US20120174253A1 - Generation of high polyhydroxybutrate producing oilseeds - Google Patents

Generation of high polyhydroxybutrate producing oilseeds Download PDF

Info

Publication number
US20120174253A1
US20120174253A1 US13/395,616 US201013395616A US2012174253A1 US 20120174253 A1 US20120174253 A1 US 20120174253A1 US 201013395616 A US201013395616 A US 201013395616A US 2012174253 A1 US2012174253 A1 US 2012174253A1
Authority
US
United States
Prior art keywords
plant
oilseed
phb
pha
gene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/395,616
Other languages
English (en)
Inventor
Nii Patterson
Jihong Tang
Edgar Benjamin Cahoon
Jan G. Jaworski
Wenyu Yang
Oliver P. Peoples
Kristi D. Snell
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Donald Danforth Plant Science Center
Yield10 Bioscience Inc
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US13/395,616 priority Critical patent/US20120174253A1/en
Assigned to METABOLIX, INC. reassignment METABOLIX, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: PATTERSON, NII, PEOPLES, OLIVER P., SNELL, KRISTI D., TANG, JIHONG
Assigned to DONALD DANFORTH PLANT SCIENCE CENTER reassignment DONALD DANFORTH PLANT SCIENCE CENTER ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CAHOON, EDGAR BENJAMIN, JAWORSKI, JAN G., YANG, WENYU
Assigned to METABOLIX, INC. reassignment METABOLIX, INC. CORRECTIVE ASSIGNMENT TO CORRECT THE SERIAL NUMBER OF THE APPLICATION PREVIOUSLY RECORDED ON REEL 025698 FRAME 0444. ASSIGNOR(S) HEREBY CONFIRMS THE SERIAL NO. IS INCORRECT US1048972. Assignors: PATTERSON, NII, PEOPLES, OLIVER P., SNELL, KRISTI D., TANG, JIHONG
Publication of US20120174253A1 publication Critical patent/US20120174253A1/en
Assigned to METABOLIX, INC. reassignment METABOLIX, INC. ADDRESS CHANGE Assignors: METABOLIX, INC.
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8201Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
    • C12N15/8214Plastid transformation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8257Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits for the production of primary gene products, e.g. pharmaceutical products, interferon

Definitions

  • the invention is in the field of polymer production in transgenic plants. Methods for generating industrial oilseeds producing high levels of polyhydroxybutyrate (PHB) and industrial oilseeds producing high levels of PHB are described.
  • PHB polyhydroxybutyrate
  • PHAs polyhydroxyalkanoates
  • PHAs are a natural component of numerous organisms in multiple ecosystems and accumulate in a wide range of bacteria as a granular storage material when the microbes are faced with an unfavorable growth environment, such as a limitation in an essential nutrient (Madison et al., Microbiol. Mol. Biol. Rev., 1999, 63, 21-53; Suriyamongkol et al., Biotechnol Adv, 2007, 25, 148-175).
  • the monomer unit composition of these polymers is largely dictated by available carbon source as well as the native biochemical pathways present in the organism.
  • Today PHAs are produced industrially from renewable resources in bacterial fermentations providing an alternative to plastics derived from fossil fuels.
  • PHAs possess properties enabling their use in a variety of applications currently served by petroleum-based plastics and are capable of matching or exceeding the performance characteristics of fossil fuel derived plastics with a broad spectrum of properties that can be obtained by varying the monomer composition of homo- and co-polymers, or by manipulating properties such as molecular weight (Sudesh et al., Prog. Polym. Sci., 2000, 25, 1503-1555; Sudesh et al., CLEAN—Soil, Air, Water, 2008, 36, 433-442).
  • Transgenic oilseed plants, plant material, plant cells, and genetic constructs for synthesis of polyhydroxyalkanoates (“PHA”) are provided.
  • the transgenic oilseed plants synthesize (poly)3-hydroxybutyrate (“PHB”) in the seed.
  • Host plants, plant tissue, and plant material have been engineered to express genes encoding enzymes in the biosynthetic pathway for PHB production such that polymer precursors in the plastid are polymerized to polymer.
  • Genes utilized include phaA, phaB, phaC, all of which are known in the art.
  • the genes can be introduced in the plant, plant tissue, or plant cell using conventional plant molecular biology techniques.
  • the transgenes encoding PHA biosynthesis genes are expressed in a seed specific manner such that the PHA accumulates in the seed.
  • the level of PHA accumulated is greater than 7%, 8%, 9%, 10%, 11%, 12%, 13%, 14%, 15%, 16%, 17%, 18% and 19% of the dry weight of the seed.
  • Hybrid lines can be created by crossing a line containing one or more PHAs, for example PHB genes with a line containing the other gene(s) needed to complete the PHA biosynthetic pathway.
  • PHAs for example PHB genes
  • a line containing the other gene(s) needed to complete the PHA biosynthetic pathway Use of lines that possess cytoplasmic male sterility with the appropriate maintainer and restorer lines allows these hybrid lines to be produced efficiently.
  • oilseeds produced by the disclosed methods produce high levels of PHA and are impaired in their ability to germinate and survive to produce viable plants relative to oilseeds containing little or no PHA, for example less than 7% PHA of the dry weight of the seed.
  • Germination can be impaired by 8%, 9%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 99%, or 100% relative to oilseeds with less than 7% PHA.
  • Impaired germination provides a built in mechanism for gene containment reducing the risk of unwanted growth of these oilseeds when a different crop is planted on the production fields.
  • Transgenic plants useful for the invention include dicots or monocots.
  • Preferred host plants are oilseed plants, but are not limited to members of the Brassica family including B. napus, B. rapa, B. carinata and B. juncea .
  • Additional preferred host plants include industrial oilseeds such as Camelina sativa , Crambe, jatropha, and castor.
  • Other preferred host plants include Arabidopsis thaliana, Calendula, Cuphea , maize, soybean, cottonseed, sunflower, palm, coconut, safflower, peanut, mustards including Sinapis alba, and tobacco.
  • Other embodiments provide plant material and plant parts of the transgenic plants including seeds, flowers, stems, and leaves.
  • the oilseeds can be used for the extraction of PHA biopolymer or as a source of PHA biopolymer based chemical intermediates.
  • the residual parts of the seed can be used as meal for animal feed or steam and power generation and a source of vegetable oil for industrial oelochemicals or biofuel.
  • FIG. 1 is a schematic diagram describing a strategy for creating hybrid seeds using cytoplasmic male sterility.
  • the disclosure encompasses all conventional techniques of plant breeding, microbiology, cell biology and recombinant DNA, which are within the skill of the art. See, e.g., Sambrook and Russell, Molecular Cloning: A Laboratory Manual, 3rd edition (2001); Current Protocols In Molecular Biology [(F. M. Ausubel, et al. eds., (1987)]; Plant Breeding Principles and Prospects (Plant Breeding, Vol 1) M. D. Hayward, N. O. Bosemark, I. Romagosa; Chapman & Hall, (1993.); Coligan, Dunn, Ploegh, Speicher and Wingfeld, eds.
  • PHB refers to polyhydroxybutyrate and is used interchangeably with the term PHA which refers to polyhydroxyalkanoate.
  • the tend PHB also encompasses copolymers of hydroxybutyrate with other hydroxyacid monomers.
  • PHA copolymer refers to a polymer composed of at least two different hydroxyalkanoic acid monomers.
  • PHA homopolymer refers to a polymer that is composed of a single hydroxyalkanoic acid monomer.
  • a “vector” is a replicon, such as a plasmid, phage, or cosmid, into which another DNA segment may be inserted so as to bring about the replication of the inserted segment.
  • the vectors can be expression vectors.
  • an “expression vector” is a vector that includes one or more expression control sequences
  • an “expression control sequence” is a DNA sequence that controls and regulates the transcription and/or translation of another DNA sequence.
  • Control sequences that are suitable for prokaryotes include a promoter, optionally an operator sequence, a ribosome binding site, and the like.
  • Eukaryotic cells are known to utilize promoters, polyadenylation signals, and enhancers.
  • operably linked means incorporated into a genetic construct so that expression control sequences effectively control expression of a coding sequence of interest.
  • transformed and transfected encompass the introduction of a nucleic acid into a cell by a number of techniques known in the art.
  • “Plasmids” are designated by a lower case “p” preceded and/or followed by capital letters and/or numbers.
  • heterologous means from another host.
  • the other host can be the same or different species.
  • cell refers to a membrane-bound biological unit capable of replication or division.
  • construct refers to a recombinant genetic molecule including one or more isolated polynucleotide sequences.
  • Genetic constructs used for transgene expression in a host organism comprise in the 5′-3′ direction, a promoter sequence; a nucleic acid sequence encoding the desired transgene product; and a termination sequence.
  • the open reading frame may be orientated in either a sense or anti-sense direction.
  • the construct may also comprise selectable marker gene(s) and other regulatory elements for expression.
  • plant is used in it broadest sense. It includes, but is not limited to, any species of woody, ornamental or decorative, crop or cereal, fruit or vegetable plant, and photosynthetic green algae (e.g., Chlamydomonas reinhardtii ). It also refers to a plurality of plant cells that are largely differentiated into a structure that is present at any stage of a plant's development. Such structures include, but are not limited to, a fruit, shoot, stem, leaf, flower petal, etc.
  • plant tissue includes differentiated and undifferentiated tissues of plants including those present in roots, shoots, leaves, pollen, seeds and tumors, as well as cells in culture (e.g., single cells, protoplasts, embryos, callus, etc.). Plant tissue may be in planta, in organ culture, tissue culture, or cell culture.
  • plant part refers to a plant structure, a plant organ, or a plant tissue.
  • a non-naturally occurring plant refers to a plant that does not occur in nature without human intervention.
  • Non-naturally occurring plants include transgenic plants and plants produced by non-transgenic means such as plant breeding.
  • plant cell refers to a structural and physiological unit of a plant, comprising a protoplast and a cell wall.
  • the plant cell may be in form of an isolated single cell or a cultured cell, or as a part of higher organized unit such as, for example, a plant tissue, a plant organ, or a whole plant.
  • plant cell culture refers to cultures of plant units such as, for example, protoplasts, cell culture cells, cells in plant tissues, pollen, pollen tubes, ovules, embryo sacs, zygotes and embryos at various stages of development.
  • plant material refers to leaves, stems, roots, flowers or flower parts, fruits, pollen, egg cells, zygotes, seeds, cuttings, cell or tissue cultures, or any other part or product of a plant.
  • a “plant organ” refers to a distinct and visibly structured and differentiated part of a plant such as a root, stem, leaf, flower bud, or embryo.
  • Plant tissue refers to a group of plant cells organized into a structural and functional unit. Any tissue of a plant, whether in a plant or in culture, is included. This term includes, but is not limited to, whole plants, plant organs, plant seeds, tissue culture and any groups of plant cells organized into structural and/or functional units. The use of this term in conjunction with, or in the absence of, any specific type of plant tissue as listed above or otherwise embraced by this definition is not intended to be exclusive of any other type of plant tissue.
  • “Seed germination” refers to growth of an embryonic plant contained within a seed resulting in the formation and emergence of a seedling.
  • Cotyledon refers to the embryonic first leaves of a seedling.
  • “Early plantlet development” refers to growth of the cotyledon containing seedling to form a plantlet.
  • Transgenic plants have been developed that produce increased levels of biopolymers such as polyhydroxyalkanoates (PHAs) in seeds. Methods and constructs for engineering plants for seed specific production of PHA, in particular PHB, are described.
  • PHA polyhydroxyalkanoates
  • One embodiment provides transgenic plants for the direct, large scale production of PHAs in crop plants or in energy crops where a plant by-product, such as oil, can be used for production of energy.
  • PHB polyhydroxybutyrate
  • Transgenic oilseeds comprising at least about 8% dry weight PHA are provided. In one embodiment we provide transgenic oilseeds having at least 10% PHA dry weight and which are impaired in germination and plant survival.
  • Suitable genetic constructs include expression cassettes for enzymes for production of polyhydroxyalkanoates, in particular from the polyhydroxybutyrate biosynthetic pathway.
  • the construct contains operatively linked in the 5′ to 3′ direction, a seed specific promoter that directs transcription of a nucleic acid sequence in the nucleus; a nucleic acid sequence encoding one of the PHB biosynthetic enzymes; and a 3′ polyadenylation signal that increases levels of expression of transgenes.
  • enzymes for formation of polymer precursors are targeted to the plastid using appropriate plastid-targeting signals.
  • the PHA pathway is expressed directly from the plastid genome using appropriate plastidial promoters and regulatory sequences.
  • DNA constructs useful in the methods described herein include transformation vectors capable of introducing transgenes into plants.
  • transgenic refers to an organism in which a nucleic acid fragment containing a heterologous nucleotide sequence has been introduced.
  • the transgenes in the transgenic organism are preferably stable and inheritable.
  • the heterologous nucleic acid fragment may or may not be integrated into the host genome.
  • Plant transformation vectors generally include one or more coding sequences of interest under the transcriptional control of 5′ and 3′ regulatory sequences, including a promoter, a transcription termination and/or polyadenylation signal, and a selectable or screenable marker gene.
  • additional RNA processing signals and ribozyme sequences can be engineered into the construct (U.S. Pat. No. 5,519,164). This approach has the advantage of locating multiple transgenes in a single locus, which is advantageous in subsequent plant breeding efforts.
  • Engineered minichromosomes can also be used to express one or more genes in plant cells.
  • Cloned telomeric repeats introduced into cells may truncate the distal portion of a chromosome by the formation of a new telomere at the integration site.
  • a vector for gene transfer can be prepared by trimming off the arms of a natural plant chromosome and adding an insertion site for large inserts (Yu et al., Proc Natl Acad Sci USA, 2006, 103, 17331-6; Yu et al., Proc Natl Acad Sci USA, 2007, 104, 8924-9).
  • chromosome engineering in plants involves in vivo assembly of autonomous plant minichromosomes (Carlson et al., PLoS Genet, 2007, 3, 1965-74). Plant cells can be transformed with centromeric sequences and screened for plants that have assembled autonomous chromosomes de novo. Useful constructs combine a selectable marker gene with genomic DNA fragments containing centromeric satellite and retroelement sequences and/or other repeats.
  • ETL Engineered Trait Loci
  • U.S. Pat. No. 6,077,697 to Hadlaczky et al.; US Patent Application 2006/0143732 This system targets DNA to a heterochromatic region of plant chromosomes, such as the pericentric heterochromatin, in the short arm of acrocentric chromosomes.
  • Targeting sequences may include ribosomal DNA (rDNA) or lambda phage DNA.
  • rDNA ribosomal DNA
  • the pericentric rDNA region supports stable insertion, low recombination, and high levels of gene expression.
  • This technology is also useful for stacking of multiple traits in a plant (US Patent Application 2006/0246586, 2010/0186117 and PCT WO 2010/037209).
  • Zinc-finger nucleases are also useful in that they allow double strand DNA cleavage at specific sites in plant chromosomes such that targeted gene insertion or deletion can be performed (Shukla et al., Nature, 2009; Townsend et al., Nature, 2009).
  • a vector to transform the plant plastid chromosome by homologous recombination (as described in U.S. Pat. No. 5,545,818 to McBride et al.) is used in which case it is possible to take advantage of the prokaryotic nature of the plastid genome and insert a number of transgenes as an operon.
  • WO 2010/061186 describes an alternative method for introducing genes into the plastid chromosome using an adapted endogenous cellular process for the transfer of RNAs from the cytoplasm to the plastid where they are incorporated by homologous recombination. This plastid transformation procedure is also suitable for practicing the disclosed compositions and methods.
  • a transgene may be constructed to encode a multifunctional enzyme through gene fusion techniques in which the coding sequences of different genes are fused with or without linker sequences to obtain a single gene encoding a single protein with the activities of the individual genes.
  • Transgenes encoding a bifunctional protein containing thiolase and reductase activities (Kourtz, L., K. et al. (2005), Plant Biotechnol. 3: 435-447) and a trifunctional protein having each of the three enzyme activities required for PHB expression in plants (Mullaney and Rehm (2010), Journal of Biotechnology 147: 31-36) have been described.
  • Such synthetic fusion gene/enzyme combinations can be further optimized using molecular evolution technologies.
  • a transgene may be constructed to encode a series of enzyme activities separated by intein sequences such that on expression, two or more enzyme activities are expressed from a single promoter as described by Snell in U.S. Pat. No. 7,026,526 to Metabolix, Inc.
  • the products of the transgenes are enzymes and other factors required for production of a biopolymer, such as a polyhydroxyalkanoate (PHA).
  • a biopolymer such as a polyhydroxyalkanoate (PHA).
  • transgenes encode enzymes such as beta-ketothiolase, acetoacetyl-CoA reductase, PHB (“short chain”) synthase, PHA (“long chain”) synthase, threonine dehydratase, dehydratases such as 3-OH acyl ACP, isomerases such as ⁇ 3-cis, ⁇ 2-trans isomerase, propionyl-CoA synthetase, hydroxyacyl-CoA synthetase, hydroxyacyl-CoA transferase, R-3-hydroxyacyl-ACP:CoA transferase, thioesterase, fatty acid synthesis enzymes and fatty acid beta-oxidation enzymes.
  • enzymes such as beta-ketothiolase, acetoacetyl-CoA reductase, PHB (“short chain”) synthase, PHA (“long chain”) synthase, threonine dehydratase, dehydratases such as
  • PHA synthases include a synthase with medium chain length substrate specificity, such as phaC1 from Pseudomonas oleovorans (WO 91/000917; Huisman, et al. J. Biol. Chem. 266, 2191-2198 (1991)) or Pseudomonas aeruginosa (Timm, A. & Steinbuchel, A. Eur. J. Biochem. 209: 15-30 (1992)), the synthase from Alcaligenes eutrophus with short chain length specificity (Peoples, O. P. & Sinskey, A. J. J. Biol. Chem.
  • medium chain length substrate specificity such as phaC1 from Pseudomonas oleovorans (WO 91/000917; Huisman, et al. J. Biol. Chem. 266, 2191-2198 (1991)) or Pseudomonas aeruginosa (
  • PHA synthase genes have been isolated from, for example, Alcaligenes latus (Accession ALU47026), Burkholderia sp. (Accession AF153086), Aeromonas caviae (Fukui & Doi, J. Bacteriol. 179: 4821-30 (1997)), Acinetobacter sp. strain RA3849 (Accession L37761), Rhodospirillum rubrum (U.S. Pat. No.
  • PHA synthases with broad substrate specificity useful for producing copolymers of 3-hydroxybutyrate and longer chain length (from 6 to 14 carbon atoms) hydroxyacids have also been isolated from Pseudomonas sp. A33 (Appl. Microbiol. Biotechnol. 42: 901-909 (1995)) and Pseudomonas sp. 61-3 (Accession AB014757; Kato, et al. Appl. Microbiol. Biotechnol. 45: 363-370 (1996)).
  • An alpha subunit of beta-oxidation multienzyme complex pertains to a multifunctional enzyme that minimally possesses hydratase and dehydrogenase activities.
  • the subunit may also possess epimerase and A 3-cis, A 2-trans isomerase activities.
  • Examples of alpha subunits of the beta-oxidation multienzyme complex are FadB from E. coli (DiRusso, C. C. J. Bacteriol. 1990, 172, 6459-6468), FaoA from Pseudomonas fragi (Sato, S., Hayashi, et al. J. Biochem. 1992, 111, 8-15), and the E.
  • a ⁇ subunit of the ⁇ -oxidation complex refers to a polypeptide capable of forming a multifunctional enzyme complex with its partner ⁇ subunit.
  • the ⁇ subunit possesses thiolase activity.
  • Examples of ⁇ subunits are FadA from E. coli (DiRusso, C. C. J. Bacteriol. 172: 6459-6468 (1990)), FaoB from Pseudomonas fragi (Sato, S., Hayashi, M., Imamura, S., Ozeki, Y., Kawaguchi, A. J. Biochem. 111: 8-15 (1992)), and the E. coli open reading frame f436 that contains homology to ⁇ subunits of the ⁇ -oxidation complex (Genbank Accession # AE000322; gene b2342).
  • the transgene can encode a reductase.
  • a reductase refers to an enzyme that can reduce ⁇ -ketoacyl CoAs to R-3-OH-acyl CoAs, such as the NADH dependent reductase from Chromatium vinosum (Liebergesell, M., & Steinbuchel, A. Eur. J. Biochem. 209: 135-150 (1992)), the NADPH dependent reductase from Alcaligenes eutrophus (Accession J04987, Peoples, O. P. & Sinskey, A. J. J. Biol. Chem.
  • NADPH reductase from Zoogloea ramigera (Accession P23238; Peoples, O. P. & Sinskey, A. J. Molecular Microbiology 3: 349-357 (1989)) or the NADPH reductase from Bacillus megaterium (U.S. Pat. No. 6,835,820), Alcaligenes latus (Accession ALU47026), Rhizobium meliloti (Accession RMU17226), Paracoccus denitrificans (Accession D49362), Burkholderia sp. (Accession AF153086), Pseudomonas sp.
  • strain 61-3 (Accession AB014757), Acinetobacter sp. strain RA3849 (Accession L37761), P. denitrificans , (Accession P50204), and Synechocystis sp. Strain PCC6803 (Taroncher-Oldenburg et al., (2000), Appl. Environ. Microbiol. 66: 4440-4448).
  • the transgene can encode a thiolase.
  • a beta-ketothiolase refers to an enzyme that can catalyze the conversion of acetyl CoA and an acyl CoA to a ⁇ -ketoacyl CoA, a reaction that is reversible.
  • An example of such thiolases are PhaA from Alcaligenes eutropus (Accession J04987, Peoples, O. P. & Sinskey, A. J. J. Biol. Chem. 264: 15293-15297 (1989)), BktB from Alcaligenes eutrophus (Slater et al. J Bacteriol.
  • Rhizobium meliloti accesion RMU17226
  • Z. ramigera accesion P07097
  • Paracoccus denitrificans accesion D49362
  • Burkholderia sp. accesion AF153086
  • Alcaligenes latus accesion ALU47026
  • Allochromatium vinosum accesion P45369
  • Thiocystis violacea accesion P45363
  • Pseudomonas sp. strain 61-3 accesion AB014757
  • strain RA3849 accesion L37761
  • Synechocystis sp. Strain PCC6803 Taloncher-Oldenburg et al., (2000), Appl. Environ. Microbiol. 66: 4440-4448).
  • acyl CoA oxidase refers to an enzyme capable of converting saturated acyl CoAs to ⁇ 2 unsaturated acyl CoAs.
  • Examples of acyl CoA oxidases are POX1 from Saccharomyces cerevisiae (Dmochowska, et al. Gene, 1990, 88, 247-252) and ACX1 from Arabidopsis thaliana (Genbank Accession # AF057044).
  • the transgene can also encode a catalase.
  • a catalase refers to an enzyme capable of converting hydrogen peroxide to hydrogen and oxygen. Examples of catalases are KatB from Pseudomonas aeruginosa (Brown, et al.): Bacterial. 177: 6536-6544 (1995)) and KatG from E. coli (Triggs-Raine, B. L. & Loewen, P. C. Gene 52: 121-128 (1987)).
  • Plant promoters can be selected to control the expression of the transgene in different plant tissues or organelles for all of which methods are known to those skilled in the art (Gasser & Fraley, Science 244:1293-99 (1989)).
  • promoters are selected from those of eukaryotic or synthetic origin that are known to yield high levels of expression in plant and algae cytosol.
  • promoters are selected from those of plant or prokaryotic origin that are known to yield high expression in plastids.
  • the promoters are inducible. Inducible plant promoters are known in the art.
  • Suitable constitutive promoters for nuclear-encoded expression include, for example, the core promoter of the Rsyn7 promoter and other constitutive promoters disclosed in U.S. Pat. No. 6,072,050; the core CAMV 355 promoter, (Odell et al. (1985) Nature 313:810-812); rice actin (McElroy et al. (1990) Plant Cell 2:163-171); ubiquitin (Christensen et al. (1989) Plant Mol. Biol. 12:619-632 and Christensen et al. (1992) Plant Mol. Biol. 18:675-689); pEMU (Last et al. (1991) Theor. Appl. Genet.
  • Tissue-preferred promoters can be used to target a gene expression within a particular tissue such as seed, leaf or root tissue.
  • Tissue-preferred promoters include Yamamoto et al. (1997) Plant J 12(2)255-265; Kawamata et al. (1997) Plant Cell Physiol. 38(7):792-803; Hansen et al (1997) Mol. Gen. Genet. 254(3):337-343; Russell et al. (1997) Transgenic Res. 6(2):157-168; Rinehart et al. (1996) Plant Physiol. 112(3):1331-1341; Van Camp et al (1996) Plant Physiol. 112(2):525-535; Canevascini et al. (1996) Plant Physiol.
  • seed-specific promoters include both “seed-specific” promoters (those promoters active during seed development such as promoters of seed storage proteins) as well as “seed-germinating” promoters (those promoters active during seed germination). See Thompson et al. (1989) BioEssays 10:108.
  • seed-preferred promoters include, but are not limited to, Cim1 (cytokinin-induced message); cZ19B1 (maize 19 kDa zein); milps (myo-inositol-1-phosphate synthase); and ce1A (cellulose synthase).
  • Gama-zein is a preferred endosperm-specific promoter.
  • Glob-1 is a preferred embryo-specific promoter.
  • seed-specific promoters include, but are not limited to, bean ⁇ -phaseolin, napin ⁇ -conglycinin, soybean lectin, cruciferin, oleosin, the Lesquerella hydroxylase promoter, and the like.
  • seed-specific promoters include, but are not limited to, maize 15 kDa zein, 22 kDa zein, 27 kDa zein, g-zein, waxy, shrunken 1, shrunken 2, globulin 1, etc. Additional seed specific promoters useful for practicing this invention are described in the Examples disclosed herein.
  • Leaf-specific promoters are known in the art. See, for example, Yamamoto et al. (1997) Plant J. 12(2):255-265; Kwon et al. (1994) Plant Physiol. 105:357-67; Yamamoto et al. (1994) Plant Cell Physiol. 35(5):773-778; Gotor et al. (1993) Plant J. 3:509-18; Orozco et al. (1993) Plant Mol. Biol. 23(6):1129-1138; and Matsuoka et al. (1993) Proc. Natl. Acad. Sci. USA 90(20):9586-9590.
  • Root-preferred promoters are known and may be selected from the many available from the literature or isolated de nova from various compatible species. See, for example, Hire et al. (1992) Plant Mol. Biol. 20(2): 207-218 (soybean root-specific glutamine synthetase gene); Keller and Baumgartner (1991) Plant Cell 3(10):1051-1061 (root-specific control element in the GRP 1.8 gene of French bean); Sanger et al. (1990) Plant Mol. Biol. 14(3):433-443 (root-specific promoter of the mannopine synthase (MAS) gene of Agrobacterium tumefaciens ); and Miao et al.
  • MAS mannopine synthase
  • Plant Cell 3(1):1 1′-22 full-length cDNA clone encoding cytosolic glutamine synthetase (GS), which is expressed in roots and root nodules of soybean. See also U.S. Pat. Nos. 5,837,876; 5,750,386; 5,633,363; 5,459,252; 5,401,836; 5,110,732; and 5,023,179.
  • Plastid specific promoters include the PrbcL promoter [Allison L. A. et al., EMBO 15: 2802-2809 (1996); Shiina T. et al., Plant Cell 10: 1713-1722 (1998)]; the PpsbA promoter [Agrawal G K, et al., Nucleic Acids Research 29: 1835-1843 (2001)]; the Prrn 16 promoter [Svab Z & Maliga P., Proc. Natl. Acad. Sci.
  • Chemical-regulated promoters can be used to modulate the expression of a gene in a plant through the application of an exogenous chemical regulator.
  • the promoter may be a chemical-inducible promoter, where application of the chemical induces gene expression, or a chemical-repressible promoter, where application of the chemical represses gene expression.
  • Chemical-inducible promoters are known in the art and include, but are not limited to, the maize 1n2-2 promoter, which is activated by benzenesulfonamide herbicide safeners, the maize GST promoter, which is activated by hydrophobic electrophilic compounds that are used as pre-emergent herbicides, and the tobacco PR-1 a promoter, which is activated by salicylic acid.
  • promoters of interest include steroid-responsive promoters (see, for example, the glucocorticoid-inducible promoter in Schena et al. Proc. Natl. Acad. Sci. USA 88:10421-10425 (1991) and McNellis et al. Plant J 14(2):247-257 (1998)) and tetracycline-inducible and tetracycline-repressible promoters (see, for example, Gatz et al. Mol. Gen. Genet. 227:229-237 (1991), and U.S. Pat. Nos. 5,814,618 and 5,789,156), herein incorporated by reference in their entirety.
  • coordinated expression of the three transgenes, phaA, phaB, and phaC, necessary for conversion of acetyl-CoA to PHB is controlled by a seed specific promoter, such as the soybean oleosin promoter (Rowley et al., Biochim Biophys Acta, 1997, 1345, 1-4) or the promoter from the lesquerlla hydroxylase gene (U.S. Pat. No. 6,437,220 B1).
  • a seed specific promoter such as the soybean oleosin promoter (Rowley et al., Biochim Biophys Acta, 1997, 1345, 1-4) or the promoter from the lesquerlla hydroxylase gene (U.S. Pat. No. 6,437,220 B1).
  • coordinated expression of the three transgenes, phaA, phaB, and phaC, necessary for conversion of acetyl-CoA to PHB is controlled by a promoter active primarily in the biomass plant, such as the maize chlorophyll A/B binding protein promoter (Sullivan et al., Mol. Gen. Genet., 1989, 215, 431-40). It has been previously shown that plants transformed with multi-gene constructs produced higher levels of polymer than plants obtained from crossing single transgene lines (Valentin et al., Int. J. Biol. Macromol., 1999, 25, 303-306; Bohmert et al., Planta, 2000, 211, 841-845).
  • a promoter active primarily in the biomass plant such as the maize chlorophyll A/B binding protein promoter
  • the final molecular weight of the polymer produced is controlled by the choice of promoter for expression of the PHA synthase gene.
  • promoter for expression of the PHA synthase gene.
  • high PHA synthase activity will lower polymer molecular weight and low PHA synthase activity will increase polymer molecular weight.
  • a strong promoter is used for expression of the genes encoding plastid-targeted monomer producing enzymes while a weaker promoter is used to control expression of synthase.
  • a polyadenylation signal can be engineered.
  • a polyadenylation signal refers to any sequence that can result in polyadenylation of the mRNA in the nucleus prior to export of the mRNA to the cytosol, such as the 3′ region of nopaline synthase (Bevan, M., Barnes, W. M., Chilton, M. D. Nucleic Acids Res. 1983, 11, 369-385).
  • Genetic constructs may encode a selectable marker to enable selection of plastid transformation events. There are many methods that have been described for the selection of transformed plants [for review see (Miki et al., Journal of Biotechnology, 2004, 107, 193-232) and references incorporated within]. Selectable marker genes that have been used extensively in plants include the neomycin phosphotransferase gene nptII (U.S. Pat. No. 5,034,322, U.S. Pat. No. 5,530,196), hygromycin resistance gene (U.S. Pat. No. 5,668,298), the bar gene encoding resistance to phosphinothricin (U.S. Pat. No.
  • 5,767,378 describes the use of mannose or xylose for the positive selection of transgenic plants. Methods for positive selection using sorbitol dehydrogenase to convert sorbitol to fructose for plant growth have also been described (WO 2010/102293). Screenable marker genes include the beta-glucuronidase gene (Jefferson et al., 1987 , EMBO J. 6: 3901-3907; U.S. Pat. No. 5,268,463) and native or modified green fluorescent protein gene (Cubitt et al., 1995 , Trends Biochem. Sci. 20: 448-455; Pan et al., 1996 , Plant Physiol. 112: 893-900).
  • Transformation events can also be selected through visualization of fluorescent proteins such as the fluorescent proteins from the nonbioluminescent Anthozoa species which include DsRed, a red fluorescent protein from the Discosoma genus of coral (Matz et al. (1999), Nat Biotechnol 17: 969-73).
  • DsRed a red fluorescent protein from the Discosoma genus of coral
  • An improved version of the DsRed protein has been developed (Bevis and Glick (2002), Nat Biotech 20: 83-87) for reducing aggregation of the protein.
  • Visual selection can also be performed with the yellow fluorescent proteins (YFP) including the variant with accelerated maturation of the signal (Nagai, T. et al.
  • a preferred selectable marker is the spectinomycin-resistant allele of the plastid 16S ribosomal RNA gene (Staub J M, Maliga P, Plant Cell 4: 39-45 (1992); Svab Z, Hajdukiewicz P, Maliga P, Proc. Natl., Acad. Sci. USA 87: 8526-8530 (1990)).
  • Selectable markers that have since been successfully used in plastid transformation include the bacterial aadA gene that encodes aminoglycoside adenyltransferase (AadA) conferring spectinomycin and streptomycin resistance (Svab et al., Proc, Natl. Acad. Sci.
  • nptII that encodes aminoglycoside phosphotransferase for selection on kanamycin
  • Plastid targeting sequences include the chloroplast small subunit of ribulose-1,5-bisphosphate carboxylase (Rubisco) (de Castro Silva Filho et al, Plant Mal. Biol. 30:769-780 (1996); Schnell et J. Biol. Chem. 266(5):3335-3342 (1991)); 5-(enolpyruvyl)shikimate-3-phosphate synthase (EPSPS) (Archer et al. J. Bioenerg. Biomemb. 22(6):789-810 (1990)); tryptophan synthase (Zhao et al. J. Biol. Chem.
  • EPSPS 5-(enolpyruvyl)shikimate-3-phosphate synthase
  • Plants transformed in accordance with the present disclosure may be monocots or dicots.
  • the transformation of suitable agronomic plant hosts using vectors for nuclear transformation or direct plastid transformation can be accomplished with a variety of methods and plant tissues.
  • Representative plants useful in the methods disclosed herein include the Brassica family including B. napus, B. rapa, B. carinata and B.
  • juncea industrial oilseeds such as Camelina sativa , Crambe, jatropha, castor; Calendula, Cuphea, Arabidopsis thaliana ; maize; soybean; cottonseed; sunflower; palm; coconut; safflower; peanut; mustards including Sinapis alba ; sugarcane flax and tobacco, also are useful with the methods disclosed herein.
  • Representative tissues for transformation using these vectors include protoplasts, cells, callus tissue, leaf discs, pollen, and meristems.
  • Transformation protocols as well as protocols for introducing nucleotide sequences into plants may vary depending on the type of plant or plant cell targeted for transformation. Suitable methods of introducing nucleotide sequences into plant cells and subsequent insertion into the plant genome include microinjection (Crossway et al. (1986) Biotechniques 4:320-334), electroporation (Riggs et al. (1986) Proc. Natl. Acad. Sci. USA 83:5602-5606), Agrobacterium -mediated transformation (Townsend et al., U.S. Pat. No. 5,563,055; Zhao et al. WO US98/01268), direct gene transfer (Paszkowski et al.
  • plastid transformation may be accomplished by transactivation of a silent plastid-borne transgene by tissue-preferred expression of a nuclear-encoded and plastid-directed RNA polymerase (McBride et al., Proc. Natl. Acad. Sci. USA, 1994, 91:7301-7305) or by use of an integrase, such as the phiC31 phage site-specific integrase, to target the gene insertion to a previously inserted phage attachment site (Lutz et al., Plant J, 2004, 37, 906-13).
  • Plastid transformation vectors can be designed such that the transgenes are expressed from a promoter sequence that has been inserted with the transgene during the plastid transformation process or, alternatively, from an endogenous plastidial promoter such that an extension of an existing plastidial operon is achieved (Herz et al., Transgenic Research, 2005, 14, 969-982).
  • An alternative method for plastid transformation as described in WO 2010/061186 wherein RNA produced in the nucleus of a plant cell can be targeted to the plastid genome can also be used to practice the disclosed invention.
  • Inducible gene expression from the plastid genome using a synthetic riboswitch has also been reported (Verhounig et al. (2010), Proc Natl Acad Sci USA 107: 6204-6209). Methods for designing plastid transformation vectors are described by Lutz et al. (Lutz et al., Plant Physiol, 2007, 145, 1201-10).
  • Recombinase technologies which are useful for producing the disclosed transgenic plants include the cre-lox, FLP/FRT and Gin systems. Methods by which these technologies can be used for the purpose described herein are described for example in (U.S. Pat. No. 5,527,695; Dale And Ow, 1991 , Proc. Natl. Acad. Sci. USA 88: 10558-10562; Medberry et al., 1995 , Nucleic Acids Res. 23: 485-490).
  • the following procedures can be used to obtain a transformed plant expressing the transgenes: select the plant cells that have been transformed on a selective medium; regenerate the plant cells that have been transformed to produce differentiated plants; select transformed plants expressing the transgene producing the desired level of desired polypeptide(s) in the desired tissue and cellular location.
  • plastid transformation procedures further rounds of regeneration of plants from explants of a transformed plant or tissue can be performed to increase the number of transgenic plastids such that the transformed plant reaches a state of homoplasmy (all plastids contain uniform plastomes containing transgene insert).
  • the cells that have been transformed may be grown into plants in accordance with conventional techniques. See, for example, McCormick et al, Plant Cell Reports 5:81-84 (1986). These plants may then be grown, and either pollinated with the same transformed variety or different varieties, and the resulting hybrid having constitutive expression of the desired phenotypic characteristic identified. Two or more generations may be grown to ensure that constitutive expression of the desired phenotypic characteristic is stably maintained and inherited and then seeds harvested to ensure constitutive expression of the desired phenotypic characteristic has been achieved.
  • Hybrid lines can be created by crossing a line containing one or more PHB genes with a line containing the other gene(s) needed to complete the PHB biosynthetic pathway.
  • Use of lines that possess cytoplasmic male sterility (Esser, K. et al., 2006, Progress in Botany, Springer Berlin Heidelberg. 67, 31-52) with the appropriate maintainer and restorer lines allows these hybrid lines to be produced efficiently.
  • Cytoplasmic male sterility systems are already available for some Brassicaceae species (Esser, K. et al., 2006, Progress in Botany, Springer Berlin Heidelberg. 67, 31-52). These Brassicaceae species can be used as gene sources to produce cytoplasmic male sterility systems for other oilseeds of interest such as Camelina.
  • the disclosed genetic constructs can be used to produce industrial oilseed plants for high levels of PHA production. Specifically, PHA is produced in the seed.
  • the transgenic plants can be grown and harvested.
  • the polyhydroxyalkanoate can be isolated from the oilseeds and the remaining plant material can be used as a feedstock for industrial use, preferably for the production of oleochemicals, energy or for use as feed for animals.
  • the polyhydroxyalkanoate harvested from the plants can then be used to produce plastics, rubber material, coating material, and binders for paints, or as a feedstock for producing chemical derivatives such as hydroxyacids, esters, alkenoic acids or amines.
  • PHA also has several medical applications.
  • Vector pMBXS490 a pCAMBIA based plasmid (Centre for Application of Molecular Biology to International Agriculture, Canberra, Australia), contains the following gene expression cassettes: (1) an expression cassette for PHA synthase containing the promoter from the soybean oleosin isoform A gene, a DNA fragment encoding the signal peptide of the small subunit of rubisco from pea ( P. sativum ) and the first 24 amino acids of the mature protein (Cashmore, A. R. 1983, In Genetic Engineering of Plants, pp.
  • DsRed a protein that can be visualized in seeds by placing them in light of the appropriate wavelength, containing the promoter from the cassava mosaic virus (CMV), a DNA fragment encoding a modified red fluorescent protein from Discosoma sp. (DsRed) in which eleven amino acids have been added to the C-terminus to increase solubility and/or prevent aggregation of the protein, and a termination sequence from the Agrobacterium tumefaciens nopaline synthase gene.
  • CMV cassava mosaic virus
  • DsRed a DNA fragment encoding a modified red fluorescent protein from Discosoma sp.
  • Promoters are as follows: LH, promoter from the Lesquerella fendleri bifunctional oleate 12-hydroxylase:saturate gene (U.S. Pat. No. 6,437,220 B1); Oleosin, promoter from the soybean oleosin isoform A gene (Rowley and Herman, 1997, Biochim. Biophys. Acta 1345, 1-4); Napin, promoter from the Brassica napes napin gene (Ellenstrom, M. et al., 1996, Plant Molecular Biology, 32: 1019-1027); Glycinin, promoter from the soybean glycinin (gy1) gene (Iida, A. et al., 1995, Plant Cell Reports, 14:539-544).
  • Vectors pMBXS364, pMBXS355, pMBXS491, and pMBXS492 contain the same PHB pathway genes as pMBXS490 with the exception that the expression of these genes is under the control of different promoters as outlined in Table 1.
  • Vector pMBXS355 contains an expression cassette for the bar gene, encoding phosphinothricin acetyltransferase whose expression is under the control of the 35S promoter. Expression of the bar gene allows selection of transformants based on their resistance to bialaphos. All other vectors in Table 1 contain expression cassettes for DsRed allowing the identification of transgenic seeds under the appropriate wavelength of light.
  • Agrobacterium strain GV3101 was transformed with the construct of interest using electroporation.
  • a single colony of GV3101 containing the construct of interest was obtained from a freshly streaked plate and was inoculated into 5 mL LB medium. After overnight growth at 28° C., 2 mL of culture was transferred to a 500-mL flask containing 300 mL of LB and incubated overnight at 28° C. Cells were pelleted by centrifugation (6,000 rpm, 20 min), and diluted to an OD600 of ⁇ 0.8 with infiltration medium containing 5% sucrose and 0.05% (v/v) Silwet-L77 (Lehle Seeds, Round Rock, Tex., USA).
  • Camelina plants were transformed by “floral dip” using transformation constructs as follows. Pots containing plants at the flowering stage were placed inside a 460 mm height vacuum desiccator (Bel-Art, Pequannock, N.J., USA). Inflorescences were immersed into the Agrobacterium inoculum contained in a 500-ml beaker. A vacuum (85 kPa) was applied and held for 5 min. Plants were removed from the desiccator and were covered with plastic bags in the dark for 24 h at room temperature. Plants were removed from the bags and returned to normal growth conditions within the greenhouse for seed formation.
  • DsRed Camelina seeds expressing DsRed
  • fully mature seeds were harvested from transformed plants and placed in a desiccator with anhydrous calcium sulfate as desiccant for at least 2 days prior to screening.
  • DsRed expressing seeds were visualized in a darkroom with a green LumaMax LED flashlight (Lab Safety Supply, Inc., Janesville, Wis.) and a pair of KD's Dark Red glasses ( Pacific Coast Sunglasses Inc., Santa Maria, Calif.).
  • bialaphos resistant seeds To identify bialaphos resistant seeds, seeds from floral dip transformations were sterilized in 70% ethanol and 10% bleach, and washed in water. Sterilized seeds were placed on germination and selection medium in square Petri dishes.
  • the germination and selection medium contained 10 mg/L bialaphos (Gold BioTechnology, 130178-500) in 1 ⁇ 2 ⁇ MS medium, which was made with Murashige & Skoog medium mixture (Caisson Labs, MSP09) at half concentration.
  • the plates were sealed and placed in a growth chamber for germination under a 16-h photoperiod, 3,000 lux light intensity, and temperatures of 23/20° C. at day/night. Seedlings with greenish cotyledons were picked and transferred to soil about six days after initiation of germination.
  • DsRed as a visual marker in Camelina enabled the identification of high PHB producing seeds that would not have germinated in a typical seed screening procedure where an antibiotic or herbicide selectable marker, such as glyphosate resistance, is employed to provide resistance to the selection agent during seed germination and seedling development in tissue culture medium.
  • Brassica carinata can be transformed using a previously described floral dip method (Shiv et al., 2008, Journal of Plant Biochemistry and Biotechnology 17, 1-4). Briefly constructs of interest are transformed into Agrobacterium strain GV-3101 and cells are grown in liquid medium. Cells are harvested and resuspended in a transformation medium consisting of 1 ⁇ 2 MS salts, 5% sucrose, and 0.05% Silwet L-77. Brassica carinata plants are grown in a greenhouse until inflorescences develop and approximately 25% of their flowers are opened. Plants are submerged in the prepared Agrobacterium solution for approximately 1 minute, and covered for 24 hours. Plants are returned to the greenhouse and allowed to set seed. Transformed seeds are screened by picking DsRed seeds under the appropriate wavelength of light as described above.
  • Brassica seeds are surface sterilized in 10% commercial bleach (Javex, Colgate-Palmolive) for 30 min with gentle shaking. The seeds are washed three times in sterile distilled water and placed in germination medium comprising Murashige-Skoog (MS) salts and vitamins, 3% (w/v) sucrose and 0.7% (w/v) phytagar, pH 5.8 at a density of 20 per plate and maintained at 24° C. an a 16 h light/8 h dark photoperiod at a light intensity of 60-80 ⁇ Em ⁇ 2 s ⁇ 1 for 4-5 days.
  • MS Murashige-Skoog
  • Constructs of interest are introduced into Agrobacterium tumefacians strain EHA101 (Hood et. al., 1986, J. Bacteriol. 168: 1291-1301) by electroporation. Prior to transformation of cotyledonary petioles, single colonies of strain EHA101 harboring each construct are grown in 5 ml of minimal medium supplemented with appropriate antibiotics for 48 hr at 28° C. One ml of bacterial suspension was pelleted by centrifugation for 1 min in a microfuge. The pellet was resuspended in 1 ml minimal medium.
  • cotyledons are excised from 4 or in some cases 5 day old seedlings so that they included ⁇ 2 mm of petiole at the base.
  • Individual cotyledons with the cut surface of their petioles are immersed in diluted bacterial suspension for 1 s and immediately embedded to a depth of ⁇ 2 mm in co-cultivation medium, MS medium with 3% (w/v) sucrose and 0.7% phytagar and enriched with 20 ⁇ M benzyladenine.
  • the inoculated cotyledons are plated at a density of 10 per plate and incubated under the same growth conditions for 48 h.
  • the cotyledons are transferred to regeneration medium comprising MS medium supplemented with 3% sucrose, 20 ⁇ M benzyladenine, 0.7% (w/v) phytagar, pH 5.8, 300 mg/L timentinin and 20 mg/L kanamycin sulfate.
  • Brassica napus can also be transformed using the floral dip procedure described by Shiv et al. (Shiv et al., 2008 , Journal of Plant Biochemistry and Biotechnology 17, 1-4) as described above for Brassica carinata.
  • Brassica juncea can be transformed using hypocotyl explants according to the methods described by Barfield and Pua (Barfield and Pua, Plant Cell Reports, 10, 308-314) or Pandian et al. (Pandian, et al., 2006 , Plant Molecular Biology Reporter 24: 103a-103i) as follows.
  • B. juncea seeds are sterilized 2 min in 70% (v/v) ethanol and washed for 20 min in 25% commercial bleach (10 g/L hypochlorite). Seeds are rinsed 3 ⁇ in sterile water. Surface-sterilized seeds are plated on germination medium (1 ⁇ MS salts, 1 ⁇ MS vitamins, 30 g/L sucrose, 500 mg/L MES. pH 5.5) and kept in the cold room for 2 days. Seeds are incubated for 4-6 days at 24° C. under low light (20 ⁇ m m ⁇ 1 s ⁇ 1 ).
  • Hypocotyl segments are excised and rinsed in 50 mL of callus induction medium (1 ⁇ MS salts, 1 ⁇ B5 vitamins, 30 g/L sucrose, 500 mg/L MES, 1.0 mg/L 2.4-D, 1.0 mg/L kinetin pH 5.8) for 30 min without agitation. This procedure is repeated but with agitation on orbital shaker ( ⁇ 140 g) for 48 h at 24° C. in low light (10 ⁇ m m ⁇ 1 s ⁇ 1 ).
  • Agrobacterium can be prepared as follows: Cells of Agrobacterium strain AGL1 (Lazo, G. et al. (1991), Biotechnology, 9: 963-967) containing the construct of interest are grown in 5 mL of LB medium with appropriate antibiotic at 28° C. for 2 days. The 5 mL culture is transferred to 250 mL flask with 45 mL of LB and cultured for 4 h at 28° C. Cells is pelleted and resuspended in BM medium (1 ⁇ MS salts, 1 ⁇ B5 vitamins, 30 g/L sucrose, 500 mg/L MES, pH 5.8). The optical density at 600 nm is adjusted to 0.2 with BM medium and used for inoculation.
  • Explants are cocultivated with Agrobacterium for 20 min after which time the Agrobacterium suspension is removed. Hypocotyl explants are washed once in callus induction medium after which cocultivation proceeds for 48 h with gentle shaking on orbital shaker. After several washes in CIM, explants are transferred to selective shoot-inducing medium (500 mg/L AgNO2, 0.4 mg/L zeatin riboside, 2.0 mg/L benzylamino purine, 0.01 mg/L GA, 200 mg/L Timentin appropriate selection agent and 8 g/L agar added to basal medium) plates for regeneration at 24° C.
  • selective shoot-inducing medium 500 mg/L AgNO2, 0.4 mg/L zeatin riboside, 2.0 mg/L benzylamino purine, 0.01 mg/L GA, 200 mg/L Timentin appropriate selection agent and 8 g/L agar added to basal medium
  • Root formation is induced on root-inducing medium (0.5 ⁇ MS salts, 0.5 ⁇ B5 vitamins, 10 g/L sucrose, 500 mg/L MES, 0.1 mg/L indole-3-butyric acid, 200 mg/L Timentin, appropriate selection agent and S g/L agar, pH 5.8).
  • root-inducing medium 0.5 ⁇ MS salts, 0.5 ⁇ B5 vitamins, 10 g/L sucrose, 500 mg/L MES, 0.1 mg/L indole-3-butyric acid, 200 mg/L Timentin, appropriate selection agent and S g/L agar, pH 5.8.
  • Plantlets are transferred to are removed from agar, gently washed, and transferred to potting soil in pots. Plants are grown in a humid environment for a week and then transferred to the greenhouse.
  • Hybrid lines can be created by crossing a line containing one or more PHB genes with a line containing the other gene(s) needed to complete the PHB biosynthetic pathway.
  • Cytoplasmic male sterility systems are already available for some Brassicaceae species (Esser, K. et al., 2006, Progress in Botany, Springer Berlin Heidelberg. 67, 31-52). These Brassicaceae species can be used as gene sources to produce cytoplasmic male sterility systems for other oilseeds of interest such as Camelina. Cytoplasmic male sterility has also been reported upon expression of a ⁇ -ketothiolase from the chloroplast genome in tobacco (Ruiz, O. N. and H. Daniell, 2005, Plant Physiol. 138, 1232-1246).
  • High PHB producing lines that are not capable of germination can be produced using oilseed lines that possess cytoplasmic male sterility (CMS) controlled by an extranuclear genome (i.e. mitochondria or chloroplast).
  • CMS cytoplasmic male sterility
  • the male sterile line is typically maintained by crossing with a maintainer line that is genetically identical except that it possesses normal fertile cytoplasm and is therefore male fertile. Transformation of the maintainer line with one or more genes for the PHB biosynthetic pathway and crossing this modified maintainer line with the original male sterile line will produce a male sterile line possessing a portion of the PHB biosynthetic pathway.
  • insertion of the phaA and phaC genes into the maintainer line and crossing with the original male cytoplasmic sterile line will form a male sterile line containing the phaA and phaC genes.
  • Fertility can be restored to this line using a “restorer line” that carries the appropriate nuclear restorer genes.
  • the restorer line can be transformed with the remaining genes required to complete the PHB biosynthetic pathway and crossed with the previously created male sterile line containing phaA and phaC to produce a hybrid line containing the entire PHB biosynthetic pathway.
  • Crosses can be performed in the field by planting multiple rows of the male sterile line, the line that will produce the seed, next to a few rows of the male fertile line.
  • Harvested seed can be used for subsequent plantings or as the PHB containing seed for crushing and extraction.
  • expression cassettes for the PHB genes in this example are controlled by strong promoters, such as the soybean oleosin promoter, high PHB producing seeds generated in this manner will possess weak seedlings upon germination and will not be able to survive field conditions under normal growth circumstances unless treated with a material that promotes seedling strength/vigor. This adds a level of gene containment.
  • Cytoplasmic male sterility systems are already available for some Brassicaceae species (Esser, K., 2006, Progress in Botany, Springer Berlin Heidelberg. 67, 31-52). These Brassicaceae species can be used as gene sources to produce cytoplasmic male sterility systems for other oilseeds of interest such as Camelina. Cytoplasmic male sterility has also been reported upon expression of a ⁇ -ketothiolase from the chloroplast genome in tobacco (Ruiz, O. N. and H. Daniell, 2005, Plant Physiol. 138, 1232-1246). Overexpression of ⁇ -ketothiolase in Camelina to generate a male sterile line and subsequent crossing with a line expressing phaB and phaC could also be used for hybrid seed production.
  • Double haploid technology can be used to speed up the breeding process.
  • immature pollen grains haploids
  • haploids immature pollen grains
  • pMBXS490 (SEQ ID NO: 1) 1 GGGGATCCGT ACGTAAGTAC GTACTCAAAA TGCCAACAAA TAAAAAAAAA 51 GTTGCTTTAA TAATGCCAAA ACAAATTAAT AAAACACTTA CAACACCGGA 101 TTTTTTAA TTAAAATGTG CCATTTAGGA TAAATAGTTA ATATTTTTAA 151 TAATTATTTA AAAAGCCGTA TCTACTAAAA TGATTTTTAT TTGGTTGAAA 201 ATATTAATAT GTTTAAATCA ACACAATCTA TCAAAATTAA ACTAAAAAAA 251 AAATAAGTGT ACGTGGTTAA CATTAGTACA GTAATATAAG AGGAAAATGA 301 GAAATTAAGA AATTGAAAGC GAGTCTAATT TTTAAATTAT GAACCTGCAT 351 ATATAAAAGG AAAGAAAGAA TCCAGGAAGA AAAGAAATGA AACCATGCAT 401 GGTCCCCTCG TCATCACGAG TTTCTGCCAT T

Landscapes

  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Cell Biology (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Plant Pathology (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
US13/395,616 2009-09-15 2010-09-15 Generation of high polyhydroxybutrate producing oilseeds Abandoned US20120174253A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/395,616 US20120174253A1 (en) 2009-09-15 2010-09-15 Generation of high polyhydroxybutrate producing oilseeds

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US24252209P 2009-09-15 2009-09-15
US13/395,616 US20120174253A1 (en) 2009-09-15 2010-09-15 Generation of high polyhydroxybutrate producing oilseeds
PCT/US2010/048962 WO2011034945A1 (en) 2009-09-15 2010-09-15 Generation of high polyhydroxybutrate producing oilseeds

Publications (1)

Publication Number Publication Date
US20120174253A1 true US20120174253A1 (en) 2012-07-05

Family

ID=43063232

Family Applications (2)

Application Number Title Priority Date Filing Date
US13/395,616 Abandoned US20120174253A1 (en) 2009-09-15 2010-09-15 Generation of high polyhydroxybutrate producing oilseeds
US13/395,702 Active 2031-12-24 US9181559B2 (en) 2009-09-15 2010-09-15 Generation of high polyhydroxybutyrate producing oilseeds

Family Applications After (1)

Application Number Title Priority Date Filing Date
US13/395,702 Active 2031-12-24 US9181559B2 (en) 2009-09-15 2010-09-15 Generation of high polyhydroxybutyrate producing oilseeds

Country Status (6)

Country Link
US (2) US20120174253A1 (de)
EP (2) EP2478105A1 (de)
AU (1) AU2010295637B2 (de)
BR (2) BR112012005591A2 (de)
CA (2) CA2773703A1 (de)
WO (2) WO2011034945A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120060413A1 (en) * 2010-09-15 2012-03-15 Metabolix, Inc. Increasing carbon flow for polyhydroxybutyrate production in biomass crops

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2648155C2 (ru) 2012-05-08 2018-03-22 Монсанто Текнолоджи Ллс Объект кукурузы mon 87411
WO2013181604A1 (en) 2012-05-31 2013-12-05 Micromidas, Inc. Polyhydroxyalkanoate derivatives, preparation and uses thereof
CN102864167B (zh) * 2012-09-26 2014-04-09 浙江大学 一种植物表达载体及培育低植酸水稻的方法
AU2013361456A1 (en) 2012-12-18 2015-07-02 Metabolix, Inc. Transcriptional regulation for improved plant productivity
US20150376152A1 (en) 2013-02-13 2015-12-31 Metabolix, Inc. Process for Ultra Pure Chemical Production from Biobased Raw Starting Materials
JP2014193153A (ja) * 2013-02-28 2014-10-09 Euglena Co Ltd ユーグレナへの遺伝子導入方法
WO2014133159A1 (ja) * 2013-02-28 2014-09-04 株式会社ユーグレナ ユーグレナへの遺伝子導入方法及びその形質転換体
JP2014193154A (ja) * 2013-02-28 2014-10-09 Euglena Co Ltd ユーグレナの形質転換体
AU2014278519B2 (en) * 2013-06-11 2020-09-10 Syngenta Participations Ag Methods for generating transgenic plants
CN103329792A (zh) * 2013-06-25 2013-10-02 华中农业大学 紫菜苔细胞质雄性不育系的选育、繁殖和制种方法
CN103329793A (zh) * 2013-06-25 2013-10-02 华中农业大学 不结球白菜细胞质雄性不育系的选育、繁殖和制种方法
EP2868748A1 (de) * 2013-10-31 2015-05-06 Locusia Oy Verfahren zur Proteinherstellung in doppelten haploid Pflanzen
CN104429917B (zh) * 2014-03-06 2016-08-31 贵州省油菜研究所 一种同时选育甘蓝型油菜同质纯不育系和临保系的方法
AR109598A1 (es) * 2016-09-09 2018-12-26 Koch Biological Solutions Llc Mejora del rasgo fotosintético y de estrés por calor mediante el contacto de una planta con un bioestimulante que comprende pseudomonas psychrotolerans
EP3980546A4 (de) * 2019-06-10 2023-06-21 Yield10 Bioscience, Inc. Transgene landpflanzen, die einen polyhydroxyalkanoat-synthase-samen spezifisch mit zytosolischer lokalisierung exprimieren

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6586658B1 (en) * 1998-03-06 2003-07-01 Metabolix, Inc. Modification of fatty acid metabolism in plants
US20090007294A1 (en) * 2004-09-01 2009-01-01 Henry Daniell Genetic Engineering of Male Sterility in Plants

Family Cites Families (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US704684A (en) 1900-02-01 1902-07-15 Herbert E Irwin Alarm device for binders.
US4535060A (en) 1983-01-05 1985-08-13 Calgene, Inc. Inhibition resistant 5-enolpyruvyl-3-phosphoshikimate synthetase, production and use
US5352605A (en) 1983-01-17 1994-10-04 Monsanto Company Chimeric genes for transforming plant cells using viral promoters
US5034322A (en) 1983-01-17 1991-07-23 Monsanto Company Chimeric genes suitable for expression in plant cells
US4945050A (en) 1984-11-13 1990-07-31 Cornell Research Foundation, Inc. Method for transporting substances into living cells and tissues and apparatus therefor
US5668298A (en) 1984-12-24 1997-09-16 Eli Lilly And Company Selectable marker for development of vectors and transformation systems in plants
US5569597A (en) 1985-05-13 1996-10-29 Ciba Geigy Corp. Methods of inserting viral DNA into plant material
US5276268A (en) 1986-08-23 1994-01-04 Hoechst Aktiengesellschaft Phosphinothricin-resistance gene, and its use
US5268463A (en) 1986-11-11 1993-12-07 Jefferson Richard A Plant promoter α-glucuronidase gene construct
US5608142A (en) 1986-12-03 1997-03-04 Agracetus, Inc. Insecticidal cotton plants
US5023179A (en) 1988-11-14 1991-06-11 Eric Lam Promoter enhancer element for gene expression in plant roots
US5110732A (en) 1989-03-14 1992-05-05 The Rockefeller University Selective gene expression in plants
US5240855A (en) 1989-05-12 1993-08-31 Pioneer Hi-Bred International, Inc. Particle gun
US5073675A (en) 1989-05-26 1991-12-17 Dna Plant Technology Corporation Method of introducing spectinomycin resistance into plants
ATE227340T1 (de) 1989-07-10 2002-11-15 Massachusetts Inst Technology Eine zur herstellung von polyhydroxybutyrat oder einem anderen polyhydroxyalkanoat geeignete pflanze oder pflanzliche zelle
US5322783A (en) 1989-10-17 1994-06-21 Pioneer Hi-Bred International, Inc. Soybean transformation by microparticle bombardment
US5519164A (en) 1990-02-01 1996-05-21 Hoechst Aktiengesellschaft Expression of a multigene RNA having self-splicing activity
EP0452269B1 (de) 1990-04-12 2002-10-09 Syngenta Participations AG Gewebe-spezifische Promotoren
US5498830A (en) 1990-06-18 1996-03-12 Monsanto Company Decreased oil content in plant seeds
CA2083948C (en) 1990-06-25 2001-05-15 Ganesh M. Kishore Glyphosate tolerant plants
US5459252A (en) 1991-01-31 1995-10-17 North Carolina State University Root specific gene promoter
US5399680A (en) 1991-05-22 1995-03-21 The Salk Institute For Biological Studies Rice chitinase promoter
EP0600993B1 (de) 1991-08-27 1999-11-10 Novartis AG Proteine mit insektiziden eigenschaften gegen homopteran insekten und ihre verwendung im pflanzenschutz
GB9304200D0 (en) 1993-03-02 1993-04-21 Sandoz Ltd Improvements in or relating to organic compounds
DK152291D0 (da) 1991-08-28 1991-08-28 Danisco Fremgangsmaade og kemiske forbindelser
AU682659B2 (en) 1991-10-04 1997-10-16 North Carolina State University Pathogen-resistant transgenic plants
US5324646A (en) 1992-01-06 1994-06-28 Pioneer Hi-Bred International, Inc. Methods of regeneration of Medicago sativa and expressing foreign DNA in same
US5401836A (en) 1992-07-16 1995-03-28 Pioneer Hi-Bre International, Inc. Brassica regulatory sequence for root-specific or root-abundant gene expression
WO1994002620A2 (en) 1992-07-27 1994-02-03 Pioneer Hi-Bred International, Inc. An improved method of agrobacterium-mediated transformation of cultured soybean cells
US5527695A (en) 1993-01-29 1996-06-18 Purdue Research Foundation Controlled modification of eukaryotic genomes
US5814618A (en) 1993-06-14 1998-09-29 Basf Aktiengesellschaft Methods for regulating gene expression
US5789156A (en) 1993-06-14 1998-08-04 Basf Ag Tetracycline-regulated transcriptional inhibitors
US5545818A (en) 1994-03-11 1996-08-13 Calgene Inc. Expression of Bacillus thuringiensis cry proteins in plant plastids
US5633363A (en) 1994-06-03 1997-05-27 Iowa State University, Research Foundation In Root preferential promoter
US5736369A (en) 1994-07-29 1998-04-07 Pioneer Hi-Bred International, Inc. Method for producing transgenic cereal plants
US5608144A (en) 1994-08-12 1997-03-04 Dna Plant Technology Corp. Plant group 2 promoters and uses thereof
DE4433134A1 (de) 1994-09-16 1996-03-21 Buck Chem Tech Werke Verfahren zur Herstellung von Polyhydroxyfettsäuren sowie rekombinanter Bakterienstämme zur Durchführung des Verfahrens
US5659026A (en) 1995-03-24 1997-08-19 Pioneer Hi-Bred International ALS3 promoter
US5837876A (en) 1995-07-28 1998-11-17 North Carolina State University Root cortex specific gene promoter
CA2225652C (en) 1995-08-10 2007-11-20 Pal Maliga Nuclear-encoded transcription system in plastids of higher plants
US5965793A (en) 1995-09-20 1999-10-12 Monsanto Company, Inc. Strong early seed-specific gene regulatory region
US5849894A (en) 1995-11-29 1998-12-15 Monsanto Company Rhodospirillum rubrum poly-β-hydroxyalkanoate synthase
US6077697A (en) 1996-04-10 2000-06-20 Chromos Molecular Systems, Inc. Artificial chromosomes, uses thereof and methods for preparing artificial chromosomes
US6072050A (en) 1996-06-11 2000-06-06 Pioneer Hi-Bred International, Inc. Synthetic promoters
US5811272A (en) 1996-07-26 1998-09-22 Massachusetts Institute Of Technology Method for controlling molecular weight of polyhydroxyalkanoates
GB9702592D0 (en) 1997-02-07 1997-03-26 Danisco Selection method
DE69838768T2 (de) 1997-09-19 2008-10-30 Metabolix, Inc., Cambridge Biologische Systeme zur Herstellung von Polyhydroxyalkanoat-Polymeren die 4-Hy droxysäure enthalten
US6103956A (en) * 1998-03-31 2000-08-15 Regents Of The University Of Minnesota Polyhydroxyalkanoate synthesis in plants
AU4199599A (en) 1998-05-22 1999-12-13 Metabolix, Inc. Polyhydroxyalkanoate biopolymer compositions
US6835820B2 (en) 1999-01-07 2004-12-28 The University Of Massachusetts Polyhydroxyalkanoate biosynthesis associated proteins and coding region in bacillus megaterium
WO2000052183A1 (en) 1999-03-05 2000-09-08 Monsanto Technology Llc Multigene expression vectors for the biosynthesis of products via multienzyme biological pathways
AU2001236839A1 (en) 2000-02-11 2001-08-20 Metabolix, Inc. Multi-gene expression constructs containing modified inteins
US20050287647A9 (en) 2001-05-30 2005-12-29 Carl Perez Plant artificial chromosomes, uses thereof and methods of preparing plant artificial chromosomes
CA2441937A1 (en) 2001-05-30 2002-12-05 Chromos Molecular Systems, Inc. Chromosome-based platforms
FR2841247B1 (fr) 2002-06-21 2004-10-22 Genoplante Valor Peptide d'adressage plastidial
US7045684B1 (en) 2002-08-19 2006-05-16 Mertec, Llc Glyphosate-resistant plants
CA2800359A1 (en) 2005-03-16 2006-09-28 Metabolix, Inc. Chemically inducible expression of biosynthetic pathways
NZ591972A (en) 2008-10-03 2013-04-26 Agrisoma Biosciences Inc Production of modified fatty acids in plants
GB2465749B (en) 2008-11-25 2013-05-08 Algentech Sas Plant cell transformation method
WO2010102293A1 (en) 2009-03-06 2010-09-10 Metabolix, Inc. Method of positive plant selection using sorbitol dehydrogenase
DE102012106174A1 (de) 2012-07-10 2014-01-16 Endress + Hauser Gmbh + Co. Kg Mit einer Störwellen aussendenden Hochfrequenzbaugruppe ausgestattete Leiterplatte

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6586658B1 (en) * 1998-03-06 2003-07-01 Metabolix, Inc. Modification of fatty acid metabolism in plants
US20090007294A1 (en) * 2004-09-01 2009-01-01 Henry Daniell Genetic Engineering of Male Sterility in Plants

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
(Liang et al. (Construction of plant seed-specific expression vectors pSCB and pSCAB and the obtainment of transgenic Brassica napus H165 expressing poly-3-hydroxybutyrate synthetic genes, 45 Chinese Science Bulletin No. 13, 1206-1211 at 1210 (2000)). *
Chia et al. (Storage oil breakdown during embryo development of Brassica napus (L.), 56 J of Exp Botany No. 415, 1285-1296 (2005)). *
Duvick (The use of Cytoplasmic Male-sterility in Hybrid Seed Production, 13 Economic Botany, 167-195 (1959)). *
Fry et al 1987 (Plant Cell Reports 6: p. 321-325) *
Houmiel et al. (Poly(beta-hydroxybutyrate) production in oilseed leukoplasts of Brassica napus, 209 Planta, 547-550 (1999)).. *
Jacquel et al., Isolation and purification of bacterial poly(3-hydroxyalkanoates), 39 Biochemical Engineering Journal, 15-27 (2008). *
Liang et al. (Construction of plant seed-specific expression vectors pSCB and pSCAB and the obtainment of transgenic Brassica napus H165 expressing poly-3-hydroxybutyrate synthetic genes, 45 Chinese Science Bulletin No. 13, 1206-1211 at 1206 to 1207 (2000)). *
Nawrath et al. (Targeting of the polyhydroxybutyrate biosynthetic pathway to the plastids of Arabidopsis thaliana results in high levels of polymer accumulation, 91 PNAS, 12760-12764 (1994)). *
Sarmiento et al. (Expression and subcellular targeting of a soybean oleosin in transgenic rapeseed. Implications for the mechanism of oil-body formation in seeds, 11 Plant J. No. 4, 783-796 (1997)). *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120060413A1 (en) * 2010-09-15 2012-03-15 Metabolix, Inc. Increasing carbon flow for polyhydroxybutyrate production in biomass crops

Also Published As

Publication number Publication date
AU2010295638A1 (en) 2012-04-26
BR112012005591A2 (pt) 2015-09-01
AU2010295637A1 (en) 2012-04-26
US20120180162A1 (en) 2012-07-12
WO2011034945A1 (en) 2011-03-24
WO2011034946A1 (en) 2011-03-24
BR112012005592A2 (pt) 2017-05-02
EP2477477A1 (de) 2012-07-25
AU2010295637B2 (en) 2013-12-12
US9181559B2 (en) 2015-11-10
CA2773703A1 (en) 2011-03-24
CA2773707A1 (en) 2011-03-24
WO2011034946A9 (en) 2011-05-19
EP2478105A1 (de) 2012-07-25

Similar Documents

Publication Publication Date Title
AU2010295637B2 (en) Generation of high polyhydroxybutrate producing oilseeds
US7514596B2 (en) Methods for simultaneous control of lignin content and composition, and cellulose content in plants
AU716369B2 (en) A method for regulation of plant lignin composition
US20110321190A1 (en) Method of positive plant selection using sorbitol dehydrogenase
AU770120B2 (en) Plant multi-gene expression constructs
AU729122B2 (en) Methods for improving transformation efficiency
JP2009291204A (ja) 植物における脂肪酸代謝の改変
AU2013213729A1 (en) Generation of high polyhydroxybutrate producing oilseeds
US7847152B2 (en) Use of tryptophan indole and anthranilate analogs as plant transformation selection agents
US7288409B1 (en) Method of introducing a plurality of genes into plants
WO2009150435A1 (en) Plastid transformation vectors allowing excision of marker genes
AU2010295638B2 (en) Generation of high polyhydroxybutrate producing oilseeds
AU746458B2 (en) A method for regulation of plant lignin composition
Chiang et al. Methods for simultaneous control of lignin content and composition, and cellulose content in plants
MXPA98005066A (en) Method for regulating a composition of lignina vege

Legal Events

Date Code Title Description
AS Assignment

Owner name: METABOLIX, INC., MASSACHUSETTS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:PATTERSON, NII;TANG, JIHONG;PEOPLES, OLIVER P.;AND OTHERS;REEL/FRAME:025698/0444

Effective date: 20100930

Owner name: DONALD DANFORTH PLANT SCIENCE CENTER, MISSOURI

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:CAHOON, EDGAR BENJAMIN;JAWORSKI, JAN G.;YANG, WENYU;SIGNING DATES FROM 20101005 TO 20110114;REEL/FRAME:025698/0451

AS Assignment

Owner name: METABOLIX, INC., MASSACHUSETTS

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE SERIAL NUMBER OF THE APPLICATION PREVIOUSLY RECORDED ON REEL 025698 FRAME 0444. ASSIGNOR(S) HEREBY CONFIRMS THE SERIAL NO. IS INCORRECT US1048972;ASSIGNORS:PATTERSON, NII;TANG, JIHONG;PEOPLES, OLIVER P.;AND OTHERS;REEL/FRAME:027993/0052

Effective date: 20100930

AS Assignment

Owner name: METABOLIX, INC., MASSACHUSETTS

Free format text: ADDRESS CHANGE;ASSIGNOR:METABOLIX, INC.;REEL/FRAME:038665/0359

Effective date: 20160502

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION