US20120288855A1 - Fluorescent Chemical Compounds Having High Selectivity for Double Stranded DNA, and Methods for Their Use - Google Patents
Fluorescent Chemical Compounds Having High Selectivity for Double Stranded DNA, and Methods for Their Use Download PDFInfo
- Publication number
- US20120288855A1 US20120288855A1 US13/559,300 US201213559300A US2012288855A1 US 20120288855 A1 US20120288855 A1 US 20120288855A1 US 201213559300 A US201213559300 A US 201213559300A US 2012288855 A1 US2012288855 A1 US 2012288855A1
- Authority
- US
- United States
- Prior art keywords
- group
- compound
- chemical compound
- aromatic
- alkyl
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 0 [1*]C1=C2C(=C([4*])C([3*])=C1[2*])SC(/C=C/C=C1\C([11*])=C([10*])N([9*])C3=C1C([5*])=C([6*])C([7*])=C3[8*])=[N+]2[12*].[13*]C1=C2C(=C([16*])C([15*])=C1[14*])SC(/C=C/C=C1/C([17*])=C([18*])N([19*])C([20*])=C1[21*])=[N+]2[22*] Chemical compound [1*]C1=C2C(=C([4*])C([3*])=C1[2*])SC(/C=C/C=C1\C([11*])=C([10*])N([9*])C3=C1C([5*])=C([6*])C([7*])=C3[8*])=[N+]2[12*].[13*]C1=C2C(=C([16*])C([15*])=C1[14*])SC(/C=C/C=C1/C([17*])=C([18*])N([19*])C([20*])=C1[21*])=[N+]2[22*] 0.000 description 17
- JGADTPIPYNKUAW-UHFFFAOYSA-N CC1=CC=CC(C)=C1C1=CC2=C(C=C1)[N+](C)=C(C=C1C=C(Cl)N(C3=CC=CC=C3)C3=C1C=CC=C3)S2 Chemical compound CC1=CC=CC(C)=C1C1=CC2=C(C=C1)[N+](C)=C(C=C1C=C(Cl)N(C3=CC=CC=C3)C3=C1C=CC=C3)S2 JGADTPIPYNKUAW-UHFFFAOYSA-N 0.000 description 2
- ORABBNMYOARGOF-UHFFFAOYSA-N CCCN(CCCN(C)C)C1=CC(=CC2=N(C)C3=C(C=C(C4=C(OC)C=CC=C4OC)C=C3)S2)C2=C(C=CC=C2)N1CC1=CC=CC=C1 Chemical compound CCCN(CCCN(C)C)C1=CC(=CC2=N(C)C3=C(C=C(C4=C(OC)C=CC=C4OC)C=C3)S2)C2=C(C=CC=C2)N1CC1=CC=CC=C1 ORABBNMYOARGOF-UHFFFAOYSA-N 0.000 description 2
- QHAYSKMYGYVPIP-UHFFFAOYSA-N CCCN(CCCN(C)C)C1=CC(=CC2=[N+](C)C3=C(C=C(C4=C(C)C=CC=C4C)C=C3)S2)C2=C(C=CC=C2)N1C1=CC=CC=C1 Chemical compound CCCN(CCCN(C)C)C1=CC(=CC2=[N+](C)C3=C(C=C(C4=C(C)C=CC=C4C)C=C3)S2)C2=C(C=CC=C2)N1C1=CC=CC=C1 QHAYSKMYGYVPIP-UHFFFAOYSA-N 0.000 description 2
- PMFBIRQJBGACCY-UHFFFAOYSA-M Br.CC1=CC=N(CC2=CC=NC=C2)C2=CC=CC=C12.[Br-] Chemical compound Br.CC1=CC=N(CC2=CC=NC=C2)C2=CC=CC=C12.[Br-] PMFBIRQJBGACCY-UHFFFAOYSA-M 0.000 description 1
- DGJKPQLSLAXLNI-UHFFFAOYSA-N C#CCN1C(N(CCC)CCCN(C)C)=CC(=CC2=[N+](C)C3=C(C=C(C4=C(OC)C=CC=C4OC)C=C3)S2)C2=C1C=CC=C2 Chemical compound C#CCN1C(N(CCC)CCCN(C)C)=CC(=CC2=[N+](C)C3=C(C=C(C4=C(OC)C=CC=C4OC)C=C3)S2)C2=C1C=CC=C2 DGJKPQLSLAXLNI-UHFFFAOYSA-N 0.000 description 1
- SGILNXBIBWKLIY-UHFFFAOYSA-O CC(=O)NC1=C(C2=CC=C3C(=C2)SC(C=C2C=CN(CC4=CC=CC=C4)C4=C2C=CC=C4)=[N+]3C)C=CC=C1 Chemical compound CC(=O)NC1=C(C2=CC=C3C(=C2)SC(C=C2C=CN(CC4=CC=CC=C4)C4=C2C=CC=C4)=[N+]3C)C=CC=C1 SGILNXBIBWKLIY-UHFFFAOYSA-O 0.000 description 1
- LWYNMSOFGDNPAK-UHFFFAOYSA-O CC(=O)NC1=NC(C[N+]2=CC=C(C)C=C2)=CS1.[Cl-] Chemical compound CC(=O)NC1=NC(C[N+]2=CC=C(C)C=C2)=CS1.[Cl-] LWYNMSOFGDNPAK-UHFFFAOYSA-O 0.000 description 1
- VSXSVQXCWYZKHV-UHFFFAOYSA-N CC1=CC(=O)N(CC2=CC=CC=C2)C2=CC=CC=C12 Chemical compound CC1=CC(=O)N(CC2=CC=CC=C2)C2=CC=CC=C12 VSXSVQXCWYZKHV-UHFFFAOYSA-N 0.000 description 1
- QXMXYCWUTOLORW-UHFFFAOYSA-N CC1=CC(=O)N(CC2=CC=NC=C2)C2=CC=CC=C12 Chemical compound CC1=CC(=O)N(CC2=CC=NC=C2)C2=CC=CC=C12 QXMXYCWUTOLORW-UHFFFAOYSA-N 0.000 description 1
- MREIKBJVTKNTDQ-UHFFFAOYSA-N CC1=CC(=O)N(CCC2=CC=CC=C2)C2=CC=CC=C12 Chemical compound CC1=CC(=O)N(CCC2=CC=CC=C2)C2=CC=CC=C12 MREIKBJVTKNTDQ-UHFFFAOYSA-N 0.000 description 1
- PXOGONXAIRIWBP-UHFFFAOYSA-N CC1=CC(C2=NC=CN2C)=N(CC2=CC=CC=C2)C2=CC=CC=C12 Chemical compound CC1=CC(C2=NC=CN2C)=N(CC2=CC=CC=C2)C2=CC=CC=C12 PXOGONXAIRIWBP-UHFFFAOYSA-N 0.000 description 1
- GAFBRXVWPNAXJJ-UHFFFAOYSA-N CC1=CC=C(S(=O)(=O)[O-])C=C1.COC1=CC=CC(OC)=C1C1=CC2=C(C=C1)[N+](C)=C(C)S2 Chemical compound CC1=CC=C(S(=O)(=O)[O-])C=C1.COC1=CC=CC(OC)=C1C1=CC2=C(C=C1)[N+](C)=C(C)S2 GAFBRXVWPNAXJJ-UHFFFAOYSA-N 0.000 description 1
- OMUHXQZQFDXHMA-UHFFFAOYSA-N CC1=CC=C(S(=O)(=O)[O-])C=C1.CSC1=[N+](C)C2=CC=C(C3=CC=C[N+](C)=C3)C=C2S1 Chemical compound CC1=CC=C(S(=O)(=O)[O-])C=C1.CSC1=[N+](C)C2=CC=C(C3=CC=C[N+](C)=C3)C=C2S1 OMUHXQZQFDXHMA-UHFFFAOYSA-N 0.000 description 1
- YRILVWKLBZSPPU-UHFFFAOYSA-N CC1=CC=CC(C)=C1C1=CC2=C(C=C1)[N+](C)=C(C=C1C=C(Cl)N(CC3=CC=CC=C3)C3=C1C=CC=C3)S2 Chemical compound CC1=CC=CC(C)=C1C1=CC2=C(C=C1)[N+](C)=C(C=C1C=C(Cl)N(CC3=CC=CC=C3)C3=C1C=CC=C3)S2 YRILVWKLBZSPPU-UHFFFAOYSA-N 0.000 description 1
- VEMVBOAXNFJIHT-UHFFFAOYSA-N CC1=CC=CC(C)=C1C1=CC2=C(C=C1)[N+](C)=C(C=C1C=C(N(C)CCCN(C)C)N(C3=CC=CC=C3)C3=C1C=CC=C3)S2 Chemical compound CC1=CC=CC(C)=C1C1=CC2=C(C=C1)[N+](C)=C(C=C1C=C(N(C)CCCN(C)C)N(C3=CC=CC=C3)C3=C1C=CC=C3)S2 VEMVBOAXNFJIHT-UHFFFAOYSA-N 0.000 description 1
- WYPNAQXFRPDKQN-UHFFFAOYSA-N CC1=CC=CC(C)=C1C1=CC2=C(C=C1)[N+](C)=C(C=C1C=C(N(C)CCCN(C)C)N(CC3=CC=CC=C3)C3=C1C=CC=C3)S2 Chemical compound CC1=CC=CC(C)=C1C1=CC2=C(C=C1)[N+](C)=C(C=C1C=C(N(C)CCCN(C)C)N(CC3=CC=CC=C3)C3=C1C=CC=C3)S2 WYPNAQXFRPDKQN-UHFFFAOYSA-N 0.000 description 1
- FYNLIZOGOVVQCG-UHFFFAOYSA-N CC1=CC=CC(C)=C1C1=CC2=C(C=C1)[N+](C)=C(C=C1C=CN(CC3=CC=C(CN4CCN(C)CC4)C=C3)C3=C1C=CC=C3)S2 Chemical compound CC1=CC=CC(C)=C1C1=CC2=C(C=C1)[N+](C)=C(C=C1C=CN(CC3=CC=C(CN4CCN(C)CC4)C=C3)C3=C1C=CC=C3)S2 FYNLIZOGOVVQCG-UHFFFAOYSA-N 0.000 description 1
- UXUCNRDDADETAH-UHFFFAOYSA-N CC1=CC=CC(C)=C1C1=CC2=C(C=C1)[N+](C)=C(C=C1C=CN(CC3=CC=C(C[N+](C)(C)C)C=C3)C3=C1C=CC=C3)S2 Chemical compound CC1=CC=CC(C)=C1C1=CC2=C(C=C1)[N+](C)=C(C=C1C=CN(CC3=CC=C(C[N+](C)(C)C)C=C3)C3=C1C=CC=C3)S2 UXUCNRDDADETAH-UHFFFAOYSA-N 0.000 description 1
- SREAPKFZMFIDJK-UHFFFAOYSA-N CC1=CC=CC(C)=C1C1=CC2=C(C=C1)[N+](C)=C(C=C1C=CN(CC3=CC=CC=C3)C3=C1C=CC=C3)S2 Chemical compound CC1=CC=CC(C)=C1C1=CC2=C(C=C1)[N+](C)=C(C=C1C=CN(CC3=CC=CC=C3)C3=C1C=CC=C3)S2 SREAPKFZMFIDJK-UHFFFAOYSA-N 0.000 description 1
- JEZSWPKEIUJBFV-UHFFFAOYSA-N CC1=CC=CC(C)=C1C1=CC2=C(C=C1)[N+](C)=C(C=C1C=CN(CC3=CC=NC=C3)C3=C1C=CC=C3)S2 Chemical compound CC1=CC=CC(C)=C1C1=CC2=C(C=C1)[N+](C)=C(C=C1C=CN(CC3=CC=NC=C3)C3=C1C=CC=C3)S2 JEZSWPKEIUJBFV-UHFFFAOYSA-N 0.000 description 1
- RIKNFUWWRAOGEI-UHFFFAOYSA-N CC1=CC=CC(C)=C1C1=CC2=C(C=C1)[N+](C)=C(C=C1C=CN(CC3=CC=[N+](C)C=C3)C3=C1C=CC=C3)S2 Chemical compound CC1=CC=CC(C)=C1C1=CC2=C(C=C1)[N+](C)=C(C=C1C=CN(CC3=CC=[N+](C)C=C3)C3=C1C=CC=C3)S2 RIKNFUWWRAOGEI-UHFFFAOYSA-N 0.000 description 1
- MISCJNQGNRJVDM-UHFFFAOYSA-N CC1=CC=[N+](CC2=CC=C(CBr)C=C2)C2=CC=CC=C12.[Br-] Chemical compound CC1=CC=[N+](CC2=CC=C(CBr)C=C2)C2=CC=CC=C12.[Br-] MISCJNQGNRJVDM-UHFFFAOYSA-N 0.000 description 1
- VYNDWAKONRLQCY-UHFFFAOYSA-N CC1=CC=[N+](CCC2=CC=CC=C2)C=C1.[Br-] Chemical compound CC1=CC=[N+](CCC2=CC=CC=C2)C=C1.[Br-] VYNDWAKONRLQCY-UHFFFAOYSA-N 0.000 description 1
- UWPXLAXIWRMKCZ-UHFFFAOYSA-N CCCCC1=CC(=CC2=N(C)C3=C(C=C(C4=C(OC)C=CC=C4OC)C=C3)S2)C2=C(C=CC=C2)N1CC1=CC=CC=C1 Chemical compound CCCCC1=CC(=CC2=N(C)C3=C(C=C(C4=C(OC)C=CC=C4OC)C=C3)S2)C2=C(C=CC=C2)N1CC1=CC=CC=C1 UWPXLAXIWRMKCZ-UHFFFAOYSA-N 0.000 description 1
- AAQTYMCHPZGGOG-UHFFFAOYSA-N CCCCC1=CC(=CC2=[N+](C)C3=C(C=C(C4=C(OC)C=CC=C4OC)C=C3)S2)C2=C(C=CC=C2)N1CC1=CC=NC=C1 Chemical compound CCCCC1=CC(=CC2=[N+](C)C3=C(C=C(C4=C(OC)C=CC=C4OC)C=C3)S2)C2=C(C=CC=C2)N1CC1=CC=NC=C1 AAQTYMCHPZGGOG-UHFFFAOYSA-N 0.000 description 1
- DUMHCPQEJYWGJL-UHFFFAOYSA-N CCCCN1C=C(N2C(N(CCC)CCCN(C)C)=CC(=CC3=[N+](C)C4=C(C=C(C5=C(OC)C=CC=C5OC)C=C4)S3)C3=C2C=CC=C3)N=N1 Chemical compound CCCCN1C=C(N2C(N(CCC)CCCN(C)C)=CC(=CC3=[N+](C)C4=C(C=C(C5=C(OC)C=CC=C5OC)C=C4)S3)C3=C2C=CC=C3)N=N1 DUMHCPQEJYWGJL-UHFFFAOYSA-N 0.000 description 1
- PKERHAPRRLBWTG-UHFFFAOYSA-N CCCN(CCCN(C)C)C1=CC(=CC2=[N+](C)C3=C(C=C(C(COC)COC)C=C3)S2)C2=C(C=CC=C2)N1CC1=CC=CC=C1 Chemical compound CCCN(CCCN(C)C)C1=CC(=CC2=[N+](C)C3=C(C=C(C(COC)COC)C=C3)S2)C2=C(C=CC=C2)N1CC1=CC=CC=C1 PKERHAPRRLBWTG-UHFFFAOYSA-N 0.000 description 1
- GEJBZGKQZBSUSD-UHFFFAOYSA-N CCCN(CCCN(C)C)C1=CC(=CC2=[N+](C)C3=C(C=C(C4=C(OC)C=CC=C4OC)C=C3)S2)C2=C(C=C(OC)C=C2)N1CC1=CC=CC=C1 Chemical compound CCCN(CCCN(C)C)C1=CC(=CC2=[N+](C)C3=C(C=C(C4=C(OC)C=CC=C4OC)C=C3)S2)C2=C(C=C(OC)C=C2)N1CC1=CC=CC=C1 GEJBZGKQZBSUSD-UHFFFAOYSA-N 0.000 description 1
- BNMAKACVZQPDKM-UHFFFAOYSA-N CCCN(CCCN(C)C)C1=CC(=CC2=[N+](C)C3=C(C=C(C4=C(OC)C=CC=C4OC)C=C3)S2)C2=C(C=CC(OC)=C2)N1CC1=CC=CC=C1 Chemical compound CCCN(CCCN(C)C)C1=CC(=CC2=[N+](C)C3=C(C=C(C4=C(OC)C=CC=C4OC)C=C3)S2)C2=C(C=CC(OC)=C2)N1CC1=CC=CC=C1 BNMAKACVZQPDKM-UHFFFAOYSA-N 0.000 description 1
- XPQOOZARZCSONX-UHFFFAOYSA-N CCCN(CCCN(C)C)C1=CC(=CC2=[N+](C)C3=C(C=C(C4=C(OC)C=CC=C4OC)C=C3)S2)C2=C(C=CC=C2)N1C Chemical compound CCCN(CCCN(C)C)C1=CC(=CC2=[N+](C)C3=C(C=C(C4=C(OC)C=CC=C4OC)C=C3)S2)C2=C(C=CC=C2)N1C XPQOOZARZCSONX-UHFFFAOYSA-N 0.000 description 1
- FKVMXQJBHRUACN-UHFFFAOYSA-N CCCN(CCCN(C)C)C1=CC(=CC2=[N+](C)C3=C(C=C(C4=C(OC)C=CC=C4OC)C=C3)S2)C2=C(C=CC=C2)N1CC1=CC=NC=C1 Chemical compound CCCN(CCCN(C)C)C1=CC(=CC2=[N+](C)C3=C(C=C(C4=C(OC)C=CC=C4OC)C=C3)S2)C2=C(C=CC=C2)N1CC1=CC=NC=C1 FKVMXQJBHRUACN-UHFFFAOYSA-N 0.000 description 1
- GVJFRPJUTBRUEI-UHFFFAOYSA-N CCCN(CCC[N+](C)(C)C)C1=CC(=CC2=[N+](C)C3=C(C=C(C4=C(OC)C=CC=C4OC)C=C3)S2)C2=C(C=CC=C2)N1CC1=CC=CC=C1 Chemical compound CCCN(CCC[N+](C)(C)C)C1=CC(=CC2=[N+](C)C3=C(C=C(C4=C(OC)C=CC=C4OC)C=C3)S2)C2=C(C=CC=C2)N1CC1=CC=CC=C1 GVJFRPJUTBRUEI-UHFFFAOYSA-N 0.000 description 1
- ZRIVSIMLVNCUCV-UHFFFAOYSA-N CCN(CC)CC1=CC=C(C2=CC(=CC3=N(C)C4=C(C=C(C5=C(OC)C=CC=C5OC)C=C4)S3)C3=C(C=CC=C3)N2CC2=CC=CC=C2)C=C1 Chemical compound CCN(CC)CC1=CC=C(C2=CC(=CC3=N(C)C4=C(C=C(C5=C(OC)C=CC=C5OC)C=C4)S3)C3=C(C=CC=C3)N2CC2=CC=CC=C2)C=C1 ZRIVSIMLVNCUCV-UHFFFAOYSA-N 0.000 description 1
- DUUMEKQKCAYMMS-UHFFFAOYSA-N CCN(CC)CC1=CC=C(C2=CC(=CC3=[N+](C)C4=CC=C(C5=CC=CC=C5)C=C4S3)C3=C(C=CC=C3)N2C2=CC=CC=C2)C=C1 Chemical compound CCN(CC)CC1=CC=C(C2=CC(=CC3=[N+](C)C4=CC=C(C5=CC=CC=C5)C=C4S3)C3=C(C=CC=C3)N2C2=CC=CC=C2)C=C1 DUUMEKQKCAYMMS-UHFFFAOYSA-N 0.000 description 1
- OKRVHKFBFXNESJ-UHFFFAOYSA-N CCN(CC)CC1=CC=C(C2=[N+](C3=CC=CC=C3)C3=CC=CC=C3C(C)=C2)C=C1 Chemical compound CCN(CC)CC1=CC=C(C2=[N+](C3=CC=CC=C3)C3=CC=CC=C3C(C)=C2)C=C1 OKRVHKFBFXNESJ-UHFFFAOYSA-N 0.000 description 1
- GAEJTRPRKCWZDQ-UHFFFAOYSA-N CCOC(=O)CCCOC1=CC(CN2C=C/C(=C\C3=[N+](C)C4=C(C=C(C5=C(OC)C=CC=C5OC)C=C4)S3)C3=C2C=CC=C3)=CC=C1 Chemical compound CCOC(=O)CCCOC1=CC(CN2C=C/C(=C\C3=[N+](C)C4=C(C=C(C5=C(OC)C=CC=C5OC)C=C4)S3)C3=C2C=CC=C3)=CC=C1 GAEJTRPRKCWZDQ-UHFFFAOYSA-N 0.000 description 1
- PGONBMFTVOXYIP-UHFFFAOYSA-N CCOC(=O)CCCOC1=CC(CN2C=CC(=CC=CC3=[N+](C)C4=C(C=C(C5=CC=CC=C5)C=C4)S3)C3=C2C=CC=C3)=CC=C1 Chemical compound CCOC(=O)CCCOC1=CC(CN2C=CC(=CC=CC3=[N+](C)C4=C(C=C(C5=CC=CC=C5)C=C4)S3)C3=C2C=CC=C3)=CC=C1 PGONBMFTVOXYIP-UHFFFAOYSA-N 0.000 description 1
- IIJRGYWZASUPTE-UHFFFAOYSA-N CCOC(=O)CCCOC1=CC2=C(C=C1)N(CC1=CC=CC=C1)C(Cl)=CC2=CC1=[N+](C)C2=C(C=C(C3=C(OC)C=CC=C3OC)C=C2)S1 Chemical compound CCOC(=O)CCCOC1=CC2=C(C=C1)N(CC1=CC=CC=C1)C(Cl)=CC2=CC1=[N+](C)C2=C(C=C(C3=C(OC)C=CC=C3OC)C=C2)S1 IIJRGYWZASUPTE-UHFFFAOYSA-N 0.000 description 1
- ZCTZSDWMYHVSAA-UHFFFAOYSA-N CCOC(=O)CCCOC1=CC2=C(C=C1)N(CC1=CC=CC=C1)C(SC1=CC=CC=C1)=CC2=CC1=[N+](C)C2=C(C=C(C3=C(OC)C=CC=C3OC)C=C2)S1 Chemical compound CCOC(=O)CCCOC1=CC2=C(C=C1)N(CC1=CC=CC=C1)C(SC1=CC=CC=C1)=CC2=CC1=[N+](C)C2=C(C=C(C3=C(OC)C=CC=C3OC)C=C2)S1 ZCTZSDWMYHVSAA-UHFFFAOYSA-N 0.000 description 1
- NHYJPELLISMZGH-UHFFFAOYSA-N CN(C)CC1=CC=C(CN2C=CC(=CC3=[N+](C)C4=C(C=C(C5=CC6=C(C=C5)NC=C6)C=C4)S3)C3=C2C=CC=C3)C=C1 Chemical compound CN(C)CC1=CC=C(CN2C=CC(=CC3=[N+](C)C4=C(C=C(C5=CC6=C(C=C5)NC=C6)C=C4)S3)C3=C2C=CC=C3)C=C1 NHYJPELLISMZGH-UHFFFAOYSA-N 0.000 description 1
- DGZKDTXNXNBUEI-UHFFFAOYSA-N CN1C(=S)SC2=CC(Br)=CC=C21 Chemical compound CN1C(=S)SC2=CC(Br)=CC=C21 DGZKDTXNXNBUEI-UHFFFAOYSA-N 0.000 description 1
- MJKPLCYWKRQMKX-UHFFFAOYSA-N CN1C=CC(=CC2=[N+](C)C3=C(C=C(C4=CC=CC=C4)C=C3)S2)C2=C1C=CC=C2 Chemical compound CN1C=CC(=CC2=[N+](C)C3=C(C=C(C4=CC=CC=C4)C=C3)S2)C2=C1C=CC=C2 MJKPLCYWKRQMKX-UHFFFAOYSA-N 0.000 description 1
- VBGATDWGLDQSMV-UHFFFAOYSA-N CN1C=CN=C1C1=CC(=CC2=[N+](C)C3=C(C=C(C4=CC5=C(C=C4)NC=C5)C=C3)S2)C2=C(C=CC=C2)N1CC1=CC=CC=C1 Chemical compound CN1C=CN=C1C1=CC(=CC2=[N+](C)C3=C(C=C(C4=CC5=C(C=C4)NC=C5)C=C3)S2)C2=C(C=CC=C2)N1CC1=CC=CC=C1 VBGATDWGLDQSMV-UHFFFAOYSA-N 0.000 description 1
- PKGADWAEBRUXLN-UHFFFAOYSA-N CN1C=CN=C1C1=CC(=CC2=[N+](C)C3=CC(C4=CC=CC=C4)=CC=C3S2)C2=C(C=CC=C2)N1C Chemical compound CN1C=CN=C1C1=CC(=CC2=[N+](C)C3=CC(C4=CC=CC=C4)=CC=C3S2)C2=C(C=CC=C2)N1C PKGADWAEBRUXLN-UHFFFAOYSA-N 0.000 description 1
- DLGBDLAGDVUCAR-UHFFFAOYSA-N CN1C=CN=C1C1=CC(=CC2=[N+](C)C3=CC(C4=CC=CC=C4)=CC=C3S2)C2=C(C=CC=C2)N1CC1=CC=CC=C1 Chemical compound CN1C=CN=C1C1=CC(=CC2=[N+](C)C3=CC(C4=CC=CC=C4)=CC=C3S2)C2=C(C=CC=C2)N1CC1=CC=CC=C1 DLGBDLAGDVUCAR-UHFFFAOYSA-N 0.000 description 1
- FRDUIJUFGXOTSP-UHFFFAOYSA-N CN1C=CN=C1C1=CC(=CC2=[N+](C)C3=CC=C(C4=CC=CC=C4)C=C3S2)C2=C(C=CC=C2)N1C Chemical compound CN1C=CN=C1C1=CC(=CC2=[N+](C)C3=CC=C(C4=CC=CC=C4)C=C3S2)C2=C(C=CC=C2)N1C FRDUIJUFGXOTSP-UHFFFAOYSA-N 0.000 description 1
- QQMYZDTXZXWFRH-UHFFFAOYSA-N CN1CCN(CC2=CC=C(CN3C=CC(=CC4=[N+](C)C5=C(C=C(C6=CC7=C(C=C6)NC=C7)C=C5)S4)C4=C3C=CC=C4)C=C2)CC1 Chemical compound CN1CCN(CC2=CC=C(CN3C=CC(=CC4=[N+](C)C5=C(C=C(C6=CC7=C(C=C6)NC=C7)C=C5)S4)C4=C3C=CC=C4)C=C2)CC1 QQMYZDTXZXWFRH-UHFFFAOYSA-N 0.000 description 1
- JZKJYNKHXCSGFX-UHFFFAOYSA-N CNC1=CC=C(Br)C=C1Br Chemical compound CNC1=CC=C(Br)C=C1Br JZKJYNKHXCSGFX-UHFFFAOYSA-N 0.000 description 1
- YVUKTSLPAQACIX-UHFFFAOYSA-N CNCCCN(C)C1=CC(=CC2=N(C)C3=C(C=C(C4=C(OC)C=CC=C4OC)C=C3)S2)C2=C(C=CC=C2)N1CC1=CC=CC=C1 Chemical compound CNCCCN(C)C1=CC(=CC2=N(C)C3=C(C=C(C4=C(OC)C=CC=C4OC)C=C3)S2)C2=C(C=CC=C2)N1CC1=CC=CC=C1 YVUKTSLPAQACIX-UHFFFAOYSA-N 0.000 description 1
- UOMOLDIOPVIUIN-UHFFFAOYSA-N CNCCN(C)C1=CC(=CC2=N(C)C3=C(C=C(C4=C(OC)C=CC=C4OC)C=C3)S2)C2=C(C=CC=C2)N1CC1=CC=CC=C1 Chemical compound CNCCN(C)C1=CC(=CC2=N(C)C3=C(C=C(C4=C(OC)C=CC=C4OC)C=C3)S2)C2=C(C=CC=C2)N1CC1=CC=CC=C1 UOMOLDIOPVIUIN-UHFFFAOYSA-N 0.000 description 1
- GXSGVEFPCCFPCO-UHFFFAOYSA-N COC1=CC=C2C(=C1)C(C)=CC(=O)N2CC1=CC=CC=C1 Chemical compound COC1=CC=C2C(=C1)C(C)=CC(=O)N2CC1=CC=CC=C1 GXSGVEFPCCFPCO-UHFFFAOYSA-N 0.000 description 1
- SIJCTBSNZBFYEX-UHFFFAOYSA-N COC1=CC=C2C(C)=CC(=O)N(CC3=CC=CC=C3)C2=C1 Chemical compound COC1=CC=C2C(C)=CC(=O)N(CC3=CC=CC=C3)C2=C1 SIJCTBSNZBFYEX-UHFFFAOYSA-N 0.000 description 1
- QCWDDAJSLOVGBZ-UHFFFAOYSA-N COC1=CC=CC(OC)=C1C1=CC2=C(C=C1)N(C)=C(C=C1C=C(Cl)N(C3=CC=CC=C3)C3=C1C=CC=C3)S2 Chemical compound COC1=CC=CC(OC)=C1C1=CC2=C(C=C1)N(C)=C(C=C1C=C(Cl)N(C3=CC=CC=C3)C3=C1C=CC=C3)S2 QCWDDAJSLOVGBZ-UHFFFAOYSA-N 0.000 description 1
- PTLZJJKROCOYSB-UHFFFAOYSA-N COC1=CC=CC(OC)=C1C1=CC2=C(C=C1)N(C)=C(C=C1C=C(Cl)N(CC3=CC=CC=C3)C3=C1C=CC=C3)S2 Chemical compound COC1=CC=CC(OC)=C1C1=CC2=C(C=C1)N(C)=C(C=C1C=C(Cl)N(CC3=CC=CC=C3)C3=C1C=CC=C3)S2 PTLZJJKROCOYSB-UHFFFAOYSA-N 0.000 description 1
- AFIYCGXKAQEYSV-UHFFFAOYSA-N COC1=CC=CC(OC)=C1C1=CC2=C(C=C1)N(C)=C(C=C1C=C(N(C)CCN(C)C)N(CC3=CC=CC=C3)C3=C1C=CC=C3)S2 Chemical compound COC1=CC=CC(OC)=C1C1=CC2=C(C=C1)N(C)=C(C=C1C=C(N(C)CCN(C)C)N(CC3=CC=CC=C3)C3=C1C=CC=C3)S2 AFIYCGXKAQEYSV-UHFFFAOYSA-N 0.000 description 1
- KLFTURCNUNWXHJ-UHFFFAOYSA-N COC1=CC=CC(OC)=C1C1=CC2=C(C=C1)N(C)=C(C=C1C=C(N(CCCN(C)C)CCCN(C)C)N(CC3=CC=CC=C3)C3=C1C=CC=C3)S2 Chemical compound COC1=CC=CC(OC)=C1C1=CC2=C(C=C1)N(C)=C(C=C1C=C(N(CCCN(C)C)CCCN(C)C)N(CC3=CC=CC=C3)C3=C1C=CC=C3)S2 KLFTURCNUNWXHJ-UHFFFAOYSA-N 0.000 description 1
- UECBHMFJOOUBGU-UHFFFAOYSA-N COC1=CC=CC(OC)=C1C1=CC2=C(C=C1)N(C)=C(C=C1C=C(N3C=CN=C3)N(CC3=CC=CC=C3)C3=C1C=CC=C3)S2 Chemical compound COC1=CC=CC(OC)=C1C1=CC2=C(C=C1)N(C)=C(C=C1C=C(N3C=CN=C3)N(CC3=CC=CC=C3)C3=C1C=CC=C3)S2 UECBHMFJOOUBGU-UHFFFAOYSA-N 0.000 description 1
- YZULMXQHHWFZDV-UHFFFAOYSA-N COC1=CC=CC(OC)=C1C1=CC2=C(C=C1)N(C)=C(C=C1C=C(N3CCCCC3)N(CC3=CC=CC=C3)C3=C1C=CC=C3)S2 Chemical compound COC1=CC=CC(OC)=C1C1=CC2=C(C=C1)N(C)=C(C=C1C=C(N3CCCCC3)N(CC3=CC=CC=C3)C3=C1C=CC=C3)S2 YZULMXQHHWFZDV-UHFFFAOYSA-N 0.000 description 1
- JHXGSGNIKFKQMT-UHFFFAOYSA-N COC1=CC=CC(OC)=C1C1=CC2=C(C=C1)N(C)=C(C=C1C=C(N3CCN(C)CC3)N(CC3=CC=CC=C3)C3=C1C=CC=C3)S2 Chemical compound COC1=CC=CC(OC)=C1C1=CC2=C(C=C1)N(C)=C(C=C1C=C(N3CCN(C)CC3)N(CC3=CC=CC=C3)C3=C1C=CC=C3)S2 JHXGSGNIKFKQMT-UHFFFAOYSA-N 0.000 description 1
- JNGGHVZHRSQRMZ-UHFFFAOYSA-N COC1=CC=CC(OC)=C1C1=CC2=C(C=C1)N(C)=C(C=C1C=C(SCCN(C)C)N(CC3=CC=CC=C3)C3=C1C=CC=C3)S2 Chemical compound COC1=CC=CC(OC)=C1C1=CC2=C(C=C1)N(C)=C(C=C1C=C(SCCN(C)C)N(CC3=CC=CC=C3)C3=C1C=CC=C3)S2 JNGGHVZHRSQRMZ-UHFFFAOYSA-N 0.000 description 1
- TUZIVYJAISDORJ-UHFFFAOYSA-N COC1=CC=CC(OC)=C1C1=CC2=C(C=C1)N(C)C(=CC1=CC(=O)N(CC3=CC=CC=C3)C3=C1C=CC=C3)S2 Chemical compound COC1=CC=CC(OC)=C1C1=CC2=C(C=C1)N(C)C(=CC1=CC(=O)N(CC3=CC=CC=C3)C3=C1C=CC=C3)S2 TUZIVYJAISDORJ-UHFFFAOYSA-N 0.000 description 1
- NEQVQJYJMFNZAT-UHFFFAOYSA-N COC1=CC=CC(OC)=C1C1=CC2=C(C=C1)N(C)C(=S)S2 Chemical compound COC1=CC=CC(OC)=C1C1=CC2=C(C=C1)N(C)C(=S)S2 NEQVQJYJMFNZAT-UHFFFAOYSA-N 0.000 description 1
- LZYJKCYUTMSINX-UHFFFAOYSA-O COC1=CC=CC(OC)=C1C1=CC2=C(C=C1)[N+](C)=C(/C=C1\C=C(N(C)CCCC(=O)NCCOCCOCCOCCO)N(CC3=CC=CC=C3)C3=C1C=CC=C3)S2 Chemical compound COC1=CC=CC(OC)=C1C1=CC2=C(C=C1)[N+](C)=C(/C=C1\C=C(N(C)CCCC(=O)NCCOCCOCCOCCO)N(CC3=CC=CC=C3)C3=C1C=CC=C3)S2 LZYJKCYUTMSINX-UHFFFAOYSA-O 0.000 description 1
- VPGPMJUXWFYXAQ-UHFFFAOYSA-O COC1=CC=CC(OC)=C1C1=CC2=C(C=C1)[N+](C)=C(/C=C1\C=C(N(C)CCCC(=O)NS)N(CC3=CC=CC=C3)C3=C1C=CC=C3)S2 Chemical compound COC1=CC=CC(OC)=C1C1=CC2=C(C=C1)[N+](C)=C(/C=C1\C=C(N(C)CCCC(=O)NS)N(CC3=CC=CC=C3)C3=C1C=CC=C3)S2 VPGPMJUXWFYXAQ-UHFFFAOYSA-O 0.000 description 1
- DMFUKVGKBMSEKD-UHFFFAOYSA-O COC1=CC=CC(OC)=C1C1=CC2=C(C=C1)[N+](C)=C(/C=C1\C=C(N(C)CCCC(=O)O)N(CC3=CC=CC=C3)C3=C1C=CC=C3)S2 Chemical compound COC1=CC=CC(OC)=C1C1=CC2=C(C=C1)[N+](C)=C(/C=C1\C=C(N(C)CCCC(=O)O)N(CC3=CC=CC=C3)C3=C1C=CC=C3)S2 DMFUKVGKBMSEKD-UHFFFAOYSA-O 0.000 description 1
- LQCZDIHGEHALMY-UHFFFAOYSA-N COC1=CC=CC(OC)=C1C1=CC2=C(C=C1)[N+](C)=C(C=C1C=C(Cl)N(C)C3=C1C=CC=C3)S2 Chemical compound COC1=CC=CC(OC)=C1C1=CC2=C(C=C1)[N+](C)=C(C=C1C=C(Cl)N(C)C3=C1C=CC=C3)S2 LQCZDIHGEHALMY-UHFFFAOYSA-N 0.000 description 1
- LBNQUDSIDYFVOI-UHFFFAOYSA-N COC1=CC=CC(OC)=C1C1=CC2=C(C=C1)[N+](C)=C(C=C1C=C(OC)N(CC3=CC=CC=C3)C3=C1C=CC=C3)S2 Chemical compound COC1=CC=CC(OC)=C1C1=CC2=C(C=C1)[N+](C)=C(C=C1C=C(OC)N(CC3=CC=CC=C3)C3=C1C=CC=C3)S2 LBNQUDSIDYFVOI-UHFFFAOYSA-N 0.000 description 1
- DDJMPYOPNFGVMG-UHFFFAOYSA-N COC1=CC=CC(OC)=C1C1=CC2=C(C=C1)[N+](C)=C(C=C1C=C(OCCN(C)C)N(CC3=CC=CC=C3)C3=C1C=CC=C3)S2 Chemical compound COC1=CC=CC(OC)=C1C1=CC2=C(C=C1)[N+](C)=C(C=C1C=C(OCCN(C)C)N(CC3=CC=CC=C3)C3=C1C=CC=C3)S2 DDJMPYOPNFGVMG-UHFFFAOYSA-N 0.000 description 1
- OFNKLRGJPWANMS-UHFFFAOYSA-N COC1=CC=CC(OC)=C1C1=CC2=C(C=C1)[N+](C)=C(C=C1C=CN(C)C3=C1C=CC=C3)S2 Chemical compound COC1=CC=CC(OC)=C1C1=CC2=C(C=C1)[N+](C)=C(C=C1C=CN(C)C3=C1C=CC=C3)S2 OFNKLRGJPWANMS-UHFFFAOYSA-N 0.000 description 1
- LVUYAVIGXSZFBK-UHFFFAOYSA-N COC1=CC=CC(OC)=C1C1=CC2=C(C=C1)[N+](C)=C(C=C1C=CN(CC3=CC=C(CN(C)C)C=C3)C3=C1C=CC=C3)S2 Chemical compound COC1=CC=CC(OC)=C1C1=CC2=C(C=C1)[N+](C)=C(C=C1C=CN(CC3=CC=C(CN(C)C)C=C3)C3=C1C=CC=C3)S2 LVUYAVIGXSZFBK-UHFFFAOYSA-N 0.000 description 1
- SVSMDHABNZOVHN-UHFFFAOYSA-N COC1=CC=CC(OC)=C1C1=CC2=C(C=C1)[N+](C)=C(C=C1C=CN(CC3=CC=C(CN(C)CCCN(C)C)C=C3)C3=C1C=CC=C3)S2 Chemical compound COC1=CC=CC(OC)=C1C1=CC2=C(C=C1)[N+](C)=C(C=C1C=CN(CC3=CC=C(CN(C)CCCN(C)C)C=C3)C3=C1C=CC=C3)S2 SVSMDHABNZOVHN-UHFFFAOYSA-N 0.000 description 1
- ALVNTSICRPSZKV-UHFFFAOYSA-N COC1=CC=CC(OC)=C1C1=CC2=C(C=C1)[N+](C)=C(C=C1C=CN(CC3=CC=C(CN(CCCN(C)C)CCCN(C)C)C=C3)C3=C1C=CC=C3)S2 Chemical compound COC1=CC=CC(OC)=C1C1=CC2=C(C=C1)[N+](C)=C(C=C1C=CN(CC3=CC=C(CN(CCCN(C)C)CCCN(C)C)C=C3)C3=C1C=CC=C3)S2 ALVNTSICRPSZKV-UHFFFAOYSA-N 0.000 description 1
- IDZJSCDUFROHEH-UHFFFAOYSA-N COC1=CC=CC(OC)=C1C1=CC2=C(C=C1)[N+](C)=C(C=C1C=CN(CC3=CC=C(CN4CCN(C)CC4)C=C3)C3=C1C=CC=C3)S2 Chemical compound COC1=CC=CC(OC)=C1C1=CC2=C(C=C1)[N+](C)=C(C=C1C=CN(CC3=CC=C(CN4CCN(C)CC4)C=C3)C3=C1C=CC=C3)S2 IDZJSCDUFROHEH-UHFFFAOYSA-N 0.000 description 1
- JWHQADMWHSGASL-UHFFFAOYSA-N COC1=CC=CC(OC)=C1C1=CC2=C(C=C1)[N+](C)=C(C=C1C=CN(CC3=CC=C(CN4CCOCC4)C=C3)C3=C1C=CC=C3)S2 Chemical compound COC1=CC=CC(OC)=C1C1=CC2=C(C=C1)[N+](C)=C(C=C1C=CN(CC3=CC=C(CN4CCOCC4)C=C3)C3=C1C=CC=C3)S2 JWHQADMWHSGASL-UHFFFAOYSA-N 0.000 description 1
- HQOCAYUZFPBDOS-UHFFFAOYSA-N COC1=CC=CC(OC)=C1C1=CC2=C(C=C1)[N+](C)=C(C=C1C=CN(CC3=CC=C(CSC)C=C3)C3=C1C=CC=C3)S2 Chemical compound COC1=CC=CC(OC)=C1C1=CC2=C(C=C1)[N+](C)=C(C=C1C=CN(CC3=CC=C(CSC)C=C3)C3=C1C=CC=C3)S2 HQOCAYUZFPBDOS-UHFFFAOYSA-N 0.000 description 1
- PUPHRTVAUMXXQI-UHFFFAOYSA-N COC1=CC=CC(OC)=C1C1=CC2=C(C=C1)[N+](C)=C(C=C1C=CN(CC3=CC=C(C[N+](C)(C)C)C=C3)C3=C1C=CC=C3)S2 Chemical compound COC1=CC=CC(OC)=C1C1=CC2=C(C=C1)[N+](C)=C(C=C1C=CN(CC3=CC=C(C[N+](C)(C)C)C=C3)C3=C1C=CC=C3)S2 PUPHRTVAUMXXQI-UHFFFAOYSA-N 0.000 description 1
- AVROWEMIGUYDJI-UHFFFAOYSA-N COC1=CC=CC(OC)=C1C1=CC2=C(C=C1)[N+](C)=C(C=C1C=CN(CC3=CC=C(C[N+](C)(C)CCCN(C)C)C=C3)C3=C1C=CC=C3)S2 Chemical compound COC1=CC=CC(OC)=C1C1=CC2=C(C=C1)[N+](C)=C(C=C1C=CN(CC3=CC=C(C[N+](C)(C)CCCN(C)C)C=C3)C3=C1C=CC=C3)S2 AVROWEMIGUYDJI-UHFFFAOYSA-N 0.000 description 1
- GBCJULXWDPSRTF-UHFFFAOYSA-N COC1=CC=CC(OC)=C1C1=CC2=C(C=C1)[N+](C)=C(C=C1C=CN(CC3=CC=C(C[N+](C)(C)CCC[N+](C)(C)C)C=C3)C3=C1C=CC=C3)S2 Chemical compound COC1=CC=CC(OC)=C1C1=CC2=C(C=C1)[N+](C)=C(C=C1C=CN(CC3=CC=C(C[N+](C)(C)CCC[N+](C)(C)C)C=C3)C3=C1C=CC=C3)S2 GBCJULXWDPSRTF-UHFFFAOYSA-N 0.000 description 1
- OOSDRMOHOOBTNQ-UHFFFAOYSA-N COC1=CC=CC(OC)=C1C1=CC2=C(C=C1)[N+](C)=C(C=C1C=CN(CC3=CC=CC=C3)C(SCCN(C)C)=C1)S2 Chemical compound COC1=CC=CC(OC)=C1C1=CC2=C(C=C1)[N+](C)=C(C=C1C=CN(CC3=CC=CC=C3)C(SCCN(C)C)=C1)S2 OOSDRMOHOOBTNQ-UHFFFAOYSA-N 0.000 description 1
- ANUUREHJOHJBHA-UHFFFAOYSA-N COC1=CC=CC(OC)=C1C1=CC2=C(C=C1)[N+](C)=C(C=C1C=CN(CC3=CC=CC=C3)C3=C1C=CC=C3)S2 Chemical compound COC1=CC=CC(OC)=C1C1=CC2=C(C=C1)[N+](C)=C(C=C1C=CN(CC3=CC=CC=C3)C3=C1C=CC=C3)S2 ANUUREHJOHJBHA-UHFFFAOYSA-N 0.000 description 1
- SRMKCNJRDZSXQU-UHFFFAOYSA-N COC1=CC=CC(OC)=C1C1=CC2=C(C=C1)[N+](C)=C(C=C1C=CN(CC3=CC=NC=C3)C3=C1C=CC=C3)S2 Chemical compound COC1=CC=CC(OC)=C1C1=CC2=C(C=C1)[N+](C)=C(C=C1C=CN(CC3=CC=NC=C3)C3=C1C=CC=C3)S2 SRMKCNJRDZSXQU-UHFFFAOYSA-N 0.000 description 1
- XSJIQCPWHBABNY-UHFFFAOYSA-N COC1=CC=CC(OC)=C1C1=CC2=C(C=C1)[N+](C)=C(C=C1C=CN(CC3=CC=[N+](C)C=C3)C3=C1C=CC=C3)S2 Chemical compound COC1=CC=CC(OC)=C1C1=CC2=C(C=C1)[N+](C)=C(C=C1C=CN(CC3=CC=[N+](C)C=C3)C3=C1C=CC=C3)S2 XSJIQCPWHBABNY-UHFFFAOYSA-N 0.000 description 1
- RXPUVGQTOBDPNJ-UHFFFAOYSA-O COC1=CC=CC(OC)=C1C1=CC2=C(C=C1)[N+](C)=C(C=C1C=CN(CC3=CN=C(NC(C)=O)S3)C3=C1C=CC=C3)S2 Chemical compound COC1=CC=CC(OC)=C1C1=CC2=C(C=C1)[N+](C)=C(C=C1C=CN(CC3=CN=C(NC(C)=O)S3)C3=C1C=CC=C3)S2 RXPUVGQTOBDPNJ-UHFFFAOYSA-O 0.000 description 1
- SJCUFNDWVWXIRR-UHFFFAOYSA-N COC1=CC=CC(OC)=C1C1=CC2=C(C=C1)[N+](C)=C(C=C1C=CN(CCC3=CC=CC=C3)C3=C1C=CC=C3)S2 Chemical compound COC1=CC=CC(OC)=C1C1=CC2=C(C=C1)[N+](C)=C(C=C1C=CN(CCC3=CC=CC=C3)C3=C1C=CC=C3)S2 SJCUFNDWVWXIRR-UHFFFAOYSA-N 0.000 description 1
- NIBAAZVRSOEOPZ-UHFFFAOYSA-N COC1=CC=CC(OC)=C1C1=CC2=C(C=C1)[N+](C)=C(C=CC1=CC=C(N(C)C)C=C1)S2 Chemical compound COC1=CC=CC(OC)=C1C1=CC2=C(C=C1)[N+](C)=C(C=CC1=CC=C(N(C)C)C=C1)S2 NIBAAZVRSOEOPZ-UHFFFAOYSA-N 0.000 description 1
- ZXRJJDNLZBJZBY-UHFFFAOYSA-O COC1=CC=CC(OC)=C1C1=CC2=C(C=C1)[NH+](C)C(C=C1C=CN(CC3=CC=C(CBr)C=C3)C3=C1C=CC=C3)S2 Chemical compound COC1=CC=CC(OC)=C1C1=CC2=C(C=C1)[NH+](C)C(C=C1C=CN(CC3=CC=C(CBr)C=C3)C3=C1C=CC=C3)S2 ZXRJJDNLZBJZBY-UHFFFAOYSA-O 0.000 description 1
- QCJMZLVKAIOKOS-UHFFFAOYSA-N CSC1=[N+](C)C2=C(C=C(C3=C(C)C=CC=C3C)C=C2)S1 Chemical compound CSC1=[N+](C)C2=C(C=C(C3=C(C)C=CC=C3C)C=C2)S1 QCJMZLVKAIOKOS-UHFFFAOYSA-N 0.000 description 1
- HPPGUKSVVNUKRD-UHFFFAOYSA-N CSC1=[N+](C)C2=C(C=C(C3=CC4=C(C=C3)NC=C4)C=C2)S1 Chemical compound CSC1=[N+](C)C2=C(C=C(C3=CC4=C(C=C3)NC=C4)C=C2)S1 HPPGUKSVVNUKRD-UHFFFAOYSA-N 0.000 description 1
- YBTJKMXDCUOILR-UHFFFAOYSA-N CSC1=[N+](C)C2=C(C=C(C3=CC4=C(C=CC=C4)S3)C=C2)S1 Chemical compound CSC1=[N+](C)C2=C(C=C(C3=CC4=C(C=CC=C4)S3)C=C2)S1 YBTJKMXDCUOILR-UHFFFAOYSA-N 0.000 description 1
- WFHACYJPIDGOFC-UHFFFAOYSA-O CSC1=[N+](C)C2=C(C=C(C3=CC=C(O)C=C3)C=C2)S1 Chemical compound CSC1=[N+](C)C2=C(C=C(C3=CC=C(O)C=C3)C=C2)S1 WFHACYJPIDGOFC-UHFFFAOYSA-O 0.000 description 1
- AWLPVXMPSNWAAK-UHFFFAOYSA-N CSC1=[N+](C)C2=C(C=C(C3=CC=CC=C3)C=C2)S1 Chemical compound CSC1=[N+](C)C2=C(C=C(C3=CC=CC=C3)C=C2)S1 AWLPVXMPSNWAAK-UHFFFAOYSA-N 0.000 description 1
- FAVMYLMTEFRXCV-UHFFFAOYSA-O CSC1=[N+](C)C2=C(C=C(C3=CC=CC=C3NC(C)=O)C=C2)S1 Chemical compound CSC1=[N+](C)C2=C(C=C(C3=CC=CC=C3NC(C)=O)C=C2)S1 FAVMYLMTEFRXCV-UHFFFAOYSA-O 0.000 description 1
- SVOGTDIMHCNUHY-UHFFFAOYSA-N CSC1=[N+](C)C2=C(C=C(C3=CC=CS3)C=C2)S1 Chemical compound CSC1=[N+](C)C2=C(C=C(C3=CC=CS3)C=C2)S1 SVOGTDIMHCNUHY-UHFFFAOYSA-N 0.000 description 1
- XHGDOIYPMURXEB-UHFFFAOYSA-N CSC1=[N+](C)C2=CC(C3=CC=CC=C3)=CC=C2S1 Chemical compound CSC1=[N+](C)C2=CC(C3=CC=CC=C3)=CC=C2S1 XHGDOIYPMURXEB-UHFFFAOYSA-N 0.000 description 1
- HBVUGFJHKKBKMD-UHFFFAOYSA-N C[N+]1=C(C=C2C=CN(CC3=CC=C(CBr)C=C3)C3=C2C=CC=C3)SC2=C1C=CC(C1=CC3=C(C=C1)NC=C3)=C2 Chemical compound C[N+]1=C(C=C2C=CN(CC3=CC=C(CBr)C=C3)C3=C2C=CC=C3)SC2=C1C=CC(C1=CC3=C(C=C1)NC=C3)=C2 HBVUGFJHKKBKMD-UHFFFAOYSA-N 0.000 description 1
- HTOZNVIYOFZYMU-UHFFFAOYSA-N C[N+]1=C(C=C2C=CN(CC3=CC=CC=C3)C(C3=CC=CC=C3)=C2)SC2=CC(C3=CC=CC=C3)=CC=C21 Chemical compound C[N+]1=C(C=C2C=CN(CC3=CC=CC=C3)C(C3=CC=CC=C3)=C2)SC2=CC(C3=CC=CC=C3)=CC=C21 HTOZNVIYOFZYMU-UHFFFAOYSA-N 0.000 description 1
- VXJIGICATXEJLE-UHFFFAOYSA-N C[N+]1=C(C=C2C=CN(CC3=CC=CC=C3)C3=C2C=CC=C3)OC2=CC=C(C3=CC=CC=C3)C=C21 Chemical compound C[N+]1=C(C=C2C=CN(CC3=CC=CC=C3)C3=C2C=CC=C3)OC2=CC=C(C3=CC=CC=C3)C=C21 VXJIGICATXEJLE-UHFFFAOYSA-N 0.000 description 1
- IHUYELVMNHXPHW-UHFFFAOYSA-N C[N+]1=C(C=C2C=CN(CC3=CC=CC=C3)C3=C2C=CC=C3)SC2=C1C=CC(C1=CC3=C(C=C1)NC=C3)=C2 Chemical compound C[N+]1=C(C=C2C=CN(CC3=CC=CC=C3)C3=C2C=CC=C3)SC2=C1C=CC(C1=CC3=C(C=C1)NC=C3)=C2 IHUYELVMNHXPHW-UHFFFAOYSA-N 0.000 description 1
- GRCCXXFVEGXCMX-UHFFFAOYSA-N C[N+]1=C(C=C2C=CN(CC3=CC=CC=C3)C3=C2C=CC=C3)SC2=C1C=CC(C1=CC3=C(C=CC=C3)S1)=C2 Chemical compound C[N+]1=C(C=C2C=CN(CC3=CC=CC=C3)C3=C2C=CC=C3)SC2=C1C=CC(C1=CC3=C(C=CC=C3)S1)=C2 GRCCXXFVEGXCMX-UHFFFAOYSA-N 0.000 description 1
- HAJUXEILYIJAKA-UHFFFAOYSA-O C[N+]1=C(C=C2C=CN(CC3=CC=CC=C3)C3=C2C=CC=C3)SC2=CC(C3=CC=C(O)C=C3)=CC=C21 Chemical compound C[N+]1=C(C=C2C=CN(CC3=CC=CC=C3)C3=C2C=CC=C3)SC2=CC(C3=CC=C(O)C=C3)=CC=C21 HAJUXEILYIJAKA-UHFFFAOYSA-O 0.000 description 1
- TWQAWWQCJDTGPK-UHFFFAOYSA-N C[N+]1=C(C=C2C=CN(CC3=CC=CC=C3)C3=C2C=CC=C3)SC2=CC(C3=CC=CC=C3)=CC=C21 Chemical compound C[N+]1=C(C=C2C=CN(CC3=CC=CC=C3)C3=C2C=CC=C3)SC2=CC(C3=CC=CC=C3)=CC=C21 TWQAWWQCJDTGPK-UHFFFAOYSA-N 0.000 description 1
- NFDLLBJWOGKKPI-UHFFFAOYSA-N C[N+]1=C(C=C2C=CN(CC3=CC=CC=C3)C3=C2C=CC=C3)SC2=CC(C3=CC=CN=C3)=CC=C21 Chemical compound C[N+]1=C(C=C2C=CN(CC3=CC=CC=C3)C3=C2C=CC=C3)SC2=CC(C3=CC=CN=C3)=CC=C21 NFDLLBJWOGKKPI-UHFFFAOYSA-N 0.000 description 1
- LCHVOFPKCBJZCP-UHFFFAOYSA-N C[N+]1=C(C=C2C=CN(CC3=CC=CC=C3)C3=C2C=CC=C3)SC2=CC(C3=CC=CS3)=CC=C21 Chemical compound C[N+]1=C(C=C2C=CN(CC3=CC=CC=C3)C3=C2C=CC=C3)SC2=CC(C3=CC=CS3)=CC=C21 LCHVOFPKCBJZCP-UHFFFAOYSA-N 0.000 description 1
- DKXGPHBRMCOARJ-UHFFFAOYSA-O C[N+]1=C(C=CC=C2C=CN(CC3=CC=CC(OCCCC(=O)O)=C3)C3=C2C=CC=C3)SC2=C1C=CC(C1=CC=CC=C1)=C2 Chemical compound C[N+]1=C(C=CC=C2C=CN(CC3=CC=CC(OCCCC(=O)O)=C3)C3=C2C=CC=C3)SC2=C1C=CC(C1=CC=CC=C1)=C2 DKXGPHBRMCOARJ-UHFFFAOYSA-O 0.000 description 1
- YVPBUMQOQZCJGQ-UHFFFAOYSA-N C[N+]1=C(C=CC=C2C=CN(CC3=CC=CC(OCCCC(=O)ON4C(=O)CCC4=O)=C3)C3=C2C=CC=C3)SC2=C1C=CC(C1=CC=CC=C1)=C2 Chemical compound C[N+]1=C(C=CC=C2C=CN(CC3=CC=CC(OCCCC(=O)ON4C(=O)CCC4=O)=C3)C3=C2C=CC=C3)SC2=C1C=CC(C1=CC=CC=C1)=C2 YVPBUMQOQZCJGQ-UHFFFAOYSA-N 0.000 description 1
- CYTSNYDWWKAOLY-UHFFFAOYSA-N C[N+]1=C(C=CC=C2C=CN(CC3=CC=CC=C3)C3=C2C=CC=C3)SC2=C1C=CC(C1=CC=CC=C1)=C2 Chemical compound C[N+]1=C(C=CC=C2C=CN(CC3=CC=CC=C3)C3=C2C=CC=C3)SC2=C1C=CC(C1=CC=CC=C1)=C2 CYTSNYDWWKAOLY-UHFFFAOYSA-N 0.000 description 1
- CBANKRHSTCURBZ-UHFFFAOYSA-N C[N+]1=CC(C2=CC=C3C(=C2)SC(C=C2C=CN(CC4=CC=CC=C4)C4=C2C=CC=C4)=[N+]3C)=CC=C1 Chemical compound C[N+]1=CC(C2=CC=C3C(=C2)SC(C=C2C=CN(CC4=CC=CC=C4)C4=C2C=CC=C4)=[N+]3C)=CC=C1 CBANKRHSTCURBZ-UHFFFAOYSA-N 0.000 description 1
- HECRHOPRKUXYPR-UHFFFAOYSA-N C[n+]1c(/C=C2\c3ccccc3N(c3ccccc3)C(Cl)=C2)[s]c2cc(-c(c(OC)ccc3)c3OC)ccc12 Chemical compound C[n+]1c(/C=C2\c3ccccc3N(c3ccccc3)C(Cl)=C2)[s]c2cc(-c(c(OC)ccc3)c3OC)ccc12 HECRHOPRKUXYPR-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D215/00—Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems
- C07D215/02—Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom
- C07D215/04—Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, directly attached to the ring carbon atoms
- C07D215/10—Quaternary compounds
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/58—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances
- G01N33/582—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances with fluorescent label
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D215/00—Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems
- C07D215/02—Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom
- C07D215/16—Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
- C07D215/20—Oxygen atoms
- C07D215/22—Oxygen atoms attached in position 2 or 4
- C07D215/227—Oxygen atoms attached in position 2 or 4 only one oxygen atom which is attached in position 2
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D277/00—Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings
- C07D277/60—Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings condensed with carbocyclic rings or ring systems
- C07D277/62—Benzothiazoles
- C07D277/68—Benzothiazoles with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached in position 2
- C07D277/70—Sulfur atoms
- C07D277/72—2-Mercaptobenzothiazole
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D277/00—Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings
- C07D277/60—Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings condensed with carbocyclic rings or ring systems
- C07D277/62—Benzothiazoles
- C07D277/68—Benzothiazoles with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached in position 2
- C07D277/70—Sulfur atoms
- C07D277/74—Sulfur atoms substituted by carbon atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D417/00—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
- C07D417/02—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings
- C07D417/04—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings directly linked by a ring-member-to-ring-member bond
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D417/00—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
- C07D417/02—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings
- C07D417/06—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings linked by a carbon chain containing only aliphatic carbon atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D417/00—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
- C07D417/14—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing three or more hetero rings
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6876—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/64—Fluorescence; Phosphorescence
- G01N21/6428—Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/64—Fluorescence; Phosphorescence
- G01N21/6486—Measuring fluorescence of biological material, e.g. DNA, RNA, cells
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/64—Fluorescence; Phosphorescence
- G01N21/6428—Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
- G01N2021/6439—Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes" with indicators, stains, dyes, tags, labels, marks
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2201/00—Features of devices classified in G01N21/00
- G01N2201/06—Illumination; Optics
- G01N2201/061—Sources
- G01N2201/06113—Coherent sources; lasers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T436/00—Chemistry: analytical and immunological testing
- Y10T436/14—Heterocyclic carbon compound [i.e., O, S, N, Se, Te, as only ring hetero atom]
- Y10T436/142222—Hetero-O [e.g., ascorbic acid, etc.]
- Y10T436/143333—Saccharide [e.g., DNA, etc.]
Definitions
- the invention relates to stains that become fluorescent upon interaction with DNA.
- stains that exhibit higher fluorescence when contacted with double stranded DNA than when contacted with RNA and/or single stranded DNA, as well as various uses for the stains are disclosed.
- Stains and dyes are commonly used in chemical, biotechnological, and biomedical research. These two types of compounds are different in their properties, and in their intended uses.
- Stains are chemical compounds that exhibit a detectable response when contacted with a particular target. In the absence of the target, a stain does not exhibit the detectable response. These properties make stains valuable in the detection of the presence or absence of a particular target in a sample.
- the detectable response can be qualitative or quantitative, depending on the compound, target, and assay parameters.
- dyes exhibit a detectable response regardless of the presence or absence of another material. Dyes are therefore useful to label a target.
- an antibody can be labeled with a fluorescent dye molecule. The localization of the antibody in a cell or tissue can be monitored by fluorescence.
- nucleic acid stains are commercially available. The following is a representative listing of these materials.
- Ethidium bromide is the most widely used nucleic acid stain, and is commercially available from a wide array of suppliers. Ethidium bromide is mutagenic, and its use requires significant care from the user to avoid contact with staining solutions.
- PicoGreen is a stain selective for double stranded DNA (commercially available from Molecular Probes, Inc. (Eugene, Oreg.) since 1994). PicoGreen shows a greater than 1000 fold fluorescence enhancement upon binding to double stranded DNA, and much less enhancement upon binding to single stranded DNA or RNA.
- OliGreen is a stain useful for the quantitation of single stranded DNA such as synthetic oligonucleotides. OliGreen has been commercially available from Molecular Probes, Inc. (Eugene, Oreg.) since 1994. Quantitation with OliGreen is about 10,000 times more sensitive than quantitation with UV absorbance methods, and at least 500 times more sensitive than detecting oligonucleotides on electrophoretic gels stained with ethidium bromide. This type of material is described in U.S. Pat. Nos. 5,436,134 and 5,658,751; Australian Patent Nos. 676,317 and 714,890; Canadian Patent No. 2,133,765; and European Patent Nos. 0,675,924 and 0,740,689.
- RiboGreen is a stain that is useful for the quantitation of RNA in solution. RiboGreen has been commercially available from Molecular Probes, Inc. (Eugene, Oreg.) since 1997. This type of material is described in U.S. Pat. Nos. 5,658,751 and 5,863,753; Australian Patent No. 714,890; and European Patent No. 0,740,689.
- SYBR Green I is stain selective for DNA (commercially available from Molecular Probes, Inc. (Eugene, Oreg.) since 1993). SYBR Green I has a fluorescence enhancement upon binding to DNA at least 10 fold greater than that of ethidium bromide, and a fluorescence quantum yield over five times greater than ethidium bromide (about 0.8 as compared to about 0.15). This type of material is described in U.S. Pat. Nos. 5,436,134 and 5,658,751; Australian Patent Nos. 676,317 and 714,890; Canadian Patent No. 2,133,765; and European Patent Nos. 0,675,924 and 0,740,689.
- SYBR Safe is a nucleic acid stain that is at least twice as sensitive as ethidium bromide, yet exhibits reduced mutagenicity.
- SYBR Safe has been commercially available from Molecular Probes, Inc. (Eugene, Oreg.) since 2003. This type of material is described in U.S. Pat. Nos. 4,883,867, 4,957,870, 5,436,134, and 5,658,751; Australian Patent Nos. 676,317 and 714,890; Canadian Patent No. 2,133,765; and European Patent Nos. 0,675,924 and 0,740,689.
- Hoechst 33258 (CAS 23491-45-4; Phenol, 4-[5-(4-methyl-1-piperazinyl)[2,5′-bi-1H-benzimidazol]-2′-yl]-, trihydrochloride) is a nuclear counterstain that emits blue fluorescence when bound to dsDNA. Hoechst 33258 has been commercially available from Molecular Probes, Inc. (Eugene, Oreg.) since 1992.
- TOTO-1, YOYO-1, and YO-PRO-1 are useful for the measurement of double stranded DNA, single stranded DNA, and RNA in solution.
- TOTO-1, YOYO-1, and YO-PRO-1 have been commercially available from Molecular Probes, Inc. (Eugene, Oreg.) since 1992. These types of materials are described in U.S. Pat. Nos. 5,321,130 and 5,582,977; Canadian Patent No. 2,119,126; and European Patent No. 0,605,655 B1.
- Compounds having high selectivity for double stranded DNA over RNA and single stranded DNA.
- the compounds act as fluorescent stains, where they exhibit fluorescent properties when illuminated in the presence of double stranded DNA, but exhibit reduced or no fluorescence in the presence of RNA, single stranded DNA, or in the absence of nucleic acids entirely.
- the compounds can contain the core structure of Compound (1A) or Compound (1B).
- the selectivity of the compounds for double stranded DNA over RNA and single stranded DNA enables detection of double stranded DNA in samples containing RNA and/or single stranded DNA.
- compositions and methods are described in terms of “comprising” various components or steps (interpreted as meaning “including, but not limited to”), the compositions and methods can also “consist essentially of” or “consist of” the various components and steps, such terminology should be interpreted as defining essentially closed-member groups.
- a first embodiment of the invention is directed towards chemical compounds.
- the chemical compounds can be neutrally charged, positively charged, or negatively charged.
- the compound can include one or more counterions.
- One embodiment of the invention is directed towards chemical compounds containing the core structure of Compound (1A).
- the double bond(s) in the center of Compound (1A) can be in either cis or trans configuration.
- X is nitrogen
- the two nitrogens can be oriented on the same side of the central double bond (cis) or can be oriented across the central double bond (trans). Mixtures of both configurations are also possible in a sample of a particular compound.
- n can be any non-negative integer.
- n can be zero, 1, 2, 3, 4, 5, 6, 7, 8, and so on.
- X can be oxygen or sulfur.
- Groups R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 , and R 11 can independently comprise or be hydrogen (H), hydroxyl group (OH), alkoxy group (OR), thiol (SH), thioalkyl (SR), thioaryl(SAr), halogen (X), alkyl group, alkenyl group, alkynyl group, aromatic group, amine group (primary NH 2 , secondary NHR, tertiary NR′R′′, or tertiary NR′ 2 ), a reactive group, or a mixed group having combinations of two or more of these groups (for example, an alkyl group having thiol and amino substituents, an alkoxy group having amino substituents, and so on).
- one or more of these groups can be a linker group for covalently attaching Compound (1A) to another compound. Linking the linker group to another compound would afford
- At least one of R 1 , R 2 , R 3 , and R 4 comprises or is an aromatic group or an alkynyl group.
- R 9 comprises or is an aromatic group, alkyl-aromatic, or an alkynyl group.
- R 10 comprises or is an amine group.
- At least one of R 1 , R 2 , R 3 , and R 4 comprises or is an aromatic group or an alkynyl group; and R 9 comprises or is an aromatic group, alkyl-aromatic, or an alkynyl group.
- At least one of R 1 , R 2 , R 3 , and R 4 comprises or is an aromatic group or an alkynyl group;
- R 9 comprises or is an aromatic group, alkyl-aromatic group, or an alkynyl group; and
- R 10 comprises or is an amine group.
- Group R 12 can be an alkyl group such as a C 1 -C 8 alkyl group.
- the C 1 -C 8 alkyl group can be a straight chain, branched, or cycloalkyl group.
- Examples of the C 1 -C 8 alkyl group include methyl, ethyl, 1-propyl, 2-propyl, 1-butyl, 2-butyl, 1-pentyl, 1-hexyl, 1-heptyl, and 1-octyl.
- the C 1 -C 8 alkyl group is a methyl group.
- Compound (1A) when Compound (1A) is a cationic or anionic structure, it can further comprise one or more appropriate counterions. For example, if Compound (1A) is cationic (positively charged), it can further comprise anions such as chloride, bromide, iodide, sulfate, and carbonate counterions. Alternatively, if Compound (1A) is anionic (negatively charged), it can further comprise cations such as potassium, sodium, ammonium, magnesium, and calcium.
- An additional embodiment of the invention is directed towards chemical compounds containing the core structure of Compound (1B).
- the double bond(s) in the center of Compound (1B) can be in either cis or trans configuration.
- X is nitrogen
- the two nitrogens can be oriented on the same side of the central double bond (cis) or can be oriented across the central double bond (trans). Mixtures of both configurations are also possible in a sample of a particular compound.
- n can be any non-negative integer.
- n can be zero, 1, 2, 3, 4, 5, 6, 7, 8, and so on.
- X can be oxygen or sulfur.
- Groups R 13 , R 14 , R 15 , R 16 , R 17 , R 18 , R 19 , R 20 , and R 21 can independently comprise or be hydrogen (H), hydroxyl group (OH), alkoxy group (OR), thiol (SH), thioalkyl (SR), thioaryl(SAr), halogen (X), alkyl group, alkenyl group, alkynyl group, aromatic group, amine group (primary NH 2 , secondary NHR, tertiary NR′R′′, or tertiary NR′ 2 ), a reactive group, or a mixed group having combinations of two or more of these groups (for example, an alkyl group having thiol and amino substituents, an alkoxy group having amino substituents, and so on).
- one or more of these groups can be a linker group for covalently attaching Compound (1B) to another compound. Linking the linker group to another compound would afford a conjugate of Compound (1B
- At least one of R 13 , R 14 , R 15 , and R 16 comprises or is an aromatic group or an alkynyl group.
- R 19 comprises or is an aromatic group, alkyl-aromatic, or an alkynyl group.
- R 20 comprises or is an amine group.
- At least one of R 13 , R 14 , R 15 , and R 16 comprises or is an aromatic group or an alkynyl group; and R 19 comprises or is an aromatic group, alkyl-aromatic, or an alkynyl group.
- At least one of R 13 , R 14 , R 15 , and R 16 comprises or is an aromatic group or an alkynyl group;
- R 19 comprises or is an aromatic group, alkyl-aromatic, or an alkynyl group; and
- R 20 comprises or is an amine group.
- Group R 22 can be an alkyl group such as a C 1 -C 8 alkyl group.
- the C 1 -C 8 alkyl group can be a straight chain, branched, or cycloalkyl group.
- Examples of the C 1 -C 8 alkyl group include methyl, ethyl, 1-propyl, 2-propyl, 1-butyl, 2-butyl, 1-pentyl, 1-hexyl, 1-heptyl, and 1-octyl.
- the C 1 -C 8 alkyl group is a methyl group.
- Compound (1B) when Compound (1B) is a cationic or anionic structure, it can further comprise one or more appropriate counterions. For example, if Compound (1A) is cationic (positively charged), it can further comprise anions such as chloride, bromide, iodide, sulfate, and carbonate counterions. Alternatively, if Compound (1A) is anionic (negatively charged), it can further comprise cations such as potassium, sodium, ammonium, magnesium, and calcium.
- the alkoxy group can generally be any unsubstituted alkoxy group or substituted alkoxy group.
- Unsubstituted alkoxy groups contain an oxygen connected to an alkyl group.
- Substituted alkoxy groups contain an oxygen connected to a substituted alkyl group. Examples of unsubstituted alkoxy groups include methoxy (OCH 3 ), ethoxy(OCH 2 CH 3 ), propoxy(OCH 2 CH 2 CH 3 ), and higher straight chain alkoxy groups.
- Unsubstituted alkoxy groups also include branched or cyclic alkoxy groups.
- Examples of branched alkoxy groups include 2-propoxy(OCH(CH 3 ) 2 ), 2-butoxy(OCH(CH 3 )CH 2 CH 3 ), and higher branched alkoxy groups.
- Cyclic alkoxy groups have an oxygen connected to a cyclic group.
- Examples of cyclic alkoxy groups include cyclopropoxy(oxygen connected to a cyclopropane ring), cyclobutoxy (oxygen connected to a cyclobutane ring), cyclopentoxy(oxygen connected to a cyclopentane ring), cyclohexoxy(oxygen connected to a cyclohexane ring), and higher cyclic alkoxy groups.
- the halogen can generally be any halogen.
- Halogen groups include chloro, fluoro, bromo, and iodo groups.
- Alkyl groups can generally be any unsubstituted or substituted alkyl group. Unsubstituted alkyl groups contain only carbon and hydrogen atoms. Substituted alkyl groups can contain one or more non-carbon and non-hydrogen atoms such as oxygen, nitrogen, sulfur, halogens, and phosphorous.
- Alkenyl groups can generally be any alkenyl group containing at least one carbon-carbon double bond. The most simple alkenyl group is a vinyl group (—CH ⁇ CH 2 ). Higher alkenyl groups include 1-propenyl (—CH ⁇ CH 2 CH 3 ), 1-butenyl (—CH ⁇ CH 2 CH 2 CH 3 ), 2-butenyl (—CH 2 —CH ⁇ CHCH 3 ), and 3-butenyl (—CH 2 CH 2 CH ⁇ CH 2 ). Substituted alkenyl groups can contain one or more non-carbon and non-hydrogen atoms such as oxygen, nitrogen, sulfur, halogens, and phosphorous.
- non-carbon and non-hydrogen atoms such as oxygen, nitrogen, sulfur, halogens, and phosphorous.
- Alkynyl groups can generally be any alkynyl group containing at least one carbon-carbon triple bond.
- the most simple alkynyl group is an ethynyl group (—CCH).
- Higher alkynyl groups include propargyl (—CH 2 CCH), 2-butynyl (—CH 2 CCCH 3 ), and 3-butynyl (—CH 2 CH 2 CCH).
- a simple example of an aryl group is a phenyl group.
- the aryl group can be a simple unsubstituted aryl group containing carbon and hydrogen, or it can be a substituted aryl group.
- Aryl groups can include one or more aromatic rings.
- the aryl group can be a polycyclic aromatic hydrocarbon, or can be a heteroaryl group.
- aryl and heteroaryl groups include phenyl, 1-naphthyl, 2-naphthyl, 4-biphenyl, anthracenyl, acenaphthalenyl, acenaphthenyl, benzo[a]pyrenyl, benz[a]anthracenyl, 1-pyrrolyl, 2-pyrrolyl, 3-pyrrolyl, 3-pyrazolyl, 2 imidazolyl, 4-imidazolyl, pyrazinyl, 2-oxazolyl, 4-oxazolyl, 2-phenyl-4-oxazolyl, 5 oxazolyl, 3-isoxazolyl, 4-isoxazolyl, 5-isoxazolyl, 2-thiazolyl, 4-thiazolyl, 5-thiazolyl, 2 furyl, 3-furyl, 2-thienyl, 3-thienyl, 2-pyridyl, 3-pyridyl, 4-pyridyl, 2-pyri
- Aryl groups can be connected to the central core structure Compound (1A) or Compound (1B), either directly by a covalent bond, or indirectly through one or more atoms.
- N, O, P, or S atoms can be used to link the aryl group to Compound (1A) or Compound (1B).
- Examples of this include phenylamino (NHC 6 H 5 ), diphenylamino(N(C 6 H 5 ) 2 ), phenoxy(OC 6 H 5 ), and thiophenyl(SC 6 H 5 ).
- alkyl groups can be used to link the aryl group to Compound (1A) or Compound (1B).
- benzyl group (CH 2 C 6 H 5 ; where a methylene CH 2 group connects the phenyl group to Compound (1A) or Compound (1B)), or a styrene group (CH ⁇ CH—C 6 H 5 ).
- Amine or amino groups can include NH 2 , NHR, NR 2 , and NR′R′′ groups.
- the R, R′, and R′′ groups can be unsubstituted alkyl groups, substituted alkyl groups, unsubstituted alkenyl groups, substituted alkenyl groups, unsubstituted alkynyl groups, substituted alkynyl groups, unsubstituted aromatic groups, or substituted aromatic groups.
- the chemical compound can comprise at least one reactive group capable of reacting with another species, such as an atom or chemical group to form a covalent bond, that is, a group that is covalently reactive under suitable reaction conditions, and generally represents a point of attachment for another substance, for example, a carrier molecule or a substrate.
- the reactive group on a disclosed compound is a moiety, such as carboxylic acid or succinimidyl ester, on the compounds that can chemically react with a functional group on a different compound to form a covalent linkage.
- Reactive groups generally include nucleophiles, electrophiles and photoactivatable groups.
- the reactive group can be covalently attached directly to the Compound (1A) core structure, or can be covalently attached to at least one of the R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 , and R 11 groups.
- the reactive group can be covalently attached directly to the Compound (1B) core structure, or can be covalently attached to at least one of the R 13 , R 14 , R 15 , R 16 , R 17 , R 18 , R 19 , R 20 , and R 21 groups
- Exemplary reactive groups include, but are not limited to, olefins, acetylenes, alcohols, phenols, ethers, oxides, halides, aldehydes, ketones, carboxylic acids, esters, amines, amides, cyanates, isocyanates, thiocyanates, isothiocyanates, hydrazines, hydrazones, hydrazides, diazo groups, diazonium groups, nitro groups, nitriles, mercaptans, sulfides, disulfides, sulfoxides, sulfones, sulfonic acid groups, sulfinic acid groups, acetals, ketals, anhydrides, sulfates, sulfenic acid groups, isonitriles, amidines, imides, imidates, nitrones, hydroxylamines, oximes, hydroxamic acid groups, thiohydroxamic acid groups, allenes
- Reactive functional groups also include those used to prepare bioconjugates, for example, N-hydroxysuccinimide esters, maleimides, and the like. Methods to prepare each of these functional groups are well known in the art and their application to or modification for a particular purpose is within the ability of one of skill in the art (see, for example, Sandler and Karo, eds., Organic Functional Group Preparations, Academic Press, San Diego, 1989). Reactive groups include those shown in the following table.
- succinimidyloxy (—OC 4 H 4 O 2 ) sulfosuccinimidyloxy (—OC 4 H 3 O 2 —SO 3 H), 1-oxybenzotriazolyl (—OC 6 H 4 N 3 ); or an aryloxy group or aryloxy substituted one or more times by electron withdrawing substituents such as nitro, fluoro, chloro, cyano, or trifluoromethyl, or combinations thereof, used to form activated aryl esters; or a carboxylic acid activated by a carbodiimide to form an anhydride or mixed anhydride —OCOR a or —OCNR a NHR b , where R a and R b , which may be the same or different, are C 1 -C 6 alkyl, C 1 -C 6 perfluoroalkyl, or C 1 -C 6 alkoxy; or cyclohexyl, 3-dimethylaminopropyl, or N-morpholinoethy
- the reactive group will react with an amine, a thiol, an alcohol, an aldehyde, a ketone, or with silica.
- reactive groups react with an amine or a thiol functional group, or with silica.
- the reactive group is an acrylamide, an activated ester of a carboxylic acid, an acyl azide, an acyl nitrile, an aldehyde, an alkyl halide, a silyl halide, an anhydride, an aniline, an aryl halide, an azide, an aziridine, a boronate, a diazoalkane, a haloacetamide, a halotriazine, a hydrazine (including hydrazides), an imido ester, an isocyanate, an isothiocyanate, a maleimide, a phosphoramidite, a reactive platinum complex, a sulfonyl halide, or a thiol group.
- reactive platinum complex is particularly meant chemically reactive platinum complexes such as described in U.S. Pat. No. 5,714,327 (issued Feb. 3, 1998).
- the reactive group is an activated ester of a carboxylic acid, such as a succinimidyl ester of a carboxylic acid, a sulfonyl halide, a tetrafluorophenyl ester, a pentafluorophenyl ester, or an isothiocyanates
- the resulting compound is particularly useful for preparing conjugates of carrier molecules such as proteins, nucleotides, oligonucleotides, or haptens.
- the reactive group is a maleimide, haloalkyl or haloacetamide (including any reactive groups disclosed in U.S. Pat. Nos.
- the resulting compound is particularly useful for conjugation to thiol-containing substances.
- the reactive group is a hydrazide
- the resulting compound is particularly useful for conjugation to periodate-oxidized carbohydrates and glycoproteins, and in addition is an aldehyde-fixable polar tracer for cell microinjection.
- the reactive group is a silyl halide
- the resulting compound is particularly useful for conjugation to silica surfaces, particularly where the silica surface is incorporated into a fiber optic probe subsequently used for remote ion detection or quantitation.
- the reactive group can be a photoactivatable group such that the group is only converted to a reactive species after illumination with an appropriate wavelength.
- An appropriate wavelength is generally a UV wavelength that is less than 400 nm. This method provides for specific attachment to only the target molecules, either in solution or immobilized on a solid or semi-solid matrix.
- Photoactivatable reactive groups include, without limitation, benzophenones, aryl azides and diazirines.
- the reactive group can be a photoactivatable group, succinimidyl ester of a carboxylic acid, a haloacetamide, haloalkyl, a hydrazine, an isothiocyanate, a maleimide group, an aliphatic amine, a silyl halide, a cadaverine or a psoralen.
- the reactive group can be a succinimidyl ester of a carboxylic acid, a maleimide, an iodoacetamide, or a silyl halide.
- the reactive group can be a succinimidyl ester of a carboxylic acid, a sulfonyl halide, a tetrafluorophenyl ester, an iosothiocyanates or a maleimide.
- the selection of a covalent linkage to attach the compound to the carrier molecule or solid support typically depends on the chemically reactive group on the component to be conjugated.
- reactive groups include amines, thiols, alcohols, phenols, aldehydes, ketones, phosphates, imidazoles, hydrazines, hydroxylamines, disubstituted amines, halides, epoxides, sulfonate esters, purines, pyrimidines, carboxylic acids, or a combination of these groups.
- a single type of reactive site may be available on the component (typical for polysaccharides), or a variety of sites may occur (e.g.
- a carrier molecule or solid support may be conjugated to more than one reporter molecule, which may be the same or different, or to a substance that is additionally modified by a hapten.
- the present compound is covalently bound to a carrier molecule. If the compound has a reactive group, then the carrier molecule can alternatively be linked to the compound through the reactive group.
- the reactive group may contain both a reactive functional moiety and a linker, or only the reactive functional moiety.
- carrier molecules include antigens, steroids, vitamins, drugs, haptens, metabolites, toxins, environmental pollutants, amino acids, peptides, proteins, nucleic acids, nucleic acid polymers, carbohydrates, lipids, and polymers.
- the carrier molecule can comprise an amino acid, a peptide, a protein, a polysaccharide, a nucleoside, a nucleotide, an oligonucleotide, a nucleic acid, a hapten, a psoralen, a drug, a hormone, a lipid, a lipid assembly, a synthetic polymer, a polymeric microparticle, a biological cell, a virus and combinations thereof.
- the carrier molecule can be a hapten, a nucleotide, an oligonucleotide, a nucleic acid polymer, a protein, a peptide or a polysaccharide.
- the carrier molecule can be an amino acid, a peptide, a protein, a polysaccharide, a nucleoside, a nucleotide, an oligonucleotide, a nucleic acid, a hapten, a psoralen, a drug, a hormone, a lipid, a lipid assembly, a tyramine, a synthetic polymer, a polymeric microparticle, a biological cell, cellular components, an ion chelating moiety, an enzymatic substrate or a virus.
- the carrier molecule is an antibody or fragment thereof, an antigen, an avidin or streptavidin, a biotin, a dextran, an antibody binding protein, a fluorescent protein, agarose, and a non-biological microparticle.
- the carrier molecule can be an antibody, an antibody fragment, antibody-binding proteins, avidin, streptavidin, a toxin, a lectin, or a growth factor. Examples of haptens include biotin, digoxigenin and fluorophores.
- Antibody binding proteins include protein A, protein G, soluble Fc receptor, protein L, lectins, anti-IgG, anti-IgA, anti-IgM, anti-IgD, anti-IgE or a fragment thereof.
- the chemical compound can be covalently bonded to another molecule such as an antibody, protein, peptide, polypeptide, amino acid, enzyme, nucleic acid, lipid, polysaccharide, drug, a bead, a solid support (such as glass or plastic), and so on.
- another molecule such as an antibody, protein, peptide, polypeptide, amino acid, enzyme, nucleic acid, lipid, polysaccharide, drug, a bead, a solid support (such as glass or plastic), and so on.
- the chemical compounds preferably exhibit little or no fluorescence when in the absence of nucleic acids. Fluorescence can be determined by illuminating the chemical compound with an appropriate wavelength, and monitoring emitted fluorescence.
- the chemical compounds preferably exhibit greater fluorescence when in the presence of DNA than when in the presence of RNA.
- the fluorescence in the presence of DNA to the fluorescence in the presence of RNA is determined using a fixed concentration of chemical compound, and a fixed concentration of DNA and RNA. Higher DNA/RNA fluorescence ratios are preferred for the detection of DNA in the presence of RNA.
- the DNA/RNA ratio is preferably greater than about 1.
- More preferred ratios are greater than about 2, greater than about 3, greater than about 4, greater than about 5, greater than about 6, greater than about 7, greater than about 8, greater than about 9, greater than about 10, greater than about 15, greater than about 20, greater than about 25, greater than about 30, greater than about 35, greater than about 40, greater than about 45, greater than about 50, greater than about 55, greater than about 60, greater than about 65, greater than about 70, greater than about 75, greater than about 80, greater than about 85, greater than about 90, greater than about 95, greater than about 100, greater than about 150, greater than about 200, and ranges between any two of these values.
- the chemical compounds can also be characterized by their excitation and emission maxima wavelengths.
- the excitation maximum can be about 450 nm to about 650 nm.
- Excitation maxima between these values can include about 450 nm, about 475 nm, about 500 nm, about 525 nm, about 550 nm, about 575 nm, about 600 nm, about 625 nm, about 650 nm, and ranges between any two of these values.
- the emission maximum can be about 500 nm to about 675 nm.
- Emission maxima between these values can include about 500 nm, about 525 nm, about 550 nm, about 575 nm, about 600 nm, about 625 nm, about 650 nm, about 675 nm, and ranges between any two of these values.
- chemical compounds include Compounds 16-35, 38-39, 43-53, 55-58, 60, 62, 64-81, 83, 85-89, 91-97, 99-106, and 109-112.
- compositions comprising one or more of the above described compounds.
- the compositions can comprise, consist essentially of, or consist of one or more of the above described compounds.
- compositions can comprise one, two, three, four, or more of the above described compounds.
- the compositions can further comprise a solvent.
- the solvent can be aqueous, non-aqueous, or a mixed aqueous/non-aqueous solvent system.
- solvents include water, methanol, ethanol, dimethylsulfoxide (“DMSO”), dimethylformamide (“DMF”), dimethylacetamide, and N-methylpyrrolidinone (“NMP”).
- DMSO dimethylsulfoxide
- DMF dimethylformamide
- NMP N-methylpyrrolidinone
- the compositions can further comprise one or more salts or buffers.
- the above described compounds can individually be present in the composition at a particular concentration.
- the compound is present in a substantially pure form without other materials present (sometimes referred to as “neat”).
- the compounds can be present in a dry mixture or dissolved in a solvent or solvent system. When dissolved, the compound can generally be present at any concentration.
- the compound can be dissolved in a concentrated solution, or in a final “working” solution. For example, a compound can be present in a working solution at about 1 ⁇ M to about 10 ⁇ M.
- the concentrated solution can have the compound at a higher concentration such as about 10 ⁇ M, about 50 ⁇ M, about 100 ⁇ M, about 500 ⁇ M, about 1 mM, and ranges between any two of these values.
- kits comprising one or more of the above described compounds.
- the kits can comprise one, two, three, four, or more of the above described compounds.
- the kit preferably comprises at least one container comprising at least one of the above described compounds.
- the kit can comprise multiple containers, such as a first container, a second container, a third container, and so on.
- the kit can comprise pipettes, droppers, or other sample handling devices.
- the kit can comprise a cuvette, microwell plate, or other test container suitable for use in an instrument that detects emitted fluorescent energy.
- the kit can comprise positive and/or negative samples. Positive samples can comprise DNA, and/or DNA in the presence of RNA. Negative samples can comprise RNA without DNA, or samples lacking nucleic acids entirely.
- the kit can comprise DNA, RNA, or both DNA and RNA.
- the kit can comprise one or more additional dyes or stains.
- the kit can contain a total nucleic acid stain.
- the kit can contain a cell impermeant nucleic acid stain to aid in distinguishing live cells from dead cells.
- kits can further comprise an instruction protocol for their use.
- the kit can further comprise water, a buffer, a buffer salt, surfactants, detergents, salts, polysaccharides, or other materials commonly used in assaying biological systems.
- the kit can comprise solvents such as aqueous, non-aqueous, or a mixed aqueous/non-aqueous solvent systems.
- An additional embodiment of the invention is directed towards methods for the preparation of the above described compounds. Illustrative examples of these methods are described in the Examples below.
- Additional embodiments of the invention include synthetic intermediates. Many synthetic intermediates are shown in the Examples section below. Examples of such intermediates include Compounds 2-15, 36-37, 40-42, 54, 59, 61, 63, 82, 84, 90, and 98.
- An additional embodiment of the invention is directed towards methods of using the above described compounds.
- the above described compounds can be used in methods to detect the presence or absence of double stranded DNA in a sample.
- the method can comprise providing a sample suspected of containing double stranded DNA; contacting the sample with at least one of the above described chemical compounds to prepare a test sample; and illuminating the test sample with energy.
- the method can further comprise detecting emission of energy from the test sample after the illuminating step.
- the detecting step can be qualitative or quantitative.
- the method can further comprise calculating the concentration of double stranded DNA in the sample after the detecting step.
- the calculating step can comprise correlating the emitted fluorescent energy with the concentration of double stranded DNA in the sample.
- the presence of an emitted fluorescent energy is indicative of the presence of double stranded DNA in the sample, while the absence of emitted fluorescent energy (or no increase or no change relative to a control) is indicative of the absence of DNA in the sample.
- the methods can also be performed on “blank” or “control” samples.
- the blank or control samples can contain RNA but lack double stranded DNA, or can lack nucleic acids altogether.
- the sample can generally be any type of sample.
- the sample can be a cell or group of cells, an organism, cell lysates, a cell culture medium, a bioreactor sample, and so on.
- the sample can be a non-biological sample.
- the cells can be any type of cell, such as bacterial cells, fungal cells, insect cells, and mammalian cells.
- the sample can be a solid, a liquid, or a suspension.
- the sample can be a biological fluid such as blood, plasma, or urine.
- the sample can be a material immobilized in a gel, on a membrane, bound to a bead or beads, arranged in an array, and so on.
- the sample can be a partially or fully purified nucleic acid preparation in a buffer or in water.
- the contacting step can be performed at any suitable temperature, and for any suitable length of time.
- the temperature will be ambient or room temperature, or at an elevated temperature such as 37° C.
- temperatures include about 20° C., about 25° C., about 30° C., about 35° C., about 37° C., about 40° C., about 42° C., and ranges between any two of these values. Temperatures higher than about 42° C., and temperatures lower than about 20° C. are also possible, depending on the sample tested.
- the length of time can generally be any length of time suitable for detection of a change in fluorescence.
- lengths of time examples include about 10 minutes, about 20 minutes, about 30 minutes, about 40 minutes, about 50 minutes, about 60 minutes, about 70 minutes, about 80 minutes, about 90 minutes, about 100 minutes, about 110 minutes, about 120 minutes, about 180 minutes, about 240 minutes, about 300 minutes, about 360 minutes, about 420 minutes, about 480 minutes, about 540 minutes, about 600 minutes, and ranges between any two of these values. Further extended lengths of time are also possible, depending on the sample tested.
- the contacting step is preferably performed with the test sample protected from light.
- the compound or compounds can be used at generally any concentration suitable to produce a detectable emitted fluorescent energy signal in the presence of double stranded DNA.
- Example concentration ranges include about 10 nM to about 1 mM. Examples of concentrations include about 10 nM, about 100 nM, about 1 ⁇ M, about 2 ⁇ M, about 3 ⁇ M, about 4 ⁇ M, about 5 ⁇ M, about 6 ⁇ M, about 7 ⁇ M, about 8 ⁇ M, about 9 ⁇ M, about 10 ⁇ M, about 100 ⁇ M, about 1 mM, and ranges between any two of these values.
- the excitation energy can be applied to the test sample in a variety of ways during the illuminating step.
- Suitable equipment includes hand-held ultraviolet lamps, mercury arc lamps, xenon lamps, lasers (such as argon and YAG lasers), and laser diodes. These illumination sources are typically optically integrated into laser scanners, fluorescence microplate readers or standard or microfluorometers.
- the detecting step can be performed by visual inspection, or by the use of a variety of instruments.
- instruments include CCD cameras, video cameras, photographic film, laser scanning devices, fluorometers, photodiodes, quantum counters, epifluorescence microscopes, scanning microscopes, flow cytometers, fluorescence microplate readers, or by amplification devices such as photomultiplier tubes.
- the detecting step can be performed at a single point in time, can be performed at multiple points in time, or can be performed continuously.
- the methods can be used in conjunction with experimental systems such as DNA minipreps, flow cytometry, fluorescence microscopy, real time PCR, double stranded DNA quantitation, microarray hybridizations, double stranded DNA detection in gels, and so on.
- Compound (17) was prepared by following the same procedure used to prepare Compound (16), substituting 3,3′-iminobis(N,N-dimethyl propylamine) for N,N-dimethyl-N′-propyl-1,3-propanediamine.
- Compound (18) was prepared by following the same procedure used to prepare Compound (16), substituting N,N,N′-trimethylethanediamine for N,N-dimethyl-N′-propyl-1,3-propanediamine.
- Compound (20) was prepared by following the same procedure used to prepare Compound (16), substituting 1-methyl-piperazine for N,N-dimethyl-N′-propyl-1,3-propanediamine.
- Compound (21) was prepared by following the same procedure used to prepare Compound (16), substituting piperazine for N,N-dimethyl-N′-propyl-1,3-propanediamine.
- Compound (22) was prepared by following the same procedure used to prepare Compound (16), substituting N,N′-dimethylethanediamine for N,N-dimethyl-N′-propyl-1,3-propanediamine.
- Compound (23) was prepared by following the same procedure used to prepare Compound (16), substituting N,N′-dimethylpropanediamine for N,N-dimethyl-N′-propyl-1,3-propanediamine.
- Compound (27) was prepared by following the same procedure used to prepare Compound (15), using 4-methyl-1-phenyl-2(H)-quinolone as the starting material.
- Compound (28) was prepared by following the same procedure used to prepare Compound (16), using Compound (27) as the starting material.
- Compound (29) was prepared by following the same procedure used to prepare Compound (15), using 1,4-dimethyl-2(H)-quinolinone as the starting material.
- Compound (30) was prepared by following the same procedure used to prepare Compound (16), using Compound (29) as the starting material.
- Compound (33) was prepared by following the same procedure used to prepare Compound (32), using 2-dimethylaminoethanol instead of methanol.
- Compound (34) was prepared by following the same procedure used to prepare Compound (16) using 4-methyl-1-propargyl-2(H)-quinolinone as the starting material to generate the intermediate 2-chloro derivative, which in turn was reacted with N,N-dimethyl-N′-propylpropanediamine to generate the target.
- Compound (35) was prepared by following the same procedure used to prepare Compound (16), using Compound (41) as the starting material.
- Compound (37) was prepared by following the same procedure used to prepare Compound (36), using N-benzyl-3-methoxyaniline in place of N-benzyl-4-methoxyaniline.
- Compound (38) was prepared by following the same procedure used to prepare Compound (16), using Compound (37) as the starting material.
- Compound (38) was prepared by following the same procedure used to prepare Compound (16), using Compound (36) as the starting material.
- Compound (40) was prepared by following the same procedure used to prepare Compound (13), using bromoethylbenzene as the starting material.
- Compound (41) was prepared by following the same procedure used to prepare Compound (13), using bromoethylpyridine as the starting material.
- the compound was obtained by reacting Compound (43) with an excess amount of N-methylpiperazine in DMF at room temperature for 3 hours.
- the compound was obtained by reacting Compound (43) with an excess amount of morpholine in DMF at room temperature for 3 hours.
- the compound was obtained by reacting Compound (43) with an excess amount of N,N,N′,N′-tetramethylpropanediamine in DMF at 50° C. for 4 hours.
- the compound was obtained by reacting Compound (43) with an excess amount of N,N,N′-trimethylpropanediamine in DMF at 50° C. for 2 hours.
- the compound was obtained by reacting Compound (43) with an excess amount of trimethylamine in DMF at 50° C. for 4 hours.
- the compound was obtained by reacting Compound (46) with an excess amount of methyl iodide in DMF at room temperature overnight.
- the compound was obtained by reacting Compound (46) with an excess amount of 3,3′-iminobis(N,N-dimethylpropylamine) in DMF at room temperature for 4 hours.
- the compound was obtained by reacting Compound (46) with an excess amount of dimethylamine in DMF at 60° C. for 1 hour.
- Compound (66) was prepared by following the same procedure used to prepare Compound (15), using Compounds (7) and (13) as the starting materials.
- Compound (67) was prepared by following the same procedure used to prepare Compound (15), using Compound (7) and 4-methyl-1-phenyl-2(H)-quinolone as the starting materials.
- Compound (68) was prepared by following the same procedure used to prepare Compound (16), using Compound (67) and N,N-dimethyl-N′-propyl-propanediamine as the starting materials.
- Compound (69) was prepared by following the same procedure used to prepare Compound (16), using Compound (67) and N,N,N′-trimethylpropanediamine as the starting materials.
- Compound (70) was prepared by following the same procedure used to prepare Compound (16), using Compound (66) and N,N,N′-trimethylpropanediamine as the starting materials.
- Compound (76) was prepared by following the same procedure used to prepare Compound (15), using Compound (6) and 4-methyl-1-phenyl-2(H)-quinolone as the starting materials.
- Compound (77) was prepared by following the same procedure used to prepare Compound (16), using Compound (15) and N,N-dimethyl-N′-propylpropanediamine.
- the compound was prepared from the commercially available 5-phenyl-2-mercapto-benzothiazole (Aldrich Chemical; St. Louis, Mo.) by first converting the mercapto into a methylthio with potassium carbonate and methyl tosylate, and further quarternization of the benzothiazole under neat condition with methyl tosylate to generate the desired compound.
- Compound (101) was prepared by following the same procedure used to prepare Compound (16), using 6-(bis-(1,3-dimethoxy)-prop-2-yl)-3-methyl-2-methylthio-benzothiazolium tosylate and Compound (13) as the starting materials.
- Compound (102) was prepared by following the same procedure used to prepare Compound (24), using Compound (5) and 1-benzyl-4-methyl-pyridin-2-one as the starting materials.
- Acetic anhydride (0.1 mL) was added to a mixture of 0.127 mg of 2-(2-anilinovinyl)-3-methyl-6-phenylquinolinium tosylate, one equivalent of 1-benzyl-4-methylquinolinium bromide, and 40 uL of triethylamine in 2 mL of dichloroethane at room temperature. The mixture was stirred for 2 hours. The reaction was diluted with chloroform and washed with water and brine. The crude material was purified by recrystallizing from methanol and ethyl acetate.
- Acetic anhydride (90 uL) was added to a mixture of 0.107 mg of 2-(2-anilinovinyl)-3-methyl-6-phenylquinolinium tosylate, one equivalent of 14(3-ethoxycarbonyl-1-propoxy)phenylmethyl)-4-methylquinolinium chloride, and 40 uL of triethylamine in 5 mL of dichloroethane at room temperature. The mixture was stirred for 2 hours. The reaction mixture was diluted with chloroform and washed with water and brine. The crude material was purified using silica gel column chromatography with chloroform and methanol.
- O—(N-succinimidyl)-N,N,N′,N′-tetramethyluronium tetrafluoroborate (8.2 mg) was added to 11.3 mg of Compound (105) in 2 mL of DMF and 8 uL of triethylamine in 2 mL of DMF. The mixture was stirred overnight at room temperature. About 6 mL of ethyl acetate was added to precipitate the product, and the product was obtained by filtration.
- Compound (107) was prepared by following the same procedure used to prepare Compound (15), using Compound (5) and 1-benzyl-6-(3-ethoxycarbonyl-1-propoxy)-4-methyl-2(H)-quinolone as the starting materials.
- O—(N-succinimidyl)-N,N,N′,N′-tetramethyluronium tetrafluoroborate (7.4 mg) was added to a mixture of 11 mg of B36-13-LY and 5 uL of triethylamine in 2 mL of DMF. After 30 minutes stirring at room temperature, the crude material was purified on a silica gel column eluting with chloroform and acetone.
- Amino-dPEG4-alcohol (3.0 mg; Quanta Biodesign, Ltd.; Powell, Ohio) was added to a mixture of about 5 mg of Compound (110) and 2 equivalents of triethylamine. The mixture was stirred for 30 minutes. The mixture was concentrated and several mL of ethyl acetate was added and stirred briefly and filtered to obtain the product.
- Triethylamine (61 uL) was added to a mixture of 59 mg of 14(3-ethoxycarbonyl-1-propoxy)phenylmethyl)-4-methylquinolinium chloride and 74 mg of Compound (5) in 3 mL of methylene chloride. The mixture was stirred for 5 minutes. The mixture was then diluted with chloroform and washed with 1:1 mixture of water/brine to yield the product.
- the tested compound was dissolved as a stock solution in DMSO at a concentration of about 0.1-1.0 mg/mL. The exact concentration is not critical.
- Three tubes are prepared, each containing the same 1-20 uL of stock solution.
- the first tube contained 10 mM Tris, 1 mM EDTA (pH 7.5) buffer; the second tube contained buffer and 65 ug/mL calf thymus double stranded DNA; and the third tube contained buffer and 65 ug/mL ribosomal RNA.
- the tubes were incubated at room temperature for 10-15 minutes with protection from light.
- Fluorescence scans of the three solutions were performed in disposable cuvettes, with the excitation wavelength corresponding to the absorption maximum for the compound bound to DNA (or RNA if the values were significantly different). In some cases, it was necessary to dilute the sample to keep the fluorescence signal on-scale. In these cases, all three samples were diluted to the same degree. The ratio of the fluorescence of the compound in the presence of DNA and RNA was determined.
- the following compounds were selected as representative of the inventive class of compounds.
- the fluorescence values in the presence of DNA and RNA were determined as described in the previous Example.
- the following table shows the DNA/RNA fluorescence ratios, where higher values indicate a selectivity for DNA. A ratio of 1 would indicate no selectivity.
- Excitation and emission values are in nm
- This compound has a 520 nm excitation maximum, and can effectively be excited with either a 488 nm line (blue laser) or a 532 nm (green laser) line.
- the compound has an emission maximum of 569 nm (orange).
- Live Jurkat cells human T-lymphocyte
- FBS Fetal Bovine Serum
- 5 ⁇ M Compound (20) was added to one mL cell suspension, and incubated at 37° C. for 60 minutes protected from light.
- Cells were processed using a Becton Dickinson (BD) LSRII Flow Cytometer.
- BD Becton Dickinson
- SS Side Scatter
- Typical cell cycle histograms were demonstrated showing G0G1 phase, S phase, and G2M phase. This was obtained on the live cell gate. Further analysis using ModFit Software showed that G1-phase is 47.08% with peak CV of 6.92%, S-phase is 46.67%, G2-phase is 6.25% and the G2/G1 ratio is 1.83. This demonstrated that the compound stains live cells for cell cycle where the CV of G1-phase ⁇ 8%, and the observed ratio indicated linearity of staining.
- Live Jurkat cells were treated with colcemid for 2 hours, to arrest cell cycle at mitosis, thus resulting in a larger more defined G2M-phase.
- the cells were suspended at 1 ⁇ 10 6 cells/ml in RPMI media with 10% Fetal Bovine Serum (FBS).
- 10 ⁇ M Compound (24) was added to one mL cell suspension, incubated at 37° C. for 30 minutes protected from light.
- Cells were processed using the Becton Dickinson (BD) LSRII Flow Cytometer. Forward Scatter (FS) vs Side Scatter (SS) dual parameter plot was used to gate main cell population.
- BD Becton Dickinson
- SS Side Scatter
- Typical cell cycle histograms were demonstrated showing G0G1 phase, S phase, and G2M phase. This was obtained on the live cell gate. Further analysis using ModFit Software showed typical cell cycle staining. This demonstrated that the compound stains live cells for cell cycle where the CV of G1-phase ⁇ 8%, and the observed ratio indicated linearity of staining.
- Live HL60 cells (human promyeloblasts) were suspended at 1 ⁇ 10 6 cells/ml in Iscove's Dulbecco's complete Media with 20% Fetal Bovine Serum (FBS). 5 ⁇ M Compound (20) is added to one mL cell suspension, and incubated at 37° C. for 30 minutes protected from light. Cells were processed using the Becton Dickinson (BD) LSRII Flow Cytometer. Forward Scatter (FS) vs Side Scatter (SS) dual parameter plot was used to gate main cell population. On gated cells, a dual-parameter plot of Fluorescence-Width vs Fluorescence-Area was used for single cell discrimination gating.
- BD Becton Dickinson
- SS Side Scatter
- Typical cell cycle histograms were demonstrated showing G0G1 phase, S phase, and G2M phase. This was obtained on the live cell gate. Further analysis using ModFit Software showed typical cell cycle staining. This demonstrated that the compound stained live cells for cell cycle where the CV of G1-phase ⁇ 8%, and the observed ratio indicated linearity of staining.
- HL60 cells were suspended at 1 ⁇ 10 6 cells/ml in Hanks Balanced Salt Solution (HBSS). 10 ⁇ M Compound (24) was added to one mL cell suspension, and incubated at room temperature for 30 minutes protected from light. Cells were processed using the Becton Dickinson (BD) LSRII Flow Cytometer. Forward Scatter (FS) vs Side Scatter (SS) dual parameter plot was used to gate main cell population. On gated cells, a dual-parameter plot of Fluorescence-Width vs Fluorescence-Area was used for single cell discrimination gating.
- BD Becton Dickinson
- SS Side Scatter
- Typical cell cycle histograms were demonstrated showing G0G1 phase, S phase, and G2M phase. This was obtained on the live cell gate. Further analysis using ModFit Software showed typical cell cycle staining. This demonstrated that the compound stained live cells for cell cycle where the CV of G1-phase ⁇ 8%, and the observed ratio indicated linearity of staining.
- HL60 cells were fixed with 70% ethanol and stored at ⁇ 20° C. until use. The fixed cells were washed once in Hanks Balanced Salt Solution (HBSS) and were then suspended at 1 ⁇ 10 6 cells/ml in HBSS. 5 ⁇ M Compound (24) was added to one mL cell suspension, and incubated at 37° C. for 5 minutes protected from light. Cells were processed using the Becton Dickinson (BD) LSRII Flow Cytometer. Forward Scatter (FS) vs Side Scatter (SS) dual parameter plot was used to gate main cell population. On gated cells, a dual-parameter plot of Fluorescence-Width vs Fluorescence-Area was used for single cell discrimination gating.
- HBSS Hanks Balanced Salt Solution
- Single color fluorescence was collected at 585/42 bandpass using the 488 nm excitation laser, and also collected at the same 585/42 bandpass using the 532 nm excitation laser, collecting 30,000 events at flow rate of about 200 events/second.
- the data was further analyzed using ModFit LT Flow Cytometry Modeling Software from Verity Software House, Inc. to determine the ratio of G2/G1 and the CV of G1 phase.
- Typical cell cycle histograms were demonstrated showing G0G1 phase, S phase, and G2M phase. Further analysis using ModFit Software showed typical cell cycle staining. This demonstrated that the compound stained live cells for cell cycle where the CV of G1-phase ⁇ 8%, and the observed ratio indicated linearity of staining.
- Live Jurkat cells were treated with colcemid for 2 hours, to arrest cell cycle at mitosis, thus resulting in a larger more defined G2M-phase.
- the cells were fixed with 70% ethanol and stored at ⁇ 20° C. until use.
- the fixed cells were washed once in Hanks Balanced Salt Solution (HBSS) and were then suspended at 1 ⁇ 10 6 cells/ml in HBSS.
- 5 ⁇ M Compound (20) was added to one mL cell suspension, and incubated at 37° C. for 5 minutes protected from light.
- Cells were processed using the Becton Dickinson (BD) LSRII Flow Cytometer. Forward Scatter (FS) vs Side Scatter (SS) dual parameter plot was used to gate main cell population.
- BD Becton Dickinson
- SS Side Scatter
- Typical cell cycle histograms were demonstrated showing GOG1 phase, S phase, and G2M phase. Further analysis using ModFit Software showed typical cell cycle staining. This demonstrated that the compound stained live cells for cell cycle where the CV of G1-phase ⁇ 8%, and the observed ratio indicated linearity of staining.
- Live Jurkat cells were split into 13 samples and each cell split was suspended in complete RMPI/10% FBS.
- Samples was treated with 10 ⁇ M Camptothecin in DMSO to induce apoptosis, or treated with DMSO alone to act as a control.
- Treatment and control time was 1, 2, 3, 4, 5, and 6 hours, and a time zero point.
- the cell suspensions were then incubated at 37° C./5% CO 2 for a designated time. This type of experiment is sometimes called an “apoptosis time course”.
- Each split was washed once in complete RPMI media/10% Fetal Bovine Serum (FBS) and resuspended at 1 ⁇ 10 6 cells/mL in complete RPMI media with 10% FBS.
- FBS Fetal Bovine Serum
- Flow tubes were made up by adding one mL designated cell suspension to which 10 ⁇ M compound (24) was added to one mL cell suspension, incubated at 37° C. for 30 minutes protected from light, and the SYTOX® Blue dead cell stain (SYTOX is a registered trademark of Molecular Probes, Inc.; Eugene, Oreg.) was added as a dead cell discriminator.
- Cells were processed using the Becton Dickinson LSRII Flow Cytometer.
- a SYTOX® Blue stain vs compound (24) stain plot was made and a gate was made on compound (24) stain positive and SYTOX® Blue stain negative cells to gate out dead cells, and to ensure only live cells were analyzed.
- Fluorescence from the SYTOX® Blue stain was collected using 405 nm excitation laser with 450/50 bandpass and compound (24) stain fluorescence was collected at 585/42 bandpass using the 488 nm excitation laser as well as collected at the same 585/42 bandpass using the 532 nm excitation laser. Collection of 30,000 events ocurred at a flow rate of about 200 events/second. The data was further analyzed using ModFit LT Flow Cytometry Modeling Software from Verity Software House, Inc. to look at ratio of G2/G1 and the CV of G1 phase and the percent sub-G0 population (apoptotic population).
- Typical cell cycle histograms were demonstrated showing G0G1 phase, S phase, and G2M phase for each control time point with no sub-G0 population identified.
- Cell cycle histograms for the cells treated with Camptothecin demonstrated a population of cells at the sub-G0 location which begin to show at 3 hours induction and continue to increase throughout the time course at each time point afterwards.
- Further analysis using ModFit Software with an apoptotic model showed typical cell cycle staining for control cells and growing sub-G0 population with the induced cells. This demonstrated that compound (24) stains live cells for identification of a sub-G0 population in apoptotic cells which increases with time of induction. Similar results were obtained with 532 nm excitation.
- compositions and/or methods disclosed and claimed herein can be made and executed without undue experimentation in light of the present disclosure. While the compositions and methods of this invention have been described in terms of preferred embodiments, it will be apparent to those of skill in the art that variations may be applied to the compositions and/or methods and in the steps or in the sequence of steps of the methods described herein without departing from the concept and scope of the invention. More specifically, it will be apparent that certain agents which are both chemically and physiologically related may be substituted for the agents described herein while the same or similar results would be achieved. All such similar substitutes and modifications apparent to those skilled in the art are deemed to be within the scope and concept of the invention.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Immunology (AREA)
- Analytical Chemistry (AREA)
- Physics & Mathematics (AREA)
- Molecular Biology (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Biomedical Technology (AREA)
- Pathology (AREA)
- General Physics & Mathematics (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Biotechnology (AREA)
- Microbiology (AREA)
- Urology & Nephrology (AREA)
- Hematology (AREA)
- Genetics & Genomics (AREA)
- Biophysics (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- Medicinal Chemistry (AREA)
- Cell Biology (AREA)
- Food Science & Technology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Optics & Photonics (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Plural Heterocyclic Compounds (AREA)
- Investigating Or Analysing Biological Materials (AREA)
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
Abstract
Chemical compounds having a high selectivity for double stranded DNA over RNA and single stranded DNA are disclosed. The chemical compounds are stains that become fluorescent upon illumination and interaction with double stranded DNA, but exhibit reduced or no fluorescence in the absence of double stranded DNA. The compounds can be used in a variety of biological applications to qualitatively or quantitatively assay DNA, even in the presence of RNA.
Description
- The present application is a continuation of U.S. patent application Ser. No. 13/104,413, filed on May 10, 2011, which is a continuation of U.S. patent application Ser. No. 12/573,809, filed on Oct. 5, 2009 (now U.S. Pat. No. 7,943,777), which is a continuation of U.S. patent application Ser. No. 11/432,814, filed May 11, 2006 (now U.S. Pat. No. 7,598,390), which claims priority to U.S. Provisional Patent Application Ser. No. 60/680,243, filed May 11, 2005, the contents of which are hereby incorporated herein by reference in their entirety.
- The invention relates to stains that become fluorescent upon interaction with DNA. In particular, stains that exhibit higher fluorescence when contacted with double stranded DNA than when contacted with RNA and/or single stranded DNA, as well as various uses for the stains are disclosed.
- Stains and dyes are commonly used in chemical, biotechnological, and biomedical research. These two types of compounds are different in their properties, and in their intended uses.
- Stains are chemical compounds that exhibit a detectable response when contacted with a particular target. In the absence of the target, a stain does not exhibit the detectable response. These properties make stains valuable in the detection of the presence or absence of a particular target in a sample. The detectable response can be qualitative or quantitative, depending on the compound, target, and assay parameters.
- In comparison, dyes exhibit a detectable response regardless of the presence or absence of another material. Dyes are therefore useful to label a target. For example, an antibody can be labeled with a fluorescent dye molecule. The localization of the antibody in a cell or tissue can be monitored by fluorescence.
- The detection and quantitation of DNA is a very common task in biotechnological research. Early chemical stains such as ethidium bromide are effective at staining DNA, but also stain RNA. DNA and RNA are often obtained together when isolated from natural sources. Stains that are not selective for DNA make quantitation of the isolated DNA difficult, requiring a purification step to be performed prior to quantitation. Stains find use in applications such as gel electrophoresis, PCR, real time PCR quantitation, DNA solution quantitation, microarrays, and RT-PCR.
- Multiple nucleic acid stains are commercially available. The following is a representative listing of these materials.
- Ethidium bromide is the most widely used nucleic acid stain, and is commercially available from a wide array of suppliers. Ethidium bromide is mutagenic, and its use requires significant care from the user to avoid contact with staining solutions.
- PicoGreen is a stain selective for double stranded DNA (commercially available from Molecular Probes, Inc. (Eugene, Oreg.) since 1994). PicoGreen shows a greater than 1000 fold fluorescence enhancement upon binding to double stranded DNA, and much less enhancement upon binding to single stranded DNA or RNA.
- OliGreen is a stain useful for the quantitation of single stranded DNA such as synthetic oligonucleotides. OliGreen has been commercially available from Molecular Probes, Inc. (Eugene, Oreg.) since 1994. Quantitation with OliGreen is about 10,000 times more sensitive than quantitation with UV absorbance methods, and at least 500 times more sensitive than detecting oligonucleotides on electrophoretic gels stained with ethidium bromide. This type of material is described in U.S. Pat. Nos. 5,436,134 and 5,658,751; Australian Patent Nos. 676,317 and 714,890; Canadian Patent No. 2,133,765; and European Patent Nos. 0,675,924 and 0,740,689.
- RiboGreen is a stain that is useful for the quantitation of RNA in solution. RiboGreen has been commercially available from Molecular Probes, Inc. (Eugene, Oreg.) since 1997. This type of material is described in U.S. Pat. Nos. 5,658,751 and 5,863,753; Australian Patent No. 714,890; and European Patent No. 0,740,689.
- SYBR Green I is stain selective for DNA (commercially available from Molecular Probes, Inc. (Eugene, Oreg.) since 1993). SYBR Green I has a fluorescence enhancement upon binding to DNA at least 10 fold greater than that of ethidium bromide, and a fluorescence quantum yield over five times greater than ethidium bromide (about 0.8 as compared to about 0.15). This type of material is described in U.S. Pat. Nos. 5,436,134 and 5,658,751; Australian Patent Nos. 676,317 and 714,890; Canadian Patent No. 2,133,765; and European Patent Nos. 0,675,924 and 0,740,689.
- SYBR Safe is a nucleic acid stain that is at least twice as sensitive as ethidium bromide, yet exhibits reduced mutagenicity. SYBR Safe has been commercially available from Molecular Probes, Inc. (Eugene, Oreg.) since 2003. This type of material is described in U.S. Pat. Nos. 4,883,867, 4,957,870, 5,436,134, and 5,658,751; Australian Patent Nos. 676,317 and 714,890; Canadian Patent No. 2,133,765; and European Patent Nos. 0,675,924 and 0,740,689.
- Hoechst 33258 (CAS 23491-45-4; Phenol, 4-[5-(4-methyl-1-piperazinyl)[2,5′-bi-1H-benzimidazol]-2′-yl]-, trihydrochloride) is a nuclear counterstain that emits blue fluorescence when bound to dsDNA. Hoechst 33258 has been commercially available from Molecular Probes, Inc. (Eugene, Oreg.) since 1992.
- Dimeric cyanines TOTO-1, YOYO-1, and YO-PRO-1 are useful for the measurement of double stranded DNA, single stranded DNA, and RNA in solution. TOTO-1, YOYO-1, and YO-PRO-1 have been commercially available from Molecular Probes, Inc. (Eugene, Oreg.) since 1992. These types of materials are described in U.S. Pat. Nos. 5,321,130 and 5,582,977; Canadian Patent No. 2,119,126; and European Patent No. 0,605,655 B1.
- Unsymmetrical cyanine dyes having similar spectral properties to intercalating cyanine dyes, but binding in the minor groove of DNA were reported in 2003 (Karlsson, H. J. et al., Nucleic Acids Res. 31(21): 6227-6234 (2003)). Compounds BEBO, BETO, and BOXTO were shown, and characterized using a variety of spectral measurements. Fluorescence quantum yield increased upon binding to DNA, but RNA binding results were not shown.
- Despite the materials and methods that are currently available, there still exists a need for stains that are selective for double stranded DNA in the presence of RNA, single stranded DNA, or other biological materials.
- Compounds are disclosed having high selectivity for double stranded DNA over RNA and single stranded DNA. The compounds act as fluorescent stains, where they exhibit fluorescent properties when illuminated in the presence of double stranded DNA, but exhibit reduced or no fluorescence in the presence of RNA, single stranded DNA, or in the absence of nucleic acids entirely. The compounds can contain the core structure of Compound (1A) or Compound (1B).
- Also disclosed are methods for the preparation of the compounds, and methods for their use in detecting the presence or absence of double stranded DNA in a sample. The selectivity of the compounds for double stranded DNA over RNA and single stranded DNA enables detection of double stranded DNA in samples containing RNA and/or single stranded DNA.
- While compositions and methods are described in terms of “comprising” various components or steps (interpreted as meaning “including, but not limited to”), the compositions and methods can also “consist essentially of” or “consist of” the various components and steps, such terminology should be interpreted as defining essentially closed-member groups.
- Compounds
- A first embodiment of the invention is directed towards chemical compounds. The chemical compounds can be neutrally charged, positively charged, or negatively charged. When positively or negatively charged, the compound can include one or more counterions.
- One embodiment of the invention is directed towards chemical compounds containing the core structure of Compound (1A).
- The double bond(s) in the center of Compound (1A) can be in either cis or trans configuration. For example, if X is nitrogen, the two nitrogens can be oriented on the same side of the central double bond (cis) or can be oriented across the central double bond (trans). Mixtures of both configurations are also possible in a sample of a particular compound.
- The value n can be any non-negative integer. For example, n can be zero, 1, 2, 3, 4, 5, 6, 7, 8, and so on.
- X can be oxygen or sulfur.
- Groups R1, R2, R3, R4, R5, R6, R7, R8, R9, R10, and R11 can independently comprise or be hydrogen (H), hydroxyl group (OH), alkoxy group (OR), thiol (SH), thioalkyl (SR), thioaryl(SAr), halogen (X), alkyl group, alkenyl group, alkynyl group, aromatic group, amine group (primary NH2, secondary NHR, tertiary NR′R″, or tertiary NR′2), a reactive group, or a mixed group having combinations of two or more of these groups (for example, an alkyl group having thiol and amino substituents, an alkoxy group having amino substituents, and so on). Alternatively, one or more of these groups can be a linker group for covalently attaching Compound (1A) to another compound. Linking the linker group to another compound would afford a conjugate of Compound (1A).
- In one embodiment, at least one of R1, R2, R3, and R4 comprises or is an aromatic group or an alkynyl group.
- In one embodiment, R9 comprises or is an aromatic group, alkyl-aromatic, or an alkynyl group.
- In one embodiment, R10 comprises or is an amine group.
- In one embodiment, at least one of R1, R2, R3, and R4 comprises or is an aromatic group or an alkynyl group; and R9 comprises or is an aromatic group, alkyl-aromatic, or an alkynyl group.
- In one embodiment, at least one of R1, R2, R3, and R4 comprises or is an aromatic group or an alkynyl group; R9 comprises or is an aromatic group, alkyl-aromatic group, or an alkynyl group; and R10 comprises or is an amine group.
- Group R12 can be an alkyl group such as a C1-C8 alkyl group. The C1-C8 alkyl group can be a straight chain, branched, or cycloalkyl group. Examples of the C1-C8 alkyl group include methyl, ethyl, 1-propyl, 2-propyl, 1-butyl, 2-butyl, 1-pentyl, 1-hexyl, 1-heptyl, and 1-octyl. In a presently preferred embodiment, the C1-C8 alkyl group is a methyl group.
- When Compound (1A) is a cationic or anionic structure, it can further comprise one or more appropriate counterions. For example, if Compound (1A) is cationic (positively charged), it can further comprise anions such as chloride, bromide, iodide, sulfate, and carbonate counterions. Alternatively, if Compound (1A) is anionic (negatively charged), it can further comprise cations such as potassium, sodium, ammonium, magnesium, and calcium.
- An additional embodiment of the invention is directed towards chemical compounds containing the core structure of Compound (1B).
- The double bond(s) in the center of Compound (1B) can be in either cis or trans configuration. For example, if X is nitrogen, the two nitrogens can be oriented on the same side of the central double bond (cis) or can be oriented across the central double bond (trans). Mixtures of both configurations are also possible in a sample of a particular compound.
- The value n can be any non-negative integer. For example, n can be zero, 1, 2, 3, 4, 5, 6, 7, 8, and so on.
- X can be oxygen or sulfur.
- Groups R13, R14, R15, R16, R17, R18, R19, R20, and R21 can independently comprise or be hydrogen (H), hydroxyl group (OH), alkoxy group (OR), thiol (SH), thioalkyl (SR), thioaryl(SAr), halogen (X), alkyl group, alkenyl group, alkynyl group, aromatic group, amine group (primary NH2, secondary NHR, tertiary NR′R″, or tertiary NR′2), a reactive group, or a mixed group having combinations of two or more of these groups (for example, an alkyl group having thiol and amino substituents, an alkoxy group having amino substituents, and so on). Alternatively, one or more of these groups can be a linker group for covalently attaching Compound (1B) to another compound. Linking the linker group to another compound would afford a conjugate of Compound (1B).
- In one embodiment, at least one of R13, R14, R15, and R16 comprises or is an aromatic group or an alkynyl group.
- In one embodiment, R19 comprises or is an aromatic group, alkyl-aromatic, or an alkynyl group.
- In one embodiment, R20 comprises or is an amine group.
- In one embodiment, at least one of R13, R14, R15, and R16 comprises or is an aromatic group or an alkynyl group; and R19 comprises or is an aromatic group, alkyl-aromatic, or an alkynyl group.
- In one embodiment, at least one of R13, R14, R15, and R16 comprises or is an aromatic group or an alkynyl group; R19 comprises or is an aromatic group, alkyl-aromatic, or an alkynyl group; and R20 comprises or is an amine group.
- Group R22 can be an alkyl group such as a C1-C8 alkyl group. The C1-C8 alkyl group can be a straight chain, branched, or cycloalkyl group. Examples of the C1-C8 alkyl group include methyl, ethyl, 1-propyl, 2-propyl, 1-butyl, 2-butyl, 1-pentyl, 1-hexyl, 1-heptyl, and 1-octyl. In a presently preferred embodiment, the C1-C8 alkyl group is a methyl group.
- When Compound (1B) is a cationic or anionic structure, it can further comprise one or more appropriate counterions. For example, if Compound (1A) is cationic (positively charged), it can further comprise anions such as chloride, bromide, iodide, sulfate, and carbonate counterions. Alternatively, if Compound (1A) is anionic (negatively charged), it can further comprise cations such as potassium, sodium, ammonium, magnesium, and calcium.
- Substituents
- The alkoxy group can generally be any unsubstituted alkoxy group or substituted alkoxy group. Unsubstituted alkoxy groups contain an oxygen connected to an alkyl group. Substituted alkoxy groups contain an oxygen connected to a substituted alkyl group. Examples of unsubstituted alkoxy groups include methoxy (OCH3), ethoxy(OCH2CH3), propoxy(OCH2CH2CH3), and higher straight chain alkoxy groups. Unsubstituted alkoxy groups also include branched or cyclic alkoxy groups. Examples of branched alkoxy groups include 2-propoxy(OCH(CH3)2), 2-butoxy(OCH(CH3)CH2CH3), and higher branched alkoxy groups. Cyclic alkoxy groups have an oxygen connected to a cyclic group. Examples of cyclic alkoxy groups include cyclopropoxy(oxygen connected to a cyclopropane ring), cyclobutoxy (oxygen connected to a cyclobutane ring), cyclopentoxy(oxygen connected to a cyclopentane ring), cyclohexoxy(oxygen connected to a cyclohexane ring), and higher cyclic alkoxy groups.
- The halogen can generally be any halogen. Halogen groups include chloro, fluoro, bromo, and iodo groups.
- Alkyl groups can generally be any unsubstituted or substituted alkyl group. Unsubstituted alkyl groups contain only carbon and hydrogen atoms. Substituted alkyl groups can contain one or more non-carbon and non-hydrogen atoms such as oxygen, nitrogen, sulfur, halogens, and phosphorous.
- Alkenyl groups can generally be any alkenyl group containing at least one carbon-carbon double bond. The most simple alkenyl group is a vinyl group (—CH═CH2). Higher alkenyl groups include 1-propenyl (—CH═CH2CH3), 1-butenyl (—CH═CH2CH2CH3), 2-butenyl (—CH2—CH═CHCH3), and 3-butenyl (—CH2CH2CH═CH2). Substituted alkenyl groups can contain one or more non-carbon and non-hydrogen atoms such as oxygen, nitrogen, sulfur, halogens, and phosphorous.
- Alkynyl groups can generally be any alkynyl group containing at least one carbon-carbon triple bond. The most simple alkynyl group is an ethynyl group (—CCH). Higher alkynyl groups include propargyl (—CH2CCH), 2-butynyl (—CH2CCCH3), and 3-butynyl (—CH2CH2CCH).
- A simple example of an aryl group is a phenyl group. The aryl group can be a simple unsubstituted aryl group containing carbon and hydrogen, or it can be a substituted aryl group. Aryl groups can include one or more aromatic rings. The aryl group can be a polycyclic aromatic hydrocarbon, or can be a heteroaryl group. Examples of aryl and heteroaryl groups include phenyl, 1-naphthyl, 2-naphthyl, 4-biphenyl, anthracenyl, acenaphthalenyl, acenaphthenyl, benzo[a]pyrenyl, benz[a]anthracenyl, 1-pyrrolyl, 2-pyrrolyl, 3-pyrrolyl, 3-pyrazolyl, 2 imidazolyl, 4-imidazolyl, pyrazinyl, 2-oxazolyl, 4-oxazolyl, 2-phenyl-4-oxazolyl, 5 oxazolyl, 3-isoxazolyl, 4-isoxazolyl, 5-isoxazolyl, 2-thiazolyl, 4-thiazolyl, 5-thiazolyl, 2 furyl, 3-furyl, 2-thienyl, 3-thienyl, 2-pyridyl, 3-pyridyl, 4-pyridyl, 2-pyrimidyl, 4 pyrimidyl, 5-benzothiazolyl, purinyl, 2-benzimidazolyl, 5-indolyl, 1-isoquinolyl, 5 isoquinolyl, 2-quinoxalinyl, 5-quinoxalinyl, 3-quinolyl, tetrazolyl, benzo[b]furanyl, benzo[b]thienyl, 2,3-dihydrobenzo[1,4]dioxin-6-yl, benzo[1,3]dioxol-5-yl, and 6-quinolyl. Heteroatoms in the heteroaryl group can include one or more of nitrogen (N), oxygen (O), sulfur (S), and phosphorous (P).
- Aryl groups can be connected to the central core structure Compound (1A) or Compound (1B), either directly by a covalent bond, or indirectly through one or more atoms. For example, N, O, P, or S atoms can be used to link the aryl group to Compound (1A) or Compound (1B). Examples of this include phenylamino (NHC6H5), diphenylamino(N(C6H5)2), phenoxy(OC6H5), and thiophenyl(SC6H5). Alternatively, alkyl groups can be used to link the aryl group to Compound (1A) or Compound (1B). An example of this would be a benzyl group (CH2C6H5; where a methylene CH2 group connects the phenyl group to Compound (1A) or Compound (1B)), or a styrene group (CH═CH—C6H5).
- Amine or amino groups can include NH2, NHR, NR2, and NR′R″ groups. The R, R′, and R″ groups can be unsubstituted alkyl groups, substituted alkyl groups, unsubstituted alkenyl groups, substituted alkenyl groups, unsubstituted alkynyl groups, substituted alkynyl groups, unsubstituted aromatic groups, or substituted aromatic groups.
- The chemical compound can comprise at least one reactive group capable of reacting with another species, such as an atom or chemical group to form a covalent bond, that is, a group that is covalently reactive under suitable reaction conditions, and generally represents a point of attachment for another substance, for example, a carrier molecule or a substrate. For example, the reactive group on a disclosed compound is a moiety, such as carboxylic acid or succinimidyl ester, on the compounds that can chemically react with a functional group on a different compound to form a covalent linkage. Reactive groups generally include nucleophiles, electrophiles and photoactivatable groups.
- The reactive group can be covalently attached directly to the Compound (1A) core structure, or can be covalently attached to at least one of the R1, R2, R3, R4, R5, R6, R7, R8, R9, R10, and R11 groups. The reactive group can be covalently attached directly to the Compound (1B) core structure, or can be covalently attached to at least one of the R13, R14, R15, R16, R17, R18, R19, R20, and R21 groups
- Exemplary reactive groups include, but are not limited to, olefins, acetylenes, alcohols, phenols, ethers, oxides, halides, aldehydes, ketones, carboxylic acids, esters, amines, amides, cyanates, isocyanates, thiocyanates, isothiocyanates, hydrazines, hydrazones, hydrazides, diazo groups, diazonium groups, nitro groups, nitriles, mercaptans, sulfides, disulfides, sulfoxides, sulfones, sulfonic acid groups, sulfinic acid groups, acetals, ketals, anhydrides, sulfates, sulfenic acid groups, isonitriles, amidines, imides, imidates, nitrones, hydroxylamines, oximes, hydroxamic acid groups, thiohydroxamic acid groups, allenes, ortho esters, sulfites, enamines, ynamines, ureas, pseudoureas, semicarbazides, carbodiimides, carbamates, imines, azides, azo groups, azoxy groups, and nitroso groups. Reactive functional groups also include those used to prepare bioconjugates, for example, N-hydroxysuccinimide esters, maleimides, and the like. Methods to prepare each of these functional groups are well known in the art and their application to or modification for a particular purpose is within the ability of one of skill in the art (see, for example, Sandler and Karo, eds., Organic Functional Group Preparations, Academic Press, San Diego, 1989). Reactive groups include those shown in the following table.
-
Electrophilic Group Nucleophilic Group Resulting Covalent Linkage activated esters* amines/anilines carboxamides acrylamides thiols thioethers acyl azides** amines/anilines carboxamides acyl halides amines/anilines carboxamides acyl halides alcohols/phenols esters acyl nitriles alcohols/phenols esters acyl nitriles amines/anilines carboxamides aldehydes amines/anilines imines aldehydes or ketones hydrazines hydrazones aldehydes or ketones hydroxylamines oximes alkyl halides amines/anilines alkyl amines alkyl halides carboxylic acids esters alkyl halides thiols thioethers alkyl halides alcohols/phenols ethers alkyl sulfonates thiols thioethers alkyl sulfonates carboxylic acids esters alkyl sulfonates alcohols/phenols ethers anhydrides alcohols/phenols esters anhydrides amines/anilines carboxamides aryl halides thiols thiophenols aryl halides amines aryl amines aziridines thiols thioethers boronates glycols boronate esters carbodiimides carboxylic acids N-acylureas or anhydrides diazoalkanes carboxylic acids esters epoxides thiols thioethers haloacetamides thiols thioethers haloplatinate amino platinum complex haloplatinate heterocycle platinum complex haloplatinate thiol platinum complex halotriazines amines/anilines aminotriazines halotriazines alcohols/phenols triazinyl ethers halotriazines thiols triazinyl thioethers imido esters amines/anilines amidines isocyanates amines/anilines ureas isocyanates alcohols/phenols urethanes isothiocyanates amines/anilines thioureas maleimides thiols thioethers phosphoramidites alcohols phosphite esters silyl halides alcohols silyl ethers sulfonate esters amines/anilines alkyl amines sulfonate esters thiols thioethers sulfonate esters carboxylic acids esters sulfonate esters alcohols ethers sulfonyl halides amines/anilines sulfonamides sulfonyl halides phenols/alcohols sulfonate esters *Activated esters, as understood in the art, generally have the formula COΩ, where Ω is a good leaving group (e.g. succinimidyloxy (—OC4H4O2) sulfosuccinimidyloxy (—OC4H3O2—SO3H), 1-oxybenzotriazolyl (—OC6H4N3); or an aryloxy group or aryloxy substituted one or more times by electron withdrawing substituents such as nitro, fluoro, chloro, cyano, or trifluoromethyl, or combinations thereof, used to form activated aryl esters; or a carboxylic acid activated by a carbodiimide to form an anhydride or mixed anhydride —OCORa or —OCNRaNHRb, where Ra and Rb, which may be the same or different, are C1-C6 alkyl, C1-C6 perfluoroalkyl, or C1-C6 alkoxy; or cyclohexyl, 3-dimethylaminopropyl, or N-morpholinoethyl). **Acyl azides can also rearrange to isocyanates - Typically, the reactive group will react with an amine, a thiol, an alcohol, an aldehyde, a ketone, or with silica. Preferably, reactive groups react with an amine or a thiol functional group, or with silica. In one embodiment, the reactive group is an acrylamide, an activated ester of a carboxylic acid, an acyl azide, an acyl nitrile, an aldehyde, an alkyl halide, a silyl halide, an anhydride, an aniline, an aryl halide, an azide, an aziridine, a boronate, a diazoalkane, a haloacetamide, a halotriazine, a hydrazine (including hydrazides), an imido ester, an isocyanate, an isothiocyanate, a maleimide, a phosphoramidite, a reactive platinum complex, a sulfonyl halide, or a thiol group. By “reactive platinum complex” is particularly meant chemically reactive platinum complexes such as described in U.S. Pat. No. 5,714,327 (issued Feb. 3, 1998).
- Where the reactive group is an activated ester of a carboxylic acid, such as a succinimidyl ester of a carboxylic acid, a sulfonyl halide, a tetrafluorophenyl ester, a pentafluorophenyl ester, or an isothiocyanates, the resulting compound is particularly useful for preparing conjugates of carrier molecules such as proteins, nucleotides, oligonucleotides, or haptens. Where the reactive group is a maleimide, haloalkyl or haloacetamide (including any reactive groups disclosed in U.S. Pat. Nos. 5,362,628; 5,352,803 and 5,573,904) the resulting compound is particularly useful for conjugation to thiol-containing substances. Where the reactive group is a hydrazide, the resulting compound is particularly useful for conjugation to periodate-oxidized carbohydrates and glycoproteins, and in addition is an aldehyde-fixable polar tracer for cell microinjection. Where the reactive group is a silyl halide, the resulting compound is particularly useful for conjugation to silica surfaces, particularly where the silica surface is incorporated into a fiber optic probe subsequently used for remote ion detection or quantitation.
- The reactive group can be a photoactivatable group such that the group is only converted to a reactive species after illumination with an appropriate wavelength. An appropriate wavelength is generally a UV wavelength that is less than 400 nm. This method provides for specific attachment to only the target molecules, either in solution or immobilized on a solid or semi-solid matrix. Photoactivatable reactive groups include, without limitation, benzophenones, aryl azides and diazirines.
- The reactive group can be a photoactivatable group, succinimidyl ester of a carboxylic acid, a haloacetamide, haloalkyl, a hydrazine, an isothiocyanate, a maleimide group, an aliphatic amine, a silyl halide, a cadaverine or a psoralen. The reactive group can be a succinimidyl ester of a carboxylic acid, a maleimide, an iodoacetamide, or a silyl halide. The reactive group can be a succinimidyl ester of a carboxylic acid, a sulfonyl halide, a tetrafluorophenyl ester, an iosothiocyanates or a maleimide.
- The selection of a covalent linkage to attach the compound to the carrier molecule or solid support typically depends on the chemically reactive group on the component to be conjugated. Examples of reactive groups include amines, thiols, alcohols, phenols, aldehydes, ketones, phosphates, imidazoles, hydrazines, hydroxylamines, disubstituted amines, halides, epoxides, sulfonate esters, purines, pyrimidines, carboxylic acids, or a combination of these groups. A single type of reactive site may be available on the component (typical for polysaccharides), or a variety of sites may occur (e.g. amines, thiols, alcohols, phenols), as is typical for proteins. A carrier molecule or solid support may be conjugated to more than one reporter molecule, which may be the same or different, or to a substance that is additionally modified by a hapten.
- In an alternative embodiment, the present compound is covalently bound to a carrier molecule. If the compound has a reactive group, then the carrier molecule can alternatively be linked to the compound through the reactive group. The reactive group may contain both a reactive functional moiety and a linker, or only the reactive functional moiety.
- A variety of carrier molecules exist. Examples of carrier molecules include antigens, steroids, vitamins, drugs, haptens, metabolites, toxins, environmental pollutants, amino acids, peptides, proteins, nucleic acids, nucleic acid polymers, carbohydrates, lipids, and polymers.
- The carrier molecule can comprise an amino acid, a peptide, a protein, a polysaccharide, a nucleoside, a nucleotide, an oligonucleotide, a nucleic acid, a hapten, a psoralen, a drug, a hormone, a lipid, a lipid assembly, a synthetic polymer, a polymeric microparticle, a biological cell, a virus and combinations thereof. Alternatively, the carrier molecule can be a hapten, a nucleotide, an oligonucleotide, a nucleic acid polymer, a protein, a peptide or a polysaccharide. The carrier molecule can be an amino acid, a peptide, a protein, a polysaccharide, a nucleoside, a nucleotide, an oligonucleotide, a nucleic acid, a hapten, a psoralen, a drug, a hormone, a lipid, a lipid assembly, a tyramine, a synthetic polymer, a polymeric microparticle, a biological cell, cellular components, an ion chelating moiety, an enzymatic substrate or a virus. Alternatively, the carrier molecule is an antibody or fragment thereof, an antigen, an avidin or streptavidin, a biotin, a dextran, an antibody binding protein, a fluorescent protein, agarose, and a non-biological microparticle. The carrier molecule can be an antibody, an antibody fragment, antibody-binding proteins, avidin, streptavidin, a toxin, a lectin, or a growth factor. Examples of haptens include biotin, digoxigenin and fluorophores.
- Antibody binding proteins include protein A, protein G, soluble Fc receptor, protein L, lectins, anti-IgG, anti-IgA, anti-IgM, anti-IgD, anti-IgE or a fragment thereof.
- The chemical compound can be covalently bonded to another molecule such as an antibody, protein, peptide, polypeptide, amino acid, enzyme, nucleic acid, lipid, polysaccharide, drug, a bead, a solid support (such as glass or plastic), and so on.
- The chemical compounds preferably exhibit little or no fluorescence when in the absence of nucleic acids. Fluorescence can be determined by illuminating the chemical compound with an appropriate wavelength, and monitoring emitted fluorescence. The chemical compounds preferably exhibit greater fluorescence when in the presence of DNA than when in the presence of RNA. The fluorescence in the presence of DNA to the fluorescence in the presence of RNA is determined using a fixed concentration of chemical compound, and a fixed concentration of DNA and RNA. Higher DNA/RNA fluorescence ratios are preferred for the detection of DNA in the presence of RNA. The DNA/RNA ratio is preferably greater than about 1. More preferred ratios are greater than about 2, greater than about 3, greater than about 4, greater than about 5, greater than about 6, greater than about 7, greater than about 8, greater than about 9, greater than about 10, greater than about 15, greater than about 20, greater than about 25, greater than about 30, greater than about 35, greater than about 40, greater than about 45, greater than about 50, greater than about 55, greater than about 60, greater than about 65, greater than about 70, greater than about 75, greater than about 80, greater than about 85, greater than about 90, greater than about 95, greater than about 100, greater than about 150, greater than about 200, and ranges between any two of these values.
- The chemical compounds can also be characterized by their excitation and emission maxima wavelengths. For example, the excitation maximum can be about 450 nm to about 650 nm. Excitation maxima between these values can include about 450 nm, about 475 nm, about 500 nm, about 525 nm, about 550 nm, about 575 nm, about 600 nm, about 625 nm, about 650 nm, and ranges between any two of these values. For example, the emission maximum can be about 500 nm to about 675 nm. Emission maxima between these values can include about 500 nm, about 525 nm, about 550 nm, about 575 nm, about 600 nm, about 625 nm, about 650 nm, about 675 nm, and ranges between any two of these values.
- Specific examples of chemical compounds include Compounds 16-35, 38-39, 43-53, 55-58, 60, 62, 64-81, 83, 85-89, 91-97, 99-106, and 109-112.
- Compositions
- An additional embodiment of the invention is directed towards compositions comprising one or more of the above described compounds. The compositions can comprise, consist essentially of, or consist of one or more of the above described compounds.
- The compositions can comprise one, two, three, four, or more of the above described compounds. The compositions can further comprise a solvent. The solvent can be aqueous, non-aqueous, or a mixed aqueous/non-aqueous solvent system. Examples of solvents include water, methanol, ethanol, dimethylsulfoxide (“DMSO”), dimethylformamide (“DMF”), dimethylacetamide, and N-methylpyrrolidinone (“NMP”). The compositions can further comprise one or more salts or buffers.
- The above described compounds can individually be present in the composition at a particular concentration. In one embodiment, the compound is present in a substantially pure form without other materials present (sometimes referred to as “neat”). Alternatively, the compounds can be present in a dry mixture or dissolved in a solvent or solvent system. When dissolved, the compound can generally be present at any concentration. The compound can be dissolved in a concentrated solution, or in a final “working” solution. For example, a compound can be present in a working solution at about 1 μM to about 10 μM. The concentrated solution can have the compound at a higher concentration such as about 10 μM, about 50 μM, about 100 μM, about 500 μM, about 1 mM, and ranges between any two of these values.
- Kits
- One embodiment of the invention is directed towards kits comprising one or more of the above described compounds. The kits can comprise one, two, three, four, or more of the above described compounds. The kit preferably comprises at least one container comprising at least one of the above described compounds. The kit can comprise multiple containers, such as a first container, a second container, a third container, and so on. The kit can comprise pipettes, droppers, or other sample handling devices. The kit can comprise a cuvette, microwell plate, or other test container suitable for use in an instrument that detects emitted fluorescent energy.
- The kit can comprise positive and/or negative samples. Positive samples can comprise DNA, and/or DNA in the presence of RNA. Negative samples can comprise RNA without DNA, or samples lacking nucleic acids entirely. The kit can comprise DNA, RNA, or both DNA and RNA.
- The kit can comprise one or more additional dyes or stains. For example, the kit can contain a total nucleic acid stain. The kit can contain a cell impermeant nucleic acid stain to aid in distinguishing live cells from dead cells.
- The kits can further comprise an instruction protocol for their use. The kit can further comprise water, a buffer, a buffer salt, surfactants, detergents, salts, polysaccharides, or other materials commonly used in assaying biological systems. The kit can comprise solvents such as aqueous, non-aqueous, or a mixed aqueous/non-aqueous solvent systems.
- Methods of Preparation
- An additional embodiment of the invention is directed towards methods for the preparation of the above described compounds. Illustrative examples of these methods are described in the Examples below.
- Additional embodiments of the invention include synthetic intermediates. Many synthetic intermediates are shown in the Examples section below. Examples of such intermediates include Compounds 2-15, 36-37, 40-42, 54, 59, 61, 63, 82, 84, 90, and 98.
- Methods of Use
- An additional embodiment of the invention is directed towards methods of using the above described compounds.
- The above described compounds can be used in methods to detect the presence or absence of double stranded DNA in a sample. The method can comprise providing a sample suspected of containing double stranded DNA; contacting the sample with at least one of the above described chemical compounds to prepare a test sample; and illuminating the test sample with energy. The method can further comprise detecting emission of energy from the test sample after the illuminating step. The detecting step can be qualitative or quantitative. The method can further comprise calculating the concentration of double stranded DNA in the sample after the detecting step. The calculating step can comprise correlating the emitted fluorescent energy with the concentration of double stranded DNA in the sample.
- The presence of an emitted fluorescent energy (or an increase in emitted fluorescent energy relative to a control) is indicative of the presence of double stranded DNA in the sample, while the absence of emitted fluorescent energy (or no increase or no change relative to a control) is indicative of the absence of DNA in the sample.
- The methods can also be performed on “blank” or “control” samples. The blank or control samples can contain RNA but lack double stranded DNA, or can lack nucleic acids altogether.
- The sample can generally be any type of sample. For example, the sample can be a cell or group of cells, an organism, cell lysates, a cell culture medium, a bioreactor sample, and so on. Alternatively, the sample can be a non-biological sample. The cells can be any type of cell, such as bacterial cells, fungal cells, insect cells, and mammalian cells. The sample can be a solid, a liquid, or a suspension. The sample can be a biological fluid such as blood, plasma, or urine. The sample can be a material immobilized in a gel, on a membrane, bound to a bead or beads, arranged in an array, and so on. The sample can be a partially or fully purified nucleic acid preparation in a buffer or in water.
- The contacting step can be performed at any suitable temperature, and for any suitable length of time. Typically, the temperature will be ambient or room temperature, or at an elevated temperature such as 37° C. Examples of temperatures include about 20° C., about 25° C., about 30° C., about 35° C., about 37° C., about 40° C., about 42° C., and ranges between any two of these values. Temperatures higher than about 42° C., and temperatures lower than about 20° C. are also possible, depending on the sample tested. The length of time can generally be any length of time suitable for detection of a change in fluorescence. Examples of lengths of time include about 10 minutes, about 20 minutes, about 30 minutes, about 40 minutes, about 50 minutes, about 60 minutes, about 70 minutes, about 80 minutes, about 90 minutes, about 100 minutes, about 110 minutes, about 120 minutes, about 180 minutes, about 240 minutes, about 300 minutes, about 360 minutes, about 420 minutes, about 480 minutes, about 540 minutes, about 600 minutes, and ranges between any two of these values. Further extended lengths of time are also possible, depending on the sample tested. The contacting step is preferably performed with the test sample protected from light.
- The compound or compounds can be used at generally any concentration suitable to produce a detectable emitted fluorescent energy signal in the presence of double stranded DNA. Example concentration ranges include about 10 nM to about 1 mM. Examples of concentrations include about 10 nM, about 100 nM, about 1 μM, about 2 μM, about 3 μM, about 4 μM, about 5 μM, about 6 μM, about 7 μM, about 8 μM, about 9 μM, about 10 μM, about 100 μM, about 1 mM, and ranges between any two of these values.
- The excitation energy can be applied to the test sample in a variety of ways during the illuminating step. Suitable equipment includes hand-held ultraviolet lamps, mercury arc lamps, xenon lamps, lasers (such as argon and YAG lasers), and laser diodes. These illumination sources are typically optically integrated into laser scanners, fluorescence microplate readers or standard or microfluorometers.
- The detecting step can be performed by visual inspection, or by the use of a variety of instruments. Examples of such instruments include CCD cameras, video cameras, photographic film, laser scanning devices, fluorometers, photodiodes, quantum counters, epifluorescence microscopes, scanning microscopes, flow cytometers, fluorescence microplate readers, or by amplification devices such as photomultiplier tubes.
- The detecting step can be performed at a single point in time, can be performed at multiple points in time, or can be performed continuously.
- The methods can be used in conjunction with experimental systems such as DNA minipreps, flow cytometry, fluorescence microscopy, real time PCR, double stranded DNA quantitation, microarray hybridizations, double stranded DNA detection in gels, and so on.
- The following examples are included to demonstrate preferred embodiments of the invention. It should be appreciated by those of skill in the art that the techniques disclosed in the examples which follow represent techniques discovered by the inventor(s) to function well in the practice of the invention, and thus can be considered to constitute preferred modes for its practice. However, those of skill in the art should, in light of the present disclosure, appreciate that many changes can be made in the specific embodiments which are disclosed and still obtain a like or similar result without departing from the scope of the invention.
-
- To 10 g of N-methylaniline in 200 mL acetic acid at room temperature 11.3 mL bromine was added and the mixture was stirred for several hours. Volatile components were evaporated under reduced pressure and the residue was dissolved in chloroform and washed with saturated solutions of NaHCO3 and Na2S2O3. The crude was purified on a silica gel column with ethyl acetate and hexanes.
-
- To 3.5 g of NaH (60% by weight in dispersion oil and washed with hexanes) in 200 mL of DMF 18.5 g of Compound (2) was added, followed by 6.2 mL of CS2. The mixture was heated at 100° C. for 4 hours. Water was added and the solid was filtered and purified by silica gel column with ethyl acetate and hexanes.
-
- To 9.5 g of Compound (3), 10 g of 2,6-dimethoxyphenylboronic acid and 1 g of triphenylphosphine in 300 mL of isopropyl alcohol and 50 mL of toluene was added a solution of 6 g of K2CO3 in 40 mL of water and 0.25 g of palladium(II)acetate. The resulting mixture was heated at 100° C. for 5 hours. The solvent was removed and the residue was dissolved in CHCl3 and washed with water. The crude product was purified on a silica gel column with ethyl acetate and hexanes.
-
- Compound (3) was coupled with 2,6-dimethoxyphenylboronic acid as described in Example 3 (Preparation of compound (4)). This was followed by quarternization with methyl tosylate at about 130° C. for 1.5 hours.
-
- Compound (3) was coupled with 5-indolylboronic acid using the conditions described in Example 3 (Preparation of compound (4)). This was followed by quarternization with methyl tosylate at about 130° C. for 1.5 hours.
-
- Compound (3) was coupled with 2,6-dimethylphenylboronic acid using the conditions described in Example 3 (Preparation of compound (4)). This was followed by quarternization with methyl tosylate at about 130° C. for 1.5 hours.
-
- Compound (3) was coupled with 4-hydroxyphenylboronic acid using the conditions described in Example 3 (Preparation of compound (4)). This was followed by quartemization with methyl tosylate at about 130° C. for 1.5 hours.
-
- Compound (3) was coupled with benzothiaphen-2-yl boronic acid using the conditions described in Example 3 (Preparation of compound (4)). This was followed by quartemization with methyl tosylate at about 130° C. for 1.5 hours.
-
- Compound (3) was coupled with phenylboronic acid using the conditions described in Example 3 (Preparation of compound (4)). This was followed by quarternization with methyl tosylate at about 130° C. for 1.5 hours.
-
- Compound (3) was coupled with thiophene-2-boronic acid using the conditions described in Example 3 (Preparation of compound (4)). This was followed by quartemization with methyl tosylate at about 130° C. for 1.5 hours.
-
- Compound (3) was coupled with 2-acetamidobenzeneboronic acid using the conditions described in Example 3 (Preparation of compound (4)). This was followed by quartemization with methyl tosylate at about 130° C. for 1.5 hours.
-
- To 1.5 g NaH (60% in dispersion oil and washed with hexanes) in 50 ml DMF 1.5 g of 2-hydroxyl-4-methylquinoline was added followed by 4.5 mL of benzyl bromide. The mixture was stirred at room temperature for 2 hours. Solvent was removed under reduced pressure and the residue was dissolved in CHCl3 and washed with water. The product was obtained by silica gel column purification with ethyl acetate and hexanes.
-
- To 0.5 g of Compound (5), 0.25 g of Compound (13) in 10 mL of methylene chloride, 0.7 mL of diisopropylethylamine and 0.9 mL of trimethylsilyl trifluoromethanesulfonate were added, and the resulting mixture was heated at reflux for 1 hour. The mixture was washed with water, and the product was purified on a silica gel column with ethyl acetate and hexanes.
-
- A mixture of 0.1 g of Compound (14) and 0.06 mL of phosphorous oxychloride was refluxed in 3 mL of dichloroethane for 5 hours. The mixture was washed with water and the solvent was removed. The residue was stirred in ethyl acetate and filtered to obtain the product.
-
- A mixture of 0.1 g of Compound (15) and 0.3 mL N,N-dimethyl-N′-propyl-1,3-propanediamine was heated at 55° C. in 3 mL of 1,2-dichloroethane for 3 hours. The solvent was removed and the product was purified on a silica gel column with chloroform and methanol.
-
- Compound (17) was prepared by following the same procedure used to prepare Compound (16), substituting 3,3′-iminobis(N,N-dimethyl propylamine) for N,N-dimethyl-N′-propyl-1,3-propanediamine.
-
- Compound (18) was prepared by following the same procedure used to prepare Compound (16), substituting N,N,N′-trimethylethanediamine for N,N-dimethyl-N′-propyl-1,3-propanediamine.
-
- A mixture of 12 mg of Compound (15) and 2 mg of imidazole was stirred at room temperature in 2 mL of methylene chloride for 2 hours. At the end of the period, 2 mL of ethyl acetate was added and stirring was continued overnight. The product was obtained by centrifugation.
-
- Compound (20) was prepared by following the same procedure used to prepare Compound (16), substituting 1-methyl-piperazine for N,N-dimethyl-N′-propyl-1,3-propanediamine.
-
- Compound (21) was prepared by following the same procedure used to prepare Compound (16), substituting piperazine for N,N-dimethyl-N′-propyl-1,3-propanediamine.
-
- Compound (22) was prepared by following the same procedure used to prepare Compound (16), substituting N,N′-dimethylethanediamine for N,N-dimethyl-N′-propyl-1,3-propanediamine.
-
- Compound (23) was prepared by following the same procedure used to prepare Compound (16), substituting N,N′-dimethylpropanediamine for N,N-dimethyl-N′-propyl-1,3-propanediamine.
-
- A mixture of 18 mg of Compound (15), 5 mg of 2-N,N-dimethylaminoethanethiol hydrochloride, and 9 uL of triethylamine in 5 mL of methylene chloride was stirred at room temperature for 1.5 hours. All volatile components were removed under reduced pressure and the crude was purified on a silica gel column using chloroform and methanol.
-
- To 0.35 g of 4-diethylaminomethyl-bromobenzene in 4 mL dry THF at −78° C. under nitrogen, 0.32 mL of a 2.5 M n-butyllithium was introduced followed by 0.1 g of Compound (13) in 2 mL THF. The reaction was stirred at the low temperature for 1 hour before the addition of 1 mL acetic acid. The mixture was stirred at room temperature for another hour and the solvent was removed and the residue was further pumped for an hour. To the residue, 0.2 g of Compound (5), 2 mL of dichloroethane and 0.35 mL of triethylamine were added and stirred at room temperature for one hour. The resulting mixture was washed with dilute sodium hydroxide and purified on a silica gel column chromatography using chloroform and methanol.
-
- To 50 mg of Compound (13) in 5 mL of THF at −78° C. under nitrogen, 0.16 mL of a 2.5 M n-butyllithium was added. After 30 minutes at the low temperature, 0.5 mL of acetic acid was added and the resulting mixture was stirred at room temperature for 1 hour. Volatile components were evaporated under reduced pressure and the residue further pumped in vacuo for 30 minutes. To the resulting residue in 10 mL of methylene chloride, 50 mg of Compound (5) and 84 uL of triethylamine were added and the mixture was stirred at room temperature for several hours. The organic layer was washed with dilute HCl and NaCl and the crude was purified on silica gel using ethyl acetate, chloroform and methanol.
-
- Compound (27) was prepared by following the same procedure used to prepare Compound (15), using 4-methyl-1-phenyl-2(H)-quinolone as the starting material.
-
- Compound (28) was prepared by following the same procedure used to prepare Compound (16), using Compound (27) as the starting material.
-
- Compound (29) was prepared by following the same procedure used to prepare Compound (15), using 1,4-dimethyl-2(H)-quinolinone as the starting material.
-
- Compound (30) was prepared by following the same procedure used to prepare Compound (16), using Compound (29) as the starting material.
-
- A mixture of 4 mg of Compound (16) and 0.05 mL of methyl iodide in 0.5 mL DMF was heated at 60° C. overnight. The solvent was removed and the product was purified on a LH-20 column with water.
-
- A mixture of 20 mg of Compound (15) and 0.05 mL triethylamine in 2 mL methanol was heated at 60° C. for 1 day. The product was precipitated out by the addition of ethyl acetate.
-
- Compound (33) was prepared by following the same procedure used to prepare Compound (32), using 2-dimethylaminoethanol instead of methanol.
-
- Compound (34) was prepared by following the same procedure used to prepare Compound (16) using 4-methyl-1-propargyl-2(H)-quinolinone as the starting material to generate the intermediate 2-chloro derivative, which in turn was reacted with N,N-dimethyl-N′-propylpropanediamine to generate the target.
-
- Compound (35) was prepared by following the same procedure used to prepare Compound (16), using Compound (41) as the starting material.
-
- To 1 g of N-benzyl-4-methoxyaniline in 10 mL of toluene was added 0.72 mL of diketene. The mixture was stirred overnight and the solvent was removed under reduced pressure. To the residue, 8 mL of a 1:1 v/v mix of H2SO4:HOAc was added and heated at 50° C. overnight. The mixture was poured onto ice water and extracted with ethyl acetate. The crude material was purified on silica gel using ethyl acetate and hexanes.
-
- Compound (37) was prepared by following the same procedure used to prepare Compound (36), using N-benzyl-3-methoxyaniline in place of N-benzyl-4-methoxyaniline.
-
- Compound (38) was prepared by following the same procedure used to prepare Compound (16), using Compound (37) as the starting material.
-
- Compound (38) was prepared by following the same procedure used to prepare Compound (16), using Compound (36) as the starting material.
-
- Compound (40) was prepared by following the same procedure used to prepare Compound (13), using bromoethylbenzene as the starting material.
-
- Compound (41) was prepared by following the same procedure used to prepare Compound (13), using bromoethylpyridine as the starting material.
-
- A mixture of 0.5 g of lepidine and 2.76 g of p-xylylene dibromide was refluxed in 10 mL of ethyl acetate for 1 hour. The product was obtained by filtration.
-
- A mixture of 0.32 g of Compound (5), 0.26 g of Compound (42), 0.4 g of N-ethylmaleimde, and 0.16 mL of diisopropylethylamine was stirred in 5 mL of methylene chloride at 0° C. for 1 hour. Next, 20 mL of ethyl acetate was added, and the product was collected by filtration.
-
- The compound was obtained by reacting Compound (43) with an excess amount of N-methylpiperazine in DMF at room temperature for 3 hours.
-
- The compound was obtained by reacting Compound (43) with an excess amount of morpholine in DMF at room temperature for 3 hours.
-
- The compound was obtained by reacting Compound (43) with an excess amount of N,N,N′,N′-tetramethylpropanediamine in DMF at 50° C. for 4 hours.
-
- The compound was obtained by reacting Compound (43) with an excess amount of N,N,N′-trimethylpropanediamine in DMF at 50° C. for 2 hours.
-
- The compound was obtained by reacting Compound (43) with an excess amount of trimethylamine in DMF at 50° C. for 4 hours.
-
- The compound was obtained by reacting Compound (46) with an excess amount of methyl iodide in DMF at room temperature overnight.
-
- The compound was obtained by reacting Compound (46) with an excess amount of 3,3′-iminobis(N,N-dimethylpropylamine) in DMF at room temperature for 4 hours.
-
- The compound was obtained by reacting Compound (46) with an excess amount of dimethylamine in DMF at 60° C. for 1 hour.
-
- A mixture of 0.2 g of Compound (5), 0.16 g of Compound (42), and 0.2 mL of triethylamine was stirred in 10 mL of dichloroethane at room temperature for 1 hour. The reaction mixture was washed with water and brine, and the crude material was purified using HPLC with chloroform and methanol.
-
- A mixture of 10 mg of Compound (5), 7 mg of 1-benzyl-4-methylquinolinium bromide, and 0.1 mL of triethylamine was stirred in 1 mL of methanol for 2 hours. Volatile components were removed under reduced pressure, and the crude was purified using silica gel chromatography with chloroform and methanol.
-
- A mixture of 4-bromomethylpyridine HBr and 2 equivalents of lepidine was heated at 120° C. for one hour, and followed by stiffing in ethyl acetate for several hours. The product was collected by filtration.
-
- A mixture of 10 mg of Compound (5), 5 equivalents of Compound (54) and 0.1 mL of triethylamine was stirred in 0.5 mL of DMF for 1 hour. Volatile components were removed under reduced pressure, and the crude material was purified using silica gel chromatography with chloroform and methanol.
-
- A mixture of 3 mg of Compound (55) and about 0.2 mL of iodomethane was stirred at room temperature overnight in 1 mL of DMF. Ethyl acetate (4 mL) was added and after stirring for an additional hour, the product was filtered.
-
- A mixture of 1.7 mg of Compound (34), 1 mg of Cu(I)I, 50 uL of diisopropylethylamine, and about 5 equivalents of propylazide was stirred at room temperature in 1 mL of methanol overnight. Volatile components were removed under reduced pressure, and the crude material was purified using silica gel chromatography with chloroform and methanol.
-
- To 0.1 g of Compound (41) in 5 mL of THF at −78° C., 0.32 mL of a 2.5 M n-butyllithium was added and stirred at −78° C. for 1 hour. Next, 0.5 mL of acetic acid was added and stirred at room temperature for 1 hour. Volatile components were evaporated and the residue pumped in vacuo. To the dark residue in several mL of methylene chloride, 243 mg of Compound (5) and 0.2 mL of triethylamine were added and stirred at room temperature for 1 hour. The organic layer was washed with water and brine, and dried over magnesium sulfate. The crude material was purified using silica gel chromatography with ethyl acetate, chloroform and methanol.
-
- A mixture of 1.26 g of 5-(2,6-dimethoxyphenyl)-2-methylbenzothiazole and 0.99 g of methyl tosylate was heated at 130° C. for 1 hour. The crude material was stirred in about 30 mL of ethyl acetate and filtered to obtain the product.
-
- A mixture of 0.1 g of Compound (59), 32 mg of 4-dimethylaminobenzaldehyde and 21 uL of piperidine was heated at 40° C. in 10 mL of ethanol for 1.5 hours. Volatile components were removed under reduced pressure, and the residue was dissolved in chloroform and washed with water and brine. The crude material was purified using silica gel chromatography with chloroform and methanol.
-
- A mixture of 1 g of lepidine and 1 mL of (2-bromoethyl)benzene was heated at 90° C. for 2 hours. About 30 mL of ethyl acetate was added and refluxed for 15 minutes. The product was collected by filtration.
-
- A mixture of 0.1 g of Compound (5), 67 mg of Compound (61), and 86 uL of triethylamine in 10 mL of dichloroethane was stirred at room temperature for 1 hour. Volatile components were evaporated under reduced pressure, and the residue was stirred in about 30 mL of ethyl acetate at room temperature overnight. The product was collected by filtration.
-
- A mixture of 40 uL of lepidine and 57 mg of 2-(acetamido)-4-(chloromethyl)-thiazole was heated at 90° C. for 2 hours. The crude material was stirred in about 20 mL of ethyl acetate for several hours, and filtered to obtain the product.
-
- A mixture of 0.13 g of Compound (5), 0.26 mmole of Compound (63), and 0.11 mL of triethylamine was stirred in 10 mL of dichloroethane at room temperature for 1 hour. The crude product was purified using silica gel chromatography with chloroform and methanol.
-
- A mixture of 0.1 g of Compound (5), 58 mg of 1,4-dimethylquinolinium iodide, and 86 uL of triethylamine was stirred in 10 mL of dichloroethane at room temperature for 1 hour. Volatile components were evaporated under reduced pressure, and the residue was stirred in about 50 mL of ethyl acetate for 30 minutes. The product was collected by filtration.
-
- Compound (66) was prepared by following the same procedure used to prepare Compound (15), using Compounds (7) and (13) as the starting materials.
-
- Compound (67) was prepared by following the same procedure used to prepare Compound (15), using Compound (7) and 4-methyl-1-phenyl-2(H)-quinolone as the starting materials.
-
- Compound (68) was prepared by following the same procedure used to prepare Compound (16), using Compound (67) and N,N-dimethyl-N′-propyl-propanediamine as the starting materials.
-
- Compound (69) was prepared by following the same procedure used to prepare Compound (16), using Compound (67) and N,N,N′-trimethylpropanediamine as the starting materials.
-
- Compound (70) was prepared by following the same procedure used to prepare Compound (16), using Compound (66) and N,N,N′-trimethylpropanediamine as the starting materials.
-
- A mixture of 20 mg of Compound (7), 13 mg of 1-benzyl-4-methyl-quinolinium bromide, and 50 uL of triethylamine was stirred in 1 mL of methanol at room temperature for 1 hour. Volatile components were evaporated under reduced pressure, and the crude material was purified using silica gel column chromatography with chloroform and methanol.
-
- A mixture of 20 mg of Compound (7), 17 mg of Compound (42), and 50 uL of triethylamine was stirred at room temperature in 1 mL of DMF for 1 hour. This was followed by the addition of about 100 uL of 1-methylpiperazine, and the mixture was stirred overnight. Volatile components were evaporated under reduced pressure, and the product was purified using silica gel chromatography with chloroform and methanol.
-
- A mixture of 8 mg of Compound (7), 8 mg of Compound (42) and 0.5 mL of trimethylamine (25% in methanol) was stirred at room temperature in 1 mL of DMF for 4 hours. Volatile components were evaporated under reduced pressure, and then pumped in vacuo. The crude material was purified using silica gel chromatography with chloroform and methanol.
-
- A mixture of 20 mg of Compound (7), 5 equivalents of Compound (54), and 50 uL of triethylamine was stirred in 1 mL of DMF at room temperature for 1 hour. Volatile components were evaporated under reduced pressure. The crude material was purified using silica gel column chromatography with chloroform and methanol.
-
- A mixture of about 3 mg of Compound (74) and 0.2 mL of iodomethane was stirred at room temperature overnight in 1 mL of DMF. The product was precipitated by addition of 4 mL of ethyl acetate.
-
- Compound (76) was prepared by following the same procedure used to prepare Compound (15), using Compound (6) and 4-methyl-1-phenyl-2(H)-quinolone as the starting materials.
-
- Compound (77) was prepared by following the same procedure used to prepare Compound (16), using Compound (15) and N,N-dimethyl-N′-propylpropanediamine.
-
- A mixture of about 35 mg of Compound (6), 30 mg of Compound (42), and 17 uL of diisopropylethylamine was stirred in 5 mL of a 1:4 v/v DMF/methylene chloride solvent at room temperature overnight. Volatile components were evaporated under reduced pressure, and the crude product was purified using silica gel column chromatography with ethyl acetate, chloroform and methanol.
-
- A mixture of about 5 mg of Compound (78) and 3 mL of a 2 M solution of dimethylamine in THF was heated in 10 mL of methanol at room temperature for 3 days. Volatile components were removed under reduced pressure, and the crude product was purified using silica gel column chromatography with chloroform, methanol and triethylamine.
-
- A mixture of about 5 mg of Compound (78) and 30 mg of 1-methylpiperazine was stirred at 35° C. for 4 days. Volatile components were evaporated under reduced pressure, and the product was purified on a preparatory TLC plate.
-
- A mixture of 20 mg of Compound (6), 20 mg of 1-benzyl-4-methylquinolinium bromide, and 0.1 mL triethylamine was stirred in 0.5 mL of methylene chloride at room temperature for 1 hour. Volatile components were evaporated under reduced pressure, and the crude material was purified using silica gel column chromatography with methanol and chloroform.
-
- To 1.3 g of 1-methylimidazole in 20 mL of THF at −78° C. under nitrogen, 2.8 mL of a 2.5 M n-butyllithium was introduced. After 45 minutes at the low temperature, 1.25 g of 1-benzyl-4-methyl-2(H)-quinolone (in 10 mL of THF) was added and the resulting mixture was further stirred at −78° C. for 1 hour, at 0° C. for 2 hours and room temperature for another 30 minutes. Acetic acid (0.5 mL) was added and stirred for 30 minutes. Volatile components were removed under reduced pressure. The resulting material was presumably 1-benzyl-4-methyl-2-(1-methylimidazoyl)-quinolinium acetate.
-
- To a mixture of 20 mg of Compound (6) and 0.01 mmole of Compound (82) in 1 mL of methanol, 50 uL of triethylamine was added and stirred at room temperature for 1 hour. Volatile components were evaporated. The crude material was purified using silica gel column chromatography with chloroform and methanol, and then on a LH-20 column with water to obtain the pure product.
-
- The compound was prepared from the commercially available 5-phenyl-2-mercapto-benzothiazole (Aldrich Chemical; St. Louis, Mo.) by first converting the mercapto into a methylthio with potassium carbonate and methyl tosylate, and further quarternization of the benzothiazole under neat condition with methyl tosylate to generate the desired compound.
-
- A mixture of 60 mg of Compound (84), one molar equivalent of 1,4-dimethyl-2-(1-methylimidazoyl)-quinolinium acetate (prepared by similar protocol to that of Compound (82) using 1,4-dimethyl-2(H)-quinolone as the starting material), and 0.1 mL of triethylamine was stirred in 1 mL of methanol at room temperature for 1 hour. The crude material was purified on a LH-20 column eluting with water.
-
- A mixture of 15 mg of Compound (10) and 9.6 mg of 1,4-dimethylquinolinium iodide in 1 mL of methylene chloride was stirred at room temperature for 1 hour. The product was obtained by filtration.
-
- A mixture of 27 mg of Compound (10), 0.067 mmole of 1,4-dimethyl-2-(1-methylimidazoyl)-quinolinium acetate (prepared by similar protocol to that of Compound (82) using 1,4-dimethyl-2(H)-quinolone as the starting material), and 0.1 mL of triethylamine was stirred in 1 mL of methylene chloride for 1 hour. Volatile components were evaporated, and the crude product was purified on a LH-20 column.
-
- To a mixture of 8 mg of Compound (84) and one equivalent of Compound (82) in 1 mL of methanol, 50 uL of triethylamine was added and stirred at room temperature for 1 hour. Volatile components were evaporated, and the crude material was purified first by silica gel column chromatography with chloroform and methanol and second on a LH-20 column with water to obtain the pure product.
-
- A mixture of 43 mg of 5-phenyl-3-methyl-2-methylthiobenzoxazolium tosylate, 39 mg of 1-benzyl-4-methylquinolinium bromide, and 0.1 mL of triethylamine was stirred in 1 mL of methylene chloride for 1 hour. The product was collected by filtration.
-
- To 0.36 g of 4-diethylaminomethyl-bromobenzene in 4 mL dry THF at −78° C. under nitrogen, 0.48 mL of a 2.5 M n-butyllithium was introduced followed by 0.235 g of 4-methyl-1-phenyl-2(H)-quinolone (in 10 mL THF). The reaction was stirred at the low temperature for 1 hour before the addition of 1 mL acetic acid. The mixture was stirred at room temperature for another hour, and the solvent was removed and the residue was further pumped for an hour. The crude product 2-(4-diethylaminomethyl)-4-methyl-1-phenylquinolinium acetate was used without further purification.
-
- A mixture of 20 mg of Compound (10), one equivalent of Compound (90), and 50 uL of triethylamine was stirred in 1 mL of methylene chloride at room temperature for 1 hour. Volatile components were removed, and the crude material was purified using silica gel column chromatography with chloroform and methanol.
-
- A mixture of 12 mg of Compound (10), 10 mg of 1-benzyl-4-methylpyridinium bromide, and 0.1 mL of triethylamine in 1 mL of methylene chloride was refluxed for two hours. Volatile components were removed under reduced pressure, and the crude material was stirred in about 2 mL of methylene chloride for 1 hour. The product was collected by filtration.
-
- A mixture of 8 mg of Compound (10), 8.8 mg of 1-benzyl-4-methyl-2-phenylquinolinium bromide, and 50 uL of triethylamine was refluxed in 2 mL of methylene chloride for 3 hours. The crude material was purified using silica gel chromatography with chloroform and methanol.
-
- A mixture of 22 mg of Compound (12), 10 mg of 1-benzyl-4-methylquinolinium bromide, and 50 uL of triethylamine was stirred in 1 mL of methanol at room temperature for one hour. The crude material was purified using silica gel chromatography with chloroform and methanol.
-
- A mixture of 6.5 mg of Compound (9), 4 mg of 1-benzyl-4-methylquinolinium bromide, and 50 uL of triethylamine was stirred in 1 mL of methanol at room temperature for 3 hours. The crude material was purified using silica gel chromatography with chloroform and methanol.
-
- A mixture of 6.8 mg of Compound (11), 4.7 mg of 1-benzyl-4-methylquinolinium bromide, and 50 uL of triethylamine was stirred in 1 mL of methylene chloride at room temperature for 1 hour. The crude material was purified using silica gel column chromatography with chloroform and methanol.
-
- A mixture of 18 mg of 3-methyl-6-pyridyl-1,3-benzothiazole-2-thione, 22 mg of 1-benzyl-4-methylquinolinium bromide, 14 mg of methyl tosylate, and 0.1 mL of diisopropylethylamine was heated at 100° C. for 30 minutes. Volatile components were removed under reduced pressure, and the crude product was purified by preparative TLC plate.
-
- A mixture of 23 mg of 3-methyl-6-pyridyl-1,3-benzolthiazole-2-thione and 330 mg of methyl tosylate was heated at 130° C. for 1 hour. Next, 10 mL of ethyl acetate was added and refluxed for 15 minutes. The product was collected by filtration.
-
- A mixture of 27 mg of 1-benzyl-4-methylquinolinium bromide, one equivalent of Compound (98), and 0.2 mL of triethylamine was stirred in 2 mL of DMF at room temperature. The product was collected by filtration.
-
- A mixture of 50 mg of Compound (8), 1.2 equivalent of 1-benzyl-4-methylquinolinium bromide, and 45 uL of triethylamine was stirred in a mixed solvent of dichloroethane/DMF (v/v, 1:1, 4 mL) at room temperature for 3 hours. The reaction mixture was diluted with chloroform, washed with water, and dried over magnesium sulfate. The product precipitated out from the chloroform later as the volume was reduced.
-
- Compound (101) was prepared by following the same procedure used to prepare Compound (16), using 6-(bis-(1,3-dimethoxy)-prop-2-yl)-3-methyl-2-methylthio-benzothiazolium tosylate and Compound (13) as the starting materials.
-
- Compound (102) was prepared by following the same procedure used to prepare Compound (24), using Compound (5) and 1-benzyl-4-methyl-pyridin-2-one as the starting materials.
-
- Acetic anhydride (0.1 mL) was added to a mixture of 0.127 mg of 2-(2-anilinovinyl)-3-methyl-6-phenylquinolinium tosylate, one equivalent of 1-benzyl-4-methylquinolinium bromide, and 40 uL of triethylamine in 2 mL of dichloroethane at room temperature. The mixture was stirred for 2 hours. The reaction was diluted with chloroform and washed with water and brine. The crude material was purified by recrystallizing from methanol and ethyl acetate.
-
- Acetic anhydride (90 uL) was added to a mixture of 0.107 mg of 2-(2-anilinovinyl)-3-methyl-6-phenylquinolinium tosylate, one equivalent of 14(3-ethoxycarbonyl-1-propoxy)phenylmethyl)-4-methylquinolinium chloride, and 40 uL of triethylamine in 5 mL of dichloroethane at room temperature. The mixture was stirred for 2 hours. The reaction mixture was diluted with chloroform and washed with water and brine. The crude material was purified using silica gel column chromatography with chloroform and methanol.
-
- Water (0.5 mL) and 40 uL of 10% sodium hydroxide was added to 59 mg of Compound (107) in 5 mL of methanol. The mixture was stirred at room temperature for several hours. The reaction was diluted with about 30 mL of water, acidified with 1N HCl, and filtered to recover the product.
-
- O—(N-succinimidyl)-N,N,N′,N′-tetramethyluronium tetrafluoroborate (8.2 mg) was added to 11.3 mg of Compound (105) in 2 mL of DMF and 8 uL of triethylamine in 2 mL of DMF. The mixture was stirred overnight at room temperature. About 6 mL of ethyl acetate was added to precipitate the product, and the product was obtained by filtration.
-
- Compound (107) was prepared by following the same procedure used to prepare Compound (15), using Compound (5) and 1-benzyl-6-(3-ethoxycarbonyl-1-propoxy)-4-methyl-2(H)-quinolone as the starting materials.
-
- A mixture of 0.314 g of Compound (107), 0.13 mL of thiophenol, and 0.3 mL of triethylamine was stirred in 5 mL of dichloroethane at 60° C. for several hours. The product was purified using silica gel column chromatography with chloroform and methane.
-
- 4-N-methylaminobutyric acid (39 mg) and 107 uL of triethylamine was dissolved in a mixture of 1.5 mL of isopropyl alcohol and several drops of water. This mixture was added to a solution of 30 mg of Compound (15) in 3 mL of dichloroethane and the resulting mixture was heated at 60° C. for 1 hour. The crude material was diluted with additional chloroform and washed with diluted aqueous HCl. The product was purified on a silica gel column with chloroform and methanol.
-
- O—(N-succinimidyl)-N,N,N′,N′-tetramethyluronium tetrafluoroborate (7.4 mg) was added to a mixture of 11 mg of B36-13-LY and 5 uL of triethylamine in 2 mL of DMF. After 30 minutes stirring at room temperature, the crude material was purified on a silica gel column eluting with chloroform and acetone.
-
- Amino-dPEG4-alcohol (3.0 mg; Quanta Biodesign, Ltd.; Powell, Ohio) was added to a mixture of about 5 mg of Compound (110) and 2 equivalents of triethylamine. The mixture was stirred for 30 minutes. The mixture was concentrated and several mL of ethyl acetate was added and stirred briefly and filtered to obtain the product.
-
- Triethylamine (61 uL) was added to a mixture of 59 mg of 14(3-ethoxycarbonyl-1-propoxy)phenylmethyl)-4-methylquinolinium chloride and 74 mg of Compound (5) in 3 mL of methylene chloride. The mixture was stirred for 5 minutes. The mixture was then diluted with chloroform and washed with 1:1 mixture of water/brine to yield the product.
- The tested compound was dissolved as a stock solution in DMSO at a concentration of about 0.1-1.0 mg/mL. The exact concentration is not critical. Three tubes are prepared, each containing the same 1-20 uL of stock solution. The first tube contained 10 mM Tris, 1 mM EDTA (pH 7.5) buffer; the second tube contained buffer and 65 ug/mL calf thymus double stranded DNA; and the third tube contained buffer and 65 ug/mL ribosomal RNA. The tubes were incubated at room temperature for 10-15 minutes with protection from light.
- Fluorescence scans of the three solutions were performed in disposable cuvettes, with the excitation wavelength corresponding to the absorption maximum for the compound bound to DNA (or RNA if the values were significantly different). In some cases, it was necessary to dilute the sample to keep the fluorescence signal on-scale. In these cases, all three samples were diluted to the same degree. The ratio of the fluorescence of the compound in the presence of DNA and RNA was determined.
- The following compounds were selected as representative of the inventive class of compounds. The fluorescence values in the presence of DNA and RNA were determined as described in the previous Example. The following table shows the DNA/RNA fluorescence ratios, where higher values indicate a selectivity for DNA. A ratio of 1 would indicate no selectivity. Excitation and emission values are in nm
-
DNA/RNA Compound ex/em (fluorescence ratio) Thiazole orange 510/530 1 Compound 16 504/532 15.2 Compound 17 508/536 4.8 Compound 18 505/533 3.5 Compound 19 525/553 7.3 Compound 20 510/536 4 Compound 21 510/534 5.4 Compound 22 505/534 4.7 Compound 23 500/529 3.8 Compound 24 520/570 4.6 Compound 25 518/559 9 Compound 26 505/541 36 Compound 28 497/527 6.5 Compound 30 495/527 5.7 Compound 31 505/534 10.5 Compound 32 498/517 36 Compound 34 503/532 5.8 Compound 38 497522 13 Compound 39 507/536 6.1 Compound 44 510/540 22 Compound 45 511/541 13.2 Compound 46 512/542 11.5 Compound 47 512/541 8.6 Compound 48 513/540 7.3 Compound 49 520/542 18 Compound 50 512/541 9.7 Compound 53 510/540 60 Compound 55 513/541 10.9 Compound 56 515/545 3.7 Compound 57 506/536 3.8 Compound 62 510/539 48 Compound 65 506-536 11.3 Compound 68 498/523 7 Compound 69 494/523 3.2 Compound 70 501/524 2.7 Compound 89 485/512 1.8 Compound 91 522/563 1.5 Compound 92 458/501 1 Compound 93 466/514 1.5 Compound 94 513/530 2.1 Compound 95 550/591 1.9 Compound 96 527/555 8 Compound 97 513/538 3.7 Compound 99 511/534 1.3 Compound 100 513/551 8.1 Compound 101 503/527 3 Compound 102 475/515 3.3 Compound 103 507/537 3.1 Compound 104 652/666 9 Compound 109 496/525 121 Compound 111 497/527 64 Compound 112 500/541 191 - This compound has a 520 nm excitation maximum, and can effectively be excited with either a 488 nm line (blue laser) or a 532 nm (green laser) line. The compound has an emission maximum of 569 nm (orange).
- Live Jurkat cells (human T-lymphocyte) were suspended at 1×106 cells/ml in RPMI media with 10% Fetal Bovine Serum (FBS). 5 μM Compound (20) was added to one mL cell suspension, and incubated at 37° C. for 60 minutes protected from light. Cells were processed using a Becton Dickinson (BD) LSRII Flow Cytometer. A Forward Scatter (FS) vs Side Scatter (SS) dual parameter plot was used to gate main cell population. On gated cells, a dual-parameter plot of Fluorescence-Width vs Fluorescence-Area was used for single cell discrimination gating. Single color fluorescence was collected at 530/30 bandpass using the 488 nm excitation laser, collecting 30,000 events at flow rate of about 200 events/second. The data was further analyzed using ModFit LT Flow Cytometry Modeling Software from Verity Software House, Inc. to determine the ratio of G2/G1 and the CV of G1 phase.
- Typical cell cycle histograms were demonstrated showing G0G1 phase, S phase, and G2M phase. This was obtained on the live cell gate. Further analysis using ModFit Software showed that G1-phase is 47.08% with peak CV of 6.92%, S-phase is 46.67%, G2-phase is 6.25% and the G2/G1 ratio is 1.83. This demonstrated that the compound stains live cells for cell cycle where the CV of G1-phase <8%, and the observed ratio indicated linearity of staining.
- Live Jurkat cells were treated with colcemid for 2 hours, to arrest cell cycle at mitosis, thus resulting in a larger more defined G2M-phase. The cells were suspended at 1×106 cells/ml in RPMI media with 10% Fetal Bovine Serum (FBS). 10 μM Compound (24) was added to one mL cell suspension, incubated at 37° C. for 30 minutes protected from light. Cells were processed using the Becton Dickinson (BD) LSRII Flow Cytometer. Forward Scatter (FS) vs Side Scatter (SS) dual parameter plot was used to gate main cell population. On gated cells, a dual-parameter plot of Fluorescence-Width vs Fluorescence-Area was used for single cell discrimination gating. Single color fluorescence was collected at 585/42 bandpass using the 488 nm excitation laser, and also collected at the same 585/42 bandpass using the 532 nm excitation laser, collecting 30,000 events at flow rate of about 200 events/second. The data was further analyzed using ModFit LT Flow Cytometry Modeling Software from Verity Software House, Inc. to determine the ratio of G2/G1 and the CV of G1 phase.
- Typical cell cycle histograms were demonstrated showing G0G1 phase, S phase, and G2M phase. This was obtained on the live cell gate. Further analysis using ModFit Software showed typical cell cycle staining. This demonstrated that the compound stains live cells for cell cycle where the CV of G1-phase <8%, and the observed ratio indicated linearity of staining.
- Live HL60 cells (human promyeloblasts) were suspended at 1×106 cells/ml in Iscove's Dulbecco's complete Media with 20% Fetal Bovine Serum (FBS). 5 μM Compound (20) is added to one mL cell suspension, and incubated at 37° C. for 30 minutes protected from light. Cells were processed using the Becton Dickinson (BD) LSRII Flow Cytometer. Forward Scatter (FS) vs Side Scatter (SS) dual parameter plot was used to gate main cell population. On gated cells, a dual-parameter plot of Fluorescence-Width vs Fluorescence-Area was used for single cell discrimination gating. Single color fluorescence was collected at 530/30 bandpass using the 488 nm excitation laser, collecting 30,000 events at flow rate of about 200 events/second. The data was further analyzed using ModFit LT Flow Cytometry Modeling Software from Verity Software House, Inc. to determine the ratio of G2/G1 and the CV of G1 phase.
- Typical cell cycle histograms were demonstrated showing G0G1 phase, S phase, and G2M phase. This was obtained on the live cell gate. Further analysis using ModFit Software showed typical cell cycle staining. This demonstrated that the compound stained live cells for cell cycle where the CV of G1-phase <8%, and the observed ratio indicated linearity of staining.
- HL60 cells were suspended at 1×106 cells/ml in Hanks Balanced Salt Solution (HBSS). 10 μM Compound (24) was added to one mL cell suspension, and incubated at room temperature for 30 minutes protected from light. Cells were processed using the Becton Dickinson (BD) LSRII Flow Cytometer. Forward Scatter (FS) vs Side Scatter (SS) dual parameter plot was used to gate main cell population. On gated cells, a dual-parameter plot of Fluorescence-Width vs Fluorescence-Area was used for single cell discrimination gating. Single color fluorescence was collected at 585/42 bandpass using the 488 nm excitation laser, and also at the same 585/42 bandpass using the 532 nm excitation laser, collecting 30,000 events at flow rate of about 200 events/second. The data was further analyzed using ModFit LT Flow Cytometry Modeling Software from Verity Software House, Inc. to determine the ratio of G2/G1 and the CV of G1 phase.
- Typical cell cycle histograms were demonstrated showing G0G1 phase, S phase, and G2M phase. This was obtained on the live cell gate. Further analysis using ModFit Software showed typical cell cycle staining. This demonstrated that the compound stained live cells for cell cycle where the CV of G1-phase <8%, and the observed ratio indicated linearity of staining.
- HL60 cells were fixed with 70% ethanol and stored at −20° C. until use. The fixed cells were washed once in Hanks Balanced Salt Solution (HBSS) and were then suspended at 1×106 cells/ml in HBSS. 5 μM Compound (24) was added to one mL cell suspension, and incubated at 37° C. for 5 minutes protected from light. Cells were processed using the Becton Dickinson (BD) LSRII Flow Cytometer. Forward Scatter (FS) vs Side Scatter (SS) dual parameter plot was used to gate main cell population. On gated cells, a dual-parameter plot of Fluorescence-Width vs Fluorescence-Area was used for single cell discrimination gating. Single color fluorescence was collected at 585/42 bandpass using the 488 nm excitation laser, and also collected at the same 585/42 bandpass using the 532 nm excitation laser, collecting 30,000 events at flow rate of about 200 events/second. The data was further analyzed using ModFit LT Flow Cytometry Modeling Software from Verity Software House, Inc. to determine the ratio of G2/G1 and the CV of G1 phase.
- Typical cell cycle histograms were demonstrated showing G0G1 phase, S phase, and G2M phase. Further analysis using ModFit Software showed typical cell cycle staining. This demonstrated that the compound stained live cells for cell cycle where the CV of G1-phase <8%, and the observed ratio indicated linearity of staining.
- Live Jurkat cells were treated with colcemid for 2 hours, to arrest cell cycle at mitosis, thus resulting in a larger more defined G2M-phase. The cells were fixed with 70% ethanol and stored at −20° C. until use. The fixed cells were washed once in Hanks Balanced Salt Solution (HBSS) and were then suspended at 1×106 cells/ml in HBSS. 5 μM Compound (20) was added to one mL cell suspension, and incubated at 37° C. for 5 minutes protected from light. Cells were processed using the Becton Dickinson (BD) LSRII Flow Cytometer. Forward Scatter (FS) vs Side Scatter (SS) dual parameter plot was used to gate main cell population. On gated cells, a dual-parameter plot of Fluorescence-Width vs Fluorescence-Area was used for single cell discrimination gating. Single color fluorescence was collected at 530/30 bandpass using the 488 nm excitation laser, collecting 30,000 events at flow rate of about 200 events/second. The data was further analyzed using ModFit LT Flow Cytometry Modeling Software from Verity Software House, Inc. to determine the ratio of G2/G1 and the CV of G1 phase.
- Typical cell cycle histograms were demonstrated showing GOG1 phase, S phase, and G2M phase. Further analysis using ModFit Software showed typical cell cycle staining. This demonstrated that the compound stained live cells for cell cycle where the CV of G1-phase <8%, and the observed ratio indicated linearity of staining.
- Live Jurkat cells were split into 13 samples and each cell split was suspended in complete RMPI/10% FBS. Samples was treated with 10 μM Camptothecin in DMSO to induce apoptosis, or treated with DMSO alone to act as a control. Treatment and control time was 1, 2, 3, 4, 5, and 6 hours, and a time zero point. The cell suspensions were then incubated at 37° C./5% CO2 for a designated time. This type of experiment is sometimes called an “apoptosis time course”. Each split was washed once in complete RPMI media/10% Fetal Bovine Serum (FBS) and resuspended at 1×106 cells/mL in complete RPMI media with 10% FBS. Flow tubes were made up by adding one mL designated cell suspension to which 10 μM compound (24) was added to one mL cell suspension, incubated at 37° C. for 30 minutes protected from light, and the SYTOX® Blue dead cell stain (SYTOX is a registered trademark of Molecular Probes, Inc.; Eugene, Oreg.) was added as a dead cell discriminator. Cells were processed using the Becton Dickinson LSRII Flow Cytometer. A SYTOX® Blue stain vs compound (24) stain plot was made and a gate was made on compound (24) stain positive and SYTOX® Blue stain negative cells to gate out dead cells, and to ensure only live cells were analyzed. Fluorescence from the SYTOX® Blue stain was collected using 405 nm excitation laser with 450/50 bandpass and compound (24) stain fluorescence was collected at 585/42 bandpass using the 488 nm excitation laser as well as collected at the same 585/42 bandpass using the 532 nm excitation laser. Collection of 30,000 events ocurred at a flow rate of about 200 events/second. The data was further analyzed using ModFit LT Flow Cytometry Modeling Software from Verity Software House, Inc. to look at ratio of G2/G1 and the CV of G1 phase and the percent sub-G0 population (apoptotic population).
- Typical cell cycle histograms were demonstrated showing G0G1 phase, S phase, and G2M phase for each control time point with no sub-G0 population identified. Cell cycle histograms for the cells treated with Camptothecin demonstrated a population of cells at the sub-G0 location which begin to show at 3 hours induction and continue to increase throughout the time course at each time point afterwards. Further analysis using ModFit Software with an apoptotic model, showed typical cell cycle staining for control cells and growing sub-G0 population with the induced cells. This demonstrated that compound (24) stains live cells for identification of a sub-G0 population in apoptotic cells which increases with time of induction. Similar results were obtained with 532 nm excitation.
- All of the compositions and/or methods disclosed and claimed herein can be made and executed without undue experimentation in light of the present disclosure. While the compositions and methods of this invention have been described in terms of preferred embodiments, it will be apparent to those of skill in the art that variations may be applied to the compositions and/or methods and in the steps or in the sequence of steps of the methods described herein without departing from the concept and scope of the invention. More specifically, it will be apparent that certain agents which are both chemically and physiologically related may be substituted for the agents described herein while the same or similar results would be achieved. All such similar substitutes and modifications apparent to those skilled in the art are deemed to be within the scope and concept of the invention.
Claims (26)
1. A chemical compound having the structure:
wherein:
n is a non-negative integer;
X is oxygen or sulfur;
R1, R2, R3, R4, R5, R6, R7, R8, R9, R10, and R11 independently comprise hydrogen, a hydroxyl group, an alkoxy group, a thiol, a thioalkyl, a thioaryl, a halogen, an alkyl group, an alkenyl group, an alkynyl group, an aromatic group, a primary amine group, a secondary amine group, a tertiary amine group, a reactive group, or combinations thereof; and
R12 is an alkyl group.
2. The chemical compound of claim 1 , wherein:
R1, R2, R3, R4, R5, R6, R7, R8, R9, R10, and R11 are independently hydrogen, a hydroxyl group, an alkoxy group, a thiol, a thioalkyl, a thioaryl, a halogen, an alkyl group, an alkenyl group, an alkynyl group, an aromatic group, a primary amine group, a secondary amine group, a tertiary amine group, a reactive group, or combinations thereof.
3. The chemical compound of claim 1 , wherein at least one of R1, R2, R3, and R4 comprises an aromatic group or an alkynyl group.
4. The chemical compound of claim 1 , wherein R9 comprises an aromatic group, alkyl-aromatic, or an alkynyl group.
5. The chemical compound of claim 1 , wherein R10 is an amine group.
6. The chemical compound of claim 1 , wherein:
at least one of R1, R2, R3, and R4 comprises an aromatic group or an alkynyl group; and
R9 comprises an aromatic group, alkyl-aromatic group, or an alkynyl group.
7. The chemical compound of claim 1 , wherein:
at least one of R1, R2, R3, and R4 comprises an aromatic group or an alkynyl group;
R9 comprises an aromatic group, alkyl-aromatic group, or an alkynyl group; and
R10 comprises an amine group.
8. The chemical compound of claim 1 , wherein R12 is a C1-C8 alkyl group.
9. The chemical compound of claim 1 , wherein R12 is a methyl group.
10. The chemical compound of claim 1 , further comprising one or more cations or anions.
11. A kit comprising:
DNA, RNA, or both DNA and RNA; and
a chemical compound having the structure:
wherein:
n is a non-negative integer;
X is oxygen or sulfur;
R1, R2, R3, R4, R5, R6, R7, R8, R9, R10, and R11 independently comprise hydrogen, a hydroxyl group, an alkoxy group, a thiol, a thioalkyl, a thioaryl, a halogen, an alkyl group, an alkenyl group, an alkynyl group, an aromatic group, a primary amine group, a secondary amine group, a tertiary amine group, a reactive group, or combinations thereof; and
R12 is an alkyl group.
12. A method of detecting the presence or absence of double stranded DNA in a sample, the method comprising:
providing a sample suspected of containing double stranded DNA;
contacting the sample with a chemical compound to prepare a test sample;
illuminating the test sample with energy; and
detecting emission of energy from the test sample;
wherein the chemical compound has the structure:
wherein:
n is a non-negative integer;
X is oxygen or sulfur;
R1, R2, R3, R4, R5, R6, R7, R8, R9, R10, and R11 independently comprise hydrogen, a hydroxyl group, an alkoxy group, a thiol, a thioalkyl, a thioaryl, a halogen, an alkyl group, an alkenyl group, an alkynyl group, an aromatic group, a primary amine group, a secondary amine group, a tertiary amine group, a reactive group, or combinations thereof; and
R12 is an alkyl group.
13. The method of claim 12 , further comprise calculating the concentration of double stranded DNA in the sample after the detecting step.
14. A chemical compound having the structure:
wherein:
n is a non-negative integer;
X is oxygen or sulfur;
R13, R14, R15, R16, R17, R18, R19, R20, and R21 independently comprise hydrogen, a hydroxyl group, an alkoxy group, a thiol, a thioalkyl, a thioaryl, a halogen, an alkyl group, an alkenyl group, an alkynyl group, an aromatic group, a primary amine group, a secondary amine group, a tertiary amine group, a reactive group, or combinations thereof; and
R22 is an alkyl group.
15. The chemical compound of claim 14 , wherein:
R13, R14, R15, R16, R17, R18, R19, R20, and R21 are independently hydrogen, a hydroxyl group, an alkoxy group, a thiol, a thioalkyl, a thioaryl, a halogen, an alkyl group, an alkenyl group, an alkynyl group, an aromatic group, a primary amine group, a secondary amine group, a tertiary amine group, a reactive group, or combinations thereof.
16. The chemical compound of claim 14 , wherein at least one of R13, R14, R15, and R16 comprises an aromatic group or an alkynyl group.
17. The chemical compound of claim 14 , wherein R19 comprises an aromatic group, alkyl-aromatic, or an alkynyl group.
18. The chemical compound of claim 14 , wherein R20 is an amine group.
19. The chemical compound of claim 14 , wherein:
at least one of R13, R14, R15, and R16 comprises an aromatic group or an alkynyl group; and
R19 comprises an aromatic group, alkyl-aromatic group, or an alkynyl group.
20. The chemical compound of claim 14 , wherein:
at least one of R13, R14, R15, and R16 comprises an aromatic group or an alkynyl group;
R19 comprises an aromatic group, alkyl-aromatic group, or an alkynyl group; and
R20 comprises an amine group.
21. The chemical compound of claim 14 , wherein R22 is a C1-C8 alkyl group.
22. The chemical compound of claim 14 , wherein R22 is a methyl group.
23. The chemical compound of claim 14 , further comprising one or more cations or anions.
24. A kit comprising:
DNA, RNA, or both DNA and RNA; and
a chemical compound having the structure:
wherein:
n is a non-negative integer;
X is oxygen or sulfur;
R13, R14, R15, R16, R17, R18, R19, R20, and R21 independently comprise hydrogen, a hydroxyl group, an alkoxy group, a thiol, a thioalkyl, a thioaryl, a halogen, an alkyl group, an alkenyl group, an alkynyl group, an aromatic group, a primary amine group, a secondary amine group, a tertiary amine group, a reactive group, or combinations thereof; and
R22 is an alkyl group.
25. A method of detecting the presence or absence of double stranded DNA in a sample, the method comprising:
providing a sample suspected of containing double stranded DNA;
contacting the sample with a chemical compound to prepare a test sample;
illuminating the test sample with energy; and
detecting emission of energy from the test sample;
wherein the chemical compound has the structure:
wherein:
n is a non-negative integer;
X is oxygen or sulfur;
R13, R14, R15, R16, R17, R18, R19, R20, and R21 independently comprise hydrogen, a hydroxyl group, an alkoxy group, a thiol, a thioalkyl, a thioaryl, a halogen, an alkyl group, an alkenyl group, an alkynyl group, an aromatic group, a primary amine group, a secondary amine group, a tertiary amine group, a reactive group, or combinations thereof; and
R22 is an alkyl group.
26. The method of claim 25 , further comprise calculating the concentration of double stranded DNA in the sample after the detecting step.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/559,300 US20120288855A1 (en) | 2005-05-11 | 2012-07-26 | Fluorescent Chemical Compounds Having High Selectivity for Double Stranded DNA, and Methods for Their Use |
US13/861,123 US8865904B2 (en) | 2005-05-11 | 2013-04-11 | Fluorescent chemical compounds having high selectivity for double stranded DNA, and methods for their use |
US14/488,751 US9115397B2 (en) | 2005-05-11 | 2014-09-17 | Fluorescent chemical compounds having high selectivity for double stranded DNA, and methods for their use |
US14/797,415 US9366676B2 (en) | 2005-05-11 | 2015-07-13 | Fluorescent chemical compounds having high selectivity for double stranded DNA, and methods for their use |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US68024305P | 2005-05-11 | 2005-05-11 | |
US11/432,814 US7598390B2 (en) | 2005-05-11 | 2006-05-11 | Fluorescent chemical compounds having high selectivity for double stranded DNA, and methods for their use |
US12/573,809 US7943777B2 (en) | 2005-05-11 | 2009-10-05 | Fluorescent chemical compounds having high selectivity for double stranded DNA, and methods for their use |
US13/104,413 US20110217699A1 (en) | 2005-05-11 | 2011-05-10 | Fluorescent Chemical Compounds Having High Selectivity for Double Stranded DNA, and Methods for Their Use |
US13/559,300 US20120288855A1 (en) | 2005-05-11 | 2012-07-26 | Fluorescent Chemical Compounds Having High Selectivity for Double Stranded DNA, and Methods for Their Use |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/104,413 Continuation US20110217699A1 (en) | 2005-05-11 | 2011-05-10 | Fluorescent Chemical Compounds Having High Selectivity for Double Stranded DNA, and Methods for Their Use |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/861,123 Continuation US8865904B2 (en) | 2005-05-11 | 2013-04-11 | Fluorescent chemical compounds having high selectivity for double stranded DNA, and methods for their use |
Publications (1)
Publication Number | Publication Date |
---|---|
US20120288855A1 true US20120288855A1 (en) | 2012-11-15 |
Family
ID=37431576
Family Applications (7)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/432,814 Active 2026-11-27 US7598390B2 (en) | 2005-05-11 | 2006-05-11 | Fluorescent chemical compounds having high selectivity for double stranded DNA, and methods for their use |
US12/573,809 Active 2026-06-12 US7943777B2 (en) | 2005-05-11 | 2009-10-05 | Fluorescent chemical compounds having high selectivity for double stranded DNA, and methods for their use |
US13/104,413 Abandoned US20110217699A1 (en) | 2005-05-11 | 2011-05-10 | Fluorescent Chemical Compounds Having High Selectivity for Double Stranded DNA, and Methods for Their Use |
US13/559,300 Abandoned US20120288855A1 (en) | 2005-05-11 | 2012-07-26 | Fluorescent Chemical Compounds Having High Selectivity for Double Stranded DNA, and Methods for Their Use |
US13/861,123 Active US8865904B2 (en) | 2005-05-11 | 2013-04-11 | Fluorescent chemical compounds having high selectivity for double stranded DNA, and methods for their use |
US14/488,751 Active US9115397B2 (en) | 2005-05-11 | 2014-09-17 | Fluorescent chemical compounds having high selectivity for double stranded DNA, and methods for their use |
US14/797,415 Active US9366676B2 (en) | 2005-05-11 | 2015-07-13 | Fluorescent chemical compounds having high selectivity for double stranded DNA, and methods for their use |
Family Applications Before (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/432,814 Active 2026-11-27 US7598390B2 (en) | 2005-05-11 | 2006-05-11 | Fluorescent chemical compounds having high selectivity for double stranded DNA, and methods for their use |
US12/573,809 Active 2026-06-12 US7943777B2 (en) | 2005-05-11 | 2009-10-05 | Fluorescent chemical compounds having high selectivity for double stranded DNA, and methods for their use |
US13/104,413 Abandoned US20110217699A1 (en) | 2005-05-11 | 2011-05-10 | Fluorescent Chemical Compounds Having High Selectivity for Double Stranded DNA, and Methods for Their Use |
Family Applications After (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/861,123 Active US8865904B2 (en) | 2005-05-11 | 2013-04-11 | Fluorescent chemical compounds having high selectivity for double stranded DNA, and methods for their use |
US14/488,751 Active US9115397B2 (en) | 2005-05-11 | 2014-09-17 | Fluorescent chemical compounds having high selectivity for double stranded DNA, and methods for their use |
US14/797,415 Active US9366676B2 (en) | 2005-05-11 | 2015-07-13 | Fluorescent chemical compounds having high selectivity for double stranded DNA, and methods for their use |
Country Status (4)
Country | Link |
---|---|
US (7) | US7598390B2 (en) |
EP (1) | EP1885718B1 (en) |
JP (2) | JP5306811B2 (en) |
WO (1) | WO2006124816A1 (en) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7776529B2 (en) | 2003-12-05 | 2010-08-17 | Life Technologies Corporation | Methine-substituted cyanine dye compounds |
US7598390B2 (en) * | 2005-05-11 | 2009-10-06 | Life Technologies Corporation | Fluorescent chemical compounds having high selectivity for double stranded DNA, and methods for their use |
EP1984724A4 (en) * | 2006-01-24 | 2015-07-08 | Life Technologies Corp | Device and methods for quantifying analytes |
FR2904833A1 (en) * | 2006-08-11 | 2008-02-15 | Bioquanta Sarl | Determining the quantity of nucleic acid, particularly DNA or RNA in a sample comprises adding a fluorophore to the sample, measuring fluorescence intensities in response to luminous stimulations and removing the nucleic acids |
JP5016676B2 (en) * | 2006-09-29 | 2012-09-05 | ロイコケア・アクチェンゲゼルシャフト | Methods for detecting the degree of immune system activation or cell death |
DE102008022221A1 (en) * | 2008-05-06 | 2009-11-12 | Universität des Saarlandes | Inhibitors of human aldosterone synthase CYP11B2 |
CN102154003B (en) * | 2011-02-12 | 2015-04-22 | 天津城市建设学院 | Novel carbazole-bridge-based fluorescent cyanine dye probe and preparation method thereof |
US9127317B2 (en) | 2012-03-02 | 2015-09-08 | Winthrop-University Hospital | Method for using probe based PCR detection to measure the levels of circulating demethylated β cell derived DNA as a measure of β cell loss in diabetes |
CN104059376B (en) * | 2014-07-01 | 2015-12-30 | 浙江大学 | A kind of unsymmetrical cyanine dye compound and application thereof |
CN115803333A (en) | 2020-07-02 | 2023-03-14 | 生命技术公司 | Trinucleotide cap analogs, their preparation and use |
WO2022099658A1 (en) * | 2020-11-13 | 2022-05-19 | 大连理工大学 | Cyanine compound, dye containing cyanine compound, and application of cyanine compound |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7598390B2 (en) * | 2005-05-11 | 2009-10-06 | Life Technologies Corporation | Fluorescent chemical compounds having high selectivity for double stranded DNA, and methods for their use |
Family Cites Families (217)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2269234A (en) | 1940-10-18 | 1942-01-06 | Eastman Kodak Co | Polymethine dye intermediates |
DE917330C (en) | 1940-10-22 | 1955-01-10 | Agfa Ag Fuer Photofabrikation | Process for the production of symmetrical and asymmetrical carbocyanines substituted on the middle carbon atom of the methine chain |
BE477314A (en) * | 1946-11-22 | |||
BE502441A (en) * | 1950-04-08 | |||
GB870753A (en) | 1957-07-04 | 1961-06-21 | Ilford Ltd | Improvements in or relating to methine dyes |
GB1053082A (en) | 1963-06-10 | |||
US3262153A (en) | 1964-07-13 | 1966-07-26 | Du Pont | Apparatus for producing composite filaments |
US3458318A (en) * | 1965-08-02 | 1969-07-29 | Eastman Kodak Co | Supersensitized silver halide emulsions |
BE691230A (en) | 1965-12-27 | 1967-05-16 | ||
US3490910A (en) * | 1968-02-02 | 1970-01-20 | Gaf Corp | Silver halide emulsions sensitized with cyanine dyes containing a tetrahydrobenzo-benzoxazole nucleus |
DE1805548A1 (en) | 1968-10-26 | 1970-10-08 | Agfa Gevaert Ag | Benzimidazole derivatives and their photographic uses |
DE2008114A1 (en) * | 1970-02-21 | 1971-09-02 | Agfa Gevaert AG, 5090 Leverkusen | Spectrally sensitive, highly sensitive material |
US3988513A (en) | 1970-07-06 | 1976-10-26 | Fuji Photo Film Co., Ltd. | Silver halide emulsions for recording electron rays |
JPS4841205B1 (en) | 1970-07-16 | 1973-12-05 | ||
JPS5121340B1 (en) | 1971-03-23 | 1976-07-01 | ||
JPS5434330B2 (en) | 1972-04-12 | 1979-10-26 | ||
US4003750A (en) | 1973-05-03 | 1977-01-18 | Eastman Kodak Company | Silver halide emulsion containing photographic sensitizing dyes |
GB1529202A (en) | 1976-02-20 | 1978-10-18 | Ciba Geigy Ag | Spectral sensitising dyes |
US4126516A (en) | 1976-11-29 | 1978-11-21 | Corning Glass Works | Method for distinguishing gram positive and gram negative microbes |
US4343782A (en) | 1978-04-20 | 1982-08-10 | Shapiro Howard M | Cytological assay procedure |
US4225669A (en) | 1979-04-27 | 1980-09-30 | Melnick Joseph L | Staining and analysis of bacteria |
US4424201A (en) | 1978-11-28 | 1984-01-03 | Rockefeller University | Employment of a mereyanine dye for the detection of malignant leukocytic cells |
US4190328A (en) | 1978-12-01 | 1980-02-26 | Levine Robert A | Process for detection of blood-borne parasites |
JPS55116259A (en) | 1979-03-01 | 1980-09-06 | Fuji Photo Film Co Ltd | Microimmunoassay method |
JPS56110927A (en) | 1980-02-07 | 1981-09-02 | Mitsubishi Paper Mills Ltd | Manufacture of silver halide photographic material |
CA1155041A (en) | 1980-04-21 | 1983-10-11 | Michael E. Jolley | Fluorescent nucleic acid stains |
US4544546A (en) | 1980-04-21 | 1985-10-01 | Abbott Laboratories | Fluorescent nucleic acid stains |
US4304908A (en) | 1980-06-23 | 1981-12-08 | Eastman Kodak Company | Methine colorant materials and the use thereof in electrophoretic migration imaging layers and processes |
JPS6310515Y2 (en) | 1980-10-17 | 1988-03-29 | ||
JPS5772150A (en) * | 1980-10-23 | 1982-05-06 | Ishihara Sangyo Kaisha Ltd | Electrophotographic sensitive material |
US4711955A (en) | 1981-04-17 | 1987-12-08 | Yale University | Modified nucleotides and methods of preparing and using same |
US5055556A (en) | 1981-10-06 | 1991-10-08 | The Board Of Trustees Of The Leland Stanford Jr. Univ. | Fluorescent conjugates for analysis of molecules and cells |
US4859582A (en) | 1981-10-06 | 1989-08-22 | The Board Of Trustees Of The Leland Stanford Jr. University | Fluorescent conjugates for analysis of molecules and cells |
US4520110A (en) | 1981-10-06 | 1985-05-28 | The Board Of Trustees Of The Leland Stanford Junior University | Fluorescent immunoassay employing a phycobiliprotein labeled ligand or receptor |
FR2517071A1 (en) | 1981-11-24 | 1983-05-27 | Commissariat Energie Atomique | RECEIVER FOR SENSOR FOR DETECTION AND MEASUREMENT OF PHENOMENA RELATING TO THE ENVIRONMENT OF THE TERRESTRIAL GLOBE |
US4771955A (en) | 1982-04-29 | 1988-09-20 | Paulson John K | Pepper mill closure |
US4542104A (en) | 1983-04-06 | 1985-09-17 | The Board Of Trustees Of The Leland Stanford Jr. Univ. | Phycobiliprotein fluorescent conjugates |
US4510235A (en) | 1983-04-28 | 1985-04-09 | Fuji Photo Film Co., Ltd. | Silver halide photographic emulsions |
US4556636A (en) | 1983-06-09 | 1985-12-03 | Eastman Kodak Company | Composition, analytical element and method for the detection of bacteria |
US4508821A (en) | 1983-07-05 | 1985-04-02 | Becton Dickinson And Company | Detection of white cell associated bacteria with a fluorescent dye |
US4737454A (en) | 1983-07-14 | 1988-04-12 | Molecular Diagnostics, Inc. | Fast photochemical method of labelling nucleic acids for detection purposes in hybridization assays |
US5171534A (en) | 1984-01-16 | 1992-12-15 | California Institute Of Technology | Automated DNA sequencing technique |
US4603209A (en) | 1984-09-07 | 1986-07-29 | The Regents Of The University Of California | Fluorescent indicator dyes for calcium ions |
US4639421A (en) | 1984-10-01 | 1987-01-27 | Becton, Dickinson And Company | Fluorescent gram stain |
US4665024A (en) | 1984-10-01 | 1987-05-12 | Becton, Dickinson And Company | Fluorescent gram stain |
US5221518A (en) | 1984-12-14 | 1993-06-22 | Mills Randell L | DNA sequencing apparatus |
US4886744A (en) | 1985-04-25 | 1989-12-12 | Polaroid Corporation | Fluorescent conjugates and biological diagnostic assay system |
US4740891A (en) | 1985-05-06 | 1988-04-26 | Tektronix, Inc. | Asynchronous state machine |
EP0218385B2 (en) | 1985-09-17 | 1997-05-14 | Konica Corporation | Thermally developable light-sensitive material |
DE3677916D1 (en) | 1985-11-01 | 1991-04-11 | Becton Dickinson Co | DETECTION OF RETICULOYCYTES. |
US4957870A (en) | 1985-11-01 | 1990-09-18 | Becton, Dickinson And Company | Detection of Reticulocytes, RNA and DNA |
US4883867A (en) | 1985-11-01 | 1989-11-28 | Becton, Dickinson And Company | Detection of reticulocytes, RNA or DNA |
US4812409A (en) | 1986-01-31 | 1989-03-14 | Eastman Kodak Company | Hydrolyzable fluorescent substrates and analytical determinations using same |
US5569587A (en) | 1986-04-18 | 1996-10-29 | Carnegie Mellon University | Method for labeling and detecting materials employing luminescent arysulfonate cyanine dyes |
US5627027A (en) * | 1986-04-18 | 1997-05-06 | Carnegie Mellon University | Cyanine dyes as labeling reagents for detection of biological and other materials by luminescence methods |
US5268486A (en) | 1986-04-18 | 1993-12-07 | Carnegie-Mellon Unversity | Method for labeling and detecting materials employing arylsulfonate cyanine dyes |
US6225050B1 (en) * | 1986-04-18 | 2001-05-01 | Carnegie Mellon University | Cyanine dyes as labeling reagents for detection of biological and other materials by luminescence methods |
US6048982A (en) * | 1986-04-18 | 2000-04-11 | Carnegie Mellon University | Cyanine dyes as labeling reagents for detection of biological and other materials by luminescence methods |
CA1340806C (en) | 1986-07-02 | 1999-11-02 | James Merrill Prober | Method, system and reagents for dna sequencing |
US5047519A (en) | 1986-07-02 | 1991-09-10 | E. I. Du Pont De Nemours And Company | Alkynylamino-nucleotides |
US4783401A (en) | 1986-10-31 | 1988-11-08 | Smithkline Beckman Corporation | Viable cell labelling |
US4859584A (en) | 1986-10-31 | 1989-08-22 | Smithkline Beckman Corporation | Cell growth rate determination by measurement of changes in cyanine dye levels in plasma membranes |
US4762701A (en) | 1986-10-31 | 1988-08-09 | Smithkline Beckman Corporation | In vivo cellular tracking |
US4810636A (en) | 1986-12-09 | 1989-03-07 | Miles Inc. | Chromogenic acridinone enzyme substrates |
JPS63132688U (en) | 1987-02-24 | 1988-08-30 | ||
US4921805A (en) | 1987-07-29 | 1990-05-01 | Life Technologies, Inc. | Nucleic acid capture method |
US4774339A (en) | 1987-08-10 | 1988-09-27 | Molecular Probes, Inc. | Chemically reactive dipyrrometheneboron difluoride dyes |
US4945171A (en) | 1987-08-10 | 1990-07-31 | Molecular Probes, Inc. | Xanthene dyes having a fused (C) benzo ring |
US5049673A (en) | 1987-10-30 | 1991-09-17 | The Regents Of The University Of California | Fluorescent indicator dyes for calcium working at long wavelengths |
US4849362A (en) | 1988-05-19 | 1989-07-18 | Smithkline Beckman Corporation | Fluorescent intracellular calcium indicators |
US5057413A (en) | 1988-06-13 | 1991-10-15 | Becton, Dickinson And Company | Method for discriminating between intact and damaged cells in a sample |
US4997928A (en) | 1988-09-15 | 1991-03-05 | E. I. Du Pont De Nemours And Company | Fluorescent reagents for the preparation of 5'-tagged oligonucleotides |
EP0367540A2 (en) | 1988-11-01 | 1990-05-09 | Konica Corporation | Silver halide photographic material |
JPH0284383U (en) | 1988-12-15 | 1990-06-29 | ||
US5122602A (en) | 1989-02-13 | 1992-06-16 | Miles Inc. | Chromogenic merocyanine enzyme substrates |
US5401469A (en) | 1989-04-19 | 1995-03-28 | Ibiden Co., Ltd. | Plastic optical biomaterials assay device |
US5137810A (en) | 1989-04-26 | 1992-08-11 | The University Of North Carolina | Method of determining the gram sign of bacteria |
US5169788A (en) | 1989-06-09 | 1992-12-08 | New England Deaconess Hospital Corporation | Methods of measuring membrane potential using j-aggregate forming dyes |
US4937198A (en) | 1989-07-28 | 1990-06-26 | Becton, Dickinson And Company | Novel fluorescent dye |
ATA194989A (en) | 1989-08-17 | 1990-04-15 | Koller Ernst | METHOD FOR DETECTING AND DETERMINING HUMAN SERUM ALBUMINE IN BIOLOGICAL LIQUIDS WITH THE AID OF FLUOROGENIC CYANINE DYES |
US5132432A (en) | 1989-09-22 | 1992-07-21 | Molecular Probes, Inc. | Chemically reactive pyrenyloxy sulfonic acid dyes |
US5375606A (en) | 1990-02-28 | 1994-12-27 | Zynaxis, Inc. | Bio-analytical separation method |
US5401847A (en) | 1990-03-14 | 1995-03-28 | Regents Of The University Of California | DNA complexes with dyes designed for energy transfer as fluorescent markers |
US5763162A (en) | 1990-03-14 | 1998-06-09 | The Regents Of University Of California | Multichromophore fluorescent DNA intercalation complexes |
US5312921A (en) * | 1990-03-14 | 1994-05-17 | Regents Of The University Of California | Dyes designed for high sensitivity detection of double-stranded DNA |
US5227487A (en) | 1990-04-16 | 1993-07-13 | Molecular Probes, Inc. | Certain tricyclic and pentacyclic-hetero nitrogen rhodol dyes |
US5501980A (en) | 1994-05-20 | 1996-03-26 | Molecular Probes, Inc. | Benzazolylcoumarin-based ion indicators |
US5405975A (en) | 1993-03-29 | 1995-04-11 | Molecular Probes, Inc. | Fluorescent ion-selective diaryldiaza crown ether conjugates |
US5459276A (en) | 1994-05-20 | 1995-10-17 | Molecular Probes, Inc. | Benzazolylcoumarin-based ion indicators for heavy metals |
US5433896A (en) | 1994-05-20 | 1995-07-18 | Molecular Probes, Inc. | Dibenzopyrrometheneboron difluoride dyes |
US5274113A (en) | 1991-11-01 | 1993-12-28 | Molecular Probes, Inc. | Long wavelength chemically reactive dipyrrometheneboron difluoride dyes and conjugates |
US5453517A (en) | 1992-02-25 | 1995-09-26 | Molecular Probes, Inc. | Reactive derivatives of bapta used to make ion-selective chelators |
US5326692B1 (en) | 1992-05-13 | 1996-04-30 | Molecular Probes Inc | Fluorescent microparticles with controllable enhanced stokes shift |
US5648270A (en) * | 1995-02-06 | 1997-07-15 | Molecular Probes, Inc. | Methods of sensing with fluorescent conjugates of metal-chelating nitrogen heterocycles |
GB9008818D0 (en) | 1990-04-19 | 1990-06-13 | Ici Plc | Amine derivatives |
US5714327A (en) | 1990-07-19 | 1998-02-03 | Kreatech Diagnostics | Platinum-containing compounds, methods for their preparation and applications thereof |
US5426772A (en) | 1990-07-27 | 1995-06-20 | Intel Corporation | Single PAL circuit generating system clock and control signals to minimize skew |
DE59108978D1 (en) | 1990-08-28 | 1998-06-10 | Landis & Gyr Tech Innovat | Method for changing a machine language version of a first program stored in a computer of a device into a machine language version of a second program derived from the first program by at least one change |
US5248672A (en) | 1990-11-01 | 1993-09-28 | The Regents Of The University Of Michigan | Polysubstituted benzimidazole nucleosides as antiviral agents |
US5208148A (en) | 1990-12-07 | 1993-05-04 | Molecular Probes, Inc. | Lipophilic fluorescent glycosidase substrates |
US5248782A (en) | 1990-12-18 | 1993-09-28 | Molecular Probes, Inc. | Long wavelength heteroaryl-substituted dipyrrometheneboron difluoride dyes |
EP0492570B1 (en) | 1990-12-24 | 2001-05-02 | Enzo Diagnostics, Inc. | Method for detecting a target polynucleotide in a sample using a background reducing reagent and composition and kit comprising such a reagent |
US5451343A (en) | 1991-05-20 | 1995-09-19 | Spectra Group Limited, Inc. | Fluorone and pyronin y derivatives |
US5187288A (en) | 1991-05-22 | 1993-02-16 | Molecular Probes, Inc. | Ethenyl-substituted dipyrrometheneboron difluoride dyes and their synthesis |
US5264589A (en) | 1991-06-06 | 1993-11-23 | Miles Inc. | Merocyanine protein error indicators |
ES2092595T3 (en) | 1991-06-06 | 1996-12-01 | Bayer Ag | TEST STRIP CONTAINING NITRO OR NITROSO POLYHALOGENATED PHYOLSULPHONOPHTHALHENE AND PHENOLSULPHONOPHTHALEINS SUBSTITUTED AS PROTEIN INDICATORS. |
US5193180A (en) | 1991-06-21 | 1993-03-09 | Pure Software Inc. | System for modifying relocatable object code files to monitor accesses to dynamically allocated memory |
JP2802693B2 (en) * | 1991-08-14 | 1998-09-24 | 富士写真フイルム株式会社 | Silver halide emulsion |
EP0603266B1 (en) | 1991-08-23 | 1999-05-12 | Molecular Probes, Inc. | Use of haloalkyl derivatives of reporter molecules to analyze metabolic activity in cells |
US5316906A (en) | 1991-08-23 | 1994-05-31 | Molecular Probes, Inc. | Enzymatic analysis using substrates that yield fluorescent precipitates |
US5242805A (en) | 1991-08-23 | 1993-09-07 | Molecular Probes, Inc. | Long wavelength lipophilic fluorogenic glycosidase substrates |
ATE152831T1 (en) | 1991-09-16 | 1997-05-15 | Molecular Probes Inc | DIMER UNSYMMETRIC CYANINE DYES |
US5314805A (en) | 1991-10-28 | 1994-05-24 | Molecular Probes, Inc. | Dual-fluorescence cell viability assay using ethidium homodimer and calcein AM |
CA2124329C (en) | 1991-11-27 | 2008-11-18 | Gregory A. Kopia | Compounds, compositions and methods for binding bio-affecting substances to surface membranes of bio-particles |
US5321130A (en) | 1992-02-10 | 1994-06-14 | Molecular Probes, Inc. | Unsymmetrical cyanine dyes with a cationic side chain |
US5352803A (en) | 1992-03-30 | 1994-10-04 | Abbott Laboratories | 5(6)-methyl substituted fluorescein derivatives |
JPH05287209A (en) | 1992-04-09 | 1993-11-02 | Hitachi Chem Co Ltd | Fluorescent labelling dye, biogenic substance labelled with the same, and reagent containing them |
WO1994005688A1 (en) | 1992-09-03 | 1994-03-17 | Applied Biosystems, Inc. | 4,7-dichlorofluorescein dyes as molecular probes |
JPH06123740A (en) | 1992-10-12 | 1994-05-06 | Canon Inc | @(3754/24)mero) cyanine pigment for pprotein-labeling and pigment-labelled protein |
US5410030A (en) | 1993-04-05 | 1995-04-25 | Molecular Probes, Inc. | Dimers of unsymmetrical cyanine dyes containing pyridinium moieties |
US5658751A (en) | 1993-04-13 | 1997-08-19 | Molecular Probes, Inc. | Substituted unsymmetrical cyanine dyes with selected permeability |
US5545535A (en) * | 1993-04-13 | 1996-08-13 | Molecular Probes, Inc. | Fluorescent assay for bacterial gram reaction |
US5445946A (en) | 1993-04-13 | 1995-08-29 | Molecular Probes, Inc. | Intravacuolar stains for yeast and other fungi |
US5534416A (en) | 1993-04-13 | 1996-07-09 | Molecular Probes, Inc. | Fluorescent viability assay using cyclic-substituted unsymmetrical cyanine dyes |
US5436134A (en) | 1993-04-13 | 1995-07-25 | Molecular Probes, Inc. | Cyclic-substituted unsymmetrical cyanine dyes |
US5437980A (en) | 1993-05-17 | 1995-08-01 | Molecular Probes, Inc. | Phenanthridium dye staining of nucleic acids in living cells |
US5426722A (en) | 1993-09-09 | 1995-06-20 | Stratasys, Inc. | Method for optimizing the motion of a multi-axis robot |
US5459268A (en) | 1993-10-25 | 1995-10-17 | Molecular Probes, Inc. | Xanthylium dyes that are well retained in mitochondria |
US5925517A (en) * | 1993-11-12 | 1999-07-20 | The Public Health Research Institute Of The City Of New York, Inc. | Detectably labeled dual conformation oligonucleotide probes, assays and kits |
US5840493A (en) | 1994-03-30 | 1998-11-24 | Mitokor | Mitochondrial DNA mutations that segregate with late onset diabetes mellitus |
US5597696A (en) * | 1994-07-18 | 1997-01-28 | Becton Dickinson And Company | Covalent cyanine dye oligonucleotide conjugates |
US5656554A (en) | 1994-07-29 | 1997-08-12 | International Business Machines Corporation | Semiconductor chip reclamation technique involving multiple planarization processes |
US5565554A (en) | 1994-07-29 | 1996-10-15 | The Regents Of The University Of California | Dimeric fluorescent energy transfer dyes comprising asymmetric cyanine azole-indolenine chromophores |
JP3494317B2 (en) | 1994-07-29 | 2004-02-09 | 富士写真フイルム株式会社 | Silver halide photographic material |
DE69526617T2 (en) | 1994-09-22 | 2002-08-29 | Fuji Photo Film Co., Ltd. | Infrared absorbing dye Silver halide photographic material |
US5564554A (en) | 1994-11-01 | 1996-10-15 | Lawrence Equipment, Inc. | Reciprocating accumulation conveyor |
JP3189000B2 (en) | 1994-12-01 | 2001-07-16 | 東ソー株式会社 | Specific nucleic acid sequence detection method |
US5656449A (en) * | 1995-03-06 | 1997-08-12 | Molecular Probes, Inc. | Neutral unsymmetrical cyanine dyes |
US6342389B1 (en) * | 1995-04-10 | 2002-01-29 | Roger S. Cubicciotti | Modified phycobilisomes and uses therefore |
US5616502A (en) * | 1995-05-19 | 1997-04-01 | Molecular Probes, Inc. | Non-specific protein staining using merocyanine dyes |
US6008373A (en) | 1995-06-07 | 1999-12-28 | Carnegie Mellon University | Fluorescent labeling complexes with large stokes shift formed by coupling together cyanine and other fluorochromes capable of resonance energy transfer |
US5798276A (en) | 1995-06-07 | 1998-08-25 | Molecular Probes, Inc. | Reactive derivatives of sulforhodamine 101 with enhanced hydrolytic stability |
US5929227A (en) * | 1995-07-12 | 1999-07-27 | The Regents Of The University Of California | Dimeric fluorescent energy transfer dyes comprising asymmetric cyanine azole-indolenine chromophores |
GB9514525D0 (en) | 1995-07-15 | 1995-09-13 | Philips Electronics Uk Ltd | Data packet handling |
US6021272A (en) | 1995-10-04 | 2000-02-01 | Platinum Technology, Inc. | Transforming and manipulating program object code |
US5869689A (en) * | 1995-10-17 | 1999-02-09 | Molecular Probes, Inc | Stains for acidic organelles |
US5658735A (en) | 1995-11-09 | 1997-08-19 | Biometric Imaging, Inc. | Cyclized fluorescent nucleic acid intercalating cyanine dyes and nucleic acid detection methods |
US5734058A (en) * | 1995-11-09 | 1998-03-31 | Biometric Imaging, Inc. | Fluorescent DNA-Intercalating cyanine dyes including a positively charged benzothiazole substituent |
US6291203B1 (en) | 1995-11-13 | 2001-09-18 | Molecular Probes, Inc. | Cyanine dyes that stain cells and mitochondria |
US6004536A (en) | 1995-11-14 | 1999-12-21 | Molecular Probes, Inc. | Lipophilic cyanine dyes with enchanced aqueous solubilty |
JPH09218495A (en) | 1996-02-14 | 1997-08-19 | Fuji Photo Film Co Ltd | Image forming method |
US6162931A (en) | 1996-04-12 | 2000-12-19 | Molecular Probes, Inc. | Fluorinated xanthene derivatives |
JPH09281495A (en) | 1996-04-17 | 1997-10-31 | Seiko Instr Kk | Liquid crystal display panel and its production |
US6140494A (en) | 1996-04-19 | 2000-10-31 | Amersham Pharmacia Biotech Uk Limited | Squarate dyes and their use in fluorescent sequencing method |
US6153370A (en) | 1996-04-25 | 2000-11-28 | Fuji Photo Film Co., Ltd. | Silver halide emulsion and silver halide light-sensitive material using the same |
EP0805376A3 (en) | 1996-04-30 | 1998-01-14 | Fuji Photo Film Co., Ltd. | Photothermographic material |
US6083699A (en) * | 1996-05-01 | 2000-07-04 | Visible Genetics Inc. | Method for bi-directional sequencing of nucleic acid polymers |
US5800996A (en) | 1996-05-03 | 1998-09-01 | The Perkin Elmer Corporation | Energy transfer dyes with enchanced fluorescence |
US5863727A (en) * | 1996-05-03 | 1999-01-26 | The Perkin-Elmer Corporation | Energy transfer dyes with enhanced fluorescence |
US5847162A (en) | 1996-06-27 | 1998-12-08 | The Perkin Elmer Corporation | 4, 7-Dichlororhodamine dyes |
US5945526A (en) | 1996-05-03 | 1999-08-31 | Perkin-Elmer Corporation | Energy transfer dyes with enhanced fluorescence |
SE506700C2 (en) | 1996-05-31 | 1998-02-02 | Mikael Kubista | Probe and Methods for Analysis of Nucleic Acid |
US6017712A (en) * | 1996-06-27 | 2000-01-25 | Lee; Linda | 4,7-dichlororhodamine dyes |
US6080852A (en) * | 1996-06-27 | 2000-06-27 | The Perkin-Elmer Corporation | 4,7-dichlororhodamine dyes |
US5846737A (en) | 1996-07-26 | 1998-12-08 | Molecular Probes, Inc. | Conjugates of sulforhodamine fluorophores with enhanced fluorescence |
US5691145A (en) | 1996-08-27 | 1997-11-25 | Becton, Dickinson And Company | Detection of nucleic acids using G-quartets |
US5696157A (en) | 1996-11-15 | 1997-12-09 | Molecular Probes, Inc. | Sulfonated derivatives of 7-aminocoumarin |
US5830912A (en) | 1996-11-15 | 1998-11-03 | Molecular Probes, Inc. | Derivatives of 6,8-difluoro-7-hydroxycoumarin |
US6495692B1 (en) * | 1996-12-10 | 2002-12-17 | Abbott Laboratories | Helium-neon excitable reticulocyte dyes derivable from halolepidines |
US6027709A (en) * | 1997-01-10 | 2000-02-22 | Li-Cor Inc. | Fluorescent cyanine dyes |
JP3579228B2 (en) | 1997-01-24 | 2004-10-20 | 大日本スクリーン製造株式会社 | Substrate processing equipment |
EP0870753A1 (en) | 1997-04-04 | 1998-10-14 | Imperial Chemical Industries Plc | A process for the preparation of methacrylate esters |
JP3783808B2 (en) * | 1997-05-19 | 2006-06-07 | シスメックス株式会社 | Leukocyte classification and counting reagent |
CA2297216C (en) * | 1997-07-28 | 2008-02-05 | Nycomed Amersham Plc | Cyanine dyes |
US6130101A (en) | 1997-09-23 | 2000-10-10 | Molecular Probes, Inc. | Sulfonated xanthene derivatives |
US6008379A (en) | 1997-10-01 | 1999-12-28 | The Perkin-Elmer Corporation | Aromatic-substituted xanthene dyes |
US6133429A (en) * | 1997-10-03 | 2000-10-17 | Becton Dickinson And Company | Chromophores useful for the preparation of novel tandem conjugates |
US5936087A (en) * | 1997-11-25 | 1999-08-10 | The Perkin-Elmer Corporation | Dibenzorhodamine dyes |
US6200752B1 (en) * | 1998-01-14 | 2001-03-13 | Joseph R. Lakowicz | Method and composition for detecting the presence of a nucleic acid sequence in a sample |
US6080868A (en) * | 1998-01-23 | 2000-06-27 | The Perkin-Elmer Corporation | Nitro-substituted non-fluorescent asymmetric cyanine dye compounds |
DE19824535A1 (en) * | 1998-06-03 | 1999-12-09 | Roche Diagnostics Gmbh | New rhodamine derivatives and their use |
GB9812596D0 (en) | 1998-06-11 | 1998-08-12 | Amersham Pharm Biotech Uk Ltd | Energy transfer assay method |
US6331385B1 (en) | 1998-09-11 | 2001-12-18 | Eastman Kodak Company | Photographic material having enhanced light absorption |
US6271035B1 (en) * | 1998-10-20 | 2001-08-07 | Coulter International Corp. | Methods and compositions for rapid staining of nucleic acids in whole cells |
US6316276B1 (en) | 1998-12-17 | 2001-11-13 | Lsi Lgoic Corporation | Apparatus and method of planarizing a semiconductor wafer that includes a first reflective substance and a second reflective substance |
JP2000241932A (en) * | 1998-12-21 | 2000-09-08 | Konica Corp | Heat developable photosensitive material, production of nonphotosensitive silver salt compound and method for formation of image |
JP3983404B2 (en) * | 1999-01-13 | 2007-09-26 | 本田技研工業株式会社 | Radar equipped vehicle gate |
JP4360575B2 (en) | 1999-03-01 | 2009-11-11 | 富士フイルム株式会社 | Liquid crystal compound, liquid crystal mixture, liquid crystal composition, electrolyte, electrochemical cell and photoelectrochemical cell |
US6114350A (en) * | 1999-04-19 | 2000-09-05 | Nen Life Science Products, Inc. | Cyanine dyes and synthesis methods thereof |
EP1090073B1 (en) * | 1999-04-23 | 2003-03-05 | Molecular Probes Inc. | Xanthene dyes and their application as luminescence quenching compounds |
US6197959B1 (en) * | 1999-04-27 | 2001-03-06 | Hoffmann-La Roche Inc. | Piperidine derivatives |
US6664047B1 (en) * | 1999-04-30 | 2003-12-16 | Molecular Probes, Inc. | Aza-benzazolium containing cyanine dyes |
EP1055734B1 (en) * | 1999-05-24 | 2004-10-13 | Tosoh Corporation | Method for assaying ribonucleic acid |
AU6206800A (en) * | 1999-07-06 | 2001-01-22 | Surromed, Inc. | Bridged fluorescent dyes, their preparation and their use in assays |
US6358684B1 (en) * | 1999-08-27 | 2002-03-19 | Pe Corporation | UV excitable fluorescent energy transfer dyes |
US6329205B1 (en) | 1999-08-31 | 2001-12-11 | Molecular Probes, Inc. | Detection method using luminescent europium-based protein stains |
US6239626B1 (en) * | 2000-01-07 | 2001-05-29 | Cisco Technology, Inc. | Glitch-free clock selector |
US6365341B1 (en) * | 2000-03-24 | 2002-04-02 | Biowhittaker Molecular Applications, Inc. | Stabilization of highly sensitive nucleic acid stains in aqueous solutions |
US6368801B1 (en) * | 2000-04-12 | 2002-04-09 | Molecular Staging, Inc. | Detection and amplification of RNA using target-mediated ligation of DNA by RNA ligase |
US6368864B1 (en) | 2000-05-05 | 2002-04-09 | Coulter International Corp. | Dyes and methods of reticulocyte enumeration |
US6323337B1 (en) | 2000-05-12 | 2001-11-27 | Molecular Probes, Inc. | Quenching oligonucleotides |
AU7918501A (en) * | 2000-08-04 | 2002-02-18 | Molecular Probes Inc | Derivatives of 1,2-dihydro-7-hydroxyquinolines containing fused rings |
US6579718B1 (en) * | 2000-08-04 | 2003-06-17 | Molecular Probes, Inc. | Carbazolylvinyl dye protein stains |
WO2002026891A1 (en) | 2000-09-29 | 2002-04-04 | Molecular Probes, Inc. | Modified carbocyanine dyes and their conjugates |
EP1322625A2 (en) | 2000-10-02 | 2003-07-02 | Molecular Probes Inc. | Reagents for labeling biomolecules having aldehyde or ketone moieties |
SE519116C2 (en) * | 2001-05-10 | 2003-01-14 | Lightup Technologies Ab | Synthesis and evaluation of new cyanine dyes that bind to minor groove |
US6972326B2 (en) | 2001-12-03 | 2005-12-06 | Molecular Probes, Inc. | Labeling of immobilized proteins using dipyrrometheneboron difluoride dyes |
IL150501A0 (en) | 2002-07-01 | 2003-02-12 | Elazar Shachor | Method for wagering |
JP5030424B2 (en) * | 2002-10-23 | 2012-09-19 | ユニバーシティ・オブ・ユタ・リサーチ・ファウンデイション | Amplicon melting analysis using saturated dyes |
DE10329019A1 (en) | 2003-06-27 | 2005-01-13 | Daimlerchrysler Ag | Internal combustion engine with a compressor in the intake system and method for this purpose |
US20050074796A1 (en) | 2003-07-31 | 2005-04-07 | Stephen Yue | Unsymmetrical cyanine dimer compounds and their application |
US7271265B2 (en) * | 2003-08-11 | 2007-09-18 | Invitrogen Corporation | Cyanine compounds and their application as quenching compounds |
EP1720944B1 (en) | 2003-12-05 | 2013-07-17 | Life Technologies Corporation | Cyanine dye compounds |
US7776529B2 (en) | 2003-12-05 | 2010-08-17 | Life Technologies Corporation | Methine-substituted cyanine dye compounds |
EP2610315B1 (en) | 2003-12-05 | 2016-08-31 | Life Technologies Corporation | Methine-substituted cyanine dye compounds |
US20050244976A1 (en) | 2004-02-20 | 2005-11-03 | Gee Kyle R | Methods for detecting anionic and non-anionic compositions using carbocyanine dyes |
JP2006292808A (en) * | 2005-04-06 | 2006-10-26 | Konica Minolta Medical & Graphic Inc | Silver salt photothermographic dry imaging material and image forming method |
-
2006
- 2006-05-11 US US11/432,814 patent/US7598390B2/en active Active
- 2006-05-11 JP JP2008511465A patent/JP5306811B2/en active Active
- 2006-05-11 EP EP06770390.0A patent/EP1885718B1/en active Active
- 2006-05-11 WO PCT/US2006/018801 patent/WO2006124816A1/en active Application Filing
-
2009
- 2009-10-05 US US12/573,809 patent/US7943777B2/en active Active
-
2011
- 2011-05-10 US US13/104,413 patent/US20110217699A1/en not_active Abandoned
-
2012
- 2012-07-26 US US13/559,300 patent/US20120288855A1/en not_active Abandoned
- 2012-10-30 JP JP2012239245A patent/JP5828828B2/en not_active Expired - Fee Related
-
2013
- 2013-04-11 US US13/861,123 patent/US8865904B2/en active Active
-
2014
- 2014-09-17 US US14/488,751 patent/US9115397B2/en active Active
-
2015
- 2015-07-13 US US14/797,415 patent/US9366676B2/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7598390B2 (en) * | 2005-05-11 | 2009-10-06 | Life Technologies Corporation | Fluorescent chemical compounds having high selectivity for double stranded DNA, and methods for their use |
Also Published As
Publication number | Publication date |
---|---|
JP2008540578A (en) | 2008-11-20 |
JP5306811B2 (en) | 2013-10-02 |
US9115397B2 (en) | 2015-08-25 |
US20130224735A1 (en) | 2013-08-29 |
JP5828828B2 (en) | 2015-12-09 |
EP1885718A4 (en) | 2014-10-29 |
WO2006124816A1 (en) | 2006-11-23 |
US20150004597A1 (en) | 2015-01-01 |
US9366676B2 (en) | 2016-06-14 |
US20100143917A1 (en) | 2010-06-10 |
EP1885718B1 (en) | 2017-03-15 |
US8865904B2 (en) | 2014-10-21 |
US20110217699A1 (en) | 2011-09-08 |
EP1885718A1 (en) | 2008-02-13 |
US7943777B2 (en) | 2011-05-17 |
US7598390B2 (en) | 2009-10-06 |
US20060263844A1 (en) | 2006-11-23 |
US20150316558A1 (en) | 2015-11-05 |
JP2013060448A (en) | 2013-04-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9366676B2 (en) | Fluorescent chemical compounds having high selectivity for double stranded DNA, and methods for their use | |
US10005908B2 (en) | Methine-substituted cyanine dye compounds | |
US7842811B2 (en) | Cyanine dye compounds | |
US7888136B2 (en) | Unsymmetrical cyanine dimer compounds and their application | |
US8680320B2 (en) | Heavy metal binding compounds and their method of use | |
US9850382B1 (en) | Unsymmetrical cyanine dyes and their application | |
US20210324198A1 (en) | Silicon-substituted rhodamine dyes and dye conjugates | |
US8742114B2 (en) | Nucleic acid detections and methods of their use | |
US11768156B2 (en) | Methods and compositions for assessing cell viability | |
US20200263231A1 (en) | Fluorogenic dyes for high sensitivity DNA detection |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |