCCCCATCCCAGGAGGAGATGACCAAGAACCAGG TCAGCCTGACCTGCCTGGTCAAAGGCTTCTACCCCAGCGACATCGCCGTGGAGTGGGAGAGCAA TGGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTC CTCTACAGCAGGCTAACCGTGGACAAGAGCAGGTGGCAGGAGGGGAATGTCTTCTCATGCTCC GTGATGCATGAGGCTCTGCACAACCACTACACACAGAAGAGCCTCTCCCTGTCTCTGGGTAAAT GA Anti-DCIR2C9H-LV-hIgG4H-V-hIgG4H-C (SEQ ID NO: 118): MKCSWVIFFLMAVVTGVNSEVQLQQSGAELVRPGALVKLSCKASGFNINDYYIHWVKQRPEQGLE RIGWIDPDNGNTIYDPKFQGKASITADTSPNTAYLQLSSLTSEDTAVYYCARTRSPMVTTGFVYWGQ GTVVTVSAAKTKGPSVFPLAPCSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQS SGLYSLSSVVTVPSSSLGTKTYTCNVDHKPSNTKVDKRVESKYGPPCPPCPAPEFEGGPSVFLFPPKP KDTLMISRTPEVTCVVVDVSQEDPEVQFNWYVDGVEVHNAKXKPREEQFNSTYRVVSVLTVLHQD WLNGKEYKCKVSNKGLPSSIEKTISKAKGQPREPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIAV EWESNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQEGNVFSCSVMHEALHNHYTQKSLSLSL GK Anti-DC-SIGNL16E3H (SEQ ID NO: 54): ATGGAAAGGCACTGGATCTTTCTCTTCCTGTTTTCAGTAACTGCAGGTGTCCACTCCCAGGTCCA GCTTCAGCAGTCTGGGGCTGAGCTGGCAAAACCTGGGGCCTCAGTGAAGATGTCCTGCAAGGCT TCTGGCTACACCTTTACTACCTACTGGATGCACTGGGTAAAACAGAGGCCTGGACAGGGTCTGG AATGGATTGGATACATTAATCCTATCACTGGTTATACTGAGTACAATCAGAAGTTCAAGGACAA GGCCACCTTGACTGCAGACAAATCCTCCAGCACAGCCTACATGCAACTGAGCAGCCTGACATCT GAGGACTCTGCAGTCTATTACTGTGCAAGAGAGGGTTTAAGTGCTATGGACTATTGGGGTCAGG GAACCTCAGTCACCGTCACCTCAGCCAAAACAACAGCCCCATCGGTCTATCCACTGGCCCCTGT GTGTGGAGATACAACTGGCTCCTCGGTAACTCTAGGATGCCTGGTCAAGGGTTATTTCCCTGAG CCAGTGACCTTGACCTGGAACTCTGGATCCCTGTCCAGTGGTGTGCACACCTTCCCAGCTGTCCT GCAGTCTGACCTCTACACCCTCAGCAGCTCAGTGACTGTAACCTCGAGCACCTGGCCCAGCCAG ACCGTCACCTGCAGCGTTGCTCACCCAGCCAGCAGCACCACGGTGGACAAAAAACTTGAGCCC AGCGGGCCCATTTCAACAATCAACCCCTGTCCTCCATGCAAGGAGTGTCACAAATGCCCAGCTC CTAACCTCGAGGGTGGACCATCCGTCTTCATCTTCCCTCCAAATATCAAGGATGTACTCATGATC TCCCTGACACCCAAGGTCACGTGTGTGGTGGTGGATGTGAGCGAGGATGACCCAGACGTCCAG ATCAGCTGGTTTGTGAACAACGTGGAAGTACACACAGCTCAGACACAAACCCATAGAGAGGAT TACAACAGTACTATCCGGGTGGTCAGCACCCTCCCCATCCAGCACCAGGACTGGATGAGTGGCA AGGAGTTCAAATGCAAGGTCAACAACAAAGACCTCCCATCACCCATCGAGAGAACCATCTCAA AAATTAAAGGGCTAGTCAGAGCTCCACAAGTATACATCTTGCCGCCACCAGCAGAGCAGTTGTC CAGGAAAGATGTCAGTCTCACTTGCCTGGTCGTGGGCTTCAACCCTGGAGACATCAGTGTGGAG TGGACCAGCAATGGGCATACAGAGGAGAACTACAAGGACACCGCACCAGTCCTGGACTCTGAC GGTTCTTACTTCATATATAGCAAGCTCAATATGAAAACAAGCAAGTGGGAGAAAACAGATTCCT TCTCATGCAACGTGAGACACGAGGGTCTGAAAAATTACTACCTGAAGAAGACCATCTCCCGGTC TCCGGGTAAAGCTAGCTGA Anti-DC-SIGNL16E3H (SEQ ID NO: 119): MERHWIFLFLFSVTAGVHSQVQLQQSGAELAKPGASVKMSCKASGYTFTTYWMHWVKQRPGQGL EWIGYINPITGYTEYNQKFKDKATLTADKSSSTAYMQLSSLTSEDSAVYYCAREGLSAMDYWGQGT SVTVTSAKTTAPSVYPLAPVCGDTTGSSVTLGCLVKGYFPEPVTLTWNSGSLSSGVHTFPAVLQSDL YTLSSSVTVTSSTWPSQTVTCSVAHPASSTTVDKKLEPSGPISTINPCPPCKECHKCPAPNLEGGPSVFI FPPNIKDVLMISLTPKVTCVVVDVSEDDPDVQISWFVNNVEVHTAQTQTHREDYNSTIRVVSTLPIQ HQDWMSGKEFKCKVNNKDLPSPIERTISKIKGLVRAPQVYILPPPAEQLSRKDVSLTCLVVGFNPGDI SVEWTSNGHTEENYKDTAPVLDSDGSYFIYSKLNMKTSKWEKTDSFSCNVRHEGLKNYYLKKTISR SPGKAS Anti-DC-SIGNL16E3K (SEQ ID NO: 55): ATGGGCATCAAGATGGAGTCACGGATTCAGGCATTTGTATTCGTGTTTCTCTGGTTGTCTGGTGT TGGCGGAGACATTGTGATGACCCAGTCTCACAAATTCATGTCCACATCAGTAGGAGACAGGGTC AGCGTCACCTGCAAGGCCAGTCAGGATGTGACTTCTGCTGTAGCCTGGTATCAACAAAAACCAG GGCAATCTCCTAAACTACTGATTTACTGGGCATCCACCCGGCACACTGGAGTCCCTGATCGCTT CACAGGCAGTGGATCTGGGACAGATTATACTCTCACCATCAGCAGTGGGCAGGCTGAAGACCT GGCACTTTATTACTGTCACCAATATTATAGCGCTCCTCGGACGTTCGGTGGAGGCACCAAGCTG GAAGTCAAACGGGCTGATGCTGCACCAACTGTATCCATCTTCCCACCATCCAGTGAGCAGTTAA CATCTGGAGGTGCCTCAGTCGTGTGCTTCTTGAACAACTTCTACCCCAAAGACATCAATGTCAA GTGGAAGATTGATGGCAGTGAACGACAAAATGGCGTCCTGAACAGTTGGACTGATCAGGACAG CAAAGACAGCACCTACAGCATGAGCAGCACCCTCACGTTGACCAAGGACGAGTATGAACGACA TAACAGCTATACCTGTGAGGCCACTCACAAGACATCAACTTCACCCATCGTCAAGAGCTTCAAT AGGAATGAGTGTTAG Anti-DC-SIGNL16E3K (SEQ ID NO: 120): MESRIQAFVFVFLWLSGVGGDIVMTQSHKFMSTSVGDRVSVTCKASQDVTSAVAWYQQKPGQSPK LLIYWASTRHTGVPDRFTGSGSGTDYTLTISSGQAEDLALYYCHQYYSAPRTFGGGTKLEVKRADA APTVSIFPPSSEQLTSGGASVVCFLNNFYPKDINVKWKIDGSERQNGVLNSWTDQDSKDSTYSMSST LTLTKDEYERHNSYTCEATHKTSTSPIVKSFNRNEC Anti-DC-SIGNL16E7H-LV-hIgG4H-C (SEQ ID NO: 56): ATGGAAAGGCACTGGATCTTTCTCTTCCTGTTTTCAGTAACTGCAGGTGTCCACTCCCAGGTCCA GCTTCAGCAGTCTGGGGCTGAGCTGGCAAAACCTGGGGCCTCAGTGAAGATGTCCTGCAAGGCT TCTGGCTACACCTTTACTACCTACTGGATGCACTGGGTAAAACAGAGGCCTGGACAGGGTCTGG AATGGATTGGATACATTAATCCTATCACTGGTTATACTGAGTACAATCAGAAGTTCAAGGACAA GGCCACCTTGACTGCAGACAAATCCTCCAGCACAGCCTACATGCAACTGAGCAGCCTGACATCT GAGGACTCTGCAGTCTATTACTGTGCAAGAGAGGGTTTAAGTGCTATGGACTATTGGGGTCAGG GAACCTCAGTCACCGTCACCTCAGCCAAAACAACGGGCCCATCCGTCTTCCCCCTGGCGCCCTG CTCCAGGAGCACCTCCGAGAGCACAGCCGCCCTGGGCTGCCTGGTCAAGGACTACTTCCCCGAA CCGGTGACGGTGTCGTGGAACTCAGGCGCCCTGACCAGCGGCGTGCACACCTTCCCGGCTGTCC TACAGTCCTCAGGACTCTACTCCCTCAGCAGCGTGGTGACCGTGCCCTCCAGCAGCTTGGGCAC GAAGACCTACACCTGCAACGTAGATCACAAGCCCAGCAACACCAAGGTGGACAAGAGAGTTGA GTCCAAATATGGTCCCCCATGCCCACCCTGCCCAGCACCTGAGTTCGAAGGGGGACCATCAGTC TTCCTGTTCCCCCCAAAACCCAAGGACACTCTCATGATCTCCCGGACCCCTGAGGTCACGTGCG TGGTGGTGGACGTGAGCCAGGAAGACCCCGAGGTCCAGTTCAACTGGTACGTGGATGGCGTGG AGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTTCAACAGCACGTACCGTGTGGTCA GCGTCCTCACCGTCCTGCACCAGGACTGGCTGAACGGCAAGGAGTACAAGTGCAAGGTCTCCA ACAAAGGCCTCCCGTCCTCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAGC CACAGGTGTACACCCTGCCCCCATCCCAGGAGGAGATGACCAAGAACCAGGTCAGCCTGACCT GCCTGGTCAAAGGCTTCTACCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGG AGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTACAGCAG GCTAACCGTGGACAAGAGCAGGTGGCAGGAGGGGAATGTCTTCTCATGCTCCGTGATGCATGA GGCTCTGCACAACCACTACACACAGAAGAGCCTCTCCCTGTCTCTGGGTAAAGCTAGCTGA Anti-DC-SIGNL16E7H-LV-hIgG4H-C (SEQ ID NO: 121): MERHWIFLFLFSVTAGVHSQVQLQQSGAELAKPGASVKMSCKASGYTFTTYWMHWVKQRPGQGL EWIGYINPITGYTEYNQKFKDKATLTADKSSSTAYMQLSSLTSEDSAVYYCAREGLSAMDYWGQGT SVTVTSAKTTGPSVFPLAPCSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGL YSLSSVVTVPSSSLGTKTYTCNVDHKPSNTKVDKRVESKYGPPCPPCPAPEFEGGPSVFLFPPKPKDT LMISRTPEVTCVVVDVSQEDPEVQFNWYVDGVEVHNAKTKPREEQFNSTYRVVSVLTVLHQDWLN GKEYKCKVSNKGLPSSIEKTISKAKGQPREPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWE SNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQEGNVFSCSVMHEALHNHYTQKSLSLSLGKA S. Anti-DC-SIGNL16E7K-LV-hIgGK-C (SEQ ID NO: 57): ATGGGCATCAAGATGGAGTCACAGATTCAGGCATTTGTATTCGTGTTTCTCTGGTTGTCTGGTGT TGGCGGAGACATTGTGATGACCCAGTCTCACAAATTCATGTCCACATCAGTAGGAGACAGGGTC AGCGTCACCTGCAAGGCCAGTCAGGATGTGACTTCTGCTGTAGCCTGGTATCAACAAAAACCAG GGCAATCTCCTAAACTACTGATTTACTGGGCATCCACCCGGCACACTGGAGTCCCTGATCGCTT CACAGGCAGTGGATCTGGGACAGATTATACTCTCACCATCAGCAGTGGGCAGGCTGAAGACCT GGCACTTTATTACTGTCACCAATATTATAGCGCTCCTCGGACGTTCGGTGGAGGCACCAAGCTC GAGATCAAACGAACTGTGGCTGCACCATCTGTCTTCATCTTCCCGCCATCTGATGAGCAGTTGA AATCTGGAACTGCCTCTGTTGTGTGCCTGCTGAATAACTTCTATCCCAGAGAGGCCAAAGTACA GTGGAAGGTGGATAACGCCCTCCAATCGGGTAACTCCCAGGAGAGTGTCACAGAGCAGGACAG CAAGGACAGCACCTACAGCCTCAGCAGCACCCTGACGCTGAGCAAAGCAGACTACGAGAAACA CAAAGTCTATGCCTGCGAAGTCACCCATCAGGGCCTGAGCTCGCCCGTCACAAAGAGCTTCAAC AGGGGAGAGTGTTAG Anti-DC-SIGNL16E7K-LV-hIgGK-C (SEQ ID NO: 122): MESQIQAFVFVFLWLSGVGGDIVMTQSHKFMSTSVGDRVSVTCKASQDVTSAVAWYQQKPGQSPK LLIYWASTRHTGVPDRFTGSGSGTDYTLTISSGQAEDLALYYCHQYYSAPRTFGGGTKLEIKRTVAA PSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTL TLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC Anti-Dectin_1_11B6.4_H-V-hIgG4H-C (SEQ ID NO: 58): ATGGCTGTCCTGGCACTACTCCTCTGCCTGGTGGCTTTCCCAACTTGTACCCTGTCCCAGGTGCA ACTGAAGGAGTCAGGACCTGGCCTGGTGGCGCCCTCACAGAGCCTGTCCATTACCTGCTCTGTC TCTGGGTTCTCATTAAGCAACTATGATATAAGCTGGATTCGCCAGCCACCAGGAAAGGGTCTGG AGTGGCTTGGAGTAATGTGGACTGGTGGAGGCGCAAATTATAATTCAGCTTTCATGTCCAGACT GAGCATCAACAAGGACAACTCCAAGAGCCAAGTTTTTTTAAAAATGAACAATCTGCAAACTGA TGACACAGCCATTTATTACTGTGTCAGAGATGCGGTGAGGTACTGGAACTTCGATGTCTGGGGC GCAGGGACCACGGTCACCGTCTCCTCAGCCAAAACGAAGGGCCCATCCGTCTTCCCCCTGGCGC CCTGCTCCAGGAGCACCTCCGAGAGCACAGCCGCCCTGGGCTGCCTGGTCAAGGACTACTTCCC CGAACCGGTGACGGTGTCGTGGAACTCAGGCGCCCTGACCAGCGGCGTGCACACCTTCCCGGCT GTCCTACAGTCCTCAGGACTCTACTCCCTCAGCAGCGTGGTGACCGTGCCCTCCAGCAGCTTGG GCACGAAGACCTACACCTGCAACGTAGATCACAAGCCCAGCAACACCAAGGTGGACAAGAGAG TTGAGTCCAAATATGGTCCCCCATGCCCACCCTGCCCAGCACCTGAGTTCGAAGGGGGACCATC AGTCTTCCTGTTCCCCCCAAAACCCAAGGACACTCTCATGATCTCCCGGACCCCTGAGGTCACG TGCGTGGTGGTGGACGTGAGCCAGGAAGACCCCGAGGTCCAGTTCAACTGGTACGTGGATGGC GTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTTCAACAGCACGTACCGTGTG GTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAACGGCAAGGAGTACAAGTGCAAGGTC TCCAACAAAGGCCTCCCGTCCTCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGA GAGCCACAGGTGTACACCCTGCCCCCATCCCAGGAGGAGATGACCAAGAACCAGGTCAGCCTG ACCTGCCTGGTCAAAGGCTTCTACCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAG CCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTACA GCAGGCTAACCGTGGACAAGAGCAGGTGGCAGGAGGGGAATGTCTTCTCATGCTCCGTGATGC ATGAGGCTCTGCACAACCACTACACACAGAAGAGCCTCTCCCTGTCTCTGGGTAAAGCTAGCTGA Anti-Dectin_1_11B6.4_H-V-hIgG4H-C (SEQ ID NO: 123): MAVLALLLCLVAFPTCTLSQVQLKESGPGLVAPSQSLSITCSVSGFSLSNYDISWIRQPPGKGLEWLG VMWTGGGANYNSAFMSRLSINKDNSKSQVFLKMNNLQTDDTAIYYCVRDAVRYWNFDVWGAGT TVTVSSAKTKGPSVFPLAPCSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGL YSLSSVVTVPSSSLGTKTYTCNVDHKPSNTKVDKRVESKYGPPCPPCPAPEFEGGPSVFLFPPKPKDT LMISRTPEVTCVVVDVSQEDPEVQFNWYVDGVEVHNAKTKPREEQFNSTYRVVSVLTVLHQDWLN GKEYKCKVSNKGLPSSIEKTISKAKGQPREPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWE SNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQEGNVFSCSVMHEALHNHYTQKSLSLSLGKAS Anti-Dectin_1_11B6.4_K-LV-hIgGK-C (SEQ ID NO: 59): ATGGATTTTCAAGCGCAGATTTTCAGCTTCCTGCTAATCAGTGCTTCAGTCATAATGTCCAGAGG ACAAATTGTTCTCTCCCAGTCACCAGCAATCCTGTCTGCATCTCCAGGGGAGAAGGTCACAATG ACTTGCAGGGCCAGCTCAAGTGTAAGTTACATACACTGGTACCAGCAGAAGCCAGGATCCTCCC CCAAACCCTGGATTTATGCCACATCCCACCTGGCTTCTGGAGTCCCTGCTCGCTTCAGTGGCAGT GGGTCTGGGACCTCTTACTCTCTCACAATCAGCAGAGTGGAGGCTGAAGATACTGCCACTTATT ACTGCCAGCAGTGGAGTAGTAACCCATTCACGTTCGGCTCGGGGACAAAGCTCGAGATCAAAC GAACTGTGGCTGCACCATCTGTCTTCATCTTCCCGCCATCTGATGAGCAGTTGAAATCTGGAACT GCCTCTGTTGTGTGCCTGCTGAATAACTTCTATCCCAGAGAGGCCAAAGTACAGTGGAAGGTGG ATAACGCCCTCCAATCGGGTAACTCCCAGGAGAGTGTCACAGAGCAGGACAGCAAGGACAGCA CCTACAGCCTCAGCAGCACCCTGACGCTGAGCAAAGCAGACTACGAGAAACACAAAGTCTATG CCTGCGAAGTCACCCATCAGGGCCTGAGCTCGCCCGTCACAAAGAGCTTCAACAGGGGAGAGT GTTAG Anti-Dectin_1_11B6.4_K-LV-hIgGK-C (SEQ ID NO: 124): MDFQAQIFSFLLISASVIMSRGQIVLSQSPAILSASPGEKVTMTCRASSSVSYIHWYQQKPGSSPKPWI YATSHLASGVPARFSGSGSGTSYSLTISRVEAEDTATYYCQQWSSNPFTFGSGTKLEIKRTVAAPSVF IFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSK ADYEKHKVYACEVTHQGLSSPVTKSFNRGEC Anti-Dectin_1_15E2.5_H-V-hIgG4H-C (SEQ ID NO: 60): ATGGAAAGGCACTGGATCTTTCTACTCCTGTTGTCAGTAACTGCAGGTGTCCACTCCCAGGTCC AGCTGCAGCAGTCTGGGGCTGAACTGGCAAGACCTGGGGCCTCAGTGAAGATGTCCTGCAAGG CTTCTGGCTACACCTTTACTACCTACACTATGCACTGGGTAAAACAGAGGCCTGGACAGGGTCT GGAATGGATTGGATACATTAATCCTAGCAGTGGTTATACTAATTACAATCAGAAGTTCAAGGAC AAGGCCACATTGACTGCAGACAAATCCTCCAGCACAGCCTCCATGCAACTGAGCAGCCTGACAT CTGAGGACTCTGCAGTCTATTACTGTGCAAGAGAGAGGGCGGTATTAGTCCCCTATGCTATGGA CTACTGGGGTCAAGGAACCTCAGTCACCGTCTCCTCAGCCAAAACAAAGGGCCCATCCGTCTTC CCCCTGGCGCCCTGCTCCAGGAGCACCTCCGAGAGCACAGCCGCCCTGGGCTGCCTGGTCAAGG ACTACTTCCCCGAACCGGTGACGGTGTCGTGGAACTCAGGCGCCCTGACCAGCGGCGTGCACAC CTTCCCGGCTGTCCTACAGTCCTCAGGACTCTACTCCCTCAGCAGCGTGGTGACCGTGCCCTCCA GCAGCTTGGGCACGAAGACCTACACCTGCAACGTAGATCACAAGCCCAGCAACACCAAGGTGG ACAAGAGAGTTGAGTCCAAATATGGTCCCCCATGCCCACCCTGCCCAGCACCTGAGTTCGAAGG GGGACCATCAGTCTTCCTGTTCCCCCCAAAACCCAAGGACACTCTCATGATCTCCCGGACCCCT GAGGTCACGTGCGTGGTGGTGGACGTGAGCCAGGAAGACCCCGAGGTCCAGTTCAACTGGTAC GTGGATGGCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTTCAACAGCACG TACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAACGGCAAGGAGTACAAGT GCAAGGTCTCCAACAAAGGCCTCCCGTCCTCCATCGAGAAAACCATCTCCAAAGCCAAAGGGC AGCCCCGAGAGCCACAGGTGTACACCCTGCCCCCATCCCAGGAGGAGATGACCAAGAACCAGG TCAGCCTGACCTGCCTGGTCAAAGGCTTCTACCCCAGCGACATCGCCGTGGAGTGGGAGAGCAA TGGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTC CTCTACAGCAGGCTAACCGTGGACAAGAGCAGGTGGCAGGAGGGGAATGTCTTCTCATGCTCC GTGATGCATGAGGCTCTGCACAACCACTACACACAGAAGAGCCTCTCCCTGTCTCTGGGTAAAG CTAGCTGA Anti-Dectin_1_15E2.5_H-V-hIgG4H-C (SEQ ID NO: 125): MERHWIFLLLLSVTAGVHSQVQLQQSGAELARPGASVKMSCKASGYTFTTYTMHWVKQRPGQGL EWIGYINPSSGYTNYNQKFKDKATLTADKSSSTASMQLSSLTSEDSAVYYCARERAVLVPYAMDY WGQGTSVTVSSAKTKGPSVFPLAPCSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAV LQSSGLYSLSSVVTVPSSSLGTKTYTCNVDHKPSNTKVDKRVESKYGPPCPPCPAPEFEGGPSVFLFP PKPKDTLMISRTPEVTCVVVDVSQEDPEVQFNWYVDGVEVHNAKTKPREEQFNSTYRVVSVLTVL HQDWLNGKEYKCKVSNKGLPSSIEKTISKAKGQPREPQVYTLPPSQEEMTKNQVSLTCLVKGFYPS DIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQEGNVFSCSVMHEALHNHYTQKSL SLSLGKAS Anti-Dectin_1_15E2.5_K-V-hIgGK-C (SEQ ID NO: 61): ATGCATTTTCAAGTGCAGATTTTCAGCTTCCTGCTAATCAGTGCCTCAGTCATAATGTCCAGAGG ACAAATTGTTCTCACCCAGTCTCCAGCAGTCATGTCTGCATCTCCAGGGGAGAAGGTCACCATA ACCTGCACTGCCAGCTCAAGTTTAAGTTACATGCACTGGTTCCAGCAGAAGCCAGGCACTTCTC CCAAACTCTGGCTTTATAGCACATCCATCCTGGCTTCTGGAGTCCCTACTCGCTTCAGTGGCAGT GGATCTGGGACCTCTTACTCTCTCACAATCAGCCGAATGGAGGCTGAAGATGCTGCCACTTATT ACTGCCAGCAAAGGAGTAGTTCCCCATTCACGTTCGGCTCGGGGACAAAGCTCGAGATCAAAC GAACTGTGGCTGCACCATCTGTCTTCATCTTCCCGCCATCTGATGAGCAGTTGAAATCTGGAACT GCCTCTGTTGTGTGCCTGCTGAATAACTTCTATCCCAGAGAGGCCAAAGTACAGTGGAAGGTGG ATAACGCCCTCCAATCGGGTAACTCCCAGGAGAGTGTCACAGAGCAGGACAGCAAGGACAGCA CCTACAGCCTCAGCAGCACCCTGACGCTGAGCAAAGCAGACTACGAGAAACACAAAGTCTATG CCTGCGAAGTCACCCATCAGGGCCTGAGCTCGCCCGTCACAAAGAGCTTCAACAGGGGAGAGT GTTAG Anti-Dectin_1_15E2.5_K-V-hIgGK-C (SEQ ID NO: 126): MHFQVQIFSFLLISASVIMSRGQIVLTQSPAVMSASPGEKVTITCTASSSLSYMHWFQQKPGTSPKLW LYSTSILASGVPTRFSGSGSGTSYSLTISRMEAEDAATYYCQQRSSSPFTFGSGTKLEIKRTVAAPSVFI FPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKA DYEKHKVYACEVTHQGLSSPVTKSFNRGEC Anti-Dectin_1_2D8.2D4H-V-hIgG4H-C (SEQ ID NO: 62): ATGGGATGGACCTGGATCTTTATTTTAATCCTGTCAGTTACTACAGGTGTCCACTCTGAGGTCCA GCTGCAGCAGTCTGGACCTGAGCTGGAGAAGCCTGGCGCTTCAGTGAAGATATCCTGCAAGGCT TCTGGTTACTCCTTCACTGGCTACAACATGAACTGGGTGAAACAGAGCAATGGAAAGAGCCTTG AGTGGATTGGAAATATTGATCCTTACTATGGTGATACTAACTACAACCAGAAGTTCAAGGGCAA GGCCACATTGACTGTAGACAAATCCTCCAGCACAGCCTACATGCACCTCAAGAGCCTGACATCT GAGGACTCTGCAGTCTATTACTGTGCAAGACCCTACGGTAGTGAGGCCTACTTTGCTTACTGGG GCCAAGGGACTCTGGTCACTGTCTCTGCAGCCAAAACGAAGGGCCCATCCGTCTTCCCCCTGGC GCCCTGCTCCAGGAGCACCTCCGAGAGCACAGCCGCCCTGGGCTGCCTGGTCAAGGACTACTTC CCCGAACCGGTGACGGTGTCGTGGAACTCAGGCGCCCTGACCAGCGGCGTGCACACCTTCCCGG CTGTCCTACAGTCCTCAGGACTCTACTCCCTCAGCAGCGTGGTGACCGTGCCCTCCAGCAGCTTG GGCACGAAGACCTACACCTGCAACGTAGATCACAAGCCCAGCAACACCAAGGTGGACAAGAGA GTTGAGTCCAAATATGGTCCCCCATGCCCACCCTGCCCAGCACCTGAGTTCGAAGGGGGACCAT CAGTCTTCCTGTTCCCCCCAAAACCCAAGGACACTCTCATGATCTCCCGGACCCCTGAGGTCAC GTGCGTGGTGGTGGACGTGAGCCAGGAAGACCCCGAGGTCCAGTTCAACTGGTACGTGGATGG CGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTTCAACAGCACGTACCGTGT GGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAACGGCAAGGAGTACAAGTGCAAGGT CTCCAACAAAGGCCTCCCGTCCTCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCG AGAGCCACAGGTGTACACCCTGCCCCCATCCCAGGAGGAGATGACCAAGAACCAGGTCAGCCT GACCTGCCTGGTCAAAGGCTTCTACCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCA GCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTAC AGCAGGCTAACCGTGGACAAGAGCAGGTGGCAGGAGGGGAATGTCTTCTCATGCTCCGTGATG CATGAGGCTCTGCACAACCACTACACACAGAAGAGCCTCTCCCTGTCTCTGGGTAAAGCTAGCT GA Anti-Dectin_1_2D8.2D4H-V-hIgG4H-C (SEQ ID NO: 127): MGWTWIFILILSVTTGVHSEVQLQQSGPELEKPGASVKISCKASGYSFTGYNMNWVKQSNGKSLEW IGNIDPYYGDTNYNQKFKGKATLTVDKSSSTAYMHLKSLTSEDSAVYYCARPYGSEAYFAYWGQG TLVTVSAAKTKGPSVFPLAPCSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSS GLYSLSSVVTVPSSSLGTKTYTCNVDHKPSNTKVDKRVESKYGPPCPPCPAPEFEGGPSVFLFPPKPK DTLMISRTPEVTCVVVDVSQEDPEVQFNWYVDGVEVHNAKTKPREEQFNSTYRVVSVLTVLHQDW LNGKEYKCKVSNKGLPSSIEKTISKAKGQPREPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIAVE WESNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQEGNVFSCSVMHEALHNHYTQKSLSLSLG KAS Anti-Dectin_1_2D8.2D4K-V-hIgGK-C (SEQ ID NO: 63): ATGGTGTCCACTTCTCAGCTCCTTGGACTTTTGCTTTTCTGGACTTCAGCCTCCAGATGTGACATT GTGATGACTCAGTCTCCAGCCACCCTGTCTGTGACTCCAGGAGATAGAGTCTCTCTTTCCTGCAG GGCCAGCCAGAGTATTAGCGACTACTTACACTGGTATCAACAAAAATCACATGAGTCTCCAAGG CTTCTCATCAAATATGCTGCCCAATCCATCTCTGGGATCCCCTCCAGGTTCAGTGGCAGTGGATC AGGGTCAGATTTCACTCTCAGTATCAACGGTGTGGAACCTGAAGATGTTGGAGTGTATTACTGT CAAAATGGTCACAGCTTTCCGTACACGTTCGGAGGGGGGACCAAGCTCGAGATCAAACGAACT GTGGCTGCACCATCTGTCTTCATCTTCCCGCCATCTGATGAGCAGTTGAAATCTGGAACTGCCTC TGTTGTGTGCCTGCTGAATAACTTCTATCCCAGAGAGGCCAAAGTACAGTGGAAGGTGGATAAC GCCCTCCAATCGGGTAACTCCCAGGAGAGTGTCACAGAGCAGGACAGCAAGGACAGCACCTAC AGCCTCAGCAGCACCCTGACGCTGAGCAAAGCAGACTACGAGAAACACAAAGTCTATGCCTGC GAAGTCACCCATCAGGGCCTGAGCTCGCCCGTCACAAAGAGCTTCAACAGGGGAGAGTGTTAG Anti-Dectin_1_2D8.2D4K-V-hIgGK-C (SEQ ID NO: 128): DIVMTQSPATLSVTPGDRVSLSCRASQSISDYLHWYQQKSHESPRLLIKYAAQSISGIPSRFSGSGSGS DFTLSINGVEPEDVGVYYCQNGHSFPYTFGGGTKLEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLN NFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLS SPVTKSFNRGEC Anti-Langerin15B10H-LV-hIgG4H-C (SEQ ID NO: 64): ATGGAATGGAGGATCTTTCTCTTCATCCTGTCAGGAACTGCAGGTGTCCACTCCCAGGTTCAGCT GCGGCAGTCTGGACCTGAGCTGGTGAAGCCTGGGGCTTCAGTGAAGATGTCCTGCAAGGCTTCT GGATACACATTTACTGACTATGTTATAAGTTGGGTGAAGCAGAGAACTGGACAGGGCCTTGAGT GGATTGGAGATATTTATCCTGGAAGTGGTTATTCTTTCTACAATGAGAACTTCAAGGGCAAGGC CACACTGACTGCAGACAAATCCTCCACCACAGCCTACATGCAGCTCAGCAGCCTGACATCTGAG GACTCTGCGGTCTATTTCTGTGCAACCTACTATAACTACCCTTTTGCTTACTGGGGCCAAGGGAC TCTGGTCACTGTCTCTGCAGCCAAAACAACGGGCCCATCCGTCTTCCCCCTGGCGCCCTGCTCCA GGAGCACCTCCGAGAGCACAGCCGCCCTGGGCTGCCTGGTCAAGGACTACTTCCCCGAACCGGT GACGGTGTCGTGGAACTCAGGCGCCCTGACCAGCGGCGTGCACACCTTCCCGGCTGTCCTACAG TCCTCAGGACTCTACTCCCTCAGCAGCGTGGTGACCGTGCCCTCCAGCAGCTTGGGCACGAAGA CCTACACCTGCAACGTAGATCACAAGCCCAGCAACACCAAGGTGGACAAGAGAGTTGAGTCCA AATATGGTCCCCCATGCCCACCCTGCCCAGCACCTGAGTTCGAAGGGGGACCATCAGTCTTCCT GTTCCCCCCAAAACCCAAGGACACTCTCATGATCTCCCGGACCCCTGAGGTCACGTGCGTGGTG GTGGACGTGAGCCAGGAAGACCCCGAGGTCCAGTTCAACTGGTACGTGGATGGCGTGGAGGTG CATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTTCAACAGCACGTACCGTGTGGTCAGCGTC CTCACCGTCCTGCACCAGGACTGGCTGAACGGCAAGGAGTACAAGTGCAAGGTCTCCAACAAA GGCCTCCCGTCCTCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAGCCACAG GTGTACACCCTGCCCCCATCCCAGGAGGAGATGACCAAGAACCAGGTCAGCCTGACCTGCCTG GTCAAAGGCTTCTACCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAAC AACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTACAGCAGGCTAA CCGTGGACAAGAGCAGGTGGCAGGAGGGGAATGTCTTCTCATGCTCCGTGATGCATGAGGCTCT GCACAACCACTACACACAGAAGAGCCTCTCCCTGTCTCTGGGTAAAGCTAGCTGA Anti-Langerin15B10H-LV-hIgG4H-C (SEQ ID NO: 129): QVQLRQSGPELVKPGASVKMSCKASGYTFTDYVISWVKQRTGQGLEWIGDIYPGSGYSFYNENFKG KATLTADKSSTTAYMQLSSLTSEDSAVYFCATYYNYPFAYWGQGTLVTVSAAKTTGPSVFPLAPCS RSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTKTYTC NVDHKPSNTKVDKRVESKYGPPCPPCPAPEFEGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSQEDP EVQFNWYVDGVEVHNAKTKPREEQFNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKGLPSSIEKTI SKAKGQPREPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDG SFFLYSRLTVDKSRWQEGNVFSCSVMHEALHNHYTQKSLSLSLGKAS. Anti-Langerin15B10K-LV-hIgGK-C (SEQ ID NO: 65): ATGAAGTTGCCTGTTAGGCTGTTGGTGCTGATGTTCTGGATTCCTGCTTCCAGCAGTGATGTTGT GATGACCCAAACTCCACTCTCCCTGCCTGTCCGTCTTGGAGATCAAGCCTCCATCTCTTGCAGAT CTAGTCAGAGCCTTGTACACAGTAATGGAAACACCTATTTACATTGGTACCTGCAGAAGCCAGG CCAGTCTCCAAAGCTCCTGATCTACAAAGTTTCCAACCGATTTTCTGGGGTCCCAGACAGGTTC AGTGGCAGTGGATCAGGGACAAATTTCACACTCAAGATCAGCAGAGTGGAGGCTGAGGATCTG GGACTTTATTTCTGCTCTCAAAGTACACATGTTCCGTACACGTTCGGAGGGGGGACCAAGCTCG AGATCAAACGAACTGTGGCTGCACCATCTGTCTTCATCTTCCCGCCATCTGATGAGCAGTTGAA ATCTGGAACTGCCTCTGTTGTGTGCCTGCTGAATAACTTCTATCCCAGAGAGGCCAAAGTACAG TGGAAGGTGGATAACGCCCTCCAATCGGGTAACTCCCAGGAGAGTGTCACAGAGCAGGACAGC AAGGACAGCACCTACAGCCTCAGCAGCACCCTGACGCTGAGCAAAGCAGACTACGAGAAACAC AAAGTCTATGCCTGCGAAGTCACCCATCAGGGCCTGAGCTCGCCCGTCACAAAGAGCTTCAACA GGGGAGAGTGTTAG Anti-Langerin15B10K-LV-hIgGK-C (SEQ ID NO: 130): DVVMTQTPLSLPVRLGDQASISCRSSQSLVHSNGNTYLHWYLQKPGQSPKLLIYKVSNRFSGVPDRF SGSGSGTNFTLKISRVEAEDLGLYFCSQSTHVPYTFGGGTKLEIKRTVAAPSVFIFPPSDEQLKSGTAS VVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEV THQGLSSPVTKSFNRGEC Anti-Langerin2G3H-LV-hIgG4H-C (SEQ ID NO: 66): ATGACATTGAACATGCTGTTGGGGCTGAGGTGGGTTTTCTTTGTTGTTTTTTATCAAGGTGTGCA TTGTGAGGTGCAGCTTGTTGAGTCTGGTGGAGGATTGGTGCAGCCTAAAGGGTCATTGAAACTC TCATGTGCAGCCTCTGGATTAACCTTCAATATCTACGCCATGAACTGGGTCCGCCAGGCTCCAG GAAAGGGTTTGGAATGGGTTGCTCGCATAAGAAATAAAAGTAATAATTATGCAACATATTATGC CGATTCAGTGAAAGACAGGTTCACCATCTCCAGAGATGATTCACAAAGCTTGCTCTATCTGCAA ATGAACAACTTGAAAACTGAGGACACAGCCATGTATTACTGTGTGGGACGGGACTGGTTTGATT ACTGGGGCCAAGGGACTCTGGTCACTGTCTCTGCAGCCAAAACGAAGGGCCCATCCGTCTTCCC CCTGGCGCCCTGCTCCAGGAGCACCTCCGAGAGCACAGCCGCCCTGGGCTGCCTGGTCAAGGAC TACTTCCCCGAACCGGTGACGGTGTCGTGGAACTCAGGCGCCCTGACCAGCGGCGTGCACACCT TCCCGGCTGTCCTACAGTCCTCAGGACTCTACTCCCTCAGCAGCGTGGTGACCGTGCCCTCCAGC AGCTTGGGCACGAAGACCTACACCTGCAACGTAGATCACAAGCCCAGCAACACCAAGGTGGAC AAGAGAGTTGAGTCCAAATATGGTCCCCCATGCCCACCCTGCCCAGCACCTGAGTTCGAAGGGG GACCATCAGTCTTCCTGTTCCCCCCAAAACCCAAGGACACTCTCATGATCTCCCGGACCCCTGA GGTCACGTGCGTGGTGGTGGACGTGAGCCAGGAAGACCCCGAGGTCCAGTTCAACTGGTACGT GGATGGCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTTCAACAGCACGTA CCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAACGGCAAGGAGTACAAGTGC AAGGTCTCCAACAAAGGCCTCCCGTCCTCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAG CCCCGAGAGCCACAGGTGTACACCCTGCCCCCATCCCAGGAGGAGATGACCAAGAACCAGGTC AGCCTGACCTGCCTGGTCAAAGGCTTCTACCCCAGCGACATCGCCGTGGAGTGGGAGAGCAAT GGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCC TCTACAGCAGGCTAACCGTGGACAAGAGCAGGTGGCAGGAGGGGAATGTCTTCTCATGCTCCG TGATGCATGAGGCTCTGCACAACCACTACACACAGAAGAGCCTCTCCCTGTCTCTGGGTAAAGC TAGCTGA Anti-Langerin2G3H-LV-hIgG4H-C (SEQ ID NO: 131): MTLNMLLGLRWVFFVVFYQGVHCEVQLVESGGGLVQPKGSLKLSCAASGLTFNIYAMNWVRQAP GKGLEWVARIRNKSNNYATYYADSVKDRFTISRDDSQSLLYLQMNNLKTEDTAMYYCVGRDWFD YWGQGTLVTVSAAKTKGPSVFPLAPCSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFP AVLQSSGLYSLSSVVTVPSSSLGTKTYTCNVDHKPSNTKVDKRVESKYGPPCPPCPAPEFEGGPSVFL FPPKPKDTLMISRTPEVTCVVVDVSQEDPEVQFNWYVDGVEVHNAKTKPREEQFNSTYRVVSVLTV LHQDWLNGKEYKCKVSNKGLPSSIEKTISKAKGQPREPQVYTLPPSQEEMTKNQVSLTCLVKGFYPS DIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQEGNVFSCSVMHEALHNHYTQKSL SLSLGKAS Anti-Langerin2G3L-LV-hIgGK-C (SEQ ID NO: 67): ATGGCCTGGATTTCACTTATACTCTCTCTCCTGGCTCTCAGCTCAGGGGCCATTTCCCAGGCTGT TGTGACTCAGGAATCTGCACTCACCACATCACCTGGTGAAACAGTCACACTCACTTGTCGCTCA AGTACTGGGGCTGTTACAACTAGTAACTATGCCAACTGGGTCCAAGAAAAACCAGATCATTTAT TCACTGGTCTAATAGGTGGTACCAACAACCGAGTTTCAGGTGTTCCTGCCAGATTCTCAGGCTC CCTGATTGGAGACAAGGCTGCCCTCACCATCACAGGGGCACAGACTGAGGATGAGGCAATATA TTTCTGTGCTCTATGGTACAGCAACCATTGGGTGTTCGGTGGAGGAACCAAACTCGAGATCAAA CGAACTGTGGCTGCACCATCTGTCTTCATCTTCCCGCCATCTGATGAGCAGTTGAAATCTGGAAC TGCCTCTGTTGTGTGCCTGCTGAATAACTTCTATCCCAGAGAGGCCAAAGTACAGTGGAAGGTG GATAACGCCCTCCAATCGGGTAACTCCCAGGAGAGTGTCACAGAGCAGGACAGCAAGGACAGC ACCTACAGCCTCAGCAGCACCCTGACGCTGAGCAAAGCAGACTACGAGAAACACAAAGTCTAT GCCTGCGAAGTCACCCATCAGGGCCTGAGCTCGCCCGTCACAAAGAGCTTCAACAGGGGAGAG TGTTAG Anti-Langerin2G3L-LV-hIgGK-C (SEQ ID NO: 132): MAWISLILSLLALSSGAISQAVVTQESALTTSPGETVTLTCRSSTGAVTTSNYANWVQEKPDHLFTGL IGGTNNRVSGVPARFSGSLIGDKAALTITGAQTEDEAIYFCALWYSNHWVFGGGTKLEIKRTVAAPS VFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTL SKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC Anti-Lox_1_10F9H-LV-hIgG4H-C (SEQ ID NO: 68): ATGGAATGGACCTGGGTCTTTCTCTTCCTCCTGTCAGTAACTGCAGGTGTCCACTCCCAGGTTCA GCTGCAGCAGTCTGGAGCTGAGCTGATGAAGCCTGGGGCCTCAGTGAAGATATCCTGCAAGGC TACTGGCTACACATTCGGTAGCTACTGGATAGAGTGGGTAAAGCAGAGGCCTGGACATGGCCTT GAGTGGATTGGAGAGATTTTACCTGGAAGTGGTAATACTAACTACAATGAGAACTTCAAGGGC AAGGCCACATTCACTGCAGATACATCCTCCAACACAGCCTACATGCAACTCACCAGTCTGACAT CTGAGGACTCTGCCGTCTATTACTGTGCTAGGGCGGGGATTTATTGGGGCCAAGGGACTCTGGT CACTGTCTCTGCAGCCAAAACGAAGGGCCCATCCGTCTTCCCCCTGGCGCCCTGCTCCAGGAGC ACCTCCGAGAGCACAGCCGCCCTGGGCTGCCTGGTCAAGGACTACTTCCCCGAACCGGTGACGG TGTCGTGGAACTCAGGCGCCCTGACCAGCGGCGTGCACACCTTCCCGGCTGTCCTACAGTCCTC AGGACTCTACTCCCTCAGCAGCGTGGTGACCGTGCCCTCCAGCAGCTTGGGCACGAAGACCTAC ACCTGCAACGTAGATCACAAGCCCAGCAACACCAAGGTGGACAAGAGAGTTGAGTCCAAATAT GGTCCCCCATGCCCACCCTGCCCAGCACCTGAGTTCGAAGGGGGACCATCAGTCTTCCTGTTCC CCCCAAAACCCAAGGACACTCTCATGATCTCCCGGACCCCTGAGGTCACGTGCGTGGTGGTGGA CGTGAGCCAGGAAGACCCCGAGGTCCAGTTCAACTGGTACGTGGATGGCGTGGAGGTGCATAA TGCCAAGACAAAGCCGCGGGAGGAGCAGTTCAACAGCACGTACCGTGTGGTCAGCGTCCTCAC CGTCCTGCACCAGGACTGGCTGAACGGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAGGCCT CCCGTCCTCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAGCCACAGGTGTA CACCCTGCCCCCATCCCAGGAGGAGATGACCAAGAACCAGGTCAGCCTGACCTGCCTGGTCAA AGGCTTCTACCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAACTA CAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTACAGCAGGCTAACCGTG GACAAGAGCAGGTGGCAGGAGGGGAATGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCAC AACCACTACACACAGAAGAGCCTCTCCCTGTCTCTGGGTAAAGCTAGCTGA Anti-Lox_1_10F9H-LV-hIgG4H-C (SEQ ID NO: 133): MEWTWVFLFLLSVTAGVHSQVQLQQSGAELMKPGASVKISCKATGYTFGSYWIEWVKQRPGHGLE WIGEILPGSGNTNYNENFKGKATFTADTSSNTAYMQLTSLTSEDSAVYYCARAGIYWGQGTLVTVS AAKTKGPSVFPLAPCSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSS VVTVPSSSLGTKTYTCNVDHKPSNTKVDKRVESKYGPPCPPCPAPEFEGGPSVFLFPPKPKDTLMISR TPEVTCVVVDVSQEDPEVQFNWYVDGVEVHNAKTKPREEQFNSTYRVVSVLTVLHQDWLNGKEY KCKVSNKGLPSSIEKTISKAKGQPREPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWESNGQ PENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQEGNVFSCSVMHEALHNHYTQKSLSLSLGKAS Anti-Lox_1_10F9K-LV-hIgGK-C (SEQ ID NO: 69): ATGGAGAAAGACACACTCCTGCTATGGGTCCTGCTTCTCTGGGTTCCAGGTTCCACAGGTGACA TTGTGCTGACCCAATCTCCAGCTTTTTTGGCTGTGTCTCTAGGGCAGAGGGCCACCATCTCCTGC AGAGCCAGCGAAAGTGTTGATAATTATGGCATTAGTTTTATGAACTGGTTCCAACAGAAACCAG GACAGCCACCCAAACTCCTCATCTATGTTGCATCCAAGCAAGGATCCGGGGTCCCTGCCAGGTT TAGTGGCAGTGGGTCTGGGACAGACTTCAGCCTCAACATCCATCCTATGGAGGAGGATGATACT GCAATGTATTTCTGTCAGCAAAGTAAGGAGGTTCCTCGGACGTTCGGTGGAGGCACCAAGCTCG AGATCAAACGAACTGTGGCTGCACCATCTGTCTTCATCTTCCCGCCATCTGATGAGCAGTTGAA ATCTGGAACTGCCTCTGTTGTGTGCCTGCTGAATAACTTCTATCCCAGAGAGGCCAAAGTACAG TGGAAGGTGGATAACGCCCTCCAATCGGGTAACTCCCAGGAGAGTGTCACAGAGCAGGACAGC AAGGACAGCACCTACAGCCTCAGCAGCACCCTGACGCTGAGCAAAGCAGACTACGAGAAACAC AAAGTCTATGCCTGCGAAGTCACCCATCAGGGCCTGAGCTCGCCCGTCACAAAGAGCTTCAACA GGGGAGAGTGTTAG Anti-Lox_1_10F9K-LV-hIgGK-C (SEQ ID NO: 134): MEKDTLLLWVLLLWVPGSTGDIVLTQSPAFLAVSLGQRATISCRASESVDNYGISFMNWFQQKPGQ PPKLLIYVASKQGSGVPARFSGSGSGTDFSLNIHPMEEDDTAMYFCQQSKEVPRTFGGGTKLEIKRT VAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLS STLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC Anti-LOX-111C8H-LV-hIgG4H-C (SEQ ID NO: 70): ATGGAATGTAACTGGATACTTCCTTTTATTCTGTCGGTAACTTCAGGGGTCTACTCAGAGGTTCA GCTCCAGCAGTCTGGGACTGTGCTGGCAAGGCCTGGGGCTTCAGTGAAGATGTCCTGCAAGGCT TCTGGCTACACCTTTACCAGCTACTGGATGCACTGGGTAAAACAGAGGCCTGGACAGGGTCTGG AATGGATTGGCGCTATTTATCCTGGAAATAGTGATACTACCTACAACCAGAAGTTCAAGGGCAA GGCCAAACTGACTGCAGTCACATCCACCAGCACTGCCTACATGGAGCTCAGCAGCCTGACAAAT GAGGACTCTGCGGTCTATTACTGTACACCTACTTACTACTTTGACTACTGGGGCCAAGGCACCTC TCTCACAGTCTCCTCAGCCAAAACGAAGGGCCCATCCGTCTTCCCCCTGGCGCCCTGCTCCAGG AGCACCTCCGAGAGCACAGCCGCCCTGGGCTGCCTGGTCAAGGACTACTTCCCCGAACCGGTGA CGGTGTCGTGGAACTCAGGCGCCCTGACCAGCGGCGTGCACACCTTCCCGGCTGTCCTACAGTC CTCAGGACTCTACTCCCTCAGCAGCGTGGTGACCGTGCCCTCCAGCAGCTTGGGCACGAAGACC TACACCTGCAACGTAGATCACAAGCCCAGCAACACCAAGGTGGACAAGAGAGTTGAGTCCAAA TATGGTCCCCCATGCCCACCCTGCCCAGCACCTGAGTTCGAAGGGGGACCATCAGTCTTCCTGT TCCCCCCAAAACCCAAGGACACTCTCATGATCTCCCGGACCCCTGAGGTCACGTGCGTGGTGGT GGACGTGAGCCAGGAAGACCCCGAGGTCCAGTTCAACTGGTACGTGGATGGCGTGGAGGTGCA TAATGCCAAGACAAAGCCGCGGGAGGAGCAGTTCAACAGCACGTACCGTGTGGTCAGCGTCCT CACCGTCCTGCACCAGGACTGGCTGAACGGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAGG CCTCCCGTCCTCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAGCCACAGGT GTACACCCTGCCCCCATCCCAGGAGGAGATGACCAAGAACCAGGTCAGCCTGACCTGCCTGGTC AAAGGCTTCTACCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAAC TACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTACAGCAGGCTAACCG TGGACAAGAGCAGGTGGCAGGAGGGGAATGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGC ACAACCACTACACACAGAAGAGCCTCTCCCTGTCTCTGGGTAAAGCTAGCTGA Anti-LOX-111C8H-LV-hIgG4H-C (SEQ ID NO: 135): MECNWILPFILSVTSGVYSEVQLQQSGTVLARPGASVKMSCKASGYTFTSYWMHWVKQRPGQGLE WIGAIYPGNSDTTYNQKFKGKAKLTAVTSTSTAYMELSSLTNEDSAVYYCTPTYYFDYWGQGTSLT VSSAKTKGPSVFPLAPCSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSL SSVVTVPSSSLGTKTYTCNVDHKPSNTKVDKRVESKYGPPCPPCPAPEFEGGPSVFLFPPKPKDTLMI SRTPEVTCVVVDVSQEDPEVQFNWYVDGVEVHNAKTKPREEQFNSTYRVVSVLTVLHQDWLNGK EYKCKVSNKGLPSSIEKTISKAKGQPREPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWESN GQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQEGNVFSCSVMHEALHNHYTQKSLSLSLGKAS Anti-LOX-111C8K-LV-hIgGK-C (SEQ ID NO: 71): ATGAGTCCTGCCCAATTCCTGTTTCTGTTAGTGCTCTGGATTCGGGAAACCAACGGTGATGTTGT GATGACCCAGACTCCACTCACTTTGTCGGTTACCATTGGACAACCAGCCTCCATCTCTTGCAAGT CAAGTCAGAGCCTCTTAGATAGTGATGGAAAGACATATTTGAATTGGTTCTTACAGAGGCCAGG CCAGTCTCCAAAGCGCCTAATCTATCTGGTGTCTAAACTGGACTCTGGAGTCCCTGACAGGTTC ACTGGCAGTGGATCAGGGACAGATTTCACACTGAAAATCAGCAGAGTGGAGGCTGAGGATTTG GGAGTTTATTATTGCTGGCAAGGTACACATTTTCCGTGGACGTTCGGTGGAGGCACCAAGCTCG AGATCAAACGAACTGTGGCTGCACCATCTGTCTTCATCTTCCCGCCATCTGATGAGCAGTTGAA ATCTGGAACTGCCTCTGTTGTGTGCCTGCTGAATAACTTCTATCCCAGAGAGGCCAAAGTACAG TGGAAGGTGGATAACGCCCTCCAATCGGGTAACTCCCAGGAGAGTGTCACAGAGCAGGACAGC AAGGACAGCACCTACAGCCTCAGCAGCACCCTGACGCTGAGCAAAGCAGACTACGAGAAACAC AAAGTCTATGCCTGCGAAGTCACCCATCAGGGCCTGAGCTCGCCCGTCACAAAGAGCTTCAACA GGGGAGAGTGTTAG Anti-LOX-111C8K-LV-hIgGK-C (SEQ ID NO: 136): MSPAQFLFLLVLWIRETNGDVVMTQTPLTLSVTIGQPASISCKSSQSLLDSDGKTYLNWFLQRPGQSP KRLIYLVSKLDSGVPDRFTGSGSGTDFTLKISRVEAEDLGVYYCWQGTHFPWTFGGGTKLEIKRTVA APSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSST LTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC Anti-LOX-115C4H-LV-hIgG4H-C (SEQ ID NO: 72): ATGGGAGGGATCTGGATCTTTCTCTTCCTCCTGTCAGGAACTGCAGGTGCCCACTCTGAGATCC AGCTGCAGCAGACTGGACCTGAGCTGGTGAAGCCTGGGGCTTCAGTGAAGATATCCTGCAAGG CTTCTGGTTATCCATTCACTGACTACATCATGGTCTGGGTGAAGCAGAGCCATGGAAAGAGCCT TGAGTGGATTGGAAATATTAGTCCTTACTATGGTACTACTAACTACAATCTGAAGTTCAAGGGC AAGGCCACATTGACTGTAGACAAATCTTCCAGCACAGCCTACATGCAGCTCAACAGTCTGACAT CTGAGGACTCTGCAGTCTATTACTGTGCAAGATCCCCTAACTGGGACGGGGCCTGGTTTGCTCA CTGGGGCCAAGGGGCTCTGGTCACTGTCTCTGCAGCCAAAACAAAGGGCCCATCCGTCTTCCCC CTGGCGCCCTGCTCCAGGAGCACCTCCGAGAGCACAGCCGCCCTGGGCTGCCTGGTCAAGGACT ACTTCCCCGAACCGGTGACGGTGTCGTGGAACTCAGGCGCCCTGACCAGCGGCGTGCACACCTT CCCGGCTGTCCTACAGTCCTCAGGACTCTACTCCCTCAGCAGCGTGGTGACCGTGCCCTCCAGC AGCTTGGGCACGAAGACCTACACCTGCAACGTAGATCACAAGCCCAGCAACACCAAGGTGGAC AAGAGAGTTGAGTCCAAATATGGTCCCCCATGCCCACCCTGCCCAGCACCTGAGTTCGAAGGGG GACCATCAGTCTTCCTGTTCCCCCCAAAACCCAAGGACACTCTCATGATCTCCCGGACCCCTGA GGTCACGTGCGTGGTGGTGGACGTGAGCCAGGAAGACCCCGAGGTCCAGTTCAACTGGTACGT GGATGGCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTTCAACAGCACGTA CCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAACGGCAAGGAGTACAAGTGC AAGGTCTCCAACAAAGGCCTCCCGTCCTCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAG CCCCGAGAGCCACAGGTGTACACCCTGCCCCCATCCCAGGAGGAGATGACCAAGAACCAGGTC AGCCTGACCTGCCTGGTCAAAGGCTTCTACCCCAGCGACATCGCCGTGGAGTGGGAGAGCAAT GGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCC TCTACAGCAGGCTAACCGTGGACAAGAGCAGGTGGCAGGAGGGGAATGTCTTCTCATGCTCCG TGATGCATGAGGCTCTGCACAACCACTACACACAGAAGAGCCTCTCCCTGTCTCTGGGTAAAGC TAGCTGATTAATTAA Anti-LOX-115C4H-LV-hIgG4H-C (SEQ ID NO: 137): MGGIWIFLFLLSGTAGAHSEIQLQQTGPELVKPGASVKISCKASGYPFTDYIMVWVKQSHGKSLEWI GNISPYYGTTNYNLKFKGKATLTVDKSSSTAYMQLNSLTSEDSAVYYCARSPNWDGAWFAHWGQ GALVTVSAAKTKGPSVFPLAPCSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQS SGLYSLSSVVTVPSSSLGTKTYTCNVDHKPSNTKVDKRVESKYGPPCPPCPAPEFEGGPSVFLFPPKP KDTLMISRTPEVTCVVVDVSQEDPEVQFNWYVDGVEVHNAKTKPREEQFNSTYRVVSVLTVLHQD WLNGKEYKCKVSNKGLPSSIEKTISKAKGQPREPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIAV EWESNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQEGNVFSCSVMHEALHNHYTQKSLSLSL GKAS Anti-LOX-115C4K-LV-hIgGK-C (SEQ ID NO: 73): ATGGAGACAGACACAATCCTGCTATGGGTGCTGCTGCTCTGGGTTCCAGGCTCCACTGGTGACA TTGTGCTGACCCAATCTCCAGCTTCTTTGGCTGTGTCTCTAGGGCAGAGGGCCACCATCTCCTGC AAGGCCAGCCAAAGTGTTGATTATGATGGTGATAGTTATATGAACTGGTTCCAACAGAAACCAG GACAGCCACCCAAACTCCTCATCTATGCTGCATCCAATCTAGAATCTGGGATCCCAGCCAGGTT TAGTGGCAGTGGGTCTGGGACAGACTTCACCCTCAACATCCATCCTGTGGAGGAGGAGGATGCT GCAACCTATTACTGTCAGCAAAGTAATGAGGATCCATTCACGTTCGGCTCGGGGACAAAGCTCG AGATCAAACGAACTGTGGCTGCACCATCTGTCTTCATCTTCCCGCCATCTGATGAGCAGTTGAA ATCTGGAACTGCCTCTGTTGTGTGCCTGCTGAATAACTTCTATCCCAGAGAGGCCAAAGTACAG TGGAAGGTGGATAACGCCCTCCAATCGGGTAACTCCCAGGAGAGTGTCACAGAGCAGGACAGC AAGGACAGCACCTACAGCCTCAGCAGCACCCTGACGCTGAGCAAAGCAGACTACGAGAAACAC AAAGTCTATGCCTGCGAAGTCACCCATCAGGGCCTGAGCTCGCCCGTCACAAAGAGCTTCAACA GGGGAGAGTGTTAG Anti-LOX-115C4K-LV-hIgGK-C (SEQ ID NO: 138): METDTILLWVLLLWVPGSTGDIVLTQSPASLAVSLGQRATISCKASQSVDYDGDSYMNWFQQKPGQ PPKLLIYAASNLESGIPARFSGSGSGTDFTLNIHPVEEEDAATYYCQQSNEDPFTFGSGTKLEIKRTVA APSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSST LTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC Anti-Marco_10B7.3G4H-LV-hIgG4H-C (SEQ ID NO: 74): ATGGCTGTCCTGGGGCTGCTTCTCTGCCTGGTGACGTTCCCAAGCTGTGTCCTGTCCCAGGTGCA GCTGAAGGAGTCAGGACCTGGCCTGGTGGCACCCTCACAGAGCCTGTCCATCACATGCACTGTC TCTGGGTTCTCATTATCCAGATATAGTGTATTTTGGGTTCGCCAGCCTCCAGGAAAGGGTCTGGA GTGGCTGGGATTGATATGGGGTGGTGGAAGCACAGACTATAATTCAGCTCTCAAATCCAGACTG AGCATCAGCAAGGACAACTCCAAGAGCCAAGTTTTCTTAAAAATGAACAGTCTGCAAACTGAT GACACAGCCATGTACTACTGTGCCAGAATCTACTTTGATTACGACGGGGCTATGGACTACTGGG GTCAAGGAACCTCAGTCACCGTCTCCTCAGCCAAAACAACGGGCCCATCCGTCTTCCCCCTGGC GCCCTGCTCCAGGAGCACCTCCGAGAGCACAGCCGCCCTGGGCTGCCTGGTCAAGGACTACTTC CCCGAACCGGTGACGGTGTCGTGGAACTCAGGCGCCCTGACCAGCGGCGTGCACACCTTCCCGG CTGTCCTACAGTCCTCAGGACTCTACTCCCTCAGCAGCGTGGTGACCGTGCCCTCCAGCAGCTTG GGCACGAAGACCTACACCTGCAACGTAGATCACAAGCCCAGCAACACCAAGGTGGACAAGAGA GTTGAGTCCAAATATGGTCCCCCATGCCCACCCTGCCCAGCACCTGAGTTCGAAGGGGGACCAT CAGTCTTCCTGTTCCCCCCAAAACCCAAGGACACTCTCATGATCTCCCGGACCCCTGAGGTCAC GTGCGTGGTGGTGGACGTGAGCCAGGAAGACCCCGAGGTCCAGTTCAACTGGTACGTGGATGG CGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTTCAACAGCACGTACCGTGT GGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAACGGCAAGGAGTACAAGTGCAAGGT CTCCAACAAAGGCCTCCCGTCCTCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCG AGAGCCACAGGTGTACACCCTGCCCCCATCCCAGGAGGAGATGACCAAGAACCAGGTCAGCCT GACCTGCCTGGTCAAAGGCTTCTACCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCA GCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTAC AGCAGGCTAACCGTGGACAAGAGCAGGTGGCAGGAGGGGAATGTCTTCTCATGCTCCGTGATG CATGAGGCTCTGCACAACCACTACACACAGAAGAGCCTCTCCCTGTCTCTGGGTAAAGCTAGCTG Anti-Marco_10B7.3G4H-LV-hIgG4H-C (SEQ ID NO: 139): MAVLGLLLCLVTFPSCVLSQVQLKESGPGLVAPSQSLSITCTVSGFSLSRYSVFWVRQPPGKGLEWL GLIWGGGSTDYNSALKSRLSISKDNSKSQVFLKMNSLQTDDTAMYYCARIYFDYDGAMDYWGQGT SVTVSSAKTTGPSVFPLAPCSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGL YSLSSVVTVPSSSLGTKTYTCNVDHKPSNTKVDKRVESKYGPPCPPCPAPEFEGGPSVFLFPPKPKDT LMISRTPEVTCVVVDVSQEDPEVQFNWYVDGVEVHNAKTKPREEQFNSTYRVVSVLTVLHQDWLN GKEYKCKVSNKGLPSSIEKTISKAKGQPREPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWE SNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQEGNVFSCSVMHEALHNHYTQKSLSLSLGKAS AntiMarco_10B7.3G4K_H-V-hIgGK-C (SEQ ID NO: 75): ATGCATCGCACCAGCATGGGCATCAAGATGGAGTCACGGATTCAGGCATTTGTATTCGTGTTTC TCTGGTTGTCTGGTGTTGGCGGAGACATTGTGATGACCCAGTCTCACAAATTCATGTCCACATCA GTAGGAGACAGGGTCAGCGTCACCTGCAAGGCCAGTCAGGATGTGACTTCTGCTGTAGCCTGGT ATCAACAAAAACCAGGGCAATCTCCTAAACTACTGATTTACTGGGCATCCACCCGGCACACTGG AGTCCCTGATCGCTTCACAGGCAGTGGATCTGGGACAGATTATACTCTCACCATCAGCAGTGGG CAGGCTGAAGACCTGGCACTTTATTACTGTCACCAATATTATAGCGCTCCTCGGACGTTCGGTG GAGGCACCAAGCTCGAGATCAAACGAACTGTGGCTGCACCATCTGTCTTCATCTTCCCGCCATC TGATGAGCAGTTGAAATCTGGAACTGCCTCTGTTGTGTGCCTGCTGAATAACTTCTATCCCAGA GAGGCCAAAGTACAGTGGAAGGTGGATAACGCCCTCCAATCGGGTAACTCCCAGGAGAGTGTC ACAGAGCAGGACAGCAAGGACAGCACCTACAGCCTCAGCAGCACCCTGACGCTGAGCAAAGCA GACTACGAGAAACACAAAGTCTATGCCTGCGAAGTCACCCATCAGGGCCTGAGCTCGCCCGTC ACAAAGAGCTTCAACAGGGGAGAGTGTTAG AntiMarco_10B7.3G4K_H-V-hIgGK-C (SEQ ID NO: 140): MHRTSMGIKMESRIQAFVFVFLWLSGVGGDIVMTQSHKFMSTSVGDRVSVTCKASQDVTSAVAWY QQKPGQSPKLLIYWASTRHTGVPDRFTGSGSGTDYTLTISSGQAEDLALYYCHQYYSAPRTFGGGTK LEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKD STYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC Anti-Marco_11A8.3C9_H-V-hIgG4H-C (SEQ ID NO: 76): ATGGAATGGAACTGGGTCGTTCTCTTCCTCCTGTCATTAACTGCAGGTGTCTATGCCCAGGGTCA GATGCAGCAGTCTGGAGCTGAGCTGGTGAAGCCTGGGGCTTCAGTGAAGCTGTCCTGCAAGACT TCTGGCTTCACCTTCAGCAGTAACTATATAAGTTGGTTGAAGCAAAAGCCTGGACAGAGTCTTG AGTGGATTGCATGGATTTATGCTGGAACTGGTGGTATTACCTATAATCAGAAGTTCAGAGGCAG GGCCCAACTGACTGTAGACACATCCTCCAGCACAGCCTACATGCAGTTCAGCAGCCTGACAACT GATGACTCTGCCATCTATTACTGTGCAAGACACGTGAGGGGTTACCATCCTATGGACTACTGGG GTCAAGGAACCTCAGTCACCGTCTCCTCAGCCAAAACGAAGGGCCCATCCGTCTTCCCCCTGGC GCCCTGCTCCAGGAGCACCTCCGAGAGCACAGCCGCCCTGGGCTGCCTGGTCAAGGACTACTTC CCCGAACCGGTGACGGTGTCGTGGAACTCAGGCGCCCTGACCAGCGGCGTGCACACCTTCCCGG CTGTCCTACAGTCCTCAGGACTCTACTCCCTCAGCAGCGTGGTGACCGTGCCCTCCAGCAGCTTG GGCACGAAGACCTACACCTGCAACGTAGATCACAAGCCCAGCAACACCAAGGTGGACAAGAGA GTTGAGTCCAAATATGGTCCCCCATGCCCACCCTGCCCAGCACCTGAGTTCGAAGGGGGACCAT CAGTCTTCCTGTTCCCCCCAAAACCCAAGGACACTCTCATGATCTCCCGGACCCCTGAGGTCAC GTGCGTGGTGGTGGACGTGAGCCAGGAAGACCCCGAGGTCCAGTTCAACTGGTACGTGGATGG CGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTTCAACAGCACGTACCGTGT GGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAACGGCAAGGAGTACAAGTGCAAGGT CTCCAACAAAGGCCTCCCGTCCTCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCG AGAGCCACAGGTGTACACCCTGCCCCCATCCCAGGAGGAGATGACCAAGAACCAGGTCAGCCT GACCTGCCTGGTCAAAGGCTTCTACCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCA GCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTAC AGCAGGCTAACCGTGGACAAGAGCAGGTGGCAGGAGGGGAATGTCTTCTCATGCTCCGTGATG CATGAGGCTCTGCACAACCACTACACACAGAAGAGCCTCTCCCTGTCTCTGGGTAAAGCTAGCT GA Anti-Marco_11A8.3C9_H-V-hIgG4H-C (SEQ ID NO: 141): MEWNWVVLFLLSLTAGVYAQGQMQQSGAELVKPGASVKLSCKTSGFTFSSNYISWLKQKPGQSLE WIAWIYAGTGGITYNQKFRGRAQLTVDTSSSTAYMQFSSLTTDDSAIYYCARHVRGYHPMDYWGQ GTSVTVSSAKTKGPSVFPLAPCSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSS GLYSLSSVVTVPSSSLGTKTYTCNVDHKPSNTKVDKRVESKYGPPCPPCPAPEFEGGPSVFLFPPKPK DTLMISRTPEVTCVVVDVSQEDPEVQFNWYVDGVEVHNAKTKPREEQFNSTYRVVSVLTVLHQDW LNGKEYKCKVSNKGLPSSIEKTISKAKGQPREPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIAVE WESNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQEGNVFSCSVMHEALHNHYTQKSLSLSLG KAS Anti-Marco_11A8.3C9_H-V-hIgGK-C (SEQ ID NO: 77): ATGGAGTCACAGACTCAGGTCTTTGTATACATGTTGCTGTGGTTGTCTGGTGTTGATGGAGACAT TGTGATGACCCAGTCTCAAAAATTCATGTCCGCATCAGTAGGGGACAGGGTCAGCGTCACCTGC AGGGCCAGTCAGAATGTGGTTACTAATGTAGGCTGGTATCAACAGAAACCAGGGCAATCTCCT AAAGTACTGATTTACTCGGCATCCTTCCGGTACAGTGGAGTCCCTGATCGCTTCACAGGCAGTG GATCTGGGACAGATTTCACTCTCACCATCACCAATGTGCAGTCTGAAGACTTGGCAGAGTATTT CTGTCAGCAATATAACAACTATCCGTACACGTTCGGAGGGGGGACCAAGCTCGAGATCAAACG AACTGTGGCTGCACCATCTGTCTTCATCTTCCCGCCATCTGATGAGCAGTTGAAATCTGGAACTG CCTCTGTTGTGTGCCTGCTGAATAACTTCTATCCCAGAGAGGCCAAAGTACAGTGGAAGGTGGA TAACGCCCTCCAATCGGGTAACTCCCAGGAGAGTGTCACAGAGCAGGACAGCAAGGACAGCAC CTACAGCCTCAGCAGCACCCTGACGCTGAGCAAAGCAGACTACGAGAAACACAAAGTCTATGC CTGCGAAGTCACCCATCAGGGCCTGAGCTCGCCCGTCACAAAGAGCTTCAACAGGGGAGAGTG TTAG Anti-Marco_11A8.3C9_H-V-hIgGK-C (SEQ ID NO: 142): MESQTQVFVYMLLWLSGVDGDIVMTQSQKFMSASVGDRVSVTCRASQNVVTNVGWYQQKPGQSP KVLIYSASFRYSGVPDRFTGSGSGTDFTLTITNVQSEDLAEYFCQQYNNYPYTFGGGTKLEIKRTVAA PSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTL TLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC Anti-Marco_3H10.1F3_H-V-hIgG4H-C (SEQ ID NO: 78): ATGGGATGGAGCTATATCATCCTCTTTTTGGTAGCAACAGCTACAGATGTCCACTCCCAGGTCC AACTGCAGCAGCCTGGGGCTGAACTGGTGAAGCCTGGGGCTTCAGTGAAGCTGTCCTGCAAGG CTTCTGGCTACACCTTCACCAGCTACTGGATGCACTGGGTGAAGCAGAGGCCTGGAGAAGGCCT TGAGTGGATTGGAGAGATTAATCCTAGCTACGGTCGTACTGACTACAATGGGAAGTTCAAGAAC AAGGCCACACTGACTGTAGCCAAATCCTCCAGCACAGCCTACATGCAACTCAGCAGCCTGACAT CTGAGGACTCTGCGGTCTATTACTGTGCAAGAGGAGATTACTACGGTAGTAGCTCGTTTGCTTA CTGGGGCCAAGGGACTCTGGTCACTGTCTCTGCAGCCAAAACAAAGGGCCCATCCGTCTTCCCC CTGGCGCCCTGCTCCAGGAGCACCTCCGAGAGCACAGCCGCCCTGGGCTGCCTGGTCAAGGACT ACTTCCCCGAACCGGTGACGGTGTCGTGGAACTCAGGCGCCCTGACCAGCGGCGTGCACACCTT CCCGGCTGTCCTACAGTCCTCAGGACTCTACTCCCTCAGCAGCGTGGTGACCGTGCCCTCCAGC AGCTTGGGCACGAAGACCTACACCTGCAACGTAGATCACAAGCCCAGCAACACCAAGGTGGAC AAGAGAGTTGAGTCCAAATATGGTCCCCCATGCCCACCCTGCCCAGCACCTGAGTTCGAAGGGG GACCATCAGTCTTCCTGTTCCCCCCAAAACCCAAGGACACTCTCATGATCTCCCGGACCCCTGA GGTCACGTGCGTGGTGGTGGACGTGAGCCAGGAAGACCCCGAGGTCCAGTTCAACTGGTACGT GGATGGCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTTCAACAGCACGTA CCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAACGGCAAGGAGTACAAGTGC AAGGTCTCCAACAAAGGCCTCCCGTCCTCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAG CCCCGAGAGCCACAGGTGTACACCCTGCCCCCATCCCAGGAGGAGATGACCAAGAACCAGGTC AGCCTGACCTGCCTGGTCAAAGGCTTCTACCCCAGCGACATCGCCGTGGAGTGGGAGAGCAAT GGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCC TCTACAGCAGGCTAACCGTGGACAAGAGCAGGTGGCAGGAGGGGAATGTCTTCTCATGCTCCG TGATGCATGAGGCTCTGCACAACCACTACACACAGAAGAGCCTCTCCCTGTCTCTGGGTAAAGC TAGCTGA Anti-Marco_3H10.1F3_H-V-hIgG4H-C (SEQ ID NO: 143): MGWSYIILFLVATATDVHSQVQLQQPGAELVKPGASVKLSCKASGYTFTSYWMHWVKQRPGEGLE WIGEINPSYGRTDYNGKFKNKATLTVAKSSSTAYMQLSSLTSEDSAVYYCARGDYYGSSSFAYWGQ GTLVTVSAAKTKGPSVFPLAPCSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQS SGLYSLSSVVTVPSSSLGTKTYTCNVDHKPSNTKVDKRVESKYGPPCPPCPAPEFEGGPSVFLFPPKP KDTLMISRTPEVTCVVVDVSQEDPEVQFNWYVDGVEVHNAKTKPREEQFNSTYRVVSVLTVLHQD WLNGKEYKCKVSNKGLPSSIEKTISKAKGQPREPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIAV EWESNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQEGNVFSCSVMHEALHNHYTQKSLSLSL GKAS Anti-Marco_3H10.1F3_K-V-hIgGK-C (SEQ ID NO: 79): ATGGAGTCACAGACTCAGGTCTTTGTATACATGTTGCTGTGGTTGTCTGGTGTTGATGGAGACAT TGTGATGACCCAGTCTCAAAAATTCATGTCCACATCATTAGGAGACAGGGTCAGCGTCACCTGC AAGGCCAGTCAGAATGTGGGTACTAATGTAGCCTGGTATCAACAGAAACCAGGGCACTCTCCT AAAGCACTGATTTACTCGGCATCCTACCGGTACAGTGGAGTCCCTGATCGCTTCACAGGCAGTG GATCTGGGACAGATTTCACTCTCACCATCAGCAATGTGCAGTCTGAAGACTTGGCAGAGTTTTT CTGTCAGCAATATAACAACTATCCGTACACGTTCGGAGGGGGGACCACGCTCGAGATCAAACG AACTGTGGCTGCACCATCTGTCTTCATCTTCCCGCCATCTGATGAGCAGTTGAAATCTGGAACTG CCTCTGTTGTGTGCCTGCTGAATAACTTCTATCCCAGAGAGGCCAAAGTACAGTGGAAGGTGGA TAACGCCCTCCAATCGGGTAACTCCCAGGAGAGTGTCACAGAGCAGGACAGCAAGGACAGCAC CTACAGCCTCAGCAGCACCCTGACGCTGAGCAAAGCAGACTACGAGAAACACAAAGTCTATGC CTGCGAAGTCACCCATCAGGGCCTGAGCTCGCCCGTCACAAAGAGCTTCAACAGGGGAGAGTG TTAG Anti-Marco_3H10.1F3_K-V-hIgGK-C (SEQ ID NO: 144): MESQTQVFVYMLLWLSGVDGDIVMTQSQKFMSTSLGDRVSVTCKASQNVGTNVAWYQQKPGHSP KALIYSASYRYSGVPDRFTGSGSGTDFTLTISNVQSEDLAEFFCQQYNNYPYTFGGGTTLEIKRTVAA PSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTL TLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC - Humanized anti-CD40-HCV vaccine is: hAnti-CD40VK2-LV-hIgGK-C×hAnti-CD40VH3-LV-hIgG4H-C-Flex-v1-HelB-f1-ProtB-f2-NS5BPalm, wherein the portion of HelB are underlined, the portions of ProtB are bold and the portions of NS5BPalm are italicized. The linker sequence (in bold italics) is flanked by the transition sequence “AS” that bracket the linker sequences
-
[hAnti-CD40VK2-LV-hIgGK-C] (SEQ ID NO: 158) DIQMTQSPSSLSASVGDRVTITCSASQGISNYLNWYQQKPGKAVKLLIYYTSILHSGVPSRFSGSGSG TDYTLTISSLQPEDFATYYCQQFNKLPPTFGGGTKLEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLN NFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLS SPVTKSFNRGEC hAnti-CD40VH3-LV-hIgG4H-C-Flex-v1-HelB-f1-ProtB-f2-NS5BPalm (SEQ ID NO: 159) EVQLVESGGGLVQPGGSLKLSCATSGFTFSDYYMYWVRQAPGKGLEWVAYINSGGGSTYYPDTVK GRFTISRDNAKNTLYLQMNSLRAEDTAVYYCARRGLPFHAMDYWGQGTLVTVSSAKTKGPSVFPL APCSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTK TYTCNVDHKPSNTKVDKRVESKYGPPCPPCPAPEFEGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVS QEDPEVQFNWYVDGVEVHNAKTKPREEQFNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKGLPSSI EKTISKAKGQPREPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLD SDGSFFLYSRLTVDKSRWQEGNVFSCSVMHEALHNHYTQKSLSLSLGKAS ASVTVPHPNIEEVALSTTGEIPFYGKAIPLEVIKGGRHLIFCHSKKKCDELAAKLVAL GINAVAYYRGLDVSVIPTSGVVVVVATDALMTGFTGDFDSVIDCNTCVTQTVDFSLDPTFTIETTTLP QDAVSRTQRRGRTGRGKPGIYRFVAPGERAS ASTPCTCGSSDL YLVTRHADVIPVRRRGDSRGSLLSPRPISYLKGSSGGPLLCPAGHAVGIFRAAVCTRGVAKAVD FIPVENLETTMRSPVFTDNSSPPAVPQSAS ASVLDSHYQDVLKE VKAAASKVKANALYDVVSKLPLAVMGSSYGFQYSPGQRVEFLVQAWKSKKTPMGFSYDTRCFDSTVTESDI RTEEAIYQCCDLDPQARVAIKSLTERLYVGRCRASGVLTTSCGNTLTCYIKARAACRAAGLQDCTMLVCGD DLVVICESAGVQEDAASLRAFTEAMTRYSAPPGDPPQPEYDLELITAS - Humanized anti-DCIR-
HCV 1st generation vaccine is: [hAnti-DCIRVK4-LV-hIgGK-C]×[hAnti-DCIRVH1-LV-hIgG4H-C-Flex-v1-HelB-f1-ProtB-f2-NS5BPalm] wherein the portion of HelB are underlined, the portions of ProtB are bold and the portions of NS5BPalm are italicized. The linker sequence (in bold italics) is flanked by the transition sequence “AS” that bracket the linker sequences -
hAnti-DCIRVK4-LV-hIgGK-C (SEQ ID NO: 160) DIVMTQSPDSLAVSLGERATINCRASESIHSYGNSFLHWYQQKPGQPPKLLIYLASNLESGVPSRFSG SGSRTDFTLTISSLQPEDFATYYCQQNNEDPWTFGQGTKLEIKRTVAAPSVFIFPPSDEQLKSGTASV VCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVT HQGLSSPVTKSFNRGEC hAnti-DCIRVH1-LV-hIgG4H-C-Flex-v1-HelB-f1-ProtB-f2-NS5BPalm (SEQ ID NO: 161) QVTLKESGPAIVKPTQTLTLTCSFSGFSLSTSGMGLSWIRQPSGKALEWLAHIYWDDDKRYNPSLKS RLTISKDTSKNQVVLTMTIVDTVDAATYYCARSSHYYGYGYGGYFDVWGQGTTVTVSSAKTKGPS VFPLAPCSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSS LGTKTYTCNVDHKPSNTKVDKRVESKYGPPCPPCPAPEFEGGPSVFLFPPKPKDTLMISRTPEVTCVV VDVSQEDPEVQFNWYVDGVEVHNAKTKPREEQFNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKG LPSSIEKTISKAKGQPREPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTP PVLDSDGSFFLYSRLTVDKSRWQEGNVFSCSVMHEALHNHYTQKSLSLSLGKAS ASVTVPHPNIEEVALSTTGEIPFYGKAIPLEVIKGGRHLIFCHSKKKCDELAAKL VALGINAVAYYRGLDVSVIPTSGVVVVVATDALMTGFTGDFDSVIDCNTCVTQTVDFSLDPTFTIET TTLPQDAVSRTQRRGRTGRGKPGIYRFVAPGERAS ASTPCTCG SSDLYLVTRHADVIPVRRRGDSRGSLLSPRPISYLKGSSGGPLLCPAGHAVGIFRAAVCTRGVA KAVDFIPVENLETTMRSPVFTDNSSPPAVPQSAS ASVLDSHYQ DVLKEVKAAASKVKANALYDVVSKLPLAVMGSSYGFQYSPGQRVEFLVQAWKSKKTPMGFSYDTRCFDST VTESDIRTEEAIYQCCDLDPQARVAIKSLTERLYVGRCRASGVLTTSCGNTLTCYIKARAACRAAGLQDCTM LVCGDDLVVICESAGVQEDAASLRAFTEAMTRYSAPPGDPPQPEYDLELITAS - Humanized anti-CD40-HCV vaccine is: hAnti-CD40VK2-LV-hIgGK-C-ViralHCVhelicasefgtB×hAnti-CD40VH3-LV-hIgG4H-C-Flex-v1-ProtB-f1-NS5BPalm, wherein the portion of ViralHCVhelicasefgtB are underlined, the portions of ProtB are bold and the portions of NS5BPalm are italicized. The linker sequence (in bold italics) is flanked by the transition sequence “AS” that bracket the linker sequences.
-
hAnti-CD40VK2-LV-hIgGK-C-ViralHCVhelicasefgtB (SEQ ID NO: 162) DIQMTQSPSSLSASVGDRVTITCSASQGISNYLNWYQQKPGKAVKLLIYYTSILHSGVPSRFSGSGSG TDYTLTISSLQPEDFATYYCQQFNKLPPTFGGGTKLEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLN NFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLS SPVTKSFNRGECASVTVPHPNIEEVALSTTGEIPFYGKAIPLEVIKGGRHLIFCHSKKKCDELAAKLVA LGINAVAYYRGLDVSVIPTSGVVVVVATDALMTGFTGDFDSVIDCNTCVTQTVDFSLDPTFTIETTTL PQDAVSRTQRRGRTGRGKPGIYRFVAPGERAS hAnti-CD40VH3-LV-hIgG4H-C-Flex-v1-ProtB-f1-NS5BPalm (SEQ ID NO: 163) EVQLVESGGGLVQPGGSLKLSCATSGFTFSDYYMYWVRQAPGKGLEWVAYINSGGGSTYYPDTVK GRFTISRDNAKNTLYLQMNSLRAEDTAVYYCARRGLPFHAMDYWGQGTLVTVSSAKTKGPSVFPL APCSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTK TYTCNVDHKPSNTKVDKRVESKYGPPCPPCPAPEFEGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVS QEDPEVQFNWYVDGVEVHNAKTKPREEQFNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKGLPSSI EKTISKAKGQPREPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLD SDGSFFLYSRLTVDKSRWQEGNVFSCSVMHEALHNHYTQKSLSLSLGKAS ASTPCTCGSSDLYLVTRHADVIPVRRRGDSRGSLLSPRPISYLKGSSGGPLLCPA GHAVGIFRAAVCTRGVAKAVDFIPVENLETTMRSPVFTDNSSPPAVPQSAS ASVLDSHYQDVLKEVKAAASKVKANALYDVVSKLPLAVMGSSYGFQYSPGQRVEFLVQAW KSKKTPMGFSYDTRCFDSTVTESDIRTEEAIYQCCDLDPQARVAIKSLTERLYVGRCRASGVLTTSCGNTLT CYIKARAACRAAGLQDCTMLVCGDDLVVICESAGVQEDAASLRAFTEAMTRYSAPPGDPPQPEYDLELITA S - Humanized anti-DCIR-
HCV 2nd generation vaccine is: [hAnti-DCIRVK4-LV-hIgGK-C-ViralHCVhelicasefgtB]×[hAnti-D CIRVH1-LV-hIgG4H-C—F lex-v1-ProtB-f1-NS5BPalm], wherein the portion of ViralHCVhelicasefgtB are underlined, the portions of ProtB are bold and the portions of NS5BPalm are italicized. The linker sequence (in bold italics) is flanked by the transition sequence “AS” that bracket the linker sequences. -
hAnti-DCIRVK4-LV-hIgGK-C-ViralHCVhelicasefgtB (SEQ ID NO: 164) DIVMTQSPDSLAVSLGERATINCRASESIHSYGNSFLHWYQQKPGQPPKLLIYLASNLESGVPSRFSG SGSRTDFTLTISSLQPEDFATYYCQQNNEDPWTFGQGTKLEIKRTVAAPSVFIFPPSDEQLKSGTASV VCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVT HQGLSSPVTKSFNRGECASVTVPHPNIEEVALSTTGEIPFYGKAIPLEVIKGGRHLIFCHSKKKCDELA AKLVALGINAVAYYRGLDVSVIPTSGVVVVVATDALMTGFTGDFDSVIDCNTCVTQTVDFSLDPTF TIETTTLPQDAVSRTQRRGRTGRGKPGIYRFVAPGERAS hAnti-DCIRVH1-LV-hIgG4H-C-Flex-v1-ProtB-f1-NS5BPalm (SEQ ID NO: 165) QVTLKESGPAIVKPTQTLTLTCSFSGFSLSTSGMGLSWIRQPSGKALEWLAHIYWDDDKRYNPSLKS RLTISKDTSKNQVVLTMTIVDTVDAATYYCARSSHYYGYGYGGYFDVWGQGTTVTVSSAKTKGPS VFPLAPCSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSS LGTKTYTCNVDHKPSNTKVDKRVESKYGPPCPPCPAPEFEGGPSVFLFPPKPKDTLMISRTPEVTCVV VDVSQEDPEVQFNWYVDGVEVHNAKTKPREEQFNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKG LPSSIEKTISKAKGQPREPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTP PVLDSDGSFFLYSRLTVDKSRWQEGNVFSCSVMHEALHNHYTQKSLSLSLGKAS ASTPCTCGSSDLYLVTRHADVIPVRRRGDSRGSLLSPRPISYLKGSSGGPLL CPAGHAVGIFRAAVCTRGVAKAVDFIPVENLETTMRSPVFTDNSSPPAVPQSAS ASVLDSHYQDVLKEVKAAASKVKANALYDVVSKLPLAVMGSSYGFQYSPGQRVEFLV QAWKSKKTPMGFSYDTRCFDSTVTESDIRTEEAIYQCCDLDPQARVAIKSLTERLYVGRCRASGVLTTSCGN TLTCYIKARAACRAAGLQDCTMLVCGDDLVVICESAGVQEDAASLRAFTEAMTRYSAPPGDPPQPEYDLEL ITAS - Linkers can be a small as 2 amino acids, e.g., AS, but can also be longer, e.g., SSVSPTTSVHPTPTSVPPTPTKSSP (SEQ ID NO.: 166); PTSTPADSSTITPTATPTATPTIKG (SEQ ID NO.: 167); TVTPTATATPSAIVTTITPTATTKP (SEQ ID NO.: 168); TNGSITVAATAPTVTPTVNATPSAA (SEQ ID NO.: 169) or QTPTNTISVTPTNNSTPTNNSNPKPNP (SEQ ID NO:170).
- It is contemplated that any embodiment discussed in this specification can be implemented with respect to any method, kit, reagent, or composition of the invention, and vice versa. Furthermore, compositions of the invention can be used to achieve methods of the invention.
- It will be understood that particular embodiments described herein are shown by way of illustration and not as limitations of the invention. The principal features of this invention can be employed in various embodiments without departing from the scope of the invention. Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, numerous equivalents to the specific procedures described herein. Such equivalents are considered to be within the scope of this invention and are covered by the claims.
- All publications and patent applications mentioned in the specification are indicative of the level of skill of those skilled in the art to which this invention pertains. All publications and patent applications are herein incorporated by reference to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference.
- The use of the word “a” or “an” when used in conjunction with the term “comprising” in the claims and/or the specification may mean “one,” but it is also consistent with the meaning of “one or more,” “at least one,” and “one or more than one.” The use of the term “or” in the claims is used to mean “and/or” unless explicitly indicated to refer to alternatives only or the alternatives are mutually exclusive, although the disclosure supports a definition that refers to only alternatives and “and/or.” Throughout this application, the term “about” is used to indicate that a value includes the inherent variation of error for the device, the method being employed to determine the value, or the variation that exists among the study subjects.
- As used in this specification and claim(s), the words “comprising” (and any form of comprising, such as “comprise” and “comprises”), “having” (and any form of having, such as “have” and “has”), “including” (and any form of including, such as “includes” and “include”) or “containing” (and any form of containing, such as “contains” and “contain”) are inclusive or open-ended and do not exclude additional, unrecited elements or method steps.
- The term “or combinations thereof” as used herein refers to all permutations and combinations of the listed items preceding the term. For example, “A, B, C, or combinations thereof” is intended to include at least one of: A, B, C, AB, AC, BC, or ABC, and if order is important in a particular context, also BA, CA, CB, CBA, BCA, ACB, BAC, or CAB. Continuing with this example, expressly included are combinations that contain repeats of one or more item or term, such as BB, AAA, MB, BBC, AAABCCCC, CBBAAA, CABABB, and so forth. The skilled artisan will understand that typically there is no limit on the number of items or terms in any combination, unless otherwise apparent from the context.
- All of the compositions and/or methods disclosed and claimed herein can be made and executed without undue experimentation in light of the present disclosure. While the compositions and methods of this invention have been described in terms of preferred embodiments, it will be apparent to those of skill in the art that variations may be applied to the compositions and/or methods and in the steps or in the sequence of steps of the method described herein without departing from the concept, spirit and scope of the invention. All such similar substitutes and modifications apparent to those skilled in the art are deemed to be within the spirit, scope and concept of the invention as defined by the appended claims.
-
- U.S. Patent Application Publication No. 2009/0238822: Chimeric HCV Antigens for Eliciting an Immune Response.
- U.S. Patent Application Publication No. 2008/0241170: Vaccines Based on Targeting Antigen to DCIR Expressed on Antigen-Presenting Cells.
- U.S. Patent Application Publication No. 2010/0239575: Anti-CD-40 Antibodies and Uses Thereof
Claims (57)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/430,206 US20120301465A1 (en) | 2011-03-25 | 2012-03-26 | Compositions and methods to immunize against hepatitis c virus |
US14/152,448 US9885017B2 (en) | 2011-03-25 | 2014-01-10 | Compositions and methods to immunize against hepatitis C virus |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201161467840P | 2011-03-25 | 2011-03-25 | |
US201161529700P | 2011-08-31 | 2011-08-31 | |
US13/430,206 US20120301465A1 (en) | 2011-03-25 | 2012-03-26 | Compositions and methods to immunize against hepatitis c virus |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/152,448 Division US9885017B2 (en) | 2011-03-25 | 2014-01-10 | Compositions and methods to immunize against hepatitis C virus |
Publications (1)
Publication Number | Publication Date |
---|---|
US20120301465A1 true US20120301465A1 (en) | 2012-11-29 |
Family
ID=46931875
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/430,206 Abandoned US20120301465A1 (en) | 2011-03-25 | 2012-03-26 | Compositions and methods to immunize against hepatitis c virus |
US14/152,448 Expired - Fee Related US9885017B2 (en) | 2011-03-25 | 2014-01-10 | Compositions and methods to immunize against hepatitis C virus |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/152,448 Expired - Fee Related US9885017B2 (en) | 2011-03-25 | 2014-01-10 | Compositions and methods to immunize against hepatitis C virus |
Country Status (6)
Country | Link |
---|---|
US (2) | US20120301465A1 (en) |
EP (1) | EP2688592A4 (en) |
AR (1) | AR085573A1 (en) |
CA (1) | CA2831294A1 (en) |
TW (1) | TW201300418A (en) |
WO (1) | WO2012135132A1 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8728481B2 (en) | 2007-02-02 | 2014-05-20 | Baylor Research Institute | Agents that engage antigen-presenting cells through dendritic cell asialoglycoprotein receptor (DC-ASGPR) |
US9884921B2 (en) | 2014-07-01 | 2018-02-06 | Pfizer Inc. | Bispecific heterodimeric diabodies and uses thereof |
US10675358B2 (en) | 2016-07-07 | 2020-06-09 | The Board Of Trustees Of The Leland Stanford Junior University | Antibody adjuvant conjugates |
US10993990B2 (en) | 2014-05-16 | 2021-05-04 | Baylor Research Institute | Methods and compositions for treating autoimmune and inflammatory conditions |
US11186615B2 (en) | 2015-10-08 | 2021-11-30 | The Governors Of The University Of Alberta | Hepatitis C virus E1/E2 heterodimers and methods of producing same |
US11400164B2 (en) | 2019-03-15 | 2022-08-02 | Bolt Biotherapeutics, Inc. | Immunoconjugates targeting HER2 |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2925779A1 (en) * | 2012-11-30 | 2015-10-07 | Institut Pasteur | Use of anti-fcyri and/or anti-fcyriia antibodies for treating arthritis, inflammation, thrombocytopenia and allergic shock |
EP3094652B1 (en) * | 2014-01-13 | 2021-09-29 | Baylor Research Institute | Novel vaccines against hpv and hpv-related diseases |
EP2939690A1 (en) * | 2014-04-29 | 2015-11-04 | Medizinische Hochschule Hannover | Vaccine |
ES2893584T3 (en) * | 2015-06-10 | 2022-02-09 | Univ Tokyo | Adjuvant for vaccines, vaccine and immunity induction procedure |
UY37141A (en) | 2016-03-04 | 2017-09-29 | Jn Biosciences Llc | ANTIBODIES DIRECTED TO TIGIT |
EP3446702A1 (en) | 2017-08-23 | 2019-02-27 | Medizinische Hochschule Hannover | Synthetic vaccine |
PE20231078A1 (en) | 2020-06-02 | 2023-07-17 | Arcus Biosciences Inc | ANTI-TIGIT ANTIBODIES |
CN113683684B (en) * | 2021-06-21 | 2023-07-18 | 深圳市新产业生物医学工程股份有限公司 | Anti-hepatitis B virus surface antigen antibody, antibody pair, detection reagent containing same and kit |
Family Cites Families (63)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4235871A (en) | 1978-02-24 | 1980-11-25 | Papahadjopoulos Demetrios P | Method of encapsulating biologically active materials in lipid vesicles |
JPS5938877A (en) | 1982-08-30 | 1984-03-02 | Musashi Eng Kk | Paper leaf discriminating method |
US4501728A (en) | 1983-01-06 | 1985-02-26 | Technology Unlimited, Inc. | Masking of liposomes from RES recognition |
US4599230A (en) | 1984-03-09 | 1986-07-08 | Scripps Clinic And Research Foundation | Synthetic hepatitis B virus vaccine including both T cell and B cell determinants |
US4599231A (en) | 1984-03-09 | 1986-07-08 | Scripps Clinic And Research Foundation | Synthetic hepatitis B virus vaccine including both T cell and B cell determinants |
US4957735A (en) | 1984-06-12 | 1990-09-18 | The University Of Tennessee Research Corporation | Target-sensitive immunoliposomes- preparation and characterization |
US5019369A (en) | 1984-10-22 | 1991-05-28 | Vestar, Inc. | Method of targeting tumors in humans |
US4608251A (en) | 1984-11-09 | 1986-08-26 | Pitman-Moore, Inc. | LHRH analogues useful in stimulating anti-LHRH antibodies and vaccines containing such analogues |
US4601903A (en) | 1985-05-01 | 1986-07-22 | The United States Of America As Represented By The Department Of Health And Human Services | Vaccine against Neisseria meningitidis Group B serotype 2 invasive disease |
US4902505A (en) | 1986-07-30 | 1990-02-20 | Alkermes | Chimeric peptides for neuropeptide delivery through the blood-brain barrier |
WO1988001649A1 (en) | 1986-09-02 | 1988-03-10 | Genex Corporation | Single polypeptide chain binding molecules |
US4837028A (en) | 1986-12-24 | 1989-06-06 | Liposome Technology, Inc. | Liposomes with enhanced circulation time |
US5004697A (en) | 1987-08-17 | 1991-04-02 | Univ. Of Ca | Cationized antibodies for delivery through the blood-brain barrier |
GB8823869D0 (en) | 1988-10-12 | 1988-11-16 | Medical Res Council | Production of antibodies |
IL162181A (en) | 1988-12-28 | 2006-04-10 | Pdl Biopharma Inc | A method of producing humanized immunoglubulin, and polynucleotides encoding the same |
US5055303A (en) | 1989-01-31 | 1991-10-08 | Kv Pharmaceutical Company | Solid controlled release bioadherent emulsions |
US5271961A (en) | 1989-11-06 | 1993-12-21 | Alkermes Controlled Therapeutics, Inc. | Method for producing protein microspheres |
US5188837A (en) | 1989-11-13 | 1993-02-23 | Nova Pharmaceutical Corporation | Lipsopheres for controlled delivery of substances |
WO1991010741A1 (en) | 1990-01-12 | 1991-07-25 | Cell Genesys, Inc. | Generation of xenogeneic antibodies |
US5268164A (en) | 1990-04-23 | 1993-12-07 | Alkermes, Inc. | Increasing blood-brain barrier permeability with permeabilizer peptides |
CA2089661C (en) | 1990-08-29 | 2007-04-03 | Nils Lonberg | Transgenic non-human animals capable of producing heterologous antibodies |
US5770429A (en) | 1990-08-29 | 1998-06-23 | Genpharm International, Inc. | Transgenic non-human animals capable of producing heterologous antibodies |
US5661016A (en) | 1990-08-29 | 1997-08-26 | Genpharm International Inc. | Transgenic non-human animals capable of producing heterologous antibodies of various isotypes |
US5633425A (en) | 1990-08-29 | 1997-05-27 | Genpharm International, Inc. | Transgenic non-human animals capable of producing heterologous antibodies |
US5625126A (en) | 1990-08-29 | 1997-04-29 | Genpharm International, Inc. | Transgenic non-human animals for producing heterologous antibodies |
US5545806A (en) | 1990-08-29 | 1996-08-13 | Genpharm International, Inc. | Ransgenic non-human animals for producing heterologous antibodies |
FR2670787B1 (en) | 1990-12-18 | 1995-06-23 | Pasteur Institut | LIPOPEPTIDES INDUCING CYTOTOXIC T CELLS AND USE AS VACCINES. |
US5871746A (en) | 1990-12-18 | 1999-02-16 | Institut National De La Sainte Et De La Recherche Medicale (Inserm) | Cytotoxic T lymphocyte-inducing lipopeptides and use as vaccines |
US5254342A (en) | 1991-09-30 | 1993-10-19 | University Of Southern California | Compositions and methods for enhanced transepithelial and transendothelial transport or active agents |
JPH07507768A (en) | 1992-03-12 | 1995-08-31 | アルカーメス コントロールド セラピューティクス,インコーポレイテッド | Controlled release of ACTH-containing microspheres |
US5534496A (en) | 1992-07-07 | 1996-07-09 | University Of Southern California | Methods and compositions to enhance epithelial drug transport |
DE4233152A1 (en) | 1992-10-02 | 1994-04-07 | Behringwerke Ag | Antibody-enzyme conjugates for prodrug activation |
US6140059A (en) | 1993-01-16 | 2000-10-31 | Schawaller; Manfred | Methods for the obtention of human immunodeficiency virsus Type 1 envelope glycoproteins in native and oligomeric form employing recombinant chimeric antigens containing collagenase recognition sites. |
US5514670A (en) | 1993-08-13 | 1996-05-07 | Pharmos Corporation | Submicron emulsions for delivery of peptides |
US6040137A (en) | 1995-04-27 | 2000-03-21 | Tripep Ab | Antigen/antibody specification exchanger |
US6541011B2 (en) | 1998-02-11 | 2003-04-01 | Maxygen, Inc. | Antigen library immunization |
BR9909472A (en) | 1998-04-07 | 2001-09-11 | Corixa Corp | Purified polypeptide, process to prevent tuberculosis, and pharmaceutical composition |
EP1073667A2 (en) | 1998-04-28 | 2001-02-07 | Galenica Pharmaceuticals, Inc. | Polysaccharide-antigen conjugates |
WO2001026608A2 (en) | 1999-10-14 | 2001-04-19 | Ledbetter Jeffrey A | Dna vaccines encoding antigen linked to a domain that binds cd40 |
US20050074465A1 (en) * | 1999-11-24 | 2005-04-07 | Michael Houghton | HCV fusion proteins with modified NS3 domains |
EP1255560B1 (en) | 2000-02-02 | 2008-10-29 | UNITED STATES GOVERNMENT as represented by THE SECRETARY OF THE DEPARTMENT OF HEALTH AND HUMAN SERVICES, CENTERS FOR DISEASE | Cd40 ligand adjuvant for respiratory syncytial virus vaccine |
AU2001259215A1 (en) | 2000-04-28 | 2001-11-12 | La Jolla Institute For Allergy And Immunology | Human anti-cd40 antibodies and methods of making and using same |
US20030059427A1 (en) | 2000-04-28 | 2003-03-27 | Force Walker R. | Isolation and characterization of highly active anti-CD40 antibody |
US7560534B2 (en) | 2000-05-08 | 2009-07-14 | Celldex Research Corporation | Molecular conjugates comprising human monoclonal antibodies to dendritic cells |
CA2424296A1 (en) | 2000-10-02 | 2002-04-11 | Chiron Corporation | Human anti-cd40 antibodies |
WO2003029296A1 (en) | 2001-10-02 | 2003-04-10 | Chiron Corporation | Human anti-cd40 antibodies |
US20080199471A1 (en) | 2002-03-01 | 2008-08-21 | Bernett Matthew J | Optimized cd40 antibodies and methods of using the same |
AU2003243651B2 (en) | 2002-06-17 | 2008-10-16 | The Government Of The United States Of America, As Represented By The Secretary Of The Department Of Health And Human Services | Specificity grafting of a murine antibody onto a human framework |
US8025873B2 (en) | 2002-06-20 | 2011-09-27 | Paladin Labs, Inc. | Chimeric antigens for eliciting an immune response |
CN100381463C (en) | 2002-09-18 | 2008-04-16 | 中国人民解放军免疫学研究所 | Immunogen for producing vaccine or medicine to treat hepatitis B, its preparation process and use |
US20040146948A1 (en) | 2002-10-18 | 2004-07-29 | Centenary Institute Of Cancer Medicine And Cell Biology | Compositions and methods for targeting antigen-presenting cells with antibody single-chain variable region fragments |
US8277810B2 (en) | 2003-11-04 | 2012-10-02 | Novartis Vaccines & Diagnostics, Inc. | Antagonist anti-CD40 antibodies |
PL1885399T3 (en) | 2005-05-26 | 2011-04-29 | Seattle Genetics Inc | Humanized anti-cd40 antibodies and their methods of use |
CA2620667A1 (en) | 2005-08-30 | 2007-04-12 | Board Of Regents Of The University Of Nebraska | Methods and compositions for vaccination of animals with prrsv antigens with improved immunogenicity |
AU2006301846A1 (en) * | 2005-10-13 | 2007-04-19 | Akshaya Bio Inc. | Chimeric antigen containing hepatitis C virus polypeptide and FC fragment for eliciting an immune response |
US20080241139A1 (en) | 2006-10-31 | 2008-10-02 | Regents Of The University Of Colorado | Adjuvant combinations comprising a microbial tlr agonist, a cd40 or 4-1bb agonist, and optionally an antigen and the use thereof for inducing a synergistic enhancement in cellular immunity |
TWI422594B (en) * | 2007-02-02 | 2014-01-11 | Baylor Res Inst | Agents that engage antigen-presenting cells through dendritic cell asialoglycoprotein receptor (dc-asgpr) |
EP2527363A1 (en) | 2007-02-02 | 2012-11-28 | Baylor Research Institute | Vaccines based on targeting antigen to dcir expressed on antigen-presenting cells |
US20090023822A1 (en) | 2007-07-19 | 2009-01-22 | Tijm Peter J | Method for activating and regenerating catalyst for a fischer-tropsch synthesis reaction |
NZ596171A (en) * | 2008-07-16 | 2012-05-25 | Baylor Res Inst | Hiv vaccine based on targeting maximized gag and nef to dendritic cells |
AU2010222942B2 (en) * | 2009-03-10 | 2013-01-10 | Baylor Research Institute | Anti-CD40 antibodies and uses thereof |
AU2010291939B2 (en) * | 2009-09-14 | 2012-11-15 | Baylor Research Institute | Vaccines directed to Langerhans cells |
US20110274653A1 (en) * | 2010-05-07 | 2011-11-10 | Baylor Research Institute | Dendritic cell immunoreceptors (dcir)-mediated crosspriming of human cd8+ t cells |
-
2012
- 2012-03-26 AR ARP120101008A patent/AR085573A1/en unknown
- 2012-03-26 EP EP12765865.6A patent/EP2688592A4/en not_active Withdrawn
- 2012-03-26 WO PCT/US2012/030593 patent/WO2012135132A1/en active Application Filing
- 2012-03-26 US US13/430,206 patent/US20120301465A1/en not_active Abandoned
- 2012-03-26 CA CA2831294A patent/CA2831294A1/en not_active Abandoned
- 2012-03-26 TW TW101110421A patent/TW201300418A/en unknown
-
2014
- 2014-01-10 US US14/152,448 patent/US9885017B2/en not_active Expired - Fee Related
Non-Patent Citations (2)
Title |
---|
Li, Synergistic antibody induction by antigen-CD40 ligand fusion protein as improved immunogen, 2005, Immunology, 115:215-222. * |
Zhang et al., Characterization of a Monoclonal Antibody and Its Single-Chain Antibody Fragment Recognizing the Nucleoside Triphosphatase/Helicase Domain of the Hepatitis C Virus Nonstructural 3 Protein, 2000, Clinical and Diagnostic Laboratory Immunology, 7(1):58-63. * |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9453074B2 (en) | 2007-02-02 | 2016-09-27 | Baylor Research Institute | Agents that engage antigen-presenting cells through dendritic cell asialoglycoprotein receptor (DC-ASGPR) |
US10279030B2 (en) | 2007-02-02 | 2019-05-07 | Baylor Research Institute | Agents that engage antigen-presenting cells through dendritic cell asialoglycoprotein receptor (DC-ASGPR) |
US12016915B2 (en) | 2007-02-02 | 2024-06-25 | Baylor Research Institute | Agents that engage antigen-presenting cells through dendritic cell asialoglycoprotein receptor (DC-ASGPR) |
US8728481B2 (en) | 2007-02-02 | 2014-05-20 | Baylor Research Institute | Agents that engage antigen-presenting cells through dendritic cell asialoglycoprotein receptor (DC-ASGPR) |
US11173202B2 (en) | 2007-02-02 | 2021-11-16 | Baylor Research Institute | Agents that engage antigen-presenting cells through dendritic cell asialoglycoprotein receptor (DC-ASGPR) |
US11957734B2 (en) | 2014-05-16 | 2024-04-16 | Baylor Research Institute | Methods and compositions for treating autoimmune and inflammatory conditions |
US10993990B2 (en) | 2014-05-16 | 2021-05-04 | Baylor Research Institute | Methods and compositions for treating autoimmune and inflammatory conditions |
US9884921B2 (en) | 2014-07-01 | 2018-02-06 | Pfizer Inc. | Bispecific heterodimeric diabodies and uses thereof |
US11186615B2 (en) | 2015-10-08 | 2021-11-30 | The Governors Of The University Of Alberta | Hepatitis C virus E1/E2 heterodimers and methods of producing same |
US11110178B2 (en) | 2016-07-07 | 2021-09-07 | The Board Of Trustees Of The Leland Standford Junior University | Antibody adjuvant conjugates |
US11547761B1 (en) | 2016-07-07 | 2023-01-10 | The Board Of Trustees Of The Leland Stanford Junior University | Antibody adjuvant conjugates |
US10675358B2 (en) | 2016-07-07 | 2020-06-09 | The Board Of Trustees Of The Leland Stanford Junior University | Antibody adjuvant conjugates |
US11400164B2 (en) | 2019-03-15 | 2022-08-02 | Bolt Biotherapeutics, Inc. | Immunoconjugates targeting HER2 |
Also Published As
Publication number | Publication date |
---|---|
EP2688592A1 (en) | 2014-01-29 |
US20140199763A1 (en) | 2014-07-17 |
WO2012135132A1 (en) | 2012-10-04 |
TW201300418A (en) | 2013-01-01 |
CA2831294A1 (en) | 2012-10-04 |
US9885017B2 (en) | 2018-02-06 |
AR085573A1 (en) | 2013-10-09 |
EP2688592A4 (en) | 2015-07-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9885017B2 (en) | Compositions and methods to immunize against hepatitis C virus | |
JP6914851B2 (en) | Enhancement of effect of CAR-manipulated T cells by nucleic acid vaccination | |
Sparwasser et al. | Bacterial CpG‐DNA activates dendritic cells in vivo: T helper cell‐independent cytotoxic T cell responses to soluble proteins | |
ES2890230T3 (en) | HIV vaccine based on maximized Gag and Nef targeting to dendritic cells | |
US20110274653A1 (en) | Dendritic cell immunoreceptors (dcir)-mediated crosspriming of human cd8+ t cells | |
US20120231023A1 (en) | Novel Vaccine Adjuvants Based on Targeting Adjuvants to Antibodies Directly to Antigen-Presenting Cells | |
CN111148533A (en) | Compositions for chimeric antigen receptor T cell therapy and uses thereof | |
JP2015110582A (en) | Vaccines directed to langerhans cells | |
US11352416B2 (en) | Mosaic chimeric viral vaccine particle | |
TW201100099A (en) | Anti-CD40 antibodies and uses thereof | |
TW201305193A (en) | Dendritic cells (DCs) targeting for tuberculosis (TB) vaccine | |
JP2023533871A (en) | APC targeting unit for immunotherapy | |
CN101426533A (en) | Immunostimulatory compositions and methods | |
Pordanjani et al. | Extracellular vesicles in vaccine development and therapeutic approaches for viral diseases | |
Zhou et al. | Antitumor immunity induced by VE-cadherin modified DC vaccine | |
CN107109365A (en) | The preparation of multiple dose injection dendritic cell vaccine and the therapeutic alliance for blocking HER2 and HER3 | |
JP7304421B2 (en) | CHIMERIC ANTIGEN HAVING STRENGTHENED MULTIPLE IMMUNITY FUNCTIONS BY BINDING SPECIFIC TO TARGET CELLS AND USES THEREOF | |
Teixeira et al. | Immunization with CSP and a RIG-I agonist is effective in inducing a functional and protective humoral response against Plasmodium | |
Moynihan | Engineering immunity: Enhancing T Cell vaccines and combination immunotherapies for the treatment of cancer | |
Volckmar | Characterizing the potential of DEC-205-mediated antigen delivery to dendritic cells as a tool to induce adaptive immunity against hepatitis C virus infection | |
Li | Using Dendritic Cell Receptors To Enhance Immunity | |
Xiao | Dendritic cell-specific vaccine utilizing antibody-mimetic ligand and lentivector system | |
Moran | Characterization of dendritic cells transduced with Venezuelan equine encephalitis virus replicon particles as therapeutic cancer vaccines | |
AU2012261597A1 (en) | Vaccines directed to langerhans cells |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: BAYLOR RESEARCH INSTITUTE, TEXAS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BANCHEREAU, JACQUES F.;ZURAWSKI, GERARD;SIGNING DATES FROM 20110816 TO 20110817;REEL/FRAME:028355/0327 Owner name: INSTITUT NATIONAL DE LA SANTE ET DE LA RECHERCHE M Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:DUTARTRE, HELENE;LEVY, YVES;SIGNING DATES FROM 20110824 TO 20110922;REEL/FRAME:028355/0410 |
|
AS | Assignment |
Owner name: INSTITUT NATIONAL DE LA SANTE ET DE LA RCHERCHE ME Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:DUTARTRE, HELENE;LEVY, YVES;SIGNING DATES FROM 20110929 TO 20111003;REEL/FRAME:028360/0628 Owner name: BAYLOR RESEARCH INSTITUTE, TEXAS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BANCHEREAU, JACQUES F.;ZURAWSKI, GERARD;SIGNING DATES FROM 20110928 TO 20110930;REEL/FRAME:028360/0577 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |