US20120171049A1 - Lubricant pump and lubricating system with pump heater - Google Patents

Lubricant pump and lubricating system with pump heater Download PDF

Info

Publication number
US20120171049A1
US20120171049A1 US13/324,200 US201113324200A US2012171049A1 US 20120171049 A1 US20120171049 A1 US 20120171049A1 US 201113324200 A US201113324200 A US 201113324200A US 2012171049 A1 US2012171049 A1 US 2012171049A1
Authority
US
United States
Prior art keywords
control unit
lubricant
drive
pump
fact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/324,200
Inventor
Zdravko Paluncic
Andreas Schoenfeld
Milos Cvetanovic
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SKF Lubrication Systems Germany GmbH
Original Assignee
Lincoln GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lincoln GmbH filed Critical Lincoln GmbH
Assigned to LINCOLN GMBH reassignment LINCOLN GMBH ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CVETANOVIC, MILOS, PALUNCIC, ZDRAVKO, SCHOENFELD, ANDREAS
Publication of US20120171049A1 publication Critical patent/US20120171049A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16NLUBRICATING
    • F16N13/00Lubricating-pumps
    • F16N13/22Lubricating-pumps with distributing equipment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M5/00Heating, cooling, or controlling temperature of lubricant; Lubrication means facilitating engine starting
    • F01M5/001Heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16NLUBRICATING
    • F16N11/00Arrangements for supplying grease from a stationary reservoir or the equivalent in or on the machine or member to be lubricated; Grease cups
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16NLUBRICATING
    • F16N13/00Lubricating-pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16NLUBRICATING
    • F16N17/00Lubrication of machines or apparatus working under extreme conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16NLUBRICATING
    • F16N2250/00Measuring
    • F16N2250/04Pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16NLUBRICATING
    • F16N2250/00Measuring
    • F16N2250/08Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16NLUBRICATING
    • F16N2270/00Controlling
    • F16N2270/50Condition
    • F16N2270/56Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16NLUBRICATING
    • F16N39/00Arrangements for conditioning of lubricants in the lubricating system
    • F16N39/04Arrangements for conditioning of lubricants in the lubricating system by heating

Definitions

  • the present invention pertains to a lubricant pump for delivering lubricant to at least one lubricating point, as well as to a lubricating system with such a lubricant pump.
  • the lubricant pump features, e.g., a lubricant container, a pump unit, a drive assigned to the pump unit, at least one lubricant outlet and a control unit assigned to the drive.
  • Some known lubricant pumps are provided with a functional monitoring system that delivers a corresponding malfunction signal to a monitoring device, e.g., if an impermissibly high pressure at the lubricant outlet indicates that the lines leading to the lubricating points are blocked. It is also known that the drive of the pump unit or the drive of an agitator blade that may be provided in the lubricant container automatically switches off at an excessively high load and, if applicable, also delivers a malfunction signal. When such a malfunction signal is registered in the monitoring device, the pump usually is completely stopped and needs to be reactivated by an operator after the cause of the malfunction is eliminated. This is a time-consuming and labor-intensive procedure.
  • the present invention in contrast, is based on the objective of making available a lubricant pump and a lubricating system of the aforementioned type that are particularly suitable for use in extremely cold areas such as, e.g., in arctic environments.
  • the lubricant pump additionally features at least one heating element that can be actuated in a demand-based fashion by the control unit assigned to the drive and/or a separate control unit.
  • the heater according to the present invention can always be purposefully utilized when a malfunction of the lubricant pump can be attributed to increased lubricant viscosities at low temperatures. In such instances, the pump therefore no longer needs to be completely stopped and the cause of the malfunction no longer needs to be eliminated by an operator, but the lubricant pump rather can be automatically restarted by actuating the heating element.
  • An increased viscosity of the lubricant at low temperatures can cause different malfunctions within a lubricant pump. For example, blocking of the driving motor may occur if the resistance becomes excessively high for movement of the agitator blade in the lubricant container. It would also be possible that the flow resistance in one of the lubricant lines exceeds the permissible system pressure such that a conventionally provided pressure control valve opens. This causes the lubricant to be delivered into the open rather than to the lubricating points. Another malfunction may consist of the pump element being unable to take in lubricant of increased viscosity from the lubricant container.
  • control unit activates the heating element individually and in dependence on the respective malfunction.
  • control device of a lubricant pump of the initially cited type is, according to a basic principle of the present invention, realized and designed in such a way that the above-described malfunctions caused by an increased viscosity of the lubricant at excessively low temperatures are detected by the control device and corresponding countermeasures are initiated.
  • the lubricant pump additionally features at least one temperature sensor that is connected to the control unit and/or another control unit in order to actuate the at least one heating element in dependence on the temperature determined by the temperature sensor. Due to this temperature sensor, the control unit is able to detect whether a malfunction can be attributed to an increased viscosity of the lubricant due to an excessively low temperature and to then individually eliminate this malfunction by switching on the heating element.
  • At least one pressure sensor is provided in the lubricant pump and preferably assigned to the lubricant outlet.
  • the pressure sensor is preferably connected to the control unit or another control unit in order to actuate the at least one heating element in dependence on the lubricant pressure determined by the pressure sensor. If the flow resistance in one of the lubricant lines exceeds the permissible system pressure due to excessively low temperatures, however, the use of a heating element in the lubricant pump does not eliminate the cause of the malfunction. In this respect, an unnecessary operation of the heating element can be prevented in dependence on the lubricant pressure determined by the pressure sensor.
  • An agitating device such as, e.g., an agitator blade may be provided in the lubricant container.
  • This agitating device can be actuated by the drive of the pump unit and/or by another drive.
  • a measuring device is preferably assigned to the drive of the agitating device in order to determine the current consumption thereof and connected to the control unit and/or another control unit in order to actuate the at least one heating element in dependence on the current consumption. Consequently, the measuring device enables the control unit to determine whether the driving motor is blocked due to an excessively high resistance of the agitator blade in the lubricant container that is caused by an increased viscosity of the lubricant at low temperatures.
  • the measuring device may also measure another variable that is suitable for determining the state of the lubricant in the lubricant container and then evaluated by the control unit.
  • a variable may consist, e.g., of the torque required for driving the agitator blade and/or the speed of the agitator blade.
  • control unit it is preferred to design the control unit in such a way that it detects a state in which the drive for the agitating device is blocked due to excessively low temperatures, based on an evaluation of the data of the temperature sensor, the measuring device and/or the pressure sensor.
  • control unit switches on the at least one heating element in this state in order to increase the temperature of the lubricant in the lubricant pump and the lubricant container, respectively.
  • the quantity of heat can be controlled with the heating time, if applicable, in dependence on the ambient temperature. It is preferred that the heating process begins prior to a lubrication cycle, wherein the ambient temperature is initially measured and a quantity of heat that prevents the agitator blade from being blocked is subsequently supplied.
  • the control unit is designed in such a way that it detects a state in which the pump unit is unable to take in lubricant from the lubricant container due to excessively low temperatures, based on an evaluation of the data of the temperature sensor, the measuring device and/or the pressure sensor. In this state, the control unit preferably also switches on the heating element provided in the lubricant pump in order to supply heat to the pump system. According to another embodiment of the invention, it is proposed to design the control unit such that it detects a state in which an excessively high flow resistance exists in a line connected to the lubricant outlet due to excessively low temperatures, based on an evaluation of the data of the temperature sensor, the measuring device and/or the pressure sensor.
  • control unit switches off the drive of the pump unit and/or the drive of the agitating unit in this state because an actuation of the lubricant pump would cause the lubricant to be delivered into the open via the pressure control valve rather than to the lubricating point.
  • This malfunction cannot be eliminated by heating the pump system because the viscosity of the lubricant increases in the lubricant lines outside the pump. Consequently, it is also unnecessary to output a malfunction signal, but rather preferred to wait until the ambient temperature increases and the resistances in the lines drop.
  • a particularly compact and protected construction of the inventive lubricant pump can be achieved in that the control unit, the temperature sensor, the measuring device, the pressure sensor, the at least one drive and the pump unit are accommodated in a common housing and/or arranged on a common carrier.
  • the housing may also fulfill a certain insulating function in order to retain the heat generated by the heating element within the region of the pump through which the lubricant flows.
  • the invention also pertains to a lubricating system with a lubricant pump of the above-described type and a line that is connected to the lubricant outlet of the lubricant pump and to a distributor.
  • the distributor preferably features a functional sensor that is connected to the control unit of the lubricant pump and/or another control unit in order to actuate the at least one heating element of the lubricant pump in dependence on the operability of the distributor. In other words, it is possible to refrain from the energy-intensive utilization of the heater if a malfunction of the distributor occurs, namely even if the viscosity of the lubricant increases within the lubricant pump due to excessively low temperatures.
  • At least one other heating element that can be actuated by the control unit and/or another control unit may also be assigned to the distributor and/or the line.
  • This actuation preferably takes place in dependence on the data of the functional sensor, the temperature sensor, the measuring device and/or the pressure sensor. In this way, not only can temperature-related malfunctions within the lubricant pump be eliminated, but also malfunctions that are caused by the viscosity of the lubricant increasing within the distributor or in a line leading to or away from the distributor at low temperatures.
  • FIGURE schematically shows a perspective representation of an inventive lubricant pump.
  • certain components of the lubricant pump such as the cover of the housing, are not illustrated such that the individual components are visible in the figure.
  • the inventive lubricant pump 1 features a lubricant container 2 , in which a supply of lubricant is stored.
  • An agitator blade or similar agitating device may be provided in the lubricant container 2 in order to thoroughly mix and maintain the free-flowing consistency of the lubricant that may consist, e.g., of lubricating grease.
  • a carrier 3 is provided on the lower side of the lubricant container 2 , wherein the carrier can be closed with a housing cover and the components of the lubricant pump 1 are arranged on this carrier.
  • the lubricant pump features a pump unit that can be actuated by a driving motor 4 .
  • the driving motor 4 may also drive the agitating device in the lubricant container 2 .
  • a control 5 that can individually actuate the driving motor 4 and the pump unit and/or the agitating unit is also provided on the carrier 3 .
  • a cartridge heater 6 is also arranged on the underside of the lubricant container 2 on the carrier 3 and can be actuated by the control 5 .
  • the cartridge heater 6 is arranged in the vicinity of the pump unit such that the cartridge heater can heat the lubricant situated in the lubricant container 2 , as well as the pump unit.
  • the inventive lubricant pump 1 is furthermore equipped with a pressure sensor 7 and a temperature sensor 8 that are also arranged on the carrier 3 .
  • the pressure sensor 7 and the temperature sensor 8 are connected to the control 5 that evaluates the data acquired by the pressure sensor 7 and the temperature sensor 8 and activates the driving motor 4 and/or the cartridge heater 6 in dependence on the data of the sensors.
  • the temperature sensor 8 measures the ambient temperature.
  • the pressure sensor 7 measures the lubricant pressure at the lubricant outlet or in the line connected thereto.
  • the control 5 may also determine, e.g., the current consumption of the driving motor 4 or the torque required for driving the pump unit and/or the agitator blade with the aid of a corresponding measuring device.
  • the control 5 is able to detect different malfunctions of the lubricant pump 1 that are caused by an increased viscosity of the lubricant due to excessively low temperatures.
  • An evaluation of the ambient temperature and/or the current consumption of the driving motor 4 makes it possible to determine whether the driving motor is blocked due to an excessively high resistance of the agitator blade in the lubricant container 2 .
  • the power supply is usually interrupted.
  • the current consumption can be evaluated on motors that do not feature this protection.
  • An evaluation of the ambient temperature and the data of the pressure sensor 7 makes it possible to determine whether the flow resistance in the lines connected to the lubricant outlet is so high that a pressure control valve is actuated and lubricant is delivered into the open.
  • An evaluation of the ambient temperature, the current consumption of the driving motor 4 and the data of the pressure sensor 7 makes it possible to determine whether the pump unit is able to take in grease from the lubricant container 2 . If applicable, the data of a functional sensor of a distributor, not shown, may also be evaluated for this purpose, wherein said distributor forms part of the lubricating system and is connected to the lubricant outlet of the lubricant pump 1 .

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Lubrication Of Internal Combustion Engines (AREA)
  • Control Of Positive-Displacement Pumps (AREA)
  • Details And Applications Of Rotary Liquid Pumps (AREA)
  • Compressor (AREA)

Abstract

A lubricant pump is disclosed for delivering lubricant to at least one lubricating point. The pump features a lubricant container, a pump unit, a drive assigned to the pump unit, and at least one lubricant outlet and a control unit assigned to the drive. At least one heating element is also provided and can be actuated by the control unit and/or another control unit.

Description

    FIELD OF THE INVENTION
  • The present invention pertains to a lubricant pump for delivering lubricant to at least one lubricating point, as well as to a lubricating system with such a lubricant pump. The lubricant pump features, e.g., a lubricant container, a pump unit, a drive assigned to the pump unit, at least one lubricant outlet and a control unit assigned to the drive.
  • BACKGROUND OF THE INVENTION
  • Some known lubricant pumps are provided with a functional monitoring system that delivers a corresponding malfunction signal to a monitoring device, e.g., if an impermissibly high pressure at the lubricant outlet indicates that the lines leading to the lubricating points are blocked. It is also known that the drive of the pump unit or the drive of an agitator blade that may be provided in the lubricant container automatically switches off at an excessively high load and, if applicable, also delivers a malfunction signal. When such a malfunction signal is registered in the monitoring device, the pump usually is completely stopped and needs to be reactivated by an operator after the cause of the malfunction is eliminated. This is a time-consuming and labor-intensive procedure.
  • Such an intervention by the operator in order to activate the pump is also required if no malfunction of the pump has occurred, but the viscosity of the lubricant merely has increased at low temperatures to such a degree that the function of the lubricant pump is impaired. Consequently, it has already been proposed to provide a heater that heats parts of the lubricant pump. Such heaters are usually switched on individually without realizing a demand-actuated operation of the heater.
  • The present invention, in contrast, is based on the objective of making available a lubricant pump and a lubricating system of the aforementioned type that are particularly suitable for use in extremely cold areas such as, e.g., in arctic environments.
  • SUMMARY OF THE INVENTION
  • According to the invention, this objective is essentially attained with the characteristics of Claim 1. According to the basic concept of the invention, the lubricant pump additionally features at least one heating element that can be actuated in a demand-based fashion by the control unit assigned to the drive and/or a separate control unit. In other words, the heater according to the present invention can always be purposefully utilized when a malfunction of the lubricant pump can be attributed to increased lubricant viscosities at low temperatures. In such instances, the pump therefore no longer needs to be completely stopped and the cause of the malfunction no longer needs to be eliminated by an operator, but the lubricant pump rather can be automatically restarted by actuating the heating element.
  • An increased viscosity of the lubricant at low temperatures, as can occur, e.g., in arctic environments or under harsh winter conditions, can cause different malfunctions within a lubricant pump. For example, blocking of the driving motor may occur if the resistance becomes excessively high for movement of the agitator blade in the lubricant container. It would also be possible that the flow resistance in one of the lubricant lines exceeds the permissible system pressure such that a conventionally provided pressure control valve opens. This causes the lubricant to be delivered into the open rather than to the lubricating points. Another malfunction may consist of the pump element being unable to take in lubricant of increased viscosity from the lubricant container. The utilization of a heater in the lubricant pump only makes it possible to eliminate the malfunctions in the first and the last above-cited instance. However, an excessively high flow resistance in one of the lubricant lines cannot be eliminated by using a heater within the lubricant pump. According to the invention, it is therefore proposed that the control unit activates the heating element individually and in dependence on the respective malfunction.
  • Independently of the above-described characteristics, the control device of a lubricant pump of the initially cited type is, according to a basic principle of the present invention, realized and designed in such a way that the above-described malfunctions caused by an increased viscosity of the lubricant at excessively low temperatures are detected by the control device and corresponding countermeasures are initiated.
  • According to an additional development of this inventive principle, it is proposed that the lubricant pump additionally features at least one temperature sensor that is connected to the control unit and/or another control unit in order to actuate the at least one heating element in dependence on the temperature determined by the temperature sensor. Due to this temperature sensor, the control unit is able to detect whether a malfunction can be attributed to an increased viscosity of the lubricant due to an excessively low temperature and to then individually eliminate this malfunction by switching on the heating element.
  • According to another embodiment of the invention, at least one pressure sensor is provided in the lubricant pump and preferably assigned to the lubricant outlet. The pressure sensor is preferably connected to the control unit or another control unit in order to actuate the at least one heating element in dependence on the lubricant pressure determined by the pressure sensor. If the flow resistance in one of the lubricant lines exceeds the permissible system pressure due to excessively low temperatures, however, the use of a heating element in the lubricant pump does not eliminate the cause of the malfunction. In this respect, an unnecessary operation of the heating element can be prevented in dependence on the lubricant pressure determined by the pressure sensor.
  • An agitating device such as, e.g., an agitator blade may be provided in the lubricant container. This agitating device can be actuated by the drive of the pump unit and/or by another drive. A measuring device is preferably assigned to the drive of the agitating device in order to determine the current consumption thereof and connected to the control unit and/or another control unit in order to actuate the at least one heating element in dependence on the current consumption. Consequently, the measuring device enables the control unit to determine whether the driving motor is blocked due to an excessively high resistance of the agitator blade in the lubricant container that is caused by an increased viscosity of the lubricant at low temperatures. Instead of measuring the current consumption of the drive, the measuring device may also measure another variable that is suitable for determining the state of the lubricant in the lubricant container and then evaluated by the control unit. Such a variable may consist, e.g., of the torque required for driving the agitator blade and/or the speed of the agitator blade.
  • It is preferred to design the control unit in such a way that it detects a state in which the drive for the agitating device is blocked due to excessively low temperatures, based on an evaluation of the data of the temperature sensor, the measuring device and/or the pressure sensor. In this respect, it is preferred that the control unit switches on the at least one heating element in this state in order to increase the temperature of the lubricant in the lubricant pump and the lubricant container, respectively. The quantity of heat can be controlled with the heating time, if applicable, in dependence on the ambient temperature. It is preferred that the heating process begins prior to a lubrication cycle, wherein the ambient temperature is initially measured and a quantity of heat that prevents the agitator blade from being blocked is subsequently supplied.
  • According to another embodiment of the invention, the control unit is designed in such a way that it detects a state in which the pump unit is unable to take in lubricant from the lubricant container due to excessively low temperatures, based on an evaluation of the data of the temperature sensor, the measuring device and/or the pressure sensor. In this state, the control unit preferably also switches on the heating element provided in the lubricant pump in order to supply heat to the pump system. According to another embodiment of the invention, it is proposed to design the control unit such that it detects a state in which an excessively high flow resistance exists in a line connected to the lubricant outlet due to excessively low temperatures, based on an evaluation of the data of the temperature sensor, the measuring device and/or the pressure sensor. It is preferred that the control unit switches off the drive of the pump unit and/or the drive of the agitating unit in this state because an actuation of the lubricant pump would cause the lubricant to be delivered into the open via the pressure control valve rather than to the lubricating point. This malfunction cannot be eliminated by heating the pump system because the viscosity of the lubricant increases in the lubricant lines outside the pump. Consequently, it is also unnecessary to output a malfunction signal, but rather preferred to wait until the ambient temperature increases and the resistances in the lines drop.
  • A particularly compact and protected construction of the inventive lubricant pump can be achieved in that the control unit, the temperature sensor, the measuring device, the pressure sensor, the at least one drive and the pump unit are accommodated in a common housing and/or arranged on a common carrier. The housing may also fulfill a certain insulating function in order to retain the heat generated by the heating element within the region of the pump through which the lubricant flows.
  • The invention also pertains to a lubricating system with a lubricant pump of the above-described type and a line that is connected to the lubricant outlet of the lubricant pump and to a distributor. In this case, the distributor preferably features a functional sensor that is connected to the control unit of the lubricant pump and/or another control unit in order to actuate the at least one heating element of the lubricant pump in dependence on the operability of the distributor. In other words, it is possible to refrain from the energy-intensive utilization of the heater if a malfunction of the distributor occurs, namely even if the viscosity of the lubricant increases within the lubricant pump due to excessively low temperatures.
  • In addition, at least one other heating element that can be actuated by the control unit and/or another control unit may also be assigned to the distributor and/or the line. This actuation preferably takes place in dependence on the data of the functional sensor, the temperature sensor, the measuring device and/or the pressure sensor. In this way, not only can temperature-related malfunctions within the lubricant pump be eliminated, but also malfunctions that are caused by the viscosity of the lubricant increasing within the distributor or in a line leading to or away from the distributor at low temperatures.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • An embodiment example of the invention is described in greater detail below with reference to the figures. In this respect, all described and/or graphically illustrated characteristics form the object of the invention individually regardless of the composition thereof in the claims or the references thereof to other claims. The only FIGURE schematically shows a perspective representation of an inventive lubricant pump. In order to provide a better overview, certain components of the lubricant pump, such as the cover of the housing, are not illustrated such that the individual components are visible in the figure.
  • DETAILED DESCRIPTION
  • The inventive lubricant pump 1 features a lubricant container 2, in which a supply of lubricant is stored. An agitator blade or similar agitating device may be provided in the lubricant container 2 in order to thoroughly mix and maintain the free-flowing consistency of the lubricant that may consist, e.g., of lubricating grease. In the figure, a carrier 3 is provided on the lower side of the lubricant container 2, wherein the carrier can be closed with a housing cover and the components of the lubricant pump 1 are arranged on this carrier.
  • In order to deliver lubricant from the lubricant container 1 to a lubricant outlet, the lubricant pump features a pump unit that can be actuated by a driving motor 4. The driving motor 4 may also drive the agitating device in the lubricant container 2.
  • In addition, a control 5 that can individually actuate the driving motor 4 and the pump unit and/or the agitating unit is also provided on the carrier 3. In the embodiment shown, a cartridge heater 6 is also arranged on the underside of the lubricant container 2 on the carrier 3 and can be actuated by the control 5. In this case, the cartridge heater 6 is arranged in the vicinity of the pump unit such that the cartridge heater can heat the lubricant situated in the lubricant container 2, as well as the pump unit.
  • The inventive lubricant pump 1 is furthermore equipped with a pressure sensor 7 and a temperature sensor 8 that are also arranged on the carrier 3. The pressure sensor 7 and the temperature sensor 8 are connected to the control 5 that evaluates the data acquired by the pressure sensor 7 and the temperature sensor 8 and activates the driving motor 4 and/or the cartridge heater 6 in dependence on the data of the sensors. The temperature sensor 8 measures the ambient temperature. The pressure sensor 7 measures the lubricant pressure at the lubricant outlet or in the line connected thereto. In addition, the control 5 may also determine, e.g., the current consumption of the driving motor 4 or the torque required for driving the pump unit and/or the agitator blade with the aid of a corresponding measuring device.
  • In this way, the control 5 is able to detect different malfunctions of the lubricant pump 1 that are caused by an increased viscosity of the lubricant due to excessively low temperatures. An evaluation of the ambient temperature and/or the current consumption of the driving motor 4 makes it possible to determine whether the driving motor is blocked due to an excessively high resistance of the agitator blade in the lubricant container 2. In motors that are protected against blocking, the power supply is usually interrupted. The current consumption can be evaluated on motors that do not feature this protection. An evaluation of the ambient temperature and the data of the pressure sensor 7 makes it possible to determine whether the flow resistance in the lines connected to the lubricant outlet is so high that a pressure control valve is actuated and lubricant is delivered into the open. An evaluation of the ambient temperature, the current consumption of the driving motor 4 and the data of the pressure sensor 7 makes it possible to determine whether the pump unit is able to take in grease from the lubricant container 2. If applicable, the data of a functional sensor of a distributor, not shown, may also be evaluated for this purpose, wherein said distributor forms part of the lubricating system and is connected to the lubricant outlet of the lubricant pump 1.
  • LIST OF REFERENCE SYMBOLS
  • 1 Lubricant pump
  • 2 Lubricant container
  • 3 Carrier
  • 4 Driving motor
  • 5 Control
  • 6 Cartridge heater
  • 7 Pressure sensor
  • 8 Temperature sensor

Claims (14)

1. A lubricant pump for delivering lubricant to at least one lubricating point, featuring a lubricant container, a pump unit, a drive assigned to the pump unit, at least one lubricant outlet and a control unit assigned to the drive, characterized by the fact that at least one heating element (e) is also provided and can be actuated by the control unit and/or another control unit.
2. The lubricant pump according to claim 1, characterized by the fact that at least one temperature sensor is also provided and connected to the control unit and/or another control unit in order to actuate the at least one heating element in dependence on the temperature determined by the temperature sensor.
3. The lubricant pump according to claim 2, characterized by the fact that at least one pressure sensor is also provided, particularly assigned to the at least one lubricant outlet, and connected to the control unit and/or another control unit in order to actuate the at least one heating element in dependence on the lubricant pressure determined by the pressure sensor.
4. The lubricant pump according to claim 3, characterized by the fact that an agitating device is provided in the lubricant container and can be actuated by means of the drive of the pump unit and/or another drive, wherein a measuring device is assigned to the drive of the agitating device in order to determine the current consumption thereof and connected to the control unit and/or another control unit in order to actuate the at least one heating element in dependence on the current consumption.
5. The lubricant pump according to claim 4, characterized by the fact that the control unit and/or the other control unit are designed such that they detect a state in which the drive for the agitating device is blocked due to excessively low temperatures, based on an evaluation of the data of the temperature sensor, the measuring device and/or the pressure sensor, and by the fact that the control unit and/or the other control unit switches on the at least one heating element in this state.
6. The lubricant pump according to claim 4, characterized by the fact that the control unit and/or the other control unit are designed such that they detect a state in which the pump unit is unable to take in lubricant from the lubricant container due to excessively low temperatures, based on an evaluation of the data of the temperature sensor, the measuring device and/or the pressure sensor, and by the fact that the control unit and/or the other control unit switches on the at least one heating element in this state.
7. The lubricant pump according to claim 4, characterized by the fact that the control unit and/or the other control unit are designed such that they detect a state in which an excessively high flow resistance exists in a line connected to the lubricant outlet due to excessively low temperatures, based on an evaluation of the data of the temperature sensor, the measuring device and/or the pressure sensor, and by the fact that the control unit and/or the other control unit switches off the drive of the pump unit and/or the drive of the agitating device in this state.
8. The lubricant pump according to claim 4, characterized by the fact that the control unit, the temperature sensor, the measuring device, the pressure sensor, the at least one drive and the pump unit are accommodated in a common housing and/or arranged on a common carrier.
9. A lubricating system with a lubricant pump according to claim 1 and a line that is connected to a lubricant outlet and a distributor, characterized by the fact that the distributor features a functional sensor that is connected to the control unit and/or the other control unit in order to actuate the at least one heating element in dependence on the operability of the distributor.
10. The lubricating system according to claim 9, characterized by the fact that another heating element is assigned to the distributor and/or the line and can be actuated by the control unit and/or another control unit in dependence on the data of the functional sensor, the temperature sensor, the measuring device and/or the pressure sensor.
11. The lubricant pump according to claim 1, characterized by the fact that at least one pressure sensor is also provided, particularly assigned to the at least one lubricant outlet, and connected to the control unit and/or another control unit in order to actuate the at least one heating element in dependence on the lubricant pressure determined by the pressure sensor.
12. The lubricant pump according to claim 11, characterized by the fact that an agitating device is provided in the lubricant container and can be actuated by means of the drive of the pump unit and/or another drive, wherein a measuring device is assigned to the drive of the agitating device in order to determine the current consumption thereof and connected to the control unit and/or another control unit in order to actuate the at least one heating element in dependence on the current consumption.
13. The lubricant pump according to claim 1, characterized by the fact that an agitating device is provided in the lubricant container and can be actuated by means of the drive of the pump unit and/or another drive, wherein a measuring device is assigned to the drive of the agitating device in order to determine the current consumption thereof and connected to the control unit and/or another control unit in order to actuate the at least one heating element in dependence on the current consumption.
14. The lubricant pump according to claim 2, characterized by the fact that an agitating device is provided in the lubricant container and can be actuated by means of the drive of the pump unit and/or another drive, wherein a measuring device is assigned to the drive of the agitating device in order to determine the current consumption thereof and connected to the control unit and/or another control unit in order to actuate the at least one heating element in dependence on the current consumption.
US13/324,200 2010-12-20 2011-12-13 Lubricant pump and lubricating system with pump heater Abandoned US20120171049A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE202010016721U DE202010016721U1 (en) 2010-12-20 2010-12-20 Lubricant pump and lubrication system with pump heating
DE202010016721.3 2010-12-20

Publications (1)

Publication Number Publication Date
US20120171049A1 true US20120171049A1 (en) 2012-07-05

Family

ID=43902414

Family Applications (1)

Application Number Title Priority Date Filing Date
US13/324,200 Abandoned US20120171049A1 (en) 2010-12-20 2011-12-13 Lubricant pump and lubricating system with pump heater

Country Status (12)

Country Link
US (1) US20120171049A1 (en)
EP (1) EP2479471B1 (en)
JP (1) JP6004218B2 (en)
KR (1) KR101361734B1 (en)
CN (1) CN102537629A (en)
BR (1) BRPI1106782A2 (en)
CA (1) CA2761353A1 (en)
DE (1) DE202010016721U1 (en)
DK (1) DK2479471T3 (en)
EA (1) EA024336B1 (en)
MX (1) MX2012000069A (en)
TW (1) TW201237271A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106151017A (en) * 2016-08-16 2016-11-23 常州市合达油泵有限公司 Heatable oil pump
US20170008743A1 (en) * 2014-03-04 2017-01-12 Siemens Aktiengesellschaft Lifting/skidding device with a permanent magnet synchronous motor
USD823916S1 (en) * 2017-05-23 2018-07-24 Klt Co., Ltd. Oil injection apparatus
US20230003341A1 (en) * 2019-12-09 2023-01-05 Hove A/S Pressure controlled grease pump
US20230028279A1 (en) * 2021-07-26 2023-01-26 Johnson & Johnson Surgical Vision, Inc. Progressive cavity pump cartridge with infrared temperature sensors on fluid inlet and outlet

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9212779B2 (en) 2010-11-29 2015-12-15 Lincoln Industrial Corporation Pump having diagnostic system
DE102011053022B4 (en) * 2011-08-26 2014-09-11 Baier & Köppel GmbH & Co. Lubricant pump unit
DE102011053025A1 (en) * 2011-08-26 2013-02-28 Baier & Köppel GmbH & Co. Lubricant pump for supply of e.g. grease to lubrication fitting of tools, has lubricant reservoir for retaining lubricant, where lubricant reservoir and lubricant wall are partly made of material e.g. aluminum, with maximum conductivity
DE102011053027B4 (en) * 2011-08-26 2015-03-12 Baier & Köppel GmbH & Co. Lubricant reservoir and method for conveying lubricant
DE102012209120A1 (en) 2012-05-30 2013-12-05 Skf Lubrication Systems Germany Ag Apparatus and method for operating a conveyor system for conveying a lubricant
AU2013228027A1 (en) * 2012-09-28 2014-04-17 Lincoln Industrial Corporation Stepper motor driving a lubrication pump providing uninterrupted lubricant flow
US9821615B2 (en) 2013-06-07 2017-11-21 Android Industries Llc System and method for applying a lubricating paste to a wheel
RU2548445C1 (en) * 2014-06-30 2015-04-20 Владимир Семёнович Москалёв Device for assurance of operability of hydraulic control system and transmission lubrication of military tracked vehicle at negative ambient air temperature
CN105090724A (en) * 2015-09-25 2015-11-25 郑州盛川科技有限公司 Centralized lubrication device
AU2019455088A1 (en) 2019-06-26 2021-11-11 Graco Minnesota Inc. Heated lubricant pump
CN110566795A (en) * 2019-10-03 2019-12-13 佛山市致展科技有限公司 Heatable thin oil lubricating pump
KR102514292B1 (en) * 2021-04-29 2023-03-27 배휘찬 Grease Supply Apparatus

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3414522A (en) * 1965-07-28 1968-12-03 Universal Oil Prod Co Throttling liquid streams containing particle-form solids
US5533800A (en) * 1993-11-19 1996-07-09 Janke & Kunkel Gmbh & Co. Kg Ika-Labortechnik Procedure and apparatus for detecting viscosity change of a medium agitated by a magnetic stirrer
US5720721A (en) * 1995-05-05 1998-02-24 Zevex, Inc. Method for monitoring viscosity and occlusions in an enteral feeding pump delivery
US6244387B1 (en) * 1999-10-12 2001-06-12 Lincoln Gmbh Lubricant supply device
US20070229611A1 (en) * 2006-03-29 2007-10-04 Fujifilm Corporation Liquid ejection head and image forming apparatus comprising same
US20090257887A1 (en) * 2008-03-14 2009-10-15 Beattie Jr James C Remote oil pumping system for an automatic transmission
US20110204633A1 (en) * 2010-02-19 2011-08-25 Mitsubishi Heavy Industries, Ltd. Starting method for rotating machine and starting method for wind turbine generator

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB588712A (en) * 1943-12-10 1947-06-02 Power Jets Ltd Improvements relating to lubrication systems
SU1603084A1 (en) * 1989-01-04 1990-10-30 Подмосковный филиал Государственного союзного научно-исследовательского тракторного института Hydraulic system
JP2538302Y2 (en) * 1990-09-29 1997-06-11 株式会社テネックス Lubricating oil heating device for internal combustion engine
IT1255936B (en) * 1992-10-29 1995-11-17 Ferna Group Int AUTOMATIC GREASING SYSTEM
JPH09280487A (en) * 1996-04-16 1997-10-31 Hitachi Constr Mach Co Ltd Greasing device
SE9800619L (en) * 1998-02-27 1999-03-22 Volvo Wheel Loaders Ab Cooling and heating systems
DE20107681U1 (en) * 2001-05-07 2001-09-20 Vogel Fluidtec GmbH, 68766 Hockenheim Lubrication pump unit
GB2402720B (en) * 2003-06-14 2007-02-28 Dana Automotive Ltd Lubrication system
JP2005067819A (en) * 2003-08-25 2005-03-17 Mitsubishi Electric Building Techno Service Co Ltd Automatic oiling device of man conveyer
JP4710281B2 (en) * 2003-12-11 2011-06-29 Jfeスチール株式会社 Lubricant supply state monitoring sensor and supply state monitoring device
DE102006015602A1 (en) * 2006-04-04 2007-10-11 Hydac System Gmbh Device for conveying fluid media, in particular lubricants
RU58656U1 (en) * 2006-07-11 2006-11-27 Закрытое акционерное общество "Металлпромсервис" LUBRICATION STATION
CN100432381C (en) * 2006-09-29 2008-11-12 中国船舶重工集团公司第七一一研究所 Modularized lubricating system for diesel engine
CN200958681Y (en) * 2006-10-18 2007-10-10 梁兵 Diluted-oil pump station
CN101169058B (en) * 2006-10-26 2011-07-06 沈阳黎明航空发动机(集团)有限责任公司 Heavy gas turbine set lubricant oil and jacking oil system
JP5036756B2 (en) * 2009-05-19 2012-09-26 株式会社カタナ屋 Grease filling equipment

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3414522A (en) * 1965-07-28 1968-12-03 Universal Oil Prod Co Throttling liquid streams containing particle-form solids
US5533800A (en) * 1993-11-19 1996-07-09 Janke & Kunkel Gmbh & Co. Kg Ika-Labortechnik Procedure and apparatus for detecting viscosity change of a medium agitated by a magnetic stirrer
US5720721A (en) * 1995-05-05 1998-02-24 Zevex, Inc. Method for monitoring viscosity and occlusions in an enteral feeding pump delivery
US6244387B1 (en) * 1999-10-12 2001-06-12 Lincoln Gmbh Lubricant supply device
US20070229611A1 (en) * 2006-03-29 2007-10-04 Fujifilm Corporation Liquid ejection head and image forming apparatus comprising same
US20090257887A1 (en) * 2008-03-14 2009-10-15 Beattie Jr James C Remote oil pumping system for an automatic transmission
US20110204633A1 (en) * 2010-02-19 2011-08-25 Mitsubishi Heavy Industries, Ltd. Starting method for rotating machine and starting method for wind turbine generator

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170008743A1 (en) * 2014-03-04 2017-01-12 Siemens Aktiengesellschaft Lifting/skidding device with a permanent magnet synchronous motor
CN106151017A (en) * 2016-08-16 2016-11-23 常州市合达油泵有限公司 Heatable oil pump
USD823916S1 (en) * 2017-05-23 2018-07-24 Klt Co., Ltd. Oil injection apparatus
US20230003341A1 (en) * 2019-12-09 2023-01-05 Hove A/S Pressure controlled grease pump
US20230028279A1 (en) * 2021-07-26 2023-01-26 Johnson & Johnson Surgical Vision, Inc. Progressive cavity pump cartridge with infrared temperature sensors on fluid inlet and outlet

Also Published As

Publication number Publication date
EP2479471A3 (en) 2014-10-22
TW201237271A (en) 2012-09-16
KR101361734B1 (en) 2014-02-12
EP2479471A2 (en) 2012-07-25
MX2012000069A (en) 2012-06-20
DE202010016721U1 (en) 2011-04-21
JP2012132437A (en) 2012-07-12
CA2761353A1 (en) 2012-06-20
BRPI1106782A2 (en) 2013-06-11
JP6004218B2 (en) 2016-10-05
CN102537629A (en) 2012-07-04
DK2479471T3 (en) 2016-10-24
KR20120069574A (en) 2012-06-28
EA201101654A1 (en) 2012-09-28
EP2479471B1 (en) 2016-07-20
EA024336B1 (en) 2016-09-30

Similar Documents

Publication Publication Date Title
US20120171049A1 (en) Lubricant pump and lubricating system with pump heater
US9726129B2 (en) Method for determining a fuel fraction in oil
US9022766B2 (en) Mold temperature control device
CA2751098A1 (en) Heat pump water heater control
US20120227685A1 (en) Internal combustion engine cooling system and method for determining failure therein
CN111512078B (en) Control device for valve device
US10174666B2 (en) Method for operating a cooling system of an internal combustion engine and protection system in a cooling system
US9360005B2 (en) Auxiliary device for an agricultural working machine
US9506433B2 (en) Fuel supply system
CN102597448A (en) Thermostat and cooling device for vehicle
US8944099B2 (en) Valve arrangement and method for operating a valve
KR102322290B1 (en) Piston cooling apparatus imalfunction decision method and system
US10352822B2 (en) Temperature display device of vehicle
US10611354B2 (en) Method for operating a pneumatic system of a vehicle
US10030551B2 (en) Cooling system for an internal combustion engine of a motor vehicle
US9222399B2 (en) Liquid cooled internal combustion engine with coolant circuit, and method for operation of the liquid cooled internal combustion engine
WO2010032100A1 (en) Engine coolant amount determining apparatus
US9551313B2 (en) Engine cold start warmup method
CN110337533A (en) Working truck
WO2004092593A1 (en) System and method for controlling viscosity of a fluid and a working vehicle containing such a system
CN110603390B (en) Method for thermally protecting a clutch device of a vehicle, in particular of a motor vehicle
WO2011093787A1 (en) Method and system pertaining to an automatically controlled clutch
JP5685277B2 (en) Initial setting method of mechanical automatic transmission
CN112033012A (en) Capacity increasing method for water storage type electric water heater and water storage type electric water heater
KR20110044567A (en) Apparatus for diagnosis of variable water pump and method thereof

Legal Events

Date Code Title Description
AS Assignment

Owner name: LINCOLN GMBH, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:PALUNCIC, ZDRAVKO;SCHOENFELD, ANDREAS;CVETANOVIC, MILOS;REEL/FRAME:027909/0168

Effective date: 20120223

STCB Information on status: application discontinuation

Free format text: ABANDONED -- AFTER EXAMINER'S ANSWER OR BOARD OF APPEALS DECISION