US20120226002A1 - Silicon compounds derived from furfuryl alcohols and methods of preparation - Google Patents

Silicon compounds derived from furfuryl alcohols and methods of preparation Download PDF

Info

Publication number
US20120226002A1
US20120226002A1 US13/407,820 US201213407820A US2012226002A1 US 20120226002 A1 US20120226002 A1 US 20120226002A1 US 201213407820 A US201213407820 A US 201213407820A US 2012226002 A1 US2012226002 A1 US 2012226002A1
Authority
US
United States
Prior art keywords
compound according
substituted
group
siloxane
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/407,820
Inventor
Barry C. Arkles
Youlin Pan
Jonathan D. GOFF
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gelest Technologies Inc
Original Assignee
Gelest Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gelest Technologies Inc filed Critical Gelest Technologies Inc
Priority to US13/407,820 priority Critical patent/US20120226002A1/en
Assigned to GELEST TECHNOLOGIES, INC. reassignment GELEST TECHNOLOGIES, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ARKLES, BARRY C., GOFF, JONATHAN D., PAN, YOULIN
Publication of US20120226002A1 publication Critical patent/US20120226002A1/en
Priority to US14/053,140 priority patent/US8779080B2/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/0834Compounds having one or more O-Si linkage
    • C07F7/0838Compounds with one or more Si-O-Si sequences
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/10Compounds having one or more C—Si linkages containing nitrogen having a Si-N linkage
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/18Compounds having one or more C—Si linkages as well as one or more C—O—Si linkages
    • C07F7/1804Compounds having Si-O-C linkages
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/14Polysiloxanes containing silicon bound to oxygen-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/38Polysiloxanes modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/12Polysiloxanes containing silicon bound to hydrogen

Definitions

  • Furfuryl alcohol having the structure shown below, is an organic compound containing a furan substituted with a hydroxymethyl group.
  • Furfuryl alcohol is commercially derived from corncobs and sugar cane bagasse.
  • furfuryl alcohol is used to impregnate wood to provide improved moisture-dimensional stability, hardness, and decay and insect resistance.
  • Furfuryl alcohol is also used commercially to prepare furan resins for use in the metal casting industry.
  • Tetrahydrofurfuryl alcohol a saturated derivative of furfuryl alcohol, has the following structure:
  • Tetrahydrofurfuryl alcohol is a relatively hydrophilic compound due to the polarity induced by the presence of oxygen atoms and the absence of methyl groups. Tetrahydrofurfuryl alcohol is viewed as relatively non-toxic. The use of tetrahydrofurfuryl alcohol as an adjuvant in synthetic flavoring has been accepted by the FDA (see 21 CFR 172.515), as has the use of tetrahydrofurfuryl alcohol in contact with dry food (see 21 CFR 176.180).
  • hydrophilic character of tetrahydrofurfuryl alcohol is in strong contrast to the structures of conventional silicones, such as polydimethylsiloxanes.
  • Polydimethylsiloxanes have many practical uses in which their hydrophobicity provides benefits such as water-repellency and release characteristics. There are many applications in which it is desirable to combine the hydrophobicity of silicones with hydrophilicity.
  • the most widely utilized approach is to modify a polydimethylsiloxane by grafting a poly(ethyleneoxide) segment to the backbone. These materials are often referred to as PEG (from polyethyleneglycol) modified siloxanes.
  • a silicon compound according to the invention comprises a siloxane or silane moiety and at least one furfuryl alcohol-derived moiety.
  • a method for preparing a silicon compound comprising a siloxane or silane moiety and at least one furfuryl alcohol-derived moiety comprises hydrosilylating a hydride functional silane or siloxane with at least one furfuryl alcohol containing a double bond to yield a hydrolytically stable silicon-to-carbon bond.
  • This invention is directed to siloxane and silicon derivatives of furfuryl alcohols and methods for their preparation. These novel classes of compounds may be used as monomers for surface treatments, as surfactants and defoamers, and for preparing silicone polymers. Due to the greater stability and relatively low toxicity of hydrophilic siloxanes of this invention compared to the PEG modified siloxanes currently used in commerce, these materials provide benefits in varied applications, including cosmetics and medical devices. Depending on the specific siloxane monomers, the resulting silicone polymers may have additional functionality, such as vinyl groups, that allow them to form elastomers in crosslinking processes.
  • the furfuryl substituted siloxanes and silanes are relatively hydrophilic materials and offer the advantage, compared to the most common hydrophilic substituted materials which contain ethylene oxide units, of not degrading to form ethylene glycol or its derivatives.
  • the terahydrofurfuryl siloxanes can also potentially be used as starting points for cationic polymerization of tetrahydrofuran to form block copolymers.
  • linear polydimethylsiloxanes with tetrahydrofuryl groups at the termini could react with tetrahydrofuran by cationic polymerization methods to form ABA, hydroxyl functional (polybutyleneoxide-dimethylsiloxane-polybutyleneoxide triblock polymers.
  • the siloxane and silane-based compounds according to the invention comprise a siloxane or silane moiety and a moiety derived from a furfuryl alcohol, such as a tetrahydrofurfuryl alcohol in a preferred embodiment.
  • the compounds also contain an alkyl bridging group which is bonded to an ether linkage derived from the furfuryl alcohol and to a silicon atom in the siloxane or silane moiety.
  • the alkyl bridge may contain about one to about six carbon atoms. Most preferably, the alkyl bridge contains about three carbon atoms (propyl), which has been found to improve stability of the resulting compound in aqueous environments.
  • propyl-bridged compounds according to the invention are obtainable in higher yield and purity than their shorter alkyl-bridged analogs.
  • Exemplary silane compounds according to the invention include:
  • Exemplary siloxane compounds according to the invention include:
  • Preferred siloxanes and silanes contain about one to about one thousand silicon atoms, more preferably about one to about eighteen silicon atoms, even more preferably about one to about ten silicon atoms, thus encompassing short chain siloxanes and silanes, which are often referred to as oligosiloxanes and oligosilanes, and longer polysiloxanes and polysilanes.
  • Siloxanes may contain hydrogen and vinyl substituents, and both siloxanes and silanes may contain alkyl or alkoxy substituents (linear or branched, containing up to about eighteen carbon atoms), including methyl substituents, such as polydimethylsiloxanes and oligodimethylsiloxanes, and may also be copolymers, yielding compounds such as (tetrahydrofurfuryloxypropyl)methylsiloxane-dimethylsiloxane copolymers.
  • Terpolymers may also be produced, such as (tetrahydrofurfuryloxypropyl)methylsiloxane-dimethylsiloxane-methylhydrogensiloxane terpolymers and (tetrahydrofurfuryloxypropyl)methylsiloxane-dimethylsiloxane-methylvinylsiloxane terpolymers.
  • Terpolymers of this type may be crosslinked by reaction with each other or by reaction with other vinyl or hydride functional siloxanes in the presence of a hydrosilylation catalyst, for example a platinum catalyst such as Karstedt's catalyst. It is within the scope of the invention for the furfuryl alcohol-derived moiety to occupy a terminal or pendant position on the siloxane or silane, which may have a linear or branched backbone structure.
  • the invention also includes derivatives in which one silicon-based group is attached to multiple furfuryl alcohol-derived moieties.
  • silicon compounds containing multiple furfuryl moieties which may be the same or different, are within the scope of the invention.
  • Specific preferred compounds according to the invention include, for example, tetrahydrofurfuryloxypropyltriethoxysilane, tetrahydrofurfuryloxypropylheptamethyltrisiloxane, (tetrahydrofurfuryloxymethyl)methyldiethoxysilane, (tetrahydrofurfuryloxypropyl)methylsiloxane-dimethylsiloxane copolymers, and terpolymers including (tetrahydrofurfuryloxypropyl)methylsiloxane-dimethylsiloxane-methylhydrogensiloxane terpolymers and (tetrahydrofurfuryloxypropyl)methylsiloxane-dimethylsiloxane-methylvinylsiloxane terpolymers. Elastomeric and cross-linked products derived from the siloxane polymer, including these copolymer and terpolymers, are also within the scope of the invention
  • X representing the substituents on the tetrahydrofurfuryl alcohol carbons, may be independently hydrogen, methyl, or hydroxyl.
  • X groups are methyl and the compound preferably contains not more than about two hydroxyl substituents. More preferably, all of the X substituents are hydrogen.
  • “n” is an integer selected from 0 and 1, and is preferably 0.
  • R 1 represents an optional linkage group, such as carbonyl (C ⁇ O) and carbamate (C(O)NH), derived from the reaction of tetrahydrofurfuryl alcohol with an isocyanate functional silane such as isocyanatopropyltriethoxysilane.
  • ether linkage interrupting the (CH 2 ) m for example, (3-tetrahydrofurfuryloxypropoxypropyl)triethoxysilane.
  • the compound having formula (1) contains at least three CH 2 , groups (m ⁇ 3), one of the internal CH 2 groups may be replaced by oxygen, forming an ether linkage.
  • Another example is:
  • R 2 , R 3 , and R 4 representing the substituents on silicon, are independently, a substituted or unsubstituted linear or branched alkyl group having about one to four carbon atoms, a substituted or unsubstituted linear or branched alkoxy group having about one to four carbon atoms, or a substituted or unsubstituted siloxy group, provided that at least one of R 2 , R 3 , and R 4 is an oxygen-containing group (alkoxy or siloxy). Possible substitutions on the siloxy group include hydrogen and vinyl groups, for example.
  • R alkyl, hydrogen, vinyl, for example.
  • the compound having formula (1) is a siloxane compound.
  • the compound is a silane derivative.
  • siloxanes and silanes and siloxanes from substituted derivatives of tetrahydrofurfuryl alcohol.
  • Preferred compounds according to the invention contain moieties derived from non-substituted furfuryl alcohol, which have the general structure shown in formula (2):
  • n, m, R 1 , R 2 , R 3 , and R 4 have the same definitions as in formula (1).
  • R 1 is C ⁇ O
  • the compound may considered to be an ester analog, such as the silane compound shown below:
  • Silicon compounds according to the invention may also contain unsaturated derivatives of furfuryl alcohol, such as those having formula (3):
  • n, m R 1 , R 2 , R 3 , and R 4 have the same definitions as in formula (1).
  • silicon compounds according to the invention may be prepared via reaction (hydrosilylation) of a hydride functional silane or siloxane with the appropriate furfuryl alcohol or tetrahydrofurfuryl derivative containing a double bond to yield a hydrolytically stable silicon-to-carbon bond.
  • reaction including appropriate catalysts, solvents, and reaction conditions, are well known in the art.
  • a 1 liter 3 neck flask equipped with a magnetic stirrer, pot thermometer, dry-ice condenser and an addition funnel was charged with 129.3 g of allyloxymethyltetrahydrofuran.
  • the flask was heated to 80° C., and 8.1 g of bis(trimethylsiloxy)methylsilane was added, followed by 0.5 g of Karstedt's catalyst with a Pt concentration of 2%. An exotherm was observed, and an additional 204.5 g of bis(trimethylsiloxy)methylsilane was added, while maintaining the temperature between 80°-110° C. After the addition was complete, an additional 0.25 g of Karstedt's catalyst was added, and the mixture was heated to 90° C. for 1 hour.
  • Tetrahydrofurfuryloxypropylheptamethyltrisiloxane (98.7% purity by GC) was obtained in 84% yield, having a boiling point of 132-6° C./2 mm and a density at 25° C. of 0.9250.
  • a 2 liter 4 neck flask equipped with a mechanical stirrer, pot thermometer, an addition funnel and a distillation head mounted on a short Vigreux column was charged with ⁇ 800 g of heptane and 27.9 g of sodium metal.
  • the flask was heated to 80°-90° C., then 137.9 g of tetrahydrofurfuryl alcohol was added slowly, allowing for hydrogen evolution.
  • the mixture was agitated and heated until all of the sodium was consumed.
  • the flask was allowed to cool to 70° C. and 16.8 g of potassium iodide and 365.8 g of chloromethylheptamethyltrisiloxane were added.
  • the mixture was heated to reflux for 8 hours.
  • a 2 liter 3 neck flask equipped with a magnetic stirrer, pot thermometer, dry-ice condenser, and an addition funnel was charged with 247.4 g of isocyanatopropyltriethoxysilane and 0.5 g of dibutyltin dilaurate.
  • the flask was heated to 40° C., and 102.1 g of tetrahydrofurfuryl alcohol was added over 50 min at a pot temperature between 40 and 60° C.
  • the pot mixture was heated at 70° C. for another hour after addition was complete.
  • the mixture was stripped at 1 mm Hg at a pot temperature of 60° C.
  • the reaction mixture was allowed to cool to room temperature, yielding a slightly yellow clear liquid with a viscosity of 53 cSt, a density of 1.02 g/cm 3 and a refractive index of 1.4223 at 25° C.
  • 1 H NMR analysis of the recovered copolymer confirmed the quantitative consumption of allyl groups during the hydrosilylation.
  • GPC characterization of the terpolymer showed a M n of 2300 g mol ⁇ 1 and polydispersity index of 2.5.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Silicon Polymers (AREA)

Abstract

Novel silicon compounds containing a siloxane or silane moiety and at least one moiety derived from a furfuryl alcohol, and methods for their synthesis, are provided. The novel compounds may be used as surface modifying agents, surfactants, defoamers, and as monomers for silicone polymerization.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application claims the benefit of U.S. provisional patent Application No. 61/449,322, filed Mar. 4, 2011, the disclosure of which is incorporated herein by reference.
  • BACKGROUND OF THE INVENTION
  • Furfuryl alcohol, having the structure shown below, is an organic compound containing a furan substituted with a hydroxymethyl group. Furfuryl alcohol is commercially derived from corncobs and sugar cane bagasse. Commercially, furfuryl alcohol is used to impregnate wood to provide improved moisture-dimensional stability, hardness, and decay and insect resistance. Furfuryl alcohol is also used commercially to prepare furan resins for use in the metal casting industry.
  • Figure US20120226002A1-20120906-C00001
  • Tetrahydrofurfuryl alcohol, a saturated derivative of furfuryl alcohol, has the following structure:
  • Figure US20120226002A1-20120906-C00002
  • Tetrahydrofurfuryl alcohol is a relatively hydrophilic compound due to the polarity induced by the presence of oxygen atoms and the absence of methyl groups. Tetrahydrofurfuryl alcohol is viewed as relatively non-toxic. The use of tetrahydrofurfuryl alcohol as an adjuvant in synthetic flavoring has been accepted by the FDA (see 21 CFR 172.515), as has the use of tetrahydrofurfuryl alcohol in contact with dry food (see 21 CFR 176.180).
  • The hydrophilic character of tetrahydrofurfuryl alcohol is in strong contrast to the structures of conventional silicones, such as polydimethylsiloxanes. Polydimethylsiloxanes have many practical uses in which their hydrophobicity provides benefits such as water-repellency and release characteristics. There are many applications in which it is desirable to combine the hydrophobicity of silicones with hydrophilicity. The most widely utilized approach is to modify a polydimethylsiloxane by grafting a poly(ethyleneoxide) segment to the backbone. These materials are often referred to as PEG (from polyethyleneglycol) modified siloxanes. They find applications, for example, as surfactants and antifoams in industrial applications and as emulsifiers for cosmetic formulations. Most of these materials have a minimum of three PEG groups in order to induce satisfactory properties. Less desirable aspects of this chemistry is the fact that they are relatively unstable in aqueous environments due to the oxygen catalyzed break-down of these materials initiated at the carbon atom adjacent to an ethereal oxygen of the PEG. A rupture of a single bond anywhere along the PEG chain renders the materials ineffective, and can cause release of low molecular weight PEGs that suffer from a variety of toxicology issues.
  • BRIEF SUMMARY OF THE INVENTION
  • A silicon compound according to the invention comprises a siloxane or silane moiety and at least one furfuryl alcohol-derived moiety.
  • A method for preparing a silicon compound comprising a siloxane or silane moiety and at least one furfuryl alcohol-derived moiety comprises hydrosilylating a hydride functional silane or siloxane with at least one furfuryl alcohol containing a double bond to yield a hydrolytically stable silicon-to-carbon bond.
  • DETAILED DESCRIPTION OF THE INVENTION
  • This invention is directed to siloxane and silicon derivatives of furfuryl alcohols and methods for their preparation. These novel classes of compounds may be used as monomers for surface treatments, as surfactants and defoamers, and for preparing silicone polymers. Due to the greater stability and relatively low toxicity of hydrophilic siloxanes of this invention compared to the PEG modified siloxanes currently used in commerce, these materials provide benefits in varied applications, including cosmetics and medical devices. Depending on the specific siloxane monomers, the resulting silicone polymers may have additional functionality, such as vinyl groups, that allow them to form elastomers in crosslinking processes. The furfuryl substituted siloxanes and silanes are relatively hydrophilic materials and offer the advantage, compared to the most common hydrophilic substituted materials which contain ethylene oxide units, of not degrading to form ethylene glycol or its derivatives. The terahydrofurfuryl siloxanes can also potentially be used as starting points for cationic polymerization of tetrahydrofuran to form block copolymers. For example, linear polydimethylsiloxanes with tetrahydrofuryl groups at the termini could react with tetrahydrofuran by cationic polymerization methods to form ABA, hydroxyl functional (polybutyleneoxide-dimethylsiloxane-polybutyleneoxide triblock polymers.
  • The siloxane and silane-based compounds according to the invention comprise a siloxane or silane moiety and a moiety derived from a furfuryl alcohol, such as a tetrahydrofurfuryl alcohol in a preferred embodiment. Preferably, the compounds also contain an alkyl bridging group which is bonded to an ether linkage derived from the furfuryl alcohol and to a silicon atom in the siloxane or silane moiety. The alkyl bridge may contain about one to about six carbon atoms. Most preferably, the alkyl bridge contains about three carbon atoms (propyl), which has been found to improve stability of the resulting compound in aqueous environments. Further, propyl-bridged compounds according to the invention are obtainable in higher yield and purity than their shorter alkyl-bridged analogs.
  • Exemplary silane compounds according to the invention include:
  • Figure US20120226002A1-20120906-C00003
  • Exemplary siloxane compounds according to the invention include:
  • Figure US20120226002A1-20120906-C00004
  • Preferred siloxanes and silanes contain about one to about one thousand silicon atoms, more preferably about one to about eighteen silicon atoms, even more preferably about one to about ten silicon atoms, thus encompassing short chain siloxanes and silanes, which are often referred to as oligosiloxanes and oligosilanes, and longer polysiloxanes and polysilanes. Siloxanes may contain hydrogen and vinyl substituents, and both siloxanes and silanes may contain alkyl or alkoxy substituents (linear or branched, containing up to about eighteen carbon atoms), including methyl substituents, such as polydimethylsiloxanes and oligodimethylsiloxanes, and may also be copolymers, yielding compounds such as (tetrahydrofurfuryloxypropyl)methylsiloxane-dimethylsiloxane copolymers. Terpolymers may also be produced, such as (tetrahydrofurfuryloxypropyl)methylsiloxane-dimethylsiloxane-methylhydrogensiloxane terpolymers and (tetrahydrofurfuryloxypropyl)methylsiloxane-dimethylsiloxane-methylvinylsiloxane terpolymers. Terpolymers of this type may be crosslinked by reaction with each other or by reaction with other vinyl or hydride functional siloxanes in the presence of a hydrosilylation catalyst, for example a platinum catalyst such as Karstedt's catalyst. It is within the scope of the invention for the furfuryl alcohol-derived moiety to occupy a terminal or pendant position on the siloxane or silane, which may have a linear or branched backbone structure.
  • The invention also includes derivatives in which one silicon-based group is attached to multiple furfuryl alcohol-derived moieties. Thus, silicon compounds containing multiple furfuryl moieties, which may be the same or different, are within the scope of the invention.
  • Specific preferred compounds according to the invention include, for example, tetrahydrofurfuryloxypropyltriethoxysilane, tetrahydrofurfuryloxypropylheptamethyltrisiloxane, (tetrahydrofurfuryloxymethyl)methyldiethoxysilane, (tetrahydrofurfuryloxypropyl)methylsiloxane-dimethylsiloxane copolymers, and terpolymers including (tetrahydrofurfuryloxypropyl)methylsiloxane-dimethylsiloxane-methylhydrogensiloxane terpolymers and (tetrahydrofurfuryloxypropyl)methylsiloxane-dimethylsiloxane-methylvinylsiloxane terpolymers. Elastomeric and cross-linked products derived from the siloxane polymer, including these copolymer and terpolymers, are also within the scope of the invention.
  • The compounds according to the invention are shown generally in formula (1):
  • Figure US20120226002A1-20120906-C00005
  • In formula (1), X, representing the substituents on the tetrahydrofurfuryl alcohol carbons, may be independently hydrogen, methyl, or hydroxyl. Preferably, not more than about two of the X groups are methyl and the compound preferably contains not more than about two hydroxyl substituents. More preferably, all of the X substituents are hydrogen. “n” is an integer selected from 0 and 1, and is preferably 0. R1 represents an optional linkage group, such as carbonyl (C═O) and carbamate (C(O)NH), derived from the reaction of tetrahydrofurfuryl alcohol with an isocyanate functional silane such as isocyanatopropyltriethoxysilane. “m,” which represents the length of the alkyl bridge, is an integer from 1 to about 6, preferably about 3. It has been found that propyl linkages between the oxygen atom and the silicon atom are preferred because they yield compounds that are more stable in aqueous environments, and are obtainable in higher yield and purity, than those containing shorter alkyl bridges, such as the silane compound shown below having a methyl bridge (m=1):
  • Figure US20120226002A1-20120906-C00006
  • It is also within the scope of the invention to include an ether linkage interrupting the (CH2)m, for example, (3-tetrahydrofurfuryloxypropoxypropyl)triethoxysilane. In other words, when the compound having formula (1) contains at least three CH2, groups (m≧3), one of the internal CH2 groups may be replaced by oxygen, forming an ether linkage. Another example is:
  • Figure US20120226002A1-20120906-C00007
  • In formula (1), R2, R3, and R4, representing the substituents on silicon, are independently, a substituted or unsubstituted linear or branched alkyl group having about one to four carbon atoms, a substituted or unsubstituted linear or branched alkoxy group having about one to four carbon atoms, or a substituted or unsubstituted siloxy group, provided that at least one of R2, R3, and R4 is an oxygen-containing group (alkoxy or siloxy). Possible substitutions on the siloxy group include hydrogen and vinyl groups, for example. Thus, siloxy groups may have the general formula —OSiR3 or —OSiR2—O—SiR3 (R=alkyl, hydrogen, vinyl, for example. When at least one of R2, R3, and R4 is a siloxy group, the compound having formula (1) is a siloxane compound. Alternatively, the compound is a silane derivative.
  • As previously explained, it is within the scope of the invention to prepare siloxanes and silanes and siloxanes from substituted derivatives of tetrahydrofurfuryl alcohol.
  • Preferred compounds according to the invention contain moieties derived from non-substituted furfuryl alcohol, which have the general structure shown in formula (2):
  • Figure US20120226002A1-20120906-C00008
  • In formula (2), n, m, R1, R2, R3, and R4 have the same definitions as in formula (1).
  • When R1 is C═O, the compound may considered to be an ester analog, such as the silane compound shown below:
  • Figure US20120226002A1-20120906-C00009
  • While less stable than their non-ester analogs, such compounds may have sufficient stability in short term exposure to aqueous environments, such as in defoaming or surfactant applications, to offer utility.
  • Silicon compounds according to the invention may also contain unsaturated derivatives of furfuryl alcohol, such as those having formula (3):
  • Figure US20120226002A1-20120906-C00010
  • In formula (3), n, m R1, R2, R3, and R4 have the same definitions as in formula (1).
  • Several different synthetic approaches may be used to prepare the silicon compounds according to the invention. For example, they may be prepared via reaction (hydrosilylation) of a hydride functional silane or siloxane with the appropriate furfuryl alcohol or tetrahydrofurfuryl derivative containing a double bond to yield a hydrolytically stable silicon-to-carbon bond. Such reactions, including appropriate catalysts, solvents, and reaction conditions, are well known in the art.
  • EXAMPLES
  • The invention may be further understood in conjunction with the following, non-limiting examples.
  • Example 1 Preparation of tetrahydrofurfuryloxypropyltriethoxysilane ([2-(3-triethoxysilylpropoxy)methyl]tetrahydrofuran)
  • Figure US20120226002A1-20120906-C00011
  • A 1 liter 3 neck flask equipped with a magnetic stirrer, pot thermometer, dry-ice condenser and an addition funnel was charged with 106.6 g of allyloxymethyltetrahydrofuran. The flask was heated to 80° C., and 8.7 g of triethoxysilane was added, followed by 0.5 g of Karstedt's catalyst with a Pt concentration of 2%. An exotherm was observed and an additional 120.6 g of triethoxysilane was added while maintaining the temperature between 80°-100° C. After the addition was complete, an additional 0.25 g of Karstedt's catalyst was added, and the mixture was heated to 90° C. for 1 hour. The mixture was distilled through a short Vigreux column. Tetrahydrofurfuryloxypropyltriethoxysilane (98.7% purity by GC) was obtained in 60% yield, having a boiling point of 130° C./3 mm and a density at 25° C. of 0.9899.
  • Example 2 Preparation of tetrahydrofurfuryloxypropylheptamethyltrisiloxane
  • Figure US20120226002A1-20120906-C00012
  • A 1 liter 3 neck flask equipped with a magnetic stirrer, pot thermometer, dry-ice condenser and an addition funnel was charged with 129.3 g of allyloxymethyltetrahydrofuran. The flask was heated to 80° C., and 8.1 g of bis(trimethylsiloxy)methylsilane was added, followed by 0.5 g of Karstedt's catalyst with a Pt concentration of 2%. An exotherm was observed, and an additional 204.5 g of bis(trimethylsiloxy)methylsilane was added, while maintaining the temperature between 80°-110° C. After the addition was complete, an additional 0.25 g of Karstedt's catalyst was added, and the mixture was heated to 90° C. for 1 hour. The mixture was distilled through a short Vigreux column. Tetrahydrofurfuryloxypropylheptamethyltrisiloxane (98.7% purity by GC) was obtained in 84% yield, having a boiling point of 132-6° C./2 mm and a density at 25° C. of 0.9250.
  • Example 3 Preparation of tetrahydrofurfuryloxymethylheptamethyltrisiloxane
  • Figure US20120226002A1-20120906-C00013
  • A 2 liter 4 neck flask equipped with a mechanical stirrer, pot thermometer, an addition funnel and a distillation head mounted on a short Vigreux column was charged with ˜800 g of heptane and 27.9 g of sodium metal. The flask was heated to 80°-90° C., then 137.9 g of tetrahydrofurfuryl alcohol was added slowly, allowing for hydrogen evolution. The mixture was agitated and heated until all of the sodium was consumed. The flask was allowed to cool to 70° C. and 16.8 g of potassium iodide and 365.8 g of chloromethylheptamethyltrisiloxane were added. The mixture was heated to reflux for 8 hours. Gas chromatography—mass spectral analysis indicated 20% conversion to the desired product. Approximately 250 g of dimethylformamide was added to the mixture and 750 ml of heptane were removed by distillation. The mixture was heated to 90°-100° C. for 8 hours. Conversion to product increased to 40%, but was accompanied by significant byproduct formation.
  • Example 4 Preparation of (tetrahydrofurfuryloxymethyl)methyldiethoxysilane
  • Figure US20120226002A1-20120906-C00014
  • Under conditions similar to Example 3, the reaction product of sodium metal and tetrahydrofurfuryl alcohol was reacted with chloromethylmethyldiethoxysilane in the presence of potassium iodide catalyst in toluene. The reaction proceeded to the desired product only to the extent of 20% with the formation of significant amounts of byproducts.
  • Example 5 Preparation of 3-(O-tetrahydrofurfurylcarbamoyl)propyltriethoxysilane
  • Figure US20120226002A1-20120906-C00015
  • A 2 liter 3 neck flask equipped with a magnetic stirrer, pot thermometer, dry-ice condenser, and an addition funnel was charged with 247.4 g of isocyanatopropyltriethoxysilane and 0.5 g of dibutyltin dilaurate. The flask was heated to 40° C., and 102.1 g of tetrahydrofurfuryl alcohol was added over 50 min at a pot temperature between 40 and 60° C. The pot mixture was heated at 70° C. for another hour after addition was complete. The mixture was stripped at 1 mm Hg at a pot temperature of 60° C. for one hour to give 291 g of 3-(O-tetrahydrofurfurylcarbamoyl)propyltriethoxysilane, a slightly viscous liquid with a density at 25° C. of 0.9250. The structure of the product was confirmed by IR and NMR.
  • The tetrahydrofurfurylcarbamoyl)propyltriethoxysilane was added to water adjusted to pH 4-5 by the addition of acetic acid to form a stable 5% solution. This demonstrates that the hydrolysis product, (tetrahydrofurfurylcarbamoyl)propylsilanetriol, is hydrophilic.
  • Example 6 Preparation of (tetrahydrofurfuryloxypropyl)methylsiloxane-dimethylsiloxane-methylhydrogensiloxane terpolymers
  • Figure US20120226002A1-20120906-C00016
  • 250 g of a 30 mol % methylhydrogensiloxane-70 mole % dimethylsiloxane copolymer was charged to a 1 liter 4-necked round bottom flask equipped with a mechanical stirrer, pot thermometer, addition funnel, and condenser. The reactor was heated to 70° C. under N2 and 0.14 g of Karstedt's catalyst (2.25 wt % Pt in xylene) was charged to the reaction. 73.1 g of tetrahydrofurfuryl allyl ether was added slowly (30 min) via addition funnel to the stirring reaction mixture. An exotherm was observed during addition of the ether, increasing the pot temperature to 80° C. The reaction mixture was allowed to cool to room temperature, yielding a slightly yellow clear liquid with a viscosity of 53 cSt, a density of 1.02 g/cm3 and a refractive index of 1.4223 at 25° C. 1H NMR analysis of the recovered copolymer confirmed the quantitative consumption of allyl groups during the hydrosilylation. GPC characterization of the terpolymer showed a Mn of 2300 g mol−1 and polydispersity index of 2.5.
  • Example 7 Synthesis of (30% tetrahydrofurfuryloxypropylmethylsiloxane)-(70% dimethylsiloxane) copolymer
  • Figure US20120226002A1-20120906-C00017
  • 250 g of 30 mol % methylhydrogensiloxane-70 mole % dimethylsiloxane was charged to a 1 liter 4-necked round bottom flask equipped with a mechanical stirrer, pot thermometer, addition funnel, and condenser. The reactor was heated to 70° C. under N2 and 0.14 g of Karstedt's catalyst (2.25 wt % Pt in xylene) was charged to the reaction. 163.2 g of tetrahydrofurfuryl allyl ether was added slowly (1 hr) via addition funnel to the stirring reaction mixture. An exotherm was observed during addition of the ether, increasing the pot temperature to 100° C. Excess tetrahydrofurfuryl allyl ether was removed from the reaction mixture by heating to 110° C. under vacuum (10 mm Hg). The product was allowed to cool to room temperature, yielding 349 g of a slightly brown liquid with a viscosity of 166 cSt, a density of 1.02 g/cm3 and a refractive index of 1.4375 at 25° C. 1H NMR and FTIR analysis of the recovered copolymer confirmed the quantitative consumption of hydride groups during the hydrosilylation. GPC characterization of the copolymer showed a Mn of 3000 g mol−1 and polydispersity index of 2.6.
  • Example 8 Elastomeric reaction of (tetrahydrofurfuryloxypropyl)methylsiloxane-dimethylsiloxane-methylhydrogensiloxane terpolymers with vinyl terminated polydimethylsiloxane
  • 100 g of vinyl terminated polydimethylsiloxane with a viscosity of 1000 cSt was mixed with 0.05 g of Karstedt's catalyst (2.25 wt % Pt in xylene) in a 250 mL beaker. 4.2 g of (15% methylhydrosiloxane)-(15% tetrahydrofurfuryloxypropylmethylsiloxane)-(70% dimethylsiloxane) terpolymer (prepared in Example 6) was charged to the beaker and the two components were thoroughly mixed. The reaction mixture was poured in 20 g aliquots into aluminum pans and heated to 80° C. for 20 minutes, yielding optically clear tetrahydrofurfuryl-modified silicone elastomers.
  • It will be appreciated by those skilled in the art that changes could be made to the embodiments described above without departing from the broad inventive concept thereof. It is understood, therefore, that this invention is not limited to the particular embodiments disclosed, but it is intended to cover modifications within the spirit and scope of the present invention as defined by the appended claims.

Claims (20)

1. A silicon compound or siloxane polymer comprising a siloxane or silane moiety and at least one furfuryl alcohol-derived moiety.
2. The compound according to claim 1, further comprising an alkyl group bridging the siloxane or silane moiety and the furfuryl alcohol-derived moiety.
3. The compound according to claim 2, wherein the alkyl group comprises about three carbon atoms.
4. The compound according to claim 1, wherein the furfuryl alcohol is tetrahydrofurfuryl alcohol.
5. The compound according to claim 1, wherein the silicon compound has formula (1):
Figure US20120226002A1-20120906-C00018
wherein each X is independently a hydrogen, methyl, or hydroxyl group; n is an integer selected from 0 and 1; R1 is C═O or C(O)NH, m is an integer from one to about six, when m is at least three, one of the internal CH2 groups may be replaced with an oxygen atom, and R2, R3, and R4 are independently a substituted or unsubstituted alkyl group having about one to about four carbon atoms, a substituted or unsubstituted alkoxy group having about one to about four carbon atoms, or a substituted or unsubstituted siloxy group, provided that at least one of R2, R3, and R4 is an alkoxy or siloxy group.
6. The compound according to claim 5, wherein m=3, n=0, and every X═H.
7. The compound according to claim 1, having formula (2):
Figure US20120226002A1-20120906-C00019
wherein n is an integer selected from 0 and 1; R1 is C═O or C(O)NH, m is an integer from one to about six, and R2, R3, and R4 are independently a substituted or unsubstituted alkyl group having about one to about four carbon atoms, a substituted or unsubstituted alkoxy group having about one to about four carbon atoms, or a substituted or unsubstituted siloxy group, provided that at least one of R2, R3, and R4 is an alkoxy or siloxy group.
8. The compound according to claim 1, wherein the silicon compound is tetrahydrofurfuryloxypropyltriethoxysilane.
9. The compound according to claim 1, wherein the silicon compound is tetrahydrofurfuryloxypropylheptamethyltrisiloxane.
10. The compound according to claim 1, wherein the silicon compound has formula (3):
Figure US20120226002A1-20120906-C00020
wherein n is an integer selected from 0 and 1; R1 is C═O or C(O)NH, m is an integer from 1 to about six, and R2, R3, and R4 are independently a substituted or unsubstituted alkyl group having about one to about four carbon atoms, a substituted or unsubstituted alkoxy group having about one to about four carbon atoms, or a substituted or unsubstituted siloxy group, provided that at least one of R2, R3, and R4 is an alkoxy or siloxy group.
11. A surface modifying reagent comprising a silicon compound according to claim 1.
12. A surfactant comprising a silicon compound according to claim 1.
13. The compound according to claim 1, wherein the compound is a siloxane polymer containing a tetrahydrofurfuryloxyalkyl substitution.
14. The compound according to claim 1, wherein the silicon compound is a (tetrahydrofurfuryloxypropyl)methylsiloxane-dimethylsiloxane copolymer.
15. The compound according to claim 1, wherein the silicon compound is selected from the group consisting of a (tetrahydrofurfuryloxypropyl)methylsiloxane-dimethylsiloxane-methylhydrogensiloxane terpolymer and a (tetrahydrofurfuryloxypropyl)methylsiloxane-dimethylsiloxane-methylvinylsiloxane terpolymer.
16. An elastomeric and cross-linked product derived from at least one terpolymer according to claim 15.
17. The compound according to claim 1, wherein the silicon compound is a siloxane homopolymer or copolymer having a hydride or vinyl terminal group.
18. An elastomeric and cross-linked product derived from the copolymer or homopolymer according to claim 17.
19. An elastomeric silane formed by the reaction of the polymer according to claim 17 with a hydride- or vinyl-containing siloxane.
20. A method for preparing a silicon compound comprising a siloxane or silane moiety and at least one furfuryl alcohol-derived moiety, the method comprising hydrosilylating a hydride functional silane or siloxane with at least one furfuryl alcohol containing a double bond to yield a hydrolytically stable silicon-to-carbon bond.
US13/407,820 2011-03-04 2012-02-29 Silicon compounds derived from furfuryl alcohols and methods of preparation Abandoned US20120226002A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/407,820 US20120226002A1 (en) 2011-03-04 2012-02-29 Silicon compounds derived from furfuryl alcohols and methods of preparation
US14/053,140 US8779080B2 (en) 2011-03-04 2013-10-14 Silicon compounds derived from furfuryl alcohols and methods of preparation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201161449322P 2011-03-04 2011-03-04
US13/407,820 US20120226002A1 (en) 2011-03-04 2012-02-29 Silicon compounds derived from furfuryl alcohols and methods of preparation

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/053,140 Division US8779080B2 (en) 2011-03-04 2013-10-14 Silicon compounds derived from furfuryl alcohols and methods of preparation

Publications (1)

Publication Number Publication Date
US20120226002A1 true US20120226002A1 (en) 2012-09-06

Family

ID=46671504

Family Applications (2)

Application Number Title Priority Date Filing Date
US13/407,820 Abandoned US20120226002A1 (en) 2011-03-04 2012-02-29 Silicon compounds derived from furfuryl alcohols and methods of preparation
US14/053,140 Active US8779080B2 (en) 2011-03-04 2013-10-14 Silicon compounds derived from furfuryl alcohols and methods of preparation

Family Applications After (1)

Application Number Title Priority Date Filing Date
US14/053,140 Active US8779080B2 (en) 2011-03-04 2013-10-14 Silicon compounds derived from furfuryl alcohols and methods of preparation

Country Status (2)

Country Link
US (2) US20120226002A1 (en)
DE (1) DE102012004033A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014151371A1 (en) * 2013-03-19 2014-09-25 Halliburton Energy Services, Inc. Methods for consolidation treatments in subterranean formations using silicon compounds derived from furfuryl alcohols
WO2017019475A1 (en) * 2015-07-30 2017-02-02 Momentive Performance Materials Inc. Siloxane copolymer and solid polymer electrolyte comprising such siloxane copolymers
JP2017534590A (en) * 2014-09-26 2017-11-24 ザ ケマーズ カンパニー エフシー リミテッド ライアビリティ カンパニー Isocyanate-derived organosilane
CN107530591A (en) * 2015-09-28 2018-01-02 瓦克化学股份公司 Silicone antifoam composition
CN111363103A (en) * 2020-03-27 2020-07-03 无锡市百合花胶粘剂厂有限公司 Preparation method of tackifier for addition type organic silicon adhesive

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3950364A (en) * 1969-07-25 1976-04-13 Dynamit Nobel Aktiengesellschaft Process for the preparation of organic silicon compounds
US4028384A (en) * 1969-07-25 1977-06-07 Dynamit Nobel Aktiengesellschaft Process for the preparation of organic silicon compounds

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4196131A (en) * 1978-02-27 1980-04-01 Dow Corning Corporation Furfuryloxy-substituted organosilicon compounds
GB8701727D0 (en) 1987-01-27 1987-03-04 Scras Tetrahydrofuran derivatives
JPH04284939A (en) * 1991-03-11 1992-10-09 Mitsubishi Kasei Corp Organic binder for self-curing mold

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3950364A (en) * 1969-07-25 1976-04-13 Dynamit Nobel Aktiengesellschaft Process for the preparation of organic silicon compounds
US4028384A (en) * 1969-07-25 1977-06-07 Dynamit Nobel Aktiengesellschaft Process for the preparation of organic silicon compounds

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Plueddemann, E. (Silane Coupling Agents, Plenum Press New York, August 1, 1982 pages 1-5) *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014151371A1 (en) * 2013-03-19 2014-09-25 Halliburton Energy Services, Inc. Methods for consolidation treatments in subterranean formations using silicon compounds derived from furfuryl alcohols
US9487692B2 (en) 2013-03-19 2016-11-08 Halliburton Energy Services, Inc. Methods for consolidation treatments in subterranean formations using silicon compounds derived from furfuryl alcohols
EP2976408A4 (en) * 2013-03-19 2016-11-23 Halliburton Energy Services Inc Methods for consolidation treatments in subterranean formations using silicon compounds derived from furfuryl alcohols
US9969926B2 (en) 2013-03-19 2018-05-15 Halliburton Energy Services, Inc. Methods for consolidation treatments in subterranean formations using silicon compounds derived from furfuryl alcohols
JP2017534590A (en) * 2014-09-26 2017-11-24 ザ ケマーズ カンパニー エフシー リミテッド ライアビリティ カンパニー Isocyanate-derived organosilane
WO2017019475A1 (en) * 2015-07-30 2017-02-02 Momentive Performance Materials Inc. Siloxane copolymer and solid polymer electrolyte comprising such siloxane copolymers
CN107851837A (en) * 2015-07-30 2018-03-27 莫门蒂夫性能材料股份有限公司 Silicone copolymers and the solid polymer electrolyte for including this silicone copolymers
KR20180036733A (en) * 2015-07-30 2018-04-09 모멘티브 퍼포먼스 머티리얼즈 인크. A solid polymer electrolyte comprising a siloxane copolymer and the siloxane copolymer
US10650938B2 (en) 2015-07-30 2020-05-12 Momentive Performance Materials Inc. Siloxane copolymer and solid polymer electrolyte comprising such siloxane copolymers
KR102625966B1 (en) 2015-07-30 2024-01-18 모멘티브 퍼포먼스 머티리얼즈 인크. Siloxane copolymer and solid polymer electrolyte comprising the siloxane copolymer
CN107530591A (en) * 2015-09-28 2018-01-02 瓦克化学股份公司 Silicone antifoam composition
CN111363103A (en) * 2020-03-27 2020-07-03 无锡市百合花胶粘剂厂有限公司 Preparation method of tackifier for addition type organic silicon adhesive

Also Published As

Publication number Publication date
DE102012004033A1 (en) 2012-09-06
US20140046017A1 (en) 2014-02-13
US8779080B2 (en) 2014-07-15

Similar Documents

Publication Publication Date Title
US10544267B2 (en) Method for producing siloxanes containing glycerin substituents
US8779080B2 (en) Silicon compounds derived from furfuryl alcohols and methods of preparation
US6534615B2 (en) Preparation of amino-functional siloxanes
US7053167B2 (en) Silsesquioxane derivative having functional group
US20180362716A1 (en) Linear organopolysiloxane having different functional groups at terminals, and a method for producing same
KR100280586B1 (en) An alkoxy-terminated polydiorganosiloxane, a process for producing the same, and a room temperature curable silicone elastomer
JPH0623255B2 (en) Method for producing perfluoroalkyl group-containing organopolysiloxane
JP2631739B2 (en) Phenol group-containing siloxane compound
JP2739211B2 (en) Organosiloxane compounds
EP0262806A2 (en) Organosilicon compound
JP2652307B2 (en) Method for producing linear organopolysiloxane having hydroxyl group at terminal of molecular chain
US6255428B1 (en) Preparation of epoxy group-bearing organopolysiloxane or organosilane
JPH1087674A (en) Production of cyclic silane ester and its solvolysis product, production of cyclic organosilane ester, compound thus obtained, its hydrolysis product and alcoholysis product, crosslinking agent, adhesive and phase mediating agent composed of the same product and modifier for polymer material having ester group
JP2004527609A (en) Preparation of hydroxyalkyl polysiloxane
US5116928A (en) Process for preparing a fluoroorganopolysiloxane
US5550270A (en) Organopolysiloxanes and process of making
EP0586241B1 (en) Azasilacycloalkyl functional alkoxysilanes and azasilacycloalkyl functional tetramethyldisiloxanes
US9024052B2 (en) Dual end glycerol (meth) acrylate-modified silicone and making method
JP2899521B2 (en) Siloxane compound having phenol group
JP3661807B2 (en) Method for producing hydroxyl group-containing siloxane compound
US8742051B2 (en) Method of preparing a bodied siloxane resin including M, Q, and T-propyl units and capped with additional M units
US11236200B2 (en) Bifunctional poly(alkyleneoxides) with aminoalkyl and unsaturated termini and derivatives thereof
JPH07196805A (en) Siloxane compound with phenol group
JP3125655B2 (en) Organosilicon compound having cyclic ether group and method for producing the same
JP2587226B2 (en) Hydroxyl-containing polysiloxane compound

Legal Events

Date Code Title Description
AS Assignment

Owner name: GELEST TECHNOLOGIES, INC., PENNSYLVANIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ARKLES, BARRY C.;PAN, YOULIN;GOFF, JONATHAN D.;REEL/FRAME:027807/0034

Effective date: 20120229

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION