USRE38533E1 - Portable emergency oxygen and automatic external defibrillator (AED) therapy system - Google Patents

Portable emergency oxygen and automatic external defibrillator (AED) therapy system Download PDF

Info

Publication number
USRE38533E1
USRE38533E1 US10/457,958 US45795803A USRE38533E US RE38533 E1 USRE38533 E1 US RE38533E1 US 45795803 A US45795803 A US 45795803A US RE38533 E USRE38533 E US RE38533E
Authority
US
United States
Prior art keywords
oxygen delivery
defibrillation
oximetry
delivery system
user
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US10/457,958
Inventor
John Kirchgeorg
Richard C. Turner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Life Corp USA
Original Assignee
Life Corp USA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US09/151,300 external-priority patent/US6327497B1/en
Application filed by Life Corp USA filed Critical Life Corp USA
Priority to US10/457,958 priority Critical patent/USRE38533E1/en
Priority to US10/727,328 priority patent/USRE40365E1/en
Application granted granted Critical
Publication of USRE38533E1 publication Critical patent/USRE38533E1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/0205Simultaneously evaluating both cardiovascular conditions and different types of body conditions, e.g. heart and respiratory condition
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/021Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes operated by electrical means
    • A61M16/022Control means therefor
    • A61M16/024Control means therefor including calculation means, e.g. using a processor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/38Applying electric currents by contact electrodes alternating or intermittent currents for producing shock effects
    • A61N1/39Heart defibrillators
    • A61N1/3904External heart defibrillators [EHD]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2560/00Constructional details of operational features of apparatus; Accessories for medical measuring apparatus
    • A61B2560/04Constructional details of apparatus
    • A61B2560/0431Portable apparatus, e.g. comprising a handle or case
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1468Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using chemical or electrochemical methods, e.g. by polarographic means
    • A61B5/1477Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using chemical or electrochemical methods, e.g. by polarographic means non-invasive
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2230/00Measuring parameters of the user
    • A61M2230/20Blood composition characteristics
    • A61M2230/205Blood composition characteristics partial oxygen pressure (P-O2)

Definitions

  • the present invention relates to an emergency medical diagnosis and therapy system integrating several emergency medical equipment components into a single multi-functional unit within a convenient unitary casing, so that medical personnel can easily handle, access and implement a variety of important emergency tools and therapies.
  • AED Automatic External Defibrillator
  • O 2 and CO 2 oximetry and capnography devices for measuring arterial oxygenation, perfusion, O 2 Hb dissociation, tissue O 2 affinity, O 2 content, PO 2 , pulse oximetry saturation (SPO 2 ), or calculated oxygen saturation (%SO 2 ), because oxygen supplementation is critical in many emergency cardiopulmonary trauma situations.
  • O 2 and CO 2 oximetry and capnography devices for measuring arterial oxygenation, perfusion, O 2 Hb dissociation, tissue O 2 affinity, O 2 content, PO 2 , pulse oximetry saturation (SPO 2 ), or calculated oxygen saturation (%SO 2 ), because oxygen supplementation is critical in many emergency cardiopulmonary trauma situations.
  • SPO 2 pulse oximetry saturation
  • %SO 2 calculated oxygen saturation
  • first responder medical personnel have arrived on site to attend the victim with an AED defibrillator, but have been unable to resuscitate and keep alive the victim without supplemental oxygen on hand.
  • the victim was successfully defibrillated, but poor cell perfusion and toxic gases due to hypoxia prevented successful recovery.
  • the first responder arrived when the vital signs of the victim were declining but could do little until after the victim had begun fibrillation or expired.
  • supplemental oxygen administration may have insured successful survival of the defibrillated victim.
  • supplemental oxygen administration may have even precluded the need for the defibrillator.
  • emergency oxygen may have saved the victim by restoring the proper oxygenation and cell perfusion necessary for survival.
  • each piece of emergency equipment has typically been contained in its own housing or carrying case and used independently, as a stand-alone unit. Handling each piece of equipment separately, however, is inconvenient and cumbersome for medical personnel, who are often situated in awkward conditions and dangerous circumstances, such as at automobile accident sites. Moreover, the use of separate units ignores the interdependence of administration among the several emergency systems.
  • the present invention improves upon conventional arrangements by providing a medical care system comprising a plurality of interdependent emergency medical systems in one convenient unit.
  • An object of the invention is to provide a multifunctional emergency medical care system which places a plurality of interdependent emergency therapy devices in a single unit, and which is capable of guiding emergency medical personnel through emergency procedures which employ these devices simultaneously.
  • a further object of the invention is to provide an emergency medical therapy system having various devices which may be needed in a medical emergency, arranged in a housing unit in a manner allowing easy and convenient simultaneous access to each piece of equipment so that the user can utilize the equipment easily, quickly and efficiently.
  • FIG. 1 is a perspective view illustrating a first embodiment of the system
  • FIGS. 2 and 3 are perspective views illustrating variations of the embodiment of the system.
  • FIG. 4 is a system diagram of a fully integrated emergency medical system.
  • the first embodiment illustrates a housing 1 having two access openings for accessing two compartments 20 , 30 .
  • Two clear or opaque covers 10 , 12 cover the openings, respectively.
  • Handle 40 provides a means for carrying the unit to a victim or patient. This allows the user to have a free hand for other equipment, handling a patient or other important tasks. Moreover, with multiple pieces of equipment housed in the same unit, the user needs to only look at the face of the unit to view the various displays for the different systems.
  • FIG. 2 A convenient variation is illustrated in FIG. 2 . Instead of having two covers, this embodiment has one cover 14 for covering the openings of compartments 20 , 30 . In this embodiment, only a single cover 14 is removed to access the various compartments of the housing 1 .
  • FIG. 3 illustrates another variant of the invention.
  • a single cover 16 covers the entire front face of the housing 1 .
  • all the equipment pieces, including the displays and controls are covered with a preferably clear cover 16 .
  • This variation provides an advantage over the first and second described in units in that the displays 80 , speaker 50 , and other various controls 60 are protected by the cover 16 .
  • the cover 16 protects all the controls and displays, as well as the other equipment housed in the compartments from damage during storage or transport.
  • each compartment 20 , 30 holds one or more emergency medical devices.
  • the housing may combine a small-sized emergency oxygen unit (gas dispensing device) with an oximeter, a pulse display and electrode lead.
  • the emergency oxygen unit and oximetry system may be combined with an Automatic External Defibrillator (AED), corresponding controls and paddle electrodes.
  • AED Automatic External Defibrillator
  • the system may include a voice prompt system, selection controls and a speaker.
  • FIG. 1 shows housing 1 having a gas dispensing device 70 and an electrocardio defibrillation device 75 , the former comprising an oxygen cylinder with a mechanical or electromechanically controlled regulator, gauge, mask and hose in one compartment 20 .
  • the oxygen dispensing device may be functional in two modes: manual mode, in which an on/off switch or lever simply controls on/off supply of oxygen, generally delivered at a fixed or variable low flow rate, or automatic mode, where the flow rate is variable and may be controlled either according to program control or via feedback from the oximetry unit. Included within the variable flow rate mode may be a ventilation mode for non-breathing victims, wherein liter flow and pressure are subjected to time sequencing according to a cycle corresponding closely to requirements the victim needs to return to a normal breathing pattern. Compartment 30 stores defibrillator shock paddle electrodes 121 and oximeter electrode 107 . Several other component variations are also possible.
  • the defibrillation device and associated controls are contained entirely within the housing 1 , and may be of a form known in the art, as represented by U.S. Pat. Nos. 5,797,969, 5,792,190, 5,749,902, 5,700,281, 5,716,380, 5,605,150, 5,549,659, 5,529,063, 5,243,975, 5,785,043, 5,782,878, 5,749,913 and 5,662,690, each of which is incorporated by reference herein.
  • Several of these known defibrillators include voice prompting; the invention deviates from the known voice prompting scheme in that it also includes timely prompts for oximetry measurement and the administration of oxygen.
  • the protocols for the coordination of oximetry, oxygen administration and defibrillation are known generally in the medical arts, and therefore will not be explained in detail here.
  • Housing 1 holds power source 90 (battery), and the known controls 110 , 103 and displays 116 , 118 for the defibrillator and oximeter.
  • a speaker 50 is also housed in the housing 1 , to be used in conjunction with voice prompting tools and controls 113 .
  • controls 113 may be activated to enable the voice prompt system, which will guide the user through the steps necessary to operate the oxygen delivery, oximetry and defibrillation systems.
  • voice prompt systems are known in the portable defibrillation arts, however, according to the invention the prior art system may be modified to include prompts for effecting oxygen administration and oximetry measurements.
  • the voice prompt system may guide the user through the following protocols:
  • the voice prompt system may subsequently guide the user through switching of the ventilator mode to a regulated constant volume oxygen delivery mode which is more suitable for a breathing patient, and/or make other variations in oxygen delivery via program control or in response to oximetry readings.
  • a regulated constant volume oxygen delivery mode which is more suitable for a breathing patient
  • the integrated emergency medical systems of the invention may be substantially without interdependent control.
  • an emergency oxygen device can be combined with a defibrillation system, without any electromechanical connection therebetween.
  • voice prompting is added, the system may prompt only for defibrillation, or both defibrillation and oxygen delivery, for example.
  • FIG. 4 A more integrated and sophisticated system is illustrated in FIG. 4 .
  • a control processor controls operation of the various emergency medical units (oxygen delivery, defibrillation and oximetry), accepts feedback from each of these units, interfaces with and controls the voice prompt system, and drives the various displays 116 , 118 .
  • the processor controls defibrillator control 111 to generate an output waveform of a selected type in accordance with operator selection, and controls oximetry control section 102 in accordance with operator selection to perform various measurements and drives display 116 to display these measurements, e.g., pulse rate and blood O 2 related measurements, to the operator in real time.
  • processor 101 drives LCD screen 118 to display user instructions and prompts, respiratory monitoring and diagnosis, and cardio diagnosis and monitoring data.
  • Processor 101 also interfaces with voice prompt system 112 to cause the latter to deliver a selected sequence of voice prompts via speaker 114 according to predetermined protocols, operator input and the condition of the patient as measured by the system, including sensors 107 , in a manner generally similar to that known in the art.
  • the oxygen delivery system 105 can be controlled either manually or by automatic control.
  • the system 105 may deliver oxygen at a fixed liter flow and pressure, or at a plurality of flow rates.
  • automatic mode the system 105 may, in response to a control signal from processor 101 (or user input), deliver a time sequenced flow rate and pressure to operate as a ventilator.
  • a control signal from processor 101 or feedback from oximetry control 102 the system 105 can be switched from ventilator mode to fixed flow rate mode, the latter being more suitable for patients capable of breathing on their own.
  • Other fixed or variable flow rates may be elected via control signals from processor 101 or feedback from oximetry control 102 .
  • a single therapy unit can combine emergency cardiac defibrillation and pulmonary oxygen administration in one convenient casing.
  • An electrocardio diagnosis/monitoring/defibrillation device can be combined with electropulmonary blood oximetry/oxygen administration, including automated patient cardiopulmonary oxygen assessment and voice prompted therapy and resuscitation.

Abstract

This invention provides a medical diagnosis and therapy system particularly adapted for the combined uses of emergency cardiac defibrillation and pulmonary oxygen administration, including automated patient cardiopulmonary assessment and voice prompted therapy and resuscitation: electrocardio diagnosis/monitoring/defibrillation and electropulmonary blood oximetry/oxygen administration. The system has a case having access opening(s) and clear cover(s) to view the apparatus and contents, to dispel all doubt as to know how to open the case and to make it easy for a user to quickly find and use the various components.

Description

Notice: More than one reissue application has been filed for the reissue of U.S. Pat. No. 6,327,497; the reissue applications are applications Ser. Nos. 10/457,958 (the present application filed on Jun. 10, 2003 ), and 10/727,325, 10/727,327, and 10/727,328 (which were all filed on Dec. 3, 2003 and are continuation reissue applications of reissue application Ser. No. 10/457,958 ).
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to an emergency medical diagnosis and therapy system integrating several emergency medical equipment components into a single multi-functional unit within a convenient unitary casing, so that medical personnel can easily handle, access and implement a variety of important emergency tools and therapies.
2. Description of the Related Art
Conventional emergency medical equipment has been improved over the years to advance the ability of emergency medical personnel to administer vital care to patients. Such advancements include voice prompting, automated and individualized patient assessments and self-maintenance of the equipment.
For example, a variety of small, portable on-site devices are available for administering electric pulse therapy in emergency situations of myocardial infarcation and to defibrillate and restart regular heart pump rhythms necessary for sustaining the life of the patient. Most of these Automatic External Defibrillator (AED) devices include electro-cardio diagnosis and monitoring of the patient, and many include voice prompting for the user. There are also known O2 and CO2 oximetry and capnography devices for measuring arterial oxygenation, perfusion, O2Hb dissociation, tissue O2 affinity, O2 content, PO2, pulse oximetry saturation (SPO2), or calculated oxygen saturation (%SO2), because oxygen supplementation is critical in many emergency cardiopulmonary trauma situations. For this latter purpose, there exist a wide variety of oxygen resuscitators, inhalators, or ventilators.
Often, first responder medical personnel have arrived on site to attend the victim with an AED defibrillator, but have been unable to resuscitate and keep alive the victim without supplemental oxygen on hand. In many instances the victim was successfully defibrillated, but poor cell perfusion and toxic gases due to hypoxia prevented successful recovery. In many other instances, the first responder arrived when the vital signs of the victim were declining but could do little until after the victim had begun fibrillation or expired. In the first instances, supplemental oxygen administration may have insured successful survival of the defibrillated victim. In the second instances, supplemental oxygen administration may have even precluded the need for the defibrillator. In both instances, emergency oxygen may have saved the victim by restoring the proper oxygenation and cell perfusion necessary for survival.
Heretofore, each piece of emergency equipment has typically been contained in its own housing or carrying case and used independently, as a stand-alone unit. Handling each piece of equipment separately, however, is inconvenient and cumbersome for medical personnel, who are often situated in awkward conditions and dangerous circumstances, such as at automobile accident sites. Moreover, the use of separate units ignores the interdependence of administration among the several emergency systems.
SUMMARY OF THE INVENTION
Accordingly, the present invention improves upon conventional arrangements by providing a medical care system comprising a plurality of interdependent emergency medical systems in one convenient unit.
An object of the invention is to provide a multifunctional emergency medical care system which places a plurality of interdependent emergency therapy devices in a single unit, and which is capable of guiding emergency medical personnel through emergency procedures which employ these devices simultaneously.
A further object of the invention is to provide an emergency medical therapy system having various devices which may be needed in a medical emergency, arranged in a housing unit in a manner allowing easy and convenient simultaneous access to each piece of equipment so that the user can utilize the equipment easily, quickly and efficiently.
Additional features and advantages of the invention will be set forth in the description which follows, and in part will be apparent from the description, or may be learned by practice of the invention. The objectives and other advantages of the invention will be realized and attained by the structure particularly pointed out in the written description and claims hereof as well as the appended drawings.
BRIEF DESCRIPTION OF THE DRAWINGS
The accompanying drawings, which are included to provide a further understanding of the invention and are incorporated in and constitute a part of this specification, illustrate embodiments of the invention and together with the description serve to explain the principles of the invention.
In the drawings:
FIG. 1 is a perspective view illustrating a first embodiment of the system;
FIGS. 2 and 3 are perspective views illustrating variations of the embodiment of the system, and
FIG. 4 is a system diagram of a fully integrated emergency medical system.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
Reference will now be made in detail to the preferred embodiments of the present invention, examples of which are illustrated in the accompanying drawings.
Referring to FIG. 1, the first embodiment illustrates a housing 1 having two access openings for accessing two compartments 20, 30. Two clear or opaque covers 10, 12 cover the openings, respectively.
Handle 40 provides a means for carrying the unit to a victim or patient. This allows the user to have a free hand for other equipment, handling a patient or other important tasks. Moreover, with multiple pieces of equipment housed in the same unit, the user needs to only look at the face of the unit to view the various displays for the different systems.
Thus, consolidating multiple medical devices into one unit provides easier handling and convenience for the user.
A convenient variation is illustrated in FIG. 2. Instead of having two covers, this embodiment has one cover 14 for covering the openings of compartments 20, 30. In this embodiment, only a single cover 14 is removed to access the various compartments of the housing 1.
This provides an advantage over the first embodiment since the user only needs to remove a single cover to access all the equipment. During an emergency, when time is of the essence, this provides an important advantage for the user of saving time. The rest of this variation is similar to the first embodiment and thus, the features are represented by the same reference numerals and a detailed description is omitted.
FIG. 3 illustrates another variant of the invention. A single cover 16 covers the entire front face of the housing 1. Thus, all the equipment pieces, including the displays and controls are covered with a preferably clear cover 16.
This variation provides an advantage over the first and second described in units in that the displays 80, speaker 50, and other various controls 60 are protected by the cover 16. Thus, during use the operator only needs to remove a single cover piece to access all components in the housing. After use, the single cover protects all the controls and displays, as well as the other equipment housed in the compartments from damage during storage or transport.
As noted above, each compartment 20, 30 holds one or more emergency medical devices. Several component variations are possible. For instance, the housing may combine a small-sized emergency oxygen unit (gas dispensing device) with an oximeter, a pulse display and electrode lead. As another alternative, either or both of the emergency oxygen unit and oximetry system may be combined with an Automatic External Defibrillator (AED), corresponding controls and paddle electrodes. In either case, the system may include a voice prompt system, selection controls and a speaker. Many other combinations are possible, as will be evident to those of skill in the art.
FIG. 1 shows housing 1 having a gas dispensing device 70 and an electrocardio defibrillation device 75, the former comprising an oxygen cylinder with a mechanical or electromechanically controlled regulator, gauge, mask and hose in one compartment 20.
The oxygen dispensing device may be functional in two modes: manual mode, in which an on/off switch or lever simply controls on/off supply of oxygen, generally delivered at a fixed or variable low flow rate, or automatic mode, where the flow rate is variable and may be controlled either according to program control or via feedback from the oximetry unit. Included within the variable flow rate mode may be a ventilation mode for non-breathing victims, wherein liter flow and pressure are subjected to time sequencing according to a cycle corresponding closely to requirements the victim needs to return to a normal breathing pattern. Compartment 30 stores defibrillator shock paddle electrodes 121 and oximeter electrode 107. Several other component variations are also possible.
The defibrillation device and associated controls are contained entirely within the housing 1, and may be of a form known in the art, as represented by U.S. Pat. Nos. 5,797,969, 5,792,190, 5,749,902, 5,700,281, 5,716,380, 5,605,150, 5,549,659, 5,529,063, 5,243,975, 5,785,043, 5,782,878, 5,749,913 and 5,662,690, each of which is incorporated by reference herein. Several of these known defibrillators include voice prompting; the invention deviates from the known voice prompting scheme in that it also includes timely prompts for oximetry measurement and the administration of oxygen. The protocols for the coordination of oximetry, oxygen administration and defibrillation are known generally in the medical arts, and therefore will not be explained in detail here.
Housing 1 holds power source 90 (battery), and the known controls 110, 103 and displays 116, 118 for the defibrillator and oximeter. A speaker 50 is also housed in the housing 1, to be used in conjunction with voice prompting tools and controls 113.
An example of the use of the invention will now be described, in order to better explain the functionality of the invention.
At an accident scene, for example, it is determined that a victim is currently in cardiac arrest. Upon enabling the unit of the invention, controls 113 may be activated to enable the voice prompt system, which will guide the user through the steps necessary to operate the oxygen delivery, oximetry and defibrillation systems. Such voice prompt systems are known in the portable defibrillation arts, however, according to the invention the prior art system may be modified to include prompts for effecting oxygen administration and oximetry measurements.
For example, in this example of a non-breathing victim in cardiac arrest, the voice prompt system may guide the user through the following protocols:
initiate and deploy defibrillation system and paddles
administer electroshock treatment
initiate oxygen delivery in ventilator mode
deploy oximetry measuring electrode.
If the defibrillation is successful, as determined by a pulse reading, the voice prompt system may subsequently guide the user through switching of the ventilator mode to a regulated constant volume oxygen delivery mode which is more suitable for a breathing patient, and/or make other variations in oxygen delivery via program control or in response to oximetry readings. Naturally, many variations are possible as will be readily apparent to those of skill in the art.
In its most simple form, the integrated emergency medical systems of the invention may be substantially without interdependent control. For example, an emergency oxygen device can be combined with a defibrillation system, without any electromechanical connection therebetween. In such a case, if voice prompting is added, the system may prompt only for defibrillation, or both defibrillation and oxygen delivery, for example.
A more integrated and sophisticated system is illustrated in FIG. 4. In this system, a control processor controls operation of the various emergency medical units (oxygen delivery, defibrillation and oximetry), accepts feedback from each of these units, interfaces with and controls the voice prompt system, and drives the various displays 116, 118. When the operator selects AED or oximetry functions by operating inputs 103 110, the processor controls defibrillator control 111 to generate an output waveform of a selected type in accordance with operator selection, and controls oximetry control section 102 in accordance with operator selection to perform various measurements and drives display 116 to display these measurements, e.g., pulse rate and blood O2 related measurements, to the operator in real time. Similarly, processor 101 drives LCD screen 118 to display user instructions and prompts, respiratory monitoring and diagnosis, and cardio diagnosis and monitoring data.
Processor 101 also interfaces with voice prompt system 112 to cause the latter to deliver a selected sequence of voice prompts via speaker 114 according to predetermined protocols, operator input and the condition of the patient as measured by the system, including sensors 107, in a manner generally similar to that known in the art.
As noted previously, the oxygen delivery system 105 can be controlled either manually or by automatic control. In a manual mode, for example, the system 105 may deliver oxygen at a fixed liter flow and pressure, or at a plurality of flow rates. In automatic mode, the system 105 may, in response to a control signal from processor 101 (or user input), deliver a time sequenced flow rate and pressure to operate as a ventilator. In response to user input, a control signal from processor 101 or feedback from oximetry control 102, the system 105 can be switched from ventilator mode to fixed flow rate mode, the latter being more suitable for patients capable of breathing on their own. Other fixed or variable flow rates may be elected via control signals from processor 101 or feedback from oximetry control 102.
With the present invention, a single therapy unit can combine emergency cardiac defibrillation and pulmonary oxygen administration in one convenient casing. An electrocardio diagnosis/monitoring/defibrillation device can be combined with electropulmonary blood oximetry/oxygen administration, including automated patient cardiopulmonary oxygen assessment and voice prompted therapy and resuscitation.
Although described herein as an interactive combination of oxygen delivery, oximetry and defibrillation systems, it will be apparent that the invention could be comprised of a combination of any two of these systems, with associated modification of the control mechanisms and voice prompts, as will be evident to those of skill in the art.

Claims (20)

What is claimed is:
1. A hand-held multi-component emergency medical system, comprising;
a breathable oxygen delivery system;
a defibrillation system; and
a unitary casing for housing said oxygen delivery system and said defibrillation system.
2. A hand-held multi-component emergency medical system, comprising;
a breathable oxygen delivery system;
a oximetry system;
a defibrillation system; and
a unitary casing for housing said oxygen delivery system, said oximetry system and said defibrillation system.
3. A system as claimed in claims 1 or 2, further comprising a voice prompting system for directing a user through a protocol employing said defibrillation system.
4. A system as claimed in claims 1 or 2, further comprising a voice prompting system for directing a user through a protocol employing said defibrillation system and said oxygen delivery system.
5. A system as claimed in claim 2, further comprising a voice prompting system for directing a user through a protocol employing said defibrillation system, said oxygen delivery system and said oximetry system.
6. A system as claimed in claim 5, further comprising a control processor for controlling operations of at least said defibrillation system, said voice prompting system and said oximetry system.
7. A system as claimed in claim 6, wherein said control processor further controls said oxygen delivery system.
8. A system as claimed in claim 7, further comprising a feedback control from said oximetry system to said oxygen delivery system to regulate oxygen delivery.
9. A system as claimed in claim 8, further including a display system coupled to said oximetry system.
10. A system as claimed in claim 8, further including means for modal control of said oxygen delivery system, for switching or prompting a user to switch said oxygen delivery system between a variable flow rate/pressure cyclic ventilator mode and a fixed flow rate mode.
11. A multi-component emergency medical system of a size and weight which can easily be carried by a single hand comprising:
a breathable oxygen delivery system;
a defibrillation system; and
a unitary casing for housing said oxygen delivery system and said defibrillation system; the cumulative size and weight of the unitary casing, oxygen delivery system, and defibrillation system such that the unitary casing, when housing the oxygen delivery system and defibrillation system, can be easily carried by a single hand.
12. A multi-component emergency medical system of a size and weight which can easily be carried by a single hand comprising:
a breathable oxygen delivery system;
a oximetry system;
a defibrillation system; and
a unitary casing for housing said oxygen delivery system, said oximetry system, and said defibrillation system; the cumulative size and weight of the unitary casing, oxygen delivery system, oximetry system, and defibrillation system such that the unitary casing, when housing the oxygen delivery system, oximetry system and defibrillation system, can be easily carried by a single hand.
13. A system as claimed in claims 11 or 12, further comprising a voice prompting system for directing a user through a protocol employing said defibrillation system.
14. A system as claimed in claims 11 or 12, further comprising a voice prompting system for directing a user through a protocol employing said defibrillation system and said oxygen delivery system.
15. A system as claimed in claim 12, further comprising a voice prompting system for directing a user through a protocol employing said defibrillation system, said oxygen delivery system and said oximetry system.
16. A system as claimed in claim 15, further comprising a control processor for controlling operations of at least said defibrillation system, said voice prompting system and said oximetry system.
17. A system as claimed in claim 16, wherein said control processor further controls said oxygen delivery system.
18. A system as claimed in claim 17, further comprising a feedback control from said oximetry system to said oxygen delivery system to regulate oxygen delivery.
19. A system as claimed in claim 18, further including a display system coupled to said oximetry system.
20. A system as claimed in claim 18, further including means for modal control of said oxygen delivery system, for switching or prompting a user to switch said oxygen delivery system between a variable flow rate/pressure cyclic ventilator mode and a fixed flow rate mode.
US10/457,958 1998-09-11 2003-06-10 Portable emergency oxygen and automatic external defibrillator (AED) therapy system Expired - Lifetime USRE38533E1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/457,958 USRE38533E1 (en) 1998-09-11 2003-06-10 Portable emergency oxygen and automatic external defibrillator (AED) therapy system
US10/727,328 USRE40365E1 (en) 1998-09-11 2003-12-03 Portable emergency oxygen and automatic external defibrillator (AED) therapy system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/151,300 US6327497B1 (en) 1998-09-11 1998-09-11 Portable emergency oxygen and automatic external defibrillator (AED) therapy system
US10/457,958 USRE38533E1 (en) 1998-09-11 2003-06-10 Portable emergency oxygen and automatic external defibrillator (AED) therapy system

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/151,300 Reissue US6327497B1 (en) 1998-09-11 1998-09-11 Portable emergency oxygen and automatic external defibrillator (AED) therapy system

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US09/151,300 Continuation US6327497B1 (en) 1998-09-11 1998-09-11 Portable emergency oxygen and automatic external defibrillator (AED) therapy system

Publications (1)

Publication Number Publication Date
USRE38533E1 true USRE38533E1 (en) 2004-06-15

Family

ID=32396579

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/457,958 Expired - Lifetime USRE38533E1 (en) 1998-09-11 2003-06-10 Portable emergency oxygen and automatic external defibrillator (AED) therapy system
US10/727,328 Expired - Lifetime USRE40365E1 (en) 1998-09-11 2003-12-03 Portable emergency oxygen and automatic external defibrillator (AED) therapy system

Family Applications After (1)

Application Number Title Priority Date Filing Date
US10/727,328 Expired - Lifetime USRE40365E1 (en) 1998-09-11 2003-12-03 Portable emergency oxygen and automatic external defibrillator (AED) therapy system

Country Status (1)

Country Link
US (2) USRE38533E1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060249155A1 (en) * 2005-05-03 2006-11-09 China Resource Group, Inc. Portable non-invasive ventilator with sensor
EP1859830A1 (en) 2006-04-01 2007-11-28 Weinmann Geräte für Medizin GmbH & Co. KG Emergency supply device
US20080095607A1 (en) * 2006-10-24 2008-04-24 Bradley Hagstrom Method and system for supplying portable gas cylinders
US20080110925A1 (en) * 2006-10-24 2008-05-15 Bradley Hagstrom Emergency medical gas cylinder and system
US20080121554A1 (en) * 2006-11-29 2008-05-29 Richard Townsend Portable medical kit
US20130220856A1 (en) * 2010-11-11 2013-08-29 Koninklijke Philips Electronics N.V. Carrying case for defibrillator and accessories
US8695591B2 (en) 2010-05-26 2014-04-15 Lloyd Verner Olson Apparatus and method of monitoring and responding to respiratory depression
US8942800B2 (en) 2012-04-20 2015-01-27 Cardiac Science Corporation Corrective prompting system for appropriate chest compressions

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6024089A (en) 1997-03-14 2000-02-15 Nelcor Puritan Bennett Incorporated System and method for setting and displaying ventilator alarms
JP2008531136A (en) 2005-03-01 2008-08-14 レスメド リミテッド Recognition system for a device that delivers breathable gas to a patient
EP1800705B1 (en) * 2005-12-21 2018-01-24 ResMed Limited Identification system and method for mask and ventilator components
US8021310B2 (en) 2006-04-21 2011-09-20 Nellcor Puritan Bennett Llc Work of breathing display for a ventilation system
US7784461B2 (en) 2006-09-26 2010-08-31 Nellcor Puritan Bennett Llc Three-dimensional waveform display for a breathing assistance system
US7980244B2 (en) * 2007-07-17 2011-07-19 Neoforce Group, Inc. Emergency pulmonary resuscitation device
US9119925B2 (en) 2009-12-04 2015-09-01 Covidien Lp Quick initiation of respiratory support via a ventilator user interface
US8335992B2 (en) 2009-12-04 2012-12-18 Nellcor Puritan Bennett Llc Visual indication of settings changes on a ventilator graphical user interface
US8924878B2 (en) 2009-12-04 2014-12-30 Covidien Lp Display and access to settings on a ventilator graphical user interface
US9262588B2 (en) 2009-12-18 2016-02-16 Covidien Lp Display of respiratory data graphs on a ventilator graphical user interface
US8499252B2 (en) 2009-12-18 2013-07-30 Covidien Lp Display of respiratory data graphs on a ventilator graphical user interface
US8428751B2 (en) 2010-03-18 2013-04-23 Covidien Lp Electrode delivery system
US20120103335A1 (en) * 2010-10-29 2012-05-03 Danny Chagai Zeevi Smoke alarm triggered emergency portable breathing apparatus
US10362967B2 (en) 2012-07-09 2019-07-30 Covidien Lp Systems and methods for missed breath detection and indication
US9072885B2 (en) 2012-09-27 2015-07-07 Covidien Lp Systems for hydrating defibrillation electrodes
WO2015175578A1 (en) * 2014-05-12 2015-11-19 Michael Shen Directing treatment of cardiovascular events by non-specialty caregivers
US9950129B2 (en) 2014-10-27 2018-04-24 Covidien Lp Ventilation triggering using change-point detection
US11672934B2 (en) 2020-05-12 2023-06-13 Covidien Lp Remote ventilator adjustment

Citations (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3613677A (en) * 1964-12-07 1971-10-19 Abbott Lab Portable resuscitator
US4109828A (en) * 1977-01-24 1978-08-29 Oxygen Therapy Institute, Inc. Inhalation apparatus
US4197842A (en) * 1978-03-07 1980-04-15 Anderson Edmund M Portable pulmonary respirator, intermittent positive pressure breathing machine and emergency oxygen equipment
US4198963A (en) * 1978-10-19 1980-04-22 Michigan Instruments, Inc. Cardiopulmonary resuscitator, defibrillator and monitor
US4241833A (en) * 1979-08-20 1980-12-30 Luebcke Dean E Paramedic kit
US4257415A (en) * 1979-05-07 1981-03-24 Howard Rubin Portable nebulizer treatment apparatus
US4889116A (en) * 1987-11-17 1989-12-26 Phospho Energetics, Inc. Adaptive control of neonatal fractional inspired oxygen
US5207303A (en) * 1991-07-15 1993-05-04 Oswalt Brenda K Medical emergency carrying case
US5243975A (en) * 1991-07-31 1993-09-14 Physio-Control Corporation Defibrillator with user-interactive screen display
US5308320A (en) * 1990-12-28 1994-05-03 University Of Pittsburgh Of The Commonwealth System Of Higher Education Portable and modular cardiopulmonary bypass apparatus and associated aortic balloon catheter and associated method
US5494051A (en) * 1994-09-14 1996-02-27 Cardi-Act, L.L.C. Patient-transport apparatus
US5529063A (en) * 1994-03-08 1996-06-25 Physio-Control Corporation Modular system for controlling the function of a medical electronic device
US5549659A (en) * 1994-11-04 1996-08-27 Physio-Control Corporation Communication interface for transmitting and receiving serial data between medical instruments
US5605150A (en) * 1994-11-04 1997-02-25 Physio-Control Corporation Electrical interface for a portable electronic physiological instrument having separable components
US5626151A (en) * 1996-03-07 1997-05-06 The United States Of America As Represented By The Secretary Of The Army Transportable life support system
US5626131A (en) * 1995-06-07 1997-05-06 Salter Labs Method for intermittent gas-insufflation
US5653685A (en) * 1990-10-10 1997-08-05 Lrt, Inc. Method of providing circulation via lung expansion and deflation
US5662690A (en) * 1994-12-08 1997-09-02 Heartstream, Inc. Defibrillator with training features and pause actuator
US5700281A (en) * 1996-06-04 1997-12-23 Survivalink Corporation Stage and state monitoring automated external defibrillator
US5716380A (en) * 1996-04-15 1998-02-10 Physio-Control Corporation Common therapy/data port for a portable defibrillator
US5749902A (en) * 1996-05-22 1998-05-12 Survivalink Corporation Recorded data correction method and apparatus for isolated clock systems
US5749913A (en) * 1994-09-28 1998-05-12 Heartstream, Inc. System and method for collecting and storing electrotherapy data on a detachable memory device
US5782878A (en) * 1994-12-07 1998-07-21 Heartstream, Inc. External defibrillator with communications network link
US5792190A (en) * 1995-08-01 1998-08-11 Survivalink Corporation Automated external defibrillator operator interface
US5797969A (en) * 1995-08-01 1998-08-25 Survivalink Corporation One button lid activated automatic external defibrillator
US5895354A (en) * 1996-06-26 1999-04-20 Simmons; Paul L. Integrated medical diagnostic center
US5918331A (en) * 1994-08-05 1999-07-06 Buchanan Aircraft Corporation Limited Portable intensive care unit with medical equipment
US5975081A (en) * 1996-06-21 1999-11-02 Northrop Grumman Corporation Self-contained transportable life support system
US6046046A (en) * 1997-09-23 2000-04-04 Hassanein; Waleed H. Compositions, methods and devices for maintaining an organ
US6142962A (en) * 1997-08-27 2000-11-07 Emergency Medical Systems, Inc. Resuscitation device having a motor driven belt to constrict/compress the chest
US6186977B1 (en) * 1997-04-24 2001-02-13 Joseph L. Riley Anesthesia Associates Apparatus and method for total intravenous anesthesia delivery and associated patient monitoring

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4359048A (en) * 1979-01-26 1982-11-16 Banyaszati Aknamelyito Vallalat Automatically startable oxygen rescue device
US4438764A (en) * 1981-04-20 1984-03-27 Salvatore Eppolito Oxygen caddy
US4944292A (en) * 1985-03-15 1990-07-31 Louise M. Gaeke Mobile resuscitating apparatus
US4685456A (en) * 1985-12-02 1987-08-11 Mary Smart Self-retracting oxygen tubing
US4932402A (en) * 1986-04-11 1990-06-12 Puritan-Bennett Corporation Inspiration oxygen saver
US4739913A (en) * 1986-04-24 1988-04-26 Michael C. Moore Backpack type carrier for portable oxygen dispensers
US4788973A (en) * 1986-05-13 1988-12-06 John Kirchgeorg Gas dispensing system and case therefor
US5682877A (en) * 1991-12-30 1997-11-04 Mondry; Adolph J. System and method for automatically maintaining a blood oxygen saturation level
US5706801A (en) * 1995-07-28 1998-01-13 Caire Inc. Sensing and communications system for use with oxygen delivery apparatus
US6325978B1 (en) * 1998-08-04 2001-12-04 Ntc Technology Inc. Oxygen monitoring and apparatus
US6532958B1 (en) * 1997-07-25 2003-03-18 Minnesota Innovative Technologies & Instruments Corporation Automated control and conservation of supplemental respiratory oxygen
US6199550B1 (en) * 1998-08-14 2001-03-13 Bioasyst, L.L.C. Integrated physiologic sensor system
US20020195105A1 (en) * 2000-01-13 2002-12-26 Brent Blue Method and apparatus for providing and controlling oxygen supply
DE20122937U1 (en) * 2000-12-29 2010-09-30 Resmed Ltd., North Ryde Characterization of mask systems

Patent Citations (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3613677A (en) * 1964-12-07 1971-10-19 Abbott Lab Portable resuscitator
US4109828A (en) * 1977-01-24 1978-08-29 Oxygen Therapy Institute, Inc. Inhalation apparatus
US4197842A (en) * 1978-03-07 1980-04-15 Anderson Edmund M Portable pulmonary respirator, intermittent positive pressure breathing machine and emergency oxygen equipment
US4198963A (en) * 1978-10-19 1980-04-22 Michigan Instruments, Inc. Cardiopulmonary resuscitator, defibrillator and monitor
US4257415A (en) * 1979-05-07 1981-03-24 Howard Rubin Portable nebulizer treatment apparatus
US4241833A (en) * 1979-08-20 1980-12-30 Luebcke Dean E Paramedic kit
US4889116A (en) * 1987-11-17 1989-12-26 Phospho Energetics, Inc. Adaptive control of neonatal fractional inspired oxygen
US5653685A (en) * 1990-10-10 1997-08-05 Lrt, Inc. Method of providing circulation via lung expansion and deflation
US5308320A (en) * 1990-12-28 1994-05-03 University Of Pittsburgh Of The Commonwealth System Of Higher Education Portable and modular cardiopulmonary bypass apparatus and associated aortic balloon catheter and associated method
US5207303A (en) * 1991-07-15 1993-05-04 Oswalt Brenda K Medical emergency carrying case
US5243975A (en) * 1991-07-31 1993-09-14 Physio-Control Corporation Defibrillator with user-interactive screen display
US5529063A (en) * 1994-03-08 1996-06-25 Physio-Control Corporation Modular system for controlling the function of a medical electronic device
US5918331A (en) * 1994-08-05 1999-07-06 Buchanan Aircraft Corporation Limited Portable intensive care unit with medical equipment
US5494051A (en) * 1994-09-14 1996-02-27 Cardi-Act, L.L.C. Patient-transport apparatus
US5749913A (en) * 1994-09-28 1998-05-12 Heartstream, Inc. System and method for collecting and storing electrotherapy data on a detachable memory device
US5785043A (en) * 1994-09-28 1998-07-28 Heartstream, Inc. Method of creating a report showing the time correlation between recorded medical events
US5549659A (en) * 1994-11-04 1996-08-27 Physio-Control Corporation Communication interface for transmitting and receiving serial data between medical instruments
US5605150A (en) * 1994-11-04 1997-02-25 Physio-Control Corporation Electrical interface for a portable electronic physiological instrument having separable components
US5782878A (en) * 1994-12-07 1998-07-21 Heartstream, Inc. External defibrillator with communications network link
US5662690A (en) * 1994-12-08 1997-09-02 Heartstream, Inc. Defibrillator with training features and pause actuator
US5626131A (en) * 1995-06-07 1997-05-06 Salter Labs Method for intermittent gas-insufflation
US5792190A (en) * 1995-08-01 1998-08-11 Survivalink Corporation Automated external defibrillator operator interface
US5797969A (en) * 1995-08-01 1998-08-25 Survivalink Corporation One button lid activated automatic external defibrillator
US5626151A (en) * 1996-03-07 1997-05-06 The United States Of America As Represented By The Secretary Of The Army Transportable life support system
US5716380A (en) * 1996-04-15 1998-02-10 Physio-Control Corporation Common therapy/data port for a portable defibrillator
US5749902A (en) * 1996-05-22 1998-05-12 Survivalink Corporation Recorded data correction method and apparatus for isolated clock systems
US5700281A (en) * 1996-06-04 1997-12-23 Survivalink Corporation Stage and state monitoring automated external defibrillator
US5975081A (en) * 1996-06-21 1999-11-02 Northrop Grumman Corporation Self-contained transportable life support system
US5895354A (en) * 1996-06-26 1999-04-20 Simmons; Paul L. Integrated medical diagnostic center
US6186977B1 (en) * 1997-04-24 2001-02-13 Joseph L. Riley Anesthesia Associates Apparatus and method for total intravenous anesthesia delivery and associated patient monitoring
US6142962A (en) * 1997-08-27 2000-11-07 Emergency Medical Systems, Inc. Resuscitation device having a motor driven belt to constrict/compress the chest
US6046046A (en) * 1997-09-23 2000-04-04 Hassanein; Waleed H. Compositions, methods and devices for maintaining an organ

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
"CPR Prompt-AED/CPR Total Trainer," CPR Prompt, Inc., Jan. 1998.* *
"CPR Prompt—AED/CPR Total Trainer," CPR Prompt, Inc., Jan. 1998.*
"First Save: The simple, safe and affordable life saving solution," Survival Link Corporation, 1997.* *
"It's a fire extinguisher your people can use to put out a cardiac arrest," Physio-Control Corporation, 1998.* *
"paraPac is for CPR," pneuPAC, Inc., 1998. *
"When survival is measured in minutes," Heartstream, Inc. 1996.* *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060249155A1 (en) * 2005-05-03 2006-11-09 China Resource Group, Inc. Portable non-invasive ventilator with sensor
EP1859830A1 (en) 2006-04-01 2007-11-28 Weinmann Geräte für Medizin GmbH & Co. KG Emergency supply device
US20080095607A1 (en) * 2006-10-24 2008-04-24 Bradley Hagstrom Method and system for supplying portable gas cylinders
US20080110925A1 (en) * 2006-10-24 2008-05-15 Bradley Hagstrom Emergency medical gas cylinder and system
US8002514B2 (en) 2006-10-24 2011-08-23 Praxair Technology, Inc. Method and system for supplying portable gas cylinders
US8162587B2 (en) 2006-10-24 2012-04-24 Praxair Technology, Inc. Method and system for supplying portable gas cylinders
USRE45572E1 (en) 2006-10-24 2015-06-23 Praxair Technology, Inc. Method and system for supplying portable gas cylinders
US20080121554A1 (en) * 2006-11-29 2008-05-29 Richard Townsend Portable medical kit
US8695591B2 (en) 2010-05-26 2014-04-15 Lloyd Verner Olson Apparatus and method of monitoring and responding to respiratory depression
US20130220856A1 (en) * 2010-11-11 2013-08-29 Koninklijke Philips Electronics N.V. Carrying case for defibrillator and accessories
US8910788B2 (en) * 2010-11-11 2014-12-16 Koninklijke Philips N.V. Carrying case for defibrillator and accessories
US8942800B2 (en) 2012-04-20 2015-01-27 Cardiac Science Corporation Corrective prompting system for appropriate chest compressions

Also Published As

Publication number Publication date
USRE40365E1 (en) 2008-06-10

Similar Documents

Publication Publication Date Title
US6327497B1 (en) Portable emergency oxygen and automatic external defibrillator (AED) therapy system
USRE38533E1 (en) Portable emergency oxygen and automatic external defibrillator (AED) therapy system
US10307099B2 (en) System for controlled defibrillation and ventilation
US11872342B2 (en) Wireless ventilator reporting
US11596753B2 (en) Automatic patient ventilator system and method
CN105597207B (en) Medical ventilation system with ventilation quality feedback unit
US7980244B2 (en) Emergency pulmonary resuscitation device
US7672720B2 (en) Resuscitation and life support system, method and apparatus
US7774060B2 (en) System for providing emergency medical care with real-time instructions and associated methods
US10245437B2 (en) System and method for providing noninvasive ventilation
BG3457U1 (en) Portable device for application of gas mixture in patient cardiopulmonary resuscitation
US11013876B2 (en) System and method for providing ventilation
DE102019003535A1 (en) Mobile chest compressions and ventilation device
US20220106189A1 (en) Stabilized and no2-inhibited nitric oxide generating gels for inhaled nitric oxide therapy
WO2023178225A1 (en) Respiratory distress management system and mechanical features

Legal Events

Date Code Title Description
FPAY Fee payment

Year of fee payment: 4