US20120191025A1 - Resuscitation Device and Method - Google Patents
Resuscitation Device and Method Download PDFInfo
- Publication number
- US20120191025A1 US20120191025A1 US13/438,708 US201213438708A US2012191025A1 US 20120191025 A1 US20120191025 A1 US 20120191025A1 US 201213438708 A US201213438708 A US 201213438708A US 2012191025 A1 US2012191025 A1 US 2012191025A1
- Authority
- US
- United States
- Prior art keywords
- compression
- belt
- chest
- support board
- victim
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61H—PHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
- A61H31/00—Artificial respiration or heart stimulation, e.g. heart massage
- A61H31/004—Heart stimulation
- A61H31/005—Heart stimulation with feedback for the user
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61H—PHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
- A61H31/00—Artificial respiration or heart stimulation, e.g. heart massage
- A61H31/004—Heart stimulation
- A61H31/006—Power driven
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61H—PHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
- A61H31/00—Artificial respiration or heart stimulation, e.g. heart massage
- A61H31/008—Supine patient supports or bases, e.g. improving air-way access to the lungs
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61H—PHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
- A61H31/00—Artificial respiration or heart stimulation, e.g. heart massage
- A61H2031/003—Artificial respiration or heart stimulation, e.g. heart massage with alternated thorax decompression due to lateral compression
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61H—PHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
- A61H2201/00—Characteristics of apparatus not provided for in the preceding codes
- A61H2201/01—Constructive details
- A61H2201/0173—Means for preventing injuries
- A61H2201/018—By limiting the applied torque or force
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61H—PHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
- A61H2201/00—Characteristics of apparatus not provided for in the preceding codes
- A61H2201/50—Control means thereof
- A61H2201/5007—Control means thereof computer controlled
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61H—PHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
- A61H2201/00—Characteristics of apparatus not provided for in the preceding codes
- A61H2201/50—Control means thereof
- A61H2201/5007—Control means thereof computer controlled
- A61H2201/501—Control means thereof computer controlled connected to external computer devices or networks
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61H—PHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
- A61H2201/00—Characteristics of apparatus not provided for in the preceding codes
- A61H2201/50—Control means thereof
- A61H2201/5007—Control means thereof computer controlled
- A61H2201/501—Control means thereof computer controlled connected to external computer devices or networks
- A61H2201/5012—Control means thereof computer controlled connected to external computer devices or networks using the internet
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61H—PHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
- A61H2201/00—Characteristics of apparatus not provided for in the preceding codes
- A61H2201/50—Control means thereof
- A61H2201/5023—Interfaces to the user
- A61H2201/5043—Displays
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61H—PHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
- A61H2201/00—Characteristics of apparatus not provided for in the preceding codes
- A61H2201/50—Control means thereof
- A61H2201/5058—Sensors or detectors
- A61H2201/5089—Gas sensors, e.g. for oxygen or CO2
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61H—PHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
- A61H2201/00—Characteristics of apparatus not provided for in the preceding codes
- A61H2201/50—Control means thereof
- A61H2201/5097—Control means thereof wireless
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61H—PHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
- A61H2230/00—Measuring physical parameters of the user
- A61H2230/04—Heartbeat characteristics, e.g. E.G.C., blood pressure modulation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61H—PHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
- A61H2230/00—Measuring physical parameters of the user
- A61H2230/20—Blood composition characteristics
- A61H2230/207—Blood composition characteristics partial O2-value
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/18—Applying electric currents by contact electrodes
- A61N1/32—Applying electric currents by contact electrodes alternating or intermittent currents
- A61N1/38—Applying electric currents by contact electrodes alternating or intermittent currents for producing shock effects
- A61N1/39—Heart defibrillators
- A61N1/3904—External heart defibrillators [EHD]
- A61N1/39044—External heart defibrillators [EHD] in combination with cardiopulmonary resuscitation [CPR] therapy
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S601/00—Surgery: kinesitherapy
- Y10S601/06—Artificial respiration conforming to shape of torso
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S601/00—Surgery: kinesitherapy
- Y10S601/08—Artificial respiration with computer control
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S601/00—Surgery: kinesitherapy
- Y10S601/20—Flexible membrane caused to be moved
Definitions
- This invention relates to emergency medical devices and methods.
- Cardiopulmonary resuscitation is a well known and valuable method of first aid.
- CPR is used to resuscitate people who have suffered from cardiac arrest after heart attack, electric shock, chest injury and many other causes.
- the heart stops pumping blood, and a person suffering cardiac arrest will soon suffer brain damage from lack of blood supply to the brain.
- CPR requires repetitive chest compression to squeeze the heart and the thoracic cavity to pump blood through the body.
- the victim is not breathing, and mouth to mouth artificial respiration or a bag valve mask is used to supply air to the lungs while the chest compression pumps blood through the body.
- CPR and chest compression can save cardiac arrest victims, especially when applied immediately after cardiac arrest. Chest compression requires that the person providing chest compression repetitively push down on the sternum of the victim at 80-100 compressions per minute. CPR and closed chest compression can be used anywhere, wherever the cardiac arrest victim is stricken. In the field, away from the hospital, it may be accomplished by ill-trained by-standers or highly trained paramedics and ambulance personnel.
- Barkolow Cardiopulmonary resuscitator Massager Pad
- U.S. Pat. No. 4,570,615 the commercially available Thumper device, and other such devices, provide continuous automatic closed chest compression.
- Barkolow and others provide a piston which is placed over the chest cavity and supported by an arrangement of beams. The piston is placed over the sternum of a patient and set to repeatedly push downward on the chest under pneumatic power. The victim must first be installed into the device, and the height and stroke length of the piston must be adjusted for the patient before use, leading to delay in chest compression.
- Other analogous devices provide for hand operated piston action on the sternum.
- Everette, External Cardiac Compression Device U.S. Pat. No.
- 5,257,619 (Nov. 2, 1993), for example, provides a simple chest pad mounted on a pivoting arm supported over a patient, which can be used to compress the chest by pushing down in the pivoting arm.
- These devices are not clinically more successful than manual chest compression. See Taylor, et al., External Cardiac Compression, A Randomized Comparison of Mechanical and Manual Techniques, 240 JAMA 644 (August 1978).
- Other devices for mechanical compression of the chest provide a compressing piston which is secured in place over the sternum via vests or straps around the chest.
- Woudenberg, Cardiopulmonary Resuscitator, U.S. Pat. No. 4,664,098 shows such a device which is powered with an air cylinder.
- Chest compression must be accomplished vigorously if it is to be effective. Very little of the effort exerted in chest compression actually compresses the heart and large arteries of the thorax and most of the effort goes into deforming the chest and rib cage. The force needed to provide effective chest compression creates risk of other injuries. It is well known that placement of the hands over the sternum is required to avoid puncture of the heart during CPR. Numerous other injuries have been caused by chest compression. See Jones and Fletter, Complications After Cardiopulmonary Resuscitation, 12 AM. J. Emerg. Med.
- Chest compression will be completely ineffective for very large or obese cardiac arrest victims because the chest cannot be compressed enough to cause blood flow. Chest compression via pneumatic devices is hampered in its application to females due to the lack of provision for protecting the breasts from injury and applying compressive force to deformation of the thoracic cavity rather than the breasts.
- CPR and chest compression should be initiated as quickly as possible after cardiac arrest to maximize its effectiveness and avoid neurologic damage due to lack of blood flow to the brain.
- Hypoxia sets in about two minutes after cardiac arrest, and brain damage is likely after about four minutes without blood flow to the brain, and the severity of neurologic defect increases rapidly with time. A delay of two or three minutes significantly lowers the chance of survival and increases the probability and severity of brain damage.
- CPR and ACLS are unlikely to be provided within this time frame.
- Response to cardiac arrest is generally considered to occur in four phases, including action by Bystander CPR, Basic Life Support, Advanced Life Support, and the Emergency Room. By-stander CPR occurs, if at all, within the first few minutes after cardiac arrest.
- Basic Life Support is provided by First Responders who arrive on scene about 4-6 minutes after being dispatched to the scene.
- First responders include ambulance personnel, emergency medical technicians, firemen and police. They are generally capable of providing CPR but cannot provide drugs or intravascular access, defibrillation or intubation.
- Advanced Life Support is provided by paramedics or nurse practitioners who generally follow the first responders and arrive about 8-15 minutes after dispatch.
- ACLS is provided by paramedics, nurse practitioners or emergency medical doctors who are generally capable of providing CPR, drug therapy including intravenous drug delivery, defibrillation and intubation.
- the ACLS providers may work with a victim for twenty to thirty minutes on scene before transporting the victim to a nearby hospital.
- CPR cardiac reviving and sustaining the victim
- CPR is often ineffective even when performed by well trained first responders and ALS personnel because chest compression becomes ineffective when the providers become fatigued.
- the initiation of CPR before arrival of first responders is critical to successful life support.
- the assistance of a mechanical chest compression device during the Basic Life Support and Advanced Life Support stages is needed to maintain the effectiveness of CPR.
- the devices described below provide for circumferential chest compression with a device which is compact, portable or transportable, self-powered with a small power source, and easy to use by by-standers with little or no training. Additional features may also be provided in the device to take advantage of the power source and the structural support board contemplated for a commercial embodiment of the device.
- the device in its simplest form, includes a broad belt which wraps around the chest and is buckled in the front of the cardiac arrest victim.
- the belt is repeatedly tightened around the chest to cause the chest compression necessary for CPR.
- the buckles and/or front portion of the belt are anatomically accommodating for the female breast, or for the obese person, so that the device is effective for women as well as men.
- the buckle may include an interlock which must be activated by proper attachment before the device will activate, thus preventing futile belt cycles.
- the operating mechanism for repeatedly tightening the belt is provided in a support board, and comprises a rolling mechanism which takes up the intermediate length of the belt to cause constriction around the chest.
- the roller is powered by a small electric motor, and the motor powered by batteries and/or standard electrical power supplies such as 120V household electrical sockets or 12V DC automobile power sockets (car cigarette lighter sockets).
- 120V household electrical sockets or 12V DC automobile power sockets car cigarette lighter sockets.
- 12V DC automobile power sockets car cigarette lighter sockets
- the batteries and any necessary transformers may be housed in the support board, and the support board may be made in sizes useful for supporting the victim's head, adequate for storing batteries and other accessories, and convenient for mounting within office buildings, factories, airplanes and other areas of potential need.
- numerous inventions are incorporated into the portable resuscitation device described below.
- the portable resuscitation device may incorporate a number of features and accessories that aid in the administration of CPR and other therapy. By-standers may be unable to confidently determine if chest compression is needed, or when it should be stopped. Accordingly, the device may be combined with an interlock system including a heart monitor or EKG which diagnoses the condition of the patient, and circuitry or a computer which initiates, permits or forbids belt operation accordingly.
- the power supply provided for belt constriction may also be used to provide power for defibrillation (an appropriate treatment for many cardiac arrests).
- the defibrillation portion of the device may be provided with an interlock system including the heart monitor or EKG which diagnoses the condition of the patient and circuitry which initiates, permits, or forbids defibrillation.
- Expert systems implemented through the circuitry or computer modules can accomplish these functions.
- Automatic, computer driven therapy of this nature may provide early and appropriate life saving response to many cardiac arrest patients who would otherwise die.
- some situations in which the device might be used may call for expert supervision of the CPR process by emergency medical technicians, emergency room doctors, or cardiologists.
- the expert systems mentioned above may be replaced with the expert diagnosis and decision-making of medical personnel through a telemetry system housed within the support board of the device.
- the support board can include a telemetry system which automatically dials medical personnel in a nearby hospital, emergency medical crew, ambulance, or even a central diagnostic and control facility.
- Interlocks, limit switches and other typical sensors can be used to sense the proper position and closure of the belt about the chest of the patient.
- Heart monitors and EKG electrodes can sense the heart rate and EKG of the victim.
- this information can be communicated from the device to medical personnel remote from the victim.
- the medical personnel can communicate the device to initiate, permit or prohibit belt constriction or defibrillation, as dictated by preferred medical procedures.
- Communication can be established through normal telephone lines and a cordless telephone, or through a cellular telephone system, paging system, internet or any other communications system.
- the device can be programmed with location information, or provided with GPS capabilities to determine the location of the device, and this information can be automatically transmitted to an emergency response system such as the 911 system when the system is placed in use.
- FIG. 1 is an overview of the resuscitation device, showing the inner and outer vests partially open.
- FIG. 2 is an overview of the resuscitation device in the buckled configuration.
- FIG. 3 is an detail view of the buckle used to close the device about a victim.
- FIG. 4 shows the spool assembly used to operate the compression belt.
- FIG. 5 shows an alternative embodiment of the spool assembly used to operate the compression belt.
- FIG. 6 is a view of the resuscitation device properly positioned on a victim.
- FIG. 7 shows the resuscitation device fitted with a number of additional devices for use during resuscitation.
- FIG. 8 shows a detail view of the CRP module of FIG. 7 .
- FIG. 9 shows a detail view of the defibrillation module of FIG. 7 .
- FIG. 10 shows a detail view of the airway management module of FIG. 7 .
- FIG. 11 shows a detail view of the control and communications module of FIG. 7 .
- FIG. 12 shows a block diagram of the communications system.
- FIG. 13 is a block diagram of the motor control system.
- FIG. 1 shows a simplified version of the resuscitation device 1 .
- the mechanisms used for compressing the chest includes compression assembly 2 which includes a chest compression belt 3 with buckles 4 L and 4 R, a friction liner 5 , a support board 6 and a motor driven spool assembly 7 .
- the support board 6 is placed under a cardiac arrest victim, and the compression belt 3 and friction liner 5 are wrapped around the victim's chest.
- the chest compression belt having a left side 3 L and a right side 3 R, is buckled over the victims chest by latching the buckles 4 L and 4 R together. In this configuration, the friction liner 5 will fit between the chest compression belt 3 and the victim and any clothes worn by the victim.
- the compression belt may be made of any strong material, and sail cloth has proven adequate for use.
- the compression belt may also be referred to as a vest, corset, girdle, strap or band.
- the friction liner may be made of Teflon®, TyvekTM or any other low friction material (by low friction, we mean a material that will permit sliding of the compression belt with less friction than expected between the belt and the victims clothing or bare skin).
- the friction liner may be made with any suitable lining material, as its purpose is to protect the victim from rubbing injury caused by the compression belt, and it may also serve to limit frictional forces impeding the compression belt operation.
- the friction liner can be provided in the form of a belt, vest, corset, girdle, strap or band, and may partially or completely encircle the chest.
- the front of the compression belt 3 including the buckles 4 L and 4 R, are configured to provide a broad pressure point over the sternum of the victim. This is illustrated in FIG. 2 .
- Large openings 8 may be provided to accommodate female breasts and obese male breasts.
- the underside of the buckles 4 L and 4 R are smooth and broad, to distribute compressive force evenly over a wide area of the chest corresponding to the sternum.
- the point at which the buckle attaches to the chest compression belt may vary considerably, from the front of the chest to the back of the compression assembly, and the openings 8 may be provided in the buckles rather than the belt itself.
- FIG. 3 shows a detail of the buckles 4 L and 4 R used to fasten the compression belt about the chest of the victim.
- the buckle may be of any type, and preferably includes a latch sensing switch 9 operably connected through wire 10 to the motor control system (see FIG. 13 ) to indicate that the device has been buckled about the victim's chest and is ready for the initiation of compression cycles.
- the buckles shown in FIG. 3 are D-ring shaped buckles with large openings 8 , attached to the compression belt 3 . Other fasteners and fastening means may be used.
- the chest compression belt 3 is repeatedly tightened about the chest of a victim through the action of one or more tightening spools which make up the spool assembly 7 located within the support board 6 .
- the spool assembly illustrated in FIG. 4 , includes at least one spool or reel connected to the compression belt 3 at the back of the belt, preferably near the center or saggital line 11 of the compression belt (although it may be located on the front or side of compression belt).
- FIG. 4 shows a view of the spool assembly and its attachment to the compression belt.
- a spool assembly includes a single drive spool 12 operably connected to the motor 14 through drive shaft 15 .
- the compression belt is secured to the drive spool in any suitable manner.
- a longitudinal slot 16 provided in the drive spool 12 .
- the slot extends radially or chordally through the drive spool, and extends axially for a length corresponding to the width of the compression belt, leaving the ends 17 solid for connection to the drive shaft 15 and journal shaft 18 .
- the belt is slipped through the slot to created a secure connection between the belt and the drive spool.
- the rotation of the drive spool 12 will take up the right side of the compression belt 3 R and the left side of the compression belt 3 L and roll them up onto the spool, thus tightening the compression belt about the chest of the victim wearing the device.
- Spindles or alignment rollers 19 provide for alignment and low friction feed of the belt onto the roll created by operation of the drive shaft.
- Spools 12 L and 12 R are aligned in parallel and interconnected by a transmission gear 20 and planetary gear 21 and journaled upon shafts 18 L and 18 R.
- the drive shaft 15 is attached to spool 12 R (or spool 12 L) and operably attached to motor 14 .
- the motor turns the shaft 18 R and spool 12 R in a counterclockwise direction to pull the right side of the compression belt 3 R to the left and roll onto the spool.
- the transmission gear 20 acts upon the planetary gear 21 to cause clockwise rotation of spool 12 L, which in turn pulls and wraps the left side of the compression belt 3 L onto the spool 12 L.
- the compression belt serves to radially compress the chest through the cooperative action of the belt, board, and buckle, and to disperse the compressive force around the chest.
- the motor is energized to rotate the spools and cause the compression belt to constrict around the chest of a victim.
- a motor such as a battery operated hand drill motor provides adequate chest compression for the purposes of CPR.
- the motor 14 must be attached via a clutch 22 or other such mechanism.
- the motor 14 may be attached to the drive shaft 15 through a torque slipping clutching mechanism which engages the drive shaft until a high torque is achieved (indicating great resistance to further constriction, and thus indicating that the victim's chest has been compressed), and releases automatically upon such high torque, only to re-engage after the belt has been expanded in response to the normal elastic expansion of the victim's chest.
- the motor may be repeatedly energized and de-energized, with the spools spinning freely during periods in which the belt is de-energized, wherein the clutch mechanism 22 will be similar to clutch mechanisms used on electric drills (which engage during operation of the drill but spin freely when the drill is de-energized). While the natural elastic expansion of the chest should make it unnecessary to drive the belt toward a loose condition, positive loosening may be achieved by reversing the motor or reversing the action of the motor through appropriate clutch or gear mechanisms.
- Timing of compressions is regulated through a computer module or a simple relay (windshield wiper style relays), and preferably will conform to standard of the Advanced Cardiac Life Support guidelines or Cardiopulmonary Resuscitation guidelines, or any other medically acceptable resuscitation regime. Current guidelines put forth by the American Heart Association call for 60-100 chest compressions per minute.
- the motor is preferably battery powered, with provisions for taking power from any available power source.
- Batteries 23 may be stored within the support board 6 .
- Three volt batteries of convenient size, already available for use with numerous power tools, provide about five minutes of compression per battery, while twelve volt batteries (1700 mA-h per battery) have provided about ten minutes of compression per battery.
- a thirty minute total battery capacity is desirable (corresponding to the estimated average time between cardiac arrest and transport to the hospital).
- several batteries may be installed within the support board and electrically connected to the motor and its controller. The batteries are provided with a trickle charge through a charger socket and charger plugged into 120V AC power when the device is not in use.
- the device may continue to run on AC power to preserve the batteries for later use.
- the unit may also be plugged into an automobile power jack with an appropriate auto adapter, thus providing for use where an automobile is the only source of power, and for extended use in an ambulance.
- FIG. 6 shows the resuscitation device installed on a cardiac arrest victim.
- the support board is placed under the victim, and the right and left portions of the compression belt are wrapped around the victim's chest and buckled over the front of the chest, indicated by arrow 25 .
- the system may be put into operation by manually starting the motors or by automatic initiation given the proper feedback from sensors located on the device, including the buckle latch sensors.
- FIG. 7 illustrates the resuscitation device 1 in a potential commercial embodiment.
- the support board 6 is sized to reach approximately from the lower lumbar region to the shoulders of a victim.
- the compression module 26 is separable from the support board 6 , and includes the compression belt and friction vest stored within the compression module.
- the spool assembly and motor are also stored within the compression module, although the motor may also be installed in the support board.
- the compression module comprises a small support board 27 which fits into the larger system support board 28 .
- a compartment 29 for storage of airway management devices (bag masks, oxygen masks, etc.), and a compartment 30 for storage of defibrillation equipment (electrodes and paddles, etc.) are included with the support board.
- a control and communication module 31 may also be incorporated into the support board.
- a small oxygen bottle 32 may be included, along with hoses routed to an accessible point on the board, and any connector desired for connection between the oxygen bottle and devices provided in the airway management compartment.
- Batteries 23 are stored within the support board (the number of the batteries chosen according the desired operating time, and the placement of the batteries dictated by available space). Batteries are operably connected to the motor in the compression module through electrical connectors 33 and appropriate wiring throughout the support board.
- the batteries can also be operably connected to the defibrillation module and control and communications module. Although long life batteries can be used, rechargeable batteries may be preferred. Accordingly, charging connection 34 on the support board is provided for charging the batteries or operating the device through outside power supplies.
- the device is intended to be stored for long periods of time between uses, and storage holder 35 is provide for this purpose.
- the storage holder can include such necessities as power supply connectors, power plug, a charging transformer.
- a removal sensor 36 is included in the support board to sense when the support board is removed from the storage holder (which, as described below, can be used as a condition indicating use of the device, and therefore the need to alert emergency medical personnel).
- the removal sensor can comprise a simple limit switch which senses physical removal of the system, and the limit switch can be used as a power switch or awaken switch which starts initiation of the system.
- the removal sensor can comprise a current sensor on the charging lines which treat cessation of charging current, increase in current draw through the charging system, or motor current as an indication of use.
- the choice of sensor may be made with many practical considerations in mind, such as the desire to avoid treating power outages as indications of use and other such unintended initiations.
- the state in which the device is deemed to be “in use” can be chosen according to the practical considerations, and in most instances it is expected that mere removal of the resuscitation device from the holder will constitute a clear signal someone has determined that a victim requires its use, and that emergency medical personnel should be dispatched to the location of the device.
- the buckle latch shown in FIG. 3 can be used as the sensor that indicates that the resuscitation device is in use.
- FIG. 8 shows the details of the compression module 26 .
- the module When not in use, the module is covered with a tear sheet 37 which protects the compression belt from wear. The buckles are readily visible under the tear sheet.
- the electrical connectors 38 connect the batteries in the support board with the motor inside the compression module.
- the inside of the compression belt is fitted with penetrating electrodes 39 in the right sternum parasaggital location 40 and left rib medial location 41 for establishing the electrode contact needed for EKG sensing. These electrodes may be dispensed in environments where proper placement of the defibrillation electrodes can be assumed due to a high level of training amongst likely bystanders and first responders.
- the friction vest 5 is secured to the compression module above the spool assembly location.
- FIG. 9 shows a detail view of the defibrillation module in the compartment 30 .
- the defibrillation module includes a pair of defibrillation electrodes 42 connected to the batteries through the power connections 43 .
- the defibrillation electrodes will be controlled by circuitry housed within the defibrillation module, and may be connected to the control module through the data port 44 .
- the defibrillation module is releasably attached to the support board 28 with quick release latches 45 . Tear sheet 46 protects the components of the defibrillation module during storage and provides ready access for use.
- FIG. 9 shows a detail view of the defibrillation module in the compartment 30 .
- the defibrillation module includes a pair of defibrillation electrodes 42 connected to the batteries through the power connections 43 .
- the defibrillation electrodes will be controlled by circuitry housed within the defibrillation module, and may be connected to
- FIG. 10 shows the detail view of the airway management module in the compartment 29 , which includes an oxygen mask 47 , a length of tubing 48 and an air fitting 49 connecting the oxygen mask to the oxygen bottle within the support board.
- the oxygen mask serves as a blood gas exchange means, supplying oxygen to the lungs for exchange with blood gas such as CO 2 .
- Optional medicine injectors 50 may be operably connected to the masks or hose to provide for automatic injection of ACLS medications into the airway.
- the defibrillation module is releasably attached to the support board 28 with quick release latches 51 . Tear sheet 46 protects the components of the airway management module during storage and provides ready access for use.
- An end-tidal CO 2 monitor 52 can be included in the mask to provide for biological feedback and monitoring of the success of the CPR.
- a skin mounted blood oxygen level monitor 53 can also be mounted on the mask for the same purpose (fingertip blood oxygen sensors may also be used, and supplied in the overall assembly to be readily available). The biological data obtained by the sensors is transmitted to the control module via appropriate wiring in the mask and support board.
- FIG. 11 shows a detail view of the control and communications module.
- the control unit 54 is connected to the compression module, defibrillation module and the airway management module through appropriate wiring through the support board.
- the control unit is optionally connected to the communications unit 55 .
- the communications unit includes means for communicating the EKG and other measured medical parameters sensed on the board to the screen 56 and via telephone to remote medical personnel.
- the communications unit can include a telephone handset or speaker phone. Because the device is most likely to be used at a location separate from the storage holder, the communications module preferably includes a wireless communication device, such as wireless telephone, radio telephone or cellular, and any necessary telephone base will be installed in the storage holder.
- the communications unit and control unit are set up to operate in the following manner, also illustrated in the block diagram of FIG. 12 .
- the device may remain mounted in a charging unit for months between use, and will be removed from the charging unit for use.
- a sensor in the control unit senses the removal (through limit switches, magnetic switches, or motion sensors, current sensors in the charging system, or otherwise) and initiates the system, checking functions, energizing a display unit and accomplishing other typical warm-up functions.
- the system initiates a telephone communication with a medical facility through the communications unit.
- the communication may use any communication medium, whether it be standard telephone lines, cellular telephone system, paging system or radio transmitter.
- the system may be set up to initiate communications with central medical facility, such as a local 911 emergency system, a nearby hospital or ambulance service, or a central facility staffed with medical personnel trained specifically on the remote use of the device (all generally referred to as medical personnel).
- central medical facility such as a local 911 emergency system, a nearby hospital or ambulance service, or a central facility staffed with medical personnel trained specifically on the remote use of the device (all generally referred to as medical personnel).
- the communications unit informs medical personnel of the location or identification of the device (which may be stored in computer memory in the communications unit, or determined through GPS or other such system), and this information can be used to dispatch an emergency medical team to the location of the device.
- the removal sensor may comprise a limit switch
- the communications module may comprise a simple telephone unit installed in the storage holder together with a tape recorded message, where the operation of the relay in response to removal of the resuscitation device includes initiation of the telephone call to 911 and playback of an alert message providing alert information such as the location of the board.
- the communications unit may also be provided with an alert button which may be operated by a bystander regardless of the use of the board to summon an emergency team to the location regardless of the condition of the resuscitation device.
- sensing electrodes can be included on the inner surface of the compression belt.
- the system monitors the installation of the belt through signals provided through latching sensors in the buckle.
- the system monitors biological input, which can comprise monitoring of EKG signals from the EKG electrode patches of the defibrillation module, monitoring EKG signals belt mounted electrodes, monitoring signals from an end-tidal CO 2 monitor from the airway management module, and any other biological signal sensor incorporated into the device.
- the system can also monitor or respond to manually inputted instruction from the control unit, in order to provide on-site emergency medical personnel with control of the device when they arrive on scene.
- the system transmits all available biological information, including EKG signals, blood pressure, end-tidal CO 2 and any other monitored biological parameter to the remote medical facility, and it can also transmit information regarding the configuration of the device, including battery life, system operating limit settings (i.e., whether the system is set for automatic operation, permissive operation, or disabled in any function) so that medical personnel can ensure that the appropriate configuration is in effect.
- Communication with the medical facility will allow emergency medical personnel to diagnose the condition of the patient and, through signals sent from the medical personnel to the communications unit, permit, initiate or prohibit certain additional therapeutic ACLS actions.
- the medical personnel can send a signal to the communications unit which acts upon the control unit to permit manual operation of the defibrillation electrodes by the bystander.
- the system also provides for application of a defibrillation shock via remote signal from the medical personnel.
- the device can incorporate the expert system such as the Automatic External Defibrillator.
- the medical personnel can also communicate other actions, and ensure that certain acts are undertaken by the bystander through the communication system.
- the medical personnel may communicate verbally with the bystander to ascertain the cause of the cardiac arrest, the proper placement of the oxygen mask, appropriate clearing of the airway, and other information.
- the airway management module is provided with medication such as epinephrine, lidocaine, bretylium or other drugs called for in the ACLS guidelines (or newly proposed drugs such as T3)
- the medical personnel can instruct by-standers to inject appropriate medication through the airway.
- automatic injectors such as those described in Kramer, Interactive External Defibrillation and Drug Injection System, U.S. Pat. No. 5,405,362 (Apr.
- the medical personnel can instruct by-standers to inject appropriate medication through these injectors.
- the injectors are provided with means for automatic operation based on measured EKG signals, blood pressure and end-tidal CO 2
- the medical personnel can send signals to the system to initiate injection by remote control of the medical personnel, permit injection by local control as determined by the expert system, permit injection by by-standers, or prohibit injection by the system or bystanders.
- the system can be initially set up to forbid any injection.
- Medical personnel having diagnosed ventricular fibrillation through the information provided by the communications unit, can send an appropriate signal to permit or initiate injection of epinephrine, and also send a signal to prohibit injection of atropine until called for under the ACLS guidelines.
- a newly proposed drug T3 can be administered through the airway, into the lungs, as a therapy for cardiac arrest. Controlled injection into the airway can be initiated or prohibited in the same manner.
- all actions in the ACLS, including compression, defibrillation, drug injection can be accomplished through the system under the guidance of medical personnel from a remote location, or they may be accomplished through expert systems installed in the control module.
- Each of these functions in incorporated in a system that automatically initiates communication with medical personnel and informs medical personnel of the location of the device so that emergency medical personnel my be dispatched to the location.
- the repeated compression will be initiated upon buckling of the compression belt (automatically) or a switch can be provided for the bystander to initiate compression.
- the system will continue compression cycles, until de-activated, according the motor control block diagram of FIG. 13 .
- the control unit Upon initiation of the system, the control unit will monitor installation of the belt via appropriate sensors in the buckles or through other sensors.
- the motor control 57 receives the initiate compression signal from the control unit, the motor is started.
- the motor is preferably run continuously, rather than stopped and started, to avoid repeated application of startup current and thus conserve battery power.
- the clutch is engaged. As a baseline, the clutch is engaged every second for one-half second.
- the motor controller includes a torque sensor (sensing current supply to the motor, for example), and monitors the torque or load on the motor. A threshold is established above which further compression is not desired or useful, and if this occurs during the half second of clutch engagement, then the clutch is disengaged and the cycle continues.
- the system can monitor the effectiveness of the compression stroke by monitoring the CO 2 content of the victim's exhalant.
- the control system increases the torque limit until the CO 2 levels are acceptable (or until the maximum torque of the motor is achieved.)
- the cycle time and period, number of cycles between respiration pauses, and the torque limit can be set according to current guidelines, and can also be varied by the remote medical personnel via the remote control capabilities of the control unit.
Landscapes
- Health & Medical Sciences (AREA)
- Heart & Thoracic Surgery (AREA)
- Cardiology (AREA)
- Rehabilitation Therapy (AREA)
- Pulmonology (AREA)
- Epidemiology (AREA)
- Pain & Pain Management (AREA)
- Physical Education & Sports Medicine (AREA)
- Emergency Medicine (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Percussion Or Vibration Massage (AREA)
- Electrotherapy Devices (AREA)
Abstract
Description
- This application is a continuation of U.S. patent application Ser. No. 12/423,663, filed Apr. 14, 2009, now U.S. Pat. No. 8,147,434, which is a continuation of U.S. patent application Ser. No. 11/488,944, filed Jul. 18, 2006, now U.S. Pat. No. 7,517,326, which is a continuation of U.S. patent application Ser. No. 10/848,216, filed May 18, 2004, now U.S. Pat. No. 7,077,814, which is a continuation of U.S. application Ser. No. 09/703,004 filed Oct. 31, 2000, which is a continuation of U.S. application Ser. No. 08/922,723, filed Aug. 27, 1997, now U.S. Pat. No. 6,142,962.
- This invention relates to emergency medical devices and methods.
- Cardiopulmonary resuscitation (CPR) is a well known and valuable method of first aid. CPR is used to resuscitate people who have suffered from cardiac arrest after heart attack, electric shock, chest injury and many other causes. During cardiac arrest, the heart stops pumping blood, and a person suffering cardiac arrest will soon suffer brain damage from lack of blood supply to the brain. Thus, CPR requires repetitive chest compression to squeeze the heart and the thoracic cavity to pump blood through the body. Very often, the victim is not breathing, and mouth to mouth artificial respiration or a bag valve mask is used to supply air to the lungs while the chest compression pumps blood through the body.
- It has been widely noted that CPR and chest compression can save cardiac arrest victims, especially when applied immediately after cardiac arrest. Chest compression requires that the person providing chest compression repetitively push down on the sternum of the victim at 80-100 compressions per minute. CPR and closed chest compression can be used anywhere, wherever the cardiac arrest victim is stricken. In the field, away from the hospital, it may be accomplished by ill-trained by-standers or highly trained paramedics and ambulance personnel.
- When a first aid provider performs chest compression well, blood flow in the body is typically about 25-30% of normal blood flow. This is enough blood flow to prevent brain damage. However, when chest compression is required for long periods of time, it is difficult if not impossible to maintain adequate compression of the heart and rib cage. Even experienced paramedics cannot maintain adequate chest compression for more than a few minutes. Hightower, et al., Decay In Quality Of Chest Compressions Over Time, 26 Ann. Emerg. Med. 300 (September 1995). Thus, long periods of CPR, when required, are not often successful at sustaining or reviving the victim. At the same time, it appears that, if chest compression could be adequately maintained, cardiac arrest victims could be sustained for extended periods of time. Occasional reports of extended CPR efforts (45-90 minutes) have been reported, with the victims eventually being saved by coronary bypass surgery. See Tovar, et al., Successful Myocardial Revascularization and Neurologic Recovery, 22 Texas Heart J. 271 (1995).
- In efforts to provide better blood flow and increase the effectiveness of bystander resuscitation efforts, modifications of the basic CPR procedure have been proposed and used. Of primary concern in relation to the devices and methods set forth below are the various mechanical devices proposed for use in main operative activity of CPR, namely repetitive compression of the thoracic cavity.
- The device shown in Barkolow, Cardiopulmonary resuscitator Massager Pad, U.S. Pat. No. 4,570,615 (Feb. 18, 1986), the commercially available Thumper device, and other such devices, provide continuous automatic closed chest compression. Barkolow and others provide a piston which is placed over the chest cavity and supported by an arrangement of beams. The piston is placed over the sternum of a patient and set to repeatedly push downward on the chest under pneumatic power. The victim must first be installed into the device, and the height and stroke length of the piston must be adjusted for the patient before use, leading to delay in chest compression. Other analogous devices provide for hand operated piston action on the sternum. Everette, External Cardiac Compression Device, U.S. Pat. No. 5,257,619 (Nov. 2, 1993), for example, provides a simple chest pad mounted on a pivoting arm supported over a patient, which can be used to compress the chest by pushing down in the pivoting arm. These devices are not clinically more successful than manual chest compression. See Taylor, et al., External Cardiac Compression, A Randomized Comparison of Mechanical and Manual Techniques, 240 JAMA 644 (August 1978). Other devices for mechanical compression of the chest provide a compressing piston which is secured in place over the sternum via vests or straps around the chest. Woudenberg, Cardiopulmonary Resuscitator, U.S. Pat. No. 4,664,098 (May 12, 1987) shows such a device which is powered with an air cylinder. Waide, et al., External Cardiac Massage Device, U.S. Pat. No. 5,399,148 (Mar. 21, 1995) shows another such device which is manually operated. In another variation of such devices, a vest or belt designed for placement around the chest is provided with pneumatic bladders which are filled to exert compressive forces on the chest. Scarberry, Apparatus for Application of Pressure to a Human Body, U.S. Pat. No. 5,222,478 (Jun. 29, 1993) and Halperin, Cardiopulmonary Resuscitation and Assisted Circulation System, U.S. Pat. No. 4,928,674 (May 29, 1990) show examples of such devices.
- Several operating parameters must be met in a successful resuscitation device. Chest compression must be accomplished vigorously if it is to be effective. Very little of the effort exerted in chest compression actually compresses the heart and large arteries of the thorax and most of the effort goes into deforming the chest and rib cage. The force needed to provide effective chest compression creates risk of other injuries. It is well known that placement of the hands over the sternum is required to avoid puncture of the heart during CPR. Numerous other injuries have been caused by chest compression. See Jones and Fletter, Complications After Cardiopulmonary Resuscitation, 12 AM. J. Emerg. Med. 687 (November 1994), which indicates that lacerations of the heart, coronary arteries, aortic aneurysm and rupture, fractured ribs, lung herniation, stomach and liver lacerations have been caused by CPR. Thus the risk of injury attendant to chest compression is high, and clearly may reduce the chances of survival of the victim vis-à-vis a resuscitation technique that could avoid those injuries. Chest compression will be completely ineffective for very large or obese cardiac arrest victims because the chest cannot be compressed enough to cause blood flow. Chest compression via pneumatic devices is hampered in its application to females due to the lack of provision for protecting the breasts from injury and applying compressive force to deformation of the thoracic cavity rather than the breasts.
- CPR and chest compression should be initiated as quickly as possible after cardiac arrest to maximize its effectiveness and avoid neurologic damage due to lack of blood flow to the brain. Hypoxia sets in about two minutes after cardiac arrest, and brain damage is likely after about four minutes without blood flow to the brain, and the severity of neurologic defect increases rapidly with time. A delay of two or three minutes significantly lowers the chance of survival and increases the probability and severity of brain damage. However, CPR and ACLS are unlikely to be provided within this time frame. Response to cardiac arrest is generally considered to occur in four phases, including action by Bystander CPR, Basic Life Support, Advanced Life Support, and the Emergency Room. By-stander CPR occurs, if at all, within the first few minutes after cardiac arrest. Basic Life Support is provided by First Responders who arrive on scene about 4-6 minutes after being dispatched to the scene. First responders include ambulance personnel, emergency medical technicians, firemen and police. They are generally capable of providing CPR but cannot provide drugs or intravascular access, defibrillation or intubation. Advanced Life Support is provided by paramedics or nurse practitioners who generally follow the first responders and arrive about 8-15 minutes after dispatch. ACLS is provided by paramedics, nurse practitioners or emergency medical doctors who are generally capable of providing CPR, drug therapy including intravenous drug delivery, defibrillation and intubation. The ACLS providers may work with a victim for twenty to thirty minutes on scene before transporting the victim to a nearby hospital. Though defibrillation and drug therapy is often successful in reviving and sustaining the victim, CPR is often ineffective even when performed by well trained first responders and ALS personnel because chest compression becomes ineffective when the providers become fatigued. Thus, the initiation of CPR before arrival of first responders is critical to successful life support. Moreover, the assistance of a mechanical chest compression device during the Basic Life Support and Advanced Life Support stages is needed to maintain the effectiveness of CPR.
- The devices described below provide for circumferential chest compression with a device which is compact, portable or transportable, self-powered with a small power source, and easy to use by by-standers with little or no training. Additional features may also be provided in the device to take advantage of the power source and the structural support board contemplated for a commercial embodiment of the device.
- In its simplest form, the device includes a broad belt which wraps around the chest and is buckled in the front of the cardiac arrest victim. The belt is repeatedly tightened around the chest to cause the chest compression necessary for CPR. The buckles and/or front portion of the belt are anatomically accommodating for the female breast, or for the obese person, so that the device is effective for women as well as men. The buckle may include an interlock which must be activated by proper attachment before the device will activate, thus preventing futile belt cycles. The operating mechanism for repeatedly tightening the belt is provided in a support board, and comprises a rolling mechanism which takes up the intermediate length of the belt to cause constriction around the chest. The roller is powered by a small electric motor, and the motor powered by batteries and/or standard electrical power supplies such as 120V household electrical sockets or 12V DC automobile power sockets (car cigarette lighter sockets). (An initial prototype used a power drill with a single 9.6V rechargeable battery, and provided powerful chest compression for about ten minutes.) The batteries and any necessary transformers may be housed in the support board, and the support board may be made in sizes useful for supporting the victim's head, adequate for storing batteries and other accessories, and convenient for mounting within office buildings, factories, airplanes and other areas of potential need. Thus, numerous inventions are incorporated into the portable resuscitation device described below.
- The portable resuscitation device may incorporate a number of features and accessories that aid in the administration of CPR and other therapy. By-standers may be unable to confidently determine if chest compression is needed, or when it should be stopped. Accordingly, the device may be combined with an interlock system including a heart monitor or EKG which diagnoses the condition of the patient, and circuitry or a computer which initiates, permits or forbids belt operation accordingly. The power supply provided for belt constriction may also be used to provide power for defibrillation (an appropriate treatment for many cardiac arrests). Again, bystanders will most likely not be capable of determining when defibrillation is appropriate, and the defibrillation portion of the device may be provided with an interlock system including the heart monitor or EKG which diagnoses the condition of the patient and circuitry which initiates, permits, or forbids defibrillation. Expert systems implemented through the circuitry or computer modules can accomplish these functions.
- Automatic, computer driven therapy of this nature may provide early and appropriate life saving response to many cardiac arrest patients who would otherwise die. However, some situations in which the device might be used may call for expert supervision of the CPR process by emergency medical technicians, emergency room doctors, or cardiologists. To this end, the expert systems mentioned above may be replaced with the expert diagnosis and decision-making of medical personnel through a telemetry system housed within the support board of the device. The support board can include a telemetry system which automatically dials medical personnel in a nearby hospital, emergency medical crew, ambulance, or even a central diagnostic and control facility. Interlocks, limit switches and other typical sensors can be used to sense the proper position and closure of the belt about the chest of the patient. Heart monitors and EKG electrodes can sense the heart rate and EKG of the victim. Using communication equipment within the device, this information can be communicated from the device to medical personnel remote from the victim. Through the same system, the medical personnel can communicate the device to initiate, permit or prohibit belt constriction or defibrillation, as dictated by preferred medical procedures. Communication can be established through normal telephone lines and a cordless telephone, or through a cellular telephone system, paging system, internet or any other communications system. The device can be programmed with location information, or provided with GPS capabilities to determine the location of the device, and this information can be automatically transmitted to an emergency response system such as the 911 system when the system is placed in use.
-
FIG. 1 is an overview of the resuscitation device, showing the inner and outer vests partially open. -
FIG. 2 is an overview of the resuscitation device in the buckled configuration. -
FIG. 3 is an detail view of the buckle used to close the device about a victim. -
FIG. 4 shows the spool assembly used to operate the compression belt. -
FIG. 5 shows an alternative embodiment of the spool assembly used to operate the compression belt. -
FIG. 6 is a view of the resuscitation device properly positioned on a victim. -
FIG. 7 shows the resuscitation device fitted with a number of additional devices for use during resuscitation. -
FIG. 8 shows a detail view of the CRP module ofFIG. 7 . -
FIG. 9 shows a detail view of the defibrillation module ofFIG. 7 . -
FIG. 10 shows a detail view of the airway management module ofFIG. 7 . -
FIG. 11 shows a detail view of the control and communications module ofFIG. 7 . -
FIG. 12 shows a block diagram of the communications system. -
FIG. 13 is a block diagram of the motor control system. -
FIG. 1 shows a simplified version of theresuscitation device 1. The mechanisms used for compressing the chest includescompression assembly 2 which includes achest compression belt 3 withbuckles friction liner 5, asupport board 6 and a motor drivenspool assembly 7. Thesupport board 6 is placed under a cardiac arrest victim, and thecompression belt 3 andfriction liner 5 are wrapped around the victim's chest. The chest compression belt, having aleft side 3L and aright side 3R, is buckled over the victims chest by latching thebuckles friction liner 5 will fit between thechest compression belt 3 and the victim and any clothes worn by the victim. The compression belt may be made of any strong material, and sail cloth has proven adequate for use. The compression belt may also be referred to as a vest, corset, girdle, strap or band. The friction liner may be made of Teflon®, Tyvek™ or any other low friction material (by low friction, we mean a material that will permit sliding of the compression belt with less friction than expected between the belt and the victims clothing or bare skin). The friction liner may be made with any suitable lining material, as its purpose is to protect the victim from rubbing injury caused by the compression belt, and it may also serve to limit frictional forces impeding the compression belt operation. The friction liner can be provided in the form of a belt, vest, corset, girdle, strap or band, and may partially or completely encircle the chest. - The front of the
compression belt 3, including thebuckles FIG. 2 .Large openings 8 may be provided to accommodate female breasts and obese male breasts. The underside of thebuckles openings 8 may be provided in the buckles rather than the belt itself.FIG. 3 shows a detail of thebuckles wire 10 to the motor control system (seeFIG. 13 ) to indicate that the device has been buckled about the victim's chest and is ready for the initiation of compression cycles. The buckles shown inFIG. 3 are D-ring shaped buckles withlarge openings 8, attached to thecompression belt 3. Other fasteners and fastening means may be used. - The
chest compression belt 3 is repeatedly tightened about the chest of a victim through the action of one or more tightening spools which make up thespool assembly 7 located within thesupport board 6. The spool assembly, illustrated inFIG. 4 , includes at least one spool or reel connected to thecompression belt 3 at the back of the belt, preferably near the center or saggital line 11 of the compression belt (although it may be located on the front or side of compression belt).FIG. 4 shows a view of the spool assembly and its attachment to the compression belt. A spool assembly includes asingle drive spool 12 operably connected to themotor 14 throughdrive shaft 15. The compression belt is secured to the drive spool in any suitable manner. In this case alongitudinal slot 16 provided in thedrive spool 12. The slot extends radially or chordally through the drive spool, and extends axially for a length corresponding to the width of the compression belt, leaving theends 17 solid for connection to thedrive shaft 15 andjournal shaft 18. The belt is slipped through the slot to created a secure connection between the belt and the drive spool. When secured in this manner, the rotation of thedrive spool 12 will take up the right side of thecompression belt 3R and the left side of thecompression belt 3L and roll them up onto the spool, thus tightening the compression belt about the chest of the victim wearing the device. Spindles oralignment rollers 19 provide for alignment and low friction feed of the belt onto the roll created by operation of the drive shaft. - Many alternative embodiments can be envisioned for the rolling mechanism, and one such alternative is illustrated in
FIG. 5 .Spools transmission gear 20 andplanetary gear 21 and journaled uponshafts drive shaft 15 is attached to spool 12R (orspool 12L) and operably attached tomotor 14. The motor turns theshaft 18R andspool 12R in a counterclockwise direction to pull the right side of thecompression belt 3R to the left and roll onto the spool. Thetransmission gear 20 acts upon theplanetary gear 21 to cause clockwise rotation ofspool 12L, which in turn pulls and wraps the left side of thecompression belt 3L onto thespool 12L. - Thus, many embodiments of mechanisms which can cause repeated cyclic tightening of the compression vest about the chest of the victim may be envisioned. The compression belt serves to radially compress the chest through the cooperative action of the belt, board, and buckle, and to disperse the compressive force around the chest.
- The motor is energized to rotate the spools and cause the compression belt to constrict around the chest of a victim. A motor such as a battery operated hand drill motor provides adequate chest compression for the purposes of CPR. To cause repetitive constriction of the
compression belt 3, themotor 14 must be attached via a clutch 22 or other such mechanism. Themotor 14 may be attached to thedrive shaft 15 through a torque slipping clutching mechanism which engages the drive shaft until a high torque is achieved (indicating great resistance to further constriction, and thus indicating that the victim's chest has been compressed), and releases automatically upon such high torque, only to re-engage after the belt has been expanded in response to the normal elastic expansion of the victim's chest. In this manner, repetitive compression is achieved without need to repeatedly energize and de-energize the motor, thereby extending the length of operating time for any given battery supply. Alternatively, the motor may be repeatedly energized and de-energized, with the spools spinning freely during periods in which the belt is de-energized, wherein theclutch mechanism 22 will be similar to clutch mechanisms used on electric drills (which engage during operation of the drill but spin freely when the drill is de-energized). While the natural elastic expansion of the chest should make it unnecessary to drive the belt toward a loose condition, positive loosening may be achieved by reversing the motor or reversing the action of the motor through appropriate clutch or gear mechanisms. Timing of compressions is regulated through a computer module or a simple relay (windshield wiper style relays), and preferably will conform to standard of the Advanced Cardiac Life Support guidelines or Cardiopulmonary Resuscitation guidelines, or any other medically acceptable resuscitation regime. Current guidelines put forth by the American Heart Association call for 60-100 chest compressions per minute. - The motor is preferably battery powered, with provisions for taking power from any available power source.
Batteries 23 may be stored within thesupport board 6. Three volt batteries of convenient size, already available for use with numerous power tools, provide about five minutes of compression per battery, while twelve volt batteries (1700 mA-h per battery) have provided about ten minutes of compression per battery. A thirty minute total battery capacity is desirable (corresponding to the estimated average time between cardiac arrest and transport to the hospital). Accordingly, several batteries may be installed within the support board and electrically connected to the motor and its controller. The batteries are provided with a trickle charge through a charger socket and charger plugged into 120V AC power when the device is not in use. (It is intended that the device be installed in factories, office buildings, airplanes and other facilities with relatively stable sources of power, and that the unit remain plugged in and charging when not in use.) If AC power is readily available at the site of use, the device may continue to run on AC power to preserve the batteries for later use. The unit may also be plugged into an automobile power jack with an appropriate auto adapter, thus providing for use where an automobile is the only source of power, and for extended use in an ambulance. -
FIG. 6 shows the resuscitation device installed on a cardiac arrest victim. The support board is placed under the victim, and the right and left portions of the compression belt are wrapped around the victim's chest and buckled over the front of the chest, indicated byarrow 25. Once in place, the system may be put into operation by manually starting the motors or by automatic initiation given the proper feedback from sensors located on the device, including the buckle latch sensors. - A number of features may be combined with the basic system described above. The structure necessary for housing the operating mechanism for the belt, referred to as the support board above, can serve also as storage for additional devices used during resuscitation.
FIG. 7 illustrates theresuscitation device 1 in a potential commercial embodiment. Thesupport board 6 is sized to reach approximately from the lower lumbar region to the shoulders of a victim. Thecompression module 26 is separable from thesupport board 6, and includes the compression belt and friction vest stored within the compression module. The spool assembly and motor are also stored within the compression module, although the motor may also be installed in the support board. In this figure, the compression module comprises asmall support board 27 which fits into the largersystem support board 28. Taking advantage of available space in the system support board, acompartment 29 for storage of airway management devices (bag masks, oxygen masks, etc.), and acompartment 30 for storage of defibrillation equipment (electrodes and paddles, etc.) are included with the support board. A control andcommunication module 31 may also be incorporated into the support board. Asmall oxygen bottle 32 may be included, along with hoses routed to an accessible point on the board, and any connector desired for connection between the oxygen bottle and devices provided in the airway management compartment.Batteries 23 are stored within the support board (the number of the batteries chosen according the desired operating time, and the placement of the batteries dictated by available space). Batteries are operably connected to the motor in the compression module throughelectrical connectors 33 and appropriate wiring throughout the support board. The batteries can also be operably connected to the defibrillation module and control and communications module. Although long life batteries can be used, rechargeable batteries may be preferred. Accordingly, chargingconnection 34 on the support board is provided for charging the batteries or operating the device through outside power supplies. - The device is intended to be stored for long periods of time between uses, and
storage holder 35 is provide for this purpose. The storage holder can include such necessities as power supply connectors, power plug, a charging transformer. Aremoval sensor 36 is included in the support board to sense when the support board is removed from the storage holder (which, as described below, can be used as a condition indicating use of the device, and therefore the need to alert emergency medical personnel). The removal sensor can comprise a simple limit switch which senses physical removal of the system, and the limit switch can be used as a power switch or awaken switch which starts initiation of the system. The removal sensor can comprise a current sensor on the charging lines which treat cessation of charging current, increase in current draw through the charging system, or motor current as an indication of use. The choice of sensor may be made with many practical considerations in mind, such as the desire to avoid treating power outages as indications of use and other such unintended initiations. The state in which the device is deemed to be “in use” can be chosen according to the practical considerations, and in most instances it is expected that mere removal of the resuscitation device from the holder will constitute a clear signal someone has determined that a victim requires its use, and that emergency medical personnel should be dispatched to the location of the device. There are some environments in which later conditions will be used to indicate that the device is “in use,” such as when installed in ambulances, airplanes, hospitals or other environments where it might be advisable to remove the device from its storage holder as a precaution or preparatory measure, and delay initiation of communications until the device is deployed or installed on the victim. In such cases, the buckle latch shown inFIG. 3 can be used as the sensor that indicates that the resuscitation device is in use. -
FIG. 8 shows the details of thecompression module 26. When not in use, the module is covered with atear sheet 37 which protects the compression belt from wear. The buckles are readily visible under the tear sheet. Theelectrical connectors 38 connect the batteries in the support board with the motor inside the compression module. The inside of the compression belt is fitted with penetratingelectrodes 39 in the rightsternum parasaggital location 40 and left ribmedial location 41 for establishing the electrode contact needed for EKG sensing. These electrodes may be dispensed in environments where proper placement of the defibrillation electrodes can be assumed due to a high level of training amongst likely bystanders and first responders. Thefriction vest 5 is secured to the compression module above the spool assembly location. -
FIG. 9 shows a detail view of the defibrillation module in thecompartment 30. The defibrillation module includes a pair ofdefibrillation electrodes 42 connected to the batteries through thepower connections 43. The defibrillation electrodes will be controlled by circuitry housed within the defibrillation module, and may be connected to the control module through thedata port 44. The defibrillation module is releasably attached to thesupport board 28 with quick release latches 45.Tear sheet 46 protects the components of the defibrillation module during storage and provides ready access for use.FIG. 10 shows the detail view of the airway management module in thecompartment 29, which includes anoxygen mask 47, a length oftubing 48 and anair fitting 49 connecting the oxygen mask to the oxygen bottle within the support board. The oxygen mask serves as a blood gas exchange means, supplying oxygen to the lungs for exchange with blood gas such as CO2.Optional medicine injectors 50 may be operably connected to the masks or hose to provide for automatic injection of ACLS medications into the airway. The defibrillation module is releasably attached to thesupport board 28 with quick release latches 51.Tear sheet 46 protects the components of the airway management module during storage and provides ready access for use. An end-tidal CO2 monitor 52 can be included in the mask to provide for biological feedback and monitoring of the success of the CPR. A skin mounted blood oxygen level monitor 53 can also be mounted on the mask for the same purpose (fingertip blood oxygen sensors may also be used, and supplied in the overall assembly to be readily available). The biological data obtained by the sensors is transmitted to the control module via appropriate wiring in the mask and support board. -
FIG. 11 shows a detail view of the control and communications module. Thecontrol unit 54 is connected to the compression module, defibrillation module and the airway management module through appropriate wiring through the support board. The control unit is optionally connected to thecommunications unit 55. The communications unit includes means for communicating the EKG and other measured medical parameters sensed on the board to thescreen 56 and via telephone to remote medical personnel. The communications unit can include a telephone handset or speaker phone. Because the device is most likely to be used at a location separate from the storage holder, the communications module preferably includes a wireless communication device, such as wireless telephone, radio telephone or cellular, and any necessary telephone base will be installed in the storage holder. - The communications unit and control unit are set up to operate in the following manner, also illustrated in the block diagram of
FIG. 12 . The device may remain mounted in a charging unit for months between use, and will be removed from the charging unit for use. Upon removal of the device from its storage location, a sensor in the control unit senses the removal (through limit switches, magnetic switches, or motion sensors, current sensors in the charging system, or otherwise) and initiates the system, checking functions, energizing a display unit and accomplishing other typical warm-up functions. As a first step, the system initiates a telephone communication with a medical facility through the communications unit. The communication may use any communication medium, whether it be standard telephone lines, cellular telephone system, paging system or radio transmitter. The system may be set up to initiate communications with central medical facility, such as a local 911 emergency system, a nearby hospital or ambulance service, or a central facility staffed with medical personnel trained specifically on the remote use of the device (all generally referred to as medical personnel). Upon establishing communication, the communications unit informs medical personnel of the location or identification of the device (which may be stored in computer memory in the communications unit, or determined through GPS or other such system), and this information can be used to dispatch an emergency medical team to the location of the device. In a simple embodiment which does not require a computer to control the actions of the alert feature, the removal sensor may comprise a limit switch, while the communications module may comprise a simple telephone unit installed in the storage holder together with a tape recorded message, where the operation of the relay in response to removal of the resuscitation device includes initiation of the telephone call to 911 and playback of an alert message providing alert information such as the location of the board. The communications unit may also be provided with an alert button which may be operated by a bystander regardless of the use of the board to summon an emergency team to the location regardless of the condition of the resuscitation device. - Before the emergency medical team arrives, a bystander will place the board under the victim, buckle the compression belt around the victim and apply defibrillation and/or sensing electrodes (or vice versa) (alternatively, sensing electrodes can be included on the inner surface of the compression belt). The system monitors the installation of the belt through signals provided through latching sensors in the buckle. The system monitors biological input, which can comprise monitoring of EKG signals from the EKG electrode patches of the defibrillation module, monitoring EKG signals belt mounted electrodes, monitoring signals from an end-tidal CO2 monitor from the airway management module, and any other biological signal sensor incorporated into the device. The system can also monitor or respond to manually inputted instruction from the control unit, in order to provide on-site emergency medical personnel with control of the device when they arrive on scene. During operation, the system transmits all available biological information, including EKG signals, blood pressure, end-tidal CO2 and any other monitored biological parameter to the remote medical facility, and it can also transmit information regarding the configuration of the device, including battery life, system operating limit settings (i.e., whether the system is set for automatic operation, permissive operation, or disabled in any function) so that medical personnel can ensure that the appropriate configuration is in effect.
- Communication with the medical facility will allow emergency medical personnel to diagnose the condition of the patient and, through signals sent from the medical personnel to the communications unit, permit, initiate or prohibit certain additional therapeutic ACLS actions. For example, upon diagnosing the EKG conditions which indicate the need for defibrillation, the medical personnel can send a signal to the communications unit which acts upon the control unit to permit manual operation of the defibrillation electrodes by the bystander. The system also provides for application of a defibrillation shock via remote signal from the medical personnel. The device can incorporate the expert system such as the Automatic External Defibrillator. The medical personnel can also communicate other actions, and ensure that certain acts are undertaken by the bystander through the communication system. For example, the medical personnel may communicate verbally with the bystander to ascertain the cause of the cardiac arrest, the proper placement of the oxygen mask, appropriate clearing of the airway, and other information. Where the airway management module is provided with medication such as epinephrine, lidocaine, bretylium or other drugs called for in the ACLS guidelines (or newly proposed drugs such as T3), the medical personnel can instruct by-standers to inject appropriate medication through the airway. Where automatic injectors such as those described in Kramer, Interactive External Defibrillation and Drug Injection System, U.S. Pat. No. 5,405,362 (Apr. 11, 1995) are provided, or similar system with non-osseous injectors are provided, the medical personnel can instruct by-standers to inject appropriate medication through these injectors. Where the injectors are provided with means for automatic operation based on measured EKG signals, blood pressure and end-tidal CO2, the medical personnel can send signals to the system to initiate injection by remote control of the medical personnel, permit injection by local control as determined by the expert system, permit injection by by-standers, or prohibit injection by the system or bystanders. For example, the system can be initially set up to forbid any injection. Medical personnel, having diagnosed ventricular fibrillation through the information provided by the communications unit, can send an appropriate signal to permit or initiate injection of epinephrine, and also send a signal to prohibit injection of atropine until called for under the ACLS guidelines. A newly proposed drug T3 can be administered through the airway, into the lungs, as a therapy for cardiac arrest. Controlled injection into the airway can be initiated or prohibited in the same manner. Thus, all actions in the ACLS, including compression, defibrillation, drug injection can be accomplished through the system under the guidance of medical personnel from a remote location, or they may be accomplished through expert systems installed in the control module. Each of these functions in incorporated in a system that automatically initiates communication with medical personnel and informs medical personnel of the location of the device so that emergency medical personnel my be dispatched to the location.
- The repeated compression will be initiated upon buckling of the compression belt (automatically) or a switch can be provided for the bystander to initiate compression. The system will continue compression cycles, until de-activated, according the motor control block diagram of
FIG. 13 . Upon initiation of the system, the control unit will monitor installation of the belt via appropriate sensors in the buckles or through other sensors. When themotor control 57 receives the initiate compression signal from the control unit, the motor is started. The motor is preferably run continuously, rather than stopped and started, to avoid repeated application of startup current and thus conserve battery power. When the motor is up to speed, the clutch is engaged. As a baseline, the clutch is engaged every second for one-half second. This cyclic engagement of the clutch continues repeatedly for five cycles, as recommended by current CPR guidelines, and then is interrupted for a respiration pause, if desired. To avoid excessive drain on the batteries, the motor controller includes a torque sensor (sensing current supply to the motor, for example), and monitors the torque or load on the motor. A threshold is established above which further compression is not desired or useful, and if this occurs during the half second of clutch engagement, then the clutch is disengaged and the cycle continues. The system can monitor the effectiveness of the compression stroke by monitoring the CO2 content of the victim's exhalant. Where CO2 content is low, indicating inadequate circulation, the control system increases the torque limit until the CO2 levels are acceptable (or until the maximum torque of the motor is achieved.) This is another example of the device's use of biological signals to control operation of the system. The cycle time and period, number of cycles between respiration pauses, and the torque limit, can be set according to current guidelines, and can also be varied by the remote medical personnel via the remote control capabilities of the control unit. - Thus, while the preferred embodiments of the devices and methods have been described in reference to the environment in which they were developed, they are merely illustrative of the principles of the inventions. Other embodiments and configurations may be devised without departing from the spirit of the inventions and the scope of the appended claims.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/438,708 US20120191025A1 (en) | 1997-08-27 | 2012-04-03 | Resuscitation Device and Method |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US08/922,723 US6142962A (en) | 1997-08-27 | 1997-08-27 | Resuscitation device having a motor driven belt to constrict/compress the chest |
US70300400A | 2000-10-31 | 2000-10-31 | |
US10/848,216 US7077814B2 (en) | 1997-08-27 | 2004-05-18 | Resuscitation method using a sensed biological parameter |
US11/488,944 US7517326B2 (en) | 1997-08-27 | 2006-07-18 | Resuscitation device including a belt cartridge |
US12/423,663 US8147434B2 (en) | 1997-08-27 | 2009-04-14 | Resuscitation device and method |
US13/438,708 US20120191025A1 (en) | 1997-08-27 | 2012-04-03 | Resuscitation Device and Method |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/423,663 Continuation US8147434B2 (en) | 1997-08-27 | 2009-04-14 | Resuscitation device and method |
Publications (1)
Publication Number | Publication Date |
---|---|
US20120191025A1 true US20120191025A1 (en) | 2012-07-26 |
Family
ID=25447510
Family Applications (6)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/922,723 Expired - Lifetime US6142962A (en) | 1997-08-27 | 1997-08-27 | Resuscitation device having a motor driven belt to constrict/compress the chest |
US09/724,325 Expired - Fee Related US7442173B1 (en) | 1997-08-27 | 2000-11-28 | Resuscitation device with friction liner |
US10/848,216 Expired - Fee Related US7077814B2 (en) | 1997-08-27 | 2004-05-18 | Resuscitation method using a sensed biological parameter |
US11/488,944 Expired - Fee Related US7517326B2 (en) | 1997-08-27 | 2006-07-18 | Resuscitation device including a belt cartridge |
US12/423,663 Expired - Fee Related US8147434B2 (en) | 1997-08-27 | 2009-04-14 | Resuscitation device and method |
US13/438,708 Abandoned US20120191025A1 (en) | 1997-08-27 | 2012-04-03 | Resuscitation Device and Method |
Family Applications Before (5)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/922,723 Expired - Lifetime US6142962A (en) | 1997-08-27 | 1997-08-27 | Resuscitation device having a motor driven belt to constrict/compress the chest |
US09/724,325 Expired - Fee Related US7442173B1 (en) | 1997-08-27 | 2000-11-28 | Resuscitation device with friction liner |
US10/848,216 Expired - Fee Related US7077814B2 (en) | 1997-08-27 | 2004-05-18 | Resuscitation method using a sensed biological parameter |
US11/488,944 Expired - Fee Related US7517326B2 (en) | 1997-08-27 | 2006-07-18 | Resuscitation device including a belt cartridge |
US12/423,663 Expired - Fee Related US8147434B2 (en) | 1997-08-27 | 2009-04-14 | Resuscitation device and method |
Country Status (1)
Country | Link |
---|---|
US (6) | US6142962A (en) |
Families Citing this family (87)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5738637A (en) * | 1995-12-15 | 1998-04-14 | Deca-Medics, Inc. | Chest compression apparatus for cardiac arrest |
US6142962A (en) * | 1997-08-27 | 2000-11-07 | Emergency Medical Systems, Inc. | Resuscitation device having a motor driven belt to constrict/compress the chest |
US6066106A (en) * | 1998-05-29 | 2000-05-23 | Emergency Medical Systems, Inc. | Modular CPR assist device |
USRE38533E1 (en) * | 1998-09-11 | 2004-06-15 | Life Corporation | Portable emergency oxygen and automatic external defibrillator (AED) therapy system |
US6289896B1 (en) * | 1999-12-23 | 2001-09-18 | Glennah D. Hart | Cardiac telemetry protective pouch |
US6603999B2 (en) | 2001-05-08 | 2003-08-05 | Benjamin Franklin Literary & Medical Society, Inc. | Vehicularly integrated cardiac care system |
US6616620B2 (en) * | 2001-05-25 | 2003-09-09 | Revivant Corporation | CPR assist device with pressure bladder feedback |
US6939314B2 (en) | 2001-05-25 | 2005-09-06 | Revivant Corporation | CPR compression device and method |
US6768922B2 (en) * | 2001-08-23 | 2004-07-27 | Zoll Medical Corporation | Defibrillators |
US7569021B2 (en) | 2002-03-21 | 2009-08-04 | Jolife Ab | Rigid support structure on two legs for CPR |
US7308304B2 (en) * | 2003-02-14 | 2007-12-11 | Medtronic Physio-Control Corp. | Cooperating defibrillators and external chest compression devices |
US20040162510A1 (en) * | 2003-02-14 | 2004-08-19 | Medtronic Physio-Control Corp | Integrated external chest compression and defibrillation devices and methods of operation |
US20050038475A1 (en) * | 2003-02-18 | 2005-02-17 | Medtronic Physio-Control Corp. | Defibrillators learning of other concurrent therapy |
US7270639B2 (en) * | 2003-10-14 | 2007-09-18 | Zoll Circulation, Inc. | Temperature regulation system for automatic chest compression housing |
AU2014206187B2 (en) * | 2003-10-14 | 2015-06-18 | Zoll Circulation, Inc. | Compression belt system for use with chest compression devices |
AU2004281779B2 (en) | 2003-10-14 | 2010-11-18 | Zoll Circulation, Inc. | Automatic lightweight electro-mechanical chest compression device and temperature regulation system therefor |
WO2005037178A1 (en) | 2003-10-14 | 2005-04-28 | Zoll Circulation, Inc. | Compression belt system for use with chest compression devices |
US7347832B2 (en) * | 2003-10-14 | 2008-03-25 | Zoll Circulation, Inc. | Lightweight electro-mechanical chest compression device |
US7404803B2 (en) * | 2003-10-14 | 2008-07-29 | Zoll Circulation, Inc. | Safety mechanisms for belt cartridge used with chest compression devices |
AU2015227481B2 (en) * | 2003-10-14 | 2017-09-14 | Zoll Circulation, Inc. | Compression belt system for use with chest compression devices |
US20100139661A1 (en) * | 2003-12-18 | 2010-06-10 | Scott Technologies, Inc. | Air breathing hose with integrated electrical wiring |
GB2421442B (en) | 2004-11-22 | 2008-04-16 | Mark Varney | Tidal gas resuscitation monitor |
GB0510594D0 (en) * | 2005-05-25 | 2005-06-29 | Smiths Group Plc | Resuscitators |
US7909784B2 (en) * | 2005-06-03 | 2011-03-22 | Kornaker Kathleen M | Cardiopulmonary assist device |
US7618384B2 (en) * | 2006-09-20 | 2009-11-17 | Tyco Healthcare Group Lp | Compression device, system and method of use |
TWI360416B (en) * | 2006-12-14 | 2012-03-21 | Ind Tech Res Inst | Apparatus of cardiopulmonary resuscitator |
AU2013248222B2 (en) * | 2007-03-23 | 2014-09-25 | Wolfgang Oestreich | Device for the medical care of a patient in an emergency |
DE102007014136B4 (en) | 2007-03-23 | 2011-08-25 | Dr. Oestreich + Partner GmbH, 50670 | Device for medical care of a patient in an emergency |
US20080262535A1 (en) * | 2007-04-06 | 2008-10-23 | Ohk Medical Devices Ltd. | Method and an apparatus for adjusting Blood circulation in a limb |
US9131944B2 (en) * | 2008-01-29 | 2015-09-15 | Ohk Medical Devices Ltd. | Mobile torus devices |
US8366739B2 (en) * | 2008-01-30 | 2013-02-05 | Ohk Medical Devices Ltd. | Motion control devices |
US20090209891A1 (en) * | 2008-02-14 | 2009-08-20 | Ohk Medical Devices Ltd. | Pressure controlling devices |
US8535253B2 (en) | 2008-09-30 | 2013-09-17 | Covidien Lp | Tubeless compression device |
US8403870B2 (en) * | 2009-09-15 | 2013-03-26 | Covidien Lp | Portable, self-contained compression device |
US12064391B2 (en) | 2010-02-12 | 2024-08-20 | Zoll Medical Corporation | Defibrillator display including CPR depth information |
US8394043B2 (en) | 2010-02-12 | 2013-03-12 | Covidien Lp | Compression garment assembly |
US8725253B2 (en) | 2010-02-12 | 2014-05-13 | Zoll Medical Corporation | Defibrillator display including CPR depth information |
EP2533855A1 (en) | 2010-02-12 | 2012-12-19 | Zoll Medical Corporation | Defibrillator display |
US20140024979A1 (en) | 2010-12-23 | 2014-01-23 | Mark Bruce Radbourne | Respiration-assistance systems, devices, or methods |
EP2702664B1 (en) | 2011-04-28 | 2018-01-17 | Zoll Circulation, Inc. | Battery management system with mosfet boost system |
US9825475B2 (en) | 2011-04-28 | 2017-11-21 | Zoll Circulation, Inc. | System and method for automated detection of battery insert |
CN103797681B (en) | 2011-04-28 | 2018-05-11 | 佐尔循环公司 | The system and method for tracking and achieving battery performance |
CN103797682B (en) | 2011-04-28 | 2017-08-25 | 佐尔循环公司 | The virus-type distribution of battery management parameter |
CN106920907B (en) | 2011-04-28 | 2021-01-15 | 佐尔循环公司 | Latch assembly for retaining a battery pack within a battery compartment |
US10862323B2 (en) | 2011-04-28 | 2020-12-08 | Zoll Circulation, Inc. | Battery management system for control of lithium power cells |
CN103814499B (en) | 2011-04-28 | 2018-07-10 | 佐尔循环公司 | For the battery pack and intelligent battery group powered to equipment |
US20140155792A1 (en) * | 2011-05-15 | 2014-06-05 | All India Institute Of Medical Sciences | A cardio pulmonary resuscitation device and an integrated resuscitation system thereof |
US8641647B2 (en) | 2011-09-16 | 2014-02-04 | Zoll Circulation, Inc. | Chest compression devices for use with imaging systems, and methods of use of chest compression devices with imaging systems |
US8942800B2 (en) | 2012-04-20 | 2015-01-27 | Cardiac Science Corporation | Corrective prompting system for appropriate chest compressions |
EP2854743A4 (en) | 2012-06-01 | 2016-02-17 | Zoll Medical Corp | Chest compression belt with belt position monitoring system |
US9149412B2 (en) | 2012-06-14 | 2015-10-06 | Zoll Medical Corporation | Human powered mechanical CPR device with optimized waveform characteristics |
US8888725B2 (en) | 2012-09-27 | 2014-11-18 | Zoll Medical Corporation | Mechanical chest compression plunger adapter and compression pad |
US9504626B2 (en) | 2013-03-14 | 2016-11-29 | Zoll Circulation, Inc. | CPR gurney |
US9211229B2 (en) | 2013-08-20 | 2015-12-15 | Zoll Circulation, Inc. | Piston-based chest compression device with belt drive |
US9320678B2 (en) | 2013-09-30 | 2016-04-26 | Zoll Circulation, Inc. | Chest compression device |
US11246794B2 (en) | 2014-02-19 | 2022-02-15 | Keith G. Lurie | Systems and methods for improved post-resuscitation recovery |
US11020314B2 (en) | 2014-02-19 | 2021-06-01 | Keith G. Lurie | Methods and systems to reduce brain damage |
US9750661B2 (en) | 2014-02-19 | 2017-09-05 | Keith G. Lurie | Systems and methods for head up cardiopulmonary resuscitation |
US10667987B2 (en) | 2014-02-19 | 2020-06-02 | Keith G. Lurie | Uniform chest compression CPR |
US11096861B2 (en) | 2014-02-19 | 2021-08-24 | Keith G. Lurie | Systems and methods for gravity-assisted cardiopulmonary resuscitation and defibrillation |
US10245209B2 (en) | 2014-02-19 | 2019-04-02 | Keith G. Lurie | Systems and methods for gravity-assisted cardiopulmonary resuscitation |
US11259988B2 (en) | 2014-02-19 | 2022-03-01 | Keith G. Lurie | Active compression decompression and upper body elevation system |
US11844742B2 (en) | 2014-02-19 | 2023-12-19 | Keith G. Lurie | Methods and systems to reduce brain damage |
US9707152B2 (en) | 2014-02-19 | 2017-07-18 | Keith G. Lurie | Systems and methods for head up cardiopulmonary resuscitation |
US10406069B2 (en) | 2014-02-19 | 2019-09-10 | Keith G. Lurie | Device for elevating the head and chest for treating low blood flow states |
US9801782B2 (en) | 2014-02-19 | 2017-10-31 | Keith G. Lurie | Support devices for head up cardiopulmonary resuscitation |
US10350137B2 (en) | 2014-02-19 | 2019-07-16 | Keith G. Lurie | Elevation timing systems and methods for head up CPR |
US10406068B2 (en) | 2014-02-19 | 2019-09-10 | Keith G. Lurie | Lockable head up cardiopulmonary resuscitation support device |
US10292899B2 (en) | 2014-05-09 | 2019-05-21 | Physio-Control, Inc. | CPR chest compression machine adjusting motion-time profile in view of detected force |
US10004662B2 (en) | 2014-06-06 | 2018-06-26 | Physio-Control, Inc. | Adjustable piston |
US11246796B2 (en) | 2014-06-06 | 2022-02-15 | Physio-Control, Inc. | Adjustable piston |
US10092464B2 (en) | 2014-10-03 | 2018-10-09 | Physio-Control, Inc. | Medical device stabilization strap |
EP4349314A3 (en) | 2014-11-17 | 2024-06-12 | Physio-Control, Inc. | Cpr chest compression machine adjusting motion-time profile in view of detected force |
US10667989B2 (en) * | 2015-02-24 | 2020-06-02 | Jolife Ab | Cardio-pulmonary resuscitation machines with stabilizing members and methods |
US10682282B2 (en) * | 2015-10-16 | 2020-06-16 | Zoll Circulation, Inc. | Automated chest compression device |
US10639234B2 (en) * | 2015-10-16 | 2020-05-05 | Zoll Circulation, Inc. | Automated chest compression device |
WO2017189926A1 (en) | 2016-04-27 | 2017-11-02 | Radial Medical, Inc. | Adaptive compression therapy systems and methods |
US11179286B2 (en) | 2016-10-21 | 2021-11-23 | Zoll Medical Corporation | Adaptive body positioning |
US10874583B2 (en) | 2017-04-20 | 2020-12-29 | Zoll Circulation, Inc. | Compression belt assembly for a chest compression device |
US11246795B2 (en) | 2017-04-20 | 2022-02-15 | Zoll Circulation, Inc. | Compression belt assembly for a chest compression device |
US11179293B2 (en) | 2017-07-28 | 2021-11-23 | Stryker Corporation | Patient support system with chest compression system and harness assembly with sensor system |
US10905629B2 (en) | 2018-03-30 | 2021-02-02 | Zoll Circulation, Inc. | CPR compression device with cooling system and battery removal detection |
US20220142859A1 (en) * | 2019-02-26 | 2022-05-12 | Krishna Prasad Panduranga Revankar | A time saving sit on cardio pulmonary resuscitation device and method |
RU201542U1 (en) * | 2020-09-16 | 2020-12-21 | Российская Федерация, от имени которой выступает ФОНД ПЕРСПЕКТИВНЫХ ИССЛЕДОВАНИЙ | Cardiopulmonary resuscitation device |
RU203176U1 (en) * | 2020-10-07 | 2021-03-24 | Федеральное государственное автономное образовательное учреждение высшего образования "Севастопольский государственный университет" | REANIMATOR FOR EXTREME CONDITIONS |
RU204656U1 (en) * | 2021-01-21 | 2021-06-03 | Федеральное государственное автономное образовательное учреждение высшего образования "Севастопольский государственный университет" | AUTOMATIC DEVICE FOR EXTERNAL HEART MASSAGE IN CARDIAC-PULMONARY REANIMATION |
CN112914988A (en) * | 2021-01-26 | 2021-06-08 | 安捷华信(北京)信息科技有限公司 | Chest compression device for department of respiration |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US651962A (en) * | 1898-05-04 | 1900-06-19 | Demetrius Boghean | Apparatus for treating respiratory diseases. |
US2486667A (en) * | 1945-07-06 | 1949-11-01 | Albert R Meister | Artificial respirator |
US3802638A (en) * | 1973-01-22 | 1974-04-09 | Addressograph Multigraph | Device for securing ribbons to spools |
US4770164A (en) * | 1980-10-16 | 1988-09-13 | Lach Ralph D | Resuscitation method and apparatus |
US5062358A (en) * | 1989-09-11 | 1991-11-05 | Marcella M. Fox | Bale ejector for a trash compactor |
US5287846A (en) * | 1990-06-12 | 1994-02-22 | Medreco A.S. | Resuscitation device |
US5383840A (en) * | 1992-07-28 | 1995-01-24 | Vascor, Inc. | Biocompatible ventricular assist and arrhythmia control device including cardiac compression band-stay-pad assembly |
US5407418A (en) * | 1993-10-14 | 1995-04-18 | Szpur; Roman | Pulsating compressor apparatus for enhancing blood flow |
WO1997022327A1 (en) * | 1995-12-15 | 1997-06-26 | Deca-Medics, Inc. | Chest compression apparatus for cardiac arrest |
US5918331A (en) * | 1994-08-05 | 1999-07-06 | Buchanan Aircraft Corporation Limited | Portable intensive care unit with medical equipment |
US7517326B2 (en) * | 1997-08-27 | 2009-04-14 | Zoll Circulation, Inc. | Resuscitation device including a belt cartridge |
Family Cites Families (55)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2899955A (en) * | 1959-08-18 | Respirator belt | ||
US443204A (en) * | 1890-12-23 | Device for inducing full respiration | ||
DE661244C (en) * | 1934-10-15 | 1938-06-14 | Peter Petersen | Device for generating artificial respiration |
US2699163A (en) * | 1950-06-26 | 1955-01-11 | Carl-Gunnar D Engstrom | Respirator |
US2780222A (en) * | 1953-12-18 | 1957-02-05 | J J Monaghan Company Inc | Respirators |
US2853998A (en) * | 1955-02-28 | 1958-09-30 | John H Emerson | Respirator casing and methods of producing the same |
US2754817A (en) * | 1955-06-10 | 1956-07-17 | Steffen P Nemeth | Exercising device |
US3042024A (en) * | 1959-06-26 | 1962-07-03 | Emanuel S Mendelson | Inflatable double-walled resuscitation garment |
US3120228A (en) * | 1960-11-07 | 1964-02-04 | Harris A Thompson | Respirator apparatus |
US3095873A (en) * | 1961-03-27 | 1963-07-02 | Boeing Co | Mechanically driven electrical recording sphygmomanometer |
US3368550A (en) * | 1965-04-26 | 1968-02-13 | Glascock Harry | Respiratory cuirass |
US3374783A (en) * | 1965-12-23 | 1968-03-26 | Hurvitz Hyman | Heart massage unit |
US3481327A (en) * | 1967-03-06 | 1969-12-02 | Lillian G Drennen | Respiratory vest for emphysema patients |
US3461860A (en) * | 1967-04-17 | 1969-08-19 | Michigan Instr Inc | Pulmonary ventilation system and combination cardiac compressor and ventilation system |
FR2140920A5 (en) * | 1971-06-07 | 1973-01-19 | Derouineau Rene | |
US3822840A (en) * | 1973-01-08 | 1974-07-09 | Allied Chem | Belt retractor with spring biased auxiliary ratchet wheel |
US3902480A (en) * | 1974-12-02 | 1975-09-02 | Robert J Wilson | Electro-mechanical isotonic or isokinetic exercising system |
US4004579A (en) * | 1975-10-08 | 1977-01-25 | Dedo Richard G | Respiratory assist device |
US4155537A (en) * | 1977-08-11 | 1979-05-22 | Bronson Robert E | Adjustable length strap tie down apparatus |
US4570615A (en) * | 1980-03-03 | 1986-02-18 | Michigan Instruments, Inc. | Cardiopulmonary resuscitator massager pad |
US4365623A (en) * | 1980-03-06 | 1982-12-28 | Tru-Eze Manufacturing Co. | Apparatus to exert traction in traction therapy |
JPS5756405A (en) | 1980-09-19 | 1982-04-05 | Sumitomo Chem Co Ltd | Stabilizing method |
US4397306A (en) * | 1981-03-23 | 1983-08-09 | The John Hopkins University | Integrated system for cardiopulmonary resuscitation and circulation support |
US4471898A (en) * | 1982-04-28 | 1984-09-18 | Pace Incorporated | Universal modular power and air supply |
NZ204459A (en) * | 1983-06-02 | 1987-03-06 | Coromed Int Ltd | Cardio-pulmonary resuscitator |
US5098369A (en) * | 1987-02-27 | 1992-03-24 | Vascor, Inc. | Biocompatible ventricular assist and arrhythmia control device including cardiac compression pad and compression assembly |
US5056505A (en) * | 1987-05-01 | 1991-10-15 | Regents Of The University Of Minnesota | Chest compression apparatus |
US4915095A (en) * | 1988-05-02 | 1990-04-10 | Newton Chun | Cardiac CPR mechanism |
US4928674A (en) * | 1988-11-21 | 1990-05-29 | The Johns Hopkins University | Cardiopulmonary resuscitation and assisted circulation system |
US5222478A (en) * | 1988-11-21 | 1993-06-29 | Scarberry Eugene N | Apparatus for application of pressure to a human body |
US5277194A (en) * | 1989-01-31 | 1994-01-11 | Craig Hosterman | Breathing monitor and stimulator |
AU638151B2 (en) * | 1990-07-05 | 1993-06-17 | George Csorba | Device for cardiac massage |
WO1992000716A1 (en) * | 1990-07-06 | 1992-01-23 | Baswat Holdings Pty. Ltd. | External cardiac massage device |
JPH0822277B2 (en) | 1990-10-19 | 1996-03-06 | 新技術事業団 | Diagnosis and treatment system for heart failure |
US5228449A (en) * | 1991-01-22 | 1993-07-20 | Athanasios G. Christ | System and method for detecting out-of-hospital cardiac emergencies and summoning emergency assistance |
US5405362A (en) * | 1991-04-29 | 1995-04-11 | The Board Of Regents For The University Of Texas System | Interactive external defibrillation and drug injection system |
US5217010A (en) * | 1991-05-28 | 1993-06-08 | The Johns Hopkins University | Ecg amplifier and cardiac pacemaker for use during magnetic resonance imaging |
WO1993000062A1 (en) * | 1991-06-20 | 1993-01-07 | Kinsman James B | Asynchronous cycling of mechanical ventilators |
US5295481A (en) * | 1991-11-01 | 1994-03-22 | Geeham Calvin T | Cardiopulmonary resuscitation assist device |
JP3175980B2 (en) | 1992-10-02 | 2001-06-11 | 松下電工株式会社 | Sphygmomanometer |
US5257619A (en) * | 1992-10-07 | 1993-11-02 | Everete Randall L | External cardiac compression device |
US5327887A (en) * | 1993-01-25 | 1994-07-12 | Ludwik Nowakowski | Cardiopulmonary resuscitation device |
US5370603A (en) * | 1993-02-25 | 1994-12-06 | The United States Of America As Represented By The Secretary Of The Air Force | Pneumatic CPR garment |
US5490820A (en) * | 1993-03-12 | 1996-02-13 | Datascope Investment Corp. | Active compression/decompression cardiac assist/support device and method |
FI931998A (en) | 1993-05-03 | 1994-11-04 | Markku Moilanen | Aoterupplivningsapparat |
US5451202A (en) * | 1993-09-22 | 1995-09-19 | Pacific Research Laboratories, Inc. | Cervical traction device |
US5474533A (en) * | 1994-04-11 | 1995-12-12 | The Ohio State University | Intrathoracic mechanical, electrical and temperature adjunct to cardiopulmonary cerebral resuscitation, shock, head injury, hypothermia and hyperthermia |
US5620001A (en) * | 1994-04-26 | 1997-04-15 | Byrd; Timothy N. | Universal blood-pressure cuff cover |
US5411518A (en) * | 1994-05-24 | 1995-05-02 | Design +3, Incorporated | Medical tourniquet apparatus |
US5630789A (en) * | 1994-10-07 | 1997-05-20 | Datascope Investment Corp. | Active compression/decompression device for cardiopulmonary resuscitation |
US5524843A (en) * | 1994-12-06 | 1996-06-11 | Mccauley; Pat | Winding device for web structure such as wallpaper |
US5593426A (en) * | 1994-12-07 | 1997-01-14 | Heartstream, Inc. | Defibrillator system using multiple external defibrillators and a communications network |
US5664563A (en) * | 1994-12-09 | 1997-09-09 | Cardiopulmonary Corporation | Pneumatic system |
JPH0995840A (en) | 1995-09-28 | 1997-04-08 | Toyota Autom Loom Works Ltd | Control of operation speed in weaving machine, control device for operation speed and apparatus for determining operation speed |
JPH09183072A (en) | 1995-12-28 | 1997-07-15 | Shibaura Eng Works Co Ltd | Bolt fastener |
-
1997
- 1997-08-27 US US08/922,723 patent/US6142962A/en not_active Expired - Lifetime
-
2000
- 2000-11-28 US US09/724,325 patent/US7442173B1/en not_active Expired - Fee Related
-
2004
- 2004-05-18 US US10/848,216 patent/US7077814B2/en not_active Expired - Fee Related
-
2006
- 2006-07-18 US US11/488,944 patent/US7517326B2/en not_active Expired - Fee Related
-
2009
- 2009-04-14 US US12/423,663 patent/US8147434B2/en not_active Expired - Fee Related
-
2012
- 2012-04-03 US US13/438,708 patent/US20120191025A1/en not_active Abandoned
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US651962A (en) * | 1898-05-04 | 1900-06-19 | Demetrius Boghean | Apparatus for treating respiratory diseases. |
US2486667A (en) * | 1945-07-06 | 1949-11-01 | Albert R Meister | Artificial respirator |
US3802638A (en) * | 1973-01-22 | 1974-04-09 | Addressograph Multigraph | Device for securing ribbons to spools |
US4770164A (en) * | 1980-10-16 | 1988-09-13 | Lach Ralph D | Resuscitation method and apparatus |
US5062358A (en) * | 1989-09-11 | 1991-11-05 | Marcella M. Fox | Bale ejector for a trash compactor |
US5287846A (en) * | 1990-06-12 | 1994-02-22 | Medreco A.S. | Resuscitation device |
US5383840A (en) * | 1992-07-28 | 1995-01-24 | Vascor, Inc. | Biocompatible ventricular assist and arrhythmia control device including cardiac compression band-stay-pad assembly |
US5407418A (en) * | 1993-10-14 | 1995-04-18 | Szpur; Roman | Pulsating compressor apparatus for enhancing blood flow |
US5918331A (en) * | 1994-08-05 | 1999-07-06 | Buchanan Aircraft Corporation Limited | Portable intensive care unit with medical equipment |
WO1997022327A1 (en) * | 1995-12-15 | 1997-06-26 | Deca-Medics, Inc. | Chest compression apparatus for cardiac arrest |
US7517326B2 (en) * | 1997-08-27 | 2009-04-14 | Zoll Circulation, Inc. | Resuscitation device including a belt cartridge |
Also Published As
Publication number | Publication date |
---|---|
US20090204035A1 (en) | 2009-08-13 |
US20060264789A1 (en) | 2006-11-23 |
US6142962A (en) | 2000-11-07 |
US7517326B2 (en) | 2009-04-14 |
US20040215112A1 (en) | 2004-10-28 |
US7442173B1 (en) | 2008-10-28 |
US8147434B2 (en) | 2012-04-03 |
US7077814B2 (en) | 2006-07-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9241867B2 (en) | Resuscitation device with expert system | |
US8147434B2 (en) | Resuscitation device and method | |
JP4663798B2 (en) | Resuscitation equipment | |
CA2448060C (en) | Cpr assist device with pressure bladder feedback | |
AU2002316169A1 (en) | CPR assist device with pressure bladder feedback | |
CA2607869C (en) | Resuscitation device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: EMERGENCY MEDICAL SYSTEMS, INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MOLLENAUER, KENNETH H.;SHERMAN, DARREN R.;BYSTROM, STEVEN R.;AND OTHERS;REEL/FRAME:028007/0317 Effective date: 19970826 Owner name: REVIVANT CORPORATION, CALIFORNIA Free format text: CHANGE OF NAME;ASSIGNOR:EMERGENCY MEDICAL SYSTEMS, INC.;REEL/FRAME:028007/0791 Effective date: 20000630 Owner name: ZOLL CIRCULATION, INC., CALIFORNIA Free format text: CHANGE OF NAME;ASSIGNOR:REVIVANT CORPORATION;REEL/FRAME:028007/0866 Effective date: 20051103 |
|
AS | Assignment |
Owner name: EMERGENCY MEDICAL SYSTEMS, INC., CALIFORNIA Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE ASSIGNEE LAST NAME PREVIOUSLY RECORDED ON REEL 028007 FRAME 0317. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT;ASSIGNORS:MOLLENAUER, KENNETH H.;SHERMAN, DARREN R.;BYSTROM, STEVEN R.;AND OTHERS;REEL/FRAME:028070/0511 Effective date: 19970826 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |