US20120231516A1 - Adapted culture for cellulosic fermentation - Google Patents

Adapted culture for cellulosic fermentation Download PDF

Info

Publication number
US20120231516A1
US20120231516A1 US13/482,246 US201213482246A US2012231516A1 US 20120231516 A1 US20120231516 A1 US 20120231516A1 US 201213482246 A US201213482246 A US 201213482246A US 2012231516 A1 US2012231516 A1 US 2012231516A1
Authority
US
United States
Prior art keywords
mash
ethanol
micro
starter culture
culture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/482,246
Inventor
Randall Padgett
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alternative Green Technology LLC
Original Assignee
Alternative Green Technology LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alternative Green Technology LLC filed Critical Alternative Green Technology LLC
Priority to US13/482,246 priority Critical patent/US20120231516A1/en
Publication of US20120231516A1 publication Critical patent/US20120231516A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P39/00Processes involving microorganisms of different genera in the same process, simultaneously
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • C12P7/06Ethanol, i.e. non-beverage
    • C12P7/08Ethanol, i.e. non-beverage produced as by-product or from waste or cellulosic material substrate
    • C12P7/10Ethanol, i.e. non-beverage produced as by-product or from waste or cellulosic material substrate substrate containing cellulosic material
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M35/00Means for application of stress for stimulating the growth of microorganisms or the generation of fermentation or metabolic products; Means for electroporation or cell fusion
    • C12M35/04Mechanical means, e.g. sonic waves, stretching forces, pressure or shear stimuli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M35/00Means for application of stress for stimulating the growth of microorganisms or the generation of fermentation or metabolic products; Means for electroporation or cell fusion
    • C12M35/06Magnetic means
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/36Adaptation or attenuation of cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/38Chemical stimulation of growth or activity by addition of chemical compounds which are not essential growth factors; Stimulation of growth by removal of a chemical compound
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N13/00Treatment of microorganisms or enzymes with electrical or wave energy, e.g. magnetism, sonic waves
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • C12P7/06Ethanol, i.e. non-beverage
    • C12P7/14Multiple stages of fermentation; Multiple types of microorganisms or re-use of microorganisms
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Definitions

  • This invention relates to methods for converting organic materials into ethanol.
  • Ethanol is a chemical compound having the formula C 2 0H6.
  • Ethanol includes two carbons connected to a hydroxyl unit.
  • Ethanol is flammable with a flash point of approximately 13° C. and a boiling point of approximately 78° C. It is completely miscible with water. It is a volatile, colorless liquid with a strong order, and it tends to burn with a smokeless blue flame which is not always visible in normal light.
  • Ethanol has a characteristic azeotrope with water. When mixtures of ethanol and water are distilled at atmospheric pressure, the maximum concentration of ethanol in the overhead distillate is approximately 96% by volume, with the remaining 4% by volume of the overhead distillate being water.
  • Ethanol has a specific gravity of approximately 0.789 grams per cubic centimeter, and a chemical abstract services, or CAS number of 64-17-5.
  • ethanol has many advantageous properties when used as a solvent. It has a polar end and a non-polar end such that many compounds will be soluble in ethanol, where the more polar compounds are attracted to the hydroxyl (OH) group attached to the ethanol, and the non-polar compounds are attracted to the ethyl group on the opposite end of the molecule.
  • Ethanol can be used as a raw material in the production of many compounds. These compounds include ethyl halides, diethyl ether, ethyl esters, butadiene, acetic acid, and ethylamines, amongst others.
  • Ethanol is also used as an antiseptic, and can be included in medical wipes and in certain antibacterial hand sanitizer gels. Ethanol tends to kill organisms by denaturing their proteins and dissolving their liquids, and it is effective against many bacteria, fungi and also many viruses. It can be used as a food source, although it is intoxicating
  • Ethanol can also be used as fuel. It has been used as rocket fuel in certain early bio-propellant rocket vehicles, where it was used in conjunction with an oxidizer. It can be used with ethanol fuel cells to produce electricity. It can also be used as a fuel for combustion in automobiles. Varying concentrations of ethanol are used as fuel for automobiles and other vehicles. Many fuels available in the United States include ethanol at concentrations up to 10%. There are also E85 cars which can burn ethanol at concentrations of 85%, with the remaining 15% being a petroleum based fuel. The E85 fuels tend to store less energy per liter than petroleum based fuels, such as gasoline. Therefore, the efficiency in miles per gallon of a vehicle using 85% ethanol will typically be less than for a comparable vehicle using pure gasoline.
  • Ethanol is frequently produced industrially by fermentation processes.
  • a source of organic material such as a food source
  • yeast can be inoculated with yeast.
  • the yeast will then begin to consume the organic material, and give off ethanol as a metabolic waste product.
  • micro-organisms that can be used in place of yeast for fermentation. These other micro-organisms include Zymomonas Mobilis and Escherichia Coli, as well as others.
  • Ethanol produced by micro-organisms tends to be toxic to the micro-organisms, so when ethanol is produced above certain levels it inhibits the micro-organisms and stops the fermentation process.
  • Micro-organisms are more efficient at converting some sorts of organic compounds than others.
  • the ethanol is typically recovered from the fermentation mash. This is frequently done through distillation, and the ethanol is recovered with water as an azeotrope. There are other techniques of recovering ethanol from a fermentation mash which could be used. There are also ways to recover pure ethanol from an azeotropic mixture of water and ethanol. For example, the collected overhead ethanol and water can be run through a carbon absorption system to absorb the water, leaving essentially pure ethanol.
  • the invention includes two primary components which can be used separately, or in combination.
  • the first component is the preparation of a starter culture
  • the second component is fermentation and recovery of ethanol.
  • the starter culture is prepared by inoculating a tallow base with micro-organisms, where the micro-organisms include yeast.
  • the tallow base includes Chinese tallow tree parts and water.
  • the micro-organisms are then grown in the tallow base to produce the starter culture.
  • the fermentation component includes providing a mash which includes an organic material and water.
  • the mash is inoculated with a micro-organism, such as in the starter culture, and the mash is fermented. Ethanol is recovered from the mash.
  • the attached FIGURE is a schematic drawing of an ethanol production system.
  • the current description describes a process for producing ethanol which includes 1) the preparation of a starter culture 10 , 2) the fermentation of a mash, and 3) recovery of the ethanol, as seen in the attached FIGURE.
  • Micro-organisms are adapted in the starter culture preparation to more efficiently produce ethanol from a wide variety of organic materials.
  • the micro-organisms are adapted as opposed to being acclimated.
  • the term “adaptation” as used in this description involves modifying the environment of the micro-organisms such that the micro-organisms develop the ability to live and thrive in conditions which are different than the conditions in the environment in which the micro-organisms were adapted. If the fermentation mash had the same conditions as the starter culture, the micro-organisms would be acclimated, as opposed to adapted.
  • “Acclamation” refers to exposing the micro-organisms to an environment the same as that in which they will function, so that they will develop the ability to function more effectively in that one particular environment.
  • a method has been developed which produces a starter culture 10 including micro-organisms 22 which are able to ferment a wide variety of organic materials 44 .
  • the organic materials 44 fermented vary from the organic materials 44 used in the starter culture 10 where the micro-organisms 22 are adapted.
  • a starter culture vessel 12 is used for the preparation of the starter culture 10 .
  • Water 14 and various parts of a Chinese tallow tree 16 are mixed to produce the tallow base 18 , and added to the starter culture vessel 12 .
  • the Chinese tallow tree 16 is the Triadica Sebifera, which is also referred to as the Sapium Sebiferum, or the popcorn tree.
  • the tallow base 18 includes one or more components of the Chinese tallow tree 16 mixed with water 14 . It has been found that essentially any part of the Chinese tallow tree 16 can be used in the tallow base 18 , including the roots, fruit, leaves, wood, and bark.
  • the use of the tallow base 18 is very effective in adapting micro-organisms 22 to live and thrive in various environments, using different cellulose sources as food sources.
  • the use of trees other than the Chinese tallow tree 16 has not been found to produce the same results, and has been found far less effective in producing micro-organisms 22 adapted to produce ethanol from a wide variety of organic materials 44 .
  • the exact reason the Chinese tallow tree 16 is so effective at adapting micro-organisms 22 is not understood at this time.
  • the micro-organism adaptation process is particularly effective when the sap is running in the Chinese tallow trees 16 , such as in the spring and summer seasons, but the adaptation process is still effective with Chinese tallow trees 16 harvested in the fall or winter. There may be compounds present in the sap which are particularly effective for helping to adapt micro-organisms 22 to be more effective in the production of ethanol 50 .
  • the Chinese tallow tree 16 includes several toxic secondary metabolites in essentially every part of the plant. The toxic compounds present may stress the micro-organisms 22 and aid in the adaptation process, but this is not known for certain. It has been noticed that Chinese tallow trees 16 are very resistant to biological control, such as bacteria, virus, fungi, nematodes, insects and mites, etc. It has been found that many insects are capable of eating the Chinese tallow tree 16 , but they do not do so unless all other food sources are exhausted first. The Chinese tallow tree 16 appears to have a wide variety of chemical compounds present, and it has some unusual characteristics.
  • the Chinese tallow tree 16 is very invasive and has become established in some portions of the United States.
  • the Chinese tallow tree 16 tends to quickly pressure out native vegetation, and it grows very fast.
  • the Chinese tallow tree 16 has very high oil content as compared to most trees, and it appears to contain some biologically active compounds.
  • This description includes a multitude of additives and steps which are used with the starter culture 10 , which provide a more robust and effective starter culture 10 .
  • the starter culture 10 can be prepared with or without most of the steps listed in this description. Each step provides somewhat of an incremental increase in the effectiveness of the starter culture 10 , so the utilization of all the steps provides most robust starter culture 10 , but effective starter cultures 10 can be produced using less than all of the steps.
  • the tallow base 18 is sterilized with pressure cooking before being inoculated with micro-organisms 22 .
  • This sterilization involves pressure cooking the tallow base 18 at a pressure of approximately 16 pounds per square inch gauge for one hour.
  • the sterilization tends to prevent unwanted competition from micro-organisms 22 which are not effective in the fermentation process.
  • micro-organisms 22 can be effectively adapted without sterilization of the tallow base 18 .
  • the tallow base 18 can be supplemented with estrogen 20 to improve the starter culture 10 .
  • Estrogen 20 can be supplied in various forms it can be supplied through the addition of female horse urine, and it can also be supplied in tablet form, such as tablets associated with the trademark PREMARIN®.
  • Female horse urine includes other components besides estrogen 20 , such as salts and urea, which may play some role in the adaptation of the micro-organisms 22 .
  • the starter culture 10 has comparable quality when prepared estrogen 20 in table form as when it is prepared with female horse urine.
  • the female horse urine can be pasteurized or sterilized in advance to reduce inoculation with unwanted micro-organisms 22 .
  • the estrogen 20 can be added before the micro-organisms 22 , or with the micro-organisms 22 , or even after the micro-organisms 22 , as long as the estrogen 20 is present during the growth stage in the preparation of the starter culture 10 .
  • Micro-organisms 22 are added to the tallow base 18 to inoculate the tallow base 18 and begin the adaptation process.
  • One type of micro-organism which is utilized is yeast 24 .
  • the yeast 24 can be common baker's yeast 24 , saccharomyces cerevisiae, but other yeasts 24 can also be used.
  • Certain “super-yeasts,” which have been modified in attempts to make them more effective at the production of ethanol 50 have been tried. It has been found that the common baker's yeast 24 or the super-yeast 24 both provide an effective starter culture 10 .
  • the use of other yeasts 24 from the genus saccharomyces may be effective in the starter culture 10 , and the use of yeasts 24 from different genus's may also be effective.
  • Non pasteurized honey 26 includes a host of micro-organisms 22 .
  • honey When honey is pasteurized, the micro-organisms 22 present are killed, so pasteurized honey does not inoculate the starter culture 10 with the desired micro-organisms 22 .
  • the tallow base 18 is inoculated with the non-pasteurized honey 26 such that the micro-organisms present in the non-pasteurized honey 26 are introduced to the starter culture 10 .
  • Non-pasteurized honey 26 can come in a variety of forms depending on the type of bee making the honey, the type of pollen being collected, and/or the time of year when the pollen is collected. It has been found that the use of red honey is particularly effective for making a robust starter culture 10 .
  • Non-pasteurized honey 26 contains a wide variety of micro-organisms 22 , and it is not know which micro-organism 22 , or which combination of micro-organisms 22 , is most effective in the starter culture 10 . It is known that the use of non-pasteurized honey 26 , and in particular non-pasteurized red honey, is effective for inoculation of the tallow base 18 .
  • Another micro-organism 22 which can be inoculated into the tallow base 18 is the fungus pichia membranifaciens 28 . It has been found that this particular fungus 28 can he grown on Chinese tallow trees 16 and collected for inoculation into the tallow base 18 . The pichia membranifaciens fungus 28 has been observed to grow when pieces of the Chinese tallow tree 16 sit in water 14 for extended periods. The pichia membranifaciens fungus 28 can then be collected from this tallow base 18 and saved for the starter culture 10 . The use of other fungi from the genus pichia may also be effective in the preparation of the starter culture 10 , as well as fungi from different genus.
  • a growth stage is initiated.
  • the micro-organisms 22 are allowed to reproduce in the tallow base 18 and adapt to become more effective at producing ethanol 50 from a wide variety of organic compounds.
  • a temperature of approximately 30° C. is effective to keep the micro-organisms 22 active in reproducing and adapting.
  • Controlling the pH of the tallow base 18 below 7 also seems to improve the growth stage for the micro-organisms 22 .
  • the Chinese tallow tree 16 tends to have a low pH, and so the use of the Chinese tallow tree 16 in the tallow base 18 is advantageous for controlling the pH of the tallow base 18 below seven.
  • the tallow base 18 can he oxygenated.
  • a variety of methods can be used, such as mixing of the tallow base 18 or using a bubbler to bubble air up and through the tallow base 18 .
  • the presence of oxygen in the growth stage encourages the micro-organisms 22 to grow aerobically, and not to generate significant ethanol 50 .
  • Oxygen 30 is present in the air, so a source of oxygen is easy to find for the oxygenation process.
  • the use of oxygen 30 tends to minimize the production of ethanol 50 , and ethanol 50 can be toxic to the micro-organisms 22 , so it may be the oxygenation primarily serves to control the production of ethanol 50 .
  • micro-organisms 22 adapt better because of the oxygen, or the aerobic growth conditions, or some other aspect resulting from the oxygenation of the tallow base 18 .
  • micro-organisms 22 grow faster in aerobic conditions than in anaerobic conditions so it could be that the addition of the oxygen 30 merely speeds the rate of production of an effective starter culture 10 from the inoculated tallow base 18 .
  • the exact mechanism by which oxidation of the tallow base 18 improves adaptation of the starter culture 10 is not know, but it is known that oxidation improves the adaptation process.
  • the starter culture vessel 12 can be exposed to a magnetic field to increase the adaptation of the micro-organisms 22 . It has been found that the use of a negative magnetic field is particularly effective in causing the micro-organisms 22 to adapt.
  • a negative magnetic field is produced by exposing the tallow base 18 to the south pole of a magnet 32 , so the south pole of a magnet 32 produces a negative magnetic field, and the north pole of a magnet 32 produces a positive magnetic field.
  • the micro-organisms 22 grow at a faster rate when exposed to a negative magnetic field, and also adapt more quickly.
  • the growth stage can typically last from two to five days. An observation of the yeast 24 can be used to determine when the starter culture 10 is ready to be used. During the growth stage, the appearance of the yeast 24 changes as the micro-organisms 22 adapt. The yeast becomes larger and more oblong. The growth stage can be carried to the point where the yeast 24 becomes too large and oblong, and are no longer effective in fermentation. In general, the starter culture 10 is ready when the yeast has increased in sized by about 45 to 50 percent and they have become approximately twice as long as they are wide, forming the relatively oblong shape. Observing the change in the yeast serves to indicate when all micro-organisms 22 present in the starter culture 10 are ready, not just when the yeast is ready, so no observations of other types of micro-organisms 22 present are necessary.
  • the starter culture 10 can be stored by cooling and maintaining it at a reduced temperature. It has been found that temperatures of approximately 4° C. (centigrade) generally stop any fermentation processes from occurring, but do not kill or deactivate the starter culture 10 . Freezing the starter culture 10 can kill and deactivate the micro-organisms 22 , so the storage temperature should be controlled above the freezing point. The starter culture 10 can be stored for approximately 4-6 weeks and remain viable. Sometimes the starter culture 10 is so robust that there will be some fermentation at temperatures below 4° C. In such case, the starter culture 10 must be cooled to even lower temperatures nearer the freezing point of the starter culture 10 . The starter culture 10 produces carbon dioxide when fermenting, and the carbon dioxide can be seen as bubbles emanating from below the surface of the starter culture 10 . One can determine if the starter culture 10 is active by looking to see if any bubbles are being produced below the surface.
  • an aliquot of the fermentation mash 40 can be used as the starter culture 10 for subsequent fermentations for a limited period of time.
  • the mash 40 is re-used as the starter culture 10 in repeated fermentations of organic material 44 , the micro-organisms 22 gradually revert back to the state they were in prior to being adapted. Therefore, after a certain number of uses, such as approximately five uses, the organic material 44 to be fermented should be inoculated with a fresh batch of starter culture 10 instead of from a previous fermentation mash 40 .
  • the starter culture 10 described in this description is particularly robust and can thrive on a wide variety of materials. These materials included such things as cellulosic supplies of food, including hardwoods and softwoods.
  • the starter culture 10 seems to most effective when used with soft hardwoods, such as gum trees. Results are also effective on hard hardwoods such -as oak trees and on soft woods such as pine trees.
  • the starter culture 10 has been found to be effective for grass clippings, as well as for chicken droppings or chicken guano.
  • the robustness and wide variety of organic compounds which can be fermented using the starter culture 10 of this description provides for a wide variety of uses in industry.
  • a mash 40 is prepared in a fermentation vessel 42 .
  • the mash 40 is typically prepared by adding an organic material 44 to the fermentation vessel 42 with water 14 .
  • the organic material 44 can be a wide variety of materials.
  • it can be cellulosic sources, such as trees, including hardwoods, softwoods, soft hardwoods, and hard hardwoods. Trees are typically chipped before fermentation. The average chip size can he approximately 1 centimeter, but a wide variety of chip sizes are possible.
  • the organic material 44 can also be grass clippings, chicken droppings, and it can be a wide variety of other materials. It is anticipated the use of recycled paper and other materials found in common household garbage can be fermented using the starter culture 10 .
  • Chinese tallow trees 16 could also be used as the organic material 44 , although other cellulosic sources could also be used, including switch grass, straw etc.
  • the organic material 44 is charged to the fermentation vessel 42 , and then exposed to ultrasound prior to beginning the fermentation.
  • the ultrasound can be produced by an ultrasound generation device 34 , which can be affixed to the fermentation vessel 42 .
  • the ultrasound generation device 34 may also be used on the organic material 44 before the organic material 44 is placed in the fermentation vessel 42 . It is also possible the organic material 44 could be exposed to ultrasound during the fermentation, and/or as the fermentation was beginning. Typically, the organic material 44 is exposed to ultrasound before fermentation to limit the exposure of the starter culture 10 to the ultrasound.
  • the ultrasound tends to loosen up the cellulosic materials and make them more amenable to fermentation.
  • the cellulose can be exposed to the ultrasound until the cellulose begins “fibering,” where the structure of the cellulose becomes somewhat fibrous. Different types of cellulose may require exposure to the ultrasound for different periods of time, and tests could be performed on different cellulose sources as needed. Modulating frequencies in the ultrasound can be effective with some materials. Overexposure to the ultrasound does not cause processing problems, and it has been found that varying types of cellulose, such as different types of trees, respond better to different frequencies and intensities of ultrasound.
  • the ultrasound can separate the cellulosic materials of various types of wood to some extent such that the solution in the fermentation vessel 42 is more able to permeate into the cellulosic material. This provides better contact between the organic material 44 and the micro-organisms 22 in the starter culture 10 for fermentation.
  • the starches present in the mash 40 can be measured to determine when the ultrasound process can be terminated.
  • soft hardwoods such as gum trees
  • Hard hardwoods such as oak
  • soft hardwoods are also very amenable to fermentation, but not as amenable as soft hardwoods.
  • softwoods such as pine
  • exposing the pine wood to ultrasound tends to result in the production of a sap layer on top of the fermentation mash 40 . Removal of this sap layer, such as by skimming or filtration, tends to improve the rate at which fermentation proceeds, and may also improve the ethanol yield from the pine wood.
  • the organic material 44 receives minimal treatment before beginning the fermentation process.
  • the organic material 44 does not have to receive an acid pre-treatment, steam explosion, ammonia expansion, alkaline wet oxidation, or ozone pretreatment.
  • the ultrasound treatment is the primary pre-treatment of the organic material 44 , and can be the only pre-treatment in some embodiments.
  • the addition of water 14 and starter culture 10 to the mash 40 are not considered a form of pre-treatment.
  • the mash 40 Prior to fermentation, the mash 40 is inoculated with an aliquot of the starter culture 10 , as is well known in the industry.
  • the mash 40 should not be exposed to micro-organisms 22 which are not included in the starter culture 10 to minimize the change of competing micro-organisms 22 interfering with the fermentation process.
  • an aliquot of a previous mash 40 may be used to inoculate the fermentation vessel 42 with the desired micro-organisms 22 , but the micro-organisms 22 tend to gradually revert to their state before being adapted in the starter culture 10 . Therefore, the mash 40 should be inoculated with fresh starter culture 10 periodically.
  • the mash 40 is typically kept at a pH of seven or less, and it has been found that a temperature of approximately 30° C. is conducive to fermentation. Temperatures below 30° C. can slow the rate of fermentation, and temperatures significantly above 30° C. can damage the starter culture 10 and also interfere with fermentation.
  • the fermentation of the mash 40 is performed anerobically. This can be done by filling the fermentation vessel 42 most of the way with the mash 40 and allowing the generation of CO 2 (carbon dioxide) to remove air from the air space within the fermentation vessel 42 . It would also he possible to inert the fermentation vessel 42 , such as with nitrogen or helium, prior to or after the mash 40 is charged to the fermentation vessel 42 .
  • the rate at which the mash produces CO 2 can be used to determine when the fermentation is complete. Shortly after the mash 40 is inoculated with the starter culture 10 , the rate of CO 2 generation is low. As the micro-organism population increases, the rate of CO 2 generation increases and the mash 40 begins to bubble more vigorously. As the fermentation process nears completion, the rate of CO 2 generation declines. Fermentation can decline based on the available food source for the micro-organisms 22 being depleted, or on the toxicity of the mash 40 increasing due to increased concentrations of ethanol, amongst other reasons. The entire fermentation process typically lasts 3 to 5 days, but this time frame can vary somewhat.
  • the mash 40 can be exposed to a negative magnetic field within the fermentation vessel 42 during the fermentation process.
  • the use of the negative magnetic field during fermentation tends to speed the fermentation, and may help to improve the ethanol yield from the fermentation.
  • the south pole of magnets 32 are used to produce the negative magnetic field.
  • the use of a non-magnetic fermentation vessel 42 may assist in exposing the mash 40 to a negative magnetic field.
  • a non-metallic fermentation vessel 42 may be used, but some non-magnetic metallic vessels may also be effective.
  • the ethanol 50 produced by the micro-organisms 22 during fermentation can build up to a level where it becomes toxic to the micro-organisms 22 . This can result in the termination of the fermentation process.
  • the carbon dioxide generated during the fermentation process is typically vented from the fermentation vessel 42 and simply allowed to escape into the air. It may be desirable to capture any ethanol 50 which may escape with the carbon dioxide by venting this carbon dioxide off gas through a condenser, a scrubber, or some other form of pollution control device.
  • Other fermentation processes known in the art can also be utilized.
  • Ethanol 50 is typically recovered from the mash 40 for later use.
  • the recovery of ethanol 50 from the mash 40 involves standard techniques well known in the industry. This can include filtering any remaining organic material 44 from the mash 40 , collecting the liquids, distilling the collected liquids to recover the ethanol 50 , and separating the ethanol 50 from the water 14 .
  • the distillation process typically utilizes a distillation column 52 , where ethanol 50 is collected in the overheads, water 14 can be collected from lower points on the distillation column 52 , and solids can remain in the reboiler.
  • the distilled ethanol 50 will typically be present as an azeotrope and will still include some water 14 .
  • the solids can be remaining wood or organic material 44 which was not digested during fermentation, as well as sludge from the micro-organisms 22 . These solids can be removed before the ethanol 50 is recovered, or they can be removed afterwards. One way to remove the solids is by filtration.
  • the solids can be disposed of, but other possible uses do exits. For example, it may be possible to compact and dry the solids for use as a fuel, or it may be possible to compost the solids.

Abstract

A method for producing ethanol by fermentation includes the preparation of a starter culture, inoculation of a mash with the starter culture, fermentation of mash, and recovery of ethanol from the mash. The starter culture includes a tallow base with Chinese tallow tree parts and water which are inoculated with micro-organisms, where the micro-organisms include yeast. The micro-organisms are grown in the tallow base, and used to inoculate the mash. The mash is then fermented, and ethanol is recovered from the mash.

Description

  • This application is a continuation of, and claims priority to, pending U.S. patent application Ser. No. 12/480,503, which was filed on Jun. 8, 2009, the contents of which are incorporated by reference.
  • BACKGROUND OF THE INVENTION
  • a. Field of the Invention
  • This invention relates to methods for converting organic materials into ethanol.
  • b. Background of the Invention
  • Ethanol is a chemical compound having the formula C20H6. Ethanol includes two carbons connected to a hydroxyl unit. Ethanol is flammable with a flash point of approximately 13° C. and a boiling point of approximately 78° C. It is completely miscible with water. It is a volatile, colorless liquid with a strong order, and it tends to burn with a smokeless blue flame which is not always visible in normal light. Ethanol has a characteristic azeotrope with water. When mixtures of ethanol and water are distilled at atmospheric pressure, the maximum concentration of ethanol in the overhead distillate is approximately 96% by volume, with the remaining 4% by volume of the overhead distillate being water. Ethanol has a specific gravity of approximately 0.789 grams per cubic centimeter, and a chemical abstract services, or CAS number of 64-17-5.
  • When pure ethanol is mixed with pure water, the resulting solution has less volume than the two components. So if one liter of pure ethanol was mixed with one liter of pure water, the resulting mixture would have a volume of less than two liters. The mixture is also exothermic and will give off heat, so when pure ethanol is mixed with water the resulting solution will be wanner than the combination of just the ethanol and the water. Ethanol is the alcohol that is commonly consumed in beverages such as beer, wine and liquor and is responsible for the intoxicating effects of alcohol on people.
  • There are many uses for ethanol. For example, ethanol has many advantageous properties when used as a solvent. It has a polar end and a non-polar end such that many compounds will be soluble in ethanol, where the more polar compounds are attracted to the hydroxyl (OH) group attached to the ethanol, and the non-polar compounds are attracted to the ethyl group on the opposite end of the molecule. Ethanol can be used as a raw material in the production of many compounds. These compounds include ethyl halides, diethyl ether, ethyl esters, butadiene, acetic acid, and ethylamines, amongst others. Ethanol is also used as an antiseptic, and can be included in medical wipes and in certain antibacterial hand sanitizer gels. Ethanol tends to kill organisms by denaturing their proteins and dissolving their liquids, and it is effective against many bacteria, fungi and also many viruses. It can be used as a food source, although it is intoxicating
  • Ethanol can also be used as fuel. It has been used as rocket fuel in certain early bio-propellant rocket vehicles, where it was used in conjunction with an oxidizer. It can be used with ethanol fuel cells to produce electricity. It can also be used as a fuel for combustion in automobiles. Varying concentrations of ethanol are used as fuel for automobiles and other vehicles. Many fuels available in the United States include ethanol at concentrations up to 10%. There are also E85 cars which can burn ethanol at concentrations of 85%, with the remaining 15% being a petroleum based fuel. The E85 fuels tend to store less energy per liter than petroleum based fuels, such as gasoline. Therefore, the efficiency in miles per gallon of a vehicle using 85% ethanol will typically be less than for a comparable vehicle using pure gasoline.
  • Ethanol is frequently produced industrially by fermentation processes. For example, a source of organic material, such as a food source, can be inoculated with yeast. The yeast will then begin to consume the organic material, and give off ethanol as a metabolic waste product. There are other micro-organisms that can be used in place of yeast for fermentation. These other micro-organisms include Zymomonas Mobilis and Escherichia Coli, as well as others. Ethanol produced by micro-organisms tends to be toxic to the micro-organisms, so when ethanol is produced above certain levels it inhibits the micro-organisms and stops the fermentation process. Micro-organisms are more efficient at converting some sorts of organic compounds than others. The commonly used baker's yeast tends to be more efficient at converting sugars in such things as sugar cane or corn than in converting cellulosic materials into ethanol. Most ethanol production in the world now is based on organic materials with high sugar content, such as corn or sugar cane.
  • There have been many attempts to come up with efficient methods for efficiently converting cellulosic materials to ethanol, and these have met with varied success. Many times the use of cellulosic feed sources will involve some sort of pre-treatment technique to make the cellulose available to the micro-organisms. This can include acid hydrolysis, steam explosion, ammonia expansion, alkaline wet oxidation or ozone pre-treatment, amongst others. It is also possible to produce ethanol by means other than fermentation, such as gasification.
  • After the fermentation process, the ethanol is typically recovered from the fermentation mash. This is frequently done through distillation, and the ethanol is recovered with water as an azeotrope. There are other techniques of recovering ethanol from a fermentation mash which could be used. There are also ways to recover pure ethanol from an azeotropic mixture of water and ethanol. For example, the collected overhead ethanol and water can be run through a carbon absorption system to absorb the water, leaving essentially pure ethanol.
  • In the fermentation process, carbon dioxide is generated as a by-product, and this carbon dioxide typically bubbles out of the fermentation mash. The fermentation of an organic material with micro-organisms is typically done anaerobically, or not in the presence of oxygen. When little or no oxygen is present, the micro-organisms find energy from the food source and not from available free oxygen. Many micro-organisms, including some yeasts, will utilize different mechanisms for consuming organic materials in anaerobic vs. aerobic conditions. Some yeast will preferentially produce water instead of ethanol as a by-product of metabolism when oxygen is present.
  • SUMMARY OF THE INVENTION
  • The invention includes two primary components which can be used separately, or in combination. The first component is the preparation of a starter culture, and the second component is fermentation and recovery of ethanol. The starter culture is prepared by inoculating a tallow base with micro-organisms, where the micro-organisms include yeast. The tallow base includes Chinese tallow tree parts and water. The micro-organisms are then grown in the tallow base to produce the starter culture. The fermentation component includes providing a mash which includes an organic material and water. The mash is inoculated with a micro-organism, such as in the starter culture, and the mash is fermented. Ethanol is recovered from the mash.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The attached FIGURE is a schematic drawing of an ethanol production system.
  • DETAILED DESCRIPTION
  • The current description describes a process for producing ethanol which includes 1) the preparation of a starter culture 10, 2) the fermentation of a mash, and 3) recovery of the ethanol, as seen in the attached FIGURE.
  • Starter Culture
  • Micro-organisms are adapted in the starter culture preparation to more efficiently produce ethanol from a wide variety of organic materials. The micro-organisms are adapted as opposed to being acclimated. The term “adaptation” as used in this description involves modifying the environment of the micro-organisms such that the micro-organisms develop the ability to live and thrive in conditions which are different than the conditions in the environment in which the micro-organisms were adapted. If the fermentation mash had the same conditions as the starter culture, the micro-organisms would be acclimated, as opposed to adapted. “Acclamation” refers to exposing the micro-organisms to an environment the same as that in which they will function, so that they will develop the ability to function more effectively in that one particular environment.
  • Tallow Base
  • A method has been developed which produces a starter culture 10 including micro-organisms 22 which are able to ferment a wide variety of organic materials 44. The organic materials 44 fermented vary from the organic materials 44 used in the starter culture 10 where the micro-organisms 22 are adapted. A starter culture vessel 12 is used for the preparation of the starter culture 10. Water 14 and various parts of a Chinese tallow tree 16 are mixed to produce the tallow base 18, and added to the starter culture vessel 12. The Chinese tallow tree 16 is the Triadica Sebifera, which is also referred to as the Sapium Sebiferum, or the popcorn tree. The tallow base 18 includes one or more components of the Chinese tallow tree 16 mixed with water 14. It has been found that essentially any part of the Chinese tallow tree 16 can be used in the tallow base 18, including the roots, fruit, leaves, wood, and bark.
  • It been found that the use of the tallow base 18 is very effective in adapting micro-organisms 22 to live and thrive in various environments, using different cellulose sources as food sources. The use of trees other than the Chinese tallow tree 16 has not been found to produce the same results, and has been found far less effective in producing micro-organisms 22 adapted to produce ethanol from a wide variety of organic materials 44. The exact reason the Chinese tallow tree 16 is so effective at adapting micro-organisms 22 is not understood at this time. It has been noticed that the micro-organism adaptation process is particularly effective when the sap is running in the Chinese tallow trees 16, such as in the spring and summer seasons, but the adaptation process is still effective with Chinese tallow trees 16 harvested in the fall or winter. There may be compounds present in the sap which are particularly effective for helping to adapt micro-organisms 22 to be more effective in the production of ethanol 50.
  • There are several characteristics of the Chinese tallow tree 16 which may contribute to the capability of adapting micro-organisms 22. The Chinese tallow tree 16 includes several toxic secondary metabolites in essentially every part of the plant. The toxic compounds present may stress the micro-organisms 22 and aid in the adaptation process, but this is not known for certain. It has been noticed that Chinese tallow trees 16 are very resistant to biological control, such as bacteria, virus, fungi, nematodes, insects and mites, etc. It has been found that many insects are capable of eating the Chinese tallow tree 16, but they do not do so unless all other food sources are exhausted first. The Chinese tallow tree 16 appears to have a wide variety of chemical compounds present, and it has some unusual characteristics. For example, the Chinese tallow tree 16 is very invasive and has become established in some portions of the United States. The Chinese tallow tree 16 tends to quickly pressure out native vegetation, and it grows very fast. The Chinese tallow tree 16 has very high oil content as compared to most trees, and it appears to contain some biologically active compounds.
  • This description includes a multitude of additives and steps which are used with the starter culture 10, which provide a more robust and effective starter culture 10. It should be noted that the starter culture 10 can be prepared with or without most of the steps listed in this description. Each step provides somewhat of an incremental increase in the effectiveness of the starter culture 10, so the utilization of all the steps provides most robust starter culture 10, but effective starter cultures 10 can be produced using less than all of the steps.
  • In one embodiment, the tallow base 18 is sterilized with pressure cooking before being inoculated with micro-organisms 22. This sterilization involves pressure cooking the tallow base 18 at a pressure of approximately 16 pounds per square inch gauge for one hour. The sterilization tends to prevent unwanted competition from micro-organisms 22 which are not effective in the fermentation process. However, in some embodiments, it has been found that micro-organisms 22 can be effectively adapted without sterilization of the tallow base 18.
  • The tallow base 18 can be supplemented with estrogen 20 to improve the starter culture 10. Estrogen 20 can be supplied in various forms it can be supplied through the addition of female horse urine, and it can also be supplied in tablet form, such as tablets associated with the trademark PREMARIN®. Female horse urine includes other components besides estrogen 20, such as salts and urea, which may play some role in the adaptation of the micro-organisms 22. However, it has been found that the starter culture 10 has comparable quality when prepared estrogen 20 in table form as when it is prepared with female horse urine. When female horse urine is used for the estrogen 20, the female horse urine can be pasteurized or sterilized in advance to reduce inoculation with unwanted micro-organisms 22. Although this does tend to reduce the amount of estrogen 20 present in the female horse urine, there is still enough estrogen 20 left over to be effective in the preparation of the starter culture 10. The estrogen 20 can be added before the micro-organisms 22, or with the micro-organisms 22, or even after the micro-organisms 22, as long as the estrogen 20 is present during the growth stage in the preparation of the starter culture 10.
  • Starter Culture Inoculation
  • Micro-organisms 22 are added to the tallow base 18 to inoculate the tallow base 18 and begin the adaptation process. There are several different micro-organisms 22 which can be included in the inoculation stage. One type of micro-organism which is utilized is yeast 24. The yeast 24 can be common baker's yeast 24, saccharomyces cerevisiae, but other yeasts 24 can also be used. Certain “super-yeasts,” which have been modified in attempts to make them more effective at the production of ethanol 50, have been tried. It has been found that the common baker's yeast 24 or the super-yeast 24 both provide an effective starter culture 10. The use of other yeasts 24 from the genus saccharomyces may be effective in the starter culture 10, and the use of yeasts 24 from different genus's may also be effective.
  • Non pasteurized honey 26 includes a host of micro-organisms 22. When honey is pasteurized, the micro-organisms 22 present are killed, so pasteurized honey does not inoculate the starter culture 10 with the desired micro-organisms 22. The tallow base 18 is inoculated with the non-pasteurized honey 26 such that the micro-organisms present in the non-pasteurized honey 26 are introduced to the starter culture 10. Non-pasteurized honey 26 can come in a variety of forms depending on the type of bee making the honey, the type of pollen being collected, and/or the time of year when the pollen is collected. It has been found that the use of red honey is particularly effective for making a robust starter culture 10. The red honey has been found to be more effective then tupalo honey in providing a micro-organism 22 which improves the starter culture 10. However the use of the tupalo honey does improve the overall effectiveness of the starter culture 10, just not as much as the red honey. Non-pasteurized honey 26 contains a wide variety of micro-organisms 22, and it is not know which micro-organism 22, or which combination of micro-organisms 22, is most effective in the starter culture 10. It is known that the use of non-pasteurized honey 26, and in particular non-pasteurized red honey, is effective for inoculation of the tallow base 18.
  • Another micro-organism 22 which can be inoculated into the tallow base 18 is the fungus pichia membranifaciens 28. It has been found that this particular fungus 28 can he grown on Chinese tallow trees 16 and collected for inoculation into the tallow base 18. The pichia membranifaciens fungus 28 has been observed to grow when pieces of the Chinese tallow tree 16 sit in water 14 for extended periods. The pichia membranifaciens fungus 28 can then be collected from this tallow base 18 and saved for the starter culture 10. The use of other fungi from the genus pichia may also be effective in the preparation of the starter culture 10, as well as fungi from different genus.
  • Starter Culture Growth Stage
  • After the tallow base 18 has been created and it has been inoculated with the micro-organisms 22, a growth stage is initiated. In the growth stage, the micro-organisms 22 are allowed to reproduce in the tallow base 18 and adapt to become more effective at producing ethanol 50 from a wide variety of organic compounds. In the growth stage, it has been found that a temperature of approximately 30° C. is effective to keep the micro-organisms 22 active in reproducing and adapting. Controlling the pH of the tallow base 18 below 7 also seems to improve the growth stage for the micro-organisms 22. The Chinese tallow tree 16 tends to have a low pH, and so the use of the Chinese tallow tree 16 in the tallow base 18 is advantageous for controlling the pH of the tallow base 18 below seven.
  • During the growth stage the tallow base 18 can he oxygenated. A variety of methods can be used, such as mixing of the tallow base 18 or using a bubbler to bubble air up and through the tallow base 18. The presence of oxygen in the growth stage encourages the micro-organisms 22 to grow aerobically, and not to generate significant ethanol 50. Oxygen 30 is present in the air, so a source of oxygen is easy to find for the oxygenation process. The use of oxygen 30 tends to minimize the production of ethanol 50, and ethanol 50 can be toxic to the micro-organisms 22, so it may be the oxygenation primarily serves to control the production of ethanol 50. It is also possible the micro-organisms 22 adapt better because of the oxygen, or the aerobic growth conditions, or some other aspect resulting from the oxygenation of the tallow base 18. Generally, micro-organisms 22 grow faster in aerobic conditions than in anaerobic conditions so it could be that the addition of the oxygen 30 merely speeds the rate of production of an effective starter culture 10 from the inoculated tallow base 18. The exact mechanism by which oxidation of the tallow base 18 improves adaptation of the starter culture 10 is not know, but it is known that oxidation improves the adaptation process.
  • During the growth stage, the starter culture vessel 12 can be exposed to a magnetic field to increase the adaptation of the micro-organisms 22. It has been found that the use of a negative magnetic field is particularly effective in causing the micro-organisms 22 to adapt. A negative magnetic field is produced by exposing the tallow base 18 to the south pole of a magnet 32, so the south pole of a magnet 32 produces a negative magnetic field, and the north pole of a magnet 32 produces a positive magnetic field. The micro-organisms 22 grow at a faster rate when exposed to a negative magnetic field, and also adapt more quickly.
  • The growth stage can typically last from two to five days. An observation of the yeast 24 can be used to determine when the starter culture 10 is ready to be used. During the growth stage, the appearance of the yeast 24 changes as the micro-organisms 22 adapt. The yeast becomes larger and more oblong. The growth stage can be carried to the point where the yeast 24 becomes too large and oblong, and are no longer effective in fermentation. In general, the starter culture 10 is ready when the yeast has increased in sized by about 45 to 50 percent and they have become approximately twice as long as they are wide, forming the relatively oblong shape. Observing the change in the yeast serves to indicate when all micro-organisms 22 present in the starter culture 10 are ready, not just when the yeast is ready, so no observations of other types of micro-organisms 22 present are necessary.
  • Starter Culture Storage and Use
  • Examining the appearance of the yeast 24 provides a very convenient method for determining when the starter culture 10 is ready for use. When the starter culture 10 is ready for use it can be stored by cooling and maintaining it at a reduced temperature. It has been found that temperatures of approximately 4° C. (centigrade) generally stop any fermentation processes from occurring, but do not kill or deactivate the starter culture 10. Freezing the starter culture 10 can kill and deactivate the micro-organisms 22, so the storage temperature should be controlled above the freezing point. The starter culture 10 can be stored for approximately 4-6 weeks and remain viable. Sometimes the starter culture 10 is so robust that there will be some fermentation at temperatures below 4° C. In such case, the starter culture 10 must be cooled to even lower temperatures nearer the freezing point of the starter culture 10. The starter culture 10 produces carbon dioxide when fermenting, and the carbon dioxide can be seen as bubbles emanating from below the surface of the starter culture 10. One can determine if the starter culture 10 is active by looking to see if any bubbles are being produced below the surface.
  • After the starter culture 10 has been produced and is used in the fermentation of other organic compounds, such as other sources of cellulosic material, an aliquot of the fermentation mash 40 can be used as the starter culture 10 for subsequent fermentations for a limited period of time. As the mash 40 is re-used as the starter culture 10 in repeated fermentations of organic material 44, the micro-organisms 22 gradually revert back to the state they were in prior to being adapted. Therefore, after a certain number of uses, such as approximately five uses, the organic material 44 to be fermented should be inoculated with a fresh batch of starter culture 10 instead of from a previous fermentation mash 40.
  • It has been noted that the starter culture 10 described in this description is particularly robust and can thrive on a wide variety of materials. These materials included such things as cellulosic supplies of food, including hardwoods and softwoods. The starter culture 10 seems to most effective when used with soft hardwoods, such as gum trees. Results are also effective on hard hardwoods such -as oak trees and on soft woods such as pine trees. The starter culture 10 has been found to be effective for grass clippings, as well as for chicken droppings or chicken guano. The robustness and wide variety of organic compounds which can be fermented using the starter culture 10 of this description provides for a wide variety of uses in industry.
  • Fermentation
  • A mash 40 is prepared in a fermentation vessel 42. The mash 40 is typically prepared by adding an organic material 44 to the fermentation vessel 42 with water 14. The organic material 44 can be a wide variety of materials. For example, it can be cellulosic sources, such as trees, including hardwoods, softwoods, soft hardwoods, and hard hardwoods. Trees are typically chipped before fermentation. The average chip size can he approximately 1 centimeter, but a wide variety of chip sizes are possible. The organic material 44 can also be grass clippings, chicken droppings, and it can be a wide variety of other materials. It is anticipated the use of recycled paper and other materials found in common household garbage can be fermented using the starter culture 10. Chinese tallow trees 16 could also be used as the organic material 44, although other cellulosic sources could also be used, including switch grass, straw etc.
  • The organic material 44 is charged to the fermentation vessel 42, and then exposed to ultrasound prior to beginning the fermentation. The ultrasound can be produced by an ultrasound generation device 34, which can be affixed to the fermentation vessel 42. The ultrasound generation device 34 may also be used on the organic material 44 before the organic material 44 is placed in the fermentation vessel 42. It is also possible the organic material 44 could be exposed to ultrasound during the fermentation, and/or as the fermentation was beginning. Typically, the organic material 44 is exposed to ultrasound before fermentation to limit the exposure of the starter culture 10 to the ultrasound.
  • The ultrasound tends to loosen up the cellulosic materials and make them more amenable to fermentation. The cellulose can be exposed to the ultrasound until the cellulose begins “fibering,” where the structure of the cellulose becomes somewhat fibrous. Different types of cellulose may require exposure to the ultrasound for different periods of time, and tests could be performed on different cellulose sources as needed. Modulating frequencies in the ultrasound can be effective with some materials. Overexposure to the ultrasound does not cause processing problems, and it has been found that varying types of cellulose, such as different types of trees, respond better to different frequencies and intensities of ultrasound. The ultrasound can separate the cellulosic materials of various types of wood to some extent such that the solution in the fermentation vessel 42 is more able to permeate into the cellulosic material. This provides better contact between the organic material 44 and the micro-organisms 22 in the starter culture 10 for fermentation. The starches present in the mash 40 can be measured to determine when the ultrasound process can be terminated.
  • It has been found that soft hardwoods, such as gum trees, are very amenable to fermentation using the starter culture 10. Hard hardwoods, such as oak, are also very amenable to fermentation, but not as amenable as soft hardwoods. When softwoods such as pine are utilized as the organic material 44, it has been found that exposing the pine wood to ultrasound tends to result in the production of a sap layer on top of the fermentation mash 40. Removal of this sap layer, such as by skimming or filtration, tends to improve the rate at which fermentation proceeds, and may also improve the ethanol yield from the pine wood.
  • The organic material 44 receives minimal treatment before beginning the fermentation process. The organic material 44 does not have to receive an acid pre-treatment, steam explosion, ammonia expansion, alkaline wet oxidation, or ozone pretreatment. The ultrasound treatment is the primary pre-treatment of the organic material 44, and can be the only pre-treatment in some embodiments. The addition of water 14 and starter culture 10 to the mash 40 are not considered a form of pre-treatment.
  • Prior to fermentation, the mash 40 is inoculated with an aliquot of the starter culture 10, as is well known in the industry. The mash 40 should not be exposed to micro-organisms 22 which are not included in the starter culture 10 to minimize the change of competing micro-organisms 22 interfering with the fermentation process. As discussed above, an aliquot of a previous mash 40 may be used to inoculate the fermentation vessel 42 with the desired micro-organisms 22, but the micro-organisms 22 tend to gradually revert to their state before being adapted in the starter culture 10. Therefore, the mash 40 should be inoculated with fresh starter culture 10 periodically.
  • The mash 40 is typically kept at a pH of seven or less, and it has been found that a temperature of approximately 30° C. is conducive to fermentation. Temperatures below 30° C. can slow the rate of fermentation, and temperatures significantly above 30° C. can damage the starter culture 10 and also interfere with fermentation. The fermentation of the mash 40 is performed anerobically. This can be done by filling the fermentation vessel 42 most of the way with the mash 40 and allowing the generation of CO2 (carbon dioxide) to remove air from the air space within the fermentation vessel 42. It would also he possible to inert the fermentation vessel 42, such as with nitrogen or helium, prior to or after the mash 40 is charged to the fermentation vessel 42.
  • The rate at which the mash produces CO2 can be used to determine when the fermentation is complete. Shortly after the mash 40 is inoculated with the starter culture 10, the rate of CO2 generation is low. As the micro-organism population increases, the rate of CO2 generation increases and the mash 40 begins to bubble more vigorously. As the fermentation process nears completion, the rate of CO2 generation declines. Fermentation can decline based on the available food source for the micro-organisms 22 being depleted, or on the toxicity of the mash 40 increasing due to increased concentrations of ethanol, amongst other reasons. The entire fermentation process typically lasts 3 to 5 days, but this time frame can vary somewhat.
  • The mash 40 can be exposed to a negative magnetic field within the fermentation vessel 42 during the fermentation process. The use of the negative magnetic field during fermentation tends to speed the fermentation, and may help to improve the ethanol yield from the fermentation. The south pole of magnets 32 are used to produce the negative magnetic field. The use of a non-magnetic fermentation vessel 42 may assist in exposing the mash 40 to a negative magnetic field. A non-metallic fermentation vessel 42 may be used, but some non-magnetic metallic vessels may also be effective.
  • Many additional factors can be considered for the fermentation process, as known by those skilled in the art. For example, the ethanol 50 produced by the micro-organisms 22 during fermentation can build up to a level where it becomes toxic to the micro-organisms 22. This can result in the termination of the fermentation process. The carbon dioxide generated during the fermentation process is typically vented from the fermentation vessel 42 and simply allowed to escape into the air. It may be desirable to capture any ethanol 50 which may escape with the carbon dioxide by venting this carbon dioxide off gas through a condenser, a scrubber, or some other form of pollution control device. Other fermentation processes known in the art can also be utilized.
  • Ethanol Recovery
  • Ethanol 50 is typically recovered from the mash 40 for later use. The recovery of ethanol 50 from the mash 40 involves standard techniques well known in the industry. This can include filtering any remaining organic material 44 from the mash 40, collecting the liquids, distilling the collected liquids to recover the ethanol 50, and separating the ethanol 50 from the water 14. The distillation process typically utilizes a distillation column 52, where ethanol 50 is collected in the overheads, water 14 can be collected from lower points on the distillation column 52, and solids can remain in the reboiler. The distilled ethanol 50 will typically be present as an azeotrope and will still include some water 14. It is also possible to distill the ethanol 50 from the mash 40 without filtering the solids. There are other techniques which may be used to separate the ethanol from the water 14 and from the mash 40, which are known to those skilled in the art. Often times, the water 14 remaining in the ethanol 50 as an azeotrope can be removed before the ethanol 50 is later sold or used. This water 14 can be removed from the azeotrope by passing the azeotrope through an activated carbon bed to absorb the water 14, or by other techniques well known in the industry.
  • There are generally solids remaining after the fermentation process. The solids can be remaining wood or organic material 44 which was not digested during fermentation, as well as sludge from the micro-organisms 22. These solids can be removed before the ethanol 50 is recovered, or they can be removed afterwards. One way to remove the solids is by filtration. The solids can be disposed of, but other possible uses do exits. For example, it may be possible to compact and dry the solids for use as a fuel, or it may be possible to compost the solids.
  • EXAMPLE EXPERIMENTS
  • The process described in this description has been tested, and a wide variety of possible alternatives have been tried. Listed below are some example experiments which demonstrate the results from the various steps described.
  • TABLE 1
    Starter Culture Preparation
    water estro- fun-
    Run (oz) sugar honey magnet gen gus yeast air
    1 64 ½ cup 0 0 0 SC no
    2 64 ½ cup 0 0 0 SC no
    3 64 ½ cup 0 0 0 super no
    4 64 ½ cup negative 0 PM super no
    5 64 ½ cup positive 0 PM super no
    6 64 0 ½ cup negative 0 PM super yes
    tupelo
    7 64 0 ½ cup negative 4 oz. PM super yes
    tupelo FHU
    8 64 0 ½ cup negative 2 tab- PM super yes
    tupelo lets
    9 64 0 ½ cup negative 2 tab- PM super yes
    red lets
    All starter cultures included 2.5 lbs of Chinese tallow tree chips. In runs 1-3, the Chinese tallow tree chips remained in solution during the starter culture growth stage. In runs 4-9, the Chinese tallow tree chip solids were pressure cooked and filtered out of the solution before the starter culture inoculation and the starter culture growth stage.
    FHU is female horse urine. Estrogen tablets used were those associated with the trademark PREMARIN
    PM is pichia membranifaciens. SC is saccharomyces cerevisiae. Super is a yeast sold which includes saccharomyces cerevisiae, starch, salt, and sorbitan monostearate.
  • TABLE 2
    Fermentation Stage
    cellu- distillate
    lose water ultra- starter recovered
    Run (lbs) (gal) magnet sound culture other (gal)
    1 2.5 CT To no no all ground 0.75
    fill orange
    2 2.5 CT to no no all wood not 0.75
    fill pressure
    cooked
    3 2.5 CT to no no all
    fill
    4 1.5 MW 4 negative 1 hr 30 ml 0.75
    5 1.5 MW 4 positive 1 hr 30 ml 1
    6 1.5 MW 4 negative 1 hr 30 ml 1.125
    7 1.5 MW 4 negative 1 hr 30 ml 1.25
    8 1.5 MW 4 negative 1 hr 30 ml 1.25
    9 1.5 MW 4 negative 1 hr 30 ml 1.5
    CT is Chinese tallow tree. MW is mixed wood, where the wood type can vary. (all runs had 4 lbs of sugar)
    Distillate was checked with a burn test, and when the distillate would no longer burn the distillation was stopped. The exact proof of the distillate was not determined.
  • As can be seen by reviewing Tables 1 and 2, each of several steps incrementally increases the recovery from a set quantity of cellulose.
  • While the invention has been described with respect to a limited number of embodiments, those skilled in the art, having benefit of this disclosure, will appreciate that other embodiments can be devised which do not depart from the scope of the invention as disclosed here. Accordingly, the scope of the invention should be limited only by the attached claims.

Claims (20)

1. A method of adapting microorganisms to increase the microorganism's efficiency in producing ethanol comprising:
a) providing a tallow base comprising Chinese tallow tree parts mixed with water;
b) inoculating the tallow base with yeast; and
c) adapting the yeast in the tallow base in a growth stage such that the yeast will ferment and produce ethanol from cellulosic material other than Chinese tallow tree.
2. The method of claim 1 where the yeast is saccharomyces cerevisiae.
3. The method of claim 1 further comprising sterilizing the tallow base prior to (b).
4. The method of claim 1 where (b) further comprises inoculating the tallow base with microorganisms present in non-pasteurized honey.
5. The method of claim 4 where the honey is non-pasteurized red honey.
6. The method of claim 1 where (c) further comprises exposing the tallow base to a negative magnetic field.
7. The method of claim 1 where (b) further comprises inoculating the tallow base with a fungus, where the fungus is Pichia membranifaciens.
8. The method of claim 1 further comprising the step of adding estrogen to the tallow base prior to (c).
9. The method of claim 1 where (c) further comprises oxygenating the tallow base during the growth stage.
10. The method of claim 1 further comprising maintaining the pH of the tallow base below 7.
11. A method of producing ethanol comprising:
a) preparing a mash, where the mash comprises water and an organic material;
b) inoculating the mash with a starter culture, where the starter culture comprises yeast of the genus saccharomyces and the fungus Pichia membranifaciens;
c) fermenting the mash; and
d) recovering ethanol from the mash.
12. The method of claim 11 where the organic material comprises cellulosic materials.
13. The method of claim 12 where the starter culture is adapted with a base comprising material other than the cellulosic materials fermented in step (c).
14. The method of claim 11 where the organic material is a cellulosic material which has not been pretreated with acids, heat, ammonia, ozone, or alkaline wet oxidation.
15. The method of claim 11 further comprising exposing the mash to a negative magnetic field during step (c).
16. A culture for fermenting cellulosic materials comprising;
Yeast of the genus saccharomyces and the fungus Pichia membranifaciens which have been adapted in a mixture comprising Chinese tallow tree and water such that the culture will ferment cellulosic materials other than Chinese tallow tree.
17. The culture of claim 16 further comprising microorganisms present in non-pasteurized honey.
18. The culture of claim 16 further comprising estrogen.
19. The culture of claim 16 where the culture will ferment cellulosic materials which have not been pre-treated with acids, heat, ammonia, ozone, or alkaline wet oxidation.
20. The culture of claim 16 where the yeast is oblong such that the length is at least twice the width.
US13/482,246 2009-06-08 2012-05-29 Adapted culture for cellulosic fermentation Abandoned US20120231516A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/482,246 US20120231516A1 (en) 2009-06-08 2012-05-29 Adapted culture for cellulosic fermentation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12/480,503 US8198057B2 (en) 2009-06-08 2009-06-08 Ethanol production by fermentation of chinese tallow tree
US13/482,246 US20120231516A1 (en) 2009-06-08 2012-05-29 Adapted culture for cellulosic fermentation

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US12/480,503 Continuation US8198057B2 (en) 2009-06-08 2009-06-08 Ethanol production by fermentation of chinese tallow tree

Publications (1)

Publication Number Publication Date
US20120231516A1 true US20120231516A1 (en) 2012-09-13

Family

ID=43301037

Family Applications (2)

Application Number Title Priority Date Filing Date
US12/480,503 Active 2030-03-20 US8198057B2 (en) 2009-06-08 2009-06-08 Ethanol production by fermentation of chinese tallow tree
US13/482,246 Abandoned US20120231516A1 (en) 2009-06-08 2012-05-29 Adapted culture for cellulosic fermentation

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US12/480,503 Active 2030-03-20 US8198057B2 (en) 2009-06-08 2009-06-08 Ethanol production by fermentation of chinese tallow tree

Country Status (8)

Country Link
US (2) US8198057B2 (en)
EP (1) EP2440668A2 (en)
KR (1) KR20120028969A (en)
AU (1) AU2010258996A1 (en)
BR (1) BRPI1009700A2 (en)
CA (1) CA2764997A1 (en)
MX (1) MX2011013178A (en)
WO (1) WO2010144332A2 (en)

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8222466B2 (en) 2010-02-02 2012-07-17 Celanese International Corporation Process for producing a water stream from ethanol production
US8575403B2 (en) 2010-05-07 2013-11-05 Celanese International Corporation Hydrolysis of ethyl acetate in ethanol separation process
US8680342B2 (en) 2010-05-07 2014-03-25 Celanese International Corporation Process for recovering alcohol produced by hydrogenating an acetic acid feed stream comprising water
US8664454B2 (en) 2010-07-09 2014-03-04 Celanese International Corporation Process for production of ethanol using a mixed feed using copper containing catalyst
US8710279B2 (en) 2010-07-09 2014-04-29 Celanese International Corporation Hydrogenolysis of ethyl acetate in alcohol separation processes
US9272970B2 (en) 2010-07-09 2016-03-01 Celanese International Corporation Hydrogenolysis of ethyl acetate in alcohol separation processes
US8859827B2 (en) 2011-11-18 2014-10-14 Celanese International Corporation Esterifying acetic acid to produce ester feed for hydrogenolysis
WO2012148509A1 (en) 2011-04-26 2012-11-01 Celanese International Corporation Process for producing ethanol using a stacked bed reactor
US8592635B2 (en) 2011-04-26 2013-11-26 Celanese International Corporation Integrated ethanol production by extracting halides from acetic acid
US8754268B2 (en) 2011-04-26 2014-06-17 Celanese International Corporation Process for removing water from alcohol mixtures
US9073816B2 (en) 2011-04-26 2015-07-07 Celanese International Corporation Reducing ethyl acetate concentration in recycle streams for ethanol production processes
US8748675B2 (en) 2011-06-16 2014-06-10 Celanese International Corporation Extractive distillation of crude alcohol product
US8704012B2 (en) 2011-06-16 2014-04-22 Celanese International Corporation Distillation of crude alcohol product using entrainer
CN102260714B (en) * 2011-06-24 2013-04-03 河南科技大学 Method for producing ethanol by magnetic-field-assisted gas stripping fermentation
US8895786B2 (en) 2011-08-03 2014-11-25 Celanese International Corporation Processes for increasing alcohol production
US8748673B2 (en) 2011-11-18 2014-06-10 Celanese International Corporation Process of recovery of ethanol from hydrogenolysis process
US8829249B2 (en) 2011-11-18 2014-09-09 Celanese International Corporation Integrated esterification and hydrogenolysis process for producing ethanol
US8853468B2 (en) 2011-11-18 2014-10-07 Celanese International Corporation Vapor esterification method to produce ester feed for hydrogenolysis
US8829251B2 (en) 2011-11-18 2014-09-09 Celanese International Corporation Liquid esterification method to produce ester feed for hydrogenolysis
US9024089B2 (en) 2011-11-18 2015-05-05 Celanese International Corporation Esterification process using extractive separation to produce feed for hydrogenolysis
US8802901B2 (en) 2011-11-18 2014-08-12 Celanese International Corporation Continuous ethyl acetate production and hydrogenolysis thereof
CN103946200A (en) 2011-11-22 2014-07-23 国际人造丝公司 Esterifying an ethanol and acetic acid mixture to produce an ester feed for hydrogenolysis
US9029614B2 (en) 2011-12-14 2015-05-12 Celanese International Corporation Phasing reactor product from hydrogenating acetic acid into ethyl acetate feed to produce ethanol
US8927790B2 (en) 2011-12-15 2015-01-06 Celanese International Corporation Multiple vapor feeds for hydrogenation process to produce alcohol
US8907139B2 (en) 2011-12-28 2014-12-09 Celanese International Corporation Process for acetal removal in the purification of a crude ethanol product
US9024086B2 (en) 2012-01-06 2015-05-05 Celanese International Corporation Hydrogenation catalysts with acidic sites
CN104039448B (en) 2012-01-06 2016-11-16 国际人造丝公司 There is the hydrogenation catalyst of Co-modified supports
US9050585B2 (en) 2012-02-10 2015-06-09 Celanese International Corporation Chemisorption of ethyl acetate during hydrogenation of acetic acid to ethanol
US8957262B2 (en) 2012-11-20 2015-02-17 Celanese International Corporation Olefin hydration for hydrogenation processes
US9000237B2 (en) 2012-12-20 2015-04-07 Celanese International Corporation Ethanol refining process using intermediate reboiler
US8975451B2 (en) 2013-03-15 2015-03-10 Celanese International Corporation Single phase ester feed for hydrogenolysis
US8926718B2 (en) 2013-03-15 2015-01-06 Celanese International Corporation Thermochemically produced ethanol compositions
JP6632021B2 (en) * 2015-06-02 2020-01-15 国立大学法人 鹿児島大学 Shochu manufacturing method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5352593A (en) * 1992-09-18 1994-10-04 American Apiary Farm Company Production of fuel alcohol from honey
WO2005054487A1 (en) * 2003-12-01 2005-06-16 Swetree Technologies Ab Fermentation process, starter culture and growth medium
US20080193595A1 (en) * 2005-09-12 2008-08-14 Vrije Universiteit Brussel Starter Cultures and Fermentation Method

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3871961A (en) * 1973-03-15 1975-03-18 Matilde Gianessi Method for accelerating the growth and increasing the yield of microorganisms
FR2300127A2 (en) * 1975-02-05 1976-09-03 Rothlisberger Henri LIGHT SYNTHETIC FUEL
US4278471A (en) * 1979-10-05 1981-07-14 Carl Eugene Dedlow Process for extracting sugar from cellulose and cellulosic materials
CA1173380A (en) * 1980-02-19 1984-08-28 Michael I. Sherman Acid hydrolysis of biomass for ethanol production
DE3171911D1 (en) * 1980-07-11 1985-09-26 Ici Plc Solubilisation and hydrolysis of carbohydrates
US4564595A (en) * 1980-10-20 1986-01-14 Biomass International Inc. Alcohol manufacturing process
US4368056A (en) * 1981-05-20 1983-01-11 Pierce Sammy M Diesel fuel by fermentation of wastes
GB8525116D0 (en) * 1985-10-11 1985-11-13 Pentlands Scotch Whisky Resear Extracting carbohydrate
US5047332A (en) * 1986-09-03 1991-09-10 Institut Armand-Frappier-Univ. Of Quebec Integrated process for the production of food, feed and fuel from biomass
US5482846A (en) * 1988-08-31 1996-01-09 University Of Florida Ethanol production in Gram-positive microbes
US5865898A (en) * 1992-08-06 1999-02-02 The Texas A&M University System Methods of biomass pretreatment
US6333181B1 (en) * 1997-04-07 2001-12-25 University Of Florida Research Foundation, Inc. Ethanol production from lignocellulose
US6102690A (en) * 1997-04-07 2000-08-15 Univ. Of Florida Research Foundation, Inc. Recombinant organisms capable of fermenting cellobiose
FI980551A (en) * 1998-03-11 1999-09-12 Valtion Teknillinen Transformed microorganisms with improved properties
JP4666335B2 (en) * 2002-09-04 2011-04-06 晶夫 岸田 Biological function control method and apparatus by mechanical vibration
US7223402B2 (en) * 2003-06-11 2007-05-29 Ultra Biotech Limited Method to prepare compositions comprising yeast treated with electromagnetic energy
CA2536991C (en) * 2003-08-29 2009-03-24 Ultraforce Technology Llc Alcohol production using sonication
US20080006536A1 (en) * 2006-05-18 2008-01-10 North Carolina State University Processing cellulosic material utilizing atmospheric-pressure plasma
EP2074208A4 (en) * 2006-08-21 2011-12-21 Emtech Llc Method and apparatus for magnetic fermentation
US8182557B2 (en) * 2007-02-06 2012-05-22 North Carolina State University Use of lignocellulosics solvated in ionic liquids for production of biofuels
US20090117634A1 (en) * 2007-11-05 2009-05-07 Energy Enzymes, Inc. Process of Producing Ethanol Using Cellulose with Enzymes Generated Through Solid State Culture

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5352593A (en) * 1992-09-18 1994-10-04 American Apiary Farm Company Production of fuel alcohol from honey
WO2005054487A1 (en) * 2003-12-01 2005-06-16 Swetree Technologies Ab Fermentation process, starter culture and growth medium
US20080193595A1 (en) * 2005-09-12 2008-08-14 Vrije Universiteit Brussel Starter Cultures and Fermentation Method

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Helvetica Physiologica et Pharmacologica ACTA, 1956, English translation, pages 1-23. *
Meier et al., Helvetica Physiologica et Pharmacologica ACTA, 1956; 14 (3): 279-88 *
Nielsen et al., Yeast, 2005, Vol. 22, pages 271-284 *
Teramoto et al., African Journal of Biotechnology, Vol 4. (2) pp. 160-163, 2005 *

Also Published As

Publication number Publication date
AU2010258996A1 (en) 2012-02-02
US20100311138A1 (en) 2010-12-09
MX2011013178A (en) 2012-04-30
BRPI1009700A2 (en) 2015-08-25
WO2010144332A3 (en) 2011-04-28
KR20120028969A (en) 2012-03-23
US8198057B2 (en) 2012-06-12
EP2440668A2 (en) 2012-04-18
CA2764997A1 (en) 2010-12-16
WO2010144332A2 (en) 2010-12-16

Similar Documents

Publication Publication Date Title
US8198057B2 (en) Ethanol production by fermentation of chinese tallow tree
CN105002222B (en) Method for producing bioethanol using antibiotic alternatives
Itelima et al. Bio-ethanol production from banana, plantain and pineapple peels by simultaneous saccharification and fermentation process
JP4038577B2 (en) Alcohol production system and alcohol production method
CN104736715B (en) A kind of fermentation process
Sjolander et al. Butyl alcohol fermentation of wood sugar
EP0648273B1 (en) Process for the production of products having bacterial activity and capable of transforming glycerol into 1,3-propanediol, corresponding strains, and application in the industrial production of 1,3-propanediol
US7960153B2 (en) Glucose conversion to ethanol via yeast cultures and bicarbonate ions
AU2009340524B2 (en) Continuous single vessel butanol synthesis by fermentation
CN103881922A (en) Method for harvesting microalgae by using microorganism flocculant
ES2350431B1 (en) OSMOTOLERANT VINIC YEAST CECT 13015 AND ITS APPLICATION IN THE PRODUCTION AND IMPROVEMENT OF SWEET WINES AND THE OBTAINING OF BIOETHANOL.
McCall et al. The production of 2, 3-butanediol by fermentation of sugar beet molasses
US8357212B2 (en) Botanical fuel oxygenate compositions
CN107865288A (en) A kind of composite food preservatives and preparation method thereof
JP6745414B2 (en) Method for producing ethanol and ethanol composition
ES2350223B1 (en) OSMOTOLERANT VINIC YEAST CECT 13014 AND ITS APPLICATION IN THE PRODUCTION AND IMPROVEMENT OF SWEET WINES AND THE OBTAINING OF BIOETHANOL.
CN102181487A (en) Method for preparing ethanol from persimmon
CA1152916A (en) Biomass from rhodopseudomonas goldameirii
Yamashita Studies on the quality of agricultural products in storage and processing and on the production of juicy foods from agricultural products using bioreactors
Yadav Industrial biotechnology
Babych et al. INNOVATIVE TECHNOLOGIES OF BIOCONVERSION OF RENUWABLE RAW MATERIALS IN ETHANOL
JP2004329157A (en) Medium for microorganism and method for cultivation of microorganism
Matteau SOLID-STATE FERMENTATION OF LIGNOCELLULOSICS.
CN1003940B (en) Purificn. and utilization of distiller's grains
CH384588A (en) Process for preparing L-lysine by fermentation

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION