US20120182896A1 - Interference measurement method and apparatus for user equipment having multiple heterogeneous communication modules in wireless communication system - Google Patents

Interference measurement method and apparatus for user equipment having multiple heterogeneous communication modules in wireless communication system Download PDF

Info

Publication number
US20120182896A1
US20120182896A1 US13/351,677 US201213351677A US2012182896A1 US 20120182896 A1 US20120182896 A1 US 20120182896A1 US 201213351677 A US201213351677 A US 201213351677A US 2012182896 A1 US2012182896 A1 US 2012182896A1
Authority
US
United States
Prior art keywords
measurement
frequency
interference
user equipment
affected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/351,677
Inventor
Jae Hyuk Jang
Soeng Hun Kim
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Priority to US13/351,677 priority Critical patent/US20120182896A1/en
Assigned to SAMSUNG ELECTRONICS CO., LTD. reassignment SAMSUNG ELECTRONICS CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: JANG, JAE HYUK, KIM, SOENG HUN
Publication of US20120182896A1 publication Critical patent/US20120182896A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/22Processing or transfer of terminal data, e.g. status or physical capabilities
    • H04W8/24Transfer of terminal data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/18Selecting a network or a communication service
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/04Error control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/042Public Land Mobile systems, e.g. cellular systems
    • H04W84/045Public Land Mobile systems, e.g. cellular systems using private Base Stations, e.g. femto Base Stations, home Node B
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/06Terminal devices adapted for operation in multiple networks or having at least two operational modes, e.g. multi-mode terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/60Context-dependent security
    • H04W12/65Environment-dependent, e.g. using captured environmental data
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to a wireless communication system. More particularly, the present invention relates to an interference measurement method that enables a user equipment having multiple heterogeneous communication modules to avoid coexistence interference.
  • ISM Industrial Scientific Medical
  • FIG. 3 illustrates 3GPP frequency bands for mobile communication around the ISM band. As indicated by FIG. 3 , use of WiFi channel 1 while Band 40 is used for a mobile communication cell may cause serious interference, and use of WiFi channel 13 or 14 while Band 7 is used for a mobile communication cell may cause serious interference.
  • an aspect of the present invention is to provide a method and apparatus that enable a user equipment having multiple heterogeneous communication modules for LTE, WiFi, Bluetooth and GPS to perform interference measurement so as to avoid coexistence interference.
  • a user equipment identifies at least one frequency that is likely to be affected by interference and notifies such frequency to a base station, so that the base station can configure suitable measurement.
  • the user equipment may also notify non-preferred frequency bands to the base station so that the base station may take actions to avoid interference.
  • a measurement method for a user equipment in a wireless communication system includes identifying, upon detection of activation of an interfering communication technology that potentially causes interference to cellular communication of the user equipment, at least one frequency that is likely to be affected by the potential interference, sending a measurement configuration request message including the identified at least one frequency that is likely to be affected by the potential interference to a base station, and performing, upon reception of a measurement configuration message from the base station, measurement according to measurement configurations included in the measurement configuration message.
  • a user equipment capable of interference measurement in a wireless communication system includes a transceiver unit sending and receiving a signal to and from a base station, and a control unit controlling a process of identifying, upon detection of activation of an interfering communication technology that potentially causes interference to cellular communication of the user equipment, at least one frequency that is likely to be affected by the potential interference caused by the interfering communication technology, for sending a measurement configuration request message including the identified list of at least one frequency that is likely to be affected by the potential interference to the base station, and for performing, upon reception of a measurement configuration message from the base station, measurement according to measurement configurations specified in the received message.
  • a system for coordinating measurement of in-device interference comprises a base station, and a terminal that communicates with the base station, wherein the base station instructs the terminal to measure in-device interference if the terminal determines that an interfering communication technology is activated as the terminal is communicating with the base station.
  • FIG. 1 illustrates an LTE system architecture according to an exemplary embodiment of the present invention
  • FIG. 2 illustrates a hierarchy of wireless protocols in an LTE system according to an exemplary embodiment of the present invention
  • FIG. 3 illustrates 3GPP frequency bands for mobile communication around the ISM band according to an exemplary embodiment of the present invention
  • FIG. 4 is a message sequence chart illustrating an interference measurement method according to an exemplary embodiment of the present invention.
  • FIG. 5 is a flowchart of a procedure performed by a user equipment such as, for example the user equipment provided in FIG. 4 according to an exemplary embodiment of the present invention
  • FIG. 6 is a message sequence chart illustrating an interference measurement method according to an exemplary embodiment of the present invention.
  • FIG. 7 is a flowchart of a procedure performed by a user equipment such as, for example, the user equipment provided in FIG. 6 according to an exemplary embodiment of the present invention.
  • FIG. 8 is a block diagram of a user equipment according to an exemplary embodiment of the present invention.
  • an “interfering communication technology” refers to WiFI, Bluetooth or GPS technology (e.g., a WiFI, a Bluetooth or a GPS module) other than LTE technology (e.g., a LTE module).
  • An LTE terminal may be referred to as a User Equipment (UE), and an LTE base station may be referred to as an evolved Node B (eNB).
  • UE User Equipment
  • eNB evolved Node B
  • FIG. 1 illustrates an LTE system architecture according to an exemplary embodiment of the present invention.
  • an LTE radio access network is composed of eNBs 105 , 110 , 115 and 120 , a Mobility Management Entity (MME) 125 and a Serving-Gateway (S-GW) 130 .
  • MME Mobility Management Entity
  • S-GW Serving-Gateway
  • a User Equipment (UE) 135 may connect to an external network through at least one of the eNBs 105 to 120 and the S-GW 130 .
  • the eNBs 105 to 120 correspond to Node Bs of the Universal Mobile Telecommunication System (UMTS).
  • the eNB is connected to the user equipment 135 through a wireless channel, and may perform complex functions in comparison to an existing Node B.
  • LTE Long Term Evolution
  • VoIP Voice over IP
  • Each of the eNBs 105 to 120 performs such a scheduling function. In most cases, a single eNB controls multiple cells.
  • the LTE system utilizes orthogonal frequency division multiplexing (OFDM) in a 20 MHz bandwidth as radio access technology.
  • the LTE system employs adaptive modulation and coding (AMC) to determine the modulation scheme and channel coding rate according to channel states of user equipments.
  • AMC adaptive modulation and coding
  • the S-GW 130 provides data bearers, and creates and removes a data bearer under control of the MME 125 .
  • the MME 125 performs various control functions including mobility management for user equipments, and is connected to multiple eNBs.
  • FIG. 2 illustrates a hierarchy of wireless protocols in an LTE system according to an exemplary embodiment of the present invention.
  • a user equipment (UE) and an eNB each include a wireless protocol stack composed of a Packet Data Convergence Protocol (PDCP) layer 205 or 240 , a Radio Link Control (RLC) layer 210 or 235 , a Medium Access Control (MAC) layer 215 or 230 , and a physical (PHY) layer 220 or 225 .
  • the PDCP layer 205 or 240 performs compression and decompression of IP headers.
  • the RLC layer 210 or 235 reconfigures PDCP Protocol Data Units (PDUs) to a suitable size to conduct, for example, Automatic Repeat-reQuest (ARQ) operations.
  • PDUs Packet Data Convergence Protocol
  • ARQ Automatic Repeat-reQuest
  • the MAC layer 215 or 230 is connected to multiple RLC layer devices in a user equipment, and multiplexes RLC PDUs into MAC PDUs or demultiplexes MAC PDUs into RLC PDUs.
  • the physical layer 220 or 225 converts upper layer data into OFDM symbols by means of channel coding and modulation and transmits the OFDM symbols through a wireless channel, or converts OFDM symbols received through a wireless channel into upper layer data by means of demodulation and channel decoding and forwards the data to upper layers.
  • FIG. 4 is a message sequence chart illustrating an interference measurement method according to an exemplary embodiment of the present invention.
  • the user equipment When an interfering communication technology causes interference in an operating frequency band, the user equipment needs to report such interference to a corresponding eNB. For reporting this coexistence interference using a measurement option defined in the standard, the eNB needs to notify the user equipment of a suitable measurement configuration.
  • an A3 measurement event is commonly used for measurement triggering.
  • An A3 event triggers when “Neighbor becomes offset better than serving”. That is, measurement reporting is triggered when channel quality of a neighbor cell is better than that of the serving cell by a preset threshold.
  • the A3 measurement event is not suitable for solving a problem of interference between interfering communication technologies coexisting in the same user equipment. This is because an interfering communication technology transmitting signals may affect not only the serving cell but also neighbor cells through interference.
  • the user equipment As a precondition for measurement configuration based on an A2 measurement event, it is necessary for the user equipment to report activation of an interfering communication technology to the eNB. Upon reception of the activation report, the eNB notifies the user equipment of appropriate measurement objects and a reporting configuration.
  • the UE 401 detects activation of an interfering communication technology at step 405 .
  • the UE 401 may detect activation of or an activation request for an interfering communication module.
  • the UE 401 needs to detect activation of an interfering communication technology that may potentially interfere with cellular communication like LTE operation.
  • the UE 401 may detect activation of a GPS module, a WiFi module, or a Bluetooth module by the user, or may detect potential interference while measuring quality of a received signal from a base station.
  • the UE 401 checks possibility of interference caused by the interfering communication technology, and identifies, when the interfering communication technology may cause interference, at least one frequency that is likely to be affected by the interfering communication technology at step 407 .
  • a frequency supported by the UE 401 including the serving frequency
  • a frequency supported by the system that is not sufficiently separated from the frequency of the interfering communication technology may be regarded as a frequency that is likely to be affected by interference.
  • a frequency that is likely to be affected by interference indicates a frequency that may disrupt communication of a user equipment at present or in the near future if used by the user equipment.
  • the eNB 403 uses system information blocks (SIB) to provide information regarding frequencies supported by the system to the UE 401 .
  • SIB 5 may include information on frequencies used by neighbor E-UTRA (LTE) cells or other E-UTRA cells;
  • SIB 6 may include information on frequencies used by neighbor UTRA (3G) cells or other UTRA cells;
  • SIB 7 may contain information on frequencies used by neighbor GERAN (2G) cells or other GERAN cells; and SIB 8 may include information on frequencies used by neighbor CDMA2000 cells or other CDMA2000 cells.
  • SIB 5 may include information on frequencies used by neighbor E-UTRA (LTE) cells or other E-UTRA cells
  • SIB 6 may include information on frequencies used by neighbor UTRA (3G) cells or other UTRA cells
  • SIB 7 may contain information on frequencies used by neighbor GERAN (2G) cells or other GERAN cells
  • SIB 8 may include information on frequencies used by neighbor CDMA2000 cells or other CDMA2000 cells.
  • a reason for examining those frequencies supported by the system among the frequencies supported by the user equipment is that it is possible for the user equipment in motion to perform handover to one of the frequencies supported by the system.
  • sufficiency of separation to avoid coexistence interference depends upon a filtering capability of the user equipment.
  • the UE 401 sends a measurement configuration request message to the eNB 403 at step 409 .
  • the measurement configuration request message is an RRC message including a list of frequencies that are likely to be affected by interference, and requests the eNB 403 to specify measurement objects and reporting configurations.
  • entries of the list of frequencies that are likely to be affected by interference may correspond to frequencies to be specified as a measurement object.
  • the eNB 403 Upon reception of the RRC message (e.g., the measurement configuration request message), the eNB 403 determines necessity of measurement configuration for the UE 401 in consideration of the frequencies that are likely to be affected by interference at step 411 . When the serving frequency of the UE 401 is a frequency that is likely to be affected by interference, the eNB 403 may configure measurement based on an A2 measurement event.
  • the RRC message e.g., the measurement configuration request message
  • the eNB 403 sends a measurement configuration message to the UE 401 at step 413 .
  • the measurement configuration message is an RRC message including information on a measurement configuration. More than one measurement may be configured.
  • the measurement configuration may include an indication indicating measurement of in-device interference caused by an interfering communication technology in the UE 401 .
  • the UE 401 performs measurement according to the measurement configuration specified by the eNB 403 at step 415 .
  • the eNB 403 may not receive an appropriate measurement result. In other words, the eNB 403 may receive only a measurement result obtained by averaging measurement values for all subframes, but such a measurement result does not indicate severity and frequency of interference.
  • the UE 401 maintains two measurement results: one measurement result for subframes not affected by in-device interference and another measurement result for subframes affected by in-device interference.
  • the UE 401 In the event that LTE downlink signal reception is affected by in-device interference caused by an interfering communication technology, the UE 401 starts to conduct inter-frequency measurement even though signal quality of the serving cell is greater than an “s-Measure” value received from the eNB 403 .
  • the UE 401 determines necessity of reporting based on an A2 measurement event by comparing the measurement result for subframes affected by the interfering communication technology with a threshold received from the eNB 403 .
  • the UE 401 sends a measurement report message including a measurement report to the eNB 403 at step 417 .
  • the measurement report includes a measurement result for subframes affected by in-device interference and another measurement result for subframes not affected by in-device interference.
  • the measurement report may include a ratio of subframes affected by in-device interference to subframes not affected by in-device interference.
  • the measurement report may include a measurement result for all subframes without classifying subframes according to in-device interference.
  • the measurement report may further include measurement results for available frequencies (e.g., inter-frequency measurement). Specifically, the measurement report may include measurement results for N cells exhibiting best signal qualities corresponding to available frequencies.
  • the eNB 403 Upon reception of the measurement report, the eNB 403 determines necessity of handover of the UE 401 . If handover of the UE 401 is necessary, then the eNB 403 determines a target cell to which the UE 401 is to be handed over, performs operations necessary for handover, and sends a handover command to the UE 401 at step 419 .
  • FIG. 5 is a flowchart of a procedure performed by an UE 401 such as, for example, the user equipment provided in FIG. 4 according to an exemplary embodiment of the present invention.
  • the UE 401 detects activation of an interfering communication technology at step 503 .
  • the UE 401 identifies at least one frequency that is likely to be affected by the interfering communication technology at step 505 . If at least one frequency that is likely to be affected by interference is present, then the UE 401 sends a measurement configuration request message to the eNB 403 at step 507 .
  • the measurement configuration request message is an RRC message including a list of frequencies that are likely to be affected by interference, and requests the eNB 403 to specify measurement objects and measurement configurations.
  • the UE 401 receives a measurement configuration message including information on measurement objects and measurement configurations from the eNB 403 at step 509 .
  • the UE 401 performs measurement according to the measurement configurations specified in the measurement configuration message at step 511 .
  • the UE 401 When a trigger condition is met during measurement, the UE 401 sends a measurement report message to the eNB 403 at step 513 .
  • a handover command message is received from the eNB 403 , then the UE 401 performs handover according to the handover command message at step 515 .
  • the UE 401 starts the interfering communication technology if necessary at step 517 . Thereafter, the UE 401 returns to step 503 and performs requested operations (such as detection of activation or stoppage of interfering communication technologies).
  • FIG. 6 is a message sequence chart illustrating an interference measurement method according to an exemplary embodiment of the present invention.
  • a UE 601 performs a procedure for RRC connection setup with an eNB 603 through a network access process at step 605 .
  • the UE 601 detects activation of or an activation request for an interfering communication technology that may affect LTE communication or may be affected by LTE communication through coexistence interference at step 607 .
  • the UE 601 needs to detect activation of an interfering communication technology that may potentially interfere with cellular communication like LTE operation.
  • the UE 601 may sense activation of a GPS module, a WiFi module, a Bluetooth module, or the like by the user or may detect potential interference while measuring quality of a received signal from a base station.
  • the UE 601 communicates with the eNB 603 so as not to use an LTE frequency band that may potentially interfere with the interfering communication technology. To achieve this, the UE 601 selects a preferred frequency that does not interfere with the interfering communication technology, and sends an RRC message to the eNB 603 to notify the same of the preferred frequency at step 609 .
  • the UE 601 identifies the operating frequency (or frequency band) of the interfering communication technology. This frequency (or frequency band) is referred to as frequency A (or frequency band A).
  • the UE 601 also identifies the frequency (or frequency band) supported by the current cellular system (e.g., LTE, UMTS or GSM) among frequencies supported by the UE 601 .
  • the frequency (or frequency band) supported by the system is referred to as frequency B (or frequency band B).
  • the UE 601 may obtain information on frequency B from the cellular system, and may receive information on supported frequencies therefrom. More specifically, if a measurement object is configured for the UE 601 in the current cell, then the UE 601 may consider the frequency associated with the measurement object as frequency B. When SIB 5 including an inter-frequency carrier frequency list (InterFreqCarrierFreqList) is received from the cellular system and stored, the UE 601 may consider a frequency included in the inter-frequency carrier frequency list among downlink carrier frequencies (dl-CarrierFreq) supported by the UE 601 as frequency B.
  • InterFreqCarrierFreqList inter-frequency carrier frequency list
  • dl-CarrierFreq downlink carrier frequencies
  • UTRA frequencies belonging to a UTRA-FDD carrier frequency list (carrierFreqListUTRA-FDD) or UTRA-TDD carrier frequency list (carrierFreqListUTRA-TDD) included in SIB 6 may be considered as frequency B if such frequencies are supported by the UE 601 .
  • GSM frequencies included in SIB 7 may also be considered as frequency B if such frequencies are supported by the UE 601 .
  • the UE 601 selects preferred frequencies among those frequencies regarded as frequency B (i.e., among frequencies supported by both the UE 601 and the system) in consideration of those frequencies regarded as frequency A. For example, the UE 601 may select one of the frequencies regarded as frequency B that is sufficiently separated from frequency A as a preferred frequency. Alternatively, the UE 601 may select one of the frequencies regarded as frequency B that is not sufficiently separated from frequency A as a non-preferred frequency. For example, sufficiency of separation to avoid coexistence interference depends upon a filtering capability of the UE 601 .
  • the UE 601 creates a preferred frequency list (or a non-preferred frequency list) according to the above described scheme.
  • the UE 601 sends an RRC message including the preferred frequency list (or the non-preferred frequency list) to the eNB 603 at step 609 .
  • the eNB 603 Upon reception of the RRC message, the eNB 603 stores the preferred frequency list (or the non-preferred frequency list) included in the RRC message. The eNB 603 checks whether the frequency currently used by the UE 601 is on the preferred frequency list.
  • the eNB 603 instructs the UE 601 to conduct handover to one frequency of the preferred frequency list at step 611 .
  • the eNB 603 may not instruct the UE 601 to conduct immediate handover. Later, when handover is requested, the eNB 603 may instruct the UE 601 to conduct handover to another eNB using a frequency on the preferred frequency list, which has been stored.
  • the eNB 603 checks possibility of handover of the UE 601 to a preferred frequency and initiates a handover procedure when handover of the UE 601 to a preferred frequency is possible.
  • the eNB 603 may send an RRC message to the UE 601 to notify of impossibility of handover to a preferred frequency.
  • the UE 601 may provide the RRC message to the user, so that the user may decide whether to start the interfering communication technology if it is not yet started.
  • the UE 601 After handover to a preferred frequency (or while already using a preferred frequency), the UE 601 starts the interfering communication technology at step 613 .
  • two collocated communication technologies for example, LTE and Bluetooth
  • the UE 601 When stoppage or turning off of the interfering communication technology is detected at step 615 , the UE 601 sends an RRC message to the eNB 603 to notify stoppage of the interfering communication technology or an updated preferred frequency list (or non-preferred frequency list) at step 617 .
  • the eNB 603 Upon reception of the RRC message, the eNB 603 removes restrictions on the corresponding frequency and stores the updated preferred frequency list (or non-preferred frequency list) for later use.
  • FIG. 7 is a flowchart of a procedure performed by an UE such as, for example, the UE 601 provided in FIG. 6 according to an exemplary embodiment of the present invention.
  • the UE 701 detects activation of an interfering communication technology at step 703 . Upon detection of activation of an interfering communication technology, the UE 701 identifies at least one frequency that is likely to be affected by the interfering communication technology at step 705 .
  • the UE 701 sends an RRC message including a list of frequencies that are likely to be affected by interference to the eNB at step 707 .
  • the eNB may send a handover command.
  • a handover command message is received from the eNB, the UE 701 performs handover according to the handover command message at step 709 .
  • the UE 701 starts the interfering communication technology if necessary at step 711 . Thereafter, the UE 701 returns to step 703 and performs requested operations (such as detection of activation or stoppage of interfering communication technologies).
  • FIG. 8 is a block diagram of a user equipment according to an exemplary embodiment of the present invention.
  • the user equipment may include a transceiver unit 801 , a mux/demux unit 803 , an upper layer unit 805 , a control message handler 807 , a control unit 809 , an interfering technology detector/determiner 811 , and an interfering communication module 813 .
  • data is sent and received through the upper layer unit 805 , and control messages are sent and received through the control message handler 807 .
  • data is multiplexed by the mux/demux unit 803 and sent through the transceiver unit 801 under control of the control unit 809 .
  • a message signal received by the transceiver unit 801 is demultiplexed by the mux/demux unit 803 and forwarded to the upper layer unit 805 or the control message handler 807 according to the message type, under control of the control unit 809 .
  • the interfering communication module 813 may directly send notification of a power on or start of operation to the interfering technology detector/determiner 811 .
  • the interfering technology detector/determiner 811 may already be aware of the interfering communication module 813 .
  • the control unit 809 may recognize this situation and notify the interfering technology detector/determiner 811 of in-device interference.
  • the interfering technology detector/determiner 811 notifies the control message handler 807 of information on the interfering communication module 813 . Then, the control message handler 807 creates an RRC message including a measurement configuration request and a preferred frequency list (or a non-preferred frequency list, and sends the RRC message to a corresponding eNB.
  • the control unit 809 controls an operation to perform measurement according to the measurement configuration.
  • a handover command message is received as a control message from the eNB, the control unit 809 controls an operation to perform handover according to the handover command.
  • the control unit 809 After successfully performing handover, the control unit 809 notifies the interfering technology detector/determiner 811 of handover completion so as to start the interfering communication module 813 if not yet started. Thereafter, the control unit 809 controls an operation to detect activation or stoppage of interfering communication technologies, and the user equipment may repeat the above process.
  • the user equipment is depicted as including multiple blocks having different functions in the above description, it is not necessarily limited to such a configuration.
  • the user equipment may be composed of a transceiver unit to send and receive a signal to and from an eNB, and a control unit to control interference measurement.
  • control unit may control a process of identifying, upon detection of activation of an interfering communication technology, those frequencies that are likely to be affected by interference caused by the interfering communication technology, sending a measurement configuration request message including a list of frequencies that are likely to be affected by interference to a corresponding eNB, and performing, upon reception of a measurement configuration message from the eNB, measurement according to measurement configurations specified in the received message.
  • the measurement configuration message may include an indication indicating measurement of in-device interference caused by an interfering communication technology in the user equipment.
  • the control unit may control an operation to separately store a measurement result for subframes not affected by in-device interference and another measurement result for subframes affected by in-device interference.
  • the control unit may regard a frequency that is supported by the user equipment and is not separated by a preset gap or more from the frequency of the interfering communication technology as a frequency that is likely to be affected by interference.
  • the control unit may control an operation to send a measurement report message including measurement results to the eNB.
  • the measurement report message may separately include a measurement result for subframes not affected by in-device interference and another measurement result for subframes affected by in-device interference.
  • control unit may control an operation to perform handover according to the handover command.
  • a user equipment supporting the proposed method may perform effective measurement as to a present or potential interference factor, report measurement results to a corresponding base station, and perform handover to another cell so as to reduce in-device interference.
  • the user equipment may conduct smooth communication while avoiding coexistence interference caused by an interfering communication technology.
  • a user equipment supporting the proposed method may provide information regarding a frequency band that can be affected by interference to a corresponding base station, which is then recommended to send a command for guiding interference avoidance to the user equipment.
  • the user equipment may perform smooth communication by reducing interference between communication modules.

Abstract

An interference measurement method and a user equipment supporting the method are provided. The method enables the user equipment having multiple heterogeneous communication modules for Long Term Evolution (LTE), WiFi, Bluetooth and Global Positioning System (GPS) to perform interference measurement so as to avoid coexistence interference. The user equipment may perform effective communication by identifying non-preferred frequency bands and avoiding coexistence interference caused by the heterogeneous communication modules.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application claims the benefit under 35 U.S.C. §119(e) of a U.S. provisional application filed on Jan. 18, 2011 in the U.S. Patent and Trademark Office and assigned Ser. No. 61/433,651, and under 35 U.S.C. §119(a) of a Korean patent application filed on Dec. 21, 2011 in the Korean Intellectual Property Office and assigned Serial No. 10-2011-0139376, the entire disclosures of which are hereby incorporated by reference.
  • BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • The present invention relates to a wireless communication system. More particularly, the present invention relates to an interference measurement method that enables a user equipment having multiple heterogeneous communication modules to avoid coexistence interference.
  • 2. Description of the Related Art
  • In recent years, smartphones having WiFi, Bluetooth and Global Positioning System (GPS) modules have been rapidly popularized. With this trend, various communication technologies (for example, Long Term Evolution (LTE)/Universal Mobile Telecommunication System (UMTS) for cellular network communication, WiFi for wireless local area communication, Bluetooth for short-range wireless communication, and GNSS/GPS for location-based services, etc.) may coexist in the same user equipment. When heterogeneous communication technologies are simultaneously used in the same user equipment, a problem of interference therebetween may arise. This problem has been discussed under the name of In-Device Coexistence (IDC) in 3GPP.
  • While LTE/UMTS communication operates in various frequency bands, Bluetooth or WiFi communication operates in the Industrial Scientific Medical (ISM) band of 2400-2483.5 MHz. In particular, Band 40 (2300-2400 MHz) and Band 7 Uplink (2500-2570 MHz) among multiple LTE/UMTS frequency bands are adjacent to the ISM band for Bluetooth or WiFi communication. Hence, when LTE/UMTS communication and Bluetooth or WiFi communication are simultaneously conducted, a transmit signal for one communication technology may be received as a receive signal for another communication technology, thereby causing serious interference.
  • FIG. 3 illustrates 3GPP frequency bands for mobile communication around the ISM band. As indicated by FIG. 3, use of WiFi channel 1 while Band 40 is used for a mobile communication cell may cause serious interference, and use of WiFi channel 13 or 14 while Band 7 is used for a mobile communication cell may cause serious interference.
  • Hence, it is necessary to identify such mutual interference through precise measurement in the event of interference.
  • SUMMARY OF THE INVENTION
  • Aspects of the present invention are to address at least the above-mentioned problems and/or disadvantages and to provide at least the advantages described below. Accordingly, an aspect of the present invention is to provide a method and apparatus that enable a user equipment having multiple heterogeneous communication modules for LTE, WiFi, Bluetooth and GPS to perform interference measurement so as to avoid coexistence interference.
  • In order to solve the above problems, a user equipment identifies at least one frequency that is likely to be affected by interference and notifies such frequency to a base station, so that the base station can configure suitable measurement. The user equipment may also notify non-preferred frequency bands to the base station so that the base station may take actions to avoid interference.
  • In accordance with an exemplary embodiment of the present invention, a measurement method for a user equipment in a wireless communication system is provided. The measurement method includes identifying, upon detection of activation of an interfering communication technology that potentially causes interference to cellular communication of the user equipment, at least one frequency that is likely to be affected by the potential interference, sending a measurement configuration request message including the identified at least one frequency that is likely to be affected by the potential interference to a base station, and performing, upon reception of a measurement configuration message from the base station, measurement according to measurement configurations included in the measurement configuration message.
  • In accordance with another exemplary embodiment of the present invention, a user equipment capable of interference measurement in a wireless communication system is provided. The user equipment includes a transceiver unit sending and receiving a signal to and from a base station, and a control unit controlling a process of identifying, upon detection of activation of an interfering communication technology that potentially causes interference to cellular communication of the user equipment, at least one frequency that is likely to be affected by the potential interference caused by the interfering communication technology, for sending a measurement configuration request message including the identified list of at least one frequency that is likely to be affected by the potential interference to the base station, and for performing, upon reception of a measurement configuration message from the base station, measurement according to measurement configurations specified in the received message.
  • In accordance with another exemplary embodiment of the present invention, a system for coordinating measurement of in-device interference is provided. The system comprises a base station, and a terminal that communicates with the base station, wherein the base station instructs the terminal to measure in-device interference if the terminal determines that an interfering communication technology is activated as the terminal is communicating with the base station.
  • Other aspects, advantages, and salient features of the invention will become apparent to those skilled in the art from the following detailed description, which, taken in conjunction with the annexed drawings, discloses exemplary embodiments of the invention.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The above and other aspects, features, and advantages of certain exemplary embodiments of the present invention will be more apparent from the following description taken in conjunction with the accompanying drawings, in which:
  • FIG. 1 illustrates an LTE system architecture according to an exemplary embodiment of the present invention;
  • FIG. 2 illustrates a hierarchy of wireless protocols in an LTE system according to an exemplary embodiment of the present invention;
  • FIG. 3 illustrates 3GPP frequency bands for mobile communication around the ISM band according to an exemplary embodiment of the present invention;
  • FIG. 4 is a message sequence chart illustrating an interference measurement method according to an exemplary embodiment of the present invention;
  • FIG. 5 is a flowchart of a procedure performed by a user equipment such as, for example the user equipment provided in FIG. 4 according to an exemplary embodiment of the present invention;
  • FIG. 6 is a message sequence chart illustrating an interference measurement method according to an exemplary embodiment of the present invention;
  • FIG. 7 is a flowchart of a procedure performed by a user equipment such as, for example, the user equipment provided in FIG. 6 according to an exemplary embodiment of the present invention; and
  • FIG. 8 is a block diagram of a user equipment according to an exemplary embodiment of the present invention.
  • Throughout the drawings, it should be noted that like reference numbers are used to depict the same or similar elements, features, and structures.
  • DETAILED DESCRIPTION OF EXEMPLARY EMBODIMENTS
  • The following description with reference to the accompanying drawings is provided to assist in a comprehensive understanding of exemplary embodiments of the invention as defined by the claims and their equivalents. It includes various specific details to assist in that understanding but these are to be regarded as merely exemplary. Accordingly, those of ordinary skill in the art will recognize that various changes and modifications of the embodiments described herein can be made without departing from the scope and spirit of the invention. In addition, descriptions of well-known functions and constructions may be omitted for clarity and conciseness.
  • The terms and words used in the following description and claims are not limited to the bibliographical meanings, but, are merely used by the inventor to enable a clear and consistent understanding of the invention. Accordingly, it should be apparent to those skilled in the art that the following description of exemplary embodiments of the present invention is provided for illustration purpose only and not for the purpose of limiting the invention as defined by the appended claims and their equivalents.
  • It is to be understood that the singular forms “a,” “an,” and “the” include plural referents unless the context clearly dictates otherwise. Thus, for example, reference to “a component surface” includes reference to one or more of such surfaces.
  • In the description, cellular communication (or mobile communication) is focused on the Long Term Evolution (LTE) system. However, various exemplary embodiments of the present invention are applicable to any type of cellular communication. As an example, an “interfering communication technology” refers to WiFI, Bluetooth or GPS technology (e.g., a WiFI, a Bluetooth or a GPS module) other than LTE technology (e.g., a LTE module). An LTE terminal may be referred to as a User Equipment (UE), and an LTE base station may be referred to as an evolved Node B (eNB).
  • FIG. 1 illustrates an LTE system architecture according to an exemplary embodiment of the present invention.
  • Referring to FIG. 1, an LTE radio access network is composed of eNBs 105, 110, 115 and 120, a Mobility Management Entity (MME) 125 and a Serving-Gateway (S-GW) 130. A User Equipment (UE) 135 may connect to an external network through at least one of the eNBs 105 to 120 and the S-GW 130.
  • The eNBs 105 to 120 correspond to Node Bs of the Universal Mobile Telecommunication System (UMTS). The eNB is connected to the user equipment 135 through a wireless channel, and may perform complex functions in comparison to an existing Node B. With regard to a Long Term Evolution (LTE) system, because all user traffic including real-time services such as Voice over IP (VoIP) services is served by shared channels, it is necessary to perform scheduling on the basis of collected status information regarding buffers, available transmit powers, and channels of user equipments. Each of the eNBs 105 to 120 performs such a scheduling function. In most cases, a single eNB controls multiple cells. To achieve a data rate of 100 Mbps, the LTE system utilizes orthogonal frequency division multiplexing (OFDM) in a 20 MHz bandwidth as radio access technology. The LTE system employs adaptive modulation and coding (AMC) to determine the modulation scheme and channel coding rate according to channel states of user equipments. The S-GW 130 provides data bearers, and creates and removes a data bearer under control of the MME 125. The MME 125 performs various control functions including mobility management for user equipments, and is connected to multiple eNBs.
  • FIG. 2 illustrates a hierarchy of wireless protocols in an LTE system according to an exemplary embodiment of the present invention.
  • Referring to FIG. 2, in the LTE system, a user equipment (UE) and an eNB each include a wireless protocol stack composed of a Packet Data Convergence Protocol (PDCP) layer 205 or 240, a Radio Link Control (RLC) layer 210 or 235, a Medium Access Control (MAC) layer 215 or 230, and a physical (PHY) layer 220 or 225. The PDCP layer 205 or 240 performs compression and decompression of IP headers. The RLC layer 210 or 235 reconfigures PDCP Protocol Data Units (PDUs) to a suitable size to conduct, for example, Automatic Repeat-reQuest (ARQ) operations. The MAC layer 215 or 230 is connected to multiple RLC layer devices in a user equipment, and multiplexes RLC PDUs into MAC PDUs or demultiplexes MAC PDUs into RLC PDUs. The physical layer 220 or 225 converts upper layer data into OFDM symbols by means of channel coding and modulation and transmits the OFDM symbols through a wireless channel, or converts OFDM symbols received through a wireless channel into upper layer data by means of demodulation and channel decoding and forwards the data to upper layers.
  • FIG. 4 is a message sequence chart illustrating an interference measurement method according to an exemplary embodiment of the present invention.
  • When an interfering communication technology causes interference in an operating frequency band, the user equipment needs to report such interference to a corresponding eNB. For reporting this coexistence interference using a measurement option defined in the standard, the eNB needs to notify the user equipment of a suitable measurement configuration.
  • In LTE, an A3 measurement event is commonly used for measurement triggering. An A3 event triggers when “Neighbor becomes offset better than serving”. That is, measurement reporting is triggered when channel quality of a neighbor cell is better than that of the serving cell by a preset threshold. However, the A3 measurement event is not suitable for solving a problem of interference between interfering communication technologies coexisting in the same user equipment. This is because an interfering communication technology transmitting signals may affect not only the serving cell but also neighbor cells through interference.
  • Hence, it is necessary to configure measurement settings in consideration of an A2 measurement event (“Serving becomes worse than threshold”). In other words, it is necessary to trigger measurement reporting when signal quality of the serving cell becomes worse than a preset threshold.
  • As a precondition for measurement configuration based on an A2 measurement event, it is necessary for the user equipment to report activation of an interfering communication technology to the eNB. Upon reception of the activation report, the eNB notifies the user equipment of appropriate measurement objects and a reporting configuration.
  • Referring to FIG. 4, the UE 401 detects activation of an interfering communication technology at step 405. Here, the UE 401 may detect activation of or an activation request for an interfering communication module. The UE 401 needs to detect activation of an interfering communication technology that may potentially interfere with cellular communication like LTE operation. To achieve this, the UE 401 may detect activation of a GPS module, a WiFi module, or a Bluetooth module by the user, or may detect potential interference while measuring quality of a received signal from a base station.
  • The UE 401 checks possibility of interference caused by the interfering communication technology, and identifies, when the interfering communication technology may cause interference, at least one frequency that is likely to be affected by the interfering communication technology at step 407. Among frequencies supported by the UE 401 (including the serving frequency), a frequency supported by the system that is not sufficiently separated from the frequency of the interfering communication technology may be regarded as a frequency that is likely to be affected by interference. For example, a frequency that is likely to be affected by interference indicates a frequency that may disrupt communication of a user equipment at present or in the near future if used by the user equipment.
  • For step 407, the eNB 403 uses system information blocks (SIB) to provide information regarding frequencies supported by the system to the UE 401. For example, SIB 5 may include information on frequencies used by neighbor E-UTRA (LTE) cells or other E-UTRA cells; SIB 6 may include information on frequencies used by neighbor UTRA (3G) cells or other UTRA cells; SIB 7 may contain information on frequencies used by neighbor GERAN (2G) cells or other GERAN cells; and SIB 8 may include information on frequencies used by neighbor CDMA2000 cells or other CDMA2000 cells.
  • A reason for examining those frequencies supported by the system among the frequencies supported by the user equipment is that it is possible for the user equipment in motion to perform handover to one of the frequencies supported by the system. Here, sufficiency of separation to avoid coexistence interference depends upon a filtering capability of the user equipment.
  • When at least one frequency that is likely to be affected by interference is present, the UE 401 sends a measurement configuration request message to the eNB 403 at step 409. Here, the measurement configuration request message is an RRC message including a list of frequencies that are likely to be affected by interference, and requests the eNB 403 to specify measurement objects and reporting configurations. As an example, entries of the list of frequencies that are likely to be affected by interference may correspond to frequencies to be specified as a measurement object.
  • Upon reception of the RRC message (e.g., the measurement configuration request message), the eNB 403 determines necessity of measurement configuration for the UE 401 in consideration of the frequencies that are likely to be affected by interference at step 411. When the serving frequency of the UE 401 is a frequency that is likely to be affected by interference, the eNB 403 may configure measurement based on an A2 measurement event.
  • When a measurement configuration is necessary, the eNB 403 sends a measurement configuration message to the UE 401 at step 413. Here, the measurement configuration message is an RRC message including information on a measurement configuration. More than one measurement may be configured. The measurement configuration may include an indication indicating measurement of in-device interference caused by an interfering communication technology in the UE 401.
  • The UE 401 performs measurement according to the measurement configuration specified by the eNB 403 at step 415.
  • In WiFi or Bluetooth communication, as uplink transmission is not continuous, some (e.g., not all) LTE subframes may be affected by interference caused by WiFi or Bluetooth transmission. If the UE 401 produces a measurement result by averaging measurement values for all subframes, the eNB 403 may not receive an appropriate measurement result. In other words, the eNB 403 may receive only a measurement result obtained by averaging measurement values for all subframes, but such a measurement result does not indicate severity and frequency of interference.
  • In an exemplary embodiment, to solve the above problem, if an indication indicating measurement of in-device interference caused by an interfering communication technology is received from the eNB 403, then the UE 401 maintains two measurement results: one measurement result for subframes not affected by in-device interference and another measurement result for subframes affected by in-device interference.
  • In the event that LTE downlink signal reception is affected by in-device interference caused by an interfering communication technology, the UE 401 starts to conduct inter-frequency measurement even though signal quality of the serving cell is greater than an “s-Measure” value received from the eNB 403. The UE 401 determines necessity of reporting based on an A2 measurement event by comparing the measurement result for subframes affected by the interfering communication technology with a threshold received from the eNB 403.
  • When the trigger condition for measurement as to the interfering communication technology is met, the UE 401 sends a measurement report message including a measurement report to the eNB 403 at step 417. Here, the measurement report includes a measurement result for subframes affected by in-device interference and another measurement result for subframes not affected by in-device interference.
  • In an exemplary embodiment, the measurement report may include a ratio of subframes affected by in-device interference to subframes not affected by in-device interference. The measurement report may include a measurement result for all subframes without classifying subframes according to in-device interference. The measurement report may further include measurement results for available frequencies (e.g., inter-frequency measurement). Specifically, the measurement report may include measurement results for N cells exhibiting best signal qualities corresponding to available frequencies.
  • Upon reception of the measurement report, the eNB 403 determines necessity of handover of the UE 401. If handover of the UE 401 is necessary, then the eNB 403 determines a target cell to which the UE 401 is to be handed over, performs operations necessary for handover, and sends a handover command to the UE 401 at step 419.
  • FIG. 5 is a flowchart of a procedure performed by an UE 401 such as, for example, the user equipment provided in FIG. 4 according to an exemplary embodiment of the present invention.
  • Referring to FIG. 5, the UE 401 detects activation of an interfering communication technology at step 503. Upon detection of activation of an interfering communication technology, the UE 401 identifies at least one frequency that is likely to be affected by the interfering communication technology at step 505. If at least one frequency that is likely to be affected by interference is present, then the UE 401 sends a measurement configuration request message to the eNB 403 at step 507. Here, the measurement configuration request message is an RRC message including a list of frequencies that are likely to be affected by interference, and requests the eNB 403 to specify measurement objects and measurement configurations.
  • Thereafter, the UE 401 receives a measurement configuration message including information on measurement objects and measurement configurations from the eNB 403 at step 509. The UE 401 performs measurement according to the measurement configurations specified in the measurement configuration message at step 511.
  • When a trigger condition is met during measurement, the UE 401 sends a measurement report message to the eNB 403 at step 513.
  • If a handover command message is received from the eNB 403, then the UE 401 performs handover according to the handover command message at step 515.
  • The UE 401 starts the interfering communication technology if necessary at step 517. Thereafter, the UE 401 returns to step 503 and performs requested operations (such as detection of activation or stoppage of interfering communication technologies).
  • FIG. 6 is a message sequence chart illustrating an interference measurement method according to an exemplary embodiment of the present invention.
  • Referring to FIG. 6, a UE 601 performs a procedure for RRC connection setup with an eNB 603 through a network access process at step 605. The UE 601 detects activation of or an activation request for an interfering communication technology that may affect LTE communication or may be affected by LTE communication through coexistence interference at step 607. As previously described in connection with FIG. 4, the UE 601 needs to detect activation of an interfering communication technology that may potentially interfere with cellular communication like LTE operation. To achieve this, the UE 601 may sense activation of a GPS module, a WiFi module, a Bluetooth module, or the like by the user or may detect potential interference while measuring quality of a received signal from a base station.
  • The UE 601 communicates with the eNB 603 so as not to use an LTE frequency band that may potentially interfere with the interfering communication technology. To achieve this, the UE 601 selects a preferred frequency that does not interfere with the interfering communication technology, and sends an RRC message to the eNB 603 to notify the same of the preferred frequency at step 609.
  • In step 609, the UE 601 identifies the operating frequency (or frequency band) of the interfering communication technology. This frequency (or frequency band) is referred to as frequency A (or frequency band A).
  • The UE 601 also identifies the frequency (or frequency band) supported by the current cellular system (e.g., LTE, UMTS or GSM) among frequencies supported by the UE 601. The frequency (or frequency band) supported by the system is referred to as frequency B (or frequency band B).
  • The UE 601 may obtain information on frequency B from the cellular system, and may receive information on supported frequencies therefrom. More specifically, if a measurement object is configured for the UE 601 in the current cell, then the UE 601 may consider the frequency associated with the measurement object as frequency B. When SIB 5 including an inter-frequency carrier frequency list (InterFreqCarrierFreqList) is received from the cellular system and stored, the UE 601 may consider a frequency included in the inter-frequency carrier frequency list among downlink carrier frequencies (dl-CarrierFreq) supported by the UE 601 as frequency B. UTRA frequencies belonging to a UTRA-FDD carrier frequency list (carrierFreqListUTRA-FDD) or UTRA-TDD carrier frequency list (carrierFreqListUTRA-TDD) included in SIB 6 may be considered as frequency B if such frequencies are supported by the UE 601. GSM frequencies included in SIB 7 may also be considered as frequency B if such frequencies are supported by the UE 601.
  • The UE 601 selects preferred frequencies among those frequencies regarded as frequency B (i.e., among frequencies supported by both the UE 601 and the system) in consideration of those frequencies regarded as frequency A. For example, the UE 601 may select one of the frequencies regarded as frequency B that is sufficiently separated from frequency A as a preferred frequency. Alternatively, the UE 601 may select one of the frequencies regarded as frequency B that is not sufficiently separated from frequency A as a non-preferred frequency. For example, sufficiency of separation to avoid coexistence interference depends upon a filtering capability of the UE 601.
  • Thereafter, the UE 601 creates a preferred frequency list (or a non-preferred frequency list) according to the above described scheme. The UE 601 sends an RRC message including the preferred frequency list (or the non-preferred frequency list) to the eNB 603 at step 609.
  • Upon reception of the RRC message, the eNB 603 stores the preferred frequency list (or the non-preferred frequency list) included in the RRC message. The eNB 603 checks whether the frequency currently used by the UE 601 is on the preferred frequency list.
  • If the frequency currently used by the UE 601 is not on the preferred frequency list, then the eNB 603 instructs the UE 601 to conduct handover to one frequency of the preferred frequency list at step 611.
  • If the frequency currently used by the UE 601 is on the preferred frequency list, then the eNB 603 may not instruct the UE 601 to conduct immediate handover. Later, when handover is requested, the eNB 603 may instruct the UE 601 to conduct handover to another eNB using a frequency on the preferred frequency list, which has been stored.
  • In other words, if the current operating frequency of the UE 601 is not a preferred frequency, the eNB 603 checks possibility of handover of the UE 601 to a preferred frequency and initiates a handover procedure when handover of the UE 601 to a preferred frequency is possible.
  • If handover of the UE 601 to a preferred frequency is not possible (for example, lack of resources in eNBs using preferred frequencies, or absence of neighbor eNBs using preferred frequencies), the eNB 603 may send an RRC message to the UE 601 to notify of impossibility of handover to a preferred frequency. Upon reception of the RRC message, the UE 601 may provide the RRC message to the user, so that the user may decide whether to start the interfering communication technology if it is not yet started.
  • After handover to a preferred frequency (or while already using a preferred frequency), the UE 601 starts the interfering communication technology at step 613. Here, two collocated communication technologies (for example, LTE and Bluetooth) may operate simultaneously.
  • When stoppage or turning off of the interfering communication technology is detected at step 615, the UE 601 sends an RRC message to the eNB 603 to notify stoppage of the interfering communication technology or an updated preferred frequency list (or non-preferred frequency list) at step 617. Upon reception of the RRC message, the eNB 603 removes restrictions on the corresponding frequency and stores the updated preferred frequency list (or non-preferred frequency list) for later use.
  • FIG. 7 is a flowchart of a procedure performed by an UE such as, for example, the UE 601 provided in FIG. 6 according to an exemplary embodiment of the present invention.
  • Referring to FIG. 7, the UE 701 detects activation of an interfering communication technology at step 703. Upon detection of activation of an interfering communication technology, the UE 701 identifies at least one frequency that is likely to be affected by the interfering communication technology at step 705.
  • If at least one frequency that is likely to be affected by interference is present, then the UE 701 sends an RRC message including a list of frequencies that are likely to be affected by interference to the eNB at step 707.
  • The eNB may send a handover command. When a handover command message is received from the eNB, the UE 701 performs handover according to the handover command message at step 709.
  • The UE 701 starts the interfering communication technology if necessary at step 711. Thereafter, the UE 701 returns to step 703 and performs requested operations (such as detection of activation or stoppage of interfering communication technologies).
  • FIG. 8 is a block diagram of a user equipment according to an exemplary embodiment of the present invention.
  • Referring to FIG. 8, the user equipment may include a transceiver unit 801, a mux/demux unit 803, an upper layer unit 805, a control message handler 807, a control unit 809, an interfering technology detector/determiner 811, and an interfering communication module 813.
  • In the user equipment, data is sent and received through the upper layer unit 805, and control messages are sent and received through the control message handler 807. For transmission, data is multiplexed by the mux/demux unit 803 and sent through the transceiver unit 801 under control of the control unit 809. For reception, a message signal received by the transceiver unit 801 is demultiplexed by the mux/demux unit 803 and forwarded to the upper layer unit 805 or the control message handler 807 according to the message type, under control of the control unit 809.
  • As an example, the interfering communication module 813 may directly send notification of a power on or start of operation to the interfering technology detector/determiner 811. The interfering technology detector/determiner 811 may already be aware of the interfering communication module 813. When a transmit signal 815 sent by the interfering communication module 813 is received by the transceiver unit 801 as a strong interference signal 817, the control unit 809 may recognize this situation and notify the interfering technology detector/determiner 811 of in-device interference.
  • To avoid in-device interference, the interfering technology detector/determiner 811 notifies the control message handler 807 of information on the interfering communication module 813. Then, the control message handler 807 creates an RRC message including a measurement configuration request and a preferred frequency list (or a non-preferred frequency list, and sends the RRC message to a corresponding eNB.
  • When a measurement configuration message is received as a control message from the eNB, the control unit 809 controls an operation to perform measurement according to the measurement configuration. When a handover command message is received as a control message from the eNB, the control unit 809 controls an operation to perform handover according to the handover command. After successfully performing handover, the control unit 809 notifies the interfering technology detector/determiner 811 of handover completion so as to start the interfering communication module 813 if not yet started. Thereafter, the control unit 809 controls an operation to detect activation or stoppage of interfering communication technologies, and the user equipment may repeat the above process.
  • Although the user equipment is depicted as including multiple blocks having different functions in the above description, it is not necessarily limited to such a configuration.
  • For example, the user equipment may be composed of a transceiver unit to send and receive a signal to and from an eNB, and a control unit to control interference measurement.
  • In this case, the control unit may control a process of identifying, upon detection of activation of an interfering communication technology, those frequencies that are likely to be affected by interference caused by the interfering communication technology, sending a measurement configuration request message including a list of frequencies that are likely to be affected by interference to a corresponding eNB, and performing, upon reception of a measurement configuration message from the eNB, measurement according to measurement configurations specified in the received message.
  • For example, the measurement configuration message may include an indication indicating measurement of in-device interference caused by an interfering communication technology in the user equipment.
  • The control unit may control an operation to separately store a measurement result for subframes not affected by in-device interference and another measurement result for subframes affected by in-device interference. The control unit may regard a frequency that is supported by the user equipment and is not separated by a preset gap or more from the frequency of the interfering communication technology as a frequency that is likely to be affected by interference.
  • When a trigger condition in the measurement configuration message is met, the control unit may control an operation to send a measurement report message including measurement results to the eNB. Here, the measurement report message may separately include a measurement result for subframes not affected by in-device interference and another measurement result for subframes affected by in-device interference.
  • When a handover command based on the transmitted measurement results is received from the eNB, the control unit may control an operation to perform handover according to the handover command.
  • As described above, a user equipment supporting the proposed method may perform effective measurement as to a present or potential interference factor, report measurement results to a corresponding base station, and perform handover to another cell so as to reduce in-device interference. Hence, the user equipment may conduct smooth communication while avoiding coexistence interference caused by an interfering communication technology.
  • In a feature of various exemplary embodiments of the present invention, a user equipment supporting the proposed method may provide information regarding a frequency band that can be affected by interference to a corresponding base station, which is then recommended to send a command for guiding interference avoidance to the user equipment. Hence, it is possible for the user equipment to perform smooth communication by reducing interference between communication modules.
  • While the invention has been shown and described with reference to certain exemplary embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the spirit and scope of the invention as defined by the appended claims and their equivalents.

Claims (19)

1. A measurement method for a user equipment in a wireless communication system, the measurement method comprising:
identifying, upon detection of activation of an interfering communication technology that potentially causes interference to cellular communication of the user equipment, at least one frequency that is likely to be affected by the potential interference;
sending a measurement configuration request message including the identified frequency that is likely to be affected by the potential interference to a base station; and
performing, upon reception of a measurement configuration message from the base station, measurement according to measurement configurations included in the measurement configuration message.
2. The measurement method of claim 1, wherein the received measurement configuration message includes an indication indicating measurement of in-device interference caused by the interfering communication technology in the user equipment.
3. The measurement method of claim 2, wherein the performing of the measurement according to the measurement configurations comprises separately storing a measurement result for subframes not affected by in-device interference and another measurement result for subframes affected by in-device interference.
4. The measurement method of claim 1, wherein the identifying of at least one frequency that is likely to be affected by the potential interference comprises determining a frequency that is supported by the user equipment and that is not separated by a preset gap or more from the frequency of the interfering communication technology as a frequency that is likely to be affected by the potential interference.
5. The measurement method of claim 1, further comprising creating, when a trigger condition specified in the measurement configuration message is met, a measurement report message including measurement results, and sending the measurement report message to the base station.
6. The measurement method of claim 5, wherein the measurement report message separately includes a measurement result for subframes not affected by in-device interference and another measurement result for subframes affected by in-device interference.
7. The measurement method of claim 6, further comprising:
receiving a handover command reflecting the measurement results from the base station; and
performing handover according to the received handover command.
8. A user equipment capable of interference measurement in a wireless communication system, the user equipment comprising:
a transceiver unit for sending and receiving a signal to and from a base station; and
a control unit for controlling a process of identifying, upon detection of activation of an interfering communication technology that potentially causes interference to cellular communication of the user equipment, at least one frequency that is likely to be affected by the potential interference caused by the interfering communication technology, for sending a measurement configuration request message including the identified list of at least one frequency that is likely to be affected by the potential interference to the base station, and for performing, upon reception of a measurement configuration message from the base station, measurement according to measurement configurations specified in the received message.
9. The user equipment of claim 8, wherein the control unit receives, through the transceiver unit, a measurement configuration message including an indication indicating measurement of in-device interference caused by the interfering communication technology in the user equipment.
10. The user equipment of claim 9, wherein the control unit controls an operation to separately store a measurement result for subframes not affected by in-device interference and another measurement result for subframes affected by in-device interference.
11. The user equipment of claim 8, wherein the control unit determines a frequency that is supported by the user equipment and is not separated by a preset gap or more from the frequency of the interfering communication technology as a frequency that is likely to be affected by the potential interference.
12. The user equipment of claim 8, wherein the control unit controls, when a trigger condition specified in the measurement configuration message is met, an operation to create a measurement report message including measurement results, and to send the measurement report message to the base station.
13. The user equipment of claim 12, wherein the control unit sends, through the transceiver unit, a measurement report message separately including a measurement result for subframes not affected by in-device interference caused by the interfering communication technology and another measurement result for subframes affected by in-device interference.
14. The user equipment of claim 13, wherein the control unit controls, upon reception of a handover command reflecting the measurement results from the base station, an operation to perform handover according to the received handover command.
15. A system for coordinating measurement of in-device interference, the system comprising:
a base station; and
a terminal that communicates with the base station,
wherein the base station instructs the terminal to measure in-device interference if the terminal determines that an interfering communication technology is activated as the terminal is communicating with the base station.
16. The system of claim 15, wherein upon detection of the activation of the interfering communication technology, the terminal identifies at least one frequency that is likely to be affected by potential interference from the interfering communication technology.
17. The system of claim 16, wherein the terminal identifies at least one frequency that is likely to be affected by potential interference from the interfering communication technology by determining frequencies over which the terminal communicates that are within a predefined threshold from the frequency over which the interfering communication technology is capable of communicating.
18. The system of claim 15, wherein the base station coordinates a handover with the terminal to a frequency which will likely not suffer interference from the interfering communication technology.
19. The system of claim 15, wherein the terminal, upon receipt of instructions from the base station to measure in-device interference, transmits a message which separately indicates a measurement result for subframes not affected by in-device interference and a measurement result for subframes affected by in-device interference.
US13/351,677 2011-01-18 2012-01-17 Interference measurement method and apparatus for user equipment having multiple heterogeneous communication modules in wireless communication system Abandoned US20120182896A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/351,677 US20120182896A1 (en) 2011-01-18 2012-01-17 Interference measurement method and apparatus for user equipment having multiple heterogeneous communication modules in wireless communication system

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201161433651P 2011-01-18 2011-01-18
KR1020110139376A KR20120099568A (en) 2011-01-18 2011-12-21 Method and appratus for measuring inteference from in-device communication module in wireless communication system
KR10-2011-0139376 2011-12-21
US13/351,677 US20120182896A1 (en) 2011-01-18 2012-01-17 Interference measurement method and apparatus for user equipment having multiple heterogeneous communication modules in wireless communication system

Publications (1)

Publication Number Publication Date
US20120182896A1 true US20120182896A1 (en) 2012-07-19

Family

ID=46516228

Family Applications (2)

Application Number Title Priority Date Filing Date
US13/351,677 Abandoned US20120182896A1 (en) 2011-01-18 2012-01-17 Interference measurement method and apparatus for user equipment having multiple heterogeneous communication modules in wireless communication system
US13/979,066 Active 2032-05-28 US9730054B2 (en) 2011-01-18 2012-01-18 Method and apparatus for efficiently controlling inter-cell interference power in a wireless communication system

Family Applications After (1)

Application Number Title Priority Date Filing Date
US13/979,066 Active 2032-05-28 US9730054B2 (en) 2011-01-18 2012-01-18 Method and apparatus for efficiently controlling inter-cell interference power in a wireless communication system

Country Status (6)

Country Link
US (2) US20120182896A1 (en)
EP (1) EP2667527B1 (en)
JP (1) JP6038811B2 (en)
KR (2) KR20120099568A (en)
CN (1) CN103380582B (en)
WO (2) WO2012099389A2 (en)

Cited By (64)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120213116A1 (en) * 2011-02-18 2012-08-23 Changhoi Koo Method and Apparatus for Interference Identification on Configuration of LTE and BT
US20120213162A1 (en) * 2011-02-18 2012-08-23 Changhoi Koo Method and Apparatus for Avoiding In-Device Coexistence Interference with Preferred Frequency Notification
US20130303215A1 (en) * 2011-11-07 2013-11-14 Nokia Corporation Method and apparatus providing in-device co-existence signaling
WO2014024174A2 (en) * 2012-08-09 2014-02-13 Renesas Mobile Corporation Apparatus and methods for interference mitigation
US20140050134A1 (en) * 2012-08-16 2014-02-20 Pantech Co., Ltd. Apparatus and method for transmitting control information in wireless communication system
US8831611B2 (en) 2011-02-18 2014-09-09 Blackberry Limited Method and apparatus for avoiding in-device coexistence interference with keeping time update for handover
US20140301279A1 (en) * 2013-04-04 2014-10-09 St-Ericsson Sa Methods and systems for interference immunity using frequency allocation lists in devices having embedded systems
US20140355471A1 (en) * 2012-02-07 2014-12-04 Lg Electronics Inc. Method for Transmitting IDC Interference Information in Wireless Communication Systems and Apparatus for Same
CN104202781A (en) * 2014-09-17 2014-12-10 同济大学 Community speech transmission method for community switching in multimode cellular system
CN104303571A (en) * 2012-08-06 2015-01-21 株式会社Ntt都科摩 Mobile station
CN104468182A (en) * 2013-09-24 2015-03-25 宏达国际电子股份有限公司 Method of Handling Measurement Pattern for TDD System and Related Communication Device
US20150109918A1 (en) * 2013-10-17 2015-04-23 Samsung Electronics Co., Ltd. Method and system for optimizing user equipment performance in long term evolution co-existent networks
CN104583997A (en) * 2012-08-30 2015-04-29 惠普发展公司,有限责任合伙企业 Global feature library useable with continuous delivery
CN104602294A (en) * 2013-11-01 2015-05-06 上海贝尔股份有限公司 Method for transmitting RLC (Radio Link Control) state PDU (Protocol Data Unit) in dual-conductivity communication system
CN104685809A (en) * 2012-09-25 2015-06-03 三星电子株式会社 Method and apparatus for using a plurality of cells in communication system
US9055497B2 (en) 2010-10-01 2015-06-09 Blackberry Limited Method and apparatus for avoiding in-device coexistence interference
CN104904259A (en) * 2012-11-02 2015-09-09 瑞典爱立信有限公司 Methods of obtaining measurements in the presence of strong and/or highly varying interference
US9161343B2 (en) 2010-10-01 2015-10-13 Blackberry Limited Method and apparatus for avoiding in-device coexistence interference
US9161278B2 (en) 2013-04-04 2015-10-13 Blackberry Limited Communicating an indication relating to in-device coexistence interference
US20150296526A1 (en) * 2012-11-05 2015-10-15 Telefonaktiebolaget L M Ericsson (Publ) In-device coexistence interference in a communications network
US20150327162A1 (en) * 2012-05-11 2015-11-12 Lg Electronics Inc. Method of Selecting a Cell in a Wireless Communication System and Apparatus Therefor
US9219563B2 (en) 2012-09-24 2015-12-22 Blackberry Limited Method and system for addressing interference between co-existing radios of differing radio access technologies
US20160088508A1 (en) * 2013-01-15 2016-03-24 Telefonaktiebolaget L M Ericsson (Publ) REPORTING WiFi CHANNEL MEASUREMENTS TO A CELLULAR RADIO NETWORK
CN105493600A (en) * 2013-08-29 2016-04-13 夏普株式会社 Terminal device, base station device, communication system, measurement method, and integrated circuit
US9374757B2 (en) 2012-12-27 2016-06-21 Samsung Electronics Co., Ltd. Method and apparatus for one cell operation with fast small cell switching in wireless communication system
EP3033901A1 (en) * 2013-08-16 2016-06-22 Telefonaktiebolaget LM Ericsson (publ) Method and apparatus for inter-frequency measurements in a communication network
US20160269921A1 (en) * 2015-03-12 2016-09-15 Htc Corporation Device and Method of Handling Communication Operations with a Communication Device
CN106105084A (en) * 2014-03-12 2016-11-09 Lg电子株式会社 Method and the device thereof of uplink control channel is sent in the wireless communication system using change support radio resource
CN106165475A (en) * 2014-04-09 2016-11-23 株式会社Ntt都科摩 Measure control method and base station
US9578534B2 (en) 2012-11-02 2017-02-21 Samsung Electronics Co., Ltd. Method and device for measuring interference in communication system
WO2017034704A1 (en) * 2015-08-24 2017-03-02 Qualcomm Incorporated Multi-carrier throughput enhancement by opportunistic packet scheduling with sps concurrency
US9629017B2 (en) 2013-04-30 2017-04-18 Samsung Electronics Co., Ltd. Method and apparatus for transmitting/receiving MDT measurement information in mobile communication system
US9699760B2 (en) 2013-01-16 2017-07-04 Huawei Technologies Co., Ltd. Positioning processing method, apparatus, and system
US9769815B2 (en) 2013-02-01 2017-09-19 Lg Electronics Inc. Method and apparatus for receiving downlink signal in wireless communication system
US9826470B2 (en) 2014-05-01 2017-11-21 Lg Electronics Inc. Cell searching method performed by terminal in wireless communication system, and terminal using same
CN107682899A (en) * 2016-08-01 2018-02-09 中兴通讯股份有限公司 Switching handling method and device
US9900895B2 (en) 2010-10-01 2018-02-20 Blackberry Limited Method and apparatus for avoiding in-device coexistence interference
WO2018058583A1 (en) * 2016-09-30 2018-04-05 Mediatek Singapore Pte. Ltd. Methods and apparatus for indicating and implementing of new ue category
US9949158B2 (en) 2012-12-21 2018-04-17 Samsung Electronics Co., Ltd. Method and apparatus for controlling measurement gaps of serving cells in mobile communication system
US9986470B2 (en) 2013-04-11 2018-05-29 Samsung Electronics Co., Ltd. Method and apparatus for performing handover in wireless communication system
US9986459B2 (en) 2013-12-20 2018-05-29 Samsung Electronics Co., Ltd. Method and device for controlling congestion in mobile communication system
US10045228B2 (en) 2013-08-09 2018-08-07 Samsung Electronics Co., Ltd. Method and apparatus, in mobile communication system, for effectively providing configuration information about small cell that has small cell service region
US10136423B2 (en) 2013-08-09 2018-11-20 Samsung Electronics Co., Ltd. Method and apparatus, in mobile communication system, for effectively providing configuration information about small cell that has small cell service region
US10200953B2 (en) * 2015-02-27 2019-02-05 Kyocera Corporation Radio terminal, base station, and processor
US10356840B2 (en) 2015-02-27 2019-07-16 Kyocera Corporation Radio terminal and processor for performing controls related to extended discontinuous reception (DRX) operation according to the moving speed of the radio terminal
US10356657B2 (en) 2015-04-10 2019-07-16 Samsung Electronics Co., Ltd. Method and apparatus for receiving MAC PDU in mobile communication system
CN110225536A (en) * 2019-06-10 2019-09-10 中国联合网络通信集团有限公司 The determination method and apparatus of external interference source
US10433323B2 (en) * 2014-06-13 2019-10-01 Panasonic Corporation Communication control station device, communication terminal device, and communication control method
US10440691B2 (en) 2016-09-30 2019-10-08 Kt Corporation Method for controlling connection status of UE and apparatus thereof
CN110546997A (en) * 2017-05-26 2019-12-06 英特尔Ip公司 System, method and apparatus for selecting public land mobile network using coverage enhancement indicators
CN111314985A (en) * 2020-03-24 2020-06-19 维沃移动通信有限公司 Cell reselection method and electronic equipment
CN111713151A (en) * 2018-02-13 2020-09-25 华为技术有限公司 Communication method and device
US10813028B2 (en) 2016-07-21 2020-10-20 Kt Corporation Method for performing mobility process of NB-IoT terminal, and apparatus therefor
US10840958B2 (en) 2018-08-21 2020-11-17 Skyworks Solutions, Inc. Radio frequency communication systems with discrete time cancellation for coexistence management
US10840957B2 (en) 2018-08-21 2020-11-17 Skyworks Solutions, Inc. Radio frequency communication systems with coexistence management based on digital observation data
US10855325B2 (en) 2018-08-21 2020-12-01 Skyworks Solutions, Inc. Discrete time cancellation for providing coexistence in radio frequency communication systems
US10972878B2 (en) 2015-10-13 2021-04-06 Samsung Electronics Co., Ltd. Method and apparatus for providing unicast based multimedia service
US10979953B2 (en) 2013-03-26 2021-04-13 Samsung Electronics Co., Ltd. Method for offloading traffic by means of wireless LAN in mobile communications system and apparatus therefor
CN113316235A (en) * 2021-05-31 2021-08-27 Tcl通讯(宁波)有限公司 Radio frequency power dynamic adjustment method, mobile terminal and computer readable storage medium
CN113826421A (en) * 2019-08-16 2021-12-21 华为技术有限公司 Method and device for activating terminal
US11324048B2 (en) * 2019-06-28 2022-05-03 Mediatek Inc. Method for mitigating interference in a communications apparatus and a communications apparatus utilizing the same
US11558079B2 (en) 2019-01-15 2023-01-17 Skyworks Solutions, Inc. Radio frequency communication systems with interference cancellation for coexistence
US11736140B2 (en) 2019-09-27 2023-08-22 Skyworks Solutions, Inc. Mixed signal low noise interference cancellation
US11784419B2 (en) 2019-09-27 2023-10-10 Skyworks Solutions, Inc. Antenna-plexer for interference cancellation

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9137804B2 (en) 2011-06-21 2015-09-15 Mediatek Inc. Systems and methods for different TDD configurations in carrier aggregation
KR101150846B1 (en) 2011-09-05 2012-06-13 엘지전자 주식회사 Method for performing cell measurement and method for providing information for cell measurement
WO2013062359A1 (en) * 2011-10-26 2013-05-02 Lg Electronics Inc. Method for determining transmission power information of downlink subframe and apparatus therefor
US11696300B2 (en) 2011-10-29 2023-07-04 Comcast Cable Communications, Llc Configuration of reduced transmission power time intervals based on traffic load
US8971250B2 (en) 2011-10-29 2015-03-03 Ofinno Technologies, Llc Special subframe allocation
US8937918B2 (en) 2011-10-29 2015-01-20 Ofinno Technologies, Llc Efficient special subframe allocation
US9219994B2 (en) * 2011-11-09 2015-12-22 Lg Electronics Inc. Methods for transmitting and receiving downlink data in MBSFN subframe and apparatuses thereof
US8873467B2 (en) 2011-12-05 2014-10-28 Ofinno Technologies, Llc Control channel detection
US8971275B2 (en) 2011-12-31 2015-03-03 Ofinno Technologies, Llc Almost blank subframe indication in wireless networks
WO2013125897A1 (en) * 2012-02-23 2013-08-29 Lg Electronics Inc. Methods and apparatuses for receiving or transmitting downlink signal in mbsfn subframe
US9155098B2 (en) * 2012-03-29 2015-10-06 Qualcomm Incorporated Channel state information reference signal (CSI-RS) configuration and CSI reporting restrictions
KR20140146629A (en) * 2012-05-08 2014-12-26 후지쯔 가부시끼가이샤 Reference signal measurement method, base station, and user equipment
CN104521169B (en) 2012-08-01 2017-10-03 Lg 电子株式会社 The method and its equipment of control information are transmitted with signal
CN104662947B (en) 2012-09-21 2018-01-30 Lg 电子株式会社 The method and apparatus for enabling the limited measurement in frequency domain in a wireless communication system
KR101678445B1 (en) * 2012-11-09 2016-11-22 엘지전자 주식회사 Method and device for transmitting and receiving channel state information in wireless communication system
CN104854918A (en) * 2012-11-22 2015-08-19 美国博通公司 Methods and apparatuses for discontinuous reception
CN105191174B (en) * 2013-03-27 2019-09-03 Lg电子株式会社 The method of interference and the device using this method are eliminated in a wireless communication system
WO2014163415A1 (en) 2013-04-03 2014-10-09 엘지전자 주식회사 Method and apparatus for allocating resources to multiple sites which use same frequency band
WO2014163195A1 (en) * 2013-04-04 2014-10-09 シャープ株式会社 Base station apparatus, terminal apparatus and communication system
CN104185187B (en) * 2013-05-27 2017-12-22 华为终端有限公司 The control method and terminal device that a kind of LTE and WiFi coexists
JP6096142B2 (en) * 2013-08-08 2017-03-15 株式会社Nttドコモ User terminal, base station, and wireless communication method
US9992788B2 (en) * 2013-11-12 2018-06-05 Telefonaktiebolaget L M Ericsson (Publ) Reducing interference between network nodes
US9271253B2 (en) * 2013-11-26 2016-02-23 Motorola Solutions, Inc. Method and system for managing mass registration scenario in two-way radio system
CN104717614A (en) * 2013-12-17 2015-06-17 电信科学技术研究院 MBMS measuring method and system, base station and user equipment
US9402273B2 (en) * 2013-12-23 2016-07-26 Qualcomm Incorporated DRX wakeup rule in an eICIC environment
US10020969B2 (en) * 2014-03-14 2018-07-10 Samsung Electronics Co., Ltd. Methods and apparatus for discovery and measurement in cellular networks
US10206132B2 (en) * 2014-05-27 2019-02-12 Lg Electronics Inc. Method and apparatus for performing measurement using discovery reference signal (DRS) in wireless communication system
EP3151621B1 (en) 2014-05-27 2020-10-28 LG Electronics Inc. Method and apparatus for wireless device to device communication
WO2016201739A1 (en) * 2015-06-16 2016-12-22 华为技术有限公司 Resource scheduling method, apparatus, and device
EP3400746B1 (en) * 2016-01-07 2021-10-20 Nokia Technologies Oy Time discontinuous transmission for narrow band internet of things
CN113783673A (en) * 2016-03-30 2021-12-10 Idac控股公司 System and method for reference signal measurement in wireless systems
CN109756921B (en) * 2017-11-08 2021-09-17 华为技术有限公司 Measuring method and device
CN113873630B (en) * 2020-06-30 2023-07-11 华为技术有限公司 Uplink power control method and terminal

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110170496A1 (en) * 2010-01-11 2011-07-14 Research In Motion Limited Control Channel Interference Management and Extended PDCCH for Heterogeneous Network
US20110243047A1 (en) * 2010-03-31 2011-10-06 Qualcomm Incorporated Method and apparatus to facilitate support for multi-radio coexistence
US20110242969A1 (en) * 2010-04-05 2011-10-06 Qualcomm Incorporated Method and apparatus to facilitate support for multi-radio coexistence
US20120060158A1 (en) * 2010-03-30 2012-03-08 Qualcomm Incorporated Coexistence manager hardware/software implementation
US20120281563A1 (en) * 2010-11-05 2012-11-08 Interdigital Patent Holdings, Inc. WTRU Measurements Handling to Mitigate In-Device Interference

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8676223B2 (en) 2007-03-23 2014-03-18 Qualcomm Incorporated Backhaul communication for interference management
KR20100132012A (en) * 2008-03-07 2010-12-16 노텔 네트웍스 리미티드 Method and system for reduced system-time overhead parameter length representation for inter-radio access technology communication
US8588127B2 (en) * 2008-03-27 2013-11-19 Nokia Corporation Apparatus and method for allocation of subframes on a mixed carrier
EP2230866B1 (en) 2009-03-20 2012-10-10 HTC Corporation Method of measurement reporting for CSG cells in a LTE system
CN101854589B (en) * 2009-04-03 2013-12-04 中兴通讯股份有限公司 Method and system for transmitting multimedia broadcast multicast service (MBMS) control signaling
US9392608B2 (en) * 2010-04-13 2016-07-12 Qualcomm Incorporated Resource partitioning information for enhanced interference coordination
US8743799B2 (en) * 2010-06-24 2014-06-03 Nokia Siemens Networks Oy Change of rate matching modes in presence of channel state information reference signal transmission
WO2012045770A1 (en) * 2010-10-05 2012-04-12 Nokia Siemens Networks Oy Channel state information measurement and reporting
US9173121B2 (en) * 2010-11-01 2015-10-27 Qualcomm Incorporated Method and apparatus for restricted measuring in a wireless network
KR101505762B1 (en) * 2010-11-05 2015-03-24 엘지전자 주식회사 Method for performing handover in wireless communication system
US9072110B2 (en) * 2010-11-08 2015-06-30 Mediatek Inc. Method for UE pattern indication and measurement for interference coordination
US9560662B2 (en) * 2010-11-11 2017-01-31 Telefonaktiebolaget Lm Ericsson (Publ) Methods and network nodes for configuring almost blank subframe transmission patterns and corresponding measurement patterns for reducing intercell interference in an heterogeneous cellular radio communication system
KR101857659B1 (en) * 2010-11-22 2018-05-14 엘지전자 주식회사 Method and device for measuring a downlink in a wireless communication system
US8423008B2 (en) * 2010-12-20 2013-04-16 Nokia Siemens Networks Oy Signaling UE measurement restrictions for inter-cell interference
WO2015060655A1 (en) 2013-10-23 2015-04-30 주식회사 아모그린텍 Composite electrode for desalination comprising ion-exchange membrane, manufacturing method thereof, and desalination apparatus using same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110170496A1 (en) * 2010-01-11 2011-07-14 Research In Motion Limited Control Channel Interference Management and Extended PDCCH for Heterogeneous Network
US20120060158A1 (en) * 2010-03-30 2012-03-08 Qualcomm Incorporated Coexistence manager hardware/software implementation
US20110243047A1 (en) * 2010-03-31 2011-10-06 Qualcomm Incorporated Method and apparatus to facilitate support for multi-radio coexistence
US20110242969A1 (en) * 2010-04-05 2011-10-06 Qualcomm Incorporated Method and apparatus to facilitate support for multi-radio coexistence
US20120281563A1 (en) * 2010-11-05 2012-11-08 Interdigital Patent Holdings, Inc. WTRU Measurements Handling to Mitigate In-Device Interference

Cited By (99)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9900895B2 (en) 2010-10-01 2018-02-20 Blackberry Limited Method and apparatus for avoiding in-device coexistence interference
US9161343B2 (en) 2010-10-01 2015-10-13 Blackberry Limited Method and apparatus for avoiding in-device coexistence interference
US9055497B2 (en) 2010-10-01 2015-06-09 Blackberry Limited Method and apparatus for avoiding in-device coexistence interference
US20120213116A1 (en) * 2011-02-18 2012-08-23 Changhoi Koo Method and Apparatus for Interference Identification on Configuration of LTE and BT
US8547867B2 (en) * 2011-02-18 2013-10-01 Research In Motion Limited Method and apparatus for interference identification on configuration of LTE and BT
US8805303B2 (en) * 2011-02-18 2014-08-12 Blackberry Limited Method and apparatus for avoiding in-device coexistence interference with preferred frequency notification
US8831611B2 (en) 2011-02-18 2014-09-09 Blackberry Limited Method and apparatus for avoiding in-device coexistence interference with keeping time update for handover
US10200980B2 (en) 2011-02-18 2019-02-05 Blackberry Limited Method and apparatus for avoiding in-device coexistence interference with preferred frequency notification
US20120213162A1 (en) * 2011-02-18 2012-08-23 Changhoi Koo Method and Apparatus for Avoiding In-Device Coexistence Interference with Preferred Frequency Notification
US9717075B2 (en) 2011-02-18 2017-07-25 Blackberry Limited Method and apparatus for avoiding in-device coexistence interference with preferred frequency notification
US20130303215A1 (en) * 2011-11-07 2013-11-14 Nokia Corporation Method and apparatus providing in-device co-existence signaling
US9026156B2 (en) * 2011-11-07 2015-05-05 Nokia Corporation Method and apparatus providing in-device co-existence signaling
US20140355471A1 (en) * 2012-02-07 2014-12-04 Lg Electronics Inc. Method for Transmitting IDC Interference Information in Wireless Communication Systems and Apparatus for Same
US20150327162A1 (en) * 2012-05-11 2015-11-12 Lg Electronics Inc. Method of Selecting a Cell in a Wireless Communication System and Apparatus Therefor
US9516588B2 (en) * 2012-05-11 2016-12-06 Lg Electronics Inc. Method of selecting a cell in a wireless communication system and apparatus therefor
CN104303571A (en) * 2012-08-06 2015-01-21 株式会社Ntt都科摩 Mobile station
WO2014024174A2 (en) * 2012-08-09 2014-02-13 Renesas Mobile Corporation Apparatus and methods for interference mitigation
GB2504758B (en) * 2012-08-09 2015-02-25 Broadcom Corp Apparatus and methods for interference mitigation
WO2014024174A3 (en) * 2012-08-09 2014-03-27 Renesas Mobile Corporation Apparatus and methods for interference mitigation
CN104756578A (en) * 2012-08-09 2015-07-01 美国博通公司 Apparatus and methods for interference mitigation
US9408197B2 (en) * 2012-08-16 2016-08-02 Pantech Co., Ltd. Apparatus and method for transmitting control information in wireless communication system
US20140050134A1 (en) * 2012-08-16 2014-02-20 Pantech Co., Ltd. Apparatus and method for transmitting control information in wireless communication system
CN104583997A (en) * 2012-08-30 2015-04-29 惠普发展公司,有限责任合伙企业 Global feature library useable with continuous delivery
US9753750B2 (en) 2012-08-30 2017-09-05 Entit Software Llc Global feature library useable with continuous delivery
US9219563B2 (en) 2012-09-24 2015-12-22 Blackberry Limited Method and system for addressing interference between co-existing radios of differing radio access technologies
CN104685809A (en) * 2012-09-25 2015-06-03 三星电子株式会社 Method and apparatus for using a plurality of cells in communication system
CN104904259A (en) * 2012-11-02 2015-09-09 瑞典爱立信有限公司 Methods of obtaining measurements in the presence of strong and/or highly varying interference
US9578534B2 (en) 2012-11-02 2017-02-21 Samsung Electronics Co., Ltd. Method and device for measuring interference in communication system
US9832778B2 (en) * 2012-11-05 2017-11-28 Telefonaktiebolaget Lm Ericsson (Publ) In-device coexistence interference in a communications network
US20150296526A1 (en) * 2012-11-05 2015-10-15 Telefonaktiebolaget L M Ericsson (Publ) In-device coexistence interference in a communications network
US9949158B2 (en) 2012-12-21 2018-04-17 Samsung Electronics Co., Ltd. Method and apparatus for controlling measurement gaps of serving cells in mobile communication system
US9374757B2 (en) 2012-12-27 2016-06-21 Samsung Electronics Co., Ltd. Method and apparatus for one cell operation with fast small cell switching in wireless communication system
US20160088508A1 (en) * 2013-01-15 2016-03-24 Telefonaktiebolaget L M Ericsson (Publ) REPORTING WiFi CHANNEL MEASUREMENTS TO A CELLULAR RADIO NETWORK
US10104566B2 (en) * 2013-01-15 2018-10-16 Telefonaktiebolaget Lm Ericsson (Publ) Reporting WiFi channel measurements to a cellular radio network
US9699760B2 (en) 2013-01-16 2017-07-04 Huawei Technologies Co., Ltd. Positioning processing method, apparatus, and system
US9769815B2 (en) 2013-02-01 2017-09-19 Lg Electronics Inc. Method and apparatus for receiving downlink signal in wireless communication system
US10979953B2 (en) 2013-03-26 2021-04-13 Samsung Electronics Co., Ltd. Method for offloading traffic by means of wireless LAN in mobile communications system and apparatus therefor
US11678244B2 (en) 2013-03-26 2023-06-13 Samsung Electronics Co., Ltd. Method for offloading traffic by means of wireless LAN in mobile communications system and apparatus therefor
US20140301279A1 (en) * 2013-04-04 2014-10-09 St-Ericsson Sa Methods and systems for interference immunity using frequency allocation lists in devices having embedded systems
US9510213B2 (en) * 2013-04-04 2016-11-29 St-Ericsson Sa Methods and systems for interference immunity using frequency allocation lists in devices having embedded systems
US9161278B2 (en) 2013-04-04 2015-10-13 Blackberry Limited Communicating an indication relating to in-device coexistence interference
US9986470B2 (en) 2013-04-11 2018-05-29 Samsung Electronics Co., Ltd. Method and apparatus for performing handover in wireless communication system
US9629017B2 (en) 2013-04-30 2017-04-18 Samsung Electronics Co., Ltd. Method and apparatus for transmitting/receiving MDT measurement information in mobile communication system
US10045228B2 (en) 2013-08-09 2018-08-07 Samsung Electronics Co., Ltd. Method and apparatus, in mobile communication system, for effectively providing configuration information about small cell that has small cell service region
US10136423B2 (en) 2013-08-09 2018-11-20 Samsung Electronics Co., Ltd. Method and apparatus, in mobile communication system, for effectively providing configuration information about small cell that has small cell service region
US10827483B2 (en) 2013-08-09 2020-11-03 Samsung Electronics Co., Ltd. Method and apparatus, in mobile communication system, for effectively providing configuration information about small cell that has small cell service region
EP3033901A1 (en) * 2013-08-16 2016-06-22 Telefonaktiebolaget LM Ericsson (publ) Method and apparatus for inter-frequency measurements in a communication network
CN105493600A (en) * 2013-08-29 2016-04-13 夏普株式会社 Terminal device, base station device, communication system, measurement method, and integrated circuit
CN104468182A (en) * 2013-09-24 2015-03-25 宏达国际电子股份有限公司 Method of Handling Measurement Pattern for TDD System and Related Communication Device
US20150109918A1 (en) * 2013-10-17 2015-04-23 Samsung Electronics Co., Ltd. Method and system for optimizing user equipment performance in long term evolution co-existent networks
US9455820B2 (en) * 2013-10-17 2016-09-27 Samsung Electronics Co., Ltd. Method and system for optimizing user equipment performance in long term evolution co-existent networks
CN104602294A (en) * 2013-11-01 2015-05-06 上海贝尔股份有限公司 Method for transmitting RLC (Radio Link Control) state PDU (Protocol Data Unit) in dual-conductivity communication system
US11770736B2 (en) 2013-12-20 2023-09-26 Samsung Electronics Co., Ltd. Method and device for controlling congestion in mobile communication system
US11051203B2 (en) 2013-12-20 2021-06-29 Samsung Electronics Co., Ltd. Method and device for controlling congestion in mobile communication system
US9986459B2 (en) 2013-12-20 2018-05-29 Samsung Electronics Co., Ltd. Method and device for controlling congestion in mobile communication system
US10659989B2 (en) 2013-12-20 2020-05-19 Samsung Electronics Co., Ltd. Method and device for controlling congestion in mobile communication system
US10313921B2 (en) 2013-12-20 2019-06-04 Samsung Electronics Co., Ltd. Method and device for controlling congestion in mobile communication system
US10674487B2 (en) 2014-03-12 2020-06-02 Lg Electronics Inc. Method for transmitting uplink control channel in wireless communication system that supports use change of radio resources, and apparatus therefor
CN106105084A (en) * 2014-03-12 2016-11-09 Lg电子株式会社 Method and the device thereof of uplink control channel is sent in the wireless communication system using change support radio resource
CN106165475A (en) * 2014-04-09 2016-11-23 株式会社Ntt都科摩 Measure control method and base station
US9826470B2 (en) 2014-05-01 2017-11-21 Lg Electronics Inc. Cell searching method performed by terminal in wireless communication system, and terminal using same
US10433323B2 (en) * 2014-06-13 2019-10-01 Panasonic Corporation Communication control station device, communication terminal device, and communication control method
CN104202781A (en) * 2014-09-17 2014-12-10 同济大学 Community speech transmission method for community switching in multimode cellular system
US10356840B2 (en) 2015-02-27 2019-07-16 Kyocera Corporation Radio terminal and processor for performing controls related to extended discontinuous reception (DRX) operation according to the moving speed of the radio terminal
US10200953B2 (en) * 2015-02-27 2019-02-05 Kyocera Corporation Radio terminal, base station, and processor
US20160269921A1 (en) * 2015-03-12 2016-09-15 Htc Corporation Device and Method of Handling Communication Operations with a Communication Device
US10917802B2 (en) * 2015-03-12 2021-02-09 Htc Corporation Device and method of handling communication operations with a communication device
US10356657B2 (en) 2015-04-10 2019-07-16 Samsung Electronics Co., Ltd. Method and apparatus for receiving MAC PDU in mobile communication system
US10972939B2 (en) 2015-04-10 2021-04-06 Samsung Electronics Co., Ltd. Method and apparatus for receiving MAC PDU in mobile communication system
US10064208B2 (en) 2015-08-24 2018-08-28 Qualcomm Incorporated Multi-carrier throughput enhancement by opportunistic packet scheduling with SPS concurrency
WO2017034704A1 (en) * 2015-08-24 2017-03-02 Qualcomm Incorporated Multi-carrier throughput enhancement by opportunistic packet scheduling with sps concurrency
CN107852739A (en) * 2015-08-24 2018-03-27 高通股份有限公司 Strengthened by the multicarrier throughput with opportunity packet scheduling concurrent SPS
US10708934B2 (en) 2015-08-24 2020-07-07 Qualcomm Incorporated Multi-carrier throughput enhancement by opportunistic packet scheduling with SPS concurrency
US11381938B2 (en) 2015-10-13 2022-07-05 Samsung Electronics Co., Ltd. Method and apparatus for providing unicast-based multimedia service
US10972878B2 (en) 2015-10-13 2021-04-06 Samsung Electronics Co., Ltd. Method and apparatus for providing unicast based multimedia service
US10813028B2 (en) 2016-07-21 2020-10-20 Kt Corporation Method for performing mobility process of NB-IoT terminal, and apparatus therefor
CN107682899A (en) * 2016-08-01 2018-02-09 中兴通讯股份有限公司 Switching handling method and device
WO2018058583A1 (en) * 2016-09-30 2018-04-05 Mediatek Singapore Pte. Ltd. Methods and apparatus for indicating and implementing of new ue category
US10440691B2 (en) 2016-09-30 2019-10-08 Kt Corporation Method for controlling connection status of UE and apparatus thereof
CN110546997A (en) * 2017-05-26 2019-12-06 英特尔Ip公司 System, method and apparatus for selecting public land mobile network using coverage enhancement indicators
CN111713151A (en) * 2018-02-13 2020-09-25 华为技术有限公司 Communication method and device
US11283480B2 (en) 2018-08-21 2022-03-22 Skyworks Solutions, Inc. Discrete time cancellation for providing coexsitence in radio frequency communication systems
US10840957B2 (en) 2018-08-21 2020-11-17 Skyworks Solutions, Inc. Radio frequency communication systems with coexistence management based on digital observation data
US10840958B2 (en) 2018-08-21 2020-11-17 Skyworks Solutions, Inc. Radio frequency communication systems with discrete time cancellation for coexistence management
US11736132B2 (en) 2018-08-21 2023-08-22 Skyworks Solutions, Inc. Radio frequency communication systems with coexistence management based on digital observation data
US11265029B2 (en) 2018-08-21 2022-03-01 Skyworks Solutions, Inc. Radio frequency communication systems with coexistence management based on digital observation data
US11736141B2 (en) 2018-08-21 2023-08-22 Skyworks Solutions, Inc. Discrete time cancellation for providing coexistence in radio frequency applications
US11309927B2 (en) 2018-08-21 2022-04-19 Skyworks Solutions, Inc. Radio frequency communication systems with discrete time cancellation for coexistence management
US11736133B2 (en) 2018-08-21 2023-08-22 Skyworks Solutions, Inc. Coexistence management for radio frequency communication systems
US10855325B2 (en) 2018-08-21 2020-12-01 Skyworks Solutions, Inc. Discrete time cancellation for providing coexistence in radio frequency communication systems
US11558079B2 (en) 2019-01-15 2023-01-17 Skyworks Solutions, Inc. Radio frequency communication systems with interference cancellation for coexistence
US11742890B2 (en) 2019-01-15 2023-08-29 Skyworks Solutions, Inc. Radio frequency communication systems with interference cancellation for coexistence
CN110225536A (en) * 2019-06-10 2019-09-10 中国联合网络通信集团有限公司 The determination method and apparatus of external interference source
US11324048B2 (en) * 2019-06-28 2022-05-03 Mediatek Inc. Method for mitigating interference in a communications apparatus and a communications apparatus utilizing the same
CN113826421A (en) * 2019-08-16 2021-12-21 华为技术有限公司 Method and device for activating terminal
US11736140B2 (en) 2019-09-27 2023-08-22 Skyworks Solutions, Inc. Mixed signal low noise interference cancellation
US11784419B2 (en) 2019-09-27 2023-10-10 Skyworks Solutions, Inc. Antenna-plexer for interference cancellation
CN111314985A (en) * 2020-03-24 2020-06-19 维沃移动通信有限公司 Cell reselection method and electronic equipment
CN113316235A (en) * 2021-05-31 2021-08-27 Tcl通讯(宁波)有限公司 Radio frequency power dynamic adjustment method, mobile terminal and computer readable storage medium

Also Published As

Publication number Publication date
KR20120099568A (en) 2012-09-11
CN103380582B (en) 2016-08-10
EP2667527B1 (en) 2020-07-15
KR101878303B1 (en) 2018-07-13
WO2012099386A3 (en) 2012-10-18
EP2667527A2 (en) 2013-11-27
WO2012099389A3 (en) 2012-10-18
JP6038811B2 (en) 2016-12-07
JP2014503161A (en) 2014-02-06
WO2012099386A2 (en) 2012-07-26
WO2012099389A2 (en) 2012-07-26
CN103380582A (en) 2013-10-30
EP2667527A4 (en) 2016-12-21
US20130286883A1 (en) 2013-10-31
US9730054B2 (en) 2017-08-08
KR20120083863A (en) 2012-07-26

Similar Documents

Publication Publication Date Title
US20120182896A1 (en) Interference measurement method and apparatus for user equipment having multiple heterogeneous communication modules in wireless communication system
US11540207B2 (en) Dynamic network selection
US9854464B2 (en) Method of avoiding IDC interference in a wireless communication system and apparatus for same
EP3417645B1 (en) Techniques for handling data stall in wlan
US9942818B2 (en) Method and apparatus at the physical and link layer for mobile communications
KR101749114B1 (en) Method for adjusting cell reselection priority for avoiding idc interference in wireless communication system and device for same
KR101551047B1 (en) Method and apparatus for avoiding in-device coexistence interference with keeping time update for handover
CN106576234B (en) Sending cellular related paging messages over non-cellular RAT
US9414268B2 (en) User equipment and a radio network node, and methods therein for device-to-device communication
KR101547045B1 (en) Method and apparatus for avoiding in-device coexistence interference with preferred frequency notification
KR101968586B1 (en) In device coexistence interference report control method and apparatus of network in mobile communication system
KR101819514B1 (en) Method for measuring to eliminate idc interference in wireless communication system and device for same
CN104969646B (en) The method and apparatus of limit frequency in a wireless communication system
EP2765806B1 (en) Method and apparatus for reselecting a cell in heterogeneous networks in a wireless communication system
EP2995124A1 (en) Routing modification based on handover detection
EP2802188A1 (en) Apparatus and Method for Device to Device Communications
GB2506952A (en) Method for limiting transmission of in-device co-existence indications in wireless communication system
US10701598B2 (en) Techniques for handover cell selection procedures in poor radio conditions
WO2013177768A1 (en) Configuration method of multiflow transmission, base station, radio network controller and user equipment
US9629049B2 (en) User equipment, communication control method and chipset
WO2010128383A1 (en) Apparatus and method for autonomous or semi-autonomous compressed mode activation
WO2015013863A1 (en) Communication method and access equipment

Legal Events

Date Code Title Description
AS Assignment

Owner name: SAMSUNG ELECTRONICS CO., LTD., KOREA, REPUBLIC OF

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:JANG, JAE HYUK;KIM, SOENG HUN;REEL/FRAME:027542/0885

Effective date: 20120104

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION