US20120202706A1 - 6-0-sulfated polysaccharides and methods of preparation thereof - Google Patents
6-0-sulfated polysaccharides and methods of preparation thereof Download PDFInfo
- Publication number
- US20120202706A1 US20120202706A1 US13/306,772 US201113306772A US2012202706A1 US 20120202706 A1 US20120202706 A1 US 20120202706A1 US 201113306772 A US201113306772 A US 201113306772A US 2012202706 A1 US2012202706 A1 US 2012202706A1
- Authority
- US
- United States
- Prior art keywords
- ost
- cells
- cell
- act
- mutant
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000000034 method Methods 0.000 title claims abstract description 65
- 150000004676 glycans Chemical class 0.000 title abstract description 57
- 229920001282 polysaccharide Polymers 0.000 title abstract description 54
- 239000005017 polysaccharide Substances 0.000 title abstract description 54
- 238000002360 preparation method Methods 0.000 title abstract description 52
- 210000004978 chinese hamster ovary cell Anatomy 0.000 claims abstract description 63
- 230000006696 biosynthetic metabolic pathway Effects 0.000 claims abstract description 22
- 210000004027 cell Anatomy 0.000 claims description 121
- 108090000623 proteins and genes Proteins 0.000 claims description 76
- 238000004458 analytical method Methods 0.000 claims description 23
- 239000002299 complementary DNA Substances 0.000 claims description 18
- 238000011144 upstream manufacturing Methods 0.000 claims description 15
- 150000007523 nucleic acids Chemical class 0.000 claims description 14
- 108020004414 DNA Proteins 0.000 claims description 13
- 108020004707 nucleic acids Proteins 0.000 claims description 13
- 102000039446 nucleic acids Human genes 0.000 claims description 13
- 238000002703 mutagenesis Methods 0.000 claims description 11
- 231100000350 mutagenesis Toxicity 0.000 claims description 11
- 230000001131 transforming effect Effects 0.000 claims description 8
- 238000000636 Northern blotting Methods 0.000 claims description 7
- 239000000126 substance Substances 0.000 claims description 5
- 230000005855 radiation Effects 0.000 claims description 4
- 108020004635 Complementary DNA Proteins 0.000 claims description 2
- 238000002105 Southern blotting Methods 0.000 claims description 2
- 238000001262 western blot Methods 0.000 claims description 2
- 102100023937 Heparan sulfate glucosamine 3-O-sulfotransferase 1 Human genes 0.000 claims 1
- 101001048058 Homo sapiens Heparan sulfate glucosamine 3-O-sulfotransferase 1 Proteins 0.000 claims 1
- 229920002971 Heparan sulfate Polymers 0.000 abstract description 130
- OVRNDRQMDRJTHS-RTRLPJTCSA-N N-acetyl-D-glucosamine Chemical compound CC(=O)N[C@H]1C(O)O[C@H](CO)[C@@H](O)[C@@H]1O OVRNDRQMDRJTHS-RTRLPJTCSA-N 0.000 abstract description 24
- OVRNDRQMDRJTHS-UHFFFAOYSA-N N-acelyl-D-glucosamine Natural products CC(=O)NC1C(O)OC(CO)C(O)C1O OVRNDRQMDRJTHS-UHFFFAOYSA-N 0.000 abstract description 23
- MBLBDJOUHNCFQT-LXGUWJNJSA-N N-acetylglucosamine Natural products CC(=O)N[C@@H](C=O)[C@@H](O)[C@H](O)[C@H](O)CO MBLBDJOUHNCFQT-LXGUWJNJSA-N 0.000 abstract description 23
- 102000004190 Enzymes Human genes 0.000 abstract description 17
- 108090000790 Enzymes Proteins 0.000 abstract description 17
- 230000000694 effects Effects 0.000 abstract description 16
- 230000001180 sulfating effect Effects 0.000 abstract 1
- 239000002243 precursor Substances 0.000 description 75
- 150000002016 disaccharides Chemical class 0.000 description 54
- 108010083213 heparitinsulfate lyase Proteins 0.000 description 41
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 39
- 102000004169 proteins and genes Human genes 0.000 description 36
- 239000004019 antithrombin Substances 0.000 description 35
- 235000018102 proteins Nutrition 0.000 description 35
- 238000004128 high performance liquid chromatography Methods 0.000 description 33
- 230000027455 binding Effects 0.000 description 28
- 108090000765 processed proteins & peptides Proteins 0.000 description 24
- 229920001542 oligosaccharide Polymers 0.000 description 23
- 150000002482 oligosaccharides Chemical class 0.000 description 23
- 238000005670 sulfation reaction Methods 0.000 description 23
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 22
- 239000000047 product Substances 0.000 description 21
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 18
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 18
- 150000004044 tetrasaccharides Chemical class 0.000 description 18
- 239000000499 gel Substances 0.000 description 17
- 230000014509 gene expression Effects 0.000 description 17
- 239000000203 mixture Substances 0.000 description 17
- 235000000346 sugar Nutrition 0.000 description 17
- HTTJABKRGRZYRN-UHFFFAOYSA-N Heparin Chemical compound OC1C(NC(=O)C)C(O)OC(COS(O)(=O)=O)C1OC1C(OS(O)(=O)=O)C(O)C(OC2C(C(OS(O)(=O)=O)C(OC3C(C(O)C(O)C(O3)C(O)=O)OS(O)(=O)=O)C(CO)O2)NS(O)(=O)=O)C(C(O)=O)O1 HTTJABKRGRZYRN-UHFFFAOYSA-N 0.000 description 16
- 229940088598 enzyme Drugs 0.000 description 16
- 239000012634 fragment Substances 0.000 description 15
- 102000001708 Protein Isoforms Human genes 0.000 description 14
- 108010029485 Protein Isoforms Proteins 0.000 description 14
- 238000000338 in vitro Methods 0.000 description 14
- 102000003974 Fibroblast growth factor 2 Human genes 0.000 description 12
- 108090000379 Fibroblast growth factor 2 Proteins 0.000 description 12
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 12
- 230000029087 digestion Effects 0.000 description 12
- 239000000700 radioactive tracer Substances 0.000 description 12
- 241000701447 unidentified baculovirus Species 0.000 description 12
- IAJILQKETJEXLJ-QTBDOELSSA-N aldehydo-D-glucuronic acid Chemical compound O=C[C@H](O)[C@@H](O)[C@H](O)[C@H](O)C(O)=O IAJILQKETJEXLJ-QTBDOELSSA-N 0.000 description 11
- 229960002897 heparin Drugs 0.000 description 11
- 239000002953 phosphate buffered saline Substances 0.000 description 11
- 239000011780 sodium chloride Substances 0.000 description 11
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 10
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 10
- 230000015572 biosynthetic process Effects 0.000 description 10
- 229920000669 heparin Polymers 0.000 description 10
- 108020004999 messenger RNA Proteins 0.000 description 10
- 239000000523 sample Substances 0.000 description 10
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 9
- IAJILQKETJEXLJ-UHFFFAOYSA-N Galacturonsaeure Natural products O=CC(O)C(O)C(O)C(O)C(O)=O IAJILQKETJEXLJ-UHFFFAOYSA-N 0.000 description 9
- 229920002683 Glycosaminoglycan Polymers 0.000 description 9
- 239000003146 anticoagulant agent Substances 0.000 description 9
- 229940127219 anticoagulant drug Drugs 0.000 description 9
- 238000006243 chemical reaction Methods 0.000 description 9
- 230000002950 deficient Effects 0.000 description 9
- 229920001184 polypeptide Polymers 0.000 description 9
- 102000004196 processed proteins & peptides Human genes 0.000 description 9
- 238000003757 reverse transcription PCR Methods 0.000 description 9
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 8
- 108010022901 Heparin Lyase Proteins 0.000 description 8
- JGSARLDLIJGVTE-MBNYWOFBSA-N Penicillin G Chemical compound N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)CC1=CC=CC=C1 JGSARLDLIJGVTE-MBNYWOFBSA-N 0.000 description 8
- JQVDAXLFBXTEQA-UHFFFAOYSA-N dibutylamine Chemical compound CCCCNCCCC JQVDAXLFBXTEQA-UHFFFAOYSA-N 0.000 description 8
- 229940097043 glucuronic acid Drugs 0.000 description 8
- 238000004949 mass spectrometry Methods 0.000 description 8
- 239000000758 substrate Substances 0.000 description 8
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 7
- MSWZFWKMSRAUBD-IVMDWMLBSA-N 2-amino-2-deoxy-D-glucopyranose Chemical group N[C@H]1C(O)O[C@H](CO)[C@@H](O)[C@@H]1O MSWZFWKMSRAUBD-IVMDWMLBSA-N 0.000 description 7
- 238000004587 chromatography analysis Methods 0.000 description 7
- 150000001875 compounds Chemical class 0.000 description 7
- 238000002372 labelling Methods 0.000 description 7
- 239000002609 medium Substances 0.000 description 7
- 239000008188 pellet Substances 0.000 description 7
- 239000013612 plasmid Substances 0.000 description 7
- 230000019635 sulfation Effects 0.000 description 7
- 239000006228 supernatant Substances 0.000 description 7
- 238000010361 transduction Methods 0.000 description 7
- 230000026683 transduction Effects 0.000 description 7
- SQDAZGGFXASXDW-UHFFFAOYSA-N 5-bromo-2-(trifluoromethoxy)pyridine Chemical compound FC(F)(F)OC1=CC=C(Br)C=N1 SQDAZGGFXASXDW-UHFFFAOYSA-N 0.000 description 6
- 229920001287 Chondroitin sulfate Polymers 0.000 description 6
- 108091026890 Coding region Proteins 0.000 description 6
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 6
- 229940059329 chondroitin sulfate Drugs 0.000 description 6
- 238000002330 electrospray ionisation mass spectrometry Methods 0.000 description 6
- 239000012091 fetal bovine serum Substances 0.000 description 6
- 150000002500 ions Chemical class 0.000 description 6
- 241000894007 species Species 0.000 description 6
- 150000008163 sugars Chemical class 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 5
- AEMOLEFTQBMNLQ-HNFCZKTMSA-N L-idopyranuronic acid Chemical compound OC1O[C@@H](C(O)=O)[C@@H](O)[C@H](O)[C@H]1O AEMOLEFTQBMNLQ-HNFCZKTMSA-N 0.000 description 5
- 229920002684 Sepharose Polymers 0.000 description 5
- QAOWNCQODCNURD-KHWXYDKHSA-N ac1l2g1h Chemical compound O[35S](O)(=O)=O QAOWNCQODCNURD-KHWXYDKHSA-N 0.000 description 5
- 238000003556 assay Methods 0.000 description 5
- 239000011324 bead Substances 0.000 description 5
- 230000001851 biosynthetic effect Effects 0.000 description 5
- 239000001110 calcium chloride Substances 0.000 description 5
- 229910001628 calcium chloride Inorganic materials 0.000 description 5
- 230000008859 change Effects 0.000 description 5
- 238000010828 elution Methods 0.000 description 5
- 238000012869 ethanol precipitation Methods 0.000 description 5
- 238000003780 insertion Methods 0.000 description 5
- 230000037431 insertion Effects 0.000 description 5
- 230000000670 limiting effect Effects 0.000 description 5
- 239000011541 reaction mixture Substances 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- 238000006467 substitution reaction Methods 0.000 description 5
- 238000001890 transfection Methods 0.000 description 5
- UMCMPZBLKLEWAF-BCTGSCMUSA-N 3-[(3-cholamidopropyl)dimethylammonio]propane-1-sulfonate Chemical compound C([C@H]1C[C@H]2O)[C@H](O)CC[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@H]([C@@H](CCC(=O)NCCC[N+](C)(C)CCCS([O-])(=O)=O)C)[C@@]2(C)[C@@H](O)C1 UMCMPZBLKLEWAF-BCTGSCMUSA-N 0.000 description 4
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 4
- IOVCWXUNBOPUCH-UHFFFAOYSA-N Nitrous acid Chemical compound ON=O IOVCWXUNBOPUCH-UHFFFAOYSA-N 0.000 description 4
- 102000016611 Proteoglycans Human genes 0.000 description 4
- 108010067787 Proteoglycans Proteins 0.000 description 4
- 108010022348 Sulfate adenylyltransferase Proteins 0.000 description 4
- 239000007983 Tris buffer Substances 0.000 description 4
- 238000001042 affinity chromatography Methods 0.000 description 4
- 230000003321 amplification Effects 0.000 description 4
- 238000005571 anion exchange chromatography Methods 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- 238000004850 capillary HPLC Methods 0.000 description 4
- 238000005119 centrifugation Methods 0.000 description 4
- 230000003247 decreasing effect Effects 0.000 description 4
- 238000012217 deletion Methods 0.000 description 4
- 230000037430 deletion Effects 0.000 description 4
- 238000000605 extraction Methods 0.000 description 4
- 238000001943 fluorescence-activated cell sorting Methods 0.000 description 4
- 238000009396 hybridization Methods 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- 238000003199 nucleic acid amplification method Methods 0.000 description 4
- 229940056360 penicillin g Drugs 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 230000009466 transformation Effects 0.000 description 4
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 4
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 description 3
- 108020005345 3' Untranslated Regions Proteins 0.000 description 3
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- 241000894006 Bacteria Species 0.000 description 3
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 3
- 229920002271 DEAE-Sepharose Polymers 0.000 description 3
- 229910021380 Manganese Chloride Inorganic materials 0.000 description 3
- GLFNIEUTAYBVOC-UHFFFAOYSA-L Manganese chloride Chemical compound Cl[Mn]Cl GLFNIEUTAYBVOC-UHFFFAOYSA-L 0.000 description 3
- PRDZVHCOEWJPOB-IVMDWMLBSA-N N-sulfo-D-glucosamine Chemical group OC[C@H]1OC(O)[C@H](NS(O)(=O)=O)[C@@H](O)[C@@H]1O PRDZVHCOEWJPOB-IVMDWMLBSA-N 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 108090001033 Sulfotransferases Proteins 0.000 description 3
- 102000004896 Sulfotransferases Human genes 0.000 description 3
- 208000007536 Thrombosis Diseases 0.000 description 3
- 239000011543 agarose gel Substances 0.000 description 3
- 125000003275 alpha amino acid group Chemical group 0.000 description 3
- 230000001580 bacterial effect Effects 0.000 description 3
- MSWZFWKMSRAUBD-UHFFFAOYSA-N beta-D-galactosamine Natural products NC1C(O)OC(CO)C(O)C1O MSWZFWKMSRAUBD-UHFFFAOYSA-N 0.000 description 3
- 230000008827 biological function Effects 0.000 description 3
- 239000003153 chemical reaction reagent Substances 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- 238000000502 dialysis Methods 0.000 description 3
- 239000003814 drug Substances 0.000 description 3
- 238000006345 epimerization reaction Methods 0.000 description 3
- 238000000684 flow cytometry Methods 0.000 description 3
- MKXKFYHWDHIYRV-UHFFFAOYSA-N flutamide Chemical compound CC(C)C(=O)NC1=CC=C([N+]([O-])=O)C(C(F)(F)F)=C1 MKXKFYHWDHIYRV-UHFFFAOYSA-N 0.000 description 3
- 238000001727 in vivo Methods 0.000 description 3
- 238000011534 incubation Methods 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 229910001629 magnesium chloride Inorganic materials 0.000 description 3
- 239000011565 manganese chloride Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000035772 mutation Effects 0.000 description 3
- 239000002773 nucleotide Substances 0.000 description 3
- 125000003729 nucleotide group Chemical group 0.000 description 3
- 229920002113 octoxynol Polymers 0.000 description 3
- 150000004804 polysaccharides Polymers 0.000 description 3
- 238000000746 purification Methods 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 230000002829 reductive effect Effects 0.000 description 3
- 230000001177 retroviral effect Effects 0.000 description 3
- 239000012279 sodium borohydride Substances 0.000 description 3
- 229910000033 sodium borohydride Inorganic materials 0.000 description 3
- 230000003612 virological effect Effects 0.000 description 3
- RUDINRUXCKIXAJ-UHFFFAOYSA-N 2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13,14,14,14-heptacosafluorotetradecanoic acid Chemical compound OC(=O)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)F RUDINRUXCKIXAJ-UHFFFAOYSA-N 0.000 description 2
- WEEMDRWIKYCTQM-UHFFFAOYSA-N 2,6-dimethoxybenzenecarbothioamide Chemical compound COC1=CC=CC(OC)=C1C(N)=S WEEMDRWIKYCTQM-UHFFFAOYSA-N 0.000 description 2
- GACDQMDRPRGCTN-KQYNXXCUSA-N 3'-phospho-5'-adenylyl sulfate Chemical group C1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](COP(O)(=O)OS(O)(=O)=O)[C@@H](OP(O)(O)=O)[C@H]1O GACDQMDRPRGCTN-KQYNXXCUSA-N 0.000 description 2
- 102100040152 Adenylyl-sulfate kinase Human genes 0.000 description 2
- 108010054404 Adenylyl-sulfate kinase Proteins 0.000 description 2
- ATRRKUHOCOJYRX-UHFFFAOYSA-N Ammonium bicarbonate Chemical compound [NH4+].OC([O-])=O ATRRKUHOCOJYRX-UHFFFAOYSA-N 0.000 description 2
- 229910000013 Ammonium bicarbonate Inorganic materials 0.000 description 2
- 101100478237 Caenorhabditis elegans ost-1 gene Proteins 0.000 description 2
- 108090000819 Chondroitin-sulfate-ABC endolyases Proteins 0.000 description 2
- 102000037716 Chondroitin-sulfate-ABC endolyases Human genes 0.000 description 2
- 241000699802 Cricetulus griseus Species 0.000 description 2
- 102000007260 Deoxyribonuclease I Human genes 0.000 description 2
- 108010008532 Deoxyribonuclease I Proteins 0.000 description 2
- 239000006144 Dulbecco’s modified Eagle's medium Substances 0.000 description 2
- 241000588724 Escherichia coli Species 0.000 description 2
- 238000012413 Fluorescence activated cell sorting analysis Methods 0.000 description 2
- 102000009617 Inorganic Pyrophosphatase Human genes 0.000 description 2
- 108010009595 Inorganic Pyrophosphatase Proteins 0.000 description 2
- OVRNDRQMDRJTHS-FMDGEEDCSA-N N-acetyl-beta-D-glucosamine Chemical compound CC(=O)N[C@H]1[C@H](O)O[C@H](CO)[C@@H](O)[C@@H]1O OVRNDRQMDRJTHS-FMDGEEDCSA-N 0.000 description 2
- 108700026244 Open Reading Frames Proteins 0.000 description 2
- 102000007327 Protamines Human genes 0.000 description 2
- 108010007568 Protamines Proteins 0.000 description 2
- 238000010240 RT-PCR analysis Methods 0.000 description 2
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 2
- 102000004523 Sulfate Adenylyltransferase Human genes 0.000 description 2
- 229920004890 Triton X-100 Polymers 0.000 description 2
- 239000013504 Triton X-100 Substances 0.000 description 2
- 108090000631 Trypsin Proteins 0.000 description 2
- 102000004142 Trypsin Human genes 0.000 description 2
- 238000002835 absorbance Methods 0.000 description 2
- 238000006640 acetylation reaction Methods 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 125000000539 amino acid group Chemical group 0.000 description 2
- 235000012538 ammonium bicarbonate Nutrition 0.000 description 2
- 239000001099 ammonium carbonate Substances 0.000 description 2
- 238000005349 anion exchange Methods 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 238000000376 autoradiography Methods 0.000 description 2
- XMQFTWRPUQYINF-UHFFFAOYSA-N bensulfuron-methyl Chemical compound COC(=O)C1=CC=CC=C1CS(=O)(=O)NC(=O)NC1=NC(OC)=CC(OC)=N1 XMQFTWRPUQYINF-UHFFFAOYSA-N 0.000 description 2
- 239000012148 binding buffer Substances 0.000 description 2
- 230000004071 biological effect Effects 0.000 description 2
- 210000004369 blood Anatomy 0.000 description 2
- 239000008280 blood Substances 0.000 description 2
- 239000000872 buffer Substances 0.000 description 2
- 150000001720 carbohydrates Chemical class 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 150000001793 charged compounds Chemical class 0.000 description 2
- 239000007795 chemical reaction product Substances 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- KXKPYJOVDUMHGS-OSRGNVMNSA-N chondroitin sulfate Chemical compound CC(=O)N[C@H]1[C@H](O)O[C@H](OS(O)(=O)=O)[C@H](O)[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](C(O)=O)O1 KXKPYJOVDUMHGS-OSRGNVMNSA-N 0.000 description 2
- 238000012937 correction Methods 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- 230000000593 degrading effect Effects 0.000 description 2
- 230000003292 diminished effect Effects 0.000 description 2
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 2
- -1 disaccharide ions Chemical class 0.000 description 2
- 238000001425 electrospray ionisation time-of-flight mass spectrometry Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000001747 exhibiting effect Effects 0.000 description 2
- 238000005194 fractionation Methods 0.000 description 2
- 229960002442 glucosamine Drugs 0.000 description 2
- 125000002566 glucosaminyl group Chemical group 0.000 description 2
- 239000008103 glucose Substances 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- AEMOLEFTQBMNLQ-CLQWQSTFSA-N l-iduronic acid Chemical compound O[C@H]1O[C@H](C(O)=O)[C@H](O)[C@@H](O)[C@@H]1O AEMOLEFTQBMNLQ-CLQWQSTFSA-N 0.000 description 2
- 239000003446 ligand Substances 0.000 description 2
- 150000002632 lipids Chemical class 0.000 description 2
- 230000001404 mediated effect Effects 0.000 description 2
- 239000003068 molecular probe Substances 0.000 description 2
- 150000002772 monosaccharides Chemical group 0.000 description 2
- 229950006780 n-acetylglucosamine Drugs 0.000 description 2
- GQPLMRYTRLFLPF-UHFFFAOYSA-N nitrous oxide Inorganic materials [O-][N+]#N GQPLMRYTRLFLPF-UHFFFAOYSA-N 0.000 description 2
- 210000001672 ovary Anatomy 0.000 description 2
- 238000012856 packing Methods 0.000 description 2
- 230000037361 pathway Effects 0.000 description 2
- UZUFPBIDKMEQEQ-UHFFFAOYSA-N perfluorononanoic acid Chemical compound OC(=O)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)F UZUFPBIDKMEQEQ-UHFFFAOYSA-N 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- RXWNCPJZOCPEPQ-NVWDDTSBSA-N puromycin Chemical compound C1=CC(OC)=CC=C1C[C@H](N)C(=O)N[C@H]1[C@@H](O)[C@H](N2C3=NC=NC(=C3N=C2)N(C)C)O[C@@H]1CO RXWNCPJZOCPEPQ-NVWDDTSBSA-N 0.000 description 2
- 230000002285 radioactive effect Effects 0.000 description 2
- 238000012216 screening Methods 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 229960002385 streptomycin sulfate Drugs 0.000 description 2
- 230000002194 synthesizing effect Effects 0.000 description 2
- 230000002463 transducing effect Effects 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 239000012588 trypsin Substances 0.000 description 2
- 241001430294 unidentified retrovirus Species 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- HBOMLICNUCNMMY-KJFJCRTCSA-N 1-[(4s,5s)-4-azido-5-(hydroxymethyl)oxolan-2-yl]-5-methylpyrimidine-2,4-dione Chemical compound O=C1NC(=O)C(C)=CN1C1O[C@H](CO)[C@@H](N=[N+]=[N-])C1 HBOMLICNUCNMMY-KJFJCRTCSA-N 0.000 description 1
- DHEJDHPRYHYLKS-UHFFFAOYSA-N 2-(3,6-dihydroxy-9h-xanthen-9-yl)benzohydrazide Chemical compound NNC(=O)C1=CC=CC=C1C1C2=CC=C(O)C=C2OC2=CC(O)=CC=C21 DHEJDHPRYHYLKS-UHFFFAOYSA-N 0.000 description 1
- 102100021671 60S ribosomal protein L29 Human genes 0.000 description 1
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 1
- 229920000936 Agarose Polymers 0.000 description 1
- USFZMSVCRYTOJT-UHFFFAOYSA-N Ammonium acetate Chemical compound N.CC(O)=O USFZMSVCRYTOJT-UHFFFAOYSA-N 0.000 description 1
- 239000005695 Ammonium acetate Substances 0.000 description 1
- 241000256844 Apis mellifera Species 0.000 description 1
- 241000283690 Bos taurus Species 0.000 description 1
- 108010023736 Chondroitinases and Chondroitin Lyases Proteins 0.000 description 1
- 102000011413 Chondroitinases and Chondroitin Lyases Human genes 0.000 description 1
- 108020004705 Codon Proteins 0.000 description 1
- 108010062580 Concanavalin A Proteins 0.000 description 1
- 241000699800 Cricetinae Species 0.000 description 1
- AEMOLEFTQBMNLQ-AQKNRBDQSA-N D-glucopyranuronic acid Chemical group OC1O[C@H](C(O)=O)[C@@H](O)[C@H](O)[C@H]1O AEMOLEFTQBMNLQ-AQKNRBDQSA-N 0.000 description 1
- 102000053602 DNA Human genes 0.000 description 1
- 229920002307 Dextran Polymers 0.000 description 1
- 241000620209 Escherichia coli DH5[alpha] Species 0.000 description 1
- PLUBXMRUUVWRLT-UHFFFAOYSA-N Ethyl methanesulfonate Chemical compound CCOS(C)(=O)=O PLUBXMRUUVWRLT-UHFFFAOYSA-N 0.000 description 1
- 108010015133 Galactose oxidase Proteins 0.000 description 1
- FZHXIRIBWMQPQF-UHFFFAOYSA-N Glc-NH2 Natural products O=CC(N)C(O)C(O)C(O)CO FZHXIRIBWMQPQF-UHFFFAOYSA-N 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 102100029001 Heparan sulfate 2-O-sulfotransferase 1 Human genes 0.000 description 1
- 101710096984 Heparan sulfate 2-O-sulfotransferase 1 Proteins 0.000 description 1
- 229920000209 Hexadimethrine bromide Polymers 0.000 description 1
- 101000676246 Homo sapiens 60S ribosomal protein L29 Proteins 0.000 description 1
- 102100034343 Integrase Human genes 0.000 description 1
- 241000124008 Mammalia Species 0.000 description 1
- 108010036176 Melitten Proteins 0.000 description 1
- 241001529936 Murinae Species 0.000 description 1
- 125000003047 N-acetyl group Chemical group 0.000 description 1
- PMZURENOXWZQFD-ZCTIQAIZSA-L Natrium (35S)sulfate Chemical compound [Na+].[Na+].[O-][35S]([O-])(=O)=O PMZURENOXWZQFD-ZCTIQAIZSA-L 0.000 description 1
- 102000005348 Neuraminidase Human genes 0.000 description 1
- 108010006232 Neuraminidase Proteins 0.000 description 1
- 108091028043 Nucleic acid sequence Proteins 0.000 description 1
- 108091005804 Peptidases Proteins 0.000 description 1
- 108010002747 Pfu DNA polymerase Proteins 0.000 description 1
- BELBBZDIHDAJOR-UHFFFAOYSA-N Phenolsulfonephthalein Chemical compound C1=CC(O)=CC=C1C1(C=2C=CC(O)=CC=2)C2=CC=CC=C2S(=O)(=O)O1 BELBBZDIHDAJOR-UHFFFAOYSA-N 0.000 description 1
- 241000233805 Phoenix Species 0.000 description 1
- 239000004365 Protease Substances 0.000 description 1
- 108010076504 Protein Sorting Signals Proteins 0.000 description 1
- 108010092799 RNA-directed DNA polymerase Proteins 0.000 description 1
- 102000007056 Recombinant Fusion Proteins Human genes 0.000 description 1
- 108010008281 Recombinant Fusion Proteins Proteins 0.000 description 1
- 102100037486 Reverse transcriptase/ribonuclease H Human genes 0.000 description 1
- 229920005654 Sephadex Polymers 0.000 description 1
- 239000012507 Sephadex™ Substances 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 108010006785 Taq Polymerase Proteins 0.000 description 1
- 108090000190 Thrombin Proteins 0.000 description 1
- 241000700605 Viruses Species 0.000 description 1
- 230000021736 acetylation Effects 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 238000001261 affinity purification Methods 0.000 description 1
- AEMOLEFTQBMNLQ-WAXACMCWSA-N alpha-D-glucuronic acid Chemical compound O[C@H]1O[C@H](C(O)=O)[C@@H](O)[C@H](O)[C@H]1O AEMOLEFTQBMNLQ-WAXACMCWSA-N 0.000 description 1
- 150000001413 amino acids Chemical class 0.000 description 1
- 229940043376 ammonium acetate Drugs 0.000 description 1
- 235000019257 ammonium acetate Nutrition 0.000 description 1
- 229960000723 ampicillin Drugs 0.000 description 1
- AVKUERGKIZMTKX-NJBDSQKTSA-N ampicillin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)=CC=CC=C1 AVKUERGKIZMTKX-NJBDSQKTSA-N 0.000 description 1
- 210000004102 animal cell Anatomy 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 230000002429 anti-coagulating effect Effects 0.000 description 1
- 230000000692 anti-sense effect Effects 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- AEMOLEFTQBMNLQ-UHFFFAOYSA-N beta-D-galactopyranuronic acid Natural products OC1OC(C(O)=O)C(O)C(O)C1O AEMOLEFTQBMNLQ-UHFFFAOYSA-N 0.000 description 1
- MSWZFWKMSRAUBD-QZABAPFNSA-N beta-D-glucosamine Chemical class N[C@H]1[C@H](O)O[C@H](CO)[C@@H](O)[C@@H]1O MSWZFWKMSRAUBD-QZABAPFNSA-N 0.000 description 1
- 238000007068 beta-elimination reaction Methods 0.000 description 1
- 230000017531 blood circulation Effects 0.000 description 1
- 230000023555 blood coagulation Effects 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000004113 cell culture Methods 0.000 description 1
- 239000013553 cell monolayer Substances 0.000 description 1
- 239000013522 chelant Substances 0.000 description 1
- 150000003841 chloride salts Chemical class 0.000 description 1
- 239000012501 chromatography medium Substances 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 238000010367 cloning Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000004440 column chromatography Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 210000004748 cultured cell Anatomy 0.000 description 1
- RGWHQCVHVJXOKC-SHYZEUOFSA-J dCTP(4-) Chemical compound O=C1N=C(N)C=CN1[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OP([O-])([O-])=O)[C@@H](O)C1 RGWHQCVHVJXOKC-SHYZEUOFSA-J 0.000 description 1
- 238000003381 deacetylation reaction Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000004925 denaturation Methods 0.000 description 1
- 230000036425 denaturation Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 239000003599 detergent Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 238000001962 electrophoresis Methods 0.000 description 1
- 238000004520 electroporation Methods 0.000 description 1
- 238000001976 enzyme digestion Methods 0.000 description 1
- ZMMJGEGLRURXTF-UHFFFAOYSA-N ethidium bromide Chemical compound [Br-].C12=CC(N)=CC=C2C2=CC=C(N)C=C2[N+](CC)=C1C1=CC=CC=C1 ZMMJGEGLRURXTF-UHFFFAOYSA-N 0.000 description 1
- 229960005542 ethidium bromide Drugs 0.000 description 1
- 239000013604 expression vector Substances 0.000 description 1
- 238000001502 gel electrophoresis Methods 0.000 description 1
- 239000001963 growth medium Substances 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 108010048322 heparin-glucosamine 3-O-sulfotransferase Proteins 0.000 description 1
- 238000000589 high-performance liquid chromatography-mass spectrometry Methods 0.000 description 1
- 230000013632 homeostatic process Effects 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 239000007943 implant Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000012606 in vitro cell culture Methods 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 208000015181 infectious disease Diseases 0.000 description 1
- 230000002458 infectious effect Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- BPHPUYQFMNQIOC-NXRLNHOXSA-N isopropyl beta-D-thiogalactopyranoside Chemical compound CC(C)S[C@@H]1O[C@H](CO)[C@H](O)[C@H](O)[C@H]1O BPHPUYQFMNQIOC-NXRLNHOXSA-N 0.000 description 1
- 210000003734 kidney Anatomy 0.000 description 1
- 238000000464 low-speed centrifugation Methods 0.000 description 1
- 210000004962 mammalian cell Anatomy 0.000 description 1
- VDXZNPDIRNWWCW-UHFFFAOYSA-N melitten Chemical group NCC(=O)NC(C(C)CC)C(=O)NCC(=O)NC(C)C(=O)NC(C(C)C)C(=O)NC(CC(C)C)C(=O)NC(CCCCN)C(=O)NC(C(C)C)C(=O)NC(CC(C)C)C(=O)NC(C(C)O)C(=O)NC(C(C)O)C(=O)NCC(=O)NC(CC(C)C)C(=O)N1CCCC1C(=O)NC(C)C(=O)NC(CC(C)C)C(=O)NC(C(C)CC)C(=O)NC(CO)C(=O)NC(C(=O)NC(C(C)CC)C(=O)NC(CCCCN)C(=O)NC(CCCNC(N)=N)C(=O)NC(CCCCN)C(=O)NC(CCCNC(N)=N)C(=O)NC(CCC(N)=O)C(=O)NC(CCC(N)=O)C(N)=O)CC1=CNC2=CC=CC=C12 VDXZNPDIRNWWCW-UHFFFAOYSA-N 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 230000002503 metabolic effect Effects 0.000 description 1
- 238000000520 microinjection Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000014508 negative regulation of coagulation Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000000546 pharmaceutical excipient Substances 0.000 description 1
- 229960003531 phenolsulfonphthalein Drugs 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 230000003389 potentiating effect Effects 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 235000004252 protein component Nutrition 0.000 description 1
- 229950010131 puromycin Drugs 0.000 description 1
- 239000000985 reactive dye Substances 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000004007 reversed phase HPLC Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 238000001542 size-exclusion chromatography Methods 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- 239000001632 sodium acetate Substances 0.000 description 1
- 235000017281 sodium acetate Nutrition 0.000 description 1
- 235000017557 sodium bicarbonate Nutrition 0.000 description 1
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 1
- AJPJDKMHJJGVTQ-UHFFFAOYSA-M sodium dihydrogen phosphate Chemical compound [Na+].OP(O)([O-])=O AJPJDKMHJJGVTQ-UHFFFAOYSA-M 0.000 description 1
- 229910000162 sodium phosphate Inorganic materials 0.000 description 1
- 230000010473 stable expression Effects 0.000 description 1
- 238000010186 staining Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 229940124597 therapeutic agent Drugs 0.000 description 1
- 229960004072 thrombin Drugs 0.000 description 1
- 239000003104 tissue culture media Substances 0.000 description 1
- 230000010474 transient expression Effects 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- 230000007502 viral entry Effects 0.000 description 1
- 210000002845 virion Anatomy 0.000 description 1
- 210000005253 yeast cell Anatomy 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08B—POLYSACCHARIDES; DERIVATIVES THEREOF
- C08B37/00—Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
- C08B37/006—Heteroglycans, i.e. polysaccharides having more than one sugar residue in the main chain in either alternating or less regular sequence; Gellans; Succinoglycans; Arabinogalactans; Tragacanth or gum tragacanth or traganth from Astragalus; Gum Karaya from Sterculia urens; Gum Ghatti from Anogeissus latifolia; Derivatives thereof
- C08B37/0063—Glycosaminoglycans or mucopolysaccharides, e.g. keratan sulfate; Derivatives thereof, e.g. fucoidan
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08B—POLYSACCHARIDES; DERIVATIVES THEREOF
- C08B37/00—Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
- C08B37/006—Heteroglycans, i.e. polysaccharides having more than one sugar residue in the main chain in either alternating or less regular sequence; Gellans; Succinoglycans; Arabinogalactans; Tragacanth or gum tragacanth or traganth from Astragalus; Gum Karaya from Sterculia urens; Gum Ghatti from Anogeissus latifolia; Derivatives thereof
- C08B37/0063—Glycosaminoglycans or mucopolysaccharides, e.g. keratan sulfate; Derivatives thereof, e.g. fucoidan
- C08B37/0075—Heparin; Heparan sulfate; Derivatives thereof, e.g. heparosan; Purification or extraction methods thereof
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/10—Transferases (2.)
- C12N9/13—Transferases (2.) transferring sulfur containing groups (2.8)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P19/00—Preparation of compounds containing saccharide radicals
- C12P19/26—Preparation of nitrogen-containing carbohydrates
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2510/00—Genetically modified cells
- C12N2510/02—Cells for production
Definitions
- FIG. 4 depicts IPRP-HPLC of 6-O-sulfate tagged HS act di- and tetrasaccharides.
- the IPRP-HPLC was performed as follows. In vitro 6-O-sulfated and AT-affinity purified [ 3 H]HS act oligosaccharides were digested with a mixture of heparitinases. The resulting di- and tetrasaccharides were separated on a Bio-Gel P6 column ( FIG. 3C ). (A), tetrasaccharides collected from FIG.
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Wood Science & Technology (AREA)
- Molecular Biology (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Zoology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Medicinal Chemistry (AREA)
- Genetics & Genomics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Microbiology (AREA)
- Biotechnology (AREA)
- Polymers & Plastics (AREA)
- Biomedical Technology (AREA)
- General Chemical & Material Sciences (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Polysaccharides And Polysaccharide Derivatives (AREA)
Abstract
Disclosed are methods of 6-O sulfating glucosaminyl N-acetylglucosamine residues (GlcNAc) in a polysaccharide preparation and methods of converting anticoagulant-inactive heparan sulfate to anticoagulant-active heparan sulfate and substantially pure polysaccharide preparations made by such methods. Also disclosed is a mutant CHO cell which hyper-produces anticoagulant-active heparan sulfate. Methods for elucidating the sequence of activity of enzymes in a biosynthetic pathway are provided.
Description
- This application is a divisional of U.S. application Ser. No. 10/473,183, now U.S. Pat. No. 8,067,196, which claims the benefit of priority of U.S. Provisional Application Nos. 60/279,523, filed on Mar. 28, 2001, and 60/316,289, filed on Aug. 30, 2001, hereby incorporated by reference.
- Work described herein was supported by National Institutes of Health Grants 5-P01-HL41484, 5-R01-HL58479, and GM-50573. The Government has certain rights in the invention.
- The present invention relates generally to the biosynthesis of glucosaminoglycans, and in particular to 6-O-sulfating polysaccharides.
- Heparin/heparan sulfate (HS) is a linear polymer covalently attached to the protein cores of proteoglycans, which are abundant and ubiquitously expressed in almost all animal cells. HS is assembled by the action of a large family of enzymes that catalyze the following series of reactions: chain polymerization comprising the alternating addition of N-acetylglucosamine (GlcNAc) and glucuronic acid (GlcUA) residues; GlcNAc N-deacetylation and N-sulfation; glucuronic acid epimerization to L-iduronic acid (IdoUA); 2-0-sulfation of uronic acid residues; and 3-0- and 6-0-sulfation of glucosaminyl residues.
- The interaction between HS and various proteins occur in highly sulfated regions of the HS. Furthermore, the specificity of any HS-protein interaction is largely dictated by arrangement of sulfates along the HS chain. For example, the pentasaccharide sequence, GlcNAc/NS6S-GlcUA-GlcNS3S±6S-IdoUA2S-GlcNS6S, represents the minimum sequence required for antithrombin (AT) binding, where the 3S (3-0-sulfate) and 6S (6-0-sulfate) groups constitute the most critical elements involved in the binding (12-16). The AT-HS complex has potent anticoagulant properties. Several enzymes involved in anticoagulant heparan sulfate (HSact) biosynthesis have been purified and cloned. For example, glucosaminyl 3-O sulfotransferase (3-OST) and glucosaminyl 6-0-sulfotransferase (6-OST) proteins have been purified and cloned (17,18). Multiple isoforms of 6-OST and 3-OST proteins have been isolated and shown to have tissue-specific expression patterns and distinct substrate specificities.
- Two different sulfated domains are present in HS, namely, the NS domain and NAc/NS domain (40,41). The NS domains consist of contiguous iduronosyl N-sulfoglucosamine units, while the NAc/NS domain consists of alternating N-acetylated and N-sulfated disaccharides. Acceptor specificities of 6-OST-1,6-OST-2, and 6-OST-3 using N-sulfated heparosan and desulfated re-N-sulfated heparin as substrate, indicated that the sulfation of position 6 of the N-sulfoglucosamine residues in the NS domain is catalyzed by 6-OST-1, 2A, 2B, and 3 and the sulfation of position 6 of the N-sulfoglucosamine residues in the NA/NS domain are catalyzed by 6-OST-2 and 6-OST-3 (2).
- Tissue-specific and developmentally regulated expression of the HS biosynthetic enzymes and enzyme isoforms produce HS chains with specific sequences (1-3). This microheterogeneity enables HS to interact with a broad array of protein ligands that modulate a wide range of biological functions in development, differentiation, homeostasis, and bacterial/viral entry (reviewed in refs (4-11)). Synthetic polysaccharides which possess such specific sequences may be used to modulate such biological functions.
- Heparin preparations, particularly preparations comprising HSact, have been used clinically as anticoagulant therapeutics for the prevention and treatment of thrombotic disease. HSact preparations have also been used to maintain blood fluidity in extracoporeal or corporeal medical devices such as dialysis devices and stents, respectively.
- In one aspect, the present invention features methods of transferring a sulfate on to the 6-O position of a GlcNAc sugar residue in a polysaccharide preparation, the method comprising the steps of (a) providing a polysaccharide preparation having GlcNAc sugar residues, and (b) contacting the polysaccharide preparation with 6-OST protein in the presence of a sulfate donor under conditions which permit the 6-OST protein to add a sulfate to the 6-O-position of a GlcNAc sugar residue. In preferred embodiments the sulfate donor is PAPS.
- In some embodiments, the polysaccharide preparation comprises glucuronic acid (GlcUA) residues; GlcUA-GlcNAc sugar residues; disaccharides selected from the consisting of GlcUA/IdoUA-GlcNS, IdoUA2S-GlcNS, and GlcUA-GlcNS3S. In some preferred embodiments, the polysaccharide preparation includes the pentasaccharide sequence of the antithrombin binding motif, namely, GlcNAc/NS6S-GlcUA-GlcNS3S±6S-IdoUA2S-GlcNS6S.
- In some embodiments, the polysaccharide preparation includes precursor saccharides for the antithrombin binding motif, for example, GlcNAc/NS-GlcUA-GlcNS3S±6S-IdoUA2S-GlcNS6S, GlcNAc/NS6S-GlcUA-GlcNS3S±-IdoUA2S-GlcNS6S, GlcNAc/NS6S-GlcUA-GlcNS3S±6S-IdoUA2S-GlcNS. Particularly preferred precursors include IdoA/GlcA-GlcNAc6S, IdoA/GlcA-GlcNS6S, and IdoA2S-GlcNS6S.
- In some embodiments the 6-OST protein is a recombinant protein produced in an expression system such as baculovirus cells, bacteria cells, mammalian cells, or yeast cells. In some preferred embodiments the 6-OST is human 6-OST, however, 6-OST from other mammals may also be used. In particularly preferred embodiments, the 6-OST protein comprises a polypeptide selected from the group consisting of (a) human 6-OST-1 (SEQ ID NO. 3); (b) human 6-OST-2A (SEQ ID NO. 4); (c) human 6-OST-2B (SEQ ID NO. 5); (d) human 6-OST-3 (SEQ ID NO. 6); (e) an allelic or species variant of any of a-d; and (f) a functional fragment of any one of a-d.
- In some embodiments, the sulfation reaction mixture comprising at least one chloride salt, and the pH is between 6.5 and 7.5. In preferred embodiments, the 6-OST is contacted with the polysaccharide preparation protein in the presence of a sulfate donor for at least 20 minutes. In other embodiments, the reaction proceeds overnight.
- In another aspect, the present invention features method of enriching the portion of HSact present in a polysaccharide preparation comprising: (a) providing a 3-O-sulfated polysaccharide preparation; and (b) contacting the preparation with 6-OST protein in the presence of a sulfate donor under conditions, which permit the 6-OST protein to add a sulfate the 6-O-position of a GlcNAc sugar residue, wherein, step (b) occurs concurrent with or subsequent to step (a). In preferred embodiments, the sulfate donor is PAPS. In some embodiments, the polysaccharide preparation is derived from heparan; however, the polysaccharides may be derived from other sources of polysaccharides known in the art.
- In some embodiments, the 3-O-sufated polysaccharide preparation is derived from a cell that expresses 3-OST-1, in alternative embodiments, the 3-O-sufated polysaccharide preparation is prepared by contacting HSinact with 3-OST-1 protein (SEQ ID NO 2), allelic or species variant, or functional fragments of 3-OST-1.
- In preferred embodiments, the percentage of HSact present in the polysaccharide preparation following step (b) is greater than 50%. In particularly preferred embodiments, the percentage of HSact present in the polysaccharide preparation following step (b) is greater than 70%.
- Preferred polysaccharide preparations for use in the methods of the invention comprise N-acetylglucosamine (GlcNAc) and glucuronic acid (GlcUA) residues. Particularly preferred polysaccharide preparations for use in the methods of the invention comprise GlcUA/IdoUA-GlcNS, GlcUA-GlcNAc, IdoUA2S-GlcNS, and GlcUA-GlcNS3S.
- In another aspect, the present invention features, a mutant CHO cell (“hyper-producer”) that produces between 28% and 50% HSact. In preferred embodiment, the hyper-producer produces 50% HSact relative to total HS produced by the cell. The mutant CHO cell may be produced by a method comprising: (a) transforming a CHO cell with multiple copies of 3-OST-1, allelic or species variant or functional fragment thereof; (b) mutagenizing the cell obtained in step (a); (c) isolating a mutant cell from step (b) which fails to product HSact; and (d) transforming the cell obtained in step (c) with 6-OST. In particularly preferred embodiments, the 6-OST protein comprises a polypeptide selected from the group consisting of (a) human 6-OST-1 (SEQ ID NO. 3); (b) human. 6-OST-2A (SEQ ID NO. 4); (c) human 6-OST-2B (SEQ ID NO. 5); (d) human 6-OST-3 (SEQ ID NO. 6); (e) an allelic or species variant of any of a-d; and (f) a functional fragment of any one of a-d.
- In another aspect, the present invention features, a method of elucidating the sequence of components in a biosynthetic pathway comprising the steps of (a) providing a target cell which expresses at least the upstream components of the biosynthetic pathway; (b) transforming the target cell with multiple copies of an isolated biosynthetic pathway downstream gene; (c) mutagenizing the transformed target cell; and (d) identifying transformed and mutagenized target cells that fail to express the phenotype characteristic of the biosynthetic pathway. In some embodiments, that method further comprises the step of (e) correcting the step (d) cells. In such embodiments, the correcting step may comprise inserting an upstream gene into the cells of step (d). The upstream gene may be a cDNA, genomic DNA, or a functional fragment thereof. In preferred embodiments, the cells of step (d) are transformed with a pool of preselected cDNAs for components of the biosynthetic pathway, for example, a cDNA library derived from a cell that expresses the characteristic non-mutant phenotype.
- In some embodiments, the correcting step may comprise contacting the cells of step (d) with the gene product of an upstream gene. In alternative embodiments, the correcting step may comprise contacting the cells of step (d) with the mRNA, cDNA, genomic DNA, or a functional fragment thereof for the upstream gene.
- In some embodiments, the method further comprises the step of isolating the cells from step (d), analyzing the cells of step (d), and/or isolating the upstream gene in the biosynthetic pathway.
- In some embodiments, the mutagenesis step comprises a mutagenesis technique selected from the group consisting of chemical mutagenesis, ion radiation, and ultraviolet radiation. The step of identifying the gene cDNA may comprise complementation analysis, Northern blot analysis, Southern blot analysis, and/or Western blot analysis. In preferred embodiments, upstream gene may be isolated using PCR or any other technique known in the art.
- In another aspect, the present invention features methods of reducing thrombin activity in a medical device comprising the step of coating the medical device with any of the substantially pure preparations and/or preparations enriched for HSact disclosed herein. In preferred embodiments the medical device is an extracorporeal or intracorporeal device that contacts blood.
- These and other objects, along with advantages and features of the invention disclosed herein, will be made more apparent from the description, drawings, and claims that follow.
-
FIG. 1 depicts IPRP-HPLC of [35S]sulfate metabolic labeled HS disaccharides. The IPRP-HPLC was performed as follows. [35S]sulfate metabolically labeled HS from parental wild-type, mutant, and correctant were isolated and digested with a mixture of heparitinases. The resulting disaccharides were separated on a Bio-Gel P2 column and were then further resolved by IPRP-HPLC with appropriate internal standards. 1. ΔUA-GlcNS; 2. ΔUA-GlcNAc6S; 3. ΔUA-GlcNS6S; 4. ΔUA2S-GlcNS; 5. ΔUA2S-GlcNS6S. Blue tracer, mutant; red tracer, correctant; black broken tracer, wild-type. The broken line indicates the gradient of acetonitrile. -
FIG. 2 depicts IPRP-HPLC of 6-OST-1 and [35S]PAPS-labeled HS disaccharides. The IPRP-HPLC was performed as follows. Cold HS from 3-OST-1 expressing CHO wild-type and precursor mutant were in vitro labeled with purified baculovirus expressed 6-OST-1 in the presence [35S]PAPS for 20 rain. (A) or overnight (B). HS [35S] was isolated and digested with a mixture of heparitinases. The resulting disaccharides were separated on a Bio-Gel P2 column and further resolved by IPRP-HPLC with internal standards. 1. ΔUA-GlcNAc6S; 2. ΔUA-GlcNS6S; 3. ΔUA2S-GlcNS6S. Solid tracer, mutant; broken tracer, wild-type. The broken line indicates the gradient of acetonitrile. -
FIG. 3 depicts Bio-Gel P6 fractionation of digested HS. The Bio-Gel P6 fractionation was performed as follows. 6-O—[35S]sulfate tagged [3H]HS from mutant were digested with 1 mU heparitinase I for 1 hour. HSact oligosaccharides were obtained by AT-affinity chromatography. HSact oligosaccharides were then treated with low pH nitrous acid and then NaBH4 reduced, or treated with heparitinase I, II, and heparinase were analyzed by Bio-Gel P6 chromatography. The fractions indicated were pooled for further analysis. A, 6-O—[35S]sulfate tagged mutant HSact oligosaccharides; B, 6-O—[35S]sulfate tagged mutant HSact oligosaccharides treated with low pH nitrous acid and NaBH4; C, 6-O—[35S]sulfate tagged mutant HSact oligosaccharides digested with heparitinases. n=the number of monosaccharide units in each peak. -
FIG. 4 depicts IPRP-HPLC of 6-O-sulfate tagged HSact di- and tetrasaccharides. The IPRP-HPLC was performed as follows. In vitro 6-O-sulfated and AT-affinity purified [3H]HSact oligosaccharides were digested with a mixture of heparitinases. The resulting di- and tetrasaccharides were separated on a Bio-Gel P6 column (FIG. 3C ). (A), tetrasaccharides collected fromFIG. 3C , peak 1: ΔUA-GlcNAc635S-GlcUA-GlcNS3S, peak 2: ΔUA-GlcNAc635S-GlcUA-GlcNS3S635S; (B), disaccharides of the digested tetrasaccharides in the presence of HIP peptide; peak 1: ΔUA-GlcNAc635S, peak 2: ΔUA-GlcNS3S635S; (C), disaccharides collected fromFIG. 3C , peak 1: ΔUA-GlcNS635S, peak 2: ΔUA2S-GlcNS635S. The broken line indicates the gradient of acetonitrile. -
FIG. 5 depicts dual-color fluorescence flow cytometric analysis of AT (A, C, E, and G) and FGF-2 (B, D, F, and H) binding to wild-type, mutant, and 6-OST-1 correctant. CHO wild-type (A and B); wild-type CHO cell clone with 3 copies of 3-OST-1, (C and D), mutant cell clone with 3 copies of 3-OST-1 (E and F), and 6-OST-1 correctant of the mutant (G and H) were double-labeled with fluorescein-AT (A, C, E, and G) and Alexa 594-FGF-2 (B, D, F, and H) and subjected to dual-color FACS. -
FIG. 6 depicts HPLC anion-exchange chromatography of GAGs. The HPLC anion-exchange was performed as follows. [3H]GlcN-Labeled GAG chains from wild-type and mutant were isolated by protease digestion and β-elimination. Samples were analyzed by HPLC anion-exchange chromatography. Solid tracer, mutant; broken tracer, wild-type. The broken line indicates the concentration gradient of sodium chloride. -
FIG. 7 illustrates one embodiment of a method for elucidating the HSact biosynthetic pathway. In this embodiment, using recombinant retroviral transduction, the human heparan sulfate (HS) 3-O-sulfotransferase 1 (3-OST-1) gene was transduced into Chinese hamster ovary (CHO) cells. 3-OST-1 expression gives rise to CHO cells with the ability to produce anticoagulant HS (HSact). A cell line containing 3 copies of 3-OST-1 was chosen by Southern analysis. After chemical mutagenesis of this cell line, FGF-2 binding positive and AT binding negative mutant cells were FACS sorted and cloned. The advantage of having 3 copies of 3-OST-1 is that upstream genes that are responsible for generating specific HS precursor structures can be sought after chemical mutagenesis without being concerned with the loss of 3-OST-1. FGF-2 selection is employed to make certain that the mutant cells still make HS. -
FIG. 8 depicts ΔUA-GlcNS3S disaccharide structure as determination by capillary IPRP-HPLC coupled with mass spectrometry. The IPRP-HPLC-MS analysis was performed as follows. Cold HS chain from wild-type CHO cells were labeled with 3-OST-1 plus PAP34S. Purified HS was digested with a combination of 1 mU of each heparitinase I, heparitinase II, heparitinase IV, and heparinase in the presence of 0.5 mg/ml heparin/heparan sulfate interacting protein (HIP) peptide. 0.5 μg of digested HS was injected into capillary IPRP-HPLC coupled with MS. Panel A, UV tracer of capillary IPRP-HPLC from 35.85 to 39.71 min., peak B contains both ΔUA-GlcNS6S and ΔUA-GlcNS3S, and peak D contains ΔUA2S-GlcNS; panel B, negative polarity MS spectra from 37.44 to 38.17 min.; which equals UV peak from 36.64 to 37.37 min.; panel C, amplification of m/z 494.0 to 501.0 region from panel B; panel D, negative polarity MS spectra from 38.17 to 39.06 min.; which equals UV peak from 37.37 to 38.26 min.; panel E, amplification of m/z 494.0 to 501.0 region from panel D. - Before proceeding further with a detailed description of the currently preferred embodiments of the instant invention, an explanation of certain terms and phrases will be provided. Accordingly, it is understood that each of the terms set forth is defined herein at least as follows:
- Anticoagulant heparan sulfate (HSact). As used herein the term “anticoagulant heparan sulfate” or the abbreviation “HSact” means a sulfated HS comprising the pentasaccharide binding site for antithrombin, namely, GlcNAc/NS6S-GlcUA-GlcNS3S±6S-IdoUA2S-GlcNS6S. HSact may be purified from a pool of polysaccharides by any means known in the art, for example, AT-affinity chromatography. The anticoagulant activity of a sample may be quantitated using the techniques disclosed herein, or alternatively using an assay known in the art, for example, the Coatest Heparin assay manufactured by Chromogenix, Milan, Italy.
- Anticoagulant-inactive heparan sulfate (HSinact). As used herein the term “anticoagulant-inactive heparan sulfate” or the abbreviation HSinact means a sulfated HS lacking the pentasaccharide binding site for antithrombin, namely, GlcNAc/NS6S-GlcUA-GlcNS3S±6S-IdoUA2S-GlcNS6S. Anticoagulant-inactive heparan sulfate may also be identified and quantitated using the techniques disclosed herein or any assay known in the art, for example, the Coatest Heparin assay manufactured by Chromogenix, Milan, Italy.
- Enriched. As used herein with regard to particular polysaccharide structures within a polysaccharide preparation, the term “enriched” means that the proportion of the polysaccharide structure in a polysaccharide preparation is statistically significantly greater than the proportion of the polysaccharide structure in naturally-occurring, untreated polysaccharide preparation. The polysaccharide preparations of the invention are enriched for 6-OST-1-sulfated polysaccharides or HSact approximately 10-100 fold. For example, whereas the percentage of 6-OST-sulfated polysaccharide in a typical, unenriched preparation is between 0%-3%, the percentage of 6-OST-sulfated polysaccharide in the enriched polysaccharide preparations of the invention is between approximately 5-9%. Likewise, whereas the percentage of HSact in a typical, produced by cells culture in vitro is between approximately 0-1%, the percentage of HSact in the enriched polysaccharide preparations of the invention derived from the hyper-producing mutant CHO cell of the invention is between approximately 28-50%.
- Heparan sulfate. As used herein, the term “heparan sulfate” or the abbreviation “HS” means a polysaccharide made up of repeated disaccharide units D-glucuronic acid or L-iduronic acid linked to N-acetyl or N-sulfated D-glucosamine. The polysaccharide is modified to a variable extent by sulfation of the 2-O-position of GlcA and IdoA residues, and the 6-O- and 3-O-positions of GlcN residues and acetylation or de-acetylation of the nitrogen of GlcN residues. Therefore, this definition encompasses all of the glycosaminoglycan compounds variously referred to as heparan(s), heparan sulfate(s), heparin(s), heparin sulfate(s), heparitin(s), heparitin sulfate(s), heparanoid(s), heparosan(s). The heparan molecules may be pure glycosaminoglycans or can be linked to other molecules, including other polymers such as proteins, and lipids, or small molecules.
- 3-O-Sulfotransferases. As used herein, the term “3-O-Sulfotransferases” refers to the family of proteins that are responsible for the addition of sulfate groups at the 3-OH position of glucosamine in HS. These enzymes are present as several isoforms expressed from different genes at different levels in various tissues and cells. The 3-OSTs act to modify HS late in its biosynthesis (reviewed by Lindahl et al., 1998) and each isoform recognizes as substrate glucosamine residues in regions of the HS chain that have specific, but different, prior modifications, including epimerization and sulfation at other nearby positions (Liu et al., 1999). Thus, different 3-OSTs generate different potential protein-binding sites in HS.
- 3-OST-1. As used herein, the term “3-O-sulfotransferase-1” or the abbreviation “3-
OST 1” refers to the particular isoform of the 6-O-Sulfotransferase family designated as “1”. 3-OST-1 is described in detail in WO 99/22005, which is herein incorporated by reference in its entirety. As used herein 3-OST-1 may refer to the nucleic acid comprising the 3-OST-1 gene (SEQ. ID NO. 1) or the protein (SEQ. ID NO. 2). Whether the term is applied to nucleic acids or polypeptide, it is intended to embrace minimal sequences encoding functional fragments of 3-OST-1. In general, a functional fragment comprises the minimum segments required for transfer of a sulfate to the 3-O position of HS. Accordingly, a functional fragment may omit, for example, leader sequences that are present in full-length 3-OST-1. WO 99/22005 provides further guidance regarding which segments of full-length 3-OST-1 nucleic acids and polypeptides comprise functional fragments. - 6-O-Sulfotransferases. As used herein, the term “6-O-Sulfotransferases” refers to members of the family of 6-OSTs are responsible for the addition of sulfate groups at the 6-OH, position of glucosamine in HS. These enzymes are present as several isoforms expressed from different genes at different levels in various tissues and cells. As is the case with the 3-OSTs, the 6-OSTs act to modify HS late in its biosynthesis and each isoform recognizes as substrate glucosamine residues in regions of the HS chain that have specific, but different, prior modifications, including epimerization and sulfation at other nearby positions (Liu et al., 1999).
- As used herein 6-OST may refer to nucleic acids or polypeptides comprising human 6-OST-1, -2A, -2B, and -3. Whether the term is applied to nucleic acids or polypeptides, it is intended to embrace allelic and species variants, as well as minimal sequences encoding segment(s) required for transfer of a sulfate to the 6-0 position of an HS preparation and, in particular, GlcNAc residues of HS. Accordingly, a functional fragment may omit, for example, the transmembrane and/or leader sequences that are present in the full-length protein.
- Substantially pure. As used herein with respect to polysaccharide preparations, the term “substantially pure” means a preparation which contains at least 60% (by dry weight) the polysaccharide of interest, exclusive of the weight of other intentionally included compounds.
- Preferably the preparation is at least 75%, more preferably at least 90%, and most preferably at least 99%, by dry weight the polysaccharide of interest, exclusive of the weight of other intentionally included compounds. Purity can be measured by any appropriate method, e.g., column chromatography, gel electrophoresis, amino acid compositional analysis or HPLC analysis. If a preparation intentionally includes two or more different polysaccharides of the invention, a “substantially pure” preparation means a preparation in which the total dry weight of the polysaccharide of the invention is at least 60% of the total dry weight, exclusive of the weight of other intentionally included compounds. Preferably, for such preparations containing two or more polysaccharides of the invention, the total weight of the polysaccharides of the invention should be at least 75%, more preferably at least 90%, and most preferably at least 99%, of the total dry weight of the preparation, exclusive of the weight of other intentionally included compounds. Thus, if the polysaccharides of the invention are mixed with one or more other compounds (e.g., diluents, detergents, excipients, salts, sugars, lipids) for purposes of administration, stability, storage, and the like, the weight of such other compounds is ignored in the calculation of the purity of the preparation. Furthermore, when the polysaccharide is a proteoglycan, the protein component of the proteoglycan is excluded for purposes of calculating purity.
- Transformation. As used herein, transformation means any method of introducing exogenous a nucleic acid into a cell including, but not limited to, transformation, transfection, electroporation, microinjection, direct injection of naked nucleic acid, particle-mediated delivery, viral-mediated transduction or any other means of delivering a nucleic acid into a host cell which results in transient or stable expression of the nucleic acid or integration of the nucleic acid into the genome of the host cell or descendant thereof.
- Variant. As used herein, “variant” DNA molecules are DNA molecules containing minor changes in a native 6-OST sequence, i.e., changes in which one or more nucleotides of a native 6-OST sequence is deleted, added, and/or substituted, preferably while substantially maintaining a 6-OST biological activity. Variant DNA molecules can be produced, for example, by standard DNA mutagenesis techniques or by chemically synthesizing the variant DNA molecule or a portion thereof. Such variants preferably do not change the reading frame of the protein-coding region of the nucleic acid and preferably encode a protein having no change, only a minor reduction, or an increase in 6-OST biological function. Amino-acid substitutions are preferably substitutions of single amino-acid residues. DNA insertions are preferably of about 1 to 10 contiguous nucleotides and deletions are preferably of about 1 to 30 contiguous nucleotides. Insertions and deletions are preferably insertions or deletions from an end of the protein-coding or non-coding sequence and are preferably made in adjacent base pairs. Substitutions, deletions, insertions or any combination thereof can be combined to arrive at a final construct. Preferably, variant nucleic acids according to the present invention are “silent” or “conservative” variants. “Silent” variants are variants of a native 6-OST sequence or a homolog thereof in which there has been a substitution of one or more base pairs but no change in the amino-acid sequence of the polypeptide encoded by the sequence. “Conservative” variants are variants of the native 6-OST sequence or a homolog thereof in which at least one codon in the protein-coding region of the gene has been changed, resulting in a conservative change in one or more amino acid residues of the polypeptide encoded by the nucleic-acid sequence, i.e., an amino acid substitution. In all instances, variants of the naturally-occurring 6-OST, as described above, must be tested for biological activity as described below. Specifically, they must have the ability to add a sulfate to the 6-OH position of a sugar residue in HS.
- The present invention depends, in part, on the discovery that (i) 6-OST is a limiting enzyme in the HSact biosynthetic pathway when 3-OST-1 is non-limiting; (ii) 6-OST can add 6-O-sulfate to GlcNAc residues, including the critical 6-O-sulfate in the antithrombin binding motif of HS; and (iii) both 3-O- or 6-O-sulfation may be the final step in HSact biosynthesis. Thus, the present invention provides methods of synthesizing oligosaccharides comprising GlcNAc6S, preparations enriched for HSact, and methods of making such preparations using 6-OST.
- In one aspect, the present invention provides methods for 6-O-sulfating saccharide residues within a preparation of polysaccharides in which the polysaccharides includes a GlcNAc sugar residue. These methods comprise contacting a polysaccharide preparation with 6-OST protein in the presence of a sulfate donor under conditions which permit the 6-OST to convert the GlcNAc sugar residue to GlcNAc6S. In particularly preferred embodiments, the 6-OST protein comprises a polypeptide selected from the group consisting of (a) human 6-OST-1 (SEQ ID NO. 3); (b) human 6-OST-2A (SEQ ID NO. 4); (c) human 6-OST-2B (SEQ ID NO. 5); (d) human 6-OST-3 (SEQ ID NO. 6); (e) an allelic or species variant of any of a-d; and (f) a functional fragment of any one of a-d. In preferred embodiments, the sulfate donor is 3′-phospho-
adenosine 5′-phosphosulfate (PAPS). - In another aspect, the present invention provides methods of producing HSact by contacting a 3-O-sulfated polysaccharide preparation with 6-OST protein. These methods are based upon the discovery that 6-O-sulfation can occur after 3-O-sulfation in HSact biosynthesis. In particular embodiments, a GlcNAc sugar residue which comprises a part of an HSact precursor sequence is 6-O-sulfated. In some embodiments, the target polysaccharide comprises part of an HSact precursor sequence, for example, IdoA/GlcA-GlCNAc6S, IdoA/GlcA-GlcNS6S, and IdoA2S-GlcNS6S. In some preferred embodiments, the target polysaccharide is 3-O-sulfated prior to or concurrently with 6-O-sulfation.
- In another aspect, the present invention also provides for means of enriching the AT-binding fraction of a heparan sulfate pool (i.e., increasing the portion of HSact) by contacting a polysaccharide preparation with 6-OST protein in the presence of a sulfate donor under conditions which permit the 6-OST to convert HSinact to HSact. In preferred embodiments, the sulfate donor is 3′-phospho-
adenosine 5′-phosphosulfate (PAPS). Conversion of the HSact precursor pool to HSact using the methods of the invention is particularly useful in the production of anticoagulant heparan sulfate products which have clinical applications as therapeutics, for example, as an agent to treat or prevent thrombotic disease. Anticoagulant heparan sulfate products may alternatively be used as agents to maintain blood flow in medical devices, for example, dialysis machines. In general, the preparations enriched for HSact disclosed herein may be use in any application in which anticoagulant HS is employed. - In yet another aspect, the present invention provides a recombinant cell line that expresses enhanced levels of HSact. In vitro cell cultures produce between 0%-1% HSact However; the corrected mutant (“correctant or hyper-producer”) created by transforming CHO cells multiple copies of 3-OST-1, followed mutigenization of the resultant transformant and transformation with 6-OST-1 has been shown to express between 28%-50% HSact. This represents a significant improvement over the percentage of HSact produced by any cell line known to applicants at the time of filing.
- The 6-O-sulfated preparations and the HSact produced by the methods of the invention are useful as therapeutic agents to treat and/or prevent any condition improved by administration of an anticoagulant, for example, thrombotic disease. These compositions may also be used to coat the surfaces of extracorporeal medical devices (e.g., dialysis tubing) or intracorporeal devices (e.g., transplants, stents or other prosthetic implants) to reduce blood clotting on those surfaces.
- Practice of the invention will be still more fully understood from the examples, which are presented herein for illustration only and shall not be construed as limiting the invention in any way.
- 6-O-sulfation of glucosaminylglyans in vitro may be accomplished in any manner known in the art. As a skilled artisan would recognize, a 6-O-sulfation reaction requires a 6-OST protein, or functional fragment thereof, a target polysaccharide, a sulfate donor (preferably PAPS), and a pH in the range of 6.5-7.5 (preferably a pH of about 7.0). Thus, in a preferred procedure, the reaction mixture contains 50 mM MES (pH 7.0), 1% (w/v) Triton X-100, 5 mM MnCl2, 5 mM MgCl2, 2.5 mM CaCl2, 0.075 mg/ml protamine chloride, 1.5 mg/ml BSA, either metabolically labeled [35S]HS or non-radioactive HS chains, cold PAPS (0.5 mM) or [35S]PAPS (25 2×107 cpm), and 70 ng of purified baculovirus-expressed human 6-OST-1 in a final volume of 50 μl. The mixtures may be incubated either 20 minutes or overnight at 37° C., and 200 μg of chondroitin sulfate C added. HS chains are purified by phenol/chloroform extraction and anion exchange chromatography on 0.25-ml columns of DEAE-Sephacel packed in 1 ml syringes (20). After ethanol precipitation, the pellets are washed with 75% ethanol, dried briefly under vacuum, and dissolved in water for further analysis.
- To explain the difference between 6-OST substrate specificity observed in vivo and previously reported specificities, 6-OST-1 was expressed and purified in bacteria and baculovirus. The purified proteins were used to sulfate HS35S derived from the precursor mutant and wild-type CHO cells. Specifically, precursor mutant HS chains were treated with baculovirus expressed, 3-OST-1 protein, 6-OST-1 protein, or both proteins in the presence of cold PAPS. HSact was isolated by AT-affinity purification and the percentage of HSact was quantitated. The results are shown below in Table 1. As Table 1 shows, the yield of HSact resulting from 6-OST-1 treatment of precursor mutant HS chain (51%) was similar to that of the CHO wild-type (64%) even though 6-O-sulfation is severely decreased in the precursor mutant (
FIG. 1 ). -
TABLE 1 Percentage of [S35]HSact 3- Control OST-1 6-OST-1 3-OST-1 and 6-OST-1 Wild-type CHO 26% 40% 64% 70% Precursor Mutant 7% 12% 51% 64% - To localize where 6-OST-1 adds 6S residues along the HS chains, equal amounts of HS from 3-OST-1 expressing wild-type and precursor mutant were in vitro labeled with purified baculovirus expressed 6-OST-1 in the presence of [35S]PAPS either for 20 minutes or overnight. Only ˜⅓ as much radioactivity was incorporated into the HS derived from 3-OST-1 expressing CHO cells as compared to the HS derived from the precursor mutant cells. [S35]HS was isolated and digested with a mixture of heparitinases. The resulting disaccharides (accounting for ˜94% of [35S] counts) were separated on a Bio-Gel P2 column and further resolved by IPRP-HPLC with appropriate internal standards (
FIG. 2 , mutant, solid tracer; wild-type, broken tracer). AsFIG. 2 shows, 6-OST-1 not only added a 6S group on GlcNS, but 6-OST-1 also 6S group on GlcNAc residues in both the 3-OST-1 expressing CHO HS and precursor mutant HS. - As summarized below in Table 2, more ΔUA-GlcNAc635S and ΔUA-GlcNS635S disaccharides were observed from reactions run overnight than after just 20 minutes. 6-O-sulfate incorporation was 10 times higher from incubation with baculovirus expressed 6-OST-1 than bacteria expressed 6-OST-1. However, overnight labeling using bacterial 6-OST-1 generated three 6-O-sulfated disaccharides in the following proportions: ΔUA-GlcNAc635S (25%), ΔUA-GlcNS635S(20%), and ΔUA2S-GlcNS635S (55%). This ratio of 6-O-sulfated disaccharides is comparable to the ratio observed in baculovirus 6-OST-1 overnight labeled disaccharides (
FIG. 2 , panel B). -
TABLE 2 Overnight 20 Minute Incubation Incubation ΔUA-GlcNAc635S 29% 18% ΔUA-GlcNS635S 18% 12% ΔUA2S-GlcNS635S 53% 70% - To further locate the 6-O-sulfate addition in AT-binding HSact oligosaccharides, cold mutant HS chains were treated with purified Baculovirus expressed 6-OST-1 with [35S]PAPS overnight. After heparitinase I digestion, HSact oligosaccharides were affinity purified (7% of 6-O-[35S]sulfate-labeled HStotal). The HSact oligosaccharides were then treated with low pH nitrous acid that cleaves N-sulfated residues, and a combination of heparitinases that cleaves 3-O-sulfate containing sugar into tetrasaccharides and all other sugars into disaccharides. Treated and untreated HSact oligosaccharides were run on Bio Gel P6 columns (
FIG. 3 ). Di- and tetrasaccharides were collected from enzyme and low pH nitrous treated samples as indicated. The tetrasaccharides resistant to a combination of heparitinases I, II, and heparinase digestion represented the 3-O-sulfate containing tetrasaccharides as reported earlier (20,33). The presence of similar amounts of tetrasaccharides from both nitrous and enzyme degradation suggests the 3-O-containing tetrasaccharides have the structures, UA±2S-GlcNAc635S-GlcUA-GlcNS3S±635S. To prove this, the tetrasaccharides (FIG. 4A ) collected from enzyme digestion (FIG. 3C ) were further digested into disaccharides (FIG. 4B ) with heparitinase I in the presence of HIP peptide (the same method as shown inFIG. 8 ). IPRP-HPLC profiles of 6-O-sulfate tagged HSact di- and tetrasaccharides fromFIG. 3C were shown inFIG. 8 . Table 3 summarizes the 6-O—[35S]sulfate-labeled disaccharide compositions calculated based on the HPLC data (FIG. 4 ). -
TABLE 3 Percentage of [S35]HSact 3- Control OST-1 6-OST-1 3-OST-1 and 6-OST-1 Wild-type CHO 26% 40% 64% 70% Precursor Mutant 7% 12% 51% 64% - In HSact oligosaccharides, 6-OST adds 6-O-sulfates not only at GlcUA/IdoUA-GlcNS, GlcUA-GlcNAc, and IdoUA2S-GlcNS, but also at GlcUA-GlcNS3S. These results show that 6-OST is the enzyme that not only puts the critical 6-O-sulfate group in HSact oligosaccharides, but also other 6-O-sulfate groups in HSact oligosaccharides as well. 3-OST-1 and 6-OST are therefore the critical enzymes for the generation of HSact.
- 3-OST-1, usually existing in limited amounts, acts upon HSact precursor to produce HSact and upon HSinact precursor to produce 3-O-sulfated HSinact (17,19). When 3-OST-1 is no longer limiting, the capacity for HSact generation is determined by the abundance of HSact precursors (20). Since in vitro 3-O-sulfation can transform HSinact into HSact, it was previously believed that 3-O-sulfation is the final modification step during biosynthesis of HSact. Surprisingly, in vitro 6-O-sulfation was also shown to transform 3-O-sulfate containing HSinact into HSact. Thus, the present disclosure provides methods of enriching a polysaccharide preparation of HSact by contacting a HSinact with 6-O-sulfate protein and a sulfate donor under conditions which permit 6-OST-1 to sulfate a GlcNAc sugar residue.
- To determine whether the diminished 6-OST activity in the precursor mutant caused the precursor mutant's deficiency in AT binding, precursor mutant was transduced with 6-OST-1 cDNA. To create the 6-OST-1 cDNA, CHO 6-OST-1 coding region was amplified and sequenced from the CHO-K1 quick-clone cDNA library by PCR. Since only partial 6-OST-1 coding sequence from CHO cells has been reported (32), the complete CHO 6-OST-1 sequence was deposited in Genbank (accession number: AB006180). Stable 6-OST-1 transfectants were screened by FACS. Specifically, the cells were labeled with fluorescein-AT and Alexa 594-FGF-2 and then subjected to dual-color FACS. The FACS analysis for a correctant cell is shown in
FIG. 5 , at panels G and H. The correctants with high AT binding affinity were single-cell-cloned. HS [35S] from correctants was isolated by AT-affinity chromatography and analyzed. The correctant produced HS and HSact. Surprisingly, approximately between 28% and 50% of total HS produced by the correctant was HSact. The only cultured cell known to the applicants at the time of the filing the instant application produces approximately 0%-1% HSact. - The disaccharide composition of the HS derived from correctant cells was shown to a comprise a greater percentage of GlcNAc6S and GlcNS6S residues than CHO cells or mutant cells as follows. HS[35S] from 3-OST-1 expressing CHO cells, precursor mutant cells, and correctant cells was isolated and digested with a mixture of heparitinases. The resulting disaccharides were independently separated on a Bio-Gel P2 column and further resolved by IPRP-HPLC (
FIG. 6 ). The relative percentages are set forth below. -
TABLE 4 Disaccharide Wild-type Precursor mutant Correctant GlcNAc6S 7% 5% 9 % GlcNS6S 9% 4% 13% - The present disclosure also provides a method, which constitutes a general approach for defining and obtaining components of biosynthetic pathways when (1) the gene for a downstream or terminal biosynthetic enzyme has been isolated, and (2) an assay for the downstream product(s) is available. This method of delineating biosynthetic pathways comprises placing multiple copies of the gene for a down-stream component of the pathway (i.e., a component acting at or near the end of a biosynthetic pathway) into a target cell line to produce a multi-expresser; mutagenizing the multi-expresser to obtain mutants deficient in up-stream component (i.e., components that generate precursor structures earlier in the pathway than the downstream component); and analyzing the precursor mutants. In some embodiments the method further comprises “correcting” the precursor mutant, for example, by transducing the mutant with the gene encoding a putative precursor protein. The transduction may be accomplished using one or more previously identified components of the biosynthetic pathway or using a “shotgun” library approach. In other embodiments, the correction may entail contacting the precursor mutant with the gene products of the biosynthetic pathway and screening for the phenotype of the wild-type, for example, ligand binding.
- The advantage of a cell line containing multiple copies of a terminal or downstream gene product is that the activity of the downstream gene product remains intact following mutagenesis, therefore, upstream gene products will determine the phenotype of the mutagenized cell. Thus, the present invention provides methods of generating mutants specifically defective for upstream gene products, as well as, methods for isolating downstream components and delineating biosynthetic pathways.
- To elucidate HSact biosynthesis, mutants defective in the formation of HSact precursors were created. Chinese hamster ovary (CHO) cells were selected as the target cell because wild-type CHO cells produce HSinact but not HSact (presumably, due to lack of HS 3-O-Sulfotransferase-1 (3-OST-1) expression). Furthermore, a series of HS biosynthetic mutants have been successfully made in CHO cells (23-28).
- The 3-OST-1 gene, which was presumed to be the terminal enzyme in the HSact biosynthetic pathway, was introduced into CHO cells by retroviral transduction (29). 3-OST-1 expression gave rise to CHO cells with the ability to produce HSact. A CHO cell line containing 3 copies of 3-OST-1 (referred to herein as “3-OST-1 expressing CHO cells, “3-OST-1 triple mutant” or “multi-expresser”) was selected for further analysis and experimentation. The 3-OST-1 triple mutant was subjected to chemical mutagenesis. Cells positive for the desired knockout phenotype, specifically, positive for HS expression (selected by FGF-2 binding) and negative for HSact expression (selected by AT binding), were identified and isolated (
FIG. 5 , panels E and F). This cell line is referred to herein as the “6-OST-1 deficient mutant” or “precursor mutant.” - The precursor mutant disclosed herein, which makes decreased amounts of 6-O-sulfated residues, is defective in AT binding (
FIG. 5E ) due to decreased 6-O-sulfotransferase activities. The defect in this mutant has been corrected, both in viva (by transduction with a 6-OST-1 gene) and in vitro (by contacting HS with 6-OST-1 protein). - The 6-OST-1 sulfate defect of the 6-OST-1 deficient mutant was corrected (i.e., the phenotype of the parental cell line was recovered) by transduction with 6-O-sulfotransferase-1 gene (
FIG. 5 , panels G and H). The resultant cell line (the “Correctant”) produced HS, 50% of which is HSact. Previously reported cell lines have been observed to produce less than 1% HSact. This represents the highest percentage of HSact production by any reported cell line. Thus, the present invention provides for a cell line that produces high yields of HSact, as well as methods of efficiently producing HSact. This cell line (termed “hyper-producer”) expresses approximately 28%-50% of HSact relative to HStotal. - GAGs from the 3-OST-1 expressing CHO cells and precursor mutant cells were isolated and analyzed by biosynthetic labeling studies using [63H]GlcN. HPLC anion-exchange analysis of the [3H]GAG chains from the precursor mutant resolved HS (0.31-0.50 M NaCl) from chondroitin sulfate (0.52-0.60 M NaCl) (
FIG. 6 ). The GAG chains from the 3-OST-1 expressing CHO cells (FIG. 6 , solid tracer) resolved into a similar profile to that of the precursor mutant (FIG. 6 , broken tracer). This result implies that the HS from the precursor mutant and the 3-OST-1 expressing CHO cells have similar charge densities charge density and therefore, the decrease in AT-binding activity observed in the precursor mutant may be attributed to structural changes in the HS, possibly due to differences in degree of sulfation. - Since HS from the precursor mutant has similar charge density to that of the 3-OST-1 expressing CHO cells, the decrease in AT binding in the precursor mutant was expected to correlate with a change in the structure of the HS chains. The GAGs synthesized by the 3-OST-1 expressing CHO cells and precursor mutant were analyzed by biosynthetic labeling studies using [35S]sulfate. The 3-OST-1 expressing CHO cells and precursor mutant cells produced the same amount of [35S]HS and both samples contained ˜70% HS and ˜30% chondroitin sulfate (data not shown). This ratio of HS to chondroitin sulfate is consistent with the result shown in
FIG. 6 (wherein HS accounted for 68% of the GAGs in the precursor mutant, and HS accounted for 66% of the GAGs in the 3-OST-1 expressing CHO cells). [35S]sulfate labeled HS chains from the 3-OST-1 expressing CHO cells and precursor mutant cells were then digested with a mixture of heparitinases. The resulting disaccharides (representing approximately 93% of total [35S]sulfate counts) were separated on a Bio-Gel P2 column and further resolved by IPRP-HPLC with appropriate internal standards. As Table 5 shows, the precursor mutant cells produced reduced amounts of 6-O-sulfated disaccharides relative to the 3-OST-1 expressing CHO cells. -
TABLE 5 Disaccharide Composition 3-OST-1 expressing Disaccharide CHO cells Precursor Mutant Correctant ΔUA- GlcNS 30% 35% 27% ΔUA-GlcNAc6S 7% 5% 9% ΔUA- GlcNS6S 9% 4% 13% ΔUA2S- GlcNS 20% 36% 22% ΔUA2S-GlcNS6S 34% 19% 29% - In order to explain the reduced levels of 6-O-sulfate containing disaccharides in the precursor mutant, 6-OST-1 isoform expression in 3-OST-1 expressing CHO cells was compared with 6-OST-1 isoform expression in the precursor mutant cells. Human 6-OST-1, 6-OST-2, and 6-OST-3 cDNA were used as probes in Northern blot and RT-PCR studies. Northern analysis indicated that the precursor mutant and the 3-OST-1 expressing CHO cells have the same level of 6-OST-1 mRNA. However, no 6-OST-2 or 6-OST-3 mRNA was detected in either the 3-OST-1 expressing CHO cells or the precursor mutant cells, indicating that CHO cells express 6-OST-1 only.
- The expression pattern for 6-OST isoforms in CHO cells was confirmed using RT-PCR analysis of 3-OST-1 expressing CHO cells and precursor mutant cells. One set of PCR primers for 6-OST-1, three sets of PCR primers for 6-OST-2, and two sets of PCR primers for 6-OST-3 were used to evaluate mRNA expression of the 6-OST isoforms. The same level of 6-OST RT-PCR products was observed for both 3-OST-1 expressing CHO cells and the precursor mutant cells; however, no RT-PCR products were observed in either cell from the three sets of 6-OST-2 RT-PCR reactions and two sets of 6-OST-3 RT-PCR reactions. The Northern blot and RT-PCR analyses described above demonstrate that CHO cells express 6-OST-1, but not 6-OST-2 or 6-OST-3.
- Northern blot and RT-PCR analysis indicated that the precursor mutant cells and the 3-OST-1 expressing CHO cells express similar levels of 6-OST-1 mRNA, however, as described in greater detail below, the level of 6-OST-1 activity in the precursor mutant is lower than the level of activity in the 3-OST-1 expressing CHO cells. This observation raised the possibility that the precursor mutant CHO cells might have one or more point mutation(s) in 6-OST-1 gene that diminishes the level of 6-OST sulfotransferase activity. The coding regions of 6-OST-1 RT-PCR products from the mutant were double-strand-sequenced and no point mutation was observed compared to wild-type 6-OST-1. Thus, the diminished level of 6-OST activity observed is not due to a defect in the 6-OST-1 gene in the precursor mutant.
- FACS analysis showed that the precursor mutant cells were defective in AT binding (
FIG. 5 , panel E). The coding sequence of 6-OST-1 was not mutated and 6-OST-1 mRNA expression levels were normal; however, disaccharide compositional studies demonstrated that the precursor mutant made less 6-O-sulfated residues in vivo than wild-type CHO cells. - The 6-O-sulfotransferase activity of the precursor mutant was evaluated in vitro. Crude cell homogenates from wild-type CHO cells and precursor mutant CHO cells served as the source of 6-OST-1 enzyme. HS derived from wild-type CHO cells, N,O-desulfated, re-N-sulfated heparin (CDSNS-heparin), and 6-O-desulfated heparin was incubated with 6-OST-1 enzyme from wild-type CHO cells and precursor mutant in the presence of a sulfate donor. The resulting reaction products were digested by a combination of heparitinases, followed by Bio Gel P2 chromatography. The disaccharides collected were then subjected to IPRP-HPLC analysis. Both 2-O—[35S]sulfate (control) and 6-O—[35S]sulfate labeled disaccharides resulting from the 6-OST-1 enzymes were quantitated. 2-O-sulfotransferase activity was similar in precursor mutant cells (118±3 pmol/min/mg) and the wild-type CHO cells (122±2 pmol/min/mg) when CDSNS-heparin was used as substrate (not shown). However, a 30% to 39% reduction of 6-O-sulfotransferase activity was observed in the precursor mutant relative to the wild-type CHO cells with all three substrates (Table 6).
-
TABLE 6 6-O-sulfotransferase activity (pmol/min/mg) % reduction of wild-type activity Wild-type Precursor in precursor Substrate CHO Mutant mutant HS (CHO K1) 5.6 ± 0.3 3.9 ± 0.4 30% 6-O-desulfated heparin 4.4 ± 0.3 2.7 ± 0.5 39% CDSNS-heparin 11 ± 2 7 ± 1 38% - Mass spectrometric detectors produce far more information than conventional UV or fluorescent detectors and allows the monosaccharide composition of individual components to be determined (39). Introducing stable isotope PAP34S into the 3-O-position of HS by pure 3-OST-1, a 3-O-sulfate containing disaccharide with a unique mass was identified using a combination of capillary IPRP-HPLC coupled with mass spectrometry. The method consumes 0.5 μg of total HS for separating and detecting different HS disaccharides. This method provides a practical way of accomplishing HS disaccharide analysis of general HS samples from cells or tissues without radioisotope labeling. Furthermore, biologically inactive HS oligosaccharides could be treated in vitro with different pure sulfotransferases plus stable sulfur isotope PAPS (e.g., PAP33S and PAP34S). The different stable isotope tagged biologically active oligosaccharides could then be sequenced by a combination of capillary IPRP-HPLC for separation and mass spectrometry. In this manner, biologically critical regions can be pinpointed and sequenced.
- Capillary IPRP-HPLC coupled with mass spectrometry. Heparin molecules exhibiting a high affinity for a synthetic peptide (CRPKAKAKAKAKDQTK) mimicking a heparin-binding domain of heparin interacting protein (HIP) also show an extremely high affinity for AT (37). It was expected that inclusion of this small peptide in the heparitinase digestion solution would protect 3-O—[35S]sulfate labeled HS from degrading into tetrasaccharide. Theoretically, HIP peptide-protected, AT binding HS oligosaccharides would be recovered. However, in the presence of the HIP peptide, all the 3-O—[35S]sulfate labeled sugars were degraded into disaccharides instead of oligosaccharides or tetrasaccharides as judged by their elution position on Bio-Gel P2 and their unique elution positions on IPRP-HPLC (the major 3-O—[35S]sulfate containing disaccharides eluted right before ΔUA-GlcNS6S disaccharide standard). Because there is no ΔUA-GlcNS3S standard reported, the structure was verified. Stable isotope PAP34S was made. The PAP34S (99% isotope purity determined by ES-MS) was prepared by incubating ATP and stable isotope Na2 34SO4 (Isonics Corp.) with ATP sulfurylase (Sigma),
adenosine 5′-phosphosulfate kinase (a generous gift from Dr. Irwin H. Segel), and inorganic pyrophosphatase (Sigma) (38). HS chains from wild-type CHO cells were labeled with pure 3-OST-1 plus PAP34S. A capillary IPRP-HPLC (LC Packings) method for separating HS disaccharides was developed. This method is similar to conventional IPRP-HPLC (29) except using 5 mM dibutylamine as an ion pairing reagent (Sigma), and then coupled it to an ESI-TOF-MS (Mariner Workstation, PerSeptive Biosystems, Inc.) to detect the mass of each disaccharide eluted. Six HS disaccharide standards from Seikagaku were separated by capillary HPLC and detected by negative polarity ESI-MS. The accuracy of the ES-MS is ±0.001 m/z unit after calibration with the molecular standard sets supplied by the manufacture (Bis TBA, Heptadecafluorononanoic acid, Perfluorotetradecanoic acid). 3-O-34S-labeled HS was digested with a combination of 1 mU of each heparitinase I, heparitinase II, heparitinase IV, and heparinase in the absence or presence of 0.5 mg/ml HIP peptide. 0.5 μg of digested HS was injected into capillary HPLC coupled with mass spectrometry (FIG. 8 ). UV peak B eluted at the same time as a ΔUA-GlcNS6S standard, whereas UV peak D eluted at the same time as a ΔUA2S-GlcNS standard (FIG. 8 , panel A). Three major ions with m/z 247.5, 496.0, and 625.2 were observed in both UV peaks (FIG. 3 , panel B and D), where 496.0 is z1 (−1) charged, 247.5 is z2 (−2) charged, and 625.2 is one dibutylamine adducted, z1 (−1) charged ΔUA-GlcNS6S or ΔUA2S-GlcNS disaccharides. However, when m/z regions 494.0 to 501.0 from both peak B and peak D were expended (panel C and panel E), a non-natural abundant, z1 charged molecular ion with m/z 498.0 was observed in UV peak B, but not in UV peak D. 498.0 vs. 496.0 of disaccharide ions should represent ΔUA-GlcNS3[34S]S and ΔUA-GlcNS6S, respectively. The mass for ΔUA-GlcNS3[34S]S is barely detectable in the absence of HIP peptide, which is consistent with the literature that 3-O-sulfate containing sugars are usually degraded into tetrasaccharides not disaccharides by a mixture of heparitinase digestion (20,33). HIP peptide was included in heparitinase digestion when 3-O-containing HS were degraded into disaccharides. - Cell Culture. Wild-type Chinese hamster ovary cells (CHO-K1) were obtained from the American Type Culture Collection (CCL-61; ATCC, Rockville, Md.). CHO cells were maintained in Ham's F-12 medium supplemented with 10% fetal bovine serum (HyClone), penicillin G (100 units/ml), and streptomycin sulfate (100 μg/ml) at 37 C. under an atmosphere of 5% CO2 in air and 100% relative humidity. The cells were passaged every 3-4 days with 0.125% (w/v) trypsin and 1 mM EDTA, and after 10-15 cycles, fresh cells were revived from stocks stored under liquid nitrogen. Low-sulfate medium was composed of Ham's F-12 medium supplemented with penicillin G (100 units/ml) and 10% fetal bovine serum that had been dialyzed 200-fold against phosphate-buffered saline (30). Low-glucose Ham's F-12 medium contained 1 mM glucose supplemented with penicillin G (100 units/ml), streptomycin sulfate (100 μg/ml), and fetal bovine serum that had been dialyzed 200-fold against phosphate-buffered saline (30). All tissue culture media and reagents were purchased from Life Technologies (Gaithersburg, Md.) unless otherwise indicated.
- 3-OST-1 recombinant retroviral transduction. The retrovirus plasmid pMSCVpac was obtained from Dr. Robert Hawley, University of Toronto (31). pCMV3-OST-1 was digested with BglII and XhoI to release the wild-type murine 3-OST-1 cDNA (15). The cDNA fragment (1,623 bp) was cloned into the BglII+XhoI sites in pMSCVpac. All plasmid DNA prepared for transfection was made with the Invitrogen SNAP-MIDI kit according to the manufacturer's directions. Infectious virions were produced by transducing ecotropic PHOENIX packaging cells with recombinant provirus plasmids using the calcium phosphate transfection technique. Following the precipitation step, the cells were re-fed with 2 ml/well of fresh DMEM and incubated overnight. Viral supernatants were collected, either flash-frozen in liquid nitrogen, and stored at −80° C. or used directly after low-speed centrifugation.
- Wild-type CHO cells containing ecotropic receptors were treated with trypsin and then plated at 150,000 cells/well in a 6-well dish. One day later, target cells (<70% confluent) were incubated overnight with viral supernatants containing 5 μg/ml Polybrene surfactant. After 12 hours, the virus containing media was replaced with fresh growth media. Wild-type CHO cells were exposed to recombinant retrovirus three times and selected and maintained in 7.5 μg/ml puromycin (Sigma).
- Antithrombin and FGF-2 labeling. The standard reaction mixture for preparing fluorescent AT contained 20 mM NaH2PO4 (pH 7.0), 0.3 mM CaCl2, 25 μg of PBS dialyzed AT (GlycoMed), 4 rat neuraminidase (Worthington Biochemical Corp.), 4 mU galactose oxidase (Worthington Biochemical Corp.), and 125 μg/ml fluorescein hydrazide (Molecular Probe, C-356) in a final volume of 280 μl. The mixtures were incubated at 37° C. for 1 h. PBS (1 ml) and a 50% slurry of heparin-Sepharose in PBS (100 μl) was added and mixed end-over-end for 20 min. After centrifugation, the heparin-Sepharose beads were washed 4 times with PBS (1 ml). Labeled AT was eluted with four 0.25 ml aliquots of 10× concentrated PBS and desalted by centrifugation for 35 minutes at 14,000 rpm through two Microcon-10 columns (Millipore). The concentrated AT was diluted with 0.5
ml 10% FBS in PBS containing 2 mM EDTA and used directly for cell labeling studies. - Fluorescent FGF-2 was prepared by mixing 50 μl of 1 M sodium bicarbonate to 0.5 ml of PBS containing 2 mg/ml BSA and 3 μg FGF-2. The mixture was then transferred to a vial of reactive dye (Alexa 594, Molecular Probes) and stirred at room temperature for 1 hour. The isolation of the labeled FGF-2 was identical to that described above for labeled AT.
- Cell sorting. Nearly confluent monolayers of 3-OST-1 transduced CHO K1 cells were detached by adding 10 ml of 2 mM EDTA in. PBS containing 10% FBS and centrifuged. The cell pellets were placed on ice and 50 μl each of fluorescein-AT and Alexa 594-FGF-2 were added. After 30 minutes, the cells were washed once and resuspended in 1 ml of 10% EBS in PBS containing 2 mM EDTA. Flow cytometry and cell sorting was performed on FACScan and FACStar instruments (Becton Dickinson) using dual color detection filters. AT and FGF-2 binding positive cells were sorted and subsequently single-cell cloned into a 96 well plate. The single cell clones were expanded and frozen for further analysis.
- Twelve 3-OST-1 transduced CHO K1 clones were obtained as described above. The number of copies of 3-OST-1 in the individual clones was determined by Southern analysis as follows. Genomic DNA (10 μg) was digested with 40 U of EcoRI overnight at 37° C., electrophoresed on a 0.7% (w/v) agarose gel, transferred to GeneScreen Plus (NEN) and probed with 3-OST-1 cDNA labeled with the Megaprime labeling kit (Amersham). Blots were hybridized in ExpressHyb Solution (Clontech) containing 3-OST-1 probe (2×106 cpm/ml), followed by autoradiography. The cell clone with 3 copies of 3-OST-1 was expanded and frozen for further studies.
- Mutant screening. Wild-type CHO with 3 copies of 3-OST-1 were mutagenized with ethylmethane sulfonate as described in the literature (31) and frozen under liquid nitrogen. A portion of cells was thawed, propagated for 3 days, and labeled with both Alexa 594-FGF-2 and fluorescein-AT. The labeled cells were sorted and FGF-2 positive and AT negative cells were collected. Approximately 1×104 sorted cells were collected into 1 ml of complete F-12 Ham's media, then plated in T-75 flasks. Sorted cell populations were maintained in complete F-12 Ham's medium for one week, then the cells were labeled and sorted again as described above. After 5 rounds of sorting, FGF-2 positive and AT negative cells were single-cell-sorted into a 96 well plate. The single cell clones were expanded and frozen for further analysis. The sorting profiles of CHO K1 with 3 copies of 3-OST-1, precursor mutant, and the 6-OST-1 correctant of the mutant were shown by dual-color fluorescence flow cytometric analysis in
FIG. 5 . - HS preparation and analysis. Cell monolayers were labeled overnight with 100 μCi/ml of canter free sodium [35S]sulfate (ICN) in sulfate deficient DMEM, supplemented with penicillin G (100 Units/ml), and 10% (v/v) dialyzed FBS. The proteoglycan fraction was isolated by DEAE-Sepharose chromatography and beta-eliminated in 0.5 M NaBH4 in 0.4 M NaOH at 4° C. overnight. The samples were neutralized with 5 M acetic acid until bubble formation ceased and the released chains were purified by another round of DEAE-Sepharose chromatography followed by ethanol precipitation. The pellet from centrifugation was washed with 75% ethanol and resuspended in water. The GAGs were digested with 20 mU of chondroitinase ABC (Seikagaku, Inc.) in buffer containing 50 mM Tris-HCl and 50 mM sodium acetate (pH 8.0). Complete digestion of chondroitin sulfate by chondroitinase ABC was assured by monitoring the extent of conversion of the carrier to disaccharides (100 μg=1.14 absorbance units at 232 nm) HS was purified from chondroitinase degraded products by phenol/chloroform (1:1, v/v) extraction and ethanol precipitation. After washing the pellets with 0.5 ml of 75% ethanol, the HS was dissolved in water for further analysis.
- cDNA cloning and expression of CHO 6-OST-1. Sequences coding for CHO 6-OST-1 were amplified from a CHO K1/cDNA quick-clone library (Clontech). The reaction mixture contained 2 units pfu polymerase(Stratagene), 1 ng of cDNA, and 100 pmol of the Primers. The sense primer has an added Bgl II site (5′ GCAGATCTGCAGGACCATGGTTGAGCG CGCCA GCAAGTTC-3′) and the antisense primer has an added XbaI site (5′-GCTCTAGACTACCACT TCTCAATGATGTGGCTC-3′). The 6-OST-1 primer sequences are derived from the human 6-OST-1 cDNA sequence (from residue 240 to 264) and to the complement of this sequence (from residue 1147 to 1172) as reported (32). After 30 thermal cycles (1 min of denaturation at 94° C., 2 min of annealing at 55° C., 3 min of extension at 72° C.), the amplification products were analyzed in 1% agarose gels and detected by ethidium bromide staining. The amplification products were excised from the gel and cleaned by Gel Extraction kit (Qiagen). The PCR product was treated with Bgl II and Xba I, ligated into Xba I and BamH1 digested pInd/Hygro plasmid (Clontech) and transformed into E. coli DH5α competent cells. Four clones from each of two separate PCR reactions were sequenced and found to be identical. pInd/Hygro 6-OST-1 containing plasmid was transfected into the CHO mutant cells. AT and FGF-2 binding positive cells were sorted and subsequently single-cell-cloned into a 96 well plate. The single cell clones were expanded and frozen for further analysis.
- 6-O-sulfation of HS in vitro. The standard reaction mixture contained 50 mM MES (pH 7.0), 1% (w/v) Triton X-100, 5 mM MnCl2, 5 mM MgCl2, 2.5 mM CaCl2, 0.075 mg/ml protamine chloride, 1.5 mg/ml BSA, either metabolically labeled [35S]HS or non-radioactive HS chains, cold PAPS (0.5 mM) or [35S]PAPS (25 μM, 2×107 cpm), and 70 ng of purified baculovirus-expressed human 6-OST-1 in a final volume of 50 μl. The mixtures were incubated either 20 minutes or overnight at 37° C., and 200 μg of chondroitin sulfate C was added. HS chairs were purified by phenol/chloroform extraction and anion exchange chromatography on 0.25-ml columns of DEAE-Sephacel packed in 1 ml syringes (20). After ethanol precipitation, the pellets were washed with 75% ethanol, dried briefly under vacuum, and dissolved in water for further analysis.
- Separation of HSact and HSinact by AT-affinity chromatography. AT-HS complexes were created by mixing 3-O-sulfated HS in 500 μl of HB buffer (150 mM NaCl, 10 mM Tris-Cl (pH 7.4)) with 2.5 mM AT, 100 μg of chondroitin sulfate, 0.002% Triton-
X X 100. The supernatant and washing solutions contained HSinact. The HSact was eluted with three successive washes with 100 μl HB containing 1 M NaCl and 0.0004% Triton-X 100. After adding 100 μg of chondroitin sulfate as carrier to HSact, the sample was extracted with an equal volume of phenol/chloroform, followed by chromatography on DEAE-Sepharose and ethanol precipitation. The pellets were washed with 75% ethanol, dried briefly under vacuum and dissolved in water. - Disaccharide analysis of HS. Heparitinase I (EC. 4.2.2.8), heparitinase II (no EC number), and heparinase (EC. 4.2.2.7) were obtained from Seikagaku, heparitinase IV was obtained from Dr. Yoshida, Seikagaku Corporation, Tokyo. Heparitinase I recognizes the sequences: GlcNAc/NS±6S(3S?)-⇓GlcUA-GlcNAc/NS±6S. The arrow indicates the cleavage site. Heparitinase II has broad sequence recognition: GlcNAc/NS±6S(3S?)-⇓GlcUA/IdoIA±2S-GlcNAc/NS±6S. Heparinase(heparitinase III) and heparitinase IV recognize the sequences: GlcNS-±3S±6S-⇓IdoUA2S/GlcUA2S-GlcNS±6S. The reaction products and references can be found in the following references (33,34). The digestion of HSact was carried out in 100 μl of 40 mM ammonium acetate (pH 7.0) containing 3.3 mM CaCl2 with 1 mU of heparitinase I or 1 mU of each heparitinase I, heparitinase II, heparitinase IV, and heparinase (heparitinase III). The digestion was incubated at 37° C. overnight unless otherwise indicated. For low pH nitrous acid degradation, radiolabeled HS samples were mixed with 10 μg bovine kidney HS (ICN) and digested (35).
- Disaccharides were purified by Bio-Gel P2 chromatography and resolved by ion pairing reverse-phase HPLC with appropriate disaccharide standards (36). Bio-Gel P2 or P6 columns (0.75×200 cm) were equilibrated with 100 mM ammonium bicarbonate. Radiolabeled samples (200 μl) were mixed with Dextran blue (5 μg) and phenol red (5 μg) and loaded on the column. The samples were eluted at a flow rate of 4 ml/hour with collection of 0.5 ml fractions. The desired fractions were dried under vacuum, individually or pooled to remove ammonium bicarbonate.
- Capillary IPRP-HPLC coupled with mass spectrometry. Heparin molecules exhibiting a high affinity for a synthetic peptide (CRPKAKAKAKAKDQTK) mimicking a heparin-binding domain of heparin interacting protein (HIP) also show an extremely high affinity for AT (37). It was expected that inclusion of this small peptide in the heparitinase digestion solution would protect 3-O—[35S]sulfate labeled HS from degrading into tetrasaccharide. Theoretically, HIP peptide-protected, AT binding HS oligosaccharides would be recovered. However, in the presence of the HIP peptide, all the 3-O—[35S]sulfate labeled sugars were degraded into disaccharides instead of oligosaccharides or tetrasaccharides as judged by their elution position on Bio-Gel P2 and their unique elution positions on IPRP-HPLC (the major 3-O—[35S]sulfate containing disaccharides eluted right before ΔUA-GlcNS6S disaccharide standard). Because there is no ΔUA-GlcNS3S standard reported, the structure was verified. Stable isotope PAP34S was made. The PAP34S (99% isotope purity determined by ES-MS) was prepared by incubating ATP and stable isotope Na2 34SO4 (Isonics Corp.) with ATP sulfurylase (Sigma),
adenosine 5′-phosphosulfate kinase (a generous gift from Dr. Irwin H. Segel), and inorganic pyrophosphatase (Sigma) (38). HS chains from wild-type CHO cells were labeled with pure 3-OST-1 plus PAP34S. A capillary IPRP-HPLC (LC Packings) method for separating HS disaccharides was developed. This method is similar to conventional IPRP-HPLC (29) except using 5 mM dibutylamine as an ion pairing reagent (Sigma), and then coupled it to an ESI-TOF-MS (Mariner Workstation, PerSeptive Biosystems, Inc.) to detect the mass of each disaccharide eluted. Six HS disaccharide standards from Seikagaku were separated by capillary HPLC and detected by negative polarity ESI-MS. The accuracy of the ES-MS is ±0.001 m/z unit after calibration with the molecular standard sets supplied by the manufacture (Bis TBA, Heptadecafluorononanoic acid, Perfluorotetradecanoic acid). 3-O-34S-labeled HS was digested with a combination of 1 mU of each heparitinase I, heparitinase II, heparitinase IV, and heparinase in the absence or presence of 0.5 mg/ml HIP peptide. 0.5 μg of digested HS was injected into capillary HPLC coupled with mass spectrometry (FIG. 8 ). UV peak B eluted at the same time as a ΔUA-GlcNS6S standard, whereas UV peak D eluted at the same time as a ΔUA2S-GlcNS standard (FIG. 8 , panel A). Three major ions with m/z 247.5, 496.0, and 625.2 were observed in both UV peaks (FIG. 3 , panel B and D), where 496.0 is z1 (−1) charged, 247.5 is z2 (−2) charged, and 625.2 is one dibutylamine adducted, z1 (−1) charged ΔUA-GlcNS6S or ΔUA2S-GlcNS disaccharides. However, when m/z regions 494.0 to 501.0 from both peak B and peak D were expended (panel C and panel E), a non-natural abundant, z1 charged molecular ion with m/z 498.0 was observed in UV peak B, but not in UV peak D. 498.0 vs. 496.0 of disaccharide ions should represent ΔUA-GlcNS3[34S]S and ΔUA-GlcNS6S, respectively. The mass for ΔUA-GlcNS3[34S]S is barely detectable in the absence of HIP peptide, which is consistent with the literature that 3-O-sulfate containing sugars are usually degraded into tetrasaccharides not disaccharides by a mixture of heparitinase digestion (20,33). HIP peptide was included in heparitinase digestion when 3-O-containing HS were degraded into disaccharides. - Northern blot hybridization and RT-PCR. To generate specific Northern blot hybridization probes, PCR primers were designed that bracket unique sequences within human 6-OST-1, 6-OST-2 and 6-OST-3. A 249 bp PCR product that corresponds to a region within the 3′-UTR of the 6OST-1 gene starting at position 1772 and ending at 2021 was used as an isoform specific probe. Similarly, a 299 bp PCR product that corresponds to a region in the 3′-UTR of the 6OST-2 gene starting at position 1831 and ending at 2130, and another product within the 3′-UTR of the 6-OST-3 gene starting at 943 and ending at 1378 (444 bp) were used as a probe. PCR was performed with α[32P] dCTP (NEN Life Science Products) and isoform-specific radio-labeled probes were purified on G-25 Sephadex spin columns (Boehringer Mannheim). Hybridizations were carried out as to the manufacturer's instructions using 2×106 cpm probe per ml of ExpressHyb solution (CLONTECH). After the hybridizations were complete, the blots were washed twice in 2×SSC containing 0.1% SDS and once with 0.1×SSC containing 0.1% SDS, all at room temperature. Blots were then washed with 0.1×SSC containing 0.1% SDS at 50° C. For blots hybridized with the 6-OST probe, this last wash was repeated twice at 65° C. The membranes were then subjected to autoradiography with BioMax imaging film (Kodak) with a BioMax MS intensifying screen (Kodak).
- For RT-PCR, poly A purified or DNase I treated total RNA was used. Primer pairs were designed that bracket isoform specific regions within the human sequences for both 6OST-2, and 6OST-3. For 6OST-1, a 569 bp fragment corresponding to nt 54 (GCG TGC ITC ATG CTC ATC CT) to 622 (GTG CGC CCA TCA CAC ATG T) within the hamster sequence was used. For 6OST-2, PCR targets included regions starting at nt 23 (CTG CTG CTG GCT TTG GTG AT) and 346 (GCA GAA GAA ATG CAC TTG CCA) and ending at nt 1471 (GCC GCT ATC ACC TTG TCC CT), 1491 (TCA TTG GTG CCA TTG CTG G) and 1532 (TGA GTG CCA GTT AGC GCC A). For 6OST-3, the targets included regions that start at nt 5 (CCG GTG CTC ACT TIC CTC TTC) and 353 (TTC ACC CTC AAG GAC CTG ACC) and end at nt 988 (GCT CTG CAG CAG GAT GGT GT) and 1217 (OCT GGA AGA GAT CCT TCG CAT AC). Total RNA was purified from wild-type and precursor mutant CHO-K1 cells using the RNeasy total RNA kit from Qiagen as to the manufacturer's instructions. RNA was quantitated by absorbance at 260 nm and 100 μg of total RNA was reacted with DNase I (Ambion) at 37° C. for 45 minutes, twice extracted with equal volumes of acid phenol/chloroform, precipitated in ethanol, and reconstituted in DEPC treated water. Further selection of poly-A plus RNA was carried out with the Oligotex mRNA kit (Qiagen). RNA integrity was checked after electrophoresis on a 1% agarose gel and all RT reactions were run with M-MLV reverse transcriptase (Ambion) according to manufacturer's instructions. PCR was performed with Super Taq polymerase (Ambion).
- Baculovirus expression and purification of 6-OST-1. Human 6-OST-1 recombinant baculovirus was prepared using the pFastBas HT donor plasmid modified by the insertion of honeybee mellitin signal peptide (36) and the Bac-to-Bac Baculovirus expression system (Life Technologies, Inc.) according to the manufacturer's protocol, except that recombinant bacmid DNA was purified using an endotoxin-free plasmid purification kit (Qiagen, Inc.) and transfection of Sf9 cells was scaled up to employ 3 μg of bacmid DNA and 6×106 exponentially-growing cells in a 100-mm dish. At day three post-transfection, baculovirus was precipitated from the medium with 10% PEG, 0.5 M NaCl at 12,000×g, re-suspended in 14 ml of medium, and applied to a 100-mm dish seeded with 1.5×107 Sf9 cells. Medium from the infected cells was harvested after 90 hours of growth at 27° C., centrifuged at 400×g, made to 10 mM in Tris, adjusted to pH 8.0, and centrifuged at 4000×g. Clarified medium was diluted with an equal volume of cold 10 mM Tris-HCl, pH 8.0, and stirred for 30 minutes with 0.6 ml (packed volume) of Toyopearl 650M chromatographic media (TosoHass). The heparin-sepharose was packed into a column (0.4×4.75 cm), washed with 5 ml of TCG 50 (10 mM Tris-HCl, pH 8.0, 2% glycerol, 0.6% CHAPS, 50 mM NaCl), eluted with 1.2 ml of TCG 1000 (as above, but 1 M in NaCl) containing 10 mM imidazole, and concentrated to 0.25 ml in a Microcon YM-10 centrifugal filter (Millipore Corp.).
- Histidine-tagged recombinant 6-OST-1 was affinity purified by mixing the product eluted from heparin-sepharose for 90 minutes at 4° C. with NiNTA magnetic agarose beads (Qiagen, Inc.) and magnetically sedimented from 60 μl of suspension. The beads were washed twice with 0.125 ml of TCG 400 containing 20 mM imidazole and eluted twice with 0.03 ml of TCG 400 containing 250 mM imidazole. The combined elution fractions contained approximately 25% of the sulfotransferase activity present in the starting medium.
- Bacterial expression and purification of 6-OST-1. Expression vector pET15b was purchased from Novagen (Madison, Wis.). E. coli strains BL21 and DH5α were obtained through ATCC (Manassas, Va.). An Ase I restriction site was introduced at 211-216 bp and a BamHI restriction site was introduced at 1344-1349 bp of human 6-OST-1-1 (32) by PCR. The 6-OST-1 gene was then ligated into Nde I and BamHI digested pET15b and transformed into competent E. coli strain DH5α. A BL21 colony containing 6-OST-1 in pET15b with confirmed sequence was used to inoculate 2 L of LB containing 100 μg/mL ampicillin. The cultures were shaken in flasks at 250 rpm at 37° C. When the optical density at 600 nm reached 1.2, 1 mM IPTG was added to the cultures. The cultures were then agitated at 250 rpm overnight at room temperature. The cells were pelleted at 5,000 rpm for 15 minutes. The supernatant was discarded and the cell pellet was resuspended in 40 mL of 20 mM Tris, 500 mM NaCl, 0.6% CHAPS, 1% glycerol, and 5 mM imidazole, pH 7.9 (“binding buffer”). The cells were homogenized, and the homogenate was centrifuged at 13,000 rpm for twenty minutes. The supernatant was filtered through 0.2 μm filter paper and loaded onto a BioCAD HPLC system (PerSeptive Biosystems, Cambridge, Mass.) and purified using Ni2+ chelate chromatography. Briefly, the supernatant was loaded onto the column and washed with binding buffer until unbound material was washed off the column. Then, low affinity material was washed off the column using 20 mM Tris, 500 mM NaCl, 0.6% CHAPS, 1% glycerol, and 55 mM imidazole, pH 7.9 and 6-OST-1 was eluted from the column with 20 mM Tris, 500 mM NaCl, 0.6% CHAPS, 1% glycerol, and 500 mM imidazole, pH 7.9. The purity of the recombinant 6-OST-1 was determined using a silver stained protein gel.
- The invention disclosed herein may be embodied in other specific forms without departing from the spirit or essential characteristics thereof. The foregoing embodiments are therefore to be considered in all respects illustrative rather than limiting of the disclosed invention. The scope of the invention is thus indicated by the appended claims rather than by the foregoing description, and all changes which within the meaning and range of equivalency of the claims are therefore intended to be embraced herein.
- The following references are incorporated by reference in their entirety.
- 1. Aikawa, J., Grobe, K., Tsujimoto, M., and Esko, J. D. (2000) J Biol Chem,
- 2. Habuchi, H., Tanaka, M., Habuchi, O., Yoshida, K., Suzuki, H., Ban, K., and Kimata, K. (2000) J Biol Chem 275, 2859-2868
- 3. Shworak, N. W., Liu, J., Petros, L. M., Zhang, L., Kobayashi, M., Copeland, N. G., Jenkins, N. A., and Rosenberg, R. D. (1999) J Biol Chem 274, 5170-5184
- 4. Bernfield, M., Gotte, M., Park, P. W., Reizes, O., Fitzgerald, M. L., Lincecum, J., and Zako, M. (1999) Annu Rev Biochem 68, 729-777
- 5. Lander, A. D., and Selleck, S. B. (2000) J Cell Biol 148, 227-232
- 6. Lindahl, U. (1999) Haemostasis 29 Suppl S1, 38-47
- 7. Perrimon, N., and Bernfield, M. (2000) Nature 404, 725-728
- 8. Rosenberg, R. D., Shworak, N. W., Liu, J., Schwartz, J. J., and Zhang, L. (1997)
J Clin Invest 100, S67-75 - 9. Rostand, K. S., and Esko, J. D. (1997) Infect Immun 65, 1-8
- 10. Selleck, S. B. (2000) Trends Genet. 16, 206-212
- 11. Shukla, D., Liu, J., Blaiklock, P., Shworak, N. W., Bai, X., Esko, J. D., Cohen, G. H., Eisenberg, R. J., Rosenberg, R. D., and Spear, P. G. (1999) Cell 99, 13-22
- 12. Atha, D. H., Stephens, A. W., and Rosenberg, R. D. (1984) Proc Natl Acad Sci USA 81, 1030-1034
- 13. Atha, D. H., Lormeau, J. C., Petitou, M., Rosenberg, R. D., and Choay, J. (1985) Biochemistry 24, 6723-6729
- 14. Atha, D. H., Lormeau, J. C., Petitou, M., Rosenberg, R. D., and Choay, J. (1987) Biochemistry 26, 6454-6461
- 15. Lindahl, U., Backstrom, G., and Thunberg, L. (1983) J Biol Chem 258, 9826-9830.
- 16. Lindahl, U., Thunberg, L., Backstrom, G., Riesenfeld, J., Nordling, K., and Bjork, I. (1984) J Biol Chem 259, 12368-12376.
- 17. Shworak, N. W., Liu, J., Fritze, L. M., Schwartz, J. J., Zhang, L., Logeart, D., and Rosenberg, R. D. (1997) J Biol Chem 272, 28008-28019
- 18. Liu, J., Shworak, N. W., Fritze, L. M. S., Edelberg, J. M., and Rosenberg, R. D. (1996) J Biol Chem 271, 27072-27082
- 19. Zhang, L., Schwartz, J. J., Miller, J., Liu, J., Fritze, L. M., Shworak, N. W., and Rosenberg, R. D. (1998) J Biol Chem 273, 27998-28003
- 20. Zhang, L., Yoshida, K., Liu, J., and Rosenberg, R. D. (1999) J Biol Chem 274, 5681-5691
- 21. Loganathan, D., Wang, H. M., Maths, L. M., and Linhardt, R. J. (1990) Biochemistry 29, 4362-4368
- 22. Conrad, H. E. (1998) Heparin-Binding Proteins, Academic Press, San Diego
- 23. Esko, J. D., Weinke, J. L., Taylor, W. H., Ekborg, G., Rodén, L., Anantharamaiah, G., and Gawish, A. (1987) Journal Of Biological Chemistry 262, 12189-12195
- 24. Esko, 3. D., Stewart, T. E., and Taylor, W. H. (1985) Proceedings Of The National Academy Of Sciences Of The United States Of America 82, 3197-3201
- 25. Esko, J. D., Elgavish, A., Prasthofer, T., Taylor, W. H., and Weinke, J. L. (1986) Journal Of Biological Chemistry 261, 15725-15733
- 26. Bai, X., and Esko, J. D. (1996) J Biol Chem 271, 17711-17717
- 27. Bai, X., Wei, G., Sinha, A., and Esko, 3. D. (1999) J Biol Chem 274, 13017-13024
- 28. Wei, G., Bai, X., Gabb, M. M., Baine, K. J., Koshy, T. I., Spear, P. G., and Esko, J. D. (2000) J Biol Chem 275, 27733-27740
- 29. Zhang, L., Lawrence, R., Schwartz, J. J., Bai, X., Wei, G., Esko, J. D., and Rosenberg, R. D. (2001) J Biol Chem 276, 28806-28813
- 30. Dulbecco, R., and Vogt, M. (1954) J. Exp. Med. 99, 167-182
- 31. Esko, J. D. (1989) Methods Cell Biol 32, 387-422
- 32. Habuchi, H., Kobayashi, M., and Kimata, K. (1998) J Biol Chem 273, 9208-9213
- 33. Yamada, S., Yoshida, K., Sugiura, M., Sugahara, K., Khoo, K. H., Morris, H. R., and Dell, A. (1993) J Biol Chem 268, 4780-4787.
- 34. Yamada, S., Murakami, T., Tsuda, H., Yoshida, K., and Sugahara, K. (1995) J Biol Chem 270, 8696-8705.
- 35. Shively, S. E., and Conrad, H. E. (1976) Biochemistry 15, 3932-3942
- 36. Liu, J., Shriver, Z., Blaildock, P., Yoshida, K., Sasisekharan, R., and Rosenberg, R. D. (1999) J Biol Chem 274, 38155-38162
- 37. Liu, S., Zhou, F., Hook, M., and Carson, D. D. (1997) Proc Natl Acad Sci USA 94, 1739-1744.
- 38. MacRae, I. J., Rose, A. B., and Segel, I. H. (1998) J Biol Chem 273, 28583-28589.
- 39. Zaia, J., and Costello, C. E. (2001) Anal Chem 73, 233-239.
- 40. Jayson, G. C., Lyon, M., Paraskeva, C., Turnbull, 3. E., Deakin, J. A., and Gallagher, J. T. (1998) J Biol Chem 273, 51-57
- 41. Lindahl, U., Kusche-Gullberg, M., and Kjellen. L. (1998) J Biol Chem 273, 24979-24982
- 42. Habuchi, H., Habuchi, O., and Kimata, K. (1995) J Biol Chem 270, 4172-4179
Claims (17)
1. A mutant CHO cell that produces more than 28% HSact, relative to HStotal.
2. A mutant CHO cell that produces between 28% and 50% HSact, relative to HStotal.
3. The mutant CHO cell of claim 1 , produced by a method comprising:
(a) transforming a CHO cell with multiple copies of 3-OST-1;
(b) mutagenizing the cell obtained in step (a);
(c) isolating a mutant cell from step (b) which fails to produce HSact; and
(d) transforming the cell obtained in step (c) with 6-OST.
4. A method of identifying components in a biosynthetic pathway comprising the steps of:
a) providing a target cell which expresses at least the upstream components of the biosynthetic pathway;
b) transforming the target cell with multiple copies of an isolated biosynthetic pathway downstream gene;
c) mutagenizing the transformed target cell; and
d) identifying transformed and mutagenized target cells that fail to express the phenotype characteristic of the biosynthetic pathway.
5. The method of claim 4 , further comprising the step
(e) correcting the step (d) cells, wherein the corrected cells express the wild-type phenotype of the cell in step (a).
6. The method of claim 5 , wherein the correcting step comprises transforming the cell with the nucleic acid that encodes an upstream gene.
7. The method of claim 6 , wherein the upstream gene is a cDNA or genomic DNA.
8. The method of claim 4 , wherein the cells of step (d) are transformed with a pool of preselected cDNAs for components of the biosynthetic pathway.
9. The method of claim 4 , wherein the cells of step (d) are transformed with a cDNA library derived from a cell that expresses wild-type phenotype.
10. The method of claim 5 , wherein the correcting step comprises contacting the cells of step (d) with the gene product of an upstream gene.
11. The method of claim 4 , further comprising the step of isolating the cells from step (d).
12. The method of claim 4 , further comprising the step of analyzing the cells of step (d).
13. The method of claim 7 , further comprising the step of isolating the upstream gene in the biosynthetic pathway.
14. The method of claim 4 , wherein the mutagenesis step comprises a mutagenesis technique selected from the group consisting of chemical mutagenesis, ion radiation, and ultraviolet radiation.
15. The method of claim 4 , wherein the step of identifying the gene cDNA comprises complementation analysis.
16. The method of claim 4 , wherein the identifying step comprises identifying the gene by a teclmique selected from the group consisting of Northern blot analysis, Southern blot analysis, and Western blot analysis.
17. The method of claim 4 , wherein the identifying further comprises isolating of the gene using PCR.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/306,772 US20120202706A1 (en) | 2001-03-28 | 2011-11-29 | 6-0-sulfated polysaccharides and methods of preparation thereof |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/473,183 US6820480B2 (en) | 2001-03-26 | 2001-03-26 | Device for measuring gas flow-rate particularly for burners |
US27952301P | 2001-03-28 | 2001-03-28 | |
US31628901P | 2001-08-30 | 2001-08-30 | |
US10/473,180 US8067196B2 (en) | 2001-03-28 | 2002-03-28 | 6-O sulfated polysaccharides and methods of preparation thereof |
US13/306,772 US20120202706A1 (en) | 2001-03-28 | 2011-11-29 | 6-0-sulfated polysaccharides and methods of preparation thereof |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/473,180 Division US8067196B2 (en) | 2001-03-28 | 2002-03-28 | 6-O sulfated polysaccharides and methods of preparation thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
US20120202706A1 true US20120202706A1 (en) | 2012-08-09 |
Family
ID=26959719
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/473,180 Expired - Fee Related US8067196B2 (en) | 2001-03-28 | 2002-03-28 | 6-O sulfated polysaccharides and methods of preparation thereof |
US13/306,772 Abandoned US20120202706A1 (en) | 2001-03-28 | 2011-11-29 | 6-0-sulfated polysaccharides and methods of preparation thereof |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/473,180 Expired - Fee Related US8067196B2 (en) | 2001-03-28 | 2002-03-28 | 6-O sulfated polysaccharides and methods of preparation thereof |
Country Status (5)
Country | Link |
---|---|
US (2) | US8067196B2 (en) |
EP (1) | EP1402048A4 (en) |
JP (1) | JP2005507640A (en) |
CA (1) | CA2441984A1 (en) |
WO (1) | WO2002079258A2 (en) |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006124801A2 (en) * | 2005-05-12 | 2006-11-23 | The University Of North Carolina At Chapel Hill | Enzymatic synthesis of sulfated polysaccharides |
WO2009014715A2 (en) * | 2007-07-23 | 2009-01-29 | The University Of North Carolina At Chapel Hill | Enzymatic synthesis of sulfated polysaccharides without iduronic acid residues |
US11203772B2 (en) | 2010-12-23 | 2021-12-21 | The University Of North Carolina At Chapel Hill | Chemoenzymatic synthesis of structurally homogeneous ultra-low molecular weight heparins |
CN103301653B (en) * | 2012-03-13 | 2015-09-09 | 中国科学院大连化学物理研究所 | A kind of separation method of sulfonic acid combination |
EP3011043B1 (en) | 2013-06-17 | 2022-05-11 | The University of North Carolina At Chapel Hill | Reversible heparin molecules |
CN106754808A (en) * | 2017-01-13 | 2017-05-31 | 中国药科大学 | A kind of expression of heparosan sulphation modification enzyme |
WO2018165656A1 (en) | 2017-03-10 | 2018-09-13 | The University Of North Carolina At Chapel Hill | Short-acting heparin-based anticoagulant compounds and methods |
US10864227B2 (en) * | 2017-03-20 | 2020-12-15 | Rensselaer Polytechnic Institute | Enzymatic preparation of increased anticoagulant bovine sourced heparin |
WO2019010216A1 (en) | 2017-07-03 | 2019-01-10 | The University Of North Carolina At Chapel Hill | Enzymatic synthesis of homogeneous chondroitin sulfate oligosaccharides |
CN111601603A (en) | 2017-11-03 | 2020-08-28 | 北卡罗来纳大学查珀尔希尔分校 | Sulfated oligosaccharides with anti-inflammatory activity |
WO2019246264A1 (en) | 2018-06-20 | 2019-12-26 | The University Of North Carolina At Chapel Hill | Cell protective methods and compositions |
US11708593B2 (en) | 2019-01-15 | 2023-07-25 | Optimvia, Llc | Engineered aryl sulfate-dependent enzymes |
JP2022523638A (en) | 2019-01-15 | 2022-04-26 | オプティムヴィア、エルエルシー | Modified aryl sulphate-dependent enzyme |
JP2022540849A (en) | 2019-07-09 | 2022-09-20 | オプティムヴィア、エルエルシー | Method for synthesizing anticoagulant polysaccharide |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5595900A (en) * | 1990-02-14 | 1997-01-21 | The Regents Of The University Of Michigan | Methods and products for the synthesis of oligosaccharide structures on glycoproteins, glycolipids, or as free molecules, and for the isolation of cloned genetic sequences that determine these structures |
JP3818676B2 (en) * | 1994-07-22 | 2006-09-06 | 生化学工業株式会社 | Heparan sulfate 6-O-sulfotransferase |
JP3964982B2 (en) * | 1997-06-19 | 2007-08-22 | 生化学工業株式会社 | Heparan sulfate 6-O sulfotransferase polypeptide and DNA encoding the same |
US6365365B1 (en) * | 1998-03-20 | 2002-04-02 | The Regents Of The University Of California | Method of determining whether an agent modulates glycosyl sulfotransferase-3 |
JP4226693B2 (en) * | 1998-08-24 | 2009-02-18 | 生化学工業株式会社 | Sulfate transferase and DNA encoding the same |
ATE362539T1 (en) * | 2000-06-29 | 2007-06-15 | Seikagaku Kogyo Co Ltd | SULFATE TRANSFERASE AND DNA CODING FOR THIS ENZYME |
-
2002
- 2002-03-28 WO PCT/US2002/010172 patent/WO2002079258A2/en not_active Application Discontinuation
- 2002-03-28 EP EP02739123A patent/EP1402048A4/en not_active Withdrawn
- 2002-03-28 CA CA002441984A patent/CA2441984A1/en not_active Abandoned
- 2002-03-28 JP JP2002577881A patent/JP2005507640A/en active Pending
- 2002-03-28 US US10/473,180 patent/US8067196B2/en not_active Expired - Fee Related
-
2011
- 2011-11-29 US US13/306,772 patent/US20120202706A1/en not_active Abandoned
Also Published As
Publication number | Publication date |
---|---|
CA2441984A1 (en) | 2002-10-10 |
WO2002079258A2 (en) | 2002-10-10 |
EP1402048A2 (en) | 2004-03-31 |
WO2002079258A3 (en) | 2003-11-06 |
US8067196B2 (en) | 2011-11-29 |
JP2005507640A (en) | 2005-03-24 |
US20040191870A1 (en) | 2004-09-30 |
EP1402048A4 (en) | 2006-10-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20120202706A1 (en) | 6-0-sulfated polysaccharides and methods of preparation thereof | |
Zhang et al. | 6-O-sulfotransferase-1 represents a critical enzyme in the anticoagulant heparan sulfate biosynthetic pathway | |
Winterbourne et al. | Cells selected for high tumorigenicity or transformed by simian virus 40 synthesize heparan sulfate with reduced degree of sulfation. | |
Shworak et al. | Molecular cloning and expression of mouse and human cDNAs encoding heparan sulfate D-glucosaminyl 3-O-sulfotransferase | |
Honke et al. | Sulfotransferases and sulfated oligosaccharides | |
EP2655421B1 (en) | Chemoenzymatic synthesis of structurally homogeneous ultra-low molecular weight heparins | |
US7771981B2 (en) | Heparin/heparosan synthase from P. multocida and methods of making and using same | |
Smeds et al. | Substrate specificities of mouse heparan sulphate glucosaminyl 6-O-sulphotransferases | |
JP3818676B2 (en) | Heparan sulfate 6-O-sulfotransferase | |
JP2016523535A (en) | Reversible heparin molecule, its production and use | |
US20050164984A1 (en) | Chondroitin synthase gene and methods of making and using same | |
WO2009014715A2 (en) | Enzymatic synthesis of sulfated polysaccharides without iduronic acid residues | |
AU2002256501A1 (en) | Heparin/heparosan synthase and methods of making and using same | |
JP3672359B2 (en) | Heparan sulfate 2-O-sulfotransferase | |
Roden et al. | Structure and biosynthesis of connective tissue proteoglycans | |
WO2004017910A2 (en) | Total synthesis of heparin | |
Rodén et al. | Heparin—an introduction | |
Tekotte et al. | Disaccharide composition of heparan sulfates: brain, nervous tissue storage organelles, kidney, and lung | |
Habuchi et al. | Biosynthesis of heparan sulfate and heparin how are the multifunctional glycosaminoglycans built up? | |
AU2002311795A1 (en) | Methods of 6-O-sulfating polysaccharides and 6-O-sulfated polysaccharide preparations | |
Kitagawa et al. | Structural variations in the glycosaminoglycan-protein linkage region of recombinant decorin expressed in Chinese hamster ovary cells | |
EP0798385B1 (en) | Method for producing sulfated lactosamine oligosaccharide | |
EP0845533B1 (en) | Keratan sulfate 6-sulfotransferase and DNA coding for the same | |
AU2003277616A1 (en) | Method of detecting bone Paget' disease | |
Wei | Glucuronosyltransferases in heparan sulfate initiation and polymerization |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |
|
AS | Assignment |
Owner name: NATIONAL INSTITUTES OF HEALTH (NIH), U.S. DEPT. OF HEALTH AND HUMAN SERVICES (DHHS), U.S. GOVERNMENT, MARYLAND Free format text: CONFIRMATORY LICENSE;ASSIGNOR:MASSACHUSETTS INSTITUTE OF TECHNOLOGY;REEL/FRAME:066361/0291 Effective date: 20231114 |