US20120236979A1 - Nuclear reactor module - Google Patents
Nuclear reactor module Download PDFInfo
- Publication number
- US20120236979A1 US20120236979A1 US13/399,211 US201213399211A US2012236979A1 US 20120236979 A1 US20120236979 A1 US 20120236979A1 US 201213399211 A US201213399211 A US 201213399211A US 2012236979 A1 US2012236979 A1 US 2012236979A1
- Authority
- US
- United States
- Prior art keywords
- nuclear reactor
- concrete
- formwork
- void
- module according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000004567 concrete Substances 0.000 claims abstract description 109
- 238000009415 formwork Methods 0.000 claims abstract description 76
- 238000000034 method Methods 0.000 claims abstract description 14
- 239000011800 void material Substances 0.000 claims description 47
- 239000002826 coolant Substances 0.000 claims description 11
- 239000000428 dust Substances 0.000 claims description 10
- 239000007789 gas Substances 0.000 claims description 10
- 230000002787 reinforcement Effects 0.000 claims description 7
- 238000012544 monitoring process Methods 0.000 claims description 4
- 238000013022 venting Methods 0.000 claims description 4
- 229910000831 Steel Inorganic materials 0.000 description 6
- 238000009434 installation Methods 0.000 description 6
- 239000010959 steel Substances 0.000 description 6
- 239000011150 reinforced concrete Substances 0.000 description 4
- 238000012360 testing method Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 238000010276 construction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000005429 filling process Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000003758 nuclear fuel Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000002915 spent fuel radioactive waste Substances 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21C—NUCLEAR REACTORS
- G21C13/00—Pressure vessels; Containment vessels; Containment in general
- G21C13/02—Details
- G21C13/024—Supporting constructions for pressure vessels or containment vessels
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B28—WORKING CEMENT, CLAY, OR STONE
- B28B—SHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
- B28B7/00—Moulds; Cores; Mandrels
- B28B7/0002—Auxiliary parts or elements of the mould
- B28B7/0008—Venting channels, e.g. to avoid vacuum during demoulding or allowing air to escape during feeding, pressing or moulding
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21D—NUCLEAR POWER PLANT
- G21D1/00—Details of nuclear power plant
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/30—Nuclear fission reactors
Definitions
- the invention relates to a part-built nuclear reactor module and a method for constructing a nuclear reactor module. I n particular, although not exclusively, the invention relates to a transportable part-built nuclear reactor module.
- Nuclear reactor systems which comprise nuclear reactor equipment including a nuclear reactor vessel and a reactor coolant circuit for circulating coolant through the reactor vessel.
- the nuclear reactor equipment is typically supported by a reinforced concrete support structure which is housed within a containment structure.
- Such nuclear reactor systems are typically constructed on site.
- the containment structure may be assembled by either welding together sections of steel plate or by assembling formwork on site into which concrete is poured. Formwork may then be assembled within the containment structure into which concrete is poured to form the concrete support structure for supporting the nuclear reactor equipment. After the concrete support structure has been cleaned and finished the nuclear reactor equipment can be attached and tested.
- formwork supporting nuclear reactor equipment that can be filled with concrete from the outside of a containment structure through a concrete supply pipe.
- the formwork may be housed within a containment structure and the supply pipe may extend from the formwork to the outside of the containment structure.
- a part-built nuclear reactor module comprising a containment structure housing therein nuclear reactor equipment mounted to formwork; and at least one concrete supply pipe extending from outside of the containment structure to the formwork; wherein the formwork can be filled with concrete through the concrete supply pipe to form a concrete support structure for the nuclear reactor equipment.
- the formwork may be filled under pressure and may be filled from the bottom.
- the nuclear reactor equipment may comprise a nuclear reactor vessel and/or a steam generator and/or a pressuriser and/or an accumulator and/or monitoring sensors and/or control circuitry and/or at least part of a coolant circuit.
- the formwork may comprise reinforcement bars and/or reinforcement plates.
- the formwork may define a plurality of voids, each arranged to be filled with concrete through a concrete supply pipe. Each void may be provided with a separate concrete supply pipe. Each concrete supply pipe may extend towards the bottom of the respective void.
- the formwork may be made from metal such as steel, for example.
- the module may further comprise at least one removable support that temporarily supports at least some of the nuclear reactor equipment during transportation.
- the removable support may be a cable, and/or additional framework.
- the module may further comprise at least one removable brace that temporarily supports at least some of the formwork during transportation.
- the containment structure may comprise a roof which is supported by at least one concrete supply pipe or vent pipe at least during transportation.
- vent pipe extending from the formwork to the outside of the containment structure for venting dust and/or gases to the atmosphere.
- the or each concrete supply pipe and the or each vent pipe may be detachable from the module such that after the formwork has been filled with concrete the or each supply pipe can be removed.
- the pipes may be supplied with drybreak connectors that connect the pipes to the formwork in order to prevent gases and dust escaping from the pipes into the containment structure when the pipes are disconnected.
- the formwork may comprise at least one void having a structural void and an expansion void disposed above the structural void with a structural support plate having at least one hole therein disposed therebetween.
- the void may be arranged to be filled with concrete above the structural support plate such that the structural void is filled with structural concrete which can support a load applied to the structural support plate.
- At least one vent pipe may extend from the expansion void to outside of the containment structure for venting dust and/or gases to the atmosphere.
- the containment structure may be steel or may be formwork arranged to be filled with concrete on site.
- the part-built nuclear reactor module may be transportable by vehicle, for example.
- the invention also concerns a nuclear reactor module constructed from a part-built nuclear reactor module in accordance with claim 1 .
- the nuclear reactor module may be part of a water cooled nuclear reactor installation.
- a method of constructing a nuclear reactor module comprising: filling formwork which has nuclear reactor equipment mounted thereto and which is housed within a containment structure with concrete through a concrete supply pipe which extends from outside of the containment structure to the formwork, thereby forming a concrete support structure for the nuclear reactor equipment.
- the method may further comprise removing at least one removable support that temporarily supports at least some of the nuclear reactor equipment during transportation.
- the method may further comprise removing at least one removable brace that temporarily supports at least some of the formwork during transportation.
- the method may further comprise detaching the or each concrete supply pipe after the formwork has been filled with concrete and removing the or each concrete supply pipe from the containment structure.
- the formwork may comprise at least one void having a structural void and an expansion void disposed above the structural void with a structural support plate having at least one hole therein disposed therebetween.
- the method may further comprise filling the void with concrete to a level above the structural support plate such that the structural void is filled with structural concrete which can support a load applied to the structural support plate.
- the invention may comprise any combination of the features and/or limitations referred to herein, except combinations of such features as are mutually exclusive.
- FIG. 1 schematically shows a cross-sectional view through a nuclear reactor installation
- FIG. 2 schematically shows a cross-sectional view through a part-built nuclear reactor module
- FIG. 3 schematically shows a formwork void filled with concrete through a concrete supply pipe.
- FIG. 1 shows a nuclear reactor installation which in this embodiment is a nuclear reactor module 10 .
- the reactor module 10 comprises a containment structure 12 which is in the form of a building having a base 13 , a generally cylindrical outer wall 14 , and a domed-roof 15 .
- the containment structure is made from steel plate welded together.
- the containment structure may be formwork for forming a reinforced concrete containment structure, for example.
- a reinforced concrete support structure 16 is housed within the containment structure 12 and supports nuclear reactor equipment.
- the nuclear reactor equipment supported by the concrete structure 16 includes a nuclear reactor pressure vessel 18 , a steam generator, a pressuriser, an accumulator, monitoring sensors and control circuitry. At least part of a coolant circuit for circulating coolant through the reactor vessel 18 is also provided within the concrete structure.
- the containment structure 12 is arranged to contain a high internal pressure generated by an escape of coolant from the reactor coolant circuit.
- the coolant is water.
- the reinforced concrete structure 16 also comprises a refuelling cavity wall 20 which defines a refuelling cavity 22 which is filled with water during refuelling of the reactor vessel 18 .
- the concrete structure 16 also forms numerous tanks, or cavities, within the interior of the structure including a spent fuel pool 21 .
- the concrete also provides radiation shielding from the radiation emitted from the nuclear fuel.
- the nuclear reactor module 10 is constructed on site from a part-built nuclear reactor module 100 that is manufactured and tested in a factory and transported to site.
- the part-built nuclear module comprises the containment structure 12 having a base 13 , an outer cylindrical wall 14 , and a domed roof 15 , within which concrete formwork 30 is housed.
- the nuclear reactor equipment including the nuclear reactor pressure vessel 18 , the steam generator, the pressuriser, the accumulator, monitoring sensors and control circuitry is mounted to the formwork 30 . At least part of a coolant circuit for circulating coolant through the reactor vessel 18 is also mounted to the formwork 30 .
- the formwork 30 comprises a plurality of steel plates 32 that are welded or otherwise attached together to form a plurality of voids 34 that are arranged to be filled with concrete.
- the voids 34 may be in fluid communication with one another through passageways so that liquid concrete can flow between them or they may be discrete.
- Structural reinforcement in the form of reinforcement bars and reinforcement plates (not shown) are disposed within the voids 34 and form part of the formwork 30 .
- a plurality of concrete supply conduits 36 extend from outside of the containment structure to the formwork 30 .
- Each concrete supply pipe 36 is in fluid communication with at least one void 34 and each void 34 may be provided with a separate concrete supply pipe 36 .
- the or each concrete supply pipe 36 extends to the bottom of the respective void 34 .
- vent pipe 38 is also provided that extends from the formwork 30 to the outside of the containment structure.
- the vent pipe 38 allows dust and gas that can be generated during the concrete filling process to be vented to the atmosphere. It will be appreciated that a plurality of vent pipes 38 may be provided if needed.
- the formwork 30 provides sufficient structural support to the nuclear reactor equipment during transportation. If necessary, additional frameworks, cables, or supports may be provided to further support the nuclear reactor equipment during transportation. These additional supports may be removed once the part-built module 100 has been transported to site.
- the formwork 30 is also constructed so that it can support itself during transportation. However, if necessary internal bracing or other supports may be provided to support the formwork 30 , such as the voids 34 . This bracing can be removed after the part-built module 100 has been transported to site.
- the concrete supply pipes 36 and the vent pipe 38 provide structural support to the containment structure 12 during transportation.
- the vent pipe 38 provides structural support to the domed roof 15 during transportation. This reduces the unsupported length of roof and means that the roof stiffness can be reduced. It should be appreciated that it is not essential that the pipes provide structural support to the containment structure 12 during transport.
- the formwork 30 is then filled with concrete from the outside of the containment structure through the plurality of concrete supply pipes 36 .
- the formwork 30 is filled with concrete through the pipes 36 under pressure and from the bottom of the voids 34 . This helps to prevent the formation of gaps (or voids) within the concrete.
- Concrete delivery pipes from a concrete mixer vehicle can be attached to the outer end of the concrete supply pipes 36 from the outside of the containment structure to deliver concrete to the formwork 30 .
- the concrete is then left to set for the required period of time after which the concrete support structure 16 is complete. Dust and gas generated during the concrete pouring process is vented to the atmosphere through the vent pipe 38 . This prevents the build-up of dust and gas within the clean interior of the containment structure 12 .
- the concrete support structure 16 may then be inspected visually or by x-ray techniques, for example.
- the containment structure 12 is steel, the containment structure 12 may be made from any other suitable material.
- the containment structure 12 of the part-built module 100 may be formwork that is arranged to be filled with concrete on site.
- the concrete supply pipes 36 of the part-built module 100 may extend from outside of the formwork of the containment structure 12 to the formwork 30 housed therein. During transit the supply pipes 36 may support the containment structure 12 formwork. On site, the formwork 30 can be filled with concrete through the concrete supply pipes 36 which then support the containment structure 12 formwork as it is filled with concrete.
- the concrete supply pipes 36 and/or the vent pipes 38 may be detachable from the part-built module 100 . This would allow the pipes 36 , 38 to be detached from the formwork 30 and the containment structure 12 after the formwork 30 has been filled with concrete.
- the pipes 36 , 38 could be removed through an access opening in the containment structure 12 or could be removed from the outside of the containment structure 12 through the opening through which it extends.
- the pipes 36 , 38 may include an end cap for closing the opening in the containment structure 12 .
- the ends of the pipes 36 , 38 connected to the formwork 30 may be coupled to the formwork 30 using drybreak connectors. This would prevent the leakage of concrete dust or particles into the interior of the containment structure 12 as the pipes 36 , 38 are disconnected.
- the completed concrete support structure 16 formed from filing the formwork 30 with concrete provides the necessary walls 22 and cavities 20 , 21 and provides the structural support to the nuclear reactor equipment such as the reactor vessel 18 .
- All or part of the formwork 30 may provide structural support even after the concrete has set. However, all or part of the formwork 30 may not provide any structural support and may either remain in place after the concrete has set or may be removed.
- Constructing a nuclear reactor module 10 on-site from a part-built nuclear reactor module 100 manufactured and tested in a factory provides a number of advantages. It is important that the interior of the containment structure 12 is kept clean and this is easier to ensure if the part-built module 100 is assembled in a factory. It is also easier and more efficient to test the nuclear reactor equipment in a factory environment. Furthermore, constructing the part-built module 100 in a factory is less expensive and more repeatable when compared to an on-site construction and also allows the use of specialist equipment.
- the part-built module 100 contains formwork 30 that is arranged to be filed with concrete to form a concrete support structure 16 (as opposed to a concrete support structure itself) it is possible to transport the part-built module 100 by vehicle from the factory to the site. On site, the interior of the containment structure 12 is kept clean by filling the formwork 30 through the concrete supply piped 36 from the outside of the containment structure 12 . This also allows the sensitive nuclear reactor equipment to be fitted and tested before the concrete support structure 16 is constructed.
- some or all of the voids 34 may comprise a main structural void 40 with a smaller expansion void 42 disposed above it.
- a structural support plate 44 which is substantially horizontal, is disposed between the structural void 40 and the expansion void 42 and has a plurality of holes therein. These holes allow for the flow of concrete between the structural and expansion voids 40 , 42 .
- a concrete supply pipe 36 extends into the bottom of the structural void 40 and a vent pipe extends from the expansion void 36 . On site concrete is poured into the void 34 of the formwork 30 through the concrete supply pipe 36 .
- the void 34 is filled with concrete above the level of the structural support plate 44 and therefore partially fills the expansion void 42 . Any dust or exhaust gases are vented through the vent pipe 38 .
- the structural support plate 44 is arranged to support a load which it transmits to the structural concrete contained within the structural void 40 . Any cavities and gas bubbles are contained within the non-structural concrete contained within the expansion void 42 .
- the expansion void 42 may also contain tools which can vibrate the concrete during pouring and may be used to control the humidity within the void 34 .
- the part-built nuclear reactor module may include any nuclear plant sub-system up to and including the entire plant.
- the nuclear equipment supported by the formwork may be any component of a nuclear plant or installation requiring support from a concrete structure.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- General Engineering & Computer Science (AREA)
- High Energy & Nuclear Physics (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Ceramic Engineering (AREA)
- Mechanical Engineering (AREA)
- Structure Of Emergency Protection For Nuclear Reactors (AREA)
- Revetment (AREA)
Abstract
A part-built nuclear reactor module 100 comprises a containment structure 12 housing therein nuclear reactor equipment 18 mounted to formwork 30. At least one concrete supply pipe 36 is provided that extends from outside of the containment structure 12 to the formwork 30. The formwork 30 can be filled with concrete through the concrete supply pipe 36 to form a concrete support structure 16 for the nuclear reactor equipment 18. A method for constructing a nuclear reactor module 10 is also provided.
Description
- The invention relates to a part-built nuclear reactor module and a method for constructing a nuclear reactor module. I n particular, although not exclusively, the invention relates to a transportable part-built nuclear reactor module.
- Nuclear reactor systems are known which comprise nuclear reactor equipment including a nuclear reactor vessel and a reactor coolant circuit for circulating coolant through the reactor vessel. The nuclear reactor equipment is typically supported by a reinforced concrete support structure which is housed within a containment structure.
- Such nuclear reactor systems are typically constructed on site. For example, the containment structure may be assembled by either welding together sections of steel plate or by assembling formwork on site into which concrete is poured. Formwork may then be assembled within the containment structure into which concrete is poured to form the concrete support structure for supporting the nuclear reactor equipment. After the concrete support structure has been cleaned and finished the nuclear reactor equipment can be attached and tested.
- Whilst this is satisfactory, in some circumstances it may be desirable to construct and test at least part of the nuclear reactor system in a factory off-site and then subsequently transport it to site. However, this can be difficult due to the weight of the containment structure housing the concrete support structure and the nuclear reactor equipment.
- In a broad aspect of the invention there is provided formwork supporting nuclear reactor equipment that can be filled with concrete from the outside of a containment structure through a concrete supply pipe. The formwork may be housed within a containment structure and the supply pipe may extend from the formwork to the outside of the containment structure. This arrangement allows a part-built module to be manufactured off-site in a factory where it can be tested, and subsequently transported by vehicle to site for installation and completion involving concrete pouring.
- According to an aspect of the invention there is provided a part-built nuclear reactor module, comprising a containment structure housing therein nuclear reactor equipment mounted to formwork; and at least one concrete supply pipe extending from outside of the containment structure to the formwork; wherein the formwork can be filled with concrete through the concrete supply pipe to form a concrete support structure for the nuclear reactor equipment. The formwork may be filled under pressure and may be filled from the bottom.
- The nuclear reactor equipment may comprise a nuclear reactor vessel and/or a steam generator and/or a pressuriser and/or an accumulator and/or monitoring sensors and/or control circuitry and/or at least part of a coolant circuit.
- At least part of the formwork is permanent. The formwork may comprise reinforcement bars and/or reinforcement plates. The formwork may define a plurality of voids, each arranged to be filled with concrete through a concrete supply pipe. Each void may be provided with a separate concrete supply pipe. Each concrete supply pipe may extend towards the bottom of the respective void. The formwork may be made from metal such as steel, for example.
- The module may further comprise at least one removable support that temporarily supports at least some of the nuclear reactor equipment during transportation. The removable support may be a cable, and/or additional framework. The module may further comprise at least one removable brace that temporarily supports at least some of the formwork during transportation.
- The containment structure may comprise a roof which is supported by at least one concrete supply pipe or vent pipe at least during transportation.
- There may be provided at least one vent pipe extending from the formwork to the outside of the containment structure for venting dust and/or gases to the atmosphere.
- The or each concrete supply pipe and the or each vent pipe may be detachable from the module such that after the formwork has been filled with concrete the or each supply pipe can be removed. The pipes may be supplied with drybreak connectors that connect the pipes to the formwork in order to prevent gases and dust escaping from the pipes into the containment structure when the pipes are disconnected.
- The formwork may comprise at least one void having a structural void and an expansion void disposed above the structural void with a structural support plate having at least one hole therein disposed therebetween. The void may be arranged to be filled with concrete above the structural support plate such that the structural void is filled with structural concrete which can support a load applied to the structural support plate. At least one vent pipe may extend from the expansion void to outside of the containment structure for venting dust and/or gases to the atmosphere.
- The containment structure may be steel or may be formwork arranged to be filled with concrete on site.
- The part-built nuclear reactor module may be transportable by vehicle, for example.
- The invention also concerns a nuclear reactor module constructed from a part-built nuclear reactor module in accordance with claim 1. The nuclear reactor module may be part of a water cooled nuclear reactor installation.
- According to a further aspect of the invention there is provided a method of constructing a nuclear reactor module, comprising: filling formwork which has nuclear reactor equipment mounted thereto and which is housed within a containment structure with concrete through a concrete supply pipe which extends from outside of the containment structure to the formwork, thereby forming a concrete support structure for the nuclear reactor equipment.
- The method may further comprise removing at least one removable support that temporarily supports at least some of the nuclear reactor equipment during transportation. The method may further comprise removing at least one removable brace that temporarily supports at least some of the formwork during transportation.
- The method may further comprise detaching the or each concrete supply pipe after the formwork has been filled with concrete and removing the or each concrete supply pipe from the containment structure.
- The formwork may comprise at least one void having a structural void and an expansion void disposed above the structural void with a structural support plate having at least one hole therein disposed therebetween. The method may further comprise filling the void with concrete to a level above the structural support plate such that the structural void is filled with structural concrete which can support a load applied to the structural support plate.
- The invention may comprise any combination of the features and/or limitations referred to herein, except combinations of such features as are mutually exclusive.
- Embodiments of the invention will now be described, by way of example only, with reference to the accompanying drawings, in which:
-
FIG. 1 schematically shows a cross-sectional view through a nuclear reactor installation; -
FIG. 2 schematically shows a cross-sectional view through a part-built nuclear reactor module; and -
FIG. 3 schematically shows a formwork void filled with concrete through a concrete supply pipe. -
FIG. 1 shows a nuclear reactor installation which in this embodiment is anuclear reactor module 10. Thereactor module 10 comprises acontainment structure 12 which is in the form of a building having abase 13, a generally cylindricalouter wall 14, and a domed-roof 15. In this particular embodiment the containment structure is made from steel plate welded together. However, in other embodiments the containment structure may be formwork for forming a reinforced concrete containment structure, for example. - A reinforced
concrete support structure 16 is housed within thecontainment structure 12 and supports nuclear reactor equipment. The nuclear reactor equipment supported by theconcrete structure 16 includes a nuclearreactor pressure vessel 18, a steam generator, a pressuriser, an accumulator, monitoring sensors and control circuitry. At least part of a coolant circuit for circulating coolant through thereactor vessel 18 is also provided within the concrete structure. Thecontainment structure 12 is arranged to contain a high internal pressure generated by an escape of coolant from the reactor coolant circuit. In this particular embodiment the coolant is water. - The reinforced
concrete structure 16 also comprises arefuelling cavity wall 20 which defines arefuelling cavity 22 which is filled with water during refuelling of thereactor vessel 18. Theconcrete structure 16 also forms numerous tanks, or cavities, within the interior of the structure including aspent fuel pool 21. The concrete also provides radiation shielding from the radiation emitted from the nuclear fuel. - Referring now to
FIG. 2 , thenuclear reactor module 10 is constructed on site from a part-builtnuclear reactor module 100 that is manufactured and tested in a factory and transported to site. The part-built nuclear module comprises thecontainment structure 12 having abase 13, an outercylindrical wall 14, and adomed roof 15, within whichconcrete formwork 30 is housed. The nuclear reactor equipment including the nuclearreactor pressure vessel 18, the steam generator, the pressuriser, the accumulator, monitoring sensors and control circuitry is mounted to theformwork 30. At least part of a coolant circuit for circulating coolant through thereactor vessel 18 is also mounted to theformwork 30. - The
formwork 30 comprises a plurality ofsteel plates 32 that are welded or otherwise attached together to form a plurality ofvoids 34 that are arranged to be filled with concrete. Thevoids 34 may be in fluid communication with one another through passageways so that liquid concrete can flow between them or they may be discrete. Structural reinforcement in the form of reinforcement bars and reinforcement plates (not shown) are disposed within thevoids 34 and form part of theformwork 30. - A plurality of
concrete supply conduits 36, or pipes, extend from outside of the containment structure to theformwork 30. Eachconcrete supply pipe 36 is in fluid communication with at least onevoid 34 and each void 34 may be provided with a separateconcrete supply pipe 36. In some embodiments the or eachconcrete supply pipe 36 extends to the bottom of therespective void 34. - A
vent pipe 38 is also provided that extends from theformwork 30 to the outside of the containment structure. Thevent pipe 38 allows dust and gas that can be generated during the concrete filling process to be vented to the atmosphere. It will be appreciated that a plurality ofvent pipes 38 may be provided if needed. - After the part-built
nuclear reactor module 100 has been assembled in a factory the nuclear reactor equipment can be tested. This ensures that the equipment is working correctly before it is transported and installed on site. After testing is complete the part-builtnuclear reactor module 100 is transported to site by vehicle for installation. Theformwork 30 provides sufficient structural support to the nuclear reactor equipment during transportation. If necessary, additional frameworks, cables, or supports may be provided to further support the nuclear reactor equipment during transportation. These additional supports may be removed once the part-builtmodule 100 has been transported to site. Theformwork 30 is also constructed so that it can support itself during transportation. However, if necessary internal bracing or other supports may be provided to support theformwork 30, such as thevoids 34. This bracing can be removed after the part-builtmodule 100 has been transported to site. - The
concrete supply pipes 36 and thevent pipe 38 provide structural support to thecontainment structure 12 during transportation. In particular, in this embodiment, thevent pipe 38 provides structural support to thedomed roof 15 during transportation. This reduces the unsupported length of roof and means that the roof stiffness can be reduced. It should be appreciated that it is not essential that the pipes provide structural support to thecontainment structure 12 during transport. - On site, the part-built
module 100 is lifted and set into position by heavy-lifting equipment. Theformwork 30 is then filled with concrete from the outside of the containment structure through the plurality ofconcrete supply pipes 36. Theformwork 30 is filled with concrete through thepipes 36 under pressure and from the bottom of thevoids 34. This helps to prevent the formation of gaps (or voids) within the concrete. Concrete delivery pipes from a concrete mixer vehicle (not shown) can be attached to the outer end of theconcrete supply pipes 36 from the outside of the containment structure to deliver concrete to theformwork 30. The concrete is then left to set for the required period of time after which theconcrete support structure 16 is complete. Dust and gas generated during the concrete pouring process is vented to the atmosphere through thevent pipe 38. This prevents the build-up of dust and gas within the clean interior of thecontainment structure 12. Theconcrete support structure 16 may then be inspected visually or by x-ray techniques, for example. - Although in this embodiment the
containment structure 12 is steel, thecontainment structure 12 may be made from any other suitable material. In one embodiment thecontainment structure 12 of the part-builtmodule 100 may be formwork that is arranged to be filled with concrete on site. In such an embodiment theconcrete supply pipes 36 of the part-builtmodule 100 may extend from outside of the formwork of thecontainment structure 12 to theformwork 30 housed therein. During transit thesupply pipes 36 may support thecontainment structure 12 formwork. On site, theformwork 30 can be filled with concrete through theconcrete supply pipes 36 which then support thecontainment structure 12 formwork as it is filled with concrete. - The
concrete supply pipes 36 and/or thevent pipes 38 may be detachable from the part-builtmodule 100. This would allow the 36, 38 to be detached from thepipes formwork 30 and thecontainment structure 12 after theformwork 30 has been filled with concrete. The 36, 38 could be removed through an access opening in thepipes containment structure 12 or could be removed from the outside of thecontainment structure 12 through the opening through which it extends. The 36, 38 may include an end cap for closing the opening in thepipes containment structure 12. The ends of the 36, 38 connected to thepipes formwork 30 may be coupled to theformwork 30 using drybreak connectors. This would prevent the leakage of concrete dust or particles into the interior of thecontainment structure 12 as the 36, 38 are disconnected.pipes - The completed
concrete support structure 16 formed from filing theformwork 30 with concrete provides thenecessary walls 22 and 20, 21 and provides the structural support to the nuclear reactor equipment such as thecavities reactor vessel 18. All or part of theformwork 30 may provide structural support even after the concrete has set. However, all or part of theformwork 30 may not provide any structural support and may either remain in place after the concrete has set or may be removed. - Constructing a
nuclear reactor module 10 on-site from a part-builtnuclear reactor module 100 manufactured and tested in a factory provides a number of advantages. It is important that the interior of thecontainment structure 12 is kept clean and this is easier to ensure if the part-builtmodule 100 is assembled in a factory. It is also easier and more efficient to test the nuclear reactor equipment in a factory environment. Furthermore, constructing the part-builtmodule 100 in a factory is less expensive and more repeatable when compared to an on-site construction and also allows the use of specialist equipment. - Since the part-built
module 100 containsformwork 30 that is arranged to be filed with concrete to form a concrete support structure 16 (as opposed to a concrete support structure itself) it is possible to transport the part-builtmodule 100 by vehicle from the factory to the site. On site, the interior of thecontainment structure 12 is kept clean by filling theformwork 30 through the concrete supply piped 36 from the outside of thecontainment structure 12. This also allows the sensitive nuclear reactor equipment to be fitted and tested before theconcrete support structure 16 is constructed. - In order to prevent the formation of cavities within the concrete poured into the
formwork 30 it may be necessary to design additional features into the formwork. As shown inFIG. 3 , some or all of thevoids 34 may comprise a mainstructural void 40 with asmaller expansion void 42 disposed above it. In this arrangement astructural support plate 44, which is substantially horizontal, is disposed between thestructural void 40 and theexpansion void 42 and has a plurality of holes therein. These holes allow for the flow of concrete between the structural and 40, 42. Aexpansion voids concrete supply pipe 36 extends into the bottom of thestructural void 40 and a vent pipe extends from theexpansion void 36. On site concrete is poured into thevoid 34 of theformwork 30 through theconcrete supply pipe 36. The void 34 is filled with concrete above the level of thestructural support plate 44 and therefore partially fills theexpansion void 42. Any dust or exhaust gases are vented through thevent pipe 38. Thestructural support plate 44 is arranged to support a load which it transmits to the structural concrete contained within thestructural void 40. Any cavities and gas bubbles are contained within the non-structural concrete contained within theexpansion void 42. Theexpansion void 42 may also contain tools which can vibrate the concrete during pouring and may be used to control the humidity within thevoid 34. - The part-built nuclear reactor module may include any nuclear plant sub-system up to and including the entire plant. The nuclear equipment supported by the formwork may be any component of a nuclear plant or installation requiring support from a concrete structure.
Claims (20)
1. A part-built nuclear reactor module, comprising:
a containment structure housing therein nuclear reactor equipment mounted to formwork; and
at least one concrete supply pipe extending from outside of the containment structure to the formwork;
wherein the formwork can be filled with concrete through the concrete supply pipe to form a concrete support structure for the nuclear reactor equipment.
2. A part-built nuclear reactor module according to claim 1 , wherein the nuclear reactor equipment comprises a nuclear reactor vessel and/or a steam generator and/or a pressuriser and/or an accumulator and/or monitoring sensors and/or control circuitry and/or at least part of a coolant circuit.
3. A part-built nuclear reactor module according to claim 1 , wherein at least part of the formwork is permanent.
4. A part-built nuclear reactor module according to claim 1 , wherein the formwork comprises reinforcement bars and/or reinforcement plates.
5. A part-built nuclear reactor module according to claim 1 , wherein the formwork defines a plurality of voids, each arranged to be filled with concrete through a concrete supply pipe.
6. A part-built nuclear reactor module according to claim 5 , wherein each void is provided with a separate concrete supply pipe.
7. A part-built nuclear reactor module according to claim 6 , wherein each concrete supply pipe extends towards the bottom of the respective void.
8. A part-built nuclear reactor module according to claim 1 , further comprising at least one removable support that temporarily supports at least some of the nuclear reactor equipment during transportation.
9. A part-built nuclear reactor module according to claim 1 , further comprising at least one removable brace that temporarily supports at least some of the formwork during transportation.
10. A part-built nuclear reactor module according to claim 1 , wherein the or each concrete supply pipe is detachable from the module such that after the formwork has been filled with concrete the or each supply pipe can be removed.
11. A part-built nuclear reactor module according to claim 1 , further comprising at least one vent pipe extending from the formwork to the outside of the containment structure for venting dust and/or gases to the atmosphere.
12. A part-built nuclear reactor module according to claim 1 , wherein the containment structure comprises a roof which is supported by at least one concrete supply pipe or vent pipe at least during transportation.
13. A part-built nuclear reactor module according to claim 1 , wherein the formwork comprises at least one void having a structural void and an expansion void disposed above the structural void with a structural support plate having at least one hole therein disposed therebetween, wherein the void is arranged to be filled with concrete above the structural support plate such that the structural void is filled with structural concrete which can support a load applied to the structural support plate.
14. A part-built nuclear reactor module according to claim 13 , further comprising at least one vent pipe extending from the expansion void to outside of the containment structure for venting dust and/or gases to the atmosphere.
15. A nuclear reactor module constructed from a part-built nuclear reactor in accordance with claim 1 .
16. A method of constructing a nuclear reactor module, comprising:
filling formwork which has nuclear reactor equipment mounted thereto and which is housed within a containment structure with concrete through a concrete supply pipe which extends from outside of the containment structure to the formwork, thereby forming a concrete support structure for the nuclear reactor equipment.
17. A method of constructing a nuclear reactor module according to claim 16 , further comprising removing at least one removable support that temporarily supports at least some of the nuclear reactor equipment during transportation.
18. A method of constructing a nuclear reactor module according to claim 16 , further comprising removing at least one removable brace that temporarily supports at least some of the formwork during transportation.
19. A method of constructing a nuclear reactor module according to claim 16 , further comprising detaching the or each concrete supply pipe after the formwork has been filled with concrete and removing the or each concrete supply pipe from the containment structure,
20. A method of constructing a nuclear reactor module according to claim 16 , wherein the formwork comprises at least one void having a structural void and an expansion void disposed above the structural void with a structural support plate having at least one hole therein disposed therebetween, further comprising filling the void with concrete to a level above the structural support plate such that the structural void is filled with structural concrete which can support a load applied to the structural support plate.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US14/636,915 US10600519B2 (en) | 2011-03-18 | 2015-03-03 | Nuclear reactor module |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| GBGB1104548.1A GB201104548D0 (en) | 2011-03-18 | 2011-03-18 | Nuclear reaction module |
| GB1104548.1 | 2011-03-18 |
Related Child Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US14/636,915 Division US10600519B2 (en) | 2011-03-18 | 2015-03-03 | Nuclear reactor module |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20120236979A1 true US20120236979A1 (en) | 2012-09-20 |
Family
ID=44012753
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US13/399,211 Abandoned US20120236979A1 (en) | 2011-03-18 | 2012-02-17 | Nuclear reactor module |
| US14/636,915 Active 2035-06-17 US10600519B2 (en) | 2011-03-18 | 2015-03-03 | Nuclear reactor module |
Family Applications After (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US14/636,915 Active 2035-06-17 US10600519B2 (en) | 2011-03-18 | 2015-03-03 | Nuclear reactor module |
Country Status (3)
| Country | Link |
|---|---|
| US (2) | US20120236979A1 (en) |
| EP (1) | EP2500907B1 (en) |
| GB (1) | GB201104548D0 (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN103903663A (en) * | 2012-12-28 | 2014-07-02 | 国家核电技术有限公司 | Method for manufacturing large vessel, especially steel containment vessel in nuclear power plant |
Families Citing this family (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| GB2590100A (en) * | 2020-07-23 | 2021-06-23 | Rolls Royce Plc | Nuclear power generation system |
| GB2588842A (en) * | 2020-07-23 | 2021-05-12 | Rolls Royce Plc | Nuclear refuelling device |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3801444A (en) * | 1970-12-02 | 1974-04-02 | Atomenergi Ab | Pressure vessel in particular for a nuclear reactor |
| US4817353A (en) * | 1987-10-28 | 1989-04-04 | Woods John T | Selfcontained integral footing form and foundation wall |
| US6745528B2 (en) * | 2000-12-08 | 2004-06-08 | Kajima Corporation | Stainless-steel floor and method of constructing the stainless-steel floor |
Family Cites Families (12)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2816346A (en) | 1954-02-10 | 1957-12-17 | Howard C Martin | Method of constructing reinforced concrete floors and beams |
| GB1084432A (en) * | 1964-12-17 | 1967-09-20 | Felix Max Adler | Method and means for constructing pressure vessels |
| JPS51140307A (en) | 1975-05-28 | 1976-12-03 | Kajima Corp | Tremie pipe |
| US4055927A (en) | 1975-08-12 | 1977-11-01 | Icos Corporation Of America | Concrete walls and reinforcement cage therefor |
| DE3012101A1 (en) | 1980-03-28 | 1981-10-08 | Hochtemperatur-Reaktorbau GmbH, 5000 Köln | METHOD FOR PRODUCING A CORE REACTOR WITH A PRESSURE CONCRETE PRESSURE TANK |
| JPS5981271A (en) | 1982-10-30 | 1984-05-10 | Mazda Motor Corp | 4-wheel steering device of vehicle |
| US4508677A (en) * | 1983-02-09 | 1985-04-02 | General Electric Company | Modular nuclear reactor for a land-based power plant and method for the fabrication, installation and operation thereof |
| JPH0247588A (en) | 1988-08-10 | 1990-02-16 | Toshiba Corp | steel pedestal |
| JP3027430B2 (en) * | 1991-03-20 | 2000-04-04 | 株式会社日立製作所 | Construction method of nuclear power plant building, building module and nuclear power plant building |
| US5610962A (en) | 1995-09-22 | 1997-03-11 | General Electric Company | Construction of nuclear power plants on deep rock overlain by weak soil deposits |
| JP2004077244A (en) * | 2002-08-14 | 2004-03-11 | Mitsubishi Heavy Ind Ltd | Fiber reinforced concrete cask, support frame body for forming the same, and method for manufacturing concrete cask |
| JP5391836B2 (en) * | 2009-05-29 | 2014-01-15 | 株式会社日立製作所 | Module structure and plant construction method |
-
2011
- 2011-03-18 GB GBGB1104548.1A patent/GB201104548D0/en not_active Ceased
-
2012
- 2012-02-17 US US13/399,211 patent/US20120236979A1/en not_active Abandoned
- 2012-02-17 EP EP12155884.5A patent/EP2500907B1/en active Active
-
2015
- 2015-03-03 US US14/636,915 patent/US10600519B2/en active Active
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3801444A (en) * | 1970-12-02 | 1974-04-02 | Atomenergi Ab | Pressure vessel in particular for a nuclear reactor |
| US4817353A (en) * | 1987-10-28 | 1989-04-04 | Woods John T | Selfcontained integral footing form and foundation wall |
| US6745528B2 (en) * | 2000-12-08 | 2004-06-08 | Kajima Corporation | Stainless-steel floor and method of constructing the stainless-steel floor |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN103903663A (en) * | 2012-12-28 | 2014-07-02 | 国家核电技术有限公司 | Method for manufacturing large vessel, especially steel containment vessel in nuclear power plant |
Also Published As
| Publication number | Publication date |
|---|---|
| US10600519B2 (en) | 2020-03-24 |
| EP2500907A3 (en) | 2014-11-12 |
| GB201104548D0 (en) | 2011-05-04 |
| EP2500907A2 (en) | 2012-09-19 |
| EP2500907B1 (en) | 2016-07-20 |
| US20150243380A1 (en) | 2015-08-27 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US10600519B2 (en) | Nuclear reactor module | |
| US7684535B2 (en) | Reactor containment vessel | |
| RU2264669C2 (en) | Method for nuclear fuel storage and system for manufacturing nuclear fuel storage container | |
| US20030169839A1 (en) | Prefabricated in-core instrumentation chase | |
| JP5852143B2 (en) | Reactor vessel lid WJP construction method and jig | |
| JPS60102594A (en) | Modular nuclear steam supply system | |
| EP1258889A1 (en) | Method of handling reactor vessel | |
| JP6056284B2 (en) | Reactor removal method | |
| US8091311B2 (en) | Composite integrated module and method for constructing a building | |
| CN105625754B (en) | A kind of HTGR Nuclear Power Plant steam generator partition module | |
| KR20050084029A (en) | A container device for the storage of hazardous material, particularly for the ultimate disposal of nuclear fuel, and installation for manufacturing it | |
| JP4276808B2 (en) | Equipment for carrying out nuclear power plant equipment | |
| GB2550183A (en) | Power plant | |
| JP2015152387A (en) | Nuclear reactor dismantlement method | |
| GB2550184A (en) | Power plant | |
| CN112635085A (en) | Simulated spent fuel storage tank for nuclear power station | |
| US20020176529A1 (en) | Reactor vessel handling method | |
| JP5757222B2 (en) | Submersion method for reactor containment | |
| CN102605952B (en) | Construction method for shielding cooling system and steel lining wall of high temperature gas cooled reactor | |
| JP3462911B2 (en) | Reactor building | |
| JP7071003B2 (en) | Reactor building flooding equipment and reactor building flooding method | |
| JP3937083B2 (en) | How to replace the reactor pressure vessel | |
| JP2015111052A (en) | Prevention method of expansion of contamination and shielding method in power plant, and investigation method of inside of power plant | |
| TW477987B (en) | Method for moving out machines of nuclear power plant | |
| CN116221703A (en) | Nuclear power plant reactor steam generator |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: ROLLS-ROYCE PLC, GREAT BRITAIN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ROBERTSON, DANIEL;REEL/FRAME:027733/0035 Effective date: 20120209 |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |