US20120301123A1 - Ventilation element for a storage tank - Google Patents

Ventilation element for a storage tank Download PDF

Info

Publication number
US20120301123A1
US20120301123A1 US13/514,650 US201013514650A US2012301123A1 US 20120301123 A1 US20120301123 A1 US 20120301123A1 US 201013514650 A US201013514650 A US 201013514650A US 2012301123 A1 US2012301123 A1 US 2012301123A1
Authority
US
United States
Prior art keywords
storage tank
cup
ventilation
shaped container
ventilation line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/514,650
Other languages
English (en)
Inventor
Rainer Haeberer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Assigned to ROBERT BOSCH GMBH reassignment ROBERT BOSCH GMBH ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HAEBERER, RAINER
Publication of US20120301123A1 publication Critical patent/US20120301123A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/02Adding substances to exhaust gases the substance being ammonia or urea
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/14Arrangements for the supply of substances, e.g. conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/14Arrangements for the supply of substances, e.g. conduits
    • F01N2610/1406Storage means for substances, e.g. tanks or reservoirs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/14Arrangements for the supply of substances, e.g. conduits
    • F01N2610/1466Means for venting air out of conduits or tanks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • an electric heater is installed in the storage tank, inside a cup open at the bottom.
  • the heat output by the heater is used first to thaw the content of the cup.
  • a suction lance likewise of heated design, the liquid thawed around the heater is extracted via the suction lance and introduced into the exhaust gas.
  • the conveying means regulates a constant system pressure via the pump motor rotational speed, the pressure sensor and a return flow throttle. The return flow quantity is generally led back into the heating cup again via a return line.
  • the tank interior has to be aerated and ventilated with respect to the surroundings.
  • the air space in the cup-shaped container via a hose line into the air space of the storage tank for receiving the reducing medium.
  • the air space of the storage tank is connected to the surroundings via a ventilation element, by which means pressure equalization can be carried out into the surroundings, both in the air space in the cup and the air space above the tank, taking the hose line into account.
  • the ventilation path is accordingly established from the underside of the tank via an air path, established during the heating of the return line, between the peripheral surface of the return and the inner side of the reducing agent, present in frozen form, into the upper air space in the cup, from there via the ventilation line into the air space at the upper side of the tank beside the cup-shaped container, and from there via the ventilation element into the surroundings.
  • the ventilation line which extends from the air space in the upper region of the cup-shaped container into the air space of the storage tank, is preferably made of a reducing agent-resistant material such as EPDM or PA12 or the like.
  • the ventilation line is pushed onto appropriately formed, preferably injection molded on, spigots of plastic material, both on the lid of the cup-shaped container and on the tank lid, and fixed, for example, by means of a profiled extension (Christmas tree profile).
  • the storage tank can be implemented as an injection molding or the tank lid of the storage tank can be made of plastic material in the course of the injection molding process.
  • the connection just like the spigots for pushing on the ventilation line, can all be injection molded directly onto the upper side of the tank in one operation without any complicated finishing steps being needed.
  • the solution proposed according to the invention offers simplification of the design and therefore greater robustness with low manufacturing costs because of the omission of a number of parts. Furthermore, in the storage tank proposed by the invention, considerable simplification of the installation can be achieved because of the reduced number of components, and thus a considerable reduction in the manufacturing costs. In relation to fording-capable systems, only one hose connection is required, which likewise results in considerable simplification.
  • an air space which above the frozen content of a tank and an air space which above the frozen content of a cup which is introduced into the tank is aerated or ventilated into the surroundings via a separate ventilating means in each case.
  • ventilation elements formed in the manner of tablets can be introduced into the connectors of a lid which closes the cup and into a connector for an aeration/ventilation line of the tank above an air space.
  • FIG. 1 shows a design variant of a storage tank for receiving a reducing agent with a tank ventilating means and ventilating means for a cup-shaped container in the storage tank,
  • FIG. 2 shows an illustration of the fixing of a ventilation element in the lid of the cup-shaped container
  • FIG. 3 shows a design variant of the solution proposed in accordance with the invention
  • FIG. 4 shows a design variant of the sealing of a ventilation line
  • FIG. 5 shows a fording-capable system having a ventilation line which extends through a wet chamber into a dry chamber.
  • FIG. 1 shows that a storage tank 10 receives a reducing agent supply 12 .
  • the reducing agent 12 stored in the storage tank 10 begins to freeze and a solid ice phase 14 and a liquid phase 16 are established in the storage tank 10 .
  • freezing of the reducing agent supply 12 in the storage tank 10 takes place at outside temperatures between ⁇ 11° C. and ⁇ 40° C.
  • the storage tank 10 comprises a tank lid 18 and a tank bottom 20 and a cup-shaped container 22 introduced into the interior of the storage tank 10 at the upper side of the storage tank 10 .
  • the cup-shaped container 22 is in turn closed via a lid 32 .
  • a heatable suction lance 24 extends through the cup-shaped container 22 and the lid 32 which closes the cup-shaped container 22 .
  • a heater 26 which is generally operated electrically.
  • Designation 28 designates the level of the reducing agent supply 12 in the cup-shaped container 22 and also in the interior of the storage tank 10 .
  • On the underside of the cup-shaped container 22 there is an opening 30 , via which the reducing agent flows continuously into the cup-shaped container 22 .
  • the lid 32 of the cup-shaped container is fixed to a thread 34 by a lid screw fixing 54 .
  • the thread 34 is formed on an appropriately configured connector element of the tank lid 18 , to which the lid screw fixing 54 for fixing the lid 32 of the cup-shaped container 22 is screwed.
  • FIG. 1 reveals that both the storage tank 10 and the cup-shaped container 22 are aerated and ventilated via a tank ventilating means 36 and a cup ventilating means 38 respectively.
  • a tank ventilating means 36 and a cup ventilating means 38 respectively.
  • this opening 40 is closed in the event of freezing, however, since the solid phase 14 of the reducing agent 12 expands by about 10% at the liquid/solid phase transition because of the expansion of the reducing agent.
  • the air space 48 is ventilated via the tank ventilating means 36 , while the air space 50 in the upper region of the cup-shaped container 22 , which is closed by the lid 32 , is aerated and ventilated separately with respect to the outside via the cup ventilating means 38 .
  • a ventilation element 42 which is generally formed in the manner of a tablet.
  • FIG. 2 shows an illustration of the fixing of the tablet-shaped ventilation element in the ventilation connector of the cup-shaped container according to the illustration in FIG. 1 .
  • the ventilation element 42 is placed against a collar 44 in the connector of the tank ventilating means 36 .
  • warm calking 46 may be provided, which engages under the lower flat side of the tablet-shaped ventilation element 42 and thus fixes the latter reliably underneath the opening of the connector of the cup ventilating means 38 .
  • the tablet-shaped ventilation element 42 is fixed underneath the cup ventilating means 38 via the warm calking 46 .
  • two separate ventilating means namely the tank ventilating means 36 and the cup ventilating means 38 , are illustrated.
  • FIG. 3 reveals a further design variant of the solution proposed in accordance with the invention.
  • the cup-shaped container 22 is located in the storage tank 10 for receiving the reducing agent supply 12 .
  • phase separation of the reducing agent supply 12 into the solid ice phase 14 and into the liquid phase 16 is established both within the storage tank 10 and within the cup-shaped container 22 .
  • the air spaces 48 and 50 already mentioned are produced. While the cup-like container 22 is closed by the lid 32 , the air space 48 of the tank is closed by the tank lid 18 .
  • the two air spaces 48 and 50 are separated from each other by a sealing point 68 , at which the solid ice phase 14 of the reducing agent supply 12 rests on the underside of the tank lid 18 , so that the two air spaces 48 and 50 are cut off from each other and no air exchange between the latter can take place.
  • a first connection 62 in the form of a spigot, which is used to receive a ventilation line 60 .
  • the ventilation line 60 extends from the first connection 62 on the upper side of the lid 32 which closes the cup-shaped container 22 to a second connection 64 which, for example, can be injection molded onto the upper side of the tank lid 18 in the form of a spigot.
  • the ventilation line 60 is preferably made of a reducing agent-resistant material, preferably from a flexible elastomer material or thermoplastic.
  • the air space 50 above the level 28 of reducing agent 12 in the cup-shaped container 22 is connected to the air space 48 in the storage tank 10 underneath the tank lid 18 , i.e. ventilated into the latter.
  • the air space 48 is assigned an aeration/ventilation line 72 , which is formed in the manner of a connector, on the upper side of the tank lid 18 , and closed via a spider's web screen 74 .
  • the aeration/ventilation line 72 comprises a ventilation element 42 formed in the manner of a tablet, which is fixed in and enclosed by the third spigot 70 and which is made of a water-repellent material exhibiting hydrophobic properties.
  • FIG. 3 reveals that, starting from the lower region within the cup-shaped container 22 , in which the heater 26 is located, the following air path 66 is established: because of the fact that the suction lance 24 which extends through the cup-shaped container 22 is a heatable suction lance, an air gap established as a result of heating is formed between the outer side of the heatable suction lance 24 and the solid ice phase 14 of the reducing agent supply 12 enclosing said suction lance 24 . Therefore, the liquid phase 16 which surrounds the heating element 26 and the air space 50 above the level 28 of the cup-shaped container 22 are connected to each other in a manner permitting pressure equalization.
  • the air space 50 is then connected to the air space 48 of the storage tank 10 underneath the tank lid 18 , so that common aeration and ventilation of both air spaces, i.e. of the air space 48 and also of the air space 50 , can take place via one and the same aeration/ventilation line 72 which, in the design variant according to FIG. 3 , is assigned to the storage tank 10 or the air space 48 of the latter.
  • the lid 32 with which the cup-shaped container 22 is closed is preferably made as a plastic injection molded component, so that, advantageously, both an opening for a return 52 and the first connection 62 can be injection molded thereon.
  • the lid 32 for closing the cup-shaped container 22 is fixed by means of a lid screw fixing 54 to an external thread 34 of the tank lid 18 , which, during fabrication of the storage tank 10 as a plastic injection molded component, can likewise be produced in a simple way.
  • Sealing of the ventilation line 60 after being pushed onto the first connection 62 and the second connection 64 of the tank lid 18 can be implemented, for example, by means of a Christmas tree profile of the first connection 62 and the second connection 64 , as illustrated in FIG. 4 .
  • the second connection 64 and also the third connection 70 which is used to receive the connector 72 for aeration and ventilation, can advantageously be injection molded onto said storage tank 10 , which has a beneficial influence on the manufacturing costs and permits a high degree of freedom with regard to the tank geometry of the storage tank 10 .
  • a fording-capable storage tank 10 by a hose of flexible material, for example plastic material, being connected to the third connection 70 of the aeration/ventilation line 72 on the upper side of the tank lid 18 and extending into a permanent air space, so that at all times ventilation of the air spaces 48 , 50 , which are connected to each other via the ventilation line 60 , into the permanent air space is ensured.
  • This possibility also exists in the design variant according to FIG. 1 , in that in each case plastic hoses are slipped onto the tank ventilating means 36 and the cup ventilating means 38 , and thus a fording-capable system is created.
  • a simplified structure of the storage tank 10 results, be it capable of fording, be it designed for a system not capable of fording.
  • the ventilation element of the cup ventilating means 38 should always be designed to be smaller than the ventilation element 42 of the tank ventilating means 36 or 72 , because of the installation space and of the volume to be ventilated. In the case of the ventilation element 42 which is used in the tank ventilating means 38 , dimensioning is carried out for a larger throughput of air during aeration/ventilation.
  • FIG. 4 shows a design variant relating to sealing off the aeration/ventilation line.
  • sealing profiled sections 76 can be applied to the connections 62 , 64 and to the third connection 70 and, for example, can be formed as Christmas tree profiles.
  • FIG. 5 reveals a fording-capable system having an aeration/ventilating means which extends through a wet chamber into a dry chamber.
  • the aeration and ventilation of the air space 50 in the cup-shaped container 22 is carried out via the ventilation line 60 .
  • the latter extends from the first connection 62 above the air space 50 in the cup-shaped container 22 to the second connection 64 , which is connected to the air space 48 in the storage tank 10 .
  • the aeration/ventilation line 72 extends substantially in the vertical direction.
  • aeration/ventilation line 72 with ventilation elements 42 received therein extends reliably into a dry chamber 82 , so that an air-carrying connection between the air space 48 in the storage tank 10 and the surroundings is always ensured.
  • the length of the aeration/ventilation line 72 must be designed for the permissible fording depth of the vehicle, which also depends on other parameters.
  • the other components of the illustration according to FIG. 5 can substantially specifically be gathered from the design variant according to FIG. 3 .
  • the cup-shaped container 22 is introduced into the storage tank 10 .
  • an aeration/ventilation line 72 then extends into the dry chamber 82 , depending on whether this is a fording-capable or a non-fording-capable system.
  • the heater 26 is fitted to the lower end of the heated suction lance 24 above the tank bottom 20 of the storage tank 10 . Because of the heatable suction lance 24 , the liquid phase 16 forms around the latter and, in turn, is enclosed by the solid phase 14 , i.e. the frozen reducing agent supply 12 .
  • the air space above the cup-shaped container 22 is identified by designation 50 .
  • the overflow opening 40 between the storage tank 10 and the cup-shaped container 22 is located in the wall of the cup-shaped container 22 .
  • the tank lid 18 is identified by designation 18 in a manner analogous to the illustration in FIG. 3 .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Closures For Containers (AREA)
  • Packages (AREA)
US13/514,650 2009-12-08 2010-10-08 Ventilation element for a storage tank Abandoned US20120301123A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102009047637A DE102009047637A1 (de) 2009-12-08 2009-12-08 Entlüftungselement für Vorratstank
DE102009047637.7 2009-12-08
PCT/EP2010/065083 WO2011069710A1 (de) 2009-12-08 2010-10-08 Entlüftungselement für vorratstank

Publications (1)

Publication Number Publication Date
US20120301123A1 true US20120301123A1 (en) 2012-11-29

Family

ID=43413809

Family Applications (1)

Application Number Title Priority Date Filing Date
US13/514,650 Abandoned US20120301123A1 (en) 2009-12-08 2010-10-08 Ventilation element for a storage tank

Country Status (4)

Country Link
US (1) US20120301123A1 (de)
EP (1) EP2510203B1 (de)
DE (1) DE102009047637A1 (de)
WO (1) WO2011069710A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3014137A1 (fr) * 2013-12-02 2015-06-05 Inergy Automotive Systems Res Systeme de stockage perfectionne d'un additif liquide
US20150247439A1 (en) * 2014-02-28 2015-09-03 Kobelco Construction Machinery Co., Ltd. Reductant container

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014206464A1 (de) * 2014-04-03 2015-10-08 Bayerische Motoren Werke Aktiengesellschaft Reduktionsmittelbehälter eines Kraftfahrzeugs

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070202019A1 (en) * 2004-10-29 2007-08-30 Nissan Diesel Motor Co., Ltd. Reducing agent container having novel structure
US20090065508A1 (en) * 2005-09-12 2009-03-12 Rainer Haeberer Vehicle tank for a liquid reducing agent, in particular for a urea solution
US20090277156A1 (en) * 2008-05-07 2009-11-12 Emitec Gesellschaft Fur Emissionstechnologie Mbh Tank For A Reducing Agent, Motor Vehicle Having A Tank For A Reducing Agent And Method For Operating An SCR System Of A Motor Vehicle
US20120006832A1 (en) * 2009-01-09 2012-01-12 Robert Bosch Gmbh Storage tank
US8184964B2 (en) * 2006-10-04 2012-05-22 Robert Bosch Gmbh Tank for storing a reducing agent
US20120315196A1 (en) * 2010-01-13 2012-12-13 Emitec Gesellschaft Fuer Emissionstechnologie Mbh Apparatus having a tank and a delivery unit for reducing agent
US20130318950A1 (en) * 2010-12-02 2013-12-05 Robert Bosch Gmbh Device for supplying a reducing agent to an exhaust-gas aftertreatment system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006061735A1 (de) * 2006-12-28 2008-07-03 Robert Bosch Gmbh Belüftungsheizung für Reduktionsmitteltank
DE102007061808A1 (de) * 2007-12-19 2009-06-25 Dbk David + Baader Gmbh Tankentnahmesystem
DE102008014363A1 (de) * 2008-03-14 2009-09-17 Audi Ag Belüftung für einen Reduktionsmittelbehälter
DE102008062673A1 (de) * 2008-12-17 2010-06-24 Continental Automotive Gmbh Entnahmeeinrichtung einer wässrigen Harnstoff-Lösung in einem Kraftfahrzeug

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070202019A1 (en) * 2004-10-29 2007-08-30 Nissan Diesel Motor Co., Ltd. Reducing agent container having novel structure
US20090065508A1 (en) * 2005-09-12 2009-03-12 Rainer Haeberer Vehicle tank for a liquid reducing agent, in particular for a urea solution
US8586895B2 (en) * 2005-09-12 2013-11-19 Robert Bosch Gmbh Vehicle tank for a liquid reducing agent, in particular for a urea solution
US8184964B2 (en) * 2006-10-04 2012-05-22 Robert Bosch Gmbh Tank for storing a reducing agent
US20090277156A1 (en) * 2008-05-07 2009-11-12 Emitec Gesellschaft Fur Emissionstechnologie Mbh Tank For A Reducing Agent, Motor Vehicle Having A Tank For A Reducing Agent And Method For Operating An SCR System Of A Motor Vehicle
US20120006832A1 (en) * 2009-01-09 2012-01-12 Robert Bosch Gmbh Storage tank
US20120315196A1 (en) * 2010-01-13 2012-12-13 Emitec Gesellschaft Fuer Emissionstechnologie Mbh Apparatus having a tank and a delivery unit for reducing agent
US20130318950A1 (en) * 2010-12-02 2013-12-05 Robert Bosch Gmbh Device for supplying a reducing agent to an exhaust-gas aftertreatment system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3014137A1 (fr) * 2013-12-02 2015-06-05 Inergy Automotive Systems Res Systeme de stockage perfectionne d'un additif liquide
CN105992864A (zh) * 2013-12-02 2016-10-05 全耐塑料高级创新研究公司 改进的液体添加剂存储系统
US20160369680A1 (en) * 2013-12-02 2016-12-22 Plastic Omnium Advanced Innovation And Research Improved system for storing a liquid additive
US20150247439A1 (en) * 2014-02-28 2015-09-03 Kobelco Construction Machinery Co., Ltd. Reductant container
US9599000B2 (en) * 2014-02-28 2017-03-21 Kobelco Construction Machinery Co., Ltd. Reductant container

Also Published As

Publication number Publication date
EP2510203B1 (de) 2015-12-23
EP2510203A1 (de) 2012-10-17
WO2011069710A1 (de) 2011-06-16
DE102009047637A1 (de) 2011-06-09

Similar Documents

Publication Publication Date Title
US8857160B2 (en) Reservoir for accommodating an aqueous solution
US8756919B2 (en) Device for providing liquid reducing agent, method for thawing frozen reducing agent and motor vehicle having the device
JP5108770B2 (ja) 液状の還元剤、殊に尿素溶剤のための車両タンク
CN102748113B (zh) 排气系统组件
KR101451074B1 (ko) 환원제 탱크 어셈블리 및 공급 시스템
US20120321525A1 (en) Apparatus having a tank and a delivery unit for reducing agent
US20060213473A1 (en) Device for heating
US20120144808A1 (en) Scr exhaust gas aftertreatment device
KR101490931B1 (ko) 요소수 펌핑모듈
US20120301123A1 (en) Ventilation element for a storage tank
CN102272422A (zh) 容器装置
US11002226B2 (en) Water tank device for an internal combustion engine with water injection
JP2016102432A (ja) 内燃機関の排気浄化装置
US9765664B2 (en) Apparatus for providing liquid additive, method for assembling the apparatus and motor vehicle having the apparatus
CN105492732A (zh) 运行用于提供液体添加剂的装置的方法
CN105408594A (zh) 运行用于输送液体的装置的方法
US20130129330A1 (en) Fluid reservoir having a heating reserve bowl
KR101459463B1 (ko) 요소수를 저장하는 탱크유닛
US10408106B2 (en) Container for a liquid operating medium of a motor vehicle and motor vehicle with such a container
JP2014214616A (ja) スロットル上流構造
KR101770376B1 (ko) 요소수 펌프 모듈
KR20180116538A (ko) 디젤 차량용 요소수 탱크
KR101561623B1 (ko) 전기히터 및 냉각수 호환이 가능한 센더모듈
US11852065B2 (en) Attachment device for a module for dispensing an aqueous solution contained in a tank on board a motor vehicle
CN206397576U (zh) 一种尿素泵的传感器总成

Legal Events

Date Code Title Description
AS Assignment

Owner name: ROBERT BOSCH GMBH, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:HAEBERER, RAINER;REEL/FRAME:028799/0639

Effective date: 20120622

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION