US20120077728A1 - Fluid reservoir - Google Patents
Fluid reservoir Download PDFInfo
- Publication number
- US20120077728A1 US20120077728A1 US13/308,952 US201113308952A US2012077728A1 US 20120077728 A1 US20120077728 A1 US 20120077728A1 US 201113308952 A US201113308952 A US 201113308952A US 2012077728 A1 US2012077728 A1 US 2012077728A1
- Authority
- US
- United States
- Prior art keywords
- acid
- preferred
- weight
- group
- groups
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000012530 fluid Substances 0.000 title claims abstract description 77
- 239000000203 mixture Substances 0.000 claims abstract description 120
- 229920000307 polymer substrate Polymers 0.000 claims abstract description 32
- 239000007788 liquid Substances 0.000 claims abstract description 26
- 238000000034 method Methods 0.000 claims abstract description 21
- 230000008569 process Effects 0.000 claims abstract description 14
- 239000000654 additive Substances 0.000 claims description 26
- 238000002844 melting Methods 0.000 claims description 26
- 230000008018 melting Effects 0.000 claims description 26
- 239000007787 solid Substances 0.000 claims description 23
- 230000000996 additive effect Effects 0.000 claims description 11
- 230000009969 flowable effect Effects 0.000 claims description 11
- 238000001816 cooling Methods 0.000 claims description 4
- 238000002156 mixing Methods 0.000 claims description 4
- 239000000758 substrate Substances 0.000 claims description 4
- 238000010438 heat treatment Methods 0.000 claims description 3
- 239000011369 resultant mixture Substances 0.000 claims 1
- 238000005406 washing Methods 0.000 abstract description 13
- 230000009471 action Effects 0.000 abstract description 11
- 238000004140 cleaning Methods 0.000 abstract description 8
- 238000003860 storage Methods 0.000 abstract description 4
- -1 ethyl methylphenyl Chemical group 0.000 description 122
- 125000004432 carbon atom Chemical group C* 0.000 description 74
- 239000002736 nonionic surfactant Substances 0.000 description 69
- 229920000642 polymer Polymers 0.000 description 63
- 239000003599 detergent Substances 0.000 description 56
- 239000003795 chemical substances by application Substances 0.000 description 53
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 50
- 229920002678 cellulose Polymers 0.000 description 50
- 239000000126 substance Substances 0.000 description 49
- 239000002253 acid Substances 0.000 description 48
- 235000010980 cellulose Nutrition 0.000 description 47
- 235000019645 odor Nutrition 0.000 description 47
- 235000019441 ethanol Nutrition 0.000 description 46
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 46
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 42
- 229920001577 copolymer Polymers 0.000 description 40
- 239000000178 monomer Substances 0.000 description 40
- 239000011248 coating agent Substances 0.000 description 39
- 235000002639 sodium chloride Nutrition 0.000 description 38
- 239000001913 cellulose Substances 0.000 description 37
- 238000000576 coating method Methods 0.000 description 36
- 102000004190 Enzymes Human genes 0.000 description 33
- 108090000790 Enzymes Proteins 0.000 description 33
- 229940088598 enzyme Drugs 0.000 description 33
- 150000003839 salts Chemical class 0.000 description 33
- 239000003921 oil Substances 0.000 description 32
- 235000019198 oils Nutrition 0.000 description 32
- 150000001298 alcohols Chemical class 0.000 description 31
- 235000014113 dietary fatty acids Nutrition 0.000 description 30
- 229930195729 fatty acid Natural products 0.000 description 30
- 239000000194 fatty acid Substances 0.000 description 30
- 239000000463 material Substances 0.000 description 30
- 229920002451 polyvinyl alcohol Polymers 0.000 description 30
- 150000007513 acids Chemical class 0.000 description 29
- 239000007844 bleaching agent Substances 0.000 description 28
- 150000001875 compounds Chemical class 0.000 description 28
- 125000000217 alkyl group Chemical group 0.000 description 27
- 239000000049 pigment Substances 0.000 description 27
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 26
- 125000001931 aliphatic group Chemical group 0.000 description 25
- 239000000047 product Substances 0.000 description 25
- 150000004665 fatty acids Chemical class 0.000 description 24
- 229920002472 Starch Polymers 0.000 description 23
- 229920006395 saturated elastomer Polymers 0.000 description 23
- 235000019832 sodium triphosphate Nutrition 0.000 description 23
- 235000019698 starch Nutrition 0.000 description 23
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 22
- 239000003086 colorant Substances 0.000 description 22
- 150000002191 fatty alcohols Chemical class 0.000 description 22
- 239000004094 surface-active agent Substances 0.000 description 22
- 229910006069 SO3H Inorganic materials 0.000 description 21
- 239000007884 disintegrant Substances 0.000 description 21
- 239000003205 fragrance Substances 0.000 description 21
- 235000019422 polyvinyl alcohol Nutrition 0.000 description 21
- 108090001060 Lipase Proteins 0.000 description 20
- 102000004882 Lipase Human genes 0.000 description 20
- 239000004367 Lipase Substances 0.000 description 20
- 235000019421 lipase Nutrition 0.000 description 20
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 19
- 239000003513 alkali Substances 0.000 description 19
- 239000004753 textile Substances 0.000 description 19
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 18
- 125000002029 aromatic hydrocarbon group Chemical group 0.000 description 18
- 230000007062 hydrolysis Effects 0.000 description 18
- 238000006460 hydrolysis reaction Methods 0.000 description 18
- 125000006850 spacer group Chemical group 0.000 description 18
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 17
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 17
- 239000002304 perfume Substances 0.000 description 17
- 239000011734 sodium Substances 0.000 description 17
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 16
- 125000002091 cationic group Chemical group 0.000 description 16
- 150000002430 hydrocarbons Chemical class 0.000 description 16
- 150000004760 silicates Chemical class 0.000 description 16
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 16
- 239000001993 wax Substances 0.000 description 16
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 15
- 239000000835 fiber Substances 0.000 description 15
- 239000004615 ingredient Substances 0.000 description 15
- 239000008107 starch Substances 0.000 description 15
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 14
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 14
- 239000012190 activator Substances 0.000 description 14
- 125000003342 alkenyl group Chemical group 0.000 description 14
- 125000003118 aryl group Chemical group 0.000 description 14
- 150000002148 esters Chemical class 0.000 description 14
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 14
- 229920001296 polysiloxane Polymers 0.000 description 14
- 239000010457 zeolite Substances 0.000 description 14
- 229910019142 PO4 Inorganic materials 0.000 description 13
- 108091005804 Peptidases Proteins 0.000 description 13
- 102000035195 Peptidases Human genes 0.000 description 13
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 13
- 239000011976 maleic acid Substances 0.000 description 13
- 235000021317 phosphate Nutrition 0.000 description 13
- 239000011148 porous material Substances 0.000 description 13
- 239000003381 stabilizer Substances 0.000 description 13
- 125000000542 sulfonic acid group Chemical group 0.000 description 13
- UNXRWKVEANCORM-UHFFFAOYSA-I triphosphate(5-) Chemical compound [O-]P([O-])(=O)OP([O-])(=O)OP([O-])([O-])=O UNXRWKVEANCORM-UHFFFAOYSA-I 0.000 description 13
- JSNRRGGBADWTMC-UHFFFAOYSA-N (6E)-7,11-dimethyl-3-methylene-1,6,10-dodecatriene Chemical compound CC(C)=CCCC(C)=CCCC(=C)C=C JSNRRGGBADWTMC-UHFFFAOYSA-N 0.000 description 12
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 12
- 239000004365 Protease Substances 0.000 description 12
- 239000003945 anionic surfactant Substances 0.000 description 12
- 150000001735 carboxylic acids Chemical class 0.000 description 12
- 239000003112 inhibitor Substances 0.000 description 12
- 229910052708 sodium Inorganic materials 0.000 description 12
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 11
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 11
- 239000013543 active substance Substances 0.000 description 11
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 11
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 11
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 11
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 11
- 229920002126 Acrylic acid copolymer Polymers 0.000 description 10
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 10
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 10
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 10
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 10
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 10
- 239000001569 carbon dioxide Substances 0.000 description 10
- 229910002092 carbon dioxide Inorganic materials 0.000 description 10
- UKMSUNONTOPOIO-UHFFFAOYSA-N docosanoic acid Chemical compound CCCCCCCCCCCCCCCCCCCCCC(O)=O UKMSUNONTOPOIO-UHFFFAOYSA-N 0.000 description 10
- POULHZVOKOAJMA-UHFFFAOYSA-N dodecanoic acid Chemical compound CCCCCCCCCCCC(O)=O POULHZVOKOAJMA-UHFFFAOYSA-N 0.000 description 10
- 150000002170 ethers Chemical class 0.000 description 10
- 229960001031 glucose Drugs 0.000 description 10
- IPCSVZSSVZVIGE-UHFFFAOYSA-N hexadecanoic acid Chemical compound CCCCCCCCCCCCCCCC(O)=O IPCSVZSSVZVIGE-UHFFFAOYSA-N 0.000 description 10
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 10
- 229910052700 potassium Inorganic materials 0.000 description 10
- 239000011591 potassium Substances 0.000 description 10
- 239000003531 protein hydrolysate Substances 0.000 description 10
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 10
- 229920002545 silicone oil Polymers 0.000 description 10
- 235000000346 sugar Nutrition 0.000 description 10
- 0 *C(=O)N([1*])C Chemical compound *C(=O)N([1*])C 0.000 description 9
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 9
- 229910021536 Zeolite Inorganic materials 0.000 description 9
- 125000000129 anionic group Chemical group 0.000 description 9
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 9
- 239000008103 glucose Substances 0.000 description 9
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 9
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 9
- 229920005646 polycarboxylate Polymers 0.000 description 9
- MWAYRGBWOVHDDZ-UHFFFAOYSA-N Ethyl vanillate Chemical compound CCOC(=O)C1=CC=C(O)C(OC)=C1 MWAYRGBWOVHDDZ-UHFFFAOYSA-N 0.000 description 8
- GLZPCOQZEFWAFX-UHFFFAOYSA-N Geraniol Chemical compound CC(C)=CCCC(C)=CCO GLZPCOQZEFWAFX-UHFFFAOYSA-N 0.000 description 8
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical group CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 description 8
- 239000002216 antistatic agent Substances 0.000 description 8
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 8
- 235000010338 boric acid Nutrition 0.000 description 8
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 8
- 238000006243 chemical reaction Methods 0.000 description 8
- WTEVQBCEXWBHNA-JXMROGBWSA-N geranial Chemical compound CC(C)=CCC\C(C)=C\C=O WTEVQBCEXWBHNA-JXMROGBWSA-N 0.000 description 8
- 238000005469 granulation Methods 0.000 description 8
- 230000003179 granulation Effects 0.000 description 8
- BXWNKGSJHAJOGX-UHFFFAOYSA-N hexadecan-1-ol Chemical compound CCCCCCCCCCCCCCCCO BXWNKGSJHAJOGX-UHFFFAOYSA-N 0.000 description 8
- 229930195733 hydrocarbon Natural products 0.000 description 8
- 125000000896 monocarboxylic acid group Chemical group 0.000 description 8
- 229910052760 oxygen Inorganic materials 0.000 description 8
- 229920001223 polyethylene glycol Polymers 0.000 description 8
- 229920005862 polyol Polymers 0.000 description 8
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 8
- 239000001226 triphosphate Substances 0.000 description 8
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical compound OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 description 7
- 229920002245 Dextrose equivalent Polymers 0.000 description 7
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 7
- 239000004372 Polyvinyl alcohol Substances 0.000 description 7
- 108010056079 Subtilisins Proteins 0.000 description 7
- 102000005158 Subtilisins Human genes 0.000 description 7
- BGRWYDHXPHLNKA-UHFFFAOYSA-N Tetraacetylethylenediamine Chemical compound CC(=O)N(C(C)=O)CCN(C(C)=O)C(C)=O BGRWYDHXPHLNKA-UHFFFAOYSA-N 0.000 description 7
- 239000002535 acidifier Substances 0.000 description 7
- 229910052783 alkali metal Inorganic materials 0.000 description 7
- 108090000637 alpha-Amylases Proteins 0.000 description 7
- 150000001408 amides Chemical class 0.000 description 7
- 235000019270 ammonium chloride Nutrition 0.000 description 7
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 7
- 239000004327 boric acid Substances 0.000 description 7
- 150000001720 carbohydrates Chemical class 0.000 description 7
- 229920003086 cellulose ether Polymers 0.000 description 7
- 230000008859 change Effects 0.000 description 7
- 125000000118 dimethyl group Chemical group [H]C([H])([H])* 0.000 description 7
- 230000000694 effects Effects 0.000 description 7
- 239000006260 foam Substances 0.000 description 7
- WWULHQLTPGKDAM-UHFFFAOYSA-N gamma-eudesmol Natural products CC(C)C1CC(O)C2(C)CCCC(=C2C1)C WWULHQLTPGKDAM-UHFFFAOYSA-N 0.000 description 7
- 239000001257 hydrogen Substances 0.000 description 7
- 229910052739 hydrogen Inorganic materials 0.000 description 7
- GLDOVTGHNKAZLK-UHFFFAOYSA-N octadecan-1-ol Chemical compound CCCCCCCCCCCCCCCCCCO GLDOVTGHNKAZLK-UHFFFAOYSA-N 0.000 description 7
- 239000001301 oxygen Substances 0.000 description 7
- 230000001603 reducing effect Effects 0.000 description 7
- 230000035945 sensitivity Effects 0.000 description 7
- 239000000344 soap Substances 0.000 description 7
- 229910000029 sodium carbonate Inorganic materials 0.000 description 7
- 235000017550 sodium carbonate Nutrition 0.000 description 7
- 239000003760 tallow Substances 0.000 description 7
- KQAZVFVOEIRWHN-UHFFFAOYSA-N α-thujene Chemical compound CC1=CCC2(C(C)C)C1C2 KQAZVFVOEIRWHN-UHFFFAOYSA-N 0.000 description 7
- PHWISBHSBNDZDX-UHFFFAOYSA-N β-sesquiphellandrene Chemical compound CC(C)=CCCC(C)C1CCC(=C)C=C1 PHWISBHSBNDZDX-UHFFFAOYSA-N 0.000 description 7
- ZGZHWIAQICBGKN-UHFFFAOYSA-N 1-nonanoylpyrrolidine-2,5-dione Chemical compound CCCCCCCCC(=O)N1C(=O)CCC1=O ZGZHWIAQICBGKN-UHFFFAOYSA-N 0.000 description 6
- WMOPMQRJLLIEJV-DOMZBBRYSA-N 10-epi-eudesm-4-en-11-ol Chemical compound C1[C@H](C(C)(C)O)CC[C@]2(C)CCCC(C)=C21 WMOPMQRJLLIEJV-DOMZBBRYSA-N 0.000 description 6
- SRBFZHDQGSBBOR-IOVATXLUSA-N D-xylopyranose Chemical compound O[C@@H]1COC(O)[C@H](O)[C@H]1O SRBFZHDQGSBBOR-IOVATXLUSA-N 0.000 description 6
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 6
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 6
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 6
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 6
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 6
- 229920002125 Sokalan® Polymers 0.000 description 6
- ULUAUXLGCMPNKK-UHFFFAOYSA-N Sulfobutanedioic acid Chemical class OC(=O)CC(C(O)=O)S(O)(=O)=O ULUAUXLGCMPNKK-UHFFFAOYSA-N 0.000 description 6
- 230000002378 acidificating effect Effects 0.000 description 6
- 150000001299 aldehydes Chemical class 0.000 description 6
- 102000004139 alpha-Amylases Human genes 0.000 description 6
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 6
- 239000000969 carrier Substances 0.000 description 6
- HVYWMOMLDIMFJA-DPAQBDIFSA-N cholesterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 HVYWMOMLDIMFJA-DPAQBDIFSA-N 0.000 description 6
- 239000012459 cleaning agent Substances 0.000 description 6
- GHVNFZFCNZKVNT-UHFFFAOYSA-N decanoic acid Chemical compound CCCCCCCCCC(O)=O GHVNFZFCNZKVNT-UHFFFAOYSA-N 0.000 description 6
- 238000000354 decomposition reaction Methods 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 6
- 239000007789 gas Substances 0.000 description 6
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 6
- CDOSHBSSFJOMGT-UHFFFAOYSA-N linalool Chemical compound CC(C)=CCCC(C)(O)C=C CDOSHBSSFJOMGT-UHFFFAOYSA-N 0.000 description 6
- UWKAYLJWKGQEPM-LBPRGKRZSA-N linalyl acetate Chemical compound CC(C)=CCC[C@](C)(C=C)OC(C)=O UWKAYLJWKGQEPM-LBPRGKRZSA-N 0.000 description 6
- 150000002632 lipids Chemical class 0.000 description 6
- NUKZAGXMHTUAFE-UHFFFAOYSA-N methyl hexanoate Chemical compound CCCCCC(=O)OC NUKZAGXMHTUAFE-UHFFFAOYSA-N 0.000 description 6
- WQEPLUUGTLDZJY-UHFFFAOYSA-N n-Pentadecanoic acid Natural products CCCCCCCCCCCCCCC(O)=O WQEPLUUGTLDZJY-UHFFFAOYSA-N 0.000 description 6
- 229910052757 nitrogen Inorganic materials 0.000 description 6
- HWGNBUXHKFFFIH-UHFFFAOYSA-I pentasodium;[oxido(phosphonatooxy)phosphoryl] phosphate Chemical compound [Na+].[Na+].[Na+].[Na+].[Na+].[O-]P([O-])(=O)OP([O-])(=O)OP([O-])([O-])=O HWGNBUXHKFFFIH-UHFFFAOYSA-I 0.000 description 6
- 150000003077 polyols Chemical class 0.000 description 6
- 229920001451 polypropylene glycol Polymers 0.000 description 6
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 6
- 235000018102 proteins Nutrition 0.000 description 6
- 102000004169 proteins and genes Human genes 0.000 description 6
- 108090000623 proteins and genes Proteins 0.000 description 6
- 239000000243 solution Substances 0.000 description 6
- 150000003626 triacylglycerols Chemical class 0.000 description 6
- 229920003169 water-soluble polymer Polymers 0.000 description 6
- 108010065511 Amylases Proteins 0.000 description 5
- 102000013142 Amylases Human genes 0.000 description 5
- WTEVQBCEXWBHNA-UHFFFAOYSA-N Citral Natural products CC(C)=CCCC(C)=CC=O WTEVQBCEXWBHNA-UHFFFAOYSA-N 0.000 description 5
- 239000004375 Dextrin Substances 0.000 description 5
- 229920001353 Dextrin Polymers 0.000 description 5
- 241000196324 Embryophyta Species 0.000 description 5
- IMROMDMJAWUWLK-UHFFFAOYSA-N Ethenol Chemical compound OC=C IMROMDMJAWUWLK-UHFFFAOYSA-N 0.000 description 5
- 108010010803 Gelatin Proteins 0.000 description 5
- 239000005639 Lauric acid Substances 0.000 description 5
- 229920000881 Modified starch Polymers 0.000 description 5
- 235000021314 Palmitic acid Nutrition 0.000 description 5
- ABLZXFCXXLZCGV-UHFFFAOYSA-N Phosphorous acid Chemical class OP(O)=O ABLZXFCXXLZCGV-UHFFFAOYSA-N 0.000 description 5
- 239000004698 Polyethylene Substances 0.000 description 5
- 239000002202 Polyethylene glycol Substances 0.000 description 5
- 239000004743 Polypropylene Substances 0.000 description 5
- 239000004115 Sodium Silicate Substances 0.000 description 5
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 5
- 239000001361 adipic acid Substances 0.000 description 5
- 235000011037 adipic acid Nutrition 0.000 description 5
- 229910000288 alkali metal carbonate Inorganic materials 0.000 description 5
- 150000008041 alkali metal carbonates Chemical class 0.000 description 5
- 150000001447 alkali salts Chemical class 0.000 description 5
- 125000002947 alkylene group Chemical group 0.000 description 5
- 235000001014 amino acid Nutrition 0.000 description 5
- 150000001413 amino acids Chemical class 0.000 description 5
- 150000003863 ammonium salts Chemical class 0.000 description 5
- 235000019418 amylase Nutrition 0.000 description 5
- 229940027983 antiseptic and disinfectant quaternary ammonium compound Drugs 0.000 description 5
- 239000007864 aqueous solution Substances 0.000 description 5
- NDVASEGYNIMXJL-UHFFFAOYSA-N beta-sabinene Natural products C=C1CCC2(C(C)C)C1C2 NDVASEGYNIMXJL-UHFFFAOYSA-N 0.000 description 5
- KDYFGRWQOYBRFD-NUQCWPJISA-N butanedioic acid Chemical compound O[14C](=O)CC[14C](O)=O KDYFGRWQOYBRFD-NUQCWPJISA-N 0.000 description 5
- 229940077731 carbohydrate nutrients Drugs 0.000 description 5
- 235000014633 carbohydrates Nutrition 0.000 description 5
- 150000001768 cations Chemical class 0.000 description 5
- 235000019425 dextrin Nutrition 0.000 description 5
- 238000009826 distribution Methods 0.000 description 5
- 229920000159 gelatin Polymers 0.000 description 5
- 235000019322 gelatine Nutrition 0.000 description 5
- 235000011852 gelatine desserts Nutrition 0.000 description 5
- 150000004676 glycans Chemical class 0.000 description 5
- 230000002209 hydrophobic effect Effects 0.000 description 5
- 229910052742 iron Inorganic materials 0.000 description 5
- OQAGVSWESNCJJT-UHFFFAOYSA-N isovaleric acid methyl ester Natural products COC(=O)CC(C)C OQAGVSWESNCJJT-UHFFFAOYSA-N 0.000 description 5
- 150000002576 ketones Chemical class 0.000 description 5
- 229910052748 manganese Inorganic materials 0.000 description 5
- 239000011572 manganese Substances 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 235000019426 modified starch Nutrition 0.000 description 5
- 239000002245 particle Substances 0.000 description 5
- MDHYEMXUFSJLGV-UHFFFAOYSA-N phenethyl acetate Chemical compound CC(=O)OCCC1=CC=CC=C1 MDHYEMXUFSJLGV-UHFFFAOYSA-N 0.000 description 5
- 229920006324 polyoxymethylene Polymers 0.000 description 5
- 229920001155 polypropylene Polymers 0.000 description 5
- 239000005017 polysaccharide Substances 0.000 description 5
- 238000002360 preparation method Methods 0.000 description 5
- 150000003856 quaternary ammonium compounds Chemical class 0.000 description 5
- 159000000000 sodium salts Chemical class 0.000 description 5
- 239000002904 solvent Substances 0.000 description 5
- HLZKNKRTKFSKGZ-UHFFFAOYSA-N tetradecan-1-ol Chemical compound CCCCCCCCCCCCCCO HLZKNKRTKFSKGZ-UHFFFAOYSA-N 0.000 description 5
- XMGQYMWWDOXHJM-JTQLQIEISA-N (+)-α-limonene Chemical compound CC(=C)[C@@H]1CCC(C)=CC1 XMGQYMWWDOXHJM-JTQLQIEISA-N 0.000 description 4
- OPFTUNCRGUEPRZ-QLFBSQMISA-N (-)-beta-elemene Chemical compound CC(=C)[C@@H]1CC[C@@](C)(C=C)[C@H](C(C)=C)C1 OPFTUNCRGUEPRZ-QLFBSQMISA-N 0.000 description 4
- BQSLMQNYHVFRDT-CABCVRRESA-N (1r,2r)-1-ethenyl-1-methyl-4-propan-2-ylidene-2-prop-1-en-2-ylcyclohexane Chemical compound CC(C)=C1CC[C@](C)(C=C)[C@@H](C(C)=C)C1 BQSLMQNYHVFRDT-CABCVRRESA-N 0.000 description 4
- YTHRBOFHFYZBRJ-UHFFFAOYSA-N (2-methyl-5-prop-1-en-2-yl-1-cyclohex-2-enyl) acetate Chemical compound CC(=O)OC1CC(C(C)=C)CC=C1C YTHRBOFHFYZBRJ-UHFFFAOYSA-N 0.000 description 4
- 239000001490 (3R)-3,7-dimethylocta-1,6-dien-3-ol Substances 0.000 description 4
- IHPKGUQCSIINRJ-CSKARUKUSA-N (E)-beta-ocimene Chemical compound CC(C)=CC\C=C(/C)C=C IHPKGUQCSIINRJ-CSKARUKUSA-N 0.000 description 4
- WEEGYLXZBRQIMU-UHFFFAOYSA-N 1,8-cineole Natural products C1CC2CCC1(C)OC2(C)C WEEGYLXZBRQIMU-UHFFFAOYSA-N 0.000 description 4
- BBMCTIGTTCKYKF-UHFFFAOYSA-N 1-heptanol Chemical compound CCCCCCCO BBMCTIGTTCKYKF-UHFFFAOYSA-N 0.000 description 4
- RTBFRGCFXZNCOE-UHFFFAOYSA-N 1-methylsulfonylpiperidin-4-one Chemical compound CS(=O)(=O)N1CCC(=O)CC1 RTBFRGCFXZNCOE-UHFFFAOYSA-N 0.000 description 4
- OXQOBQJCDNLAPO-UHFFFAOYSA-N 2,3-Dimethylpyrazine Chemical compound CC1=NC=CN=C1C OXQOBQJCDNLAPO-UHFFFAOYSA-N 0.000 description 4
- LSKONYYRONEBKA-UHFFFAOYSA-N 2-Dodecanone Natural products CCCCCCCCCCC(C)=O LSKONYYRONEBKA-UHFFFAOYSA-N 0.000 description 4
- YIWUKEYIRIRTPP-UHFFFAOYSA-N 2-ethylhexan-1-ol Chemical compound CCCCC(CC)CO YIWUKEYIRIRTPP-UHFFFAOYSA-N 0.000 description 4
- ALHUXMDEZNLFTA-UHFFFAOYSA-N 2-methylquinoxaline Chemical compound C1=CC=CC2=NC(C)=CN=C21 ALHUXMDEZNLFTA-UHFFFAOYSA-N 0.000 description 4
- WRMNZCZEMHIOCP-UHFFFAOYSA-N 2-phenylethanol Chemical compound OCCC1=CC=CC=C1 WRMNZCZEMHIOCP-UHFFFAOYSA-N 0.000 description 4
- OTYVBQZXUNBRTK-UHFFFAOYSA-N 3,3,6-trimethylhepta-1,5-dien-4-one Chemical compound CC(C)=CC(=O)C(C)(C)C=C OTYVBQZXUNBRTK-UHFFFAOYSA-N 0.000 description 4
- TYUXMNLCTBQWQZ-UHFFFAOYSA-N 3,4-dimethyl-1-phenylpent-3-en-2-one Chemical compound CC(C)=C(C)C(=O)CC1=CC=CC=C1 TYUXMNLCTBQWQZ-UHFFFAOYSA-N 0.000 description 4
- OIGWAXDAPKFNCQ-UHFFFAOYSA-N 4-isopropylbenzyl alcohol Chemical compound CC(C)C1=CC=C(CO)C=C1 OIGWAXDAPKFNCQ-UHFFFAOYSA-N 0.000 description 4
- OALYTRUKMRCXNH-UHFFFAOYSA-N 5-pentyloxolan-2-one Chemical compound CCCCCC1CCC(=O)O1 OALYTRUKMRCXNH-UHFFFAOYSA-N 0.000 description 4
- GHBSPIPJMLAMEP-UHFFFAOYSA-N 6-pentyloxan-2-one Chemical compound CCCCCC1CCCC(=O)O1 GHBSPIPJMLAMEP-UHFFFAOYSA-N 0.000 description 4
- KWOLFJPFCHCOCG-UHFFFAOYSA-N Acetophenone Chemical compound CC(=O)C1=CC=CC=C1 KWOLFJPFCHCOCG-UHFFFAOYSA-N 0.000 description 4
- HGINCPLSRVDWNT-UHFFFAOYSA-N Acrolein Chemical compound C=CC=O HGINCPLSRVDWNT-UHFFFAOYSA-N 0.000 description 4
- 235000021357 Behenic acid Nutrition 0.000 description 4
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 4
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 4
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 4
- BAVONGHXFVOKBV-UHFFFAOYSA-N Carveol Chemical compound CC(=C)C1CC=C(C)C(O)C1 BAVONGHXFVOKBV-UHFFFAOYSA-N 0.000 description 4
- 102000008186 Collagen Human genes 0.000 description 4
- 108010035532 Collagen Proteins 0.000 description 4
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 4
- RGHNJXZEOKUKBD-SQOUGZDYSA-N D-gluconic acid Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C(O)=O RGHNJXZEOKUKBD-SQOUGZDYSA-N 0.000 description 4
- VLSVVMPLPMNWBH-UHFFFAOYSA-N Dihydro-5-propyl-2(3H)-furanone Chemical compound CCCC1CCC(=O)O1 VLSVVMPLPMNWBH-UHFFFAOYSA-N 0.000 description 4
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 4
- 241001465754 Metazoa Species 0.000 description 4
- UUIQMZJEGPQKFD-UHFFFAOYSA-N Methyl butyrate Chemical compound CCCC(=O)OC UUIQMZJEGPQKFD-UHFFFAOYSA-N 0.000 description 4
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- 108090000854 Oxidoreductases Proteins 0.000 description 4
- 102000004316 Oxidoreductases Human genes 0.000 description 4
- 239000004952 Polyamide Substances 0.000 description 4
- 235000021355 Stearic acid Nutrition 0.000 description 4
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 4
- KKEYFWRCBNTPAC-UHFFFAOYSA-N Terephthalic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 description 4
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 4
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 4
- 229940024171 alpha-amylase Drugs 0.000 description 4
- IPZIYGAXCZTOMH-UHFFFAOYSA-N alpha-eudesmol Natural products CC1=CCCC2CCC(CC12)C(C)(C)O IPZIYGAXCZTOMH-UHFFFAOYSA-N 0.000 description 4
- 239000002280 amphoteric surfactant Substances 0.000 description 4
- 229940025131 amylases Drugs 0.000 description 4
- JFCQEDHGNNZCLN-UHFFFAOYSA-N anhydrous glutaric acid Natural products OC(=O)CCCC(O)=O JFCQEDHGNNZCLN-UHFFFAOYSA-N 0.000 description 4
- 150000001450 anions Chemical group 0.000 description 4
- 239000003963 antioxidant agent Substances 0.000 description 4
- 235000006708 antioxidants Nutrition 0.000 description 4
- 229940116226 behenic acid Drugs 0.000 description 4
- QUKGYYKBILRGFE-UHFFFAOYSA-N benzyl acetate Chemical compound CC(=O)OCC1=CC=CC=C1 QUKGYYKBILRGFE-UHFFFAOYSA-N 0.000 description 4
- 238000004061 bleaching Methods 0.000 description 4
- 229910021538 borax Inorganic materials 0.000 description 4
- 239000003093 cationic surfactant Substances 0.000 description 4
- 229960000541 cetyl alcohol Drugs 0.000 description 4
- QMVPMAAFGQKVCJ-UHFFFAOYSA-N citronellol Chemical compound OCCC(C)CCC=C(C)C QMVPMAAFGQKVCJ-UHFFFAOYSA-N 0.000 description 4
- 150000001868 cobalt Chemical class 0.000 description 4
- 229920001436 collagen Polymers 0.000 description 4
- 229910052802 copper Inorganic materials 0.000 description 4
- 238000004851 dishwashing Methods 0.000 description 4
- 238000004090 dissolution Methods 0.000 description 4
- NOPFSRXAKWQILS-UHFFFAOYSA-N docosan-1-ol Chemical compound CCCCCCCCCCCCCCCCCCCCCCO NOPFSRXAKWQILS-UHFFFAOYSA-N 0.000 description 4
- PRAKJMSDJKAYCZ-UHFFFAOYSA-N dodecahydrosqualene Natural products CC(C)CCCC(C)CCCC(C)CCCCC(C)CCCC(C)CCCC(C)C PRAKJMSDJKAYCZ-UHFFFAOYSA-N 0.000 description 4
- HFJRKMMYBMWEAD-UHFFFAOYSA-N dodecanal Chemical compound CCCCCCCCCCCC=O HFJRKMMYBMWEAD-UHFFFAOYSA-N 0.000 description 4
- 230000032050 esterification Effects 0.000 description 4
- 238000005886 esterification reaction Methods 0.000 description 4
- MTZQAGJQAFMTAQ-UHFFFAOYSA-N ethyl benzoate Chemical compound CCOC(=O)C1=CC=CC=C1 MTZQAGJQAFMTAQ-UHFFFAOYSA-N 0.000 description 4
- SHZIWNPUGXLXDT-UHFFFAOYSA-N ethyl hexanoate Chemical compound CCCCCC(=O)OCC SHZIWNPUGXLXDT-UHFFFAOYSA-N 0.000 description 4
- RRAFCDWBNXTKKO-UHFFFAOYSA-N eugenol Chemical compound COC1=CC(CC=C)=CC=C1O RRAFCDWBNXTKKO-UHFFFAOYSA-N 0.000 description 4
- HYBBIBNJHNGZAN-UHFFFAOYSA-N furfural Chemical compound O=CC1=CC=CO1 HYBBIBNJHNGZAN-UHFFFAOYSA-N 0.000 description 4
- 239000011521 glass Substances 0.000 description 4
- 125000002791 glucosyl group Chemical group C1([C@H](O)[C@@H](O)[C@H](O)[C@H](O1)CO)* 0.000 description 4
- 235000011187 glycerol Nutrition 0.000 description 4
- ZSIAUFGUXNUGDI-UHFFFAOYSA-N hexan-1-ol Chemical compound CCCCCCO ZSIAUFGUXNUGDI-UHFFFAOYSA-N 0.000 description 4
- NCDCLPBOMHPFCV-UHFFFAOYSA-N hexyl hexanoate Chemical compound CCCCCCOC(=O)CCCCC NCDCLPBOMHPFCV-UHFFFAOYSA-N 0.000 description 4
- PBGWNXWNCSSXCO-UHFFFAOYSA-N hexyl octanoate Chemical compound CCCCCCCC(=O)OCCCCCC PBGWNXWNCSSXCO-UHFFFAOYSA-N 0.000 description 4
- 125000001165 hydrophobic group Chemical group 0.000 description 4
- 239000003752 hydrotrope Substances 0.000 description 4
- 125000002768 hydroxyalkyl group Chemical group 0.000 description 4
- VKOBVWXKNCXXDE-UHFFFAOYSA-N icosanoic acid Chemical compound CCCCCCCCCCCCCCCCCCCC(O)=O VKOBVWXKNCXXDE-UHFFFAOYSA-N 0.000 description 4
- XMGQYMWWDOXHJM-UHFFFAOYSA-N limonene Chemical compound CC(=C)C1CCC(C)=CC1 XMGQYMWWDOXHJM-UHFFFAOYSA-N 0.000 description 4
- VAMXMNNIEUEQDV-UHFFFAOYSA-N methyl anthranilate Chemical compound COC(=O)C1=CC=CC=C1N VAMXMNNIEUEQDV-UHFFFAOYSA-N 0.000 description 4
- QPJVMBTYPHYUOC-UHFFFAOYSA-N methyl benzoate Chemical compound COC(=O)C1=CC=CC=C1 QPJVMBTYPHYUOC-UHFFFAOYSA-N 0.000 description 4
- GOQYKNQRPGWPLP-UHFFFAOYSA-N n-heptadecyl alcohol Natural products CCCCCCCCCCCCCCCCCO GOQYKNQRPGWPLP-UHFFFAOYSA-N 0.000 description 4
- 229910021527 natrosilite Inorganic materials 0.000 description 4
- GYHFUZHODSMOHU-UHFFFAOYSA-N nonanal Chemical compound CCCCCCCCC=O GYHFUZHODSMOHU-UHFFFAOYSA-N 0.000 description 4
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 4
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 4
- NUJGJRNETVAIRJ-UHFFFAOYSA-N octanal Chemical compound CCCCCCCC=O NUJGJRNETVAIRJ-UHFFFAOYSA-N 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 4
- 230000003647 oxidation Effects 0.000 description 4
- 238000007254 oxidation reaction Methods 0.000 description 4
- ZRSNZINYAWTAHE-UHFFFAOYSA-N p-methoxybenzaldehyde Chemical compound COC1=CC=C(C=O)C=C1 ZRSNZINYAWTAHE-UHFFFAOYSA-N 0.000 description 4
- OSORMYZMWHVFOZ-UHFFFAOYSA-N phenethyl benzoate Chemical compound C=1C=CC=CC=1C(=O)OCCC1=CC=CC=C1 OSORMYZMWHVFOZ-UHFFFAOYSA-N 0.000 description 4
- 239000004584 polyacrylic acid Substances 0.000 description 4
- 229920002647 polyamide Polymers 0.000 description 4
- 229920000573 polyethylene Polymers 0.000 description 4
- 229920000151 polyglycol Polymers 0.000 description 4
- 239000010695 polyglycol Substances 0.000 description 4
- 229920001282 polysaccharide Polymers 0.000 description 4
- BITYAPCSNKJESK-UHFFFAOYSA-N potassiosodium Chemical compound [Na].[K] BITYAPCSNKJESK-UHFFFAOYSA-N 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- 235000019419 proteases Nutrition 0.000 description 4
- SGAWOGXMMPSZPB-UHFFFAOYSA-N safranal Chemical compound CC1=C(C=O)C(C)(C)CC=C1 SGAWOGXMMPSZPB-UHFFFAOYSA-N 0.000 description 4
- 235000012239 silicon dioxide Nutrition 0.000 description 4
- 239000004328 sodium tetraborate Substances 0.000 description 4
- 235000010339 sodium tetraborate Nutrition 0.000 description 4
- 239000008117 stearic acid Substances 0.000 description 4
- 125000001424 substituent group Chemical group 0.000 description 4
- LHYHMMRYTDARSZ-YJNKXOJESA-N t-cadinol Natural products C1CC(C)=C[C@@H]2[C@H](C(C)C)CC[C@](C)(O)[C@@H]21 LHYHMMRYTDARSZ-YJNKXOJESA-N 0.000 description 4
- XJPBRODHZKDRCB-UHFFFAOYSA-N trans-alpha-ocimene Natural products CC(=C)CCC=C(C)C=C XJPBRODHZKDRCB-UHFFFAOYSA-N 0.000 description 4
- URAYPUMNDPQOKB-UHFFFAOYSA-N triacetin Chemical compound CC(=O)OCC(OC(C)=O)COC(C)=O URAYPUMNDPQOKB-UHFFFAOYSA-N 0.000 description 4
- BGEHHAVMRVXCGR-UHFFFAOYSA-N tridecanal Chemical compound CCCCCCCCCCCCC=O BGEHHAVMRVXCGR-UHFFFAOYSA-N 0.000 description 4
- UZNHKBFIBYXPDV-UHFFFAOYSA-N trimethyl-[3-(2-methylprop-2-enoylamino)propyl]azanium;chloride Chemical compound [Cl-].CC(=C)C(=O)NCCC[N+](C)(C)C UZNHKBFIBYXPDV-UHFFFAOYSA-N 0.000 description 4
- LWIHDJKSTIGBAC-UHFFFAOYSA-K tripotassium phosphate Chemical compound [K+].[K+].[K+].[O-]P([O-])([O-])=O LWIHDJKSTIGBAC-UHFFFAOYSA-K 0.000 description 4
- 229910009112 xH2O Inorganic materials 0.000 description 4
- QRPLZGZHJABGRS-UHFFFAOYSA-N xi-5-Dodecanolide Chemical compound CCCCCCCC1CCCC(=O)O1 QRPLZGZHJABGRS-UHFFFAOYSA-N 0.000 description 4
- CXENHBSYCFFKJS-UHFFFAOYSA-N α-farnesene Chemical compound CC(C)=CCCC(C)=CCC=C(C)C=C CXENHBSYCFFKJS-UHFFFAOYSA-N 0.000 description 4
- WTVHAMTYZJGJLJ-LSDHHAIUSA-N β-bisabolol Chemical compound CC(C)=CCC[C@H](C)[C@]1(O)CCC(C)=CC1 WTVHAMTYZJGJLJ-LSDHHAIUSA-N 0.000 description 4
- PSQYTAPXSHCGMF-BQYQJAHWSA-N β-ionone Chemical compound CC(=O)\C=C\C1=C(C)CCCC1(C)C PSQYTAPXSHCGMF-BQYQJAHWSA-N 0.000 description 4
- NFLGAXVYCFJBMK-RKDXNWHRSA-N (+)-isomenthone Natural products CC(C)[C@H]1CC[C@@H](C)CC1=O NFLGAXVYCFJBMK-RKDXNWHRSA-N 0.000 description 3
- DTGKSKDOIYIVQL-CCNFQMFXSA-N (3r)-4,7,7-trimethylbicyclo[2.2.1]heptan-3-ol Chemical compound C1CC2(C)[C@H](O)CC1C2(C)C DTGKSKDOIYIVQL-CCNFQMFXSA-N 0.000 description 3
- ALSTYHKOOCGGFT-KTKRTIGZSA-N (9Z)-octadecen-1-ol Chemical compound CCCCCCCC\C=C/CCCCCCCCO ALSTYHKOOCGGFT-KTKRTIGZSA-N 0.000 description 3
- JSNRRGGBADWTMC-QINSGFPZSA-N (E)-beta-Farnesene Natural products CC(C)=CCC\C(C)=C/CCC(=C)C=C JSNRRGGBADWTMC-QINSGFPZSA-N 0.000 description 3
- ZCHHRLHTBGRGOT-SNAWJCMRSA-N (E)-hex-2-en-1-ol Chemical compound CCC\C=C\CO ZCHHRLHTBGRGOT-SNAWJCMRSA-N 0.000 description 3
- CDOSHBSSFJOMGT-JTQLQIEISA-N (R)-linalool Natural products CC(C)=CCC[C@@](C)(O)C=C CDOSHBSSFJOMGT-JTQLQIEISA-N 0.000 description 3
- TYDDWHVJHGIJCW-OLKPEBQYSA-N (Z)-Ocimene Natural products O[C@@H](C(=C)C)C/C=C(/C=C)\C TYDDWHVJHGIJCW-OLKPEBQYSA-N 0.000 description 3
- IHPKGUQCSIINRJ-NTMALXAHSA-N (Z)-beta-ocimene Chemical compound CC(C)=CC\C=C(\C)C=C IHPKGUQCSIINRJ-NTMALXAHSA-N 0.000 description 3
- CJKWGCWVBLTMBA-UHFFFAOYSA-N 2,3-dimethylhept-2-enal Chemical compound CCCCC(C)=C(C)C=O CJKWGCWVBLTMBA-UHFFFAOYSA-N 0.000 description 3
- MBDOYVRWFFCFHM-UHFFFAOYSA-N 2-hexenal Chemical compound CCCC=CC=O MBDOYVRWFFCFHM-UHFFFAOYSA-N 0.000 description 3
- 125000004398 2-methyl-2-butyl group Chemical group CC(C)(CC)* 0.000 description 3
- XEEYSDHEOQHCDA-UHFFFAOYSA-N 2-methylprop-2-ene-1-sulfonic acid Chemical compound CC(=C)CS(O)(=O)=O XEEYSDHEOQHCDA-UHFFFAOYSA-N 0.000 description 3
- LVBXEMGDVWVTGY-SREVYHEPSA-N 2-octenal Chemical compound CCCCC\C=C/C=O LVBXEMGDVWVTGY-SREVYHEPSA-N 0.000 description 3
- IYYUJCKJSSPXQQ-UHFFFAOYSA-N 2-pyridin-4-yl-1,3-thiazolidin-3-ium-4-carboxylate Chemical compound N1C(C(=O)O)CSC1C1=CC=NC=C1 IYYUJCKJSSPXQQ-UHFFFAOYSA-N 0.000 description 3
- WGPCZPLRVAWXPW-NSHDSACASA-N 5-octyloxolan-2-one Chemical compound CCCCCCCC[C@H]1CCC(=O)O1 WGPCZPLRVAWXPW-NSHDSACASA-N 0.000 description 3
- WMOPMQRJLLIEJV-UHFFFAOYSA-N 7-epi-gamma-eudesmanol Natural products C1C(C(C)(C)O)CCC2(C)CCCC(C)=C21 WMOPMQRJLLIEJV-UHFFFAOYSA-N 0.000 description 3
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- 240000001432 Calendula officinalis Species 0.000 description 3
- 239000005632 Capric acid (CAS 334-48-5) Substances 0.000 description 3
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 3
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 3
- 244000000626 Daucus carota Species 0.000 description 3
- 235000002767 Daucus carota Nutrition 0.000 description 3
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 3
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 3
- KBEBGUQPQBELIU-CMDGGOBGSA-N Ethyl cinnamate Chemical compound CCOC(=O)\C=C\C1=CC=CC=C1 KBEBGUQPQBELIU-CMDGGOBGSA-N 0.000 description 3
- 229930091371 Fructose Natural products 0.000 description 3
- 239000005715 Fructose Substances 0.000 description 3
- RFSUNEUAIZKAJO-ARQDHWQXSA-N Fructose Chemical compound OC[C@H]1O[C@](O)(CO)[C@@H](O)[C@@H]1O RFSUNEUAIZKAJO-ARQDHWQXSA-N 0.000 description 3
- 239000005792 Geraniol Substances 0.000 description 3
- GLZPCOQZEFWAFX-YFHOEESVSA-N Geraniol Natural products CC(C)=CCC\C(C)=C/CO GLZPCOQZEFWAFX-YFHOEESVSA-N 0.000 description 3
- NFLGAXVYCFJBMK-UHFFFAOYSA-N Menthone Chemical compound CC(C)C1CCC(C)CC1=O NFLGAXVYCFJBMK-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- ACOBBFVLNKYODD-CSKARUKUSA-N Methyl geranate Chemical compound COC(=O)\C=C(/C)CCC=C(C)C ACOBBFVLNKYODD-CSKARUKUSA-N 0.000 description 3
- 229920000168 Microcrystalline cellulose Polymers 0.000 description 3
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 3
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 3
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 3
- XGQJZNCFDLXSIJ-UHFFFAOYSA-N Pentadecanal Natural products CCCCCCCCCCCCCCC=O XGQJZNCFDLXSIJ-UHFFFAOYSA-N 0.000 description 3
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 3
- 229920000289 Polyquaternium Polymers 0.000 description 3
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 3
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 3
- 240000007313 Tilia cordata Species 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 3
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 3
- ZSBOMYJPSRFZAL-JLHYYAGUSA-N [(2e)-3,7-dimethylocta-2,6-dienyl] butanoate Chemical compound CCCC(=O)OC\C=C(/C)CCC=C(C)C ZSBOMYJPSRFZAL-JLHYYAGUSA-N 0.000 description 3
- 239000006096 absorbing agent Substances 0.000 description 3
- 229940022663 acetate Drugs 0.000 description 3
- 150000001252 acrylic acid derivatives Chemical class 0.000 description 3
- 239000004480 active ingredient Substances 0.000 description 3
- 238000007792 addition Methods 0.000 description 3
- 150000008044 alkali metal hydroxides Chemical class 0.000 description 3
- 229910000318 alkali metal phosphate Inorganic materials 0.000 description 3
- 125000005263 alkylenediamine group Chemical group 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- PYMYPHUHKUWMLA-UHFFFAOYSA-N arabinose Natural products OCC(O)C(O)C(O)C=O PYMYPHUHKUWMLA-UHFFFAOYSA-N 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- SRBFZHDQGSBBOR-UHFFFAOYSA-N beta-D-Pyranose-Lyxose Natural products OC1COC(O)C(O)C1O SRBFZHDQGSBBOR-UHFFFAOYSA-N 0.000 description 3
- YSNRTFFURISHOU-UHFFFAOYSA-N beta-farnesene Natural products C=CC(C)CCC=C(C)CCC=C(C)C YSNRTFFURISHOU-UHFFFAOYSA-N 0.000 description 3
- 229920001400 block copolymer Polymers 0.000 description 3
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 3
- 239000001768 carboxy methyl cellulose Substances 0.000 description 3
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 3
- 239000003054 catalyst Substances 0.000 description 3
- 238000007600 charging Methods 0.000 description 3
- 239000000460 chlorine Substances 0.000 description 3
- 229910052801 chlorine Inorganic materials 0.000 description 3
- 235000012000 cholesterol Nutrition 0.000 description 3
- 229940107161 cholesterol Drugs 0.000 description 3
- ACOBBFVLNKYODD-UHFFFAOYSA-N cis-geranic acid methyl ester Natural products COC(=O)C=C(C)CCC=C(C)C ACOBBFVLNKYODD-UHFFFAOYSA-N 0.000 description 3
- 150000001860 citric acid derivatives Chemical class 0.000 description 3
- 239000000470 constituent Substances 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- XCJYREBRNVKWGJ-UHFFFAOYSA-N copper(II) phthalocyanine Chemical compound [Cu+2].C12=CC=CC=C2C(N=C2[N-]C(C3=CC=CC=C32)=N2)=NC1=NC([C]1C=CC=CC1=1)=NC=1N=C1[C]3C=CC=CC3=C2[N-]1 XCJYREBRNVKWGJ-UHFFFAOYSA-N 0.000 description 3
- 239000002537 cosmetic Substances 0.000 description 3
- 229910052906 cristobalite Inorganic materials 0.000 description 3
- 229940071118 cumenesulfonate Drugs 0.000 description 3
- 108010005400 cutinase Proteins 0.000 description 3
- 125000004093 cyano group Chemical group *C#N 0.000 description 3
- 230000008021 deposition Effects 0.000 description 3
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 3
- BNIILDVGGAEEIG-UHFFFAOYSA-L disodium hydrogen phosphate Chemical compound [Na+].[Na+].OP([O-])([O-])=O BNIILDVGGAEEIG-UHFFFAOYSA-L 0.000 description 3
- VTIIJXUACCWYHX-UHFFFAOYSA-L disodium;carboxylatooxy carbonate Chemical compound [Na+].[Na+].[O-]C(=O)OOC([O-])=O VTIIJXUACCWYHX-UHFFFAOYSA-L 0.000 description 3
- 239000003792 electrolyte Substances 0.000 description 3
- 238000006266 etherification reaction Methods 0.000 description 3
- 238000007046 ethoxylation reaction Methods 0.000 description 3
- 239000002360 explosive Substances 0.000 description 3
- 239000003925 fat Substances 0.000 description 3
- 235000019197 fats Nutrition 0.000 description 3
- 125000000373 fatty alcohol group Chemical group 0.000 description 3
- 238000005187 foaming Methods 0.000 description 3
- 239000001530 fumaric acid Substances 0.000 description 3
- 125000000524 functional group Chemical group 0.000 description 3
- 239000000417 fungicide Substances 0.000 description 3
- WGPCZPLRVAWXPW-LLVKDONJSA-N gamma-Dodecalactone Natural products CCCCCCCC[C@@H]1CCC(=O)O1 WGPCZPLRVAWXPW-LLVKDONJSA-N 0.000 description 3
- JBHJOURGKXURIW-UHFFFAOYSA-N gamma-cadinene Natural products CC(C)C1CCC(=C2CCC(=C)CC12)C JBHJOURGKXURIW-UHFFFAOYSA-N 0.000 description 3
- 229940113087 geraniol Drugs 0.000 description 3
- NHCQMVNKPJAQJZ-UHFFFAOYSA-N geranyl n-butyrate Natural products CCCCOCC=C(C)CCC=C(C)C NHCQMVNKPJAQJZ-UHFFFAOYSA-N 0.000 description 3
- 230000002070 germicidal effect Effects 0.000 description 3
- 238000010409 ironing Methods 0.000 description 3
- GJRQTCIYDGXPES-UHFFFAOYSA-N iso-butyl acetate Natural products CC(C)COC(C)=O GJRQTCIYDGXPES-UHFFFAOYSA-N 0.000 description 3
- FGKJLKRYENPLQH-UHFFFAOYSA-M isocaproate Chemical compound CC(C)CCC([O-])=O FGKJLKRYENPLQH-UHFFFAOYSA-M 0.000 description 3
- 229930007744 linalool Natural products 0.000 description 3
- UWKAYLJWKGQEPM-UHFFFAOYSA-N linalool acetate Natural products CC(C)=CCCC(C)(C=C)OC(C)=O UWKAYLJWKGQEPM-UHFFFAOYSA-N 0.000 description 3
- 229930007503 menthone Natural products 0.000 description 3
- 229920003145 methacrylic acid copolymer Polymers 0.000 description 3
- 229920000609 methyl cellulose Polymers 0.000 description 3
- 239000001923 methylcellulose Substances 0.000 description 3
- 244000005700 microbiome Species 0.000 description 3
- 235000019813 microcrystalline cellulose Nutrition 0.000 description 3
- JXTPJDDICSTXJX-UHFFFAOYSA-N n-Triacontane Natural products CCCCCCCCCCCCCCCCCCCCCCCCCCCCCC JXTPJDDICSTXJX-UHFFFAOYSA-N 0.000 description 3
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 3
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 3
- 229940055577 oleyl alcohol Drugs 0.000 description 3
- XMLQWXUVTXCDDL-UHFFFAOYSA-N oleyl alcohol Natural products CCCCCCC=CCCCCCCCCCCO XMLQWXUVTXCDDL-UHFFFAOYSA-N 0.000 description 3
- 125000004430 oxygen atom Chemical group O* 0.000 description 3
- 230000036961 partial effect Effects 0.000 description 3
- 230000035515 penetration Effects 0.000 description 3
- 235000019831 pentapotassium triphosphate Nutrition 0.000 description 3
- ATGAWOHQWWULNK-UHFFFAOYSA-I pentapotassium;[oxido(phosphonatooxy)phosphoryl] phosphate Chemical compound [K+].[K+].[K+].[K+].[K+].[O-]P([O-])(=O)OP([O-])(=O)OP([O-])([O-])=O ATGAWOHQWWULNK-UHFFFAOYSA-I 0.000 description 3
- 150000004965 peroxy acids Chemical class 0.000 description 3
- PATMLLNMTPIUSY-UHFFFAOYSA-N phenoxysulfonyl 7-methyloctanoate Chemical compound CC(C)CCCCCC(=O)OS(=O)(=O)OC1=CC=CC=C1 PATMLLNMTPIUSY-UHFFFAOYSA-N 0.000 description 3
- 239000010452 phosphate Substances 0.000 description 3
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 3
- 150000003904 phospholipids Chemical class 0.000 description 3
- 235000011007 phosphoric acid Nutrition 0.000 description 3
- 229920003023 plastic Polymers 0.000 description 3
- 239000004033 plastic Substances 0.000 description 3
- 229920000058 polyacrylate Polymers 0.000 description 3
- 229920001515 polyalkylene glycol Polymers 0.000 description 3
- 238000006116 polymerization reaction Methods 0.000 description 3
- 239000003755 preservative agent Substances 0.000 description 3
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 3
- 108090000765 processed proteins & peptides Proteins 0.000 description 3
- 229930002224 sesquiphellandrene Natural products 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- 229910052709 silver Inorganic materials 0.000 description 3
- 239000004332 silver Substances 0.000 description 3
- 239000001509 sodium citrate Substances 0.000 description 3
- FQENQNTWSFEDLI-UHFFFAOYSA-J sodium diphosphate Chemical compound [Na+].[Na+].[Na+].[Na+].[O-]P([O-])(=O)OP([O-])([O-])=O FQENQNTWSFEDLI-UHFFFAOYSA-J 0.000 description 3
- 229940045872 sodium percarbonate Drugs 0.000 description 3
- 235000019351 sodium silicates Nutrition 0.000 description 3
- 239000000600 sorbitol Substances 0.000 description 3
- 150000008163 sugars Chemical class 0.000 description 3
- 238000006277 sulfonation reaction Methods 0.000 description 3
- AKEJUJNQAAGONA-UHFFFAOYSA-N sulfur trioxide Inorganic materials O=S(=O)=O AKEJUJNQAAGONA-UHFFFAOYSA-N 0.000 description 3
- 239000011975 tartaric acid Substances 0.000 description 3
- 235000002906 tartaric acid Nutrition 0.000 description 3
- TUNFSRHWOTWDNC-HKGQFRNVSA-N tetradecanoic acid Chemical compound CCCCCCCCCCCCC[14C](O)=O TUNFSRHWOTWDNC-HKGQFRNVSA-N 0.000 description 3
- JOXIMZWYDAKGHI-UHFFFAOYSA-N toluene-4-sulfonic acid Chemical compound CC1=CC=C(S(O)(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-N 0.000 description 3
- LVBXEMGDVWVTGY-UHFFFAOYSA-N trans-2-octenal Natural products CCCCCC=CC=O LVBXEMGDVWVTGY-UHFFFAOYSA-N 0.000 description 3
- 230000009466 transformation Effects 0.000 description 3
- 229910052723 transition metal Inorganic materials 0.000 description 3
- REZQBEBOWJAQKS-UHFFFAOYSA-N triacontan-1-ol Chemical compound CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCO REZQBEBOWJAQKS-UHFFFAOYSA-N 0.000 description 3
- RYFMWSXOAZQYPI-UHFFFAOYSA-K trisodium phosphate Chemical compound [Na+].[Na+].[Na+].[O-]P([O-])([O-])=O RYFMWSXOAZQYPI-UHFFFAOYSA-K 0.000 description 3
- 229960004418 trolamine Drugs 0.000 description 3
- 239000000341 volatile oil Substances 0.000 description 3
- 229910052984 zinc sulfide Inorganic materials 0.000 description 3
- NPNUFJAVOOONJE-ZIAGYGMSSA-N β-(E)-Caryophyllene Chemical compound C1CC(C)=CCCC(=C)[C@H]2CC(C)(C)[C@@H]21 NPNUFJAVOOONJE-ZIAGYGMSSA-N 0.000 description 3
- IHPKGUQCSIINRJ-UHFFFAOYSA-N β-ocimene Natural products CC(C)=CCC=C(C)C=C IHPKGUQCSIINRJ-UHFFFAOYSA-N 0.000 description 3
- FQTLCLSUCSAZDY-UHFFFAOYSA-N (+) E(S) nerolidol Natural products CC(C)=CCCC(C)=CCCC(C)(O)C=C FQTLCLSUCSAZDY-UHFFFAOYSA-N 0.000 description 2
- 229940099369 (+)- limonene Drugs 0.000 description 2
- WTVHAMTYZJGJLJ-UHFFFAOYSA-N (+)-(4S,8R)-8-epi-beta-bisabolol Natural products CC(C)=CCCC(C)C1(O)CCC(C)=CC1 WTVHAMTYZJGJLJ-UHFFFAOYSA-N 0.000 description 2
- SFEOKXHPFMOVRM-UHFFFAOYSA-N (+)-(S)-gamma-ionone Natural products CC(=O)C=CC1C(=C)CCCC1(C)C SFEOKXHPFMOVRM-UHFFFAOYSA-N 0.000 description 2
- VPDZRSSKICPUEY-GQRSATBHSA-N (+)-Bicyclogermacrene Natural products CC1(C)[C@@H]/2[C@H]1CC/C(/C)=C\CC/C(/C)=C\2 VPDZRSSKICPUEY-GQRSATBHSA-N 0.000 description 2
- OPFTUNCRGUEPRZ-UHFFFAOYSA-N (+)-beta-Elemen Natural products CC(=C)C1CCC(C)(C=C)C(C(C)=C)C1 OPFTUNCRGUEPRZ-UHFFFAOYSA-N 0.000 description 2
- RGZSQWQPBWRIAQ-CABCVRRESA-N (-)-alpha-Bisabolol Chemical compound CC(C)=CCC[C@](C)(O)[C@H]1CCC(C)=CC1 RGZSQWQPBWRIAQ-CABCVRRESA-N 0.000 description 2
- LHYHMMRYTDARSZ-GBJTYRQASA-N (-)-alpha-Cadinol Natural products C1CC(C)=C[C@@H]2[C@H](C(C)C)CC[C@@](C)(O)[C@@H]21 LHYHMMRYTDARSZ-GBJTYRQASA-N 0.000 description 2
- ULDHMXUKGWMISQ-SECBINFHSA-N (-)-carvone Chemical compound CC(=C)[C@@H]1CC=C(C)C(=O)C1 ULDHMXUKGWMISQ-SECBINFHSA-N 0.000 description 2
- COGPRPSWSKLKTF-CBBWQLFWSA-N (-)-cubenol Chemical compound C1CC(C)=C[C@H]2[C@H](C(C)C)CC[C@@H](C)[C@@]21O COGPRPSWSKLKTF-CBBWQLFWSA-N 0.000 description 2
- BAVONGHXFVOKBV-ZJUUUORDSA-N (-)-trans-carveol Natural products CC(=C)[C@@H]1CC=C(C)[C@@H](O)C1 BAVONGHXFVOKBV-ZJUUUORDSA-N 0.000 description 2
- GRWFGVWFFZKLTI-IUCAKERBSA-N (-)-α-pinene Chemical compound CC1=CC[C@@H]2C(C)(C)[C@H]1C2 GRWFGVWFFZKLTI-IUCAKERBSA-N 0.000 description 2
- CUUMXRBKJIDIAY-ZDUSSCGKSA-N (1s)-4,7-dimethyl-1-propan-2-yl-1,2-dihydronaphthalene Chemical compound C1=C(C)C=C2[C@H](C(C)C)CC=C(C)C2=C1 CUUMXRBKJIDIAY-ZDUSSCGKSA-N 0.000 description 2
- GIBQERSGRNPMEH-RYUDHWBXSA-N (1s,4s)-1,4-dimethyl-7-propan-2-ylidene-2,3,4,5,6,8-hexahydro-1h-azulene Chemical compound C1([C@H](CCC(C2)=C(C)C)C)=C2[C@@H](C)CC1 GIBQERSGRNPMEH-RYUDHWBXSA-N 0.000 description 2
- MKPMHJQMNACGDI-NXEZZACHSA-N (1s,4s)-1-methyl-4-prop-1-en-2-ylcyclohex-2-en-1-ol Chemical compound CC(=C)[C@H]1CC[C@](C)(O)C=C1 MKPMHJQMNACGDI-NXEZZACHSA-N 0.000 description 2
- FFLHFURRPPIZTQ-UHFFFAOYSA-N (5-acetyloxy-2,5-dihydrofuran-2-yl) acetate Chemical compound CC(=O)OC1OC(OC(C)=O)C=C1 FFLHFURRPPIZTQ-UHFFFAOYSA-N 0.000 description 2
- YYGNTYWPHWGJRM-UHFFFAOYSA-N (6E,10E,14E,18E)-2,6,10,15,19,23-hexamethyltetracosa-2,6,10,14,18,22-hexaene Chemical compound CC(C)=CCCC(C)=CCCC(C)=CCCC=C(C)CCC=C(C)CCC=C(C)C YYGNTYWPHWGJRM-UHFFFAOYSA-N 0.000 description 2
- DTCCTIQRPGSLPT-ONEGZZNKSA-N (E)-2-pentenal Chemical compound CC\C=C\C=O DTCCTIQRPGSLPT-ONEGZZNKSA-N 0.000 description 2
- BSAIUMLZVGUGKX-BQYQJAHWSA-N (E)-non-2-enal Chemical compound CCCCCC\C=C\C=O BSAIUMLZVGUGKX-BQYQJAHWSA-N 0.000 description 2
- QMVPMAAFGQKVCJ-SNVBAGLBSA-N (R)-(+)-citronellol Natural products OCC[C@H](C)CCC=C(C)C QMVPMAAFGQKVCJ-SNVBAGLBSA-N 0.000 description 2
- JSNRRGGBADWTMC-NTCAYCPXSA-N (Z)-beta-Farnesene Natural products CC(C)=CCC\C(C)=C\CCC(=C)C=C JSNRRGGBADWTMC-NTCAYCPXSA-N 0.000 description 2
- UFLHIIWVXFIJGU-ARJAWSKDSA-N (Z)-hex-3-en-1-ol Chemical compound CC\C=C/CCO UFLHIIWVXFIJGU-ARJAWSKDSA-N 0.000 description 2
- GXANMBISFKBPEX-ONEGZZNKSA-N (e)-hex-3-enal Chemical compound CC\C=C\CC=O GXANMBISFKBPEX-ONEGZZNKSA-N 0.000 description 2
- WBYWAXJHAXSJNI-VOTSOKGWSA-M .beta-Phenylacrylic acid Natural products [O-]C(=O)\C=C\C1=CC=CC=C1 WBYWAXJHAXSJNI-VOTSOKGWSA-M 0.000 description 2
- DHKHKXVYLBGOIT-UHFFFAOYSA-N 1,1-Diethoxyethane Chemical compound CCOC(C)OCC DHKHKXVYLBGOIT-UHFFFAOYSA-N 0.000 description 2
- QLAJNZSPVITUCQ-UHFFFAOYSA-N 1,3,2-dioxathietane 2,2-dioxide Chemical compound O=S1(=O)OCO1 QLAJNZSPVITUCQ-UHFFFAOYSA-N 0.000 description 2
- WOVLKKLXYZJMSN-UHFFFAOYSA-N 1-Hydroxy-2-pentanone Chemical compound CCCC(=O)CO WOVLKKLXYZJMSN-UHFFFAOYSA-N 0.000 description 2
- KBPLFHHGFOOTCA-UHFFFAOYSA-N 1-Octanol Chemical compound CCCCCCCCO KBPLFHHGFOOTCA-UHFFFAOYSA-N 0.000 description 2
- XFRVVPUIAFSTFO-UHFFFAOYSA-N 1-Tridecanol Chemical compound CCCCCCCCCCCCCO XFRVVPUIAFSTFO-UHFFFAOYSA-N 0.000 description 2
- UAJRSHJHFRVGMG-UHFFFAOYSA-N 1-ethenyl-4-methoxybenzene Chemical compound COC1=CC=C(C=C)C=C1 UAJRSHJHFRVGMG-UHFFFAOYSA-N 0.000 description 2
- VBICKXHEKHSIBG-UHFFFAOYSA-N 1-monostearoylglycerol Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCC(O)CO VBICKXHEKHSIBG-UHFFFAOYSA-N 0.000 description 2
- JXBSHSBNOVLGHF-UHFFFAOYSA-N 10-cis-Dihydrofarnesen Natural products CC=C(C)CCC=C(C)CCC=C(C)C JXBSHSBNOVLGHF-UHFFFAOYSA-N 0.000 description 2
- OWEGMIWEEQEYGQ-UHFFFAOYSA-N 100676-05-9 Natural products OC1C(O)C(O)C(CO)OC1OCC1C(O)C(O)C(O)C(OC2C(OC(O)C(O)C2O)CO)O1 OWEGMIWEEQEYGQ-UHFFFAOYSA-N 0.000 description 2
- XDOFQFKRPWOURC-UHFFFAOYSA-N 16-methylheptadecanoic acid Chemical compound CC(C)CCCCCCCCCCCCCCC(O)=O XDOFQFKRPWOURC-UHFFFAOYSA-N 0.000 description 2
- FAMPSKZZVDUYOS-UHFFFAOYSA-N 2,6,6,9-tetramethylcycloundeca-1,4,8-triene Chemical compound CC1=CCC(C)(C)C=CCC(C)=CCC1 FAMPSKZZVDUYOS-UHFFFAOYSA-N 0.000 description 2
- MOQGCGNUWBPGTQ-UHFFFAOYSA-N 2,6,6-trimethyl-1-cyclohexene-1-carboxaldehyde Chemical compound CC1=C(C=O)C(C)(C)CCC1 MOQGCGNUWBPGTQ-UHFFFAOYSA-N 0.000 description 2
- YGYNBBAUIYTWBF-UHFFFAOYSA-N 2,6-dimethylnaphthalene Chemical compound C1=C(C)C=CC2=CC(C)=CC=C21 YGYNBBAUIYTWBF-UHFFFAOYSA-N 0.000 description 2
- ZTYHGIAOVUPAAH-UHFFFAOYSA-N 2-(4-methyl-1-cyclohex-3-enyl)propan-1-ol Chemical compound OCC(C)C1CCC(C)=CC1 ZTYHGIAOVUPAAH-UHFFFAOYSA-N 0.000 description 2
- 239000001278 2-(5-ethenyl-5-methyloxolan-2-yl)propan-2-ol Substances 0.000 description 2
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 2
- LNIMMWYNSBZESE-UHFFFAOYSA-N 2-Ethyl-3-methylpyrazine, 9CI Chemical compound CCC1=NC=CN=C1C LNIMMWYNSBZESE-UHFFFAOYSA-N 0.000 description 2
- MBDOYVRWFFCFHM-SNAWJCMRSA-N 2-Hexenal Natural products CCC\C=C\C=O MBDOYVRWFFCFHM-SNAWJCMRSA-N 0.000 description 2
- NOYVOSGVFSEKPR-UHFFFAOYSA-N 2-Pentylthiophene Chemical compound CCCCCC1=CC=CS1 NOYVOSGVFSEKPR-UHFFFAOYSA-N 0.000 description 2
- JTXMVXSTHSMVQF-UHFFFAOYSA-N 2-acetyloxyethyl acetate Chemical compound CC(=O)OCCOC(C)=O JTXMVXSTHSMVQF-UHFFFAOYSA-N 0.000 description 2
- QDLAABKFYZVHOW-UHFFFAOYSA-N 2-bromo-3-iodonaphthalene Chemical compound C1=CC=C2C=C(I)C(Br)=CC2=C1 QDLAABKFYZVHOW-UHFFFAOYSA-N 0.000 description 2
- ACWQBUSCFPJUPN-UHFFFAOYSA-N 2-methylbut-2-enal Chemical compound CC=C(C)C=O ACWQBUSCFPJUPN-UHFFFAOYSA-N 0.000 description 2
- LTALJGSZILUUQA-UHFFFAOYSA-N 2-nonanoyloxybenzenesulfonic acid Chemical compound CCCCCCCCC(=O)OC1=CC=CC=C1S(O)(=O)=O LTALJGSZILUUQA-UHFFFAOYSA-N 0.000 description 2
- ZPVFWPFBNIEHGJ-UHFFFAOYSA-N 2-octanone Chemical compound CCCCCCC(C)=O ZPVFWPFBNIEHGJ-UHFFFAOYSA-N 0.000 description 2
- WLJVXDMOQOGPHL-PPJXEINESA-N 2-phenylacetic acid Chemical compound O[14C](=O)CC1=CC=CC=C1 WLJVXDMOQOGPHL-PPJXEINESA-N 0.000 description 2
- JBVOQKNLGSOPNZ-UHFFFAOYSA-N 2-propan-2-ylbenzenesulfonic acid Chemical compound CC(C)C1=CC=CC=C1S(O)(=O)=O JBVOQKNLGSOPNZ-UHFFFAOYSA-N 0.000 description 2
- WPPVSYVQAKQNJK-UHFFFAOYSA-N 3,3,6-trimethylhepta-1,5-dien-4-ol Chemical compound CC(C)=CC(O)C(C)(C)C=C WPPVSYVQAKQNJK-UHFFFAOYSA-N 0.000 description 2
- JRTBBCBDKSRRCY-UHFFFAOYSA-N 3,7-dimethyloct-6-en-3-ol Chemical compound CCC(C)(O)CCC=C(C)C JRTBBCBDKSRRCY-UHFFFAOYSA-N 0.000 description 2
- BYTYEUINJPKZIB-UHFFFAOYSA-N 3,7-dimethylocta-1,6-dien-3-yl pentanoate Chemical compound CCCCC(=O)OC(C)(C=C)CCC=C(C)C BYTYEUINJPKZIB-UHFFFAOYSA-N 0.000 description 2
- GOLORTLGFDVFDW-UHFFFAOYSA-N 3-(1h-benzimidazol-2-yl)-7-(diethylamino)chromen-2-one Chemical compound C1=CC=C2NC(C3=CC4=CC=C(C=C4OC3=O)N(CC)CC)=NC2=C1 GOLORTLGFDVFDW-UHFFFAOYSA-N 0.000 description 2
- NHVSYWHQWLNXPM-UHFFFAOYSA-N 3-(3-ethyl-2-methyloxiran-2-yl)-2-methylfuran Chemical compound CCC1OC1(C)C1=C(C)OC=C1 NHVSYWHQWLNXPM-UHFFFAOYSA-N 0.000 description 2
- YSTPAHQEHQSRJD-UHFFFAOYSA-N 3-Carvomenthenone Chemical compound CC(C)C1CCC(C)=CC1=O YSTPAHQEHQSRJD-UHFFFAOYSA-N 0.000 description 2
- ZCFOBLITZWHNNC-UHFFFAOYSA-N 3-Octen-2-one Natural products CCCCC=CC(C)=O ZCFOBLITZWHNNC-UHFFFAOYSA-N 0.000 description 2
- YGHRJJRRZDOVPD-UHFFFAOYSA-N 3-methylbutanal Chemical compound CC(C)CC=O YGHRJJRRZDOVPD-UHFFFAOYSA-N 0.000 description 2
- CZUGFKJYCPYHHV-UHFFFAOYSA-N 3-methylthiopropanol Chemical compound CSCCCO CZUGFKJYCPYHHV-UHFFFAOYSA-N 0.000 description 2
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 2
- SHOJXDKTYKFBRD-UHFFFAOYSA-N 4-Methyl-3-penten-2-one, 9CI Chemical compound CC(C)=CC(C)=O SHOJXDKTYKFBRD-UHFFFAOYSA-N 0.000 description 2
- VKCZZKMSKYKKQB-SREVYHEPSA-N 4-[(Z)-non-3-enyl]oxetan-2-one Chemical compound CCCCC\C=C/CCC1CC(=O)O1 VKCZZKMSKYKKQB-SREVYHEPSA-N 0.000 description 2
- PRUMMFPRJSEJJL-UHFFFAOYSA-N 4-morpholin-4-yl-3-nitroaniline Chemical compound [O-][N+](=O)C1=CC(N)=CC=C1N1CCOCC1 PRUMMFPRJSEJJL-UHFFFAOYSA-N 0.000 description 2
- LCWMKIHBLJLORW-UHFFFAOYSA-N 7,7-dimethyl-4-methylidenebicyclo[4.1.0]heptane Chemical compound C1CC(=C)CC2C(C)(C)C21 LCWMKIHBLJLORW-UHFFFAOYSA-N 0.000 description 2
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 2
- ROWKJAVDOGWPAT-UHFFFAOYSA-N Acetoin Chemical compound CC(O)C(C)=O ROWKJAVDOGWPAT-UHFFFAOYSA-N 0.000 description 2
- 244000136475 Aleurites moluccana Species 0.000 description 2
- 235000006667 Aleurites moluccana Nutrition 0.000 description 2
- 235000019489 Almond oil Nutrition 0.000 description 2
- 244000144927 Aloe barbadensis Species 0.000 description 2
- 235000002961 Aloe barbadensis Nutrition 0.000 description 2
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- 244000144725 Amygdalus communis Species 0.000 description 2
- 235000011437 Amygdalus communis Nutrition 0.000 description 2
- 229920000945 Amylopectin Polymers 0.000 description 2
- 229920000856 Amylose Polymers 0.000 description 2
- UIERETOOQGIECD-UHFFFAOYSA-N Angelic acid Natural products CC=C(C)C(O)=O UIERETOOQGIECD-UHFFFAOYSA-N 0.000 description 2
- 241000193830 Bacillus <bacterium> Species 0.000 description 2
- 241000193744 Bacillus amyloliquefaciens Species 0.000 description 2
- 241000193422 Bacillus lentus Species 0.000 description 2
- 241000194108 Bacillus licheniformis Species 0.000 description 2
- 241000194110 Bacillus sp. (in: Bacteria) Species 0.000 description 2
- 101000740449 Bacillus subtilis (strain 168) Biotin/lipoyl attachment protein Proteins 0.000 description 2
- ZCTQGTTXIYCGGC-UHFFFAOYSA-N Benzyl salicylate Chemical compound OC1=CC=CC=C1C(=O)OCC1=CC=CC=C1 ZCTQGTTXIYCGGC-UHFFFAOYSA-N 0.000 description 2
- UYWQUFXKFGHYNT-UHFFFAOYSA-N Benzylformate Chemical compound O=COCC1=CC=CC=C1 UYWQUFXKFGHYNT-UHFFFAOYSA-N 0.000 description 2
- 102100032487 Beta-mannosidase Human genes 0.000 description 2
- BTBUEUYNUDRHOZ-UHFFFAOYSA-N Borate Chemical compound [O-]B([O-])[O-] BTBUEUYNUDRHOZ-UHFFFAOYSA-N 0.000 description 2
- VIPNQHBVIDJXJE-UHFFFAOYSA-N Bornyl butyrate Chemical compound C1CC2(C)C(OC(=O)CCC)CC1C2(C)C VIPNQHBVIDJXJE-UHFFFAOYSA-N 0.000 description 2
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 2
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 2
- OTKQNSSMCDLVQV-UHFFFAOYSA-N Butyl 2-methylbutanoate Chemical compound CCCCOC(=O)C(C)CC OTKQNSSMCDLVQV-UHFFFAOYSA-N 0.000 description 2
- 235000005881 Calendula officinalis Nutrition 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- YTHRBOFHFYZBRJ-RYUDHWBXSA-N Carvyl acetate Natural products CC(=O)O[C@H]1C[C@@H](C(C)=C)CC=C1C YTHRBOFHFYZBRJ-RYUDHWBXSA-N 0.000 description 2
- 102000005575 Cellulases Human genes 0.000 description 2
- 108010084185 Cellulases Proteins 0.000 description 2
- 235000007866 Chamaemelum nobile Nutrition 0.000 description 2
- 240000003538 Chamaemelum nobile Species 0.000 description 2
- NPBVQXIMTZKSBA-UHFFFAOYSA-N Chavibetol Natural products COC1=CC=C(CC=C)C=C1O NPBVQXIMTZKSBA-UHFFFAOYSA-N 0.000 description 2
- 229920001661 Chitosan Chemical class 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- WBYWAXJHAXSJNI-SREVYHEPSA-N Cinnamic acid Chemical compound OC(=O)\C=C/C1=CC=CC=C1 WBYWAXJHAXSJNI-SREVYHEPSA-N 0.000 description 2
- KRKNYBCHXYNGOX-UHFFFAOYSA-K Citrate Chemical compound [O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O KRKNYBCHXYNGOX-UHFFFAOYSA-K 0.000 description 2
- ZGPPERKMXSGYRK-UHFFFAOYSA-N Citronellyl isobutyrate Chemical compound CC(C)=CCCC(C)CCOC(=O)C(C)C ZGPPERKMXSGYRK-UHFFFAOYSA-N 0.000 description 2
- 235000008733 Citrus aurantifolia Nutrition 0.000 description 2
- 235000013162 Cocos nucifera Nutrition 0.000 description 2
- 244000060011 Cocos nucifera Species 0.000 description 2
- 108010025880 Cyclomaltodextrin glucanotransferase Proteins 0.000 description 2
- GUBGYTABKSRVRQ-CUHNMECISA-N D-Cellobiose Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)OC(O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-CUHNMECISA-N 0.000 description 2
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 2
- RGHNJXZEOKUKBD-UHFFFAOYSA-N D-gluconic acid Natural products OCC(O)C(O)C(O)C(O)C(O)=O RGHNJXZEOKUKBD-UHFFFAOYSA-N 0.000 description 2
- YJHVMPKSUPGGPZ-UHFFFAOYSA-N Dihydro-beta-eudesmol Natural products C1CC(C(C)(C)O)CC2C(C)CCCC21C YJHVMPKSUPGGPZ-UHFFFAOYSA-N 0.000 description 2
- KRCZYMFUWVJCLI-UHFFFAOYSA-N Dihydrocarveol Chemical compound CC1CCC(C(C)=C)CC1O KRCZYMFUWVJCLI-UHFFFAOYSA-N 0.000 description 2
- BPLQKQKXWHCZSS-UHFFFAOYSA-N Elemicin Chemical compound COC1=CC(CC=C)=CC(OC)=C1OC BPLQKQKXWHCZSS-UHFFFAOYSA-N 0.000 description 2
- LLKXNMNOHBQSJW-UHFFFAOYSA-N Elemol Natural products CCC(=C)C1CC(C=CC1(C)C)C(C)(C)O LLKXNMNOHBQSJW-UHFFFAOYSA-N 0.000 description 2
- 239000005770 Eugenol Substances 0.000 description 2
- ZHNUHDYFZUAESO-UHFFFAOYSA-N Formamide Chemical compound NC=O ZHNUHDYFZUAESO-UHFFFAOYSA-N 0.000 description 2
- 239000004863 Frankincense Substances 0.000 description 2
- 241000134874 Geraniales Species 0.000 description 2
- SXRSQZLOMIGNAQ-UHFFFAOYSA-N Glutaraldehyde Chemical compound O=CCCCC=O SXRSQZLOMIGNAQ-UHFFFAOYSA-N 0.000 description 2
- 229930186217 Glycolipid Natural products 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- FEXQDZTYJVXMOS-UHFFFAOYSA-N Isopropyl benzoate Chemical compound CC(C)OC(=O)C1=CC=CC=C1 FEXQDZTYJVXMOS-UHFFFAOYSA-N 0.000 description 2
- FFOPEPMHKILNIT-UHFFFAOYSA-N Isopropyl butyrate Chemical compound CCCC(=O)OC(C)C FFOPEPMHKILNIT-UHFFFAOYSA-N 0.000 description 2
- AMIMRNSIRUDHCM-UHFFFAOYSA-N Isopropylaldehyde Chemical compound CC(C)C=O AMIMRNSIRUDHCM-UHFFFAOYSA-N 0.000 description 2
- MPYYVGIJHREDBO-UHFFFAOYSA-N Isovaleriansaeure-isobornylester Natural products C1CC2(C)C(OC(=O)CC(C)C)CC1C2(C)C MPYYVGIJHREDBO-UHFFFAOYSA-N 0.000 description 2
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 2
- 239000004166 Lanolin Substances 0.000 description 2
- CKZXONNJVHXSQM-UHFFFAOYSA-N Ledol Natural products CC(C)C1CCC(C)(O)C2C3CC(C)CC123 CKZXONNJVHXSQM-UHFFFAOYSA-N 0.000 description 2
- BCTBAGTXFYWYMW-WCBMZHEXSA-N Linalool oxide III Chemical compound CC1(C)O[C@](C)(C=C)CC[C@@H]1O BCTBAGTXFYWYMW-WCBMZHEXSA-N 0.000 description 2
- BTJXBZZBBNNTOV-UHFFFAOYSA-N Linalyl benzoate Chemical compound CC(C)=CCCC(C)(C=C)OC(=O)C1=CC=CC=C1 BTJXBZZBBNNTOV-UHFFFAOYSA-N 0.000 description 2
- FHLGUOHLUFIAAA-UHFFFAOYSA-N Linalyl butyrate Chemical compound CCCC(=O)OC(C)(C=C)CCC=C(C)C FHLGUOHLUFIAAA-UHFFFAOYSA-N 0.000 description 2
- BRHDDEIRQPDPMG-UHFFFAOYSA-N Linalyl oxide Chemical compound CC(C)(O)C1CCC(C)(C=C)O1 BRHDDEIRQPDPMG-UHFFFAOYSA-N 0.000 description 2
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 2
- GUBGYTABKSRVRQ-PICCSMPSSA-N Maltose Natural products O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@@H](CO)OC(O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-PICCSMPSSA-N 0.000 description 2
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 2
- 229930195725 Mannitol Natural products 0.000 description 2
- OCWLYWIFNDCWRZ-UHFFFAOYSA-N Methyl (S)-2-Methylbutanoate Chemical compound CCC(C)C(=O)OC OCWLYWIFNDCWRZ-UHFFFAOYSA-N 0.000 description 2
- AMQJEAYHLZJPGS-UHFFFAOYSA-N N-Pentanol Chemical compound CCCCCO AMQJEAYHLZJPGS-UHFFFAOYSA-N 0.000 description 2
- KKCBUQHMOMHUOY-UHFFFAOYSA-N Na2O Inorganic materials [O-2].[Na+].[Na+] KKCBUQHMOMHUOY-UHFFFAOYSA-N 0.000 description 2
- FQTLCLSUCSAZDY-ATGUSINASA-N Nerolidol Chemical compound CC(C)=CCC\C(C)=C\CC[C@](C)(O)C=C FQTLCLSUCSAZDY-ATGUSINASA-N 0.000 description 2
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical group CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 2
- LGRFSURHDFAFJT-UHFFFAOYSA-N Phthalic anhydride Natural products C1=CC=C2C(=O)OC(=O)C2=C1 LGRFSURHDFAFJT-UHFFFAOYSA-N 0.000 description 2
- 229920001030 Polyethylene Glycol 4000 Polymers 0.000 description 2
- UVMRYBDEERADNV-UHFFFAOYSA-N Pseudoeugenol Natural products COC1=CC(C(C)=C)=CC=C1O UVMRYBDEERADNV-UHFFFAOYSA-N 0.000 description 2
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 2
- 229920000297 Rayon Polymers 0.000 description 2
- 241000220317 Rosa Species 0.000 description 2
- UIIMBOGNXHQVGW-DEQYMQKBSA-M Sodium bicarbonate-14C Chemical compound [Na+].O[14C]([O-])=O UIIMBOGNXHQVGW-DEQYMQKBSA-M 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- KMJLGCYDCCCRHH-UHFFFAOYSA-N Spathulenol Natural products CC1(O)CCC2(C)C1C3C(CCC2=C)C3(C)C KMJLGCYDCCCRHH-UHFFFAOYSA-N 0.000 description 2
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 2
- 229930006000 Sucrose Natural products 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 2
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 2
- BHEOSNUKNHRBNM-UHFFFAOYSA-N Tetramethylsqualene Natural products CC(=C)C(C)CCC(=C)C(C)CCC(C)=CCCC=C(C)CCC(C)C(=C)CCC(C)C(C)=C BHEOSNUKNHRBNM-UHFFFAOYSA-N 0.000 description 2
- 241000223258 Thermomyces lanuginosus Species 0.000 description 2
- 235000011941 Tilia x europaea Nutrition 0.000 description 2
- ZJCCRDAZUWHFQH-UHFFFAOYSA-N Trimethylolpropane Chemical compound CCC(CO)(CO)CO ZJCCRDAZUWHFQH-UHFFFAOYSA-N 0.000 description 2
- 241000209140 Triticum Species 0.000 description 2
- 235000021307 Triticum Nutrition 0.000 description 2
- TUWWTQRJWLLWJE-UHFFFAOYSA-N Viridiflorol Natural products CC1CCC2C1C3C(CCC2(O)O)C3(C)C TUWWTQRJWLLWJE-UHFFFAOYSA-N 0.000 description 2
- 229910000004 White lead Inorganic materials 0.000 description 2
- 240000007316 Xerochrysum bracteatum Species 0.000 description 2
- ZZXDRXVIRVJQBT-UHFFFAOYSA-M Xylenesulfonate Chemical compound CC1=CC=CC(S([O-])(=O)=O)=C1C ZZXDRXVIRVJQBT-UHFFFAOYSA-M 0.000 description 2
- 239000005083 Zinc sulfide Substances 0.000 description 2
- CVSWGLSBJFKWMW-SDNWHVSQSA-N [(2e)-3,7-dimethylocta-2,6-dienyl] pentanoate Chemical compound CCCCC(=O)OC\C=C(/C)CCC=C(C)C CVSWGLSBJFKWMW-SDNWHVSQSA-N 0.000 description 2
- UAOKXEHOENRFMP-ZJIFWQFVSA-N [(2r,3r,4s,5r)-2,3,4,5-tetraacetyloxy-6-oxohexyl] acetate Chemical compound CC(=O)OC[C@@H](OC(C)=O)[C@@H](OC(C)=O)[C@H](OC(C)=O)[C@@H](OC(C)=O)C=O UAOKXEHOENRFMP-ZJIFWQFVSA-N 0.000 description 2
- 238000006359 acetalization reaction Methods 0.000 description 2
- 150000001242 acetic acid derivatives Chemical class 0.000 description 2
- SWLWZVHQLWXZTQ-UHFFFAOYSA-N acetonitrile;4-methylmorpholin-4-ium;methyl sulfate Chemical compound CC#N.COS([O-])(=O)=O.C[NH+]1CCOCC1 SWLWZVHQLWXZTQ-UHFFFAOYSA-N 0.000 description 2
- 125000002252 acyl group Chemical group 0.000 description 2
- 125000003158 alcohol group Chemical group 0.000 description 2
- 229920000615 alginic acid Polymers 0.000 description 2
- 235000010443 alginic acid Nutrition 0.000 description 2
- 229910052910 alkali metal silicate Inorganic materials 0.000 description 2
- 150000001340 alkali metals Chemical class 0.000 description 2
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 2
- 125000005024 alkenyl aryl group Chemical group 0.000 description 2
- 125000000278 alkyl amino alkyl group Chemical group 0.000 description 2
- 150000008051 alkyl sulfates Chemical class 0.000 description 2
- FPIPGXGPPPQFEQ-OVSJKPMPSA-N all-trans-retinol Chemical compound OC\C=C(/C)\C=C\C=C(/C)\C=C\C1=C(C)CCCC1(C)C FPIPGXGPPPQFEQ-OVSJKPMPSA-N 0.000 description 2
- 239000008168 almond oil Substances 0.000 description 2
- 235000011399 aloe vera Nutrition 0.000 description 2
- QMAYBMKBYCGXDH-UHFFFAOYSA-N alpha-amorphene Natural products C1CC(C)=CC2C(C(C)C)CC=C(C)C21 QMAYBMKBYCGXDH-UHFFFAOYSA-N 0.000 description 2
- LHYHMMRYTDARSZ-BYNSBNAKSA-N alpha-cadinol Chemical compound C1CC(C)=C[C@H]2[C@H](C(C)C)CC[C@@](C)(O)[C@@H]21 LHYHMMRYTDARSZ-BYNSBNAKSA-N 0.000 description 2
- DMVUUDMWVRKRFV-UHFFFAOYSA-N alpha-cadinol Natural products CC(O)C1CCC(C)(C)C2CCC(=CC12)C DMVUUDMWVRKRFV-UHFFFAOYSA-N 0.000 description 2
- XUEHVOLRMXNRKQ-KHMAMNHCSA-N alpha-cubebene Chemical compound CC(C)[C@@H]([C@H]12)CC[C@@H](C)[C@]32[C@@H]1C(C)=CC3 XUEHVOLRMXNRKQ-KHMAMNHCSA-N 0.000 description 2
- 150000001412 amines Chemical class 0.000 description 2
- 125000003277 amino group Chemical group 0.000 description 2
- RDOXTESZEPMUJZ-UHFFFAOYSA-N anisole Chemical compound COC1=CC=CC=C1 RDOXTESZEPMUJZ-UHFFFAOYSA-N 0.000 description 2
- 230000000844 anti-bacterial effect Effects 0.000 description 2
- 230000001153 anti-wrinkle effect Effects 0.000 description 2
- ADCOVFLJGNWWNZ-UHFFFAOYSA-N antimony trioxide Chemical compound O=[Sb]O[Sb]=O ADCOVFLJGNWWNZ-UHFFFAOYSA-N 0.000 description 2
- DFYRUELUNQRZTB-UHFFFAOYSA-N apocynin Chemical compound COC1=CC(C(C)=O)=CC=C1O DFYRUELUNQRZTB-UHFFFAOYSA-N 0.000 description 2
- 125000004429 atom Chemical group 0.000 description 2
- AYJRCSIUFZENHW-UHFFFAOYSA-L barium carbonate Chemical compound [Ba+2].[O-]C([O-])=O AYJRCSIUFZENHW-UHFFFAOYSA-L 0.000 description 2
- 235000013871 bee wax Nutrition 0.000 description 2
- 239000012166 beeswax Substances 0.000 description 2
- 229940092738 beeswax Drugs 0.000 description 2
- 235000012216 bentonite Nutrition 0.000 description 2
- HUMNYLRZRPPJDN-UHFFFAOYSA-N benzaldehyde Chemical compound O=CC1=CC=CC=C1 HUMNYLRZRPPJDN-UHFFFAOYSA-N 0.000 description 2
- 125000003236 benzoyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C(*)=O 0.000 description 2
- 229940007550 benzyl acetate Drugs 0.000 description 2
- SESFRYSPDFLNCH-UHFFFAOYSA-N benzyl benzoate Chemical compound C=1C=CC=CC=1C(=O)OCC1=CC=CC=C1 SESFRYSPDFLNCH-UHFFFAOYSA-N 0.000 description 2
- CADWTSSKOVRVJC-UHFFFAOYSA-N benzyl(dimethyl)azanium;chloride Chemical compound [Cl-].C[NH+](C)CC1=CC=CC=C1 CADWTSSKOVRVJC-UHFFFAOYSA-N 0.000 description 2
- DTCCTIQRPGSLPT-UHFFFAOYSA-N beta-Aethyl-acrolein Natural products CCC=CC=O DTCCTIQRPGSLPT-UHFFFAOYSA-N 0.000 description 2
- MSWZFWKMSRAUBD-UHFFFAOYSA-N beta-D-galactosamine Natural products NC1C(O)OC(CO)C(O)C1O MSWZFWKMSRAUBD-UHFFFAOYSA-N 0.000 description 2
- XFSVWZZZIUIYHP-UHFFFAOYSA-N beta-Eudesmol Natural products CC(C)(O)C1CCC2CCCC(=C)C2C1 XFSVWZZZIUIYHP-UHFFFAOYSA-N 0.000 description 2
- 108010055059 beta-Mannosidase Proteins 0.000 description 2
- 229940074775 beta-bisabolol Drugs 0.000 description 2
- JGQFVRIQXUFPAH-UHFFFAOYSA-N beta-citronellol Natural products OCCC(C)CCCC(C)=C JGQFVRIQXUFPAH-UHFFFAOYSA-N 0.000 description 2
- POIARNZEYGURDG-UHFFFAOYSA-N beta-damascenone Natural products CC=CC(=O)C1=C(C)C=CCC1(C)C POIARNZEYGURDG-UHFFFAOYSA-N 0.000 description 2
- BOPIMTNSYWYZOC-VNHYZAJKSA-N beta-eudesmol Chemical compound C1CCC(=C)[C@@H]2C[C@H](C(C)(O)C)CC[C@]21C BOPIMTNSYWYZOC-VNHYZAJKSA-N 0.000 description 2
- GUBGYTABKSRVRQ-QUYVBRFLSA-N beta-maltose Chemical compound OC[C@H]1O[C@H](O[C@H]2[C@H](O)[C@@H](O)[C@H](O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@@H]1O GUBGYTABKSRVRQ-QUYVBRFLSA-N 0.000 description 2
- VPDZRSSKICPUEY-JEPMYXAXSA-N bicyclogermacrene Chemical compound C1CC(/C)=C/CC\C(C)=C\[C@@H]2C(C)(C)[C@H]12 VPDZRSSKICPUEY-JEPMYXAXSA-N 0.000 description 2
- RXARZHLXLNWPFG-UHFFFAOYSA-N bicyclogermacrene Natural products CC1=C2C3C(CCC2=CCC1)C3(C)C RXARZHLXLNWPFG-UHFFFAOYSA-N 0.000 description 2
- 239000000038 blue colorant Substances 0.000 description 2
- 235000021324 borage oil Nutrition 0.000 description 2
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 2
- 229910052794 bromium Inorganic materials 0.000 description 2
- JHIWVOJDXOSYLW-UHFFFAOYSA-N butyl 2,2-difluorocyclopropane-1-carboxylate Chemical compound CCCCOC(=O)C1CC1(F)F JHIWVOJDXOSYLW-UHFFFAOYSA-N 0.000 description 2
- LIMQQADUEULBSO-UHFFFAOYSA-N butyl isothiocyanate Chemical compound CCCCN=C=S LIMQQADUEULBSO-UHFFFAOYSA-N 0.000 description 2
- PSXNDMJWRZYVTM-UHFFFAOYSA-N butyl octanoate Chemical compound CCCCCCCC(=O)OCCCC PSXNDMJWRZYVTM-UHFFFAOYSA-N 0.000 description 2
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Chemical compound [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 description 2
- 239000002775 capsule Substances 0.000 description 2
- 239000004202 carbamide Substances 0.000 description 2
- 150000007942 carboxylates Chemical group 0.000 description 2
- 150000001244 carboxylic acid anhydrides Chemical class 0.000 description 2
- BQOFWKZOCNGFEC-UHFFFAOYSA-N carene Chemical compound C1C(C)=CCC2C(C)(C)C12 BQOFWKZOCNGFEC-UHFFFAOYSA-N 0.000 description 2
- 229930007646 carveol Natural products 0.000 description 2
- ULDHMXUKGWMISQ-UHFFFAOYSA-N carvone Natural products CC(=C)C1CC=C(C)C(=O)C1 ULDHMXUKGWMISQ-UHFFFAOYSA-N 0.000 description 2
- NVEQFIOZRFFVFW-RGCMKSIDSA-N caryophyllene oxide Chemical compound C=C1CC[C@H]2O[C@]2(C)CC[C@H]2C(C)(C)C[C@@H]21 NVEQFIOZRFFVFW-RGCMKSIDSA-N 0.000 description 2
- BECPQYXYKAMYBN-UHFFFAOYSA-N casein, tech. Chemical compound NCCCCC(C(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(CC(C)C)N=C(O)C(CCC(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(C(C)O)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(COP(O)(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(N)CC1=CC=CC=C1 BECPQYXYKAMYBN-UHFFFAOYSA-N 0.000 description 2
- 229920006317 cationic polymer Polymers 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 229940106189 ceramide Drugs 0.000 description 2
- 239000007795 chemical reaction product Substances 0.000 description 2
- 239000003638 chemical reducing agent Substances 0.000 description 2
- KMPWYEUPVWOPIM-UHFFFAOYSA-N cinchonidine Natural products C1=CC=C2C(C(C3N4CCC(C(C4)C=C)C3)O)=CC=NC2=C1 KMPWYEUPVWOPIM-UHFFFAOYSA-N 0.000 description 2
- 235000013985 cinnamic acid Nutrition 0.000 description 2
- 229930016911 cinnamic acid Natural products 0.000 description 2
- KBEBGUQPQBELIU-UHFFFAOYSA-N cinnamic acid ethyl ester Natural products CCOC(=O)C=CC1=CC=CC=C1 KBEBGUQPQBELIU-UHFFFAOYSA-N 0.000 description 2
- CCRCUPLGCSFEDV-UHFFFAOYSA-N cinnamic acid methyl ester Natural products COC(=O)C=CC1=CC=CC=C1 CCRCUPLGCSFEDV-UHFFFAOYSA-N 0.000 description 2
- JKKGTSUICJWEKB-SREVYHEPSA-N cis-3-Hexenyl 2-methylbutanoate Chemical compound CC\C=C/CCOC(=O)C(C)CC JKKGTSUICJWEKB-SREVYHEPSA-N 0.000 description 2
- GFJIQNADMLPFOW-UHFFFAOYSA-N cis-Elemol Natural products CC(=C)C1CC(C(C)(C)O)CCC1(C)C=C GFJIQNADMLPFOW-UHFFFAOYSA-N 0.000 description 2
- DTHIOPUFUOMHAY-POHAHGRESA-N cis-isogeraniol Chemical compound CC(C)=CC\C=C(\C)CCO DTHIOPUFUOMHAY-POHAHGRESA-N 0.000 description 2
- 229940043350 citral Drugs 0.000 description 2
- NEHNMFOYXAPHSD-UHFFFAOYSA-N citronellal Chemical compound O=CCC(C)CCC=C(C)C NEHNMFOYXAPHSD-UHFFFAOYSA-N 0.000 description 2
- 235000000484 citronellol Nutrition 0.000 description 2
- JOZKFWLRHCDGJA-UHFFFAOYSA-N citronellol acetate Chemical compound CC(=O)OCCC(C)CCC=C(C)C JOZKFWLRHCDGJA-UHFFFAOYSA-N 0.000 description 2
- 229910052681 coesite Inorganic materials 0.000 description 2
- 239000013065 commercial product Substances 0.000 description 2
- 230000000536 complexating effect Effects 0.000 description 2
- 239000000356 contaminant Substances 0.000 description 2
- 150000001879 copper Chemical class 0.000 description 2
- 239000001033 copper pigment Substances 0.000 description 2
- 239000011162 core material Substances 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 239000008406 cosmetic ingredient Substances 0.000 description 2
- DDRJAANPRJIHGJ-UHFFFAOYSA-N creatinine Chemical compound CN1CC(=O)NC1=N DDRJAANPRJIHGJ-UHFFFAOYSA-N 0.000 description 2
- LDHQCZJRKDOVOX-NSCUHMNNSA-N crotonic acid Chemical compound C\C=C\C(O)=O LDHQCZJRKDOVOX-NSCUHMNNSA-N 0.000 description 2
- 125000006165 cyclic alkyl group Chemical group 0.000 description 2
- JHIVVAPYMSGYDF-UHFFFAOYSA-N cyclohexanone Chemical compound O=C1CCCCC1 JHIVVAPYMSGYDF-UHFFFAOYSA-N 0.000 description 2
- MMFCJPPRCYDLLZ-UHFFFAOYSA-N dec-2-enal Chemical compound CCCCCCCC=CC=O MMFCJPPRCYDLLZ-UHFFFAOYSA-N 0.000 description 2
- 150000004691 decahydrates Chemical class 0.000 description 2
- NNBZCPXTIHJBJL-UHFFFAOYSA-N decalin Chemical compound C1CCCC2CCCCC21 NNBZCPXTIHJBJL-UHFFFAOYSA-N 0.000 description 2
- MWKFXSUHUHTGQN-UHFFFAOYSA-N decan-1-ol Chemical compound CCCCCCCCCCO MWKFXSUHUHTGQN-UHFFFAOYSA-N 0.000 description 2
- KSMVZQYAVGTKIV-UHFFFAOYSA-N decanal Chemical compound CCCCCCCCCC=O KSMVZQYAVGTKIV-UHFFFAOYSA-N 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- 230000003111 delayed effect Effects 0.000 description 2
- YOCDGWMCBBMMGJ-UHFFFAOYSA-N delta-cadinene Natural products C1C=C(C)CC2C(C(C)C)CCC(=C)C21 YOCDGWMCBBMMGJ-UHFFFAOYSA-N 0.000 description 2
- 150000001991 dicarboxylic acids Chemical class 0.000 description 2
- CEJLBZWIKQJOAT-UHFFFAOYSA-N dichloroisocyanuric acid Chemical compound ClN1C(=O)NC(=O)N(Cl)C1=O CEJLBZWIKQJOAT-UHFFFAOYSA-N 0.000 description 2
- 150000005690 diesters Chemical class 0.000 description 2
- 229940079919 digestives enzyme preparation Drugs 0.000 description 2
- ORXJMBXYSGGCHG-UHFFFAOYSA-N dimethyl 2-methoxypropanedioate Chemical compound COC(=O)C(OC)C(=O)OC ORXJMBXYSGGCHG-UHFFFAOYSA-N 0.000 description 2
- 235000013870 dimethyl polysiloxane Nutrition 0.000 description 2
- YIOJGTBNHQAVBO-UHFFFAOYSA-N dimethyl-bis(prop-2-enyl)azanium Chemical class C=CC[N+](C)(C)CC=C YIOJGTBNHQAVBO-UHFFFAOYSA-N 0.000 description 2
- 229940042399 direct acting antivirals protease inhibitors Drugs 0.000 description 2
- HOWGUJZVBDQJKV-UHFFFAOYSA-N docosane Chemical compound CCCCCCCCCCCCCCCCCCCCCC HOWGUJZVBDQJKV-UHFFFAOYSA-N 0.000 description 2
- 229960000735 docosanol Drugs 0.000 description 2
- 125000003438 dodecyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 2
- 239000003814 drug Substances 0.000 description 2
- SQNZJJAZBFDUTD-UHFFFAOYSA-N durene Chemical compound CC1=CC(C)=C(C)C=C1C SQNZJJAZBFDUTD-UHFFFAOYSA-N 0.000 description 2
- 239000000975 dye Substances 0.000 description 2
- GFJIQNADMLPFOW-VNHYZAJKSA-N elemol Chemical compound CC(=C)[C@@H]1C[C@H](C(C)(C)O)CC[C@@]1(C)C=C GFJIQNADMLPFOW-VNHYZAJKSA-N 0.000 description 2
- WGTRJVCFDUCKCM-UHFFFAOYSA-N ent-ledene Natural products C1CC2C(C)(C)C2C2C(C)CCC2=C1C WGTRJVCFDUCKCM-UHFFFAOYSA-N 0.000 description 2
- FRMCCTDTYSRUBE-HYFYGGESSA-N ent-spathulenol Chemical compound C1CC(=C)[C@H]2CC[C@@](C)(O)[C@@H]2[C@H]2C(C)(C)[C@H]21 FRMCCTDTYSRUBE-HYFYGGESSA-N 0.000 description 2
- DPUOLQHDNGRHBS-KTKRTIGZSA-N erucic acid Chemical compound CCCCCCCC\C=C/CCCCCCCCCCCC(O)=O DPUOLQHDNGRHBS-KTKRTIGZSA-N 0.000 description 2
- LZCLXQDLBQLTDK-UHFFFAOYSA-N ethyl 2-hydroxypropanoate Chemical compound CCOC(=O)C(C)O LZCLXQDLBQLTDK-UHFFFAOYSA-N 0.000 description 2
- RGXWDWUGBIJHDO-UHFFFAOYSA-N ethyl decanoate Chemical compound CCCCCCCCCC(=O)OCC RGXWDWUGBIJHDO-UHFFFAOYSA-N 0.000 description 2
- TVQGDYNRXLTQAP-UHFFFAOYSA-N ethyl heptanoate Chemical compound CCCCCCC(=O)OCC TVQGDYNRXLTQAP-UHFFFAOYSA-N 0.000 description 2
- WDAXFOBOLVPGLV-UHFFFAOYSA-N ethyl isobutyrate Chemical compound CCOC(=O)C(C)C WDAXFOBOLVPGLV-UHFFFAOYSA-N 0.000 description 2
- PPXUHEORWJQRHJ-UHFFFAOYSA-N ethyl isovalerate Chemical compound CCOC(=O)CC(C)C PPXUHEORWJQRHJ-UHFFFAOYSA-N 0.000 description 2
- YYZUSRORWSJGET-UHFFFAOYSA-N ethyl octanoate Chemical compound CCCCCCCC(=O)OCC YYZUSRORWSJGET-UHFFFAOYSA-N 0.000 description 2
- FKRCODPIKNYEAC-UHFFFAOYSA-N ethyl propionate Chemical compound CCOC(=O)CC FKRCODPIKNYEAC-UHFFFAOYSA-N 0.000 description 2
- KVFIJIWMDBAGDP-UHFFFAOYSA-N ethylpyrazine Chemical compound CCC1=CN=CC=N1 KVFIJIWMDBAGDP-UHFFFAOYSA-N 0.000 description 2
- 229960002217 eugenol Drugs 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 238000001125 extrusion Methods 0.000 description 2
- 239000004744 fabric Substances 0.000 description 2
- 229920002313 fluoropolymer Polymers 0.000 description 2
- 239000004811 fluoropolymer Substances 0.000 description 2
- 238000009472 formulation Methods 0.000 description 2
- 239000013505 freshwater Substances 0.000 description 2
- 229960002737 fructose Drugs 0.000 description 2
- WRHGORWNJGOVQY-RRFJBIMHSA-N gamma-Muurolene Natural products C1CC(C)=C[C@@H]2[C@H](C(C)C)CCC(=C)[C@H]21 WRHGORWNJGOVQY-RRFJBIMHSA-N 0.000 description 2
- OALYTRUKMRCXNH-QMMMGPOBSA-N gamma-Nonalactone Natural products CCCCC[C@H]1CCC(=O)O1 OALYTRUKMRCXNH-QMMMGPOBSA-N 0.000 description 2
- RMZHSBMIZBMVMN-UHFFFAOYSA-N gamma-Selinene Chemical compound C1CCC(=C)C2CC(=C(C)C)CCC21C RMZHSBMIZBMVMN-UHFFFAOYSA-N 0.000 description 2
- IFYYFLINQYPWGJ-UHFFFAOYSA-N gamma-decalactone Chemical compound CCCCCCC1CCC(=O)O1 IFYYFLINQYPWGJ-UHFFFAOYSA-N 0.000 description 2
- WRHGORWNJGOVQY-ZNMIVQPWSA-N gamma-muurolene Chemical compound C1CC(C)=C[C@H]2[C@H](C(C)C)CCC(=C)[C@H]21 WRHGORWNJGOVQY-ZNMIVQPWSA-N 0.000 description 2
- 239000000499 gel Substances 0.000 description 2
- 238000005227 gel permeation chromatography Methods 0.000 description 2
- 239000008273 gelatin Substances 0.000 description 2
- HNZUNIKWNYHEJJ-UHFFFAOYSA-N geranyl acetone Natural products CC(C)=CCCC(C)=CCCC(C)=O HNZUNIKWNYHEJJ-UHFFFAOYSA-N 0.000 description 2
- HNZUNIKWNYHEJJ-FMIVXFBMSA-N geranyl acetone Chemical compound CC(C)=CCC\C(C)=C\CCC(C)=O HNZUNIKWNYHEJJ-FMIVXFBMSA-N 0.000 description 2
- 239000000174 gluconic acid Substances 0.000 description 2
- 235000012208 gluconic acid Nutrition 0.000 description 2
- 125000005456 glyceride group Chemical group 0.000 description 2
- 239000001087 glyceryl triacetate Substances 0.000 description 2
- 235000013773 glyceryl triacetate Nutrition 0.000 description 2
- 150000002334 glycols Chemical class 0.000 description 2
- LHGVFZTZFXWLCP-UHFFFAOYSA-N guaiacol Chemical compound COC1=CC=CC=C1O LHGVFZTZFXWLCP-UHFFFAOYSA-N 0.000 description 2
- 239000001307 helium Substances 0.000 description 2
- 229910052734 helium Inorganic materials 0.000 description 2
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 2
- 108010002430 hemicellulase Proteins 0.000 description 2
- 239000010460 hemp oil Substances 0.000 description 2
- FIPPFBHCBUDBRR-UHFFFAOYSA-N henicosan-1-ol Chemical compound CCCCCCCCCCCCCCCCCCCCCO FIPPFBHCBUDBRR-UHFFFAOYSA-N 0.000 description 2
- KEMQGTRYUADPNZ-UHFFFAOYSA-N heptadecanoic acid Chemical compound CCCCCCCCCCCCCCCCC(O)=O KEMQGTRYUADPNZ-UHFFFAOYSA-N 0.000 description 2
- FXHGMKSSBGDXIY-UHFFFAOYSA-N heptanal Chemical compound CCCCCCC=O FXHGMKSSBGDXIY-UHFFFAOYSA-N 0.000 description 2
- CSFWIAGTSVOEOD-UHFFFAOYSA-N heptyl 2-methylbutanoate Chemical compound CCCCCCCOC(=O)C(C)CC CSFWIAGTSVOEOD-UHFFFAOYSA-N 0.000 description 2
- LIIALPBMIOVAHH-UHFFFAOYSA-N herniarin Chemical compound C1=CC(=O)OC2=CC(OC)=CC=C21 LIIALPBMIOVAHH-UHFFFAOYSA-N 0.000 description 2
- JHGVLAHJJNKSAW-UHFFFAOYSA-N herniarin Natural products C1CC(=O)OC2=CC(OC)=CC=C21 JHGVLAHJJNKSAW-UHFFFAOYSA-N 0.000 description 2
- YDZCHDQXPLJVBG-UHFFFAOYSA-N hex-1-enyl acetate Chemical compound CCCCC=COC(C)=O YDZCHDQXPLJVBG-UHFFFAOYSA-N 0.000 description 2
- NDFKTBCGKNOHPJ-UHFFFAOYSA-N hex-2-enal Natural products CCCCC=CC=O NDFKTBCGKNOHPJ-UHFFFAOYSA-N 0.000 description 2
- HMSWAIKSFDFLKN-UHFFFAOYSA-N hexacosane Chemical compound CCCCCCCCCCCCCCCCCCCCCCCCCC HMSWAIKSFDFLKN-UHFFFAOYSA-N 0.000 description 2
- XMHIUKTWLZUKEX-UHFFFAOYSA-N hexacosanoic acid Chemical compound CCCCCCCCCCCCCCCCCCCCCCCCCC(O)=O XMHIUKTWLZUKEX-UHFFFAOYSA-N 0.000 description 2
- FVDRFBGMOWJEOR-UHFFFAOYSA-N hexadecan-2-ol Chemical compound CCCCCCCCCCCCCCC(C)O FVDRFBGMOWJEOR-UHFFFAOYSA-N 0.000 description 2
- JARKCYVAAOWBJS-UHFFFAOYSA-N hexanal Chemical compound CCCCCC=O JARKCYVAAOWBJS-UHFFFAOYSA-N 0.000 description 2
- FUZZWVXGSFPDMH-UHFFFAOYSA-N hexanoic acid Chemical compound CCCCCC(O)=O FUZZWVXGSFPDMH-UHFFFAOYSA-N 0.000 description 2
- PMYUVOOOQDGQNW-UHFFFAOYSA-N hexasodium;trioxido(trioxidosilyloxy)silane Chemical compound [Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[O-][Si]([O-])([O-])O[Si]([O-])([O-])[O-] PMYUVOOOQDGQNW-UHFFFAOYSA-N 0.000 description 2
- AOGQPLXWSUTHQB-UHFFFAOYSA-N hexyl acetate Chemical compound CCCCCCOC(C)=O AOGQPLXWSUTHQB-UHFFFAOYSA-N 0.000 description 2
- XAPCMTMQBXLDBB-UHFFFAOYSA-N hexyl butyrate Chemical compound CCCCCCOC(=O)CCC XAPCMTMQBXLDBB-UHFFFAOYSA-N 0.000 description 2
- 229920001519 homopolymer Polymers 0.000 description 2
- 235000012907 honey Nutrition 0.000 description 2
- XMBWDFGMSWQBCA-UHFFFAOYSA-N hydrogen iodide Chemical compound I XMBWDFGMSWQBCA-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-M hydrogensulfate Chemical compound OS([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-M 0.000 description 2
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 2
- BTFJIXJJCSYFAL-UHFFFAOYSA-N icosan-1-ol Chemical compound CCCCCCCCCCCCCCCCCCCCO BTFJIXJJCSYFAL-UHFFFAOYSA-N 0.000 description 2
- CBFCDTFDPHXCNY-UHFFFAOYSA-N icosane Chemical compound CCCCCCCCCCCCCCCCCCCC CBFCDTFDPHXCNY-UHFFFAOYSA-N 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 239000001034 iron oxide pigment Substances 0.000 description 2
- MLFHJEHSLIIPHL-UHFFFAOYSA-N isoamyl acetate Chemical compound CC(C)CCOC(C)=O MLFHJEHSLIIPHL-UHFFFAOYSA-N 0.000 description 2
- RDWUNORUTVEHJF-KKZNHRDASA-N isobornyl formate Chemical compound C1C[C@@]2(C)[C@H](OC=O)C[C@@H]1C2(C)C RDWUNORUTVEHJF-KKZNHRDASA-N 0.000 description 2
- 229940119170 jojoba wax Drugs 0.000 description 2
- 239000008101 lactose Substances 0.000 description 2
- 235000019388 lanolin Nutrition 0.000 description 2
- CZVXBFUKBZRMKR-UHFFFAOYSA-N lavandulol Chemical compound CC(C)=CCC(CO)C(C)=C CZVXBFUKBZRMKR-UHFFFAOYSA-N 0.000 description 2
- 239000010410 layer Substances 0.000 description 2
- 239000010985 leather Substances 0.000 description 2
- 235000010445 lecithin Nutrition 0.000 description 2
- 239000000787 lecithin Substances 0.000 description 2
- 239000003446 ligand Substances 0.000 description 2
- 239000004571 lime Substances 0.000 description 2
- 229940087305 limonene Drugs 0.000 description 2
- 235000001510 limonene Nutrition 0.000 description 2
- WCDGWAIZRYMVOW-UHFFFAOYSA-N linalyl isovalerate Chemical compound CC(C)CC(=O)OC(C)(C=C)CCC=C(C)C WCDGWAIZRYMVOW-UHFFFAOYSA-N 0.000 description 2
- 239000002932 luster Substances 0.000 description 2
- 159000000003 magnesium salts Chemical class 0.000 description 2
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 2
- 229960002160 maltose Drugs 0.000 description 2
- 235000010355 mannitol Nutrition 0.000 description 2
- 239000000594 mannitol Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000000155 melt Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910021645 metal ion Inorganic materials 0.000 description 2
- 229940102398 methyl anthranilate Drugs 0.000 description 2
- 229940095102 methyl benzoate Drugs 0.000 description 2
- ZQWPRMPSCMSAJU-UHFFFAOYSA-N methyl cyclohexanecarboxylate Chemical compound COC(=O)C1CCCCC1 ZQWPRMPSCMSAJU-UHFFFAOYSA-N 0.000 description 2
- UQDUPQYQJKYHQI-UHFFFAOYSA-N methyl laurate Chemical compound CCCCCCCCCCCC(=O)OC UQDUPQYQJKYHQI-UHFFFAOYSA-N 0.000 description 2
- IJXHLVMUNBOGRR-UHFFFAOYSA-N methyl nonanoate Chemical compound CCCCCCCCC(=O)OC IJXHLVMUNBOGRR-UHFFFAOYSA-N 0.000 description 2
- JGHZJRVDZXSNKQ-UHFFFAOYSA-N methyl octanoate Chemical compound CCCCCCCC(=O)OC JGHZJRVDZXSNKQ-UHFFFAOYSA-N 0.000 description 2
- WBYWAXJHAXSJNI-UHFFFAOYSA-N methyl p-hydroxycinnamate Natural products OC(=O)C=CC1=CC=CC=C1 WBYWAXJHAXSJNI-UHFFFAOYSA-N 0.000 description 2
- OSWPMRLSEDHDFF-UHFFFAOYSA-N methyl salicylate Chemical compound COC(=O)C1=CC=CC=C1O OSWPMRLSEDHDFF-UHFFFAOYSA-N 0.000 description 2
- CCRCUPLGCSFEDV-BQYQJAHWSA-N methyl trans-cinnamate Chemical compound COC(=O)\C=C\C1=CC=CC=C1 CCRCUPLGCSFEDV-BQYQJAHWSA-N 0.000 description 2
- BVWTXUYLKBHMOX-UHFFFAOYSA-N methyl vanillate Chemical compound COC(=O)C1=CC=C(O)C(OC)=C1 BVWTXUYLKBHMOX-UHFFFAOYSA-N 0.000 description 2
- UAEPNZWRGJTJPN-UHFFFAOYSA-N methylcyclohexane Chemical compound CC1CCCCC1 UAEPNZWRGJTJPN-UHFFFAOYSA-N 0.000 description 2
- 239000010445 mica Substances 0.000 description 2
- 229910052618 mica group Inorganic materials 0.000 description 2
- 229940016286 microcrystalline cellulose Drugs 0.000 description 2
- 239000008108 microcrystalline cellulose Substances 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- VYQNWZOUAUKGHI-UHFFFAOYSA-N monobenzone Chemical compound C1=CC(O)=CC=C1OCC1=CC=CC=C1 VYQNWZOUAUKGHI-UHFFFAOYSA-N 0.000 description 2
- JMXROTHPANUTOJ-UHFFFAOYSA-H naphthol green b Chemical group [Na+].[Na+].[Na+].[Fe+3].C1=C(S([O-])(=O)=O)C=CC2=C(N=O)C([O-])=CC=C21.C1=C(S([O-])(=O)=O)C=CC2=C(N=O)C([O-])=CC=C21.C1=C(S([O-])(=O)=O)C=CC2=C(N=O)C([O-])=CC=C21 JMXROTHPANUTOJ-UHFFFAOYSA-H 0.000 description 2
- 239000005445 natural material Substances 0.000 description 2
- 229920005615 natural polymer Polymers 0.000 description 2
- FRISMOQHTLZZRP-UHFFFAOYSA-N nerol oxide Chemical compound CC(C)=CC1CC(C)=CCO1 FRISMOQHTLZZRP-UHFFFAOYSA-N 0.000 description 2
- WASNIKZYIWZQIP-AWEZNQCLSA-N nerolidol Natural products CC(=CCCC(=CCC[C@@H](O)C=C)C)C WASNIKZYIWZQIP-AWEZNQCLSA-N 0.000 description 2
- VKULUTKCTSMXPO-UHFFFAOYSA-N neryl isovalerate Natural products CC(C)CC(=O)OCC(=CCCC=C(C)C)C VKULUTKCTSMXPO-UHFFFAOYSA-N 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- MGFYIUFZLHCRTH-UHFFFAOYSA-N nitrilotriacetic acid Chemical compound OC(=O)CN(CC(O)=O)CC(O)=O MGFYIUFZLHCRTH-UHFFFAOYSA-N 0.000 description 2
- LQNUZADURLCDLV-UHFFFAOYSA-N nitrobenzene Chemical compound [O-][N+](=O)C1=CC=CC=C1 LQNUZADURLCDLV-UHFFFAOYSA-N 0.000 description 2
- 125000004433 nitrogen atom Chemical group N* 0.000 description 2
- IGGUPRCHHJZPBS-UHFFFAOYSA-N nonacosane Chemical compound CCCCCCCCCCCCCCCCCCCCCCCCCCCCC IGGUPRCHHJZPBS-UHFFFAOYSA-N 0.000 description 2
- XGFDHKJUZCCPKQ-UHFFFAOYSA-N nonadecan-1-ol Chemical compound CCCCCCCCCCCCCCCCCCCO XGFDHKJUZCCPKQ-UHFFFAOYSA-N 0.000 description 2
- LQERIDTXQFOHKA-UHFFFAOYSA-N nonadecane Chemical compound CCCCCCCCCCCCCCCCCCC LQERIDTXQFOHKA-UHFFFAOYSA-N 0.000 description 2
- ISYWECDDZWTKFF-UHFFFAOYSA-N nonadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCCC(O)=O ISYWECDDZWTKFF-UHFFFAOYSA-N 0.000 description 2
- ZWRUINPWMLAQRD-UHFFFAOYSA-N nonan-1-ol Chemical compound CCCCCCCCCO ZWRUINPWMLAQRD-UHFFFAOYSA-N 0.000 description 2
- VKCYHJWLYTUGCC-UHFFFAOYSA-N nonan-2-one Chemical compound CCCCCCCC(C)=O VKCYHJWLYTUGCC-UHFFFAOYSA-N 0.000 description 2
- FBUKVWPVBMHYJY-UHFFFAOYSA-N nonanoic acid Chemical compound CCCCCCCCC(O)=O FBUKVWPVBMHYJY-UHFFFAOYSA-N 0.000 description 2
- GJQIMXVRFNLMTB-UHFFFAOYSA-N nonyl acetate Chemical compound CCCCCCCCCOC(C)=O GJQIMXVRFNLMTB-UHFFFAOYSA-N 0.000 description 2
- 239000010466 nut oil Substances 0.000 description 2
- ZYURHZPYMFLWSH-UHFFFAOYSA-N octacosane Chemical compound CCCCCCCCCCCCCCCCCCCCCCCCCCCC ZYURHZPYMFLWSH-UHFFFAOYSA-N 0.000 description 2
- RZJRJXONCZWCBN-UHFFFAOYSA-N octadecane Chemical compound CCCCCCCCCCCCCCCCCC RZJRJXONCZWCBN-UHFFFAOYSA-N 0.000 description 2
- WWZKQHOCKIZLMA-UHFFFAOYSA-N octanoic acid Chemical compound CCCCCCCC(O)=O WWZKQHOCKIZLMA-UHFFFAOYSA-N 0.000 description 2
- YLYBTZIQSIBWLI-UHFFFAOYSA-N octyl acetate Chemical compound CCCCCCCCOC(C)=O YLYBTZIQSIBWLI-UHFFFAOYSA-N 0.000 description 2
- 150000007524 organic acids Chemical class 0.000 description 2
- 235000005985 organic acids Nutrition 0.000 description 2
- 125000000962 organic group Chemical group 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- ZTYHGIAOVUPAAH-UWVGGRQHSA-N p-Menth-1-en-9-ol Natural products OC[C@H](C)[C@@H]1CCC(C)=CC1 ZTYHGIAOVUPAAH-UWVGGRQHSA-N 0.000 description 2
- QUHIXSUMNSRNNP-UHFFFAOYSA-N p-Menth-1-en-9-ol acetate Chemical compound CC(=O)OCC(C)C1CCC(C)=CC1 QUHIXSUMNSRNNP-UHFFFAOYSA-N 0.000 description 2
- MMSLOZQEMPDGPI-UHFFFAOYSA-N p-Mentha-1,3,5,8-tetraene Chemical compound CC(=C)C1=CC=C(C)C=C1 MMSLOZQEMPDGPI-UHFFFAOYSA-N 0.000 description 2
- HFPZCAJZSCWRBC-UHFFFAOYSA-N p-cymene Chemical compound CC(C)C1=CC=C(C)C=C1 HFPZCAJZSCWRBC-UHFFFAOYSA-N 0.000 description 2
- 239000003002 pH adjusting agent Substances 0.000 description 2
- YKNWIILGEFFOPE-UHFFFAOYSA-N pentacosane Chemical compound CCCCCCCCCCCCCCCCCCCCCCCCC YKNWIILGEFFOPE-UHFFFAOYSA-N 0.000 description 2
- REIUXOLGHVXAEO-UHFFFAOYSA-N pentadecan-1-ol Chemical compound CCCCCCCCCCCCCCCO REIUXOLGHVXAEO-UHFFFAOYSA-N 0.000 description 2
- JYVLIDXNZAXMDK-UHFFFAOYSA-N pentan-2-ol Chemical compound CCCC(C)O JYVLIDXNZAXMDK-UHFFFAOYSA-N 0.000 description 2
- HGBOYTHUEUWSSQ-UHFFFAOYSA-N pentanal Chemical compound CCCCC=O HGBOYTHUEUWSSQ-UHFFFAOYSA-N 0.000 description 2
- TZMFJUDUGYTVRY-UHFFFAOYSA-N pentane-2,3-dione Chemical compound CCC(=O)C(C)=O TZMFJUDUGYTVRY-UHFFFAOYSA-N 0.000 description 2
- 239000000137 peptide hydrolase inhibitor Substances 0.000 description 2
- XNGKCOFXDHYSGR-UHFFFAOYSA-N perillene Chemical compound CC(C)=CCCC=1C=COC=1 XNGKCOFXDHYSGR-UHFFFAOYSA-N 0.000 description 2
- XCRBXWCUXJNEFX-UHFFFAOYSA-N peroxybenzoic acid Chemical compound OOC(=O)C1=CC=CC=C1 XCRBXWCUXJNEFX-UHFFFAOYSA-N 0.000 description 2
- WVDDGKGOMKODPV-ZQBYOMGUSA-N phenyl(114C)methanol Chemical compound O[14CH2]C1=CC=CC=C1 WVDDGKGOMKODPV-ZQBYOMGUSA-N 0.000 description 2
- DTUQWGWMVIHBKE-UHFFFAOYSA-N phenylacetaldehyde Chemical compound O=CCC1=CC=CC=C1 DTUQWGWMVIHBKE-UHFFFAOYSA-N 0.000 description 2
- 150000003014 phosphoric acid esters Chemical class 0.000 description 2
- 150000003016 phosphoric acids Chemical class 0.000 description 2
- XNGIFLGASWRNHJ-UHFFFAOYSA-N phthalic acid Chemical compound OC(=O)C1=CC=CC=C1C(O)=O XNGIFLGASWRNHJ-UHFFFAOYSA-N 0.000 description 2
- 229930006968 piperitone Natural products 0.000 description 2
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 2
- 229920000172 poly(styrenesulfonic acid) Polymers 0.000 description 2
- 229920001281 polyalkylene Polymers 0.000 description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 description 2
- 229920000098 polyolefin Polymers 0.000 description 2
- XAEFZNCEHLXOMS-UHFFFAOYSA-M potassium benzoate Chemical compound [K+].[O-]C(=O)C1=CC=CC=C1 XAEFZNCEHLXOMS-UHFFFAOYSA-M 0.000 description 2
- 159000000001 potassium salts Chemical class 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- 150000003138 primary alcohols Chemical class 0.000 description 2
- 102000004196 processed proteins & peptides Human genes 0.000 description 2
- 239000002964 rayon Substances 0.000 description 2
- 238000006268 reductive amination reaction Methods 0.000 description 2
- 230000002829 reductive effect Effects 0.000 description 2
- 239000005871 repellent Substances 0.000 description 2
- 230000002441 reversible effect Effects 0.000 description 2
- 229910052707 ruthenium Inorganic materials 0.000 description 2
- 235000017509 safranal Nutrition 0.000 description 2
- ZMQAAUBTXCXRIC-UHFFFAOYSA-N safrole Chemical compound C=CCC1=CC=C2OCOC2=C1 ZMQAAUBTXCXRIC-UHFFFAOYSA-N 0.000 description 2
- YGSDEFSMJLZEOE-UHFFFAOYSA-N salicylic acid Chemical compound OC(=O)C1=CC=CC=C1O YGSDEFSMJLZEOE-UHFFFAOYSA-N 0.000 description 2
- 235000003441 saturated fatty acids Nutrition 0.000 description 2
- 150000004671 saturated fatty acids Chemical class 0.000 description 2
- 238000009991 scouring Methods 0.000 description 2
- 125000002914 sec-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 2
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 2
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 description 2
- AJPJDKMHJJGVTQ-UHFFFAOYSA-M sodium dihydrogen phosphate Chemical compound [Na+].OP(O)([O-])=O AJPJDKMHJJGVTQ-UHFFFAOYSA-M 0.000 description 2
- 229960001922 sodium perborate Drugs 0.000 description 2
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 2
- 229910052911 sodium silicate Inorganic materials 0.000 description 2
- GEHJYWRUCIMESM-UHFFFAOYSA-L sodium sulfite Chemical compound [Na+].[Na+].[O-]S([O-])=O GEHJYWRUCIMESM-UHFFFAOYSA-L 0.000 description 2
- YKLJGMBLPUQQOI-UHFFFAOYSA-M sodium;oxidooxy(oxo)borane Chemical compound [Na+].[O-]OB=O YKLJGMBLPUQQOI-UHFFFAOYSA-M 0.000 description 2
- 239000002689 soil Substances 0.000 description 2
- 229940031439 squalene Drugs 0.000 description 2
- TUHBEKDERLKLEC-UHFFFAOYSA-N squalene Natural products CC(=CCCC(=CCCC(=CCCC=C(/C)CCC=C(/C)CC=C(C)C)C)C)C TUHBEKDERLKLEC-UHFFFAOYSA-N 0.000 description 2
- 229940012831 stearyl alcohol Drugs 0.000 description 2
- 229910052682 stishovite Inorganic materials 0.000 description 2
- 239000001384 succinic acid Substances 0.000 description 2
- 239000005720 sucrose Substances 0.000 description 2
- BDHFUVZGWQCTTF-UHFFFAOYSA-M sulfonate Chemical compound [O-]S(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-M 0.000 description 2
- 150000003871 sulfonates Chemical class 0.000 description 2
- 150000003460 sulfonic acids Chemical class 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- 239000011593 sulfur Substances 0.000 description 2
- 230000008961 swelling Effects 0.000 description 2
- 229920001059 synthetic polymer Polymers 0.000 description 2
- 239000000454 talc Substances 0.000 description 2
- 229910052623 talc Inorganic materials 0.000 description 2
- 108010075550 termamyl Proteins 0.000 description 2
- 150000003505 terpenes Chemical class 0.000 description 2
- 235000007586 terpenes Nutrition 0.000 description 2
- POOSGDOYLQNASK-UHFFFAOYSA-N tetracosane Chemical compound CCCCCCCCCCCCCCCCCCCCCCCC POOSGDOYLQNASK-UHFFFAOYSA-N 0.000 description 2
- RYCLIXPGLDDLTM-UHFFFAOYSA-J tetrapotassium;phosphonato phosphate Chemical compound [K+].[K+].[K+].[K+].[O-]P([O-])(=O)OP([O-])([O-])=O RYCLIXPGLDDLTM-UHFFFAOYSA-J 0.000 description 2
- 235000019818 tetrasodium diphosphate Nutrition 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- LDHQCZJRKDOVOX-UHFFFAOYSA-N trans-crotonic acid Natural products CC=CC(O)=O LDHQCZJRKDOVOX-UHFFFAOYSA-N 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 150000003624 transition metals Chemical class 0.000 description 2
- 229960002622 triacetin Drugs 0.000 description 2
- VHOCUJPBKOZGJD-UHFFFAOYSA-N triacontanoic acid Chemical compound CCCCCCCCCCCCCCCCCCCCCCCCCCCCCC(O)=O VHOCUJPBKOZGJD-UHFFFAOYSA-N 0.000 description 2
- 150000003918 triazines Chemical class 0.000 description 2
- FIGVVZUWCLSUEI-UHFFFAOYSA-N tricosane Chemical compound CCCCCCCCCCCCCCCCCCCCCCC FIGVVZUWCLSUEI-UHFFFAOYSA-N 0.000 description 2
- SZHOJFHSIKHZHA-UHFFFAOYSA-N tridecanoic acid Chemical compound CCCCCCCCCCCCC(O)=O SZHOJFHSIKHZHA-UHFFFAOYSA-N 0.000 description 2
- 229910052905 tridymite Inorganic materials 0.000 description 2
- GETQZCLCWQTVFV-UHFFFAOYSA-N trimethylamine Chemical compound CN(C)C GETQZCLCWQTVFV-UHFFFAOYSA-N 0.000 description 2
- JSPLKZUTYZBBKA-UHFFFAOYSA-N trioxidane Chemical group OOO JSPLKZUTYZBBKA-UHFFFAOYSA-N 0.000 description 2
- 229910000404 tripotassium phosphate Inorganic materials 0.000 description 2
- 229910000406 trisodium phosphate Inorganic materials 0.000 description 2
- DCXXMTOCNZCJGO-UHFFFAOYSA-N tristearoylglycerol Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCC(OC(=O)CCCCCCCCCCCCCCCCC)COC(=O)CCCCCCCCCCCCCCCCC DCXXMTOCNZCJGO-UHFFFAOYSA-N 0.000 description 2
- ZDPHROOEEOARMN-UHFFFAOYSA-N undecanoic acid Chemical compound CCCCCCCCCCC(O)=O ZDPHROOEEOARMN-UHFFFAOYSA-N 0.000 description 2
- 235000021122 unsaturated fatty acids Nutrition 0.000 description 2
- 150000004670 unsaturated fatty acids Chemical class 0.000 description 2
- 229910052720 vanadium Inorganic materials 0.000 description 2
- NLVXSWCKKBEXTG-UHFFFAOYSA-N vinylsulfonic acid Chemical compound OS(=O)(=O)C=C NLVXSWCKKBEXTG-UHFFFAOYSA-N 0.000 description 2
- AYXPYQRXGNDJFU-IMNVLQEYSA-N viridiflorol Chemical compound [C@@H]1([C@@](CC[C@@H]2[C@H]3C2(C)C)(C)O)[C@H]3[C@H](C)CC1 AYXPYQRXGNDJFU-IMNVLQEYSA-N 0.000 description 2
- 239000011782 vitamin Substances 0.000 description 2
- 235000013343 vitamin Nutrition 0.000 description 2
- 229940088594 vitamin Drugs 0.000 description 2
- 229930003231 vitamin Natural products 0.000 description 2
- 238000009736 wetting Methods 0.000 description 2
- PHXATPHONSXBIL-UHFFFAOYSA-N xi-gamma-Undecalactone Chemical compound CCCCCCCC1CCC(=O)O1 PHXATPHONSXBIL-UHFFFAOYSA-N 0.000 description 2
- 229940071104 xylenesulfonate Drugs 0.000 description 2
- 229960003487 xylose Drugs 0.000 description 2
- 239000011787 zinc oxide Substances 0.000 description 2
- 235000014692 zinc oxide Nutrition 0.000 description 2
- 239000001039 zinc pigment Substances 0.000 description 2
- DRDVZXDWVBGGMH-UHFFFAOYSA-N zinc;sulfide Chemical compound [S-2].[Zn+2] DRDVZXDWVBGGMH-UHFFFAOYSA-N 0.000 description 2
- 150000003754 zirconium Chemical class 0.000 description 2
- VMYXUZSZMNBRCN-UHFFFAOYSA-N α-curcumene Chemical compound CC(C)=CCCC(C)C1=CC=C(C)C=C1 VMYXUZSZMNBRCN-UHFFFAOYSA-N 0.000 description 2
- OGLDWXZKYODSOB-UHFFFAOYSA-N α-phellandrene Chemical compound CC(C)C1CC=C(C)C=C1 OGLDWXZKYODSOB-UHFFFAOYSA-N 0.000 description 2
- YHQGMYUVUMAZJR-UHFFFAOYSA-N α-terpinene Chemical compound CC(C)C1=CC=C(C)CC1 YHQGMYUVUMAZJR-UHFFFAOYSA-N 0.000 description 2
- 229930000053 β-bisabolol Natural products 0.000 description 2
- YIRAHEODBQONHI-ZQNQSHIBSA-N β-bourbonene Chemical compound C1CC(=C)[C@@H]2[C@H]3[C@H](C(C)C)CC[C@@]3(C)[C@@H]21 YIRAHEODBQONHI-ZQNQSHIBSA-N 0.000 description 2
- YOVSPTNQHMDJAG-QLFBSQMISA-N β-eudesmene Chemical compound C1CCC(=C)[C@@H]2C[C@H](C(=C)C)CC[C@]21C YOVSPTNQHMDJAG-QLFBSQMISA-N 0.000 description 2
- HDTRYLNUVZCQOY-UHFFFAOYSA-N α-D-glucopyranosyl-α-D-glucopyranoside Natural products OC1C(O)C(O)C(CO)OC1OC1C(O)C(O)C(O)C(CO)O1 HDTRYLNUVZCQOY-UHFFFAOYSA-N 0.000 description 1
- WRHGORWNJGOVQY-KKUMJFAQSA-N (+)-gamma-cadinene Chemical compound C1CC(C)=C[C@H]2[C@H](C(C)C)CCC(=C)[C@@H]21 WRHGORWNJGOVQY-KKUMJFAQSA-N 0.000 description 1
- WMOPMQRJLLIEJV-IUODEOHRSA-N (+)-gamma-eudesmol Chemical compound C1[C@H](C(C)(C)O)CC[C@@]2(C)CCCC(C)=C21 WMOPMQRJLLIEJV-IUODEOHRSA-N 0.000 description 1
- AZOCECCLWFDTAP-DTWKUNHWSA-N (+)-isodihydrocarvone Chemical compound C[C@H]1CC[C@@H](C(C)=C)CC1=O AZOCECCLWFDTAP-DTWKUNHWSA-N 0.000 description 1
- WTOYNNBCKUYIKC-JMSVASOKSA-N (+)-nootkatone Chemical compound C1C[C@@H](C(C)=C)C[C@@]2(C)[C@H](C)CC(=O)C=C21 WTOYNNBCKUYIKC-JMSVASOKSA-N 0.000 description 1
- NDVASEGYNIMXJL-NXEZZACHSA-N (+)-sabinene Natural products C=C1CC[C@@]2(C(C)C)[C@@H]1C2 NDVASEGYNIMXJL-NXEZZACHSA-N 0.000 description 1
- QEBNYNLSCGVZOH-NFAWXSAZSA-N (+)-valencene Chemical compound C1C[C@@H](C(C)=C)C[C@@]2(C)[C@H](C)CCC=C21 QEBNYNLSCGVZOH-NFAWXSAZSA-N 0.000 description 1
- KKOXKGNSUHTUBV-CABCVRRESA-N (+)-zingiberene Chemical compound CC(C)=CCC[C@@H](C)[C@@H]1CC=C(C)C=C1 KKOXKGNSUHTUBV-CABCVRRESA-N 0.000 description 1
- LFJQCDVYDGGFCH-JTQLQIEISA-N (+)-β-phellandrene Chemical compound CC(C)[C@@H]1CCC(=C)C=C1 LFJQCDVYDGGFCH-JTQLQIEISA-N 0.000 description 1
- WTARULDDTDQWMU-RKDXNWHRSA-N (+)-β-pinene Chemical compound C1[C@H]2C(C)(C)[C@@H]1CCC2=C WTARULDDTDQWMU-RKDXNWHRSA-N 0.000 description 1
- FUCYIEXQVQJBKY-ZFWWWQNUSA-N (+)-δ-Cadinene Chemical compound C1CC(C)=C[C@H]2[C@H](C(C)C)CCC(C)=C21 FUCYIEXQVQJBKY-ZFWWWQNUSA-N 0.000 description 1
- PUPZLCDOIYMWBV-UHFFFAOYSA-N (+/-)-1,3-Butanediol Chemical compound CC(O)CCO PUPZLCDOIYMWBV-UHFFFAOYSA-N 0.000 description 1
- FDBQLLMYSACLPB-UHFFFAOYSA-N (+/-)-4-Mercapto-4-methyl-2-pentanol Chemical compound CC(O)CC(C)(C)S FDBQLLMYSACLPB-UHFFFAOYSA-N 0.000 description 1
- LFJQCDVYDGGFCH-SNVBAGLBSA-N (+/-)-beta-Phellandrene Natural products CC(C)[C@H]1CCC(=C)C=C1 LFJQCDVYDGGFCH-SNVBAGLBSA-N 0.000 description 1
- NQWBFQXRASPNLB-UHFFFAOYSA-N (-)-(3aS,3aS,7aR)-3a,4,5,7a-tetrahydro-3,6-dimethylbenzofuran-2(3H)-one Natural products C1CC(C)=CC2OC(=O)C(C)C21 NQWBFQXRASPNLB-UHFFFAOYSA-N 0.000 description 1
- GAIBLDCXCZKKJE-QRYCCKSOSA-N (-)-Germacrene D Natural products C(C)(C)[C@H]1/C=C/C(=C)CC/C=C(/C)\CC1 GAIBLDCXCZKKJE-QRYCCKSOSA-N 0.000 description 1
- NOOLISFMXDJSKH-KXUCPTDWSA-N (-)-Menthol Chemical compound CC(C)[C@@H]1CC[C@@H](C)C[C@H]1O NOOLISFMXDJSKH-KXUCPTDWSA-N 0.000 description 1
- WTARULDDTDQWMU-IUCAKERBSA-N (-)-Nopinene Natural products C1[C@@H]2C(C)(C)[C@H]1CCC2=C WTARULDDTDQWMU-IUCAKERBSA-N 0.000 description 1
- LHYHMMRYTDARSZ-AJNGGQMLSA-N (-)-Tau-muurolol Chemical compound C1CC(C)=C[C@H]2[C@H](C(C)C)CC[C@](C)(O)[C@H]21 LHYHMMRYTDARSZ-AJNGGQMLSA-N 0.000 description 1
- KKOXKGNSUHTUBV-GJZGRUSLSA-N (-)-Zingiberene Natural products [C@@H](CC/C=C(\C)/C)(C)[C@H]1C=CC(C)=CC1 KKOXKGNSUHTUBV-GJZGRUSLSA-N 0.000 description 1
- ITYNGVSTWVVPIC-DHGKCCLASA-N (-)-allo-Aromadendrene Chemical compound C([C@@H]1[C@H]2C1(C)C)CC(=C)[C@@H]1[C@H]2[C@H](C)CC1 ITYNGVSTWVVPIC-DHGKCCLASA-N 0.000 description 1
- SPCXZDDGSGTVAW-XIDUGBJDSA-N (-)-alpha-gurjunene Chemical compound C[C@@H]1CC[C@H]2C(C)(C)[C@H]2C2=C(C)CC[C@H]12 SPCXZDDGSGTVAW-XIDUGBJDSA-N 0.000 description 1
- LHYHMMRYTDARSZ-ZQDZILKHSA-N (-)-delta-cadinol Chemical compound C1CC(C)=C[C@H]2[C@H](C(C)C)CC[C@@](C)(O)[C@H]21 LHYHMMRYTDARSZ-ZQDZILKHSA-N 0.000 description 1
- YMBFCQPIMVLNIU-SOUVJXGZSA-N (-)-exo-alpha-bergamotene Chemical compound C1[C@@H]2[C@@](CCC=C(C)C)(C)[C@H]1CC=C2C YMBFCQPIMVLNIU-SOUVJXGZSA-N 0.000 description 1
- GEWDNTWNSAZUDX-WQMVXFAESA-N (-)-methyl jasmonate Chemical compound CC\C=C/C[C@@H]1[C@@H](CC(=O)OC)CCC1=O GEWDNTWNSAZUDX-WQMVXFAESA-N 0.000 description 1
- GXEGJTGWYVZSNR-UHFFFAOYSA-N (1E,4Z)-germacrene B Chemical compound CC(C)=C1CCC(C)=CCCC(C)=CC1 GXEGJTGWYVZSNR-UHFFFAOYSA-N 0.000 description 1
- KXSDPILWMGFJMM-VXRWAFEHSA-N (1r,4r)-4-methyl-1-propan-2-ylbicyclo[3.1.0]hexan-4-ol Chemical compound C([C@]1(O)C)C[C@@]2(C(C)C)C1C2 KXSDPILWMGFJMM-VXRWAFEHSA-N 0.000 description 1
- SVZNRBAZGGBJOW-UHFFFAOYSA-N (2-methylprop-2-enoylamino)methanesulfonic acid Chemical compound CC(=C)C(=O)NCS(O)(=O)=O SVZNRBAZGGBJOW-UHFFFAOYSA-N 0.000 description 1
- HZYHMHHBBBSGHB-UHFFFAOYSA-N (2E,6E)-2,6-Nonadienal Natural products CCC=CCCC=CC=O HZYHMHHBBBSGHB-UHFFFAOYSA-N 0.000 description 1
- NOPLRNXKHZRXHT-UHFFFAOYSA-N (2E,6E)-2,6-dimethyl-10-methylene-dodeca-2,6,11-trienal Natural products O=CC(C)=CCCC(C)=CCCC(=C)C=C NOPLRNXKHZRXHT-UHFFFAOYSA-N 0.000 description 1
- 239000000260 (2E,6E)-3,7,11-trimethyldodeca-2,6,10-trien-1-ol Substances 0.000 description 1
- 239000001500 (2R)-6-methyl-2-[(1R)-4-methyl-1-cyclohex-3-enyl]hept-5-en-2-ol Substances 0.000 description 1
- 239000001890 (2R)-8,8,8a-trimethyl-2-prop-1-en-2-yl-1,2,3,4,6,7-hexahydronaphthalene Substances 0.000 description 1
- CZCBTSFUTPZVKJ-ZJUUUORDSA-N (2R,4R)-rose oxide Chemical compound C[C@@H]1CCO[C@@H](C=C(C)C)C1 CZCBTSFUTPZVKJ-ZJUUUORDSA-N 0.000 description 1
- ZHHYXNZJDGDGPJ-BSWSSELBSA-N (2e,4e)-nona-2,4-dienal Chemical compound CCCC\C=C\C=C\C=O ZHHYXNZJDGDGPJ-BSWSSELBSA-N 0.000 description 1
- ZHHYXNZJDGDGPJ-IGTJQSIKSA-N (2e,4z)-nona-2,4-dienal Chemical compound CCCC\C=C/C=C/C=O ZHHYXNZJDGDGPJ-IGTJQSIKSA-N 0.000 description 1
- HZYHMHHBBBSGHB-DYWGDJMRSA-N (2e,6e)-nona-2,6-dienal Chemical compound CC\C=C\CC\C=C\C=O HZYHMHHBBBSGHB-DYWGDJMRSA-N 0.000 description 1
- HBDJFVFTHLOSDW-DNDLZOGFSA-N (2r,3r,4r,5r)-2,3,5,6-tetrahydroxy-4-[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyhexanal;hydrate Chemical compound O.O=C[C@H](O)[C@@H](O)[C@@H]([C@H](O)CO)O[C@H]1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1O HBDJFVFTHLOSDW-DNDLZOGFSA-N 0.000 description 1
- CBDCDOTZPYZPRO-DEZHIRTDSA-N (2r,3r,4s,5s)-2,3,4,5-tetrahydroxyhexanal;hydrate Chemical compound O.C[C@H](O)[C@H](O)[C@@H](O)[C@@H](O)C=O CBDCDOTZPYZPRO-DEZHIRTDSA-N 0.000 description 1
- OSNSWKAZFASRNG-QEQWBAOXSA-N (2s,3r,4s,5r,6r)-6-(hydroxymethyl)oxane-2,3,4,5-tetrol;hydrate Chemical compound O.OC[C@H]1O[C@H](O)[C@H](O)[C@@H](O)[C@H]1O OSNSWKAZFASRNG-QEQWBAOXSA-N 0.000 description 1
- OSNSWKAZFASRNG-WNFIKIDCSA-N (2s,3r,4s,5s,6r)-6-(hydroxymethyl)oxane-2,3,4,5-tetrol;hydrate Chemical compound O.OC[C@H]1O[C@H](O)[C@H](O)[C@@H](O)[C@@H]1O OSNSWKAZFASRNG-WNFIKIDCSA-N 0.000 description 1
- XJPBRODHZKDRCB-CSKARUKUSA-N (3e)-3,7-dimethylocta-1,3,7-triene Chemical compound CC(=C)CC\C=C(/C)C=C XJPBRODHZKDRCB-CSKARUKUSA-N 0.000 description 1
- HOXGZVUCAYFWGR-KQQUZDAGSA-N (3e,5e)-octa-1,3,5-triene Chemical compound CC\C=C\C=C\C=C HOXGZVUCAYFWGR-KQQUZDAGSA-N 0.000 description 1
- CCEFMUBVSUDRLG-RCAUJQPQSA-N (3r,6r)-6-methyl-3-prop-1-en-2-yl-7-oxabicyclo[4.1.0]heptane Chemical compound C1[C@H](C(=C)C)CC[C@@]2(C)OC21 CCEFMUBVSUDRLG-RCAUJQPQSA-N 0.000 description 1
- NQWBFQXRASPNLB-CIUDSAMLSA-N (3s,3as,7ar)-3,6-dimethyl-3a,4,5,7a-tetrahydro-3h-1-benzofuran-2-one Chemical compound C1CC(C)=C[C@@H]2OC(=O)[C@@H](C)[C@@H]21 NQWBFQXRASPNLB-CIUDSAMLSA-N 0.000 description 1
- FLOISDYCXINJOB-UHFFFAOYSA-N (4,7,7-trimethyl-3-bicyclo[2.2.1]heptanyl) benzoate Chemical compound CC1(C)C(C2)CCC1(C)C2OC(=O)C1=CC=CC=C1 FLOISDYCXINJOB-UHFFFAOYSA-N 0.000 description 1
- CCEFMUBVSUDRLG-KXUCPTDWSA-N (4R)-limonene 1,2-epoxide Natural products C1[C@H](C(=C)C)CC[C@@]2(C)O[C@H]21 CCEFMUBVSUDRLG-KXUCPTDWSA-N 0.000 description 1
- 239000001303 (5-methyl-2-prop-1-en-2-ylcyclohexyl) acetate Substances 0.000 description 1
- 239000001371 (5E)-3,5-dimethylocta-1,5,7-trien-3-ol Substances 0.000 description 1
- 239000001730 (5R)-5-butyloxolan-2-one Substances 0.000 description 1
- YXYMGKMWKSMRAB-ZYHUDNBSSA-N (5r,8r)-2,5-dimethyl-8-propan-2-yl-5,6,7,8-tetrahydronaphthalen-1-ol Chemical compound C1=C(C)C(O)=C2[C@@H](C(C)C)CC[C@@H](C)C2=C1 YXYMGKMWKSMRAB-ZYHUDNBSSA-N 0.000 description 1
- CUXYLFPMQMFGPL-UHFFFAOYSA-N (9Z,11E,13E)-9,11,13-Octadecatrienoic acid Natural products CCCCC=CC=CC=CCCCCCCCC(O)=O CUXYLFPMQMFGPL-UHFFFAOYSA-N 0.000 description 1
- OYHQOLUKZRVURQ-NTGFUMLPSA-N (9Z,12Z)-9,10,12,13-tetratritiooctadeca-9,12-dienoic acid Chemical compound C(CCCCCCC\C(=C(/C\C(=C(/CCCCC)\[3H])\[3H])\[3H])\[3H])(=O)O OYHQOLUKZRVURQ-NTGFUMLPSA-N 0.000 description 1
- 125000004178 (C1-C4) alkyl group Chemical group 0.000 description 1
- 125000004169 (C1-C6) alkyl group Chemical group 0.000 description 1
- 239000001674 (E)-1-(2,6,6-trimethyl-1-cyclohexenyl)but-2-en-1-one Substances 0.000 description 1
- PANBRUWVURLWGY-MDZDMXLPSA-N (E)-2-undecenal Chemical compound CCCCCCCC\C=C\C=O PANBRUWVURLWGY-MDZDMXLPSA-N 0.000 description 1
- UFLHIIWVXFIJGU-ONEGZZNKSA-N (E)-3-Hexenol Natural products CC\C=C\CCO UFLHIIWVXFIJGU-ONEGZZNKSA-N 0.000 description 1
- 239000001460 (E)-3-[(2R,3S)-3-pentyloxiran-2-yl]prop-2-enal Substances 0.000 description 1
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 1
- 239000000452 (E)-hept-2-enal Substances 0.000 description 1
- NDFKTBCGKNOHPJ-AATRIKPKSA-N (E)-hept-2-enal Chemical compound CCCC\C=C\C=O NDFKTBCGKNOHPJ-AATRIKPKSA-N 0.000 description 1
- 239000001764 (E)-oct-3-en-2-one Substances 0.000 description 1
- 239000001707 (E,7R,11R)-3,7,11,15-tetramethylhexadec-2-en-1-ol Substances 0.000 description 1
- DVVATNQISMINCX-YTXTXJHMSA-N (E,E)-2,4-Octadienal Chemical compound CCC\C=C\C=C\C=O DVVATNQISMINCX-YTXTXJHMSA-N 0.000 description 1
- BATOPAZDIZEVQF-MQQKCMAXSA-N (E,E)-2,4-hexadienal Chemical compound C\C=C\C=C\C=O BATOPAZDIZEVQF-MQQKCMAXSA-N 0.000 description 1
- SATICYYAWWYRAM-VNKDHWASSA-N (E,E)-hepta-2,4-dienal Chemical compound CC\C=C\C=C\C=O SATICYYAWWYRAM-VNKDHWASSA-N 0.000 description 1
- UCTWMZQNUQWSLP-VIFPVBQESA-N (R)-adrenaline Chemical compound CNC[C@H](O)C1=CC=C(O)C(O)=C1 UCTWMZQNUQWSLP-VIFPVBQESA-N 0.000 description 1
- CZVXBFUKBZRMKR-JTQLQIEISA-N (R)-lavandulol Natural products CC(C)=CC[C@@H](CO)C(C)=C CZVXBFUKBZRMKR-JTQLQIEISA-N 0.000 description 1
- WUOACPNHFRMFPN-SECBINFHSA-N (S)-(-)-alpha-terpineol Chemical compound CC1=CC[C@@H](C(C)(C)O)CC1 WUOACPNHFRMFPN-SECBINFHSA-N 0.000 description 1
- BJEPYKJPYRNKOW-REOHCLBHSA-N (S)-malic acid Chemical compound OC(=O)[C@@H](O)CC(O)=O BJEPYKJPYRNKOW-REOHCLBHSA-N 0.000 description 1
- BTSIZIIPFNVMHF-ARJAWSKDSA-N (Z)-2-penten-1-ol Chemical compound CC\C=C/CO BTSIZIIPFNVMHF-ARJAWSKDSA-N 0.000 description 1
- 239000001586 (Z)-pent-2-en-1-ol Substances 0.000 description 1
- BHAHVSKDYRPNIR-SNAWJCMRSA-N (e)-dec-6-enal Chemical compound CCC\C=C\CCCCC=O BHAHVSKDYRPNIR-SNAWJCMRSA-N 0.000 description 1
- GUYIZQZWDFCUTA-UHFFFAOYSA-N (pentadecachlorophthalocyaninato(2-))-copper Chemical compound [Cu+2].N1=C([N-]2)C3=C(Cl)C(Cl)=C(Cl)C(Cl)=C3C2=NC(C2=C(Cl)C(Cl)=C(Cl)C(Cl)=C22)=NC2=NC(C2=C(Cl)C(Cl)=C(Cl)C(Cl)=C22)=NC2=NC2=C(C(Cl)=C(C(Cl)=C3)Cl)C3=C1[N-]2 GUYIZQZWDFCUTA-UHFFFAOYSA-N 0.000 description 1
- YYMCVDNIIFNDJK-XFQWXJFMSA-N (z)-1-(3-fluorophenyl)-n-[(z)-(3-fluorophenyl)methylideneamino]methanimine Chemical compound FC1=CC=CC(\C=N/N=C\C=2C=C(F)C=CC=2)=C1 YYMCVDNIIFNDJK-XFQWXJFMSA-N 0.000 description 1
- QMMJWQMCMRUYTG-UHFFFAOYSA-N 1,2,4,5-tetrachloro-3-(trifluoromethyl)benzene Chemical compound FC(F)(F)C1=C(Cl)C(Cl)=CC(Cl)=C1Cl QMMJWQMCMRUYTG-UHFFFAOYSA-N 0.000 description 1
- JCIIKRHCWVHVFF-UHFFFAOYSA-N 1,2,4-thiadiazol-5-amine;hydrochloride Chemical compound Cl.NC1=NC=NS1 JCIIKRHCWVHVFF-UHFFFAOYSA-N 0.000 description 1
- ZWVMLYRJXORSEP-UHFFFAOYSA-N 1,2,6-Hexanetriol Chemical compound OCCCCC(O)CO ZWVMLYRJXORSEP-UHFFFAOYSA-N 0.000 description 1
- WSLDOOZREJYCGB-UHFFFAOYSA-N 1,2-Dichloroethane Chemical compound ClCCCl WSLDOOZREJYCGB-UHFFFAOYSA-N 0.000 description 1
- KTZQTRPPVKQPFO-UHFFFAOYSA-N 1,2-benzoxazole Chemical compound C1=CC=C2C=NOC2=C1 KTZQTRPPVKQPFO-UHFFFAOYSA-N 0.000 description 1
- 150000005206 1,2-dihydroxybenzenes Chemical class 0.000 description 1
- JLIDRDJNLAWIKT-UHFFFAOYSA-N 1,2-dimethyl-3h-benzo[e]indole Chemical compound C1=CC=CC2=C(C(=C(C)N3)C)C3=CC=C21 JLIDRDJNLAWIKT-UHFFFAOYSA-N 0.000 description 1
- YRIZYWQGELRKNT-UHFFFAOYSA-N 1,3,5-trichloro-1,3,5-triazinane-2,4,6-trione Chemical compound ClN1C(=O)N(Cl)C(=O)N(Cl)C1=O YRIZYWQGELRKNT-UHFFFAOYSA-N 0.000 description 1
- BCMCBBGGLRIHSE-UHFFFAOYSA-N 1,3-benzoxazole Chemical compound C1=CC=C2OC=NC2=C1 BCMCBBGGLRIHSE-UHFFFAOYSA-N 0.000 description 1
- HHBCEKAWSILOOP-UHFFFAOYSA-N 1,3-dibromo-1,3,5-triazinane-2,4,6-trione Chemical compound BrN1C(=O)NC(=O)N(Br)C1=O HHBCEKAWSILOOP-UHFFFAOYSA-N 0.000 description 1
- KEQGZUUPPQEDPF-UHFFFAOYSA-N 1,3-dichloro-5,5-dimethylimidazolidine-2,4-dione Chemical compound CC1(C)N(Cl)C(=O)N(Cl)C1=O KEQGZUUPPQEDPF-UHFFFAOYSA-N 0.000 description 1
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- 150000005208 1,4-dihydroxybenzenes Chemical class 0.000 description 1
- LYPVKWMHGFMDPD-UHFFFAOYSA-N 1,5-diacetyl-1,3,5-triazinane-2,4-dione Chemical compound CC(=O)N1CN(C(C)=O)C(=O)NC1=O LYPVKWMHGFMDPD-UHFFFAOYSA-N 0.000 description 1
- RTZNGLQAICCIFI-UHFFFAOYSA-N 1-(2-methylprop-2-enoyloxy)propane-2-sulfonic acid Chemical compound OS(=O)(=O)C(C)COC(=O)C(C)=C RTZNGLQAICCIFI-UHFFFAOYSA-N 0.000 description 1
- IAUGBVWVWDTCJV-UHFFFAOYSA-N 1-(prop-2-enoylamino)propane-1-sulfonic acid Chemical compound CCC(S(O)(=O)=O)NC(=O)C=C IAUGBVWVWDTCJV-UHFFFAOYSA-N 0.000 description 1
- PWMWNFMRSKOCEY-UHFFFAOYSA-N 1-Phenyl-1,2-ethanediol Chemical compound OCC(O)C1=CC=CC=C1 PWMWNFMRSKOCEY-UHFFFAOYSA-N 0.000 description 1
- WCIQNYOXLZQQMU-UHFFFAOYSA-N 1-Phenylethyl propanoate Chemical compound CCC(=O)OC(C)C1=CC=CC=C1 WCIQNYOXLZQQMU-UHFFFAOYSA-N 0.000 description 1
- FEFQUIPMKBPKAR-UHFFFAOYSA-N 1-benzoylazepan-2-one Chemical compound C=1C=CC=CC=1C(=O)N1CCCCCC1=O FEFQUIPMKBPKAR-UHFFFAOYSA-N 0.000 description 1
- HNAGHMKIPMKKBB-UHFFFAOYSA-N 1-benzylpyrrolidine-3-carboxamide Chemical compound C1C(C(=O)N)CCN1CC1=CC=CC=C1 HNAGHMKIPMKKBB-UHFFFAOYSA-N 0.000 description 1
- DURPTKYDGMDSBL-UHFFFAOYSA-N 1-butoxybutane Chemical compound CCCCOCCCC DURPTKYDGMDSBL-UHFFFAOYSA-N 0.000 description 1
- JLBXCKSMESLGTJ-UHFFFAOYSA-N 1-ethoxypropan-1-ol Chemical compound CCOC(O)CC JLBXCKSMESLGTJ-UHFFFAOYSA-N 0.000 description 1
- 239000001074 1-methoxy-4-[(E)-prop-1-enyl]benzene Substances 0.000 description 1
- HZFQGYWRFABYSR-UHFFFAOYSA-N 1-methoxycyclohexene Chemical compound COC1=CCCCC1 HZFQGYWRFABYSR-UHFFFAOYSA-N 0.000 description 1
- GWUZGTSLKNTUPP-UHFFFAOYSA-N 1-methoxypentane-2-thiol Chemical compound CCCC(S)COC GWUZGTSLKNTUPP-UHFFFAOYSA-N 0.000 description 1
- UUFQTNFCRMXOAE-UHFFFAOYSA-N 1-methylmethylene Chemical compound C[CH] UUFQTNFCRMXOAE-UHFFFAOYSA-N 0.000 description 1
- GJOVHPKYFFGKCY-UHFFFAOYSA-N 1-nitroethylbenzene Chemical compound [O-][N+](=O)C(C)C1=CC=CC=C1 GJOVHPKYFFGKCY-UHFFFAOYSA-N 0.000 description 1
- IIZPXYDJLKNOIY-JXPKJXOSSA-N 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCC\C=C/C\C=C/C\C=C/C\C=C/CCCCC IIZPXYDJLKNOIY-JXPKJXOSSA-N 0.000 description 1
- OUIKUCSSAHOTPK-UHFFFAOYSA-N 1-sulfanylhexan-3-one Chemical compound CCCC(=O)CCS OUIKUCSSAHOTPK-UHFFFAOYSA-N 0.000 description 1
- FPIPGXGPPPQFEQ-UHFFFAOYSA-N 13-cis retinol Natural products OCC=C(C)C=CC=C(C)C=CC1=C(C)CCCC1(C)C FPIPGXGPPPQFEQ-UHFFFAOYSA-N 0.000 description 1
- HYZJCKYKOHLVJF-UHFFFAOYSA-N 1H-benzimidazole Chemical compound C1=CC=C2NC=NC2=C1 HYZJCKYKOHLVJF-UHFFFAOYSA-N 0.000 description 1
- LTMRRSWNXVJMBA-UHFFFAOYSA-L 2,2-diethylpropanedioate Chemical compound CCC(CC)(C([O-])=O)C([O-])=O LTMRRSWNXVJMBA-UHFFFAOYSA-L 0.000 description 1
- XFOQWQKDSMIPHT-UHFFFAOYSA-N 2,3-dichloro-6-(trifluoromethyl)pyridine Chemical compound FC(F)(F)C1=CC=C(Cl)C(Cl)=N1 XFOQWQKDSMIPHT-UHFFFAOYSA-N 0.000 description 1
- OGUJUYCURMHXHG-UHFFFAOYSA-N 2,3-dimethyl-5-(3-methylbutyl)pyrazine Chemical compound CC(C)CCC1=CN=C(C)C(C)=N1 OGUJUYCURMHXHG-UHFFFAOYSA-N 0.000 description 1
- LPTLVYCPUWKQHN-UHFFFAOYSA-N 2,3-dimethylocta-2,4-dienal Chemical compound CCCC=CC(C)=C(C)C=O LPTLVYCPUWKQHN-UHFFFAOYSA-N 0.000 description 1
- ZHHYXNZJDGDGPJ-UHFFFAOYSA-N 2,4-Nonadienal Natural products CCCCC=CC=CC=O ZHHYXNZJDGDGPJ-UHFFFAOYSA-N 0.000 description 1
- MPJQXAIKMSKXBI-UHFFFAOYSA-N 2,7,9,14-tetraoxa-1,8-diazabicyclo[6.6.2]hexadecane-3,6,10,13-tetrone Chemical compound C1CN2OC(=O)CCC(=O)ON1OC(=O)CCC(=O)O2 MPJQXAIKMSKXBI-UHFFFAOYSA-N 0.000 description 1
- DPERYGDXHLPNJO-UHFFFAOYSA-N 2,7-dioxabicyclo[4.1.0]hept-3-ene Chemical compound C1C=COC2OC12 DPERYGDXHLPNJO-UHFFFAOYSA-N 0.000 description 1
- CFPOJWPDQWJEMO-UHFFFAOYSA-N 2-(1,2-dicarboxyethoxy)butanedioic acid Chemical class OC(=O)CC(C(O)=O)OC(C(O)=O)CC(O)=O CFPOJWPDQWJEMO-UHFFFAOYSA-N 0.000 description 1
- HBNHCGDYYBMKJN-UHFFFAOYSA-N 2-(4-methylcyclohexyl)propan-2-yl acetate Chemical compound CC1CCC(C(C)(C)OC(C)=O)CC1 HBNHCGDYYBMKJN-UHFFFAOYSA-N 0.000 description 1
- AIIITCMZOKMJIM-UHFFFAOYSA-N 2-(prop-2-enoylamino)propane-2-sulfonic acid Chemical compound OS(=O)(=O)C(C)(C)NC(=O)C=C AIIITCMZOKMJIM-UHFFFAOYSA-N 0.000 description 1
- MOMFXATYAINJML-UHFFFAOYSA-N 2-Acetylthiazole Chemical compound CC(=O)C1=NC=CS1 MOMFXATYAINJML-UHFFFAOYSA-N 0.000 description 1
- FLUWAIIVLCVEKF-UHFFFAOYSA-N 2-Methyl-1-phenyl-2-propanyl acetate Chemical compound CC(=O)OC(C)(C)CC1=CC=CC=C1 FLUWAIIVLCVEKF-UHFFFAOYSA-N 0.000 description 1
- XHZPRMZZQOIPDS-UHFFFAOYSA-N 2-Methyl-2-[(1-oxo-2-propenyl)amino]-1-propanesulfonic acid Chemical compound OS(=O)(=O)CC(C)(C)NC(=O)C=C XHZPRMZZQOIPDS-UHFFFAOYSA-N 0.000 description 1
- FWLHAQYOFMQTHQ-UHFFFAOYSA-N 2-N-[8-[[8-(4-aminoanilino)-10-phenylphenazin-10-ium-2-yl]amino]-10-phenylphenazin-10-ium-2-yl]-8-N,10-diphenylphenazin-10-ium-2,8-diamine hydroxy-oxido-dioxochromium Chemical compound O[Cr]([O-])(=O)=O.O[Cr]([O-])(=O)=O.O[Cr]([O-])(=O)=O.Nc1ccc(Nc2ccc3nc4ccc(Nc5ccc6nc7ccc(Nc8ccc9nc%10ccc(Nc%11ccccc%11)cc%10[n+](-c%10ccccc%10)c9c8)cc7[n+](-c7ccccc7)c6c5)cc4[n+](-c4ccccc4)c3c2)cc1 FWLHAQYOFMQTHQ-UHFFFAOYSA-N 0.000 description 1
- QQZOPKMRPOGIEB-UHFFFAOYSA-N 2-Oxohexane Chemical compound CCCCC(C)=O QQZOPKMRPOGIEB-UHFFFAOYSA-N 0.000 description 1
- MJTPMXWJHPOWGH-UHFFFAOYSA-N 2-Phenoxyethyl isobutyrate Chemical compound CC(C)C(=O)OCCOC1=CC=CC=C1 MJTPMXWJHPOWGH-UHFFFAOYSA-N 0.000 description 1
- JDSQBDGCMUXRBM-UHFFFAOYSA-N 2-[2-(2-butoxypropoxy)propoxy]propan-1-ol Chemical compound CCCCOC(C)COC(C)COC(C)CO JDSQBDGCMUXRBM-UHFFFAOYSA-N 0.000 description 1
- AKWFJQNBHYVIPY-UHFFFAOYSA-N 2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-(2-hydroxyethoxy)ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethanol Chemical compound OCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCO AKWFJQNBHYVIPY-UHFFFAOYSA-N 0.000 description 1
- LRYZPFWEZHSTHD-HEFFAWAOSA-O 2-[[(e,2s,3r)-2-formamido-3-hydroxyoctadec-4-enoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium Chemical class CCCCCCCCCCCCC\C=C\[C@@H](O)[C@@H](NC=O)COP(O)(=O)OCC[N+](C)(C)C LRYZPFWEZHSTHD-HEFFAWAOSA-O 0.000 description 1
- IGJQUJNPMOYEJY-UHFFFAOYSA-N 2-acetylpyrrole Chemical compound CC(=O)C1=CC=CN1 IGJQUJNPMOYEJY-UHFFFAOYSA-N 0.000 description 1
- MSWZFWKMSRAUBD-IVMDWMLBSA-N 2-amino-2-deoxy-D-glucopyranose Chemical compound N[C@H]1C(O)O[C@H](CO)[C@@H](O)[C@@H]1O MSWZFWKMSRAUBD-IVMDWMLBSA-N 0.000 description 1
- IJVRPNIWWODHHA-UHFFFAOYSA-N 2-cyanoprop-2-enoic acid Chemical compound OC(=O)C(=C)C#N IJVRPNIWWODHHA-UHFFFAOYSA-N 0.000 description 1
- OKKFWHBZXCQKEM-UHFFFAOYSA-N 2-cyclododecyl-2,6,10,10-tetramethyl-1-oxacyclododeca-5,8-diene Chemical compound CC1=CCCC(C)(OCCC(C)(C)C=CC1)C1CCCCCCCCCCC1 OKKFWHBZXCQKEM-UHFFFAOYSA-N 0.000 description 1
- WREFNFTVBQKRGZ-UHFFFAOYSA-N 2-decylbutanediperoxoic acid Chemical compound CCCCCCCCCCC(C(=O)OO)CC(=O)OO WREFNFTVBQKRGZ-UHFFFAOYSA-N 0.000 description 1
- DVCHJFSLGUNEQZ-UHFFFAOYSA-M 2-ethenyl-2,6-dimethylhept-5-enoate Chemical compound CC(C)=CCCC(C)(C=C)C([O-])=O DVCHJFSLGUNEQZ-UHFFFAOYSA-M 0.000 description 1
- LHJPKLWGGMAUAN-UHFFFAOYSA-N 2-ethyl-2-methyl-butanoic acid Chemical compound CCC(C)(CC)C(O)=O LHJPKLWGGMAUAN-UHFFFAOYSA-N 0.000 description 1
- VQJIIFKECBZRSQ-UHFFFAOYSA-N 2-ethyl-2-methylheptanoic acid hex-2-enal Chemical compound C(CCCC)C(C(=O)O)(CC)C.C(C=CCCC)=O VQJIIFKECBZRSQ-UHFFFAOYSA-N 0.000 description 1
- WROUWQQRXUBECT-UHFFFAOYSA-N 2-ethylacrylic acid Chemical compound CCC(=C)C(O)=O WROUWQQRXUBECT-UHFFFAOYSA-N 0.000 description 1
- NTWBHJYRDKBGBR-UHFFFAOYSA-N 2-ethylbenzaldehyde Chemical compound CCC1=CC=CC=C1C=O NTWBHJYRDKBGBR-UHFFFAOYSA-N 0.000 description 1
- OSCJHTSDLYVCQC-UHFFFAOYSA-N 2-ethylhexyl 4-[[4-[4-(tert-butylcarbamoyl)anilino]-6-[4-(2-ethylhexoxycarbonyl)anilino]-1,3,5-triazin-2-yl]amino]benzoate Chemical compound C1=CC(C(=O)OCC(CC)CCCC)=CC=C1NC1=NC(NC=2C=CC(=CC=2)C(=O)NC(C)(C)C)=NC(NC=2C=CC(=CC=2)C(=O)OCC(CC)CCCC)=N1 OSCJHTSDLYVCQC-UHFFFAOYSA-N 0.000 description 1
- NRGGMCIBEHEAIL-UHFFFAOYSA-N 2-ethylpyridine Chemical compound CCC1=CC=CC=N1 NRGGMCIBEHEAIL-UHFFFAOYSA-N 0.000 description 1
- XMWLVXXYIYBETQ-UHFFFAOYSA-N 2-hydroxy-3-(2-methylprop-2-enoylamino)propane-1-sulfonic acid Chemical compound CC(=C)C(=O)NCC(O)CS(O)(=O)=O XMWLVXXYIYBETQ-UHFFFAOYSA-N 0.000 description 1
- KOQQKLZTINXBAS-UHFFFAOYSA-N 2-hydroxy-3-prop-2-enoxypropane-1-sulfonic acid Chemical compound OS(=O)(=O)CC(O)COCC=C KOQQKLZTINXBAS-UHFFFAOYSA-N 0.000 description 1
- CMPVUVUNJQERIT-UHFFFAOYSA-N 2-isobutylthiazole Chemical compound CC(C)CC1=NC=CS1 CMPVUVUNJQERIT-UHFFFAOYSA-N 0.000 description 1
- VSSGDAWBDKMCMI-UHFFFAOYSA-N 2-methyl-2-(2-methylprop-2-enoylamino)propane-1-sulfonic acid Chemical compound CC(=C)C(=O)NC(C)(C)CS(O)(=O)=O VSSGDAWBDKMCMI-UHFFFAOYSA-N 0.000 description 1
- PDFYGSKQBHFQMT-UHFFFAOYSA-N 2-methyl-3-pent-2-en-2-ylfuran Chemical compound CCC=C(C)C=1C=COC=1C PDFYGSKQBHFQMT-UHFFFAOYSA-N 0.000 description 1
- DTFKRVXLBCAIOZ-UHFFFAOYSA-N 2-methylanisole Chemical compound COC1=CC=CC=C1C DTFKRVXLBCAIOZ-UHFFFAOYSA-N 0.000 description 1
- LBLYYCQCTBFVLH-UHFFFAOYSA-M 2-methylbenzenesulfonate Chemical compound CC1=CC=CC=C1S([O-])(=O)=O LBLYYCQCTBFVLH-UHFFFAOYSA-M 0.000 description 1
- XHIUFYZDQBSEMF-UHFFFAOYSA-N 2-methylbutyl acetate Chemical compound CCC(C)COC(C)=O XHIUFYZDQBSEMF-UHFFFAOYSA-N 0.000 description 1
- AGBXYHCHUYARJY-UHFFFAOYSA-N 2-phenylethenesulfonic acid Chemical compound OS(=O)(=O)C=CC1=CC=CC=C1 AGBXYHCHUYARJY-UHFFFAOYSA-N 0.000 description 1
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 1
- ACNUVXZPCIABEX-UHFFFAOYSA-N 3',6'-diaminospiro[2-benzofuran-3,9'-xanthene]-1-one Chemical compound O1C(=O)C2=CC=CC=C2C21C1=CC=C(N)C=C1OC1=CC(N)=CC=C21 ACNUVXZPCIABEX-UHFFFAOYSA-N 0.000 description 1
- WNRBYZQFEBIUGD-UHFFFAOYSA-N 3,7(11)-Eudesmadiene Natural products C1CC=C(C)C2CC(=C(C)C)CCC21C WNRBYZQFEBIUGD-UHFFFAOYSA-N 0.000 description 1
- PDDMWQFBZZFOQR-UHFFFAOYSA-N 3,8-dimethyl-5-propan-2-yl-2,4a,5,6,7,8-hexahydronaphthalen-2-ol Chemical compound OC1C(C)=CC2C(C(C)C)CCC(C)C2=C1 PDDMWQFBZZFOQR-UHFFFAOYSA-N 0.000 description 1
- YNJSNEKCXVFDKW-UHFFFAOYSA-N 3-(5-amino-1h-indol-3-yl)-2-azaniumylpropanoate Chemical class C1=C(N)C=C2C(CC(N)C(O)=O)=CNC2=C1 YNJSNEKCXVFDKW-UHFFFAOYSA-N 0.000 description 1
- RUACIFFMSHZUKZ-UHFFFAOYSA-O 3-Acrylamidopropyl trimethylammonium Chemical class C[N+](C)(C)CCCNC(=O)C=C RUACIFFMSHZUKZ-UHFFFAOYSA-O 0.000 description 1
- ZCFOBLITZWHNNC-VOTSOKGWSA-N 3-Octen-2-one Chemical compound CCCC\C=C\C(C)=O ZCFOBLITZWHNNC-VOTSOKGWSA-N 0.000 description 1
- VAJVDSVGBWFCLW-UHFFFAOYSA-N 3-Phenyl-1-propanol Chemical compound OCCCC1=CC=CC=C1 VAJVDSVGBWFCLW-UHFFFAOYSA-N 0.000 description 1
- AGNTUZCMJBTHOG-UHFFFAOYSA-N 3-[3-(2,3-dihydroxypropoxy)-2-hydroxypropoxy]propane-1,2-diol Chemical compound OCC(O)COCC(O)COCC(O)CO AGNTUZCMJBTHOG-UHFFFAOYSA-N 0.000 description 1
- ZRKSKKQONQUFMR-UHFFFAOYSA-N 3-amino-2-methyl-3-oxoprop-1-ene-1-sulfonic acid Chemical compound NC(=O)C(C)=CS(O)(=O)=O ZRKSKKQONQUFMR-UHFFFAOYSA-N 0.000 description 1
- PFCHFHIRKBAQGU-UHFFFAOYSA-N 3-hexanone Chemical compound CCCC(=O)CC PFCHFHIRKBAQGU-UHFFFAOYSA-N 0.000 description 1
- HNVRRHSXBLFLIG-UHFFFAOYSA-N 3-hydroxy-3-methylbut-1-ene Chemical compound CC(C)(O)C=C HNVRRHSXBLFLIG-UHFFFAOYSA-N 0.000 description 1
- LUGUMNKTJCNNQN-UHFFFAOYSA-N 3-methoxy-4,5-dimethyl-3h-furan-2-one Chemical compound COC1C(C)=C(C)OC1=O LUGUMNKTJCNNQN-UHFFFAOYSA-N 0.000 description 1
- YYPNJNDODFVZLE-UHFFFAOYSA-N 3-methylbut-2-enoic acid Chemical compound CC(C)=CC(O)=O YYPNJNDODFVZLE-UHFFFAOYSA-N 0.000 description 1
- NYUTUWAFOUJLKI-UHFFFAOYSA-N 3-prop-2-enoyloxypropane-1-sulfonic acid Chemical compound OS(=O)(=O)CCCOC(=O)C=C NYUTUWAFOUJLKI-UHFFFAOYSA-N 0.000 description 1
- AJBZENLMTKDAEK-UHFFFAOYSA-N 3a,5a,5b,8,8,11a-hexamethyl-1-prop-1-en-2-yl-1,2,3,4,5,6,7,7a,9,10,11,11b,12,13,13a,13b-hexadecahydrocyclopenta[a]chrysene-4,9-diol Chemical compound CC12CCC(O)C(C)(C)C1CCC(C1(C)CC3O)(C)C2CCC1C1C3(C)CCC1C(=C)C AJBZENLMTKDAEK-UHFFFAOYSA-N 0.000 description 1
- GNKZMNRKLCTJAY-UHFFFAOYSA-N 4'-Methylacetophenone Chemical compound CC(=O)C1=CC=C(C)C=C1 GNKZMNRKLCTJAY-UHFFFAOYSA-N 0.000 description 1
- DRGHCRKOWMAZAO-UHFFFAOYSA-N 4-(Methylthio)-2-butanone Chemical compound CSCCC(C)=O DRGHCRKOWMAZAO-UHFFFAOYSA-N 0.000 description 1
- CWRKZMLUDFBPAO-SREVYHEPSA-N 4-Decenal Chemical compound CCCCC\C=C/CCC=O CWRKZMLUDFBPAO-SREVYHEPSA-N 0.000 description 1
- MSHFRERJPWKJFX-UHFFFAOYSA-N 4-Methoxybenzyl alcohol Chemical compound COC1=CC=C(CO)C=C1 MSHFRERJPWKJFX-UHFFFAOYSA-N 0.000 description 1
- VBIRCRCPHNUJAS-AFHBHXEDSA-N 4-[(1S,3aR,4S,6aR)-4-(1,3-benzodioxol-5-yl)tetrahydrofuro[3,4-c]furan-1-yl]-2-methoxyphenol Chemical compound C1=C(O)C(OC)=CC([C@@H]2[C@@H]3[C@@H]([C@H](OC3)C=3C=C4OCOC4=CC=3)CO2)=C1 VBIRCRCPHNUJAS-AFHBHXEDSA-N 0.000 description 1
- UNDXPKDBFOOQFC-UHFFFAOYSA-N 4-[2-nitro-4-(trifluoromethyl)phenyl]morpholine Chemical compound [O-][N+](=O)C1=CC(C(F)(F)F)=CC=C1N1CCOCC1 UNDXPKDBFOOQFC-UHFFFAOYSA-N 0.000 description 1
- FWMPKHMKIJDEMJ-UHFFFAOYSA-N 4-allyl-2,6-dimethoxyphenol Chemical compound COC1=CC(CC=C)=CC(OC)=C1O FWMPKHMKIJDEMJ-UHFFFAOYSA-N 0.000 description 1
- HCFAJYNVAYBARA-UHFFFAOYSA-N 4-heptanone Chemical compound CCCC(=O)CCC HCFAJYNVAYBARA-UHFFFAOYSA-N 0.000 description 1
- HIQIXEFWDLTDED-UHFFFAOYSA-N 4-hydroxy-1-piperidin-4-ylpyrrolidin-2-one Chemical compound O=C1CC(O)CN1C1CCNCC1 HIQIXEFWDLTDED-UHFFFAOYSA-N 0.000 description 1
- LLLVZDVNHNWSDS-UHFFFAOYSA-N 4-methylidene-3,5-dioxabicyclo[5.2.2]undeca-1(9),7,10-triene-2,6-dione Chemical compound C1(C2=CC=C(C(=O)OC(=C)O1)C=C2)=O LLLVZDVNHNWSDS-UHFFFAOYSA-N 0.000 description 1
- BLFGQHDZMHMURV-UHFFFAOYSA-N 4-oxo-2-phenylchromene-3-carboxylic acid Chemical class O1C2=CC=CC=C2C(=O)C(C(=O)O)=C1C1=CC=CC=C1 BLFGQHDZMHMURV-UHFFFAOYSA-N 0.000 description 1
- MBZRJSQZCBXRGK-UHFFFAOYSA-N 4-tert-Butylcyclohexyl acetate Chemical compound CC(=O)OC1CCC(C(C)(C)C)CC1 MBZRJSQZCBXRGK-UHFFFAOYSA-N 0.000 description 1
- UHPMCKVQTMMPCG-UHFFFAOYSA-N 5,8-dihydroxy-2-methoxy-6-methyl-7-(2-oxopropyl)naphthalene-1,4-dione Chemical compound CC1=C(CC(C)=O)C(O)=C2C(=O)C(OC)=CC(=O)C2=C1O UHPMCKVQTMMPCG-UHFFFAOYSA-N 0.000 description 1
- PXRKCOCTEMYUEG-UHFFFAOYSA-N 5-aminoisoindole-1,3-dione Chemical compound NC1=CC=C2C(=O)NC(=O)C2=C1 PXRKCOCTEMYUEG-UHFFFAOYSA-N 0.000 description 1
- REJHVSOVQBJEBF-UHFFFAOYSA-N 5-azaniumyl-2-[2-(4-azaniumyl-2-sulfonatophenyl)ethenyl]benzenesulfonate Chemical class OS(=O)(=O)C1=CC(N)=CC=C1C=CC1=CC=C(N)C=C1S(O)(=O)=O REJHVSOVQBJEBF-UHFFFAOYSA-N 0.000 description 1
- XSVSPKKXQGNHMD-UHFFFAOYSA-N 5-bromo-3-methyl-1,2-thiazole Chemical compound CC=1C=C(Br)SN=1 XSVSPKKXQGNHMD-UHFFFAOYSA-N 0.000 description 1
- RIAHASMJDOMQER-UHFFFAOYSA-N 5-ethyl-2-methyl-1h-imidazole Chemical compound CCC1=CN=C(C)N1 RIAHASMJDOMQER-UHFFFAOYSA-N 0.000 description 1
- QJYOEDXNPLUUAR-UHFFFAOYSA-N 5-ethyl-4-hydroxy-2-methylfuran-3-one Chemical compound CCC1=C(O)C(=O)C(C)O1 QJYOEDXNPLUUAR-UHFFFAOYSA-N 0.000 description 1
- OUDFNZMQXZILJD-UHFFFAOYSA-N 5-methyl-2-furaldehyde Chemical compound CC1=CC=C(C=O)O1 OUDFNZMQXZILJD-UHFFFAOYSA-N 0.000 description 1
- NHGDVOMUDAIFJQ-UHFFFAOYSA-N 5-methyl-2-propan-2-ylcyclohex-2-ene-1-thiol Chemical compound CC(C)C1=CCC(C)CC1S NHGDVOMUDAIFJQ-UHFFFAOYSA-N 0.000 description 1
- ODHCTXKNWHHXJC-VKHMYHEASA-N 5-oxo-L-proline Chemical compound OC(=O)[C@@H]1CCC(=O)N1 ODHCTXKNWHHXJC-VKHMYHEASA-N 0.000 description 1
- QIUKHGRFCPOINT-UHFFFAOYSA-N 6-(1,3-dioxoisoindol-2-yl)decaneperoxoic acid Chemical compound C1=CC=C2C(=O)N(C(CCCCC(=O)OO)CCCC)C(=O)C2=C1 QIUKHGRFCPOINT-UHFFFAOYSA-N 0.000 description 1
- YZRXRLLRSPQHDK-UHFFFAOYSA-N 6-Hexyltetrahydro-2H-pyran-2-one Chemical compound CCCCCCC1CCCC(=O)O1 YZRXRLLRSPQHDK-UHFFFAOYSA-N 0.000 description 1
- CJIJXIFQYOPWTF-UHFFFAOYSA-N 7-hydroxycoumarin Natural products O1C(=O)C=CC2=CC(O)=CC=C21 CJIJXIFQYOPWTF-UHFFFAOYSA-N 0.000 description 1
- ODRDTKMYQDXVGG-UHFFFAOYSA-N 8-methoxycoumarin Natural products C1=CC(=O)OC2=C1C=CC=C2OC ODRDTKMYQDXVGG-UHFFFAOYSA-N 0.000 description 1
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 1
- NVEQFIOZRFFVFW-UHFFFAOYSA-N 9-epi-beta-caryophyllene oxide Natural products C=C1CCC2OC2(C)CCC2C(C)(C)CC21 NVEQFIOZRFFVFW-UHFFFAOYSA-N 0.000 description 1
- GJCOSYZMQJWQCA-UHFFFAOYSA-N 9H-xanthene Chemical compound C1=CC=C2CC3=CC=CC=C3OC2=C1 GJCOSYZMQJWQCA-UHFFFAOYSA-N 0.000 description 1
- 241000218642 Abies Species 0.000 description 1
- 235000004507 Abies alba Nutrition 0.000 description 1
- 235000007173 Abies balsamea Nutrition 0.000 description 1
- 244000178606 Abies grandis Species 0.000 description 1
- 235000017894 Abies grandis Nutrition 0.000 description 1
- 240000000073 Achillea millefolium Species 0.000 description 1
- 235000007754 Achillea millefolium Nutrition 0.000 description 1
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 1
- ITYNGVSTWVVPIC-XGFWRYKXSA-N Alloaromadendrene Natural products C([C@@H]1[C@H]2C1(C)C)CC(=C)[C@@H]1[C@@H]2[C@H](C)CC1 ITYNGVSTWVVPIC-XGFWRYKXSA-N 0.000 description 1
- 239000005995 Aluminium silicate Substances 0.000 description 1
- 244000144730 Amygdalus persica Species 0.000 description 1
- 235000011446 Amygdalus persica Nutrition 0.000 description 1
- 239000004382 Amylase Substances 0.000 description 1
- 235000019737 Animal fat Nutrition 0.000 description 1
- 241000602336 Anthemis arvensis Species 0.000 description 1
- 244000105624 Arachis hypogaea Species 0.000 description 1
- 235000010777 Arachis hypogaea Nutrition 0.000 description 1
- 241000632917 Archangelica Species 0.000 description 1
- 239000004475 Arginine Substances 0.000 description 1
- 241000208983 Arnica Species 0.000 description 1
- 241000086254 Arnica montana Species 0.000 description 1
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Natural products OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 1
- 241000228245 Aspergillus niger Species 0.000 description 1
- 240000006439 Aspergillus oryzae Species 0.000 description 1
- 235000014469 Bacillus subtilis Nutrition 0.000 description 1
- 108091005658 Basic proteases Proteins 0.000 description 1
- OMPJBNCRMGITSC-UHFFFAOYSA-N Benzoylperoxide Chemical compound C=1C=CC=CC=1C(=O)OOC(=O)C1=CC=CC=C1 OMPJBNCRMGITSC-UHFFFAOYSA-N 0.000 description 1
- 101710130006 Beta-glucanase Proteins 0.000 description 1
- 108700038091 Beta-glucanases Proteins 0.000 description 1
- 241000722877 Borago Species 0.000 description 1
- 241000717739 Boswellia sacra Species 0.000 description 1
- 235000003717 Boswellia sacra Nutrition 0.000 description 1
- 235000012035 Boswellia serrata Nutrition 0.000 description 1
- 240000007551 Boswellia serrata Species 0.000 description 1
- 241000219198 Brassica Species 0.000 description 1
- 235000011331 Brassica Nutrition 0.000 description 1
- DPUOLQHDNGRHBS-UHFFFAOYSA-N Brassidinsaeure Natural products CCCCCCCCC=CCCCCCCCCCCCC(O)=O DPUOLQHDNGRHBS-UHFFFAOYSA-N 0.000 description 1
- 229910000906 Bronze Inorganic materials 0.000 description 1
- ZTQSAGDEMFDKMZ-UHFFFAOYSA-N Butyraldehyde Chemical compound CCCC=O ZTQSAGDEMFDKMZ-UHFFFAOYSA-N 0.000 description 1
- WJSLZXMQHNTOBA-UHFFFAOYSA-N C(CCC(=O)O)(=O)O.C(CCC(=O)O)(=O)O.C(CCC(=O)O)(=O)O.OCC(O)CO Chemical compound C(CCC(=O)O)(=O)O.C(CCC(=O)O)(=O)O.C(CCC(=O)O)(=O)O.OCC(O)CO WJSLZXMQHNTOBA-UHFFFAOYSA-N 0.000 description 1
- TYUMFBRFCPZVDT-UHFFFAOYSA-N C.CN(C)C.CNC(C)=N.CNC(C)=O.CNC1=NC(N)=NC(C)=N1 Chemical compound C.CN(C)C.CNC(C)=N.CNC(C)=O.CNC1=NC(N)=NC(C)=N1 TYUMFBRFCPZVDT-UHFFFAOYSA-N 0.000 description 1
- RTMBGDBBDQKNNZ-UHFFFAOYSA-L C.I. Acid Blue 3 Chemical compound [Ca+2].C1=CC(N(CC)CC)=CC=C1C(C=1C(=CC(=C(O)C=1)S([O-])(=O)=O)S([O-])(=O)=O)=C1C=CC(=[N+](CC)CC)C=C1.C1=CC(N(CC)CC)=CC=C1C(C=1C(=CC(=C(O)C=1)S([O-])(=O)=O)S([O-])(=O)=O)=C1C=CC(=[N+](CC)CC)C=C1 RTMBGDBBDQKNNZ-UHFFFAOYSA-L 0.000 description 1
- YDNKGFDKKRUKPY-JHOUSYSJSA-N C16 ceramide Natural products CCCCCCCCCCCCCCCC(=O)N[C@@H](CO)[C@H](O)C=CCCCCCCCCCCCCC YDNKGFDKKRUKPY-JHOUSYSJSA-N 0.000 description 1
- YBXWBNGAWLMYKA-UHFFFAOYSA-N C=CCCONC[N+](C)(C)C.[CH3-] Chemical compound C=CCCONC[N+](C)(C)C.[CH3-] YBXWBNGAWLMYKA-UHFFFAOYSA-N 0.000 description 1
- UJPHGHQQHJMTGT-UHFFFAOYSA-O C=CCC[NH+](C)CC=C.[CH3-] Chemical compound C=CCC[NH+](C)CC=C.[CH3-] UJPHGHQQHJMTGT-UHFFFAOYSA-O 0.000 description 1
- FAAHNQAYWKTLFD-UHFFFAOYSA-N CCC(C)N1CCCC1=O Chemical compound CCC(C)N1CCCC1=O FAAHNQAYWKTLFD-UHFFFAOYSA-N 0.000 description 1
- DIMANODVFLTHLN-UHFFFAOYSA-N CCCCCCCCC(C(=O)OO)NC(=O)C1=CC=CC=C1C(O)=O Chemical compound CCCCCCCCC(C(=O)OO)NC(=O)C1=CC=CC=C1C(O)=O DIMANODVFLTHLN-UHFFFAOYSA-N 0.000 description 1
- PGTJIOWQJWHTJJ-CHWSQXEVSA-N Calamenene Chemical compound C1=C(C)C=C2[C@@H](C(C)C)CC[C@@H](C)C2=C1 PGTJIOWQJWHTJJ-CHWSQXEVSA-N 0.000 description 1
- 229910021532 Calcite Inorganic materials 0.000 description 1
- BHPQYMZQTOCNFJ-UHFFFAOYSA-N Calcium cation Chemical compound [Ca+2] BHPQYMZQTOCNFJ-UHFFFAOYSA-N 0.000 description 1
- CBOCVOKPQGJKKJ-UHFFFAOYSA-L Calcium formate Chemical compound [Ca+2].[O-]C=O.[O-]C=O CBOCVOKPQGJKKJ-UHFFFAOYSA-L 0.000 description 1
- 235000003880 Calendula Nutrition 0.000 description 1
- 241000526900 Camellia oleifera Species 0.000 description 1
- 240000007436 Cananga odorata Species 0.000 description 1
- 244000025254 Cannabis sativa Species 0.000 description 1
- 235000008697 Cannabis sativa Nutrition 0.000 description 1
- RPRPDTXKGSIXMD-UHFFFAOYSA-N Caproic acid n-butyl ester Natural products CCCCCC(=O)OCCCC RPRPDTXKGSIXMD-UHFFFAOYSA-N 0.000 description 1
- 239000005635 Caprylic acid (CAS 124-07-2) Substances 0.000 description 1
- KXDHJXZQYSOELW-UHFFFAOYSA-N Carbamic acid Chemical class NC(O)=O KXDHJXZQYSOELW-UHFFFAOYSA-N 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 241000218459 Carteria Species 0.000 description 1
- 102000011632 Caseins Human genes 0.000 description 1
- 108010076119 Caseins Proteins 0.000 description 1
- 108010053835 Catalase Proteins 0.000 description 1
- 102000016938 Catalase Human genes 0.000 description 1
- 108010031396 Catechol oxidase Proteins 0.000 description 1
- 102000030523 Catechol oxidase Human genes 0.000 description 1
- 229920003043 Cellulose fiber Polymers 0.000 description 1
- RKWGIWYCVPQPMF-UHFFFAOYSA-N Chloropropamide Chemical compound CCCNC(=O)NS(=O)(=O)C1=CC=C(Cl)C=C1 RKWGIWYCVPQPMF-UHFFFAOYSA-N 0.000 description 1
- 244000223760 Cinnamomum zeylanicum Species 0.000 description 1
- JOZKFWLRHCDGJA-LLVKDONJSA-N Citronellyl acetate Natural products CC(=O)OCC[C@H](C)CCC=C(C)C JOZKFWLRHCDGJA-LLVKDONJSA-N 0.000 description 1
- 241000207199 Citrus Species 0.000 description 1
- 101800004637 Communis Proteins 0.000 description 1
- 241000640882 Condea Species 0.000 description 1
- VLXDPFLIRFYIME-GZBLMMOJSA-N Copaene Natural products C1C=C(C)[C@H]2[C@]3(C)CC[C@H](C(C)C)[C@H]2[C@@H]31 VLXDPFLIRFYIME-GZBLMMOJSA-N 0.000 description 1
- 241000016649 Copaifera officinalis Species 0.000 description 1
- 235000010919 Copernicia prunifera Nutrition 0.000 description 1
- 244000180278 Copernicia prunifera Species 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 235000007466 Corylus avellana Nutrition 0.000 description 1
- 240000007582 Corylus avellana Species 0.000 description 1
- 229920000742 Cotton Polymers 0.000 description 1
- COGPRPSWSKLKTF-UHFFFAOYSA-N Cubenol Natural products C1CC(C)=CC2C(C(C)C)CCC(C)C21O COGPRPSWSKLKTF-UHFFFAOYSA-N 0.000 description 1
- VMYXUZSZMNBRCN-AWEZNQCLSA-N Curcumene Natural products CC(C)=CCC[C@H](C)C1=CC=C(C)C=C1 VMYXUZSZMNBRCN-AWEZNQCLSA-N 0.000 description 1
- 239000001879 Curdlan Substances 0.000 description 1
- 229920002558 Curdlan Polymers 0.000 description 1
- 244000007835 Cyamopsis tetragonoloba Species 0.000 description 1
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 1
- ISOIDIYKQYJGMC-UHFFFAOYSA-N D-delta-Cadinol Natural products C1CC(C)(O)CC2C(C(C)C)CC=C(C)C21 ISOIDIYKQYJGMC-UHFFFAOYSA-N 0.000 description 1
- ZZZCUOFIHGPKAK-UHFFFAOYSA-N D-erythro-ascorbic acid Natural products OCC1OC(=O)C(O)=C1O ZZZCUOFIHGPKAK-UHFFFAOYSA-N 0.000 description 1
- WQZGKKKJIJFFOK-QTVWNMPRSA-N D-mannopyranose Chemical compound OC[C@H]1OC(O)[C@@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-QTVWNMPRSA-N 0.000 description 1
- XHXUANMFYXWVNG-UHFFFAOYSA-N D-menthyl acetate Natural products CC(C)C1CCC(C)CC1OC(C)=O XHXUANMFYXWVNG-UHFFFAOYSA-N 0.000 description 1
- SNPLKNRPJHDVJA-ZETCQYMHSA-N D-panthenol Chemical compound OCC(C)(C)[C@@H](O)C(=O)NCCCO SNPLKNRPJHDVJA-ZETCQYMHSA-N 0.000 description 1
- NOOLISFMXDJSKH-UHFFFAOYSA-N DL-menthol Natural products CC(C)C1CCC(C)CC1O NOOLISFMXDJSKH-UHFFFAOYSA-N 0.000 description 1
- DKMROQRQHGEIOW-UHFFFAOYSA-N Diethyl succinate Chemical compound CCOC(=O)CCC(=O)OCC DKMROQRQHGEIOW-UHFFFAOYSA-N 0.000 description 1
- TUSIZTVSUSBSQI-UHFFFAOYSA-N Dihydrocarveol acetate Chemical compound CC1CCC(C(C)=C)CC1OC(C)=O TUSIZTVSUSBSQI-UHFFFAOYSA-N 0.000 description 1
- ZDQWESQEGGJUCH-UHFFFAOYSA-N Diisopropyl adipate Chemical compound CC(C)OC(=O)CCCCC(=O)OC(C)C ZDQWESQEGGJUCH-UHFFFAOYSA-N 0.000 description 1
- LIKYNOPXHGPMIH-UHFFFAOYSA-N Dillapiole Chemical compound C=CCC1=C(OC)C(OC)=C2OCOC2=C1 LIKYNOPXHGPMIH-UHFFFAOYSA-N 0.000 description 1
- 102000016680 Dioxygenases Human genes 0.000 description 1
- 108010028143 Dioxygenases Proteins 0.000 description 1
- 108010083608 Durazym Proteins 0.000 description 1
- 102000016942 Elastin Human genes 0.000 description 1
- 108010014258 Elastin Proteins 0.000 description 1
- 101710121765 Endo-1,4-beta-xylanase Proteins 0.000 description 1
- 108010067770 Endopeptidase K Proteins 0.000 description 1
- 235000013830 Eruca Nutrition 0.000 description 1
- 241000801434 Eruca Species 0.000 description 1
- URXZXNYJPAJJOQ-UHFFFAOYSA-N Erucic acid Natural products CCCCCCC=CCCCCCCCCCCCC(O)=O URXZXNYJPAJJOQ-UHFFFAOYSA-N 0.000 description 1
- 239000004386 Erythritol Substances 0.000 description 1
- UNXHWFMMPAWVPI-UHFFFAOYSA-N Erythritol Natural products OCC(O)C(O)CO UNXHWFMMPAWVPI-UHFFFAOYSA-N 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- JAGZUIGGHGTFHO-UHFFFAOYSA-N Ethyl 3-phenylpropanoate Chemical compound CCOC(=O)CCC1=CC=CC=C1 JAGZUIGGHGTFHO-UHFFFAOYSA-N 0.000 description 1
- OFQRUTMGVBMTFQ-UHFFFAOYSA-N Ethyl 4-methylpentanoate Chemical compound CCOC(=O)CCC(C)C OFQRUTMGVBMTFQ-UHFFFAOYSA-N 0.000 description 1
- ICMAFTSLXCXHRK-UHFFFAOYSA-N Ethyl pentanoate Chemical compound CCCCC(=O)OCC ICMAFTSLXCXHRK-UHFFFAOYSA-N 0.000 description 1
- GYCKQBWUSACYIF-UHFFFAOYSA-N Ethyl salicylate Chemical compound CCOC(=O)C1=CC=CC=C1O GYCKQBWUSACYIF-UHFFFAOYSA-N 0.000 description 1
- IAFQYUQIAOWKSB-UHFFFAOYSA-N Ethyl undecanoate Chemical compound CCCCCCCCCCC(=O)OCC IAFQYUQIAOWKSB-UHFFFAOYSA-N 0.000 description 1
- FPVVYTCTZKCSOJ-UHFFFAOYSA-N Ethylene glycol distearate Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCCOC(=O)CCCCCCCCCCCCCCCCC FPVVYTCTZKCSOJ-UHFFFAOYSA-N 0.000 description 1
- WEEGYLXZBRQIMU-WAAGHKOSSA-N Eucalyptol Chemical compound C1C[C@H]2CC[C@]1(C)OC2(C)C WEEGYLXZBRQIMU-WAAGHKOSSA-N 0.000 description 1
- PSMFFFUWSMZAPB-UHFFFAOYSA-N Eukalyptol Natural products C1CC2CCC1(C)COCC2(C)C PSMFFFUWSMZAPB-UHFFFAOYSA-N 0.000 description 1
- BDAGIHXWWSANSR-UHFFFAOYSA-M Formate Chemical compound [O-]C=O BDAGIHXWWSANSR-UHFFFAOYSA-M 0.000 description 1
- HOXGZVUCAYFWGR-UHFFFAOYSA-N Fucoserratene Natural products C=CC=CC=CCC HOXGZVUCAYFWGR-UHFFFAOYSA-N 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- 241000223218 Fusarium Species 0.000 description 1
- 241000427940 Fusarium solani Species 0.000 description 1
- IAJILQKETJEXLJ-UHFFFAOYSA-N Galacturonsaeure Natural products O=CC(O)C(O)C(O)C(O)C(O)=O IAJILQKETJEXLJ-UHFFFAOYSA-N 0.000 description 1
- 102220644676 Galectin-related protein_D96L_mutation Human genes 0.000 description 1
- 241000193385 Geobacillus stearothermophilus Species 0.000 description 1
- SOUKTGNMIRUIQN-NTEUORMPSA-N Geranyl 3-methylbutanoate Chemical compound CC(C)CC(=O)OC\C=C(/C)CCC=C(C)C SOUKTGNMIRUIQN-NTEUORMPSA-N 0.000 description 1
- GAIBLDCXCZKKJE-YZJXYJLZSA-N Germacren D Chemical compound CC(C)C/1CC\C(C)=C\CCC(=C)\C=C\1 GAIBLDCXCZKKJE-YZJXYJLZSA-N 0.000 description 1
- 235000010469 Glycine max Nutrition 0.000 description 1
- TWVJWDMOZJXUID-SDDRHHMPSA-N Guaiol Chemical compound C1([C@H](CC[C@H](C2)C(C)(C)O)C)=C2[C@@H](C)CC1 TWVJWDMOZJXUID-SDDRHHMPSA-N 0.000 description 1
- 240000002045 Guettarda speciosa Species 0.000 description 1
- 235000001287 Guettarda speciosa Nutrition 0.000 description 1
- 235000019487 Hazelnut oil Nutrition 0.000 description 1
- 235000003222 Helianthus annuus Nutrition 0.000 description 1
- 244000020551 Helianthus annuus Species 0.000 description 1
- XMRKUJJDDKYUHV-UHFFFAOYSA-N Helminthogermacrene Natural products CC(=C)C1CCC(C)=CCCC(C)=CC1 XMRKUJJDDKYUHV-UHFFFAOYSA-N 0.000 description 1
- JPQHLIYIQARLQM-UHFFFAOYSA-N Heptyl butyrate Chemical compound CCCCCCCOC(=O)CCC JPQHLIYIQARLQM-UHFFFAOYSA-N 0.000 description 1
- SQUHHTBVTRBESD-UHFFFAOYSA-N Hexa-Ac-myo-Inositol Natural products CC(=O)OC1C(OC(C)=O)C(OC(C)=O)C(OC(C)=O)C(OC(C)=O)C1OC(C)=O SQUHHTBVTRBESD-UHFFFAOYSA-N 0.000 description 1
- XCXKZBWAKKPFCJ-UHFFFAOYSA-N Hexadecan-2-one Chemical compound CCCCCCCCCCCCCCC(C)=O XCXKZBWAKKPFCJ-UHFFFAOYSA-N 0.000 description 1
- ZJIQIJIQBTVTDY-UHFFFAOYSA-N Ho-trienol Natural products CC(=C)C=CCC(C)(O)C=C ZJIQIJIQBTVTDY-UHFFFAOYSA-N 0.000 description 1
- 241000223198 Humicola Species 0.000 description 1
- 241001480714 Humicola insolens Species 0.000 description 1
- 229920001479 Hydroxyethyl methyl cellulose Polymers 0.000 description 1
- 229920002153 Hydroxypropyl cellulose Polymers 0.000 description 1
- SHBUUTHKGIVMJT-UHFFFAOYSA-N Hydroxystearate Chemical compound CCCCCCCCCCCCCCCCCC(=O)OO SHBUUTHKGIVMJT-UHFFFAOYSA-N 0.000 description 1
- 235000017309 Hypericum perforatum Nutrition 0.000 description 1
- 244000141009 Hypericum perforatum Species 0.000 description 1
- 244000018716 Impatiens biflora Species 0.000 description 1
- BJIOGJUNALELMI-ONEGZZNKSA-N Isoeugenol Natural products COC1=CC(\C=C\C)=CC=C1O BJIOGJUNALELMI-ONEGZZNKSA-N 0.000 description 1
- HETCEOQFVDFGSY-UHFFFAOYSA-N Isopropenyl acetate Chemical compound CC(=C)OC(C)=O HETCEOQFVDFGSY-UHFFFAOYSA-N 0.000 description 1
- JSHDAORXSNJOBA-UHFFFAOYSA-N Isopropyl hexanoate Chemical compound CCCCCC(=O)OC(C)C JSHDAORXSNJOBA-UHFFFAOYSA-N 0.000 description 1
- HLHIVJRLODSUCI-ADEWGFFLSA-N Isopulegol acetate Chemical compound C[C@@H]1CC[C@@H](C(C)=C)[C@H](OC(C)=O)C1 HLHIVJRLODSUCI-ADEWGFFLSA-N 0.000 description 1
- 235000010254 Jasminum officinale Nutrition 0.000 description 1
- 240000005385 Jasminum sambac Species 0.000 description 1
- 235000009496 Juglans regia Nutrition 0.000 description 1
- 240000007049 Juglans regia Species 0.000 description 1
- 108010076876 Keratins Proteins 0.000 description 1
- 102000011782 Keratins Human genes 0.000 description 1
- 239000005909 Kieselgur Substances 0.000 description 1
- ODKSFYDXXFIFQN-BYPYZUCNSA-P L-argininium(2+) Chemical compound NC(=[NH2+])NCCC[C@H]([NH3+])C(O)=O ODKSFYDXXFIFQN-BYPYZUCNSA-P 0.000 description 1
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 1
- HNDVDQJCIGZPNO-YFKPBYRVSA-N L-histidine Chemical compound OC(=O)[C@@H](N)CC1=CN=CN1 HNDVDQJCIGZPNO-YFKPBYRVSA-N 0.000 description 1
- KDXKERNSBIXSRK-YFKPBYRVSA-N L-lysine Chemical compound NCCCC[C@H](N)C(O)=O KDXKERNSBIXSRK-YFKPBYRVSA-N 0.000 description 1
- 108010029541 Laccase Proteins 0.000 description 1
- 241001098499 Lanceolata Species 0.000 description 1
- 244000165082 Lavanda vera Species 0.000 description 1
- 235000010663 Lavandula angustifolia Nutrition 0.000 description 1
- 241000534594 Leucadendron Species 0.000 description 1
- GDBQQVLCIARPGH-UHFFFAOYSA-N Leupeptin Natural products CC(C)CC(NC(C)=O)C(=O)NC(CC(C)C)C(=O)NC(C=O)CCCN=C(N)N GDBQQVLCIARPGH-UHFFFAOYSA-N 0.000 description 1
- 235000021353 Lignoceric acid Nutrition 0.000 description 1
- CQXMAMUUWHYSIY-UHFFFAOYSA-N Lignoceric acid Natural products CCCCCCCCCCCCCCCCCCCCCCCC(=O)OCCC1=CC=C(O)C=C1 CQXMAMUUWHYSIY-UHFFFAOYSA-N 0.000 description 1
- 241000234269 Liliales Species 0.000 description 1
- 241000234435 Lilium Species 0.000 description 1
- CCEFMUBVSUDRLG-XNWIYYODSA-N Limonene-1,2-epoxide Chemical compound C1[C@H](C(=C)C)CCC2(C)OC21 CCEFMUBVSUDRLG-XNWIYYODSA-N 0.000 description 1
- GPVKUNYYWAKDRY-UHFFFAOYSA-N Linalooloxid Natural products CC(C)C1CCC(C)(C=C)O1 GPVKUNYYWAKDRY-UHFFFAOYSA-N 0.000 description 1
- JBVVONYMRFACPQ-UHFFFAOYSA-N Linalylformate Natural products CC(=C)CCCC(C)(OC=O)C=C JBVVONYMRFACPQ-UHFFFAOYSA-N 0.000 description 1
- NDGVBBGSPLJJRM-UHFFFAOYSA-N Linden ether Chemical compound C1CC(C)=CC2OCC(C)=C21 NDGVBBGSPLJJRM-UHFFFAOYSA-N 0.000 description 1
- 101710098554 Lipase B Proteins 0.000 description 1
- 108090001030 Lipoproteins Proteins 0.000 description 1
- 102000004895 Lipoproteins Human genes 0.000 description 1
- 108010048733 Lipozyme Proteins 0.000 description 1
- 235000012854 Litsea cubeba Nutrition 0.000 description 1
- 240000002262 Litsea cubeba Species 0.000 description 1
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 1
- 239000004472 Lysine Substances 0.000 description 1
- 229920002861 MOWIOL ® 3-83 Polymers 0.000 description 1
- 229920002858 MOWIOL ® 4-88 Polymers 0.000 description 1
- 235000018330 Macadamia integrifolia Nutrition 0.000 description 1
- 241000208473 Macadamia ternifolia Species 0.000 description 1
- 235000003800 Macadamia tetraphylla Nutrition 0.000 description 1
- 240000000912 Macadamia tetraphylla Species 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- SPAGIJMPHSUYSE-UHFFFAOYSA-N Magnesium peroxide Chemical compound [Mg+2].[O-][O-] SPAGIJMPHSUYSE-UHFFFAOYSA-N 0.000 description 1
- 229920002774 Maltodextrin Polymers 0.000 description 1
- 108010059896 Manganese peroxidase Proteins 0.000 description 1
- 244000042664 Matricaria chamomilla Species 0.000 description 1
- 235000007232 Matricaria chamomilla Nutrition 0.000 description 1
- WSTYNZDAOAEEKG-UHFFFAOYSA-N Mayol Natural products CC1=C(O)C(=O)C=C2C(CCC3(C4CC(C(CC4(CCC33C)C)=O)C)C)(C)C3=CC=C21 WSTYNZDAOAEEKG-UHFFFAOYSA-N 0.000 description 1
- 241000378467 Melaleuca Species 0.000 description 1
- 229920000877 Melamine resin Polymers 0.000 description 1
- 235000006679 Mentha X verticillata Nutrition 0.000 description 1
- 235000002899 Mentha suaveolens Nutrition 0.000 description 1
- 235000001636 Mentha x rotundifolia Nutrition 0.000 description 1
- GEWDNTWNSAZUDX-NRFYAWERSA-N Methyl epijasmonate Natural products CC\C=C/C[C@@H]1[C@H](CC(=O)OC)CCC1=O GEWDNTWNSAZUDX-NRFYAWERSA-N 0.000 description 1
- 239000005641 Methyl octanoate Substances 0.000 description 1
- 102000014171 Milk Proteins Human genes 0.000 description 1
- 108010011756 Milk Proteins Proteins 0.000 description 1
- TUNFSRHWOTWDNC-UHFFFAOYSA-N Myristic acid Natural products CCCCCCCCCCCCCC(O)=O TUNFSRHWOTWDNC-UHFFFAOYSA-N 0.000 description 1
- CMFWLOPIOWBYCM-UHFFFAOYSA-N N-Acetyl-2,3-dihydro-1H-pyrrole Chemical compound CC(=O)N1CCC=C1 CMFWLOPIOWBYCM-UHFFFAOYSA-N 0.000 description 1
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 1
- WHNWPMSKXPGLAX-UHFFFAOYSA-N N-Vinyl-2-pyrrolidone Chemical compound C=CN1CCCC1=O WHNWPMSKXPGLAX-UHFFFAOYSA-N 0.000 description 1
- CRJGESKKUOMBCT-VQTJNVASSA-N N-acetylsphinganine Chemical compound CCCCCCCCCCCCCCC[C@@H](O)[C@H](CO)NC(C)=O CRJGESKKUOMBCT-VQTJNVASSA-N 0.000 description 1
- 229910003766 Na2Si4O9 Inorganic materials 0.000 description 1
- GLZPCOQZEFWAFX-JXMROGBWSA-N Nerol Natural products CC(C)=CCC\C(C)=C\CO GLZPCOQZEFWAFX-JXMROGBWSA-N 0.000 description 1
- 235000016698 Nigella sativa Nutrition 0.000 description 1
- 244000090896 Nigella sativa Species 0.000 description 1
- 240000007817 Olea europaea Species 0.000 description 1
- 235000002725 Olea europaea Nutrition 0.000 description 1
- 239000005642 Oleic acid Substances 0.000 description 1
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- 108010064983 Ovomucin Proteins 0.000 description 1
- 239000004435 Oxo alcohol Substances 0.000 description 1
- 108090000417 Oxygenases Proteins 0.000 description 1
- 102000004020 Oxygenases Human genes 0.000 description 1
- 239000002033 PVDF binder Substances 0.000 description 1
- SJEYSFABYSGQBG-UHFFFAOYSA-M Patent blue Chemical compound [Na+].C1=CC(N(CC)CC)=CC=C1C(C=1C(=CC(=CC=1)S([O-])(=O)=O)S([O-])(=O)=O)=C1C=CC(=[N+](CC)CC)C=C1 SJEYSFABYSGQBG-UHFFFAOYSA-M 0.000 description 1
- 235000019483 Peanut oil Nutrition 0.000 description 1
- 108010029182 Pectin lyase Proteins 0.000 description 1
- CYTYCFOTNPOANT-UHFFFAOYSA-N Perchloroethylene Chemical compound ClC(Cl)=C(Cl)Cl CYTYCFOTNPOANT-UHFFFAOYSA-N 0.000 description 1
- 108700020962 Peroxidase Proteins 0.000 description 1
- 102000003992 Peroxidases Human genes 0.000 description 1
- 244000025272 Persea americana Species 0.000 description 1
- 235000008673 Persea americana Nutrition 0.000 description 1
- 241000199919 Phaeophyceae Species 0.000 description 1
- VONGZNXBKCOUHB-UHFFFAOYSA-N Phenylmethyl butanoate Chemical compound CCCC(=O)OCC1=CC=CC=C1 VONGZNXBKCOUHB-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- BLUHKGOSFDHHGX-UHFFFAOYSA-N Phytol Natural products CC(C)CCCC(C)CCCC(C)CCCC(C)C=CO BLUHKGOSFDHHGX-UHFFFAOYSA-N 0.000 description 1
- 235000008331 Pinus X rigitaeda Nutrition 0.000 description 1
- 241000018646 Pinus brutia Species 0.000 description 1
- 235000011613 Pinus brutia Nutrition 0.000 description 1
- 235000010582 Pisum sativum Nutrition 0.000 description 1
- 240000004713 Pisum sativum Species 0.000 description 1
- 235000010503 Plantago lanceolata Nutrition 0.000 description 1
- 244000239204 Plantago lanceolata Species 0.000 description 1
- 229920002845 Poly(methacrylic acid) Polymers 0.000 description 1
- 229920000691 Poly[bis(2-chloroethyl) ether-alt-1,3-bis[3-(dimethylamino)propyl]urea] Polymers 0.000 description 1
- 229920000805 Polyaspartic acid Polymers 0.000 description 1
- 229920002873 Polyethylenimine Polymers 0.000 description 1
- 108010059820 Polygalacturonase Proteins 0.000 description 1
- 229920002367 Polyisobutene Polymers 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 241000748228 Porophyllum gracile Species 0.000 description 1
- 108010009736 Protein Hydrolysates Proteins 0.000 description 1
- 235000009827 Prunus armeniaca Nutrition 0.000 description 1
- 244000018633 Prunus armeniaca Species 0.000 description 1
- 240000005809 Prunus persica Species 0.000 description 1
- 235000006040 Prunus persica var persica Nutrition 0.000 description 1
- 241000589516 Pseudomonas Species 0.000 description 1
- 241000589755 Pseudomonas mendocina Species 0.000 description 1
- 101000968491 Pseudomonas sp. (strain 109) Triacylglycerol lipase Proteins 0.000 description 1
- WTARULDDTDQWMU-UHFFFAOYSA-N Pseudopinene Natural products C1C2C(C)(C)C1CCC2=C WTARULDDTDQWMU-UHFFFAOYSA-N 0.000 description 1
- 239000004373 Pullulan Substances 0.000 description 1
- 229920001218 Pullulan Polymers 0.000 description 1
- ODHCTXKNWHHXJC-GSVOUGTGSA-N Pyroglutamic acid Natural products OC(=O)[C@H]1CCC(=O)N1 ODHCTXKNWHHXJC-GSVOUGTGSA-N 0.000 description 1
- WNVCMFHPRIBNCW-UHFFFAOYSA-N Quercuslactone a Chemical compound CCCCC1OC(=O)CC1C WNVCMFHPRIBNCW-UHFFFAOYSA-N 0.000 description 1
- 235000019484 Rapeseed oil Nutrition 0.000 description 1
- 240000000528 Ricinus communis Species 0.000 description 1
- 235000004443 Ricinus communis Nutrition 0.000 description 1
- 241001292348 Salipaludibacillus agaradhaerens Species 0.000 description 1
- 244000272264 Saussurea lappa Species 0.000 description 1
- 235000006784 Saussurea lappa Nutrition 0.000 description 1
- 229910008051 Si-OH Inorganic materials 0.000 description 1
- 235000004433 Simmondsia californica Nutrition 0.000 description 1
- 244000044822 Simmondsia californica Species 0.000 description 1
- 229910006358 Si—OH Inorganic materials 0.000 description 1
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 1
- 229920000142 Sodium polycarboxylate Polymers 0.000 description 1
- ABBQHOQBGMUPJH-UHFFFAOYSA-M Sodium salicylate Chemical compound [Na+].OC1=CC=CC=C1C([O-])=O ABBQHOQBGMUPJH-UHFFFAOYSA-M 0.000 description 1
- 235000002595 Solanum tuberosum Nutrition 0.000 description 1
- 244000061456 Solanum tuberosum Species 0.000 description 1
- 239000004163 Spermaceti wax Substances 0.000 description 1
- 229930182558 Sterol Natural products 0.000 description 1
- 241000187747 Streptomyces Species 0.000 description 1
- 239000004870 Styrax Substances 0.000 description 1
- 108090000787 Subtilisin Proteins 0.000 description 1
- 101710135785 Subtilisin-like protease Proteins 0.000 description 1
- 235000019486 Sunflower oil Nutrition 0.000 description 1
- GIOSSFCGQAGYSG-UHFFFAOYSA-N T-Muurolol Natural products CC(C)C1CCC(C)(O)C2CCC=CC12 GIOSSFCGQAGYSG-UHFFFAOYSA-N 0.000 description 1
- 240000000785 Tagetes erecta Species 0.000 description 1
- 235000012311 Tagetes erecta Nutrition 0.000 description 1
- 235000004452 Tagetes patula Nutrition 0.000 description 1
- MOYAFQVGZZPNRA-UHFFFAOYSA-N Terpinolene Chemical compound CC(C)=C1CCC(C)=CC1 MOYAFQVGZZPNRA-UHFFFAOYSA-N 0.000 description 1
- HNZBNQYXWOLKBA-UHFFFAOYSA-N Tetrahydrofarnesol Natural products CC(C)CCCC(C)CCCC(C)=CCO HNZBNQYXWOLKBA-UHFFFAOYSA-N 0.000 description 1
- 241001122767 Theaceae Species 0.000 description 1
- HDTRYLNUVZCQOY-WSWWMNSNSA-N Trehalose Natural products O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 HDTRYLNUVZCQOY-WSWWMNSNSA-N 0.000 description 1
- XSTXAVWGXDQKEL-UHFFFAOYSA-N Trichloroethylene Chemical compound ClC=C(Cl)Cl XSTXAVWGXDQKEL-UHFFFAOYSA-N 0.000 description 1
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 1
- WGLPBDUCMAPZCE-UHFFFAOYSA-N Trioxochromium Chemical compound O=[Cr](=O)=O WGLPBDUCMAPZCE-UHFFFAOYSA-N 0.000 description 1
- 244000098338 Triticum aestivum Species 0.000 description 1
- 102000003425 Tyrosinase Human genes 0.000 description 1
- 108060008724 Tyrosinase Proteins 0.000 description 1
- LEHOTFFKMJEONL-UHFFFAOYSA-N Uric Acid Chemical compound N1C(=O)NC(=O)C2=C1NC(=O)N2 LEHOTFFKMJEONL-UHFFFAOYSA-N 0.000 description 1
- TVWHNULVHGKJHS-UHFFFAOYSA-N Uric acid Natural products N1C(=O)NC(=O)C2NC(=O)NC21 TVWHNULVHGKJHS-UHFFFAOYSA-N 0.000 description 1
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 1
- 229930003268 Vitamin C Natural products 0.000 description 1
- 235000014787 Vitis vinifera Nutrition 0.000 description 1
- 240000006365 Vitis vinifera Species 0.000 description 1
- 229920004482 WACKER® Polymers 0.000 description 1
- 235000019498 Walnut oil Nutrition 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- TVXBFESIOXBWNM-UHFFFAOYSA-N Xylitol Natural products OCCC(O)C(O)C(O)CCO TVXBFESIOXBWNM-UHFFFAOYSA-N 0.000 description 1
- 235000006886 Zingiber officinale Nutrition 0.000 description 1
- 244000273928 Zingiber officinale Species 0.000 description 1
- NJSSICCENMLTKO-HRCBOCMUSA-N [(1r,2s,4r,5r)-3-hydroxy-4-(4-methylphenyl)sulfonyloxy-6,8-dioxabicyclo[3.2.1]octan-2-yl] 4-methylbenzenesulfonate Chemical compound C1=CC(C)=CC=C1S(=O)(=O)O[C@H]1C(O)[C@@H](OS(=O)(=O)C=2C=CC(C)=CC=2)[C@@H]2OC[C@H]1O2 NJSSICCENMLTKO-HRCBOCMUSA-N 0.000 description 1
- FAFMZORPAAGQFV-BREBYQMCSA-N [(1r,3r,4r)-4,7,7-trimethyl-3-bicyclo[2.2.1]heptanyl] propanoate Chemical compound C1C[C@@]2(C)[C@H](OC(=O)CC)C[C@@H]1C2(C)C FAFMZORPAAGQFV-BREBYQMCSA-N 0.000 description 1
- JBBRZDLNVILTDL-XNTGVSEISA-N [(3s,8s,9s,10r,13r,14s,17r)-10,13-dimethyl-17-[(2r)-6-methylheptan-2-yl]-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1h-cyclopenta[a]phenanthren-3-yl] 16-methylheptadecanoate Chemical compound C([C@@H]12)C[C@]3(C)[C@@H]([C@H](C)CCCC(C)C)CC[C@H]3[C@@H]1CC=C1[C@]2(C)CC[C@H](OC(=O)CCCCCCCCCCCCCCC(C)C)C1 JBBRZDLNVILTDL-XNTGVSEISA-N 0.000 description 1
- VHSPRUFVQLFKKA-UHFFFAOYSA-N [Cl-].CC=CC(=O)NCCC[N+](C)(C)C Chemical compound [Cl-].CC=CC(=O)NCCC[N+](C)(C)C VHSPRUFVQLFKKA-UHFFFAOYSA-N 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 125000002777 acetyl group Chemical group [H]C([H])([H])C(*)=O 0.000 description 1
- 238000005903 acid hydrolysis reaction Methods 0.000 description 1
- ODHCTXKNWHHXJC-UHFFFAOYSA-N acide pyroglutamique Natural products OC(=O)C1CCC(=O)N1 ODHCTXKNWHHXJC-UHFFFAOYSA-N 0.000 description 1
- XECAHXYUAAWDEL-UHFFFAOYSA-N acrylonitrile butadiene styrene Chemical compound C=CC=C.C=CC#N.C=CC1=CC=CC=C1 XECAHXYUAAWDEL-UHFFFAOYSA-N 0.000 description 1
- 229920000122 acrylonitrile butadiene styrene Polymers 0.000 description 1
- 239000004676 acrylonitrile butadiene styrene Substances 0.000 description 1
- 230000010933 acylation Effects 0.000 description 1
- 238000005917 acylation reaction Methods 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- IAJILQKETJEXLJ-QTBDOELSSA-N aldehydo-D-glucuronic acid Chemical compound O=C[C@H](O)[C@@H](O)[C@H](O)[C@H](O)C(O)=O IAJILQKETJEXLJ-QTBDOELSSA-N 0.000 description 1
- 150000007933 aliphatic carboxylic acids Chemical class 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- 238000005904 alkaline hydrolysis reaction Methods 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- 150000004703 alkoxides Chemical class 0.000 description 1
- 150000003973 alkyl amines Chemical class 0.000 description 1
- 125000003282 alkyl amino group Chemical group 0.000 description 1
- 150000008055 alkyl aryl sulfonates Chemical class 0.000 description 1
- 229940045714 alkyl sulfonate alkylating agent Drugs 0.000 description 1
- 150000008052 alkyl sulfonates Chemical class 0.000 description 1
- 239000002168 alkylating agent Substances 0.000 description 1
- 229940100198 alkylating agent Drugs 0.000 description 1
- BOTWFXYSPFMFNR-OALUTQOASA-N all-rac-phytol Natural products CC(C)CCC[C@H](C)CCC[C@H](C)CCCC(C)=CCO BOTWFXYSPFMFNR-OALUTQOASA-N 0.000 description 1
- CUXYLFPMQMFGPL-SUTYWZMXSA-N all-trans-octadeca-9,11,13-trienoic acid Chemical compound CCCC\C=C\C=C\C=C\CCCCCCCC(O)=O CUXYLFPMQMFGPL-SUTYWZMXSA-N 0.000 description 1
- 235000020224 almond Nutrition 0.000 description 1
- 235000014104 aloe vera supplement Nutrition 0.000 description 1
- 229940061720 alpha hydroxy acid Drugs 0.000 description 1
- 150000001280 alpha hydroxy acids Chemical class 0.000 description 1
- HDTRYLNUVZCQOY-LIZSDCNHSA-N alpha,alpha-trehalose Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 HDTRYLNUVZCQOY-LIZSDCNHSA-N 0.000 description 1
- RGZSQWQPBWRIAQ-LSDHHAIUSA-N alpha-Bisabolol Natural products CC(C)=CCC[C@@](C)(O)[C@@H]1CCC(C)=CC1 RGZSQWQPBWRIAQ-LSDHHAIUSA-N 0.000 description 1
- NBZANZVJRKXVBH-GYDPHNCVSA-N alpha-Cryptoxanthin Natural products O[C@H]1CC(C)(C)C(/C=C/C(=C\C=C\C(=C/C=C/C=C(\C=C\C=C(/C=C/[C@H]2C(C)=CCCC2(C)C)\C)/C)\C)/C)=C(C)C1 NBZANZVJRKXVBH-GYDPHNCVSA-N 0.000 description 1
- WQZGKKKJIJFFOK-PHYPRBDBSA-N alpha-D-galactose Chemical compound OC[C@H]1O[C@H](O)[C@H](O)[C@@H](O)[C@H]1O WQZGKKKJIJFFOK-PHYPRBDBSA-N 0.000 description 1
- XCPQUQHBVVXMRQ-UHFFFAOYSA-N alpha-Fenchene Natural products C1CC2C(=C)CC1C2(C)C XCPQUQHBVVXMRQ-UHFFFAOYSA-N 0.000 description 1
- QMAYBMKBYCGXDH-RRFJBIMHSA-N alpha-Muurolene Natural products C1CC(C)=C[C@@H]2[C@H](C(C)C)CC=C(C)[C@H]21 QMAYBMKBYCGXDH-RRFJBIMHSA-N 0.000 description 1
- OVKDFILSBMEKLT-UHFFFAOYSA-N alpha-Terpineol Natural products CC(=C)C1(O)CCC(C)=CC1 OVKDFILSBMEKLT-UHFFFAOYSA-N 0.000 description 1
- FAIMMSRDTUMTQR-UHFFFAOYSA-N alpha-bourbonen Natural products C1C=C(C)C2C3C(C(C)C)CCC3(C)C21 FAIMMSRDTUMTQR-UHFFFAOYSA-N 0.000 description 1
- PFXFABJPDNHACA-UHFFFAOYSA-N alpha-copaene Natural products CC(C)C1C2CC(=CCC2C3(C)CC13)C PFXFABJPDNHACA-UHFFFAOYSA-N 0.000 description 1
- 229930016183 alpha-curcumene Natural products 0.000 description 1
- FJNHFUOCVLERHW-UHFFFAOYSA-N alpha-gurjunene Natural products CC1CCC2C(C3=CCCC13)C2(C)C FJNHFUOCVLERHW-UHFFFAOYSA-N 0.000 description 1
- PSVBPLKYDMHILE-UHFFFAOYSA-N alpha-humulene Natural products CC1=C/CC(C)(C)C=CCC=CCC1 PSVBPLKYDMHILE-UHFFFAOYSA-N 0.000 description 1
- BJEPYKJPYRNKOW-UHFFFAOYSA-N alpha-hydroxysuccinic acid Natural products OC(=O)C(O)CC(O)=O BJEPYKJPYRNKOW-UHFFFAOYSA-N 0.000 description 1
- UZFLPKAIBPNNCA-UHFFFAOYSA-N alpha-ionone Natural products CC(=O)C=CC1C(C)=CCCC1(C)C UZFLPKAIBPNNCA-UHFFFAOYSA-N 0.000 description 1
- DTOSIQBPPRVQHS-PDBXOOCHSA-N alpha-linolenic acid Chemical compound CC\C=C/C\C=C/C\C=C/CCCCCCCC(O)=O DTOSIQBPPRVQHS-PDBXOOCHSA-N 0.000 description 1
- 235000020661 alpha-linolenic acid Nutrition 0.000 description 1
- QUMXDOLUJCHOAY-UHFFFAOYSA-N alpha-methylbenzyl acetate Natural products CC(=O)OC(C)C1=CC=CC=C1 QUMXDOLUJCHOAY-UHFFFAOYSA-N 0.000 description 1
- QMAYBMKBYCGXDH-ZNMIVQPWSA-N alpha-muurolene Chemical compound C1CC(C)=C[C@H]2[C@H](C(C)C)CC=C(C)[C@H]21 QMAYBMKBYCGXDH-ZNMIVQPWSA-N 0.000 description 1
- OGLDWXZKYODSOB-SNVBAGLBSA-N alpha-phellandrene Natural products CC(C)[C@H]1CC=C(C)C=C1 OGLDWXZKYODSOB-SNVBAGLBSA-N 0.000 description 1
- MVNCAPSFBDBCGF-UHFFFAOYSA-N alpha-pinene Natural products CC1=CCC23C1CC2C3(C)C MVNCAPSFBDBCGF-UHFFFAOYSA-N 0.000 description 1
- OZQAPQSEYFAMCY-UHFFFAOYSA-N alpha-selinene Natural products C1CC=C(C)C2CC(C(=C)C)CCC21C OZQAPQSEYFAMCY-UHFFFAOYSA-N 0.000 description 1
- WUOACPNHFRMFPN-UHFFFAOYSA-N alpha-terpineol Chemical compound CC1=CCC(C(C)(C)O)CC1 WUOACPNHFRMFPN-UHFFFAOYSA-N 0.000 description 1
- 229940088601 alpha-terpineol Drugs 0.000 description 1
- OFTGWWXCYHSXPO-UHFFFAOYSA-N alpha-zingiberene Natural products CC(CCC=C(C)C)C1C=CC(C)C=C1 OFTGWWXCYHSXPO-UHFFFAOYSA-N 0.000 description 1
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 235000012211 aluminium silicate Nutrition 0.000 description 1
- 150000001414 amino alcohols Chemical class 0.000 description 1
- 125000004103 aminoalkyl group Chemical group 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 235000021120 animal protein Nutrition 0.000 description 1
- 239000012164 animal wax Substances 0.000 description 1
- 230000000845 anti-microbial effect Effects 0.000 description 1
- 230000002421 anti-septic effect Effects 0.000 description 1
- 230000002579 anti-swelling effect Effects 0.000 description 1
- 239000002518 antifoaming agent Substances 0.000 description 1
- GHPGOEFPKIHBNM-UHFFFAOYSA-N antimony(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Sb+3].[Sb+3] GHPGOEFPKIHBNM-UHFFFAOYSA-N 0.000 description 1
- 239000012861 aquazol Substances 0.000 description 1
- 229920006187 aquazol Polymers 0.000 description 1
- 239000003125 aqueous solvent Substances 0.000 description 1
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 1
- 150000004982 aromatic amines Chemical class 0.000 description 1
- 150000001491 aromatic compounds Chemical class 0.000 description 1
- 235000003704 aspartic acid Nutrition 0.000 description 1
- IRERQBUNZFJFGC-UHFFFAOYSA-L azure blue Chemical compound [Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Al+3].[Al+3].[Al+3].[Al+3].[Al+3].[Al+3].[S-]S[S-].[O-][Si]([O-])([O-])[O-].[O-][Si]([O-])([O-])[O-].[O-][Si]([O-])([O-])[O-].[O-][Si]([O-])([O-])[O-].[O-][Si]([O-])([O-])[O-].[O-][Si]([O-])([O-])[O-] IRERQBUNZFJFGC-UHFFFAOYSA-L 0.000 description 1
- 239000003899 bactericide agent Substances 0.000 description 1
- 239000010428 baryte Substances 0.000 description 1
- 229910052601 baryte Inorganic materials 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 239000002199 base oil Substances 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 229960000686 benzalkonium chloride Drugs 0.000 description 1
- DULCUDSUACXJJC-UHFFFAOYSA-N benzeneacetic acid ethyl ester Natural products CCOC(=O)CC1=CC=CC=C1 DULCUDSUACXJJC-UHFFFAOYSA-N 0.000 description 1
- LZCZIHQBSCVGRD-UHFFFAOYSA-N benzenecarboximidamide;hydron;chloride Chemical compound [Cl-].NC(=[NH2+])C1=CC=CC=C1 LZCZIHQBSCVGRD-UHFFFAOYSA-N 0.000 description 1
- ZYGHJZDHTFUPRJ-UHFFFAOYSA-N benzo-alpha-pyrone Natural products C1=CC=C2OC(=O)C=CC2=C1 ZYGHJZDHTFUPRJ-UHFFFAOYSA-N 0.000 description 1
- 150000008366 benzophenones Chemical class 0.000 description 1
- 150000001565 benzotriazoles Chemical class 0.000 description 1
- 235000019400 benzoyl peroxide Nutrition 0.000 description 1
- 229960002903 benzyl benzoate Drugs 0.000 description 1
- FSRZGYRCMPZNJF-UHFFFAOYSA-N beta-Cubebene Natural products C12C(C(C)C)CCC(C)C32C1C(=C)CC3 FSRZGYRCMPZNJF-UHFFFAOYSA-N 0.000 description 1
- MSWZFWKMSRAUBD-QZABAPFNSA-N beta-D-glucosamine Chemical compound N[C@H]1[C@H](O)O[C@H](CO)[C@@H](O)[C@@H]1O MSWZFWKMSRAUBD-QZABAPFNSA-N 0.000 description 1
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 description 1
- NPNUFJAVOOONJE-UHFFFAOYSA-N beta-cariophyllene Natural products C1CC(C)=CCCC(=C)C2CC(C)(C)C21 NPNUFJAVOOONJE-UHFFFAOYSA-N 0.000 description 1
- FSRZGYRCMPZNJF-KHMAMNHCSA-N beta-cubebene Chemical compound CC(C)[C@@H]([C@H]12)CC[C@@H](C)[C@]32[C@@H]1C(=C)CC3 FSRZGYRCMPZNJF-KHMAMNHCSA-N 0.000 description 1
- POIARNZEYGURDG-FNORWQNLSA-N beta-damascenone Chemical compound C\C=C\C(=O)C1=C(C)C=CCC1(C)C POIARNZEYGURDG-FNORWQNLSA-N 0.000 description 1
- YOVSPTNQHMDJAG-UHFFFAOYSA-N beta-helmiscapene Natural products C1CCC(=C)C2CC(C(=C)C)CCC21C YOVSPTNQHMDJAG-UHFFFAOYSA-N 0.000 description 1
- LFJQCDVYDGGFCH-UHFFFAOYSA-N beta-phellandrene Natural products CC(C)C1CCC(=C)C=C1 LFJQCDVYDGGFCH-UHFFFAOYSA-N 0.000 description 1
- 229930006722 beta-pinene Natural products 0.000 description 1
- PHWISBHSBNDZDX-LSDHHAIUSA-N beta-sesquiphellandrene Chemical compound CC(C)=CCC[C@H](C)[C@H]1CCC(=C)C=C1 PHWISBHSBNDZDX-LSDHHAIUSA-N 0.000 description 1
- NOPLRNXKHZRXHT-FBXUGWQNSA-N beta-sinensal Natural products O=C/C(=C\CC/C(=C\CCC(C=C)=C)/C)/C NOPLRNXKHZRXHT-FBXUGWQNSA-N 0.000 description 1
- 229920002988 biodegradable polymer Polymers 0.000 description 1
- 239000004621 biodegradable polymer Substances 0.000 description 1
- 238000006065 biodegradation reaction Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000011138 biotechnological process Methods 0.000 description 1
- 229940036350 bisabolol Drugs 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 1
- OHJMTUPIZMNBFR-UHFFFAOYSA-N biuret Chemical compound NC(=O)NC(N)=O OHJMTUPIZMNBFR-UHFFFAOYSA-N 0.000 description 1
- 239000001055 blue pigment Substances 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 210000000988 bone and bone Anatomy 0.000 description 1
- 125000005619 boric acid group Chemical class 0.000 description 1
- RDWUNORUTVEHJF-UHFFFAOYSA-N bornyl formate Chemical compound C1CC2(C)C(OC=O)CC1C2(C)C RDWUNORUTVEHJF-UHFFFAOYSA-N 0.000 description 1
- 125000005620 boronic acid group Chemical class 0.000 description 1
- FZJUFJKVIYFBSY-UHFFFAOYSA-N bourgeonal Chemical compound CC(C)(C)C1=CC=C(CCC=O)C=C1 FZJUFJKVIYFBSY-UHFFFAOYSA-N 0.000 description 1
- 239000010974 bronze Substances 0.000 description 1
- PVEOYINWKBTPIZ-UHFFFAOYSA-N but-3-enoic acid Chemical compound OC(=O)CC=C PVEOYINWKBTPIZ-UHFFFAOYSA-N 0.000 description 1
- CDQSJQSWAWPGKG-UHFFFAOYSA-N butane-1,1-diol Chemical compound CCCC(O)O CDQSJQSWAWPGKG-UHFFFAOYSA-N 0.000 description 1
- WQZQEUCNSUNRRW-UHFFFAOYSA-N butanedioic acid propane-1,2,3-triol Chemical compound OCC(O)CO.OC(=O)CCC(O)=O.OC(=O)CCC(O)=O WQZQEUCNSUNRRW-UHFFFAOYSA-N 0.000 description 1
- OBNCKNCVKJNDBV-UHFFFAOYSA-N butanoic acid ethyl ester Natural products CCCC(=O)OCC OBNCKNCVKJNDBV-UHFFFAOYSA-N 0.000 description 1
- CINDRKBXFXDHMX-UHFFFAOYSA-N calamendiol Natural products CC(C)C1(O)CCC(C)(O)C2CCC(=C)CC12 CINDRKBXFXDHMX-UHFFFAOYSA-N 0.000 description 1
- PAYPBTPGBHRBLY-UHFFFAOYSA-N calamenene Natural products C1=CC(C)=CC2C(C(C)C)CCC(C)C21 PAYPBTPGBHRBLY-UHFFFAOYSA-N 0.000 description 1
- VSGNNIFQASZAOI-UHFFFAOYSA-L calcium acetate Chemical compound [Ca+2].CC([O-])=O.CC([O-])=O VSGNNIFQASZAOI-UHFFFAOYSA-L 0.000 description 1
- 235000011092 calcium acetate Nutrition 0.000 description 1
- 239000001639 calcium acetate Substances 0.000 description 1
- 229960005147 calcium acetate Drugs 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 239000004281 calcium formate Substances 0.000 description 1
- 235000019255 calcium formate Nutrition 0.000 description 1
- 229940044172 calcium formate Drugs 0.000 description 1
- 229910001424 calcium ion Inorganic materials 0.000 description 1
- 159000000007 calcium salts Chemical class 0.000 description 1
- 235000012241 calcium silicate Nutrition 0.000 description 1
- 229910052918 calcium silicate Inorganic materials 0.000 description 1
- OYACROKNLOSFPA-UHFFFAOYSA-N calcium;dioxido(oxo)silane Chemical compound [Ca+2].[O-][Si]([O-])=O OYACROKNLOSFPA-UHFFFAOYSA-N 0.000 description 1
- 239000010495 camellia oil Substances 0.000 description 1
- 239000004204 candelilla wax Substances 0.000 description 1
- 235000013868 candelilla wax Nutrition 0.000 description 1
- 229940073532 candelilla wax Drugs 0.000 description 1
- QGJOPFRUJISHPQ-NJFSPNSNSA-N carbon disulfide-14c Chemical compound S=[14C]=S QGJOPFRUJISHPQ-NJFSPNSNSA-N 0.000 description 1
- 229950005499 carbon tetrachloride Drugs 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-N carbonic acid Chemical class OC(O)=O BVKZGUZCCUSVTD-UHFFFAOYSA-N 0.000 description 1
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical group 0.000 description 1
- 229920003123 carboxymethyl cellulose sodium Polymers 0.000 description 1
- MRUAUOIMASANKQ-UHFFFAOYSA-O carboxymethyl-[3-(dodecanoylamino)propyl]-dimethylazanium Chemical compound CCCCCCCCCCCC(=O)NCCC[N+](C)(C)CC(O)=O MRUAUOIMASANKQ-UHFFFAOYSA-O 0.000 description 1
- 239000004203 carnauba wax Substances 0.000 description 1
- 235000013869 carnauba wax Nutrition 0.000 description 1
- 235000021466 carotenoid Nutrition 0.000 description 1
- 150000001747 carotenoids Chemical class 0.000 description 1
- 239000012876 carrier material Substances 0.000 description 1
- 235000013709 carrot oil Nutrition 0.000 description 1
- RSYBQKUNBFFNDO-UHFFFAOYSA-N caryophyllene oxide Natural products CC1(C)CC2C(=C)CCC3OC3(C)CCC12C RSYBQKUNBFFNDO-UHFFFAOYSA-N 0.000 description 1
- 235000021240 caseins Nutrition 0.000 description 1
- 229940021722 caseins Drugs 0.000 description 1
- 239000004359 castor oil Substances 0.000 description 1
- 235000019438 castor oil Nutrition 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 150000001767 cationic compounds Chemical class 0.000 description 1
- DJYWGTBEZVORGE-CVWWDKSYSA-N cedr-8(15)-en-9-ol Chemical compound C1[C@]23[C@H](C)CC[C@H]3C(C)(C)[C@@H]1C(=C)C(O)C2 DJYWGTBEZVORGE-CVWWDKSYSA-N 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- ZVEQCJWYRWKARO-UHFFFAOYSA-N ceramide Natural products CCCCCCCCCCCCCCC(O)C(=O)NC(CO)C(O)C=CCCC=C(C)CCCCCCCCC ZVEQCJWYRWKARO-UHFFFAOYSA-N 0.000 description 1
- 150000001783 ceramides Chemical class 0.000 description 1
- 229930183167 cerebroside Natural products 0.000 description 1
- 150000001784 cerebrosides Chemical class 0.000 description 1
- 150000001805 chlorine compounds Chemical class 0.000 description 1
- 229910001919 chlorite Inorganic materials 0.000 description 1
- 229910052619 chlorite group Inorganic materials 0.000 description 1
- 150000005827 chlorofluoro hydrocarbons Chemical class 0.000 description 1
- 229960001701 chloroform Drugs 0.000 description 1
- QBWCMBCROVPCKQ-UHFFFAOYSA-N chlorous acid Chemical compound OCl=O QBWCMBCROVPCKQ-UHFFFAOYSA-N 0.000 description 1
- ZCDOYSPFYFSLEW-UHFFFAOYSA-N chromate(2-) Chemical compound [O-][Cr]([O-])(=O)=O ZCDOYSPFYFSLEW-UHFFFAOYSA-N 0.000 description 1
- 150000001844 chromium Chemical class 0.000 description 1
- 229910000423 chromium oxide Inorganic materials 0.000 description 1
- RFFOTVCVTJUTAD-UHFFFAOYSA-N cineole Natural products C1CC2(C)CCC1(C(C)C)O2 RFFOTVCVTJUTAD-UHFFFAOYSA-N 0.000 description 1
- 150000001851 cinnamic acid derivatives Chemical class 0.000 description 1
- 235000017803 cinnamon Nutrition 0.000 description 1
- RGACQXBDYBCJCY-ALCCZGGFSA-N cis-3-Hexenyl hexanoate Chemical compound CCCCCC(=O)OCC\C=C/CC RGACQXBDYBCJCY-ALCCZGGFSA-N 0.000 description 1
- RGACQXBDYBCJCY-UHFFFAOYSA-N cis-3-Hexenyl-n-caproat Natural products CCCCCC(=O)OCCC=CCC RGACQXBDYBCJCY-UHFFFAOYSA-N 0.000 description 1
- ZCHOPXVYTWUHDS-WAYWQWQTSA-N cis-3-hexenyl butyrate Chemical compound CCCC(=O)OCC\C=C/CC ZCHOPXVYTWUHDS-WAYWQWQTSA-N 0.000 description 1
- ZCHOPXVYTWUHDS-UHFFFAOYSA-N cis-3-hexenyl n-butyrate Natural products CCCC(=O)OCCC=CCC ZCHOPXVYTWUHDS-UHFFFAOYSA-N 0.000 description 1
- HPOHAUWWDDPHRS-UWVGGRQHSA-N cis-Piperitol Chemical compound CC(C)[C@@H]1CCC(C)=C[C@@H]1O HPOHAUWWDDPHRS-UWVGGRQHSA-N 0.000 description 1
- BJIOGJUNALELMI-ARJAWSKDSA-N cis-isoeugenol Chemical compound COC1=CC(\C=C/C)=CC=C1O BJIOGJUNALELMI-ARJAWSKDSA-N 0.000 description 1
- 239000001507 cistus ladaniferus l. oil Substances 0.000 description 1
- WTEVQBCEXWBHNA-YFHOEESVSA-N citral B Natural products CC(C)=CCC\C(C)=C/C=O WTEVQBCEXWBHNA-YFHOEESVSA-N 0.000 description 1
- 229940001468 citrate Drugs 0.000 description 1
- 229930003633 citronellal Natural products 0.000 description 1
- 235000000983 citronellal Nutrition 0.000 description 1
- 235000020971 citrus fruits Nutrition 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 239000010634 clove oil Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 239000003240 coconut oil Substances 0.000 description 1
- 235000019864 coconut oil Nutrition 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- 239000008139 complexing agent Substances 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 239000007859 condensation product Substances 0.000 description 1
- VLXDPFLIRFYIME-BTFPBAQTSA-N copaene Chemical compound C1C=C(C)[C@H]2[C@]3(C)CC[C@@H](C(C)C)[C@H]2[C@@H]31 VLXDPFLIRFYIME-BTFPBAQTSA-N 0.000 description 1
- 238000007334 copolymerization reaction Methods 0.000 description 1
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical compound [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 description 1
- 239000011258 core-shell material Substances 0.000 description 1
- 239000007799 cork Substances 0.000 description 1
- 229910052593 corundum Inorganic materials 0.000 description 1
- 235000001671 coumarin Nutrition 0.000 description 1
- 150000004775 coumarins Chemical class 0.000 description 1
- 229940109239 creatinine Drugs 0.000 description 1
- MLUCVPSAIODCQM-NSCUHMNNSA-N crotonaldehyde Chemical compound C\C=C\C=O MLUCVPSAIODCQM-NSCUHMNNSA-N 0.000 description 1
- MLUCVPSAIODCQM-UHFFFAOYSA-N crotonaldehyde Natural products CC=CC=O MLUCVPSAIODCQM-UHFFFAOYSA-N 0.000 description 1
- 235000019316 curdlan Nutrition 0.000 description 1
- 229940078035 curdlan Drugs 0.000 description 1
- 229940019836 cyclamen aldehyde Drugs 0.000 description 1
- HPXRVTGHNJAIIH-UHFFFAOYSA-N cyclohexanol Chemical compound OC1CCCCC1 HPXRVTGHNJAIIH-UHFFFAOYSA-N 0.000 description 1
- 230000009849 deactivation Effects 0.000 description 1
- DTPCFIHYWYONMD-UHFFFAOYSA-N decaethylene glycol Chemical compound OCCOCCOCCOCCOCCOCCOCCOCCOCCOCCO DTPCFIHYWYONMD-UHFFFAOYSA-N 0.000 description 1
- HXZCZPDFRLHDFJ-UHFFFAOYSA-N decane-3,4-dione Chemical compound CCCCCCC(=O)C(=O)CC HXZCZPDFRLHDFJ-UHFFFAOYSA-N 0.000 description 1
- UNWDCFHEVIWFCW-UHFFFAOYSA-N decanediperoxoic acid Chemical compound OOC(=O)CCCCCCCCC(=O)OO UNWDCFHEVIWFCW-UHFFFAOYSA-N 0.000 description 1
- SASYSVUEVMOWPL-NXVVXOECSA-N decyl oleate Chemical compound CCCCCCCCCCOC(=O)CCCCCCC\C=C/CCCCCCCC SASYSVUEVMOWPL-NXVVXOECSA-N 0.000 description 1
- 230000003413 degradative effect Effects 0.000 description 1
- OYKYYOKNASFMLL-UHFFFAOYSA-N delta-Cadinol Natural products CC(C)C1CCC(=C2CCC(C)(O)CC12)C OYKYYOKNASFMLL-UHFFFAOYSA-N 0.000 description 1
- FYTRVXSHONWYNE-UHFFFAOYSA-N delta-octanolide Chemical compound CCCC1CCCC(=O)O1 FYTRVXSHONWYNE-UHFFFAOYSA-N 0.000 description 1
- SQIFACVGCPWBQZ-UHFFFAOYSA-N delta-terpineol Natural products CC(C)(O)C1CCC(=C)CC1 SQIFACVGCPWBQZ-UHFFFAOYSA-N 0.000 description 1
- 238000004925 denaturation Methods 0.000 description 1
- 230000036425 denaturation Effects 0.000 description 1
- 238000004332 deodorization Methods 0.000 description 1
- 150000008266 deoxy sugars Chemical class 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 239000008121 dextrose Substances 0.000 description 1
- 239000012933 diacyl peroxide Substances 0.000 description 1
- 150000001982 diacylglycerols Chemical class 0.000 description 1
- VKNUORWMCINMRB-UHFFFAOYSA-N diethyl malate Chemical compound CCOC(=O)CC(O)C(=O)OCC VKNUORWMCINMRB-UHFFFAOYSA-N 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- GPLRAVKSCUXZTP-UHFFFAOYSA-N diglycerol Chemical compound OCC(O)COCC(O)CO GPLRAVKSCUXZTP-UHFFFAOYSA-N 0.000 description 1
- 150000004683 dihydrates Chemical class 0.000 description 1
- 229930007024 dihydrocarveol Natural products 0.000 description 1
- XSNQECSCDATQEL-UHFFFAOYSA-N dihydromyrcenol Chemical compound C=CC(C)CCCC(C)(C)O XSNQECSCDATQEL-UHFFFAOYSA-N 0.000 description 1
- 229930008394 dihydromyrcenol Natural products 0.000 description 1
- 125000005044 dihydroquinolinyl group Chemical group N1(CC=CC2=CC=CC=C12)* 0.000 description 1
- RXKJFZQQPQGTFL-UHFFFAOYSA-N dihydroxyacetone Chemical compound OCC(=O)CO RXKJFZQQPQGTFL-UHFFFAOYSA-N 0.000 description 1
- 229940095104 dimethyl benzyl carbinyl acetate Drugs 0.000 description 1
- GQOKIYDTHHZSCJ-UHFFFAOYSA-M dimethyl-bis(prop-2-enyl)azanium;chloride Chemical compound [Cl-].C=CC[N+](C)(C)CC=C GQOKIYDTHHZSCJ-UHFFFAOYSA-M 0.000 description 1
- REZZEXDLIUJMMS-UHFFFAOYSA-M dimethyldioctadecylammonium chloride Chemical compound [Cl-].CCCCCCCCCCCCCCCCCC[N+](C)(C)CCCCCCCCCCCCCCCCCC REZZEXDLIUJMMS-UHFFFAOYSA-M 0.000 description 1
- WVJOGYWFVNTSAU-UHFFFAOYSA-N dimethylol ethylene urea Chemical compound OCN1CCN(CO)C1=O WVJOGYWFVNTSAU-UHFFFAOYSA-N 0.000 description 1
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N diphenyl Chemical class C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 1
- 239000001177 diphosphate Substances 0.000 description 1
- 238000002845 discoloration Methods 0.000 description 1
- 229910000397 disodium phosphate Inorganic materials 0.000 description 1
- FPVGTPBMTFTMRT-UHFFFAOYSA-L disodium;2-amino-5-[(4-sulfonatophenyl)diazenyl]benzenesulfonate Chemical compound [Na+].[Na+].C1=C(S([O-])(=O)=O)C(N)=CC=C1N=NC1=CC=C(S([O-])(=O)=O)C=C1 FPVGTPBMTFTMRT-UHFFFAOYSA-L 0.000 description 1
- ZOESAMNEZGSOPU-UHFFFAOYSA-L disodium;4-[4-[acetyl(methyl)amino]-2-sulfonatoanilino]-1-amino-9,10-dioxoanthracene-2-sulfonate Chemical compound [Na+].[Na+].[O-]S(=O)(=O)C1=CC(N(C(C)=O)C)=CC=C1NC1=CC(S([O-])(=O)=O)=C(N)C2=C1C(=O)C1=CC=CC=C1C2=O ZOESAMNEZGSOPU-UHFFFAOYSA-L 0.000 description 1
- 239000004664 distearyldimethylammonium chloride (DHTDMAC) Substances 0.000 description 1
- 239000012990 dithiocarbamate Substances 0.000 description 1
- 150000004659 dithiocarbamates Chemical class 0.000 description 1
- LQZZUXJYWNFBMV-UHFFFAOYSA-N dodecan-1-ol Chemical compound CCCCCCCCCCCCO LQZZUXJYWNFBMV-UHFFFAOYSA-N 0.000 description 1
- GHLKSLMMWAKNBM-UHFFFAOYSA-N dodecane-1,12-diol Chemical compound OCCCCCCCCCCCCO GHLKSLMMWAKNBM-UHFFFAOYSA-N 0.000 description 1
- BRDYCNFHFWUBCZ-UHFFFAOYSA-N dodecaneperoxoic acid Chemical compound CCCCCCCCCCCC(=O)OO BRDYCNFHFWUBCZ-UHFFFAOYSA-N 0.000 description 1
- QQQMUBLXDAFBRH-UHFFFAOYSA-N dodecyl 2-hydroxypropanoate Chemical compound CCCCCCCCCCCCOC(=O)C(C)O QQQMUBLXDAFBRH-UHFFFAOYSA-N 0.000 description 1
- YRIUSKIDOIARQF-UHFFFAOYSA-N dodecyl benzenesulfonate Chemical compound CCCCCCCCCCCCOS(=O)(=O)C1=CC=CC=C1 YRIUSKIDOIARQF-UHFFFAOYSA-N 0.000 description 1
- MOTZDAYCYVMXPC-UHFFFAOYSA-N dodecyl hydrogen sulfate Chemical compound CCCCCCCCCCCCOS(O)(=O)=O MOTZDAYCYVMXPC-UHFFFAOYSA-N 0.000 description 1
- 229940043264 dodecyl sulfate Drugs 0.000 description 1
- 229940071161 dodecylbenzenesulfonate Drugs 0.000 description 1
- 239000010459 dolomite Substances 0.000 description 1
- 229910000514 dolomite Inorganic materials 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 235000013399 edible fruits Nutrition 0.000 description 1
- 229920002549 elastin Polymers 0.000 description 1
- 238000002003 electron diffraction Methods 0.000 description 1
- 238000007786 electrostatic charging Methods 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 239000002158 endotoxin Substances 0.000 description 1
- 239000003623 enhancer Substances 0.000 description 1
- IEICDHBPEPUHOB-UHFFFAOYSA-N ent-beta-selinene Natural products C1CCC(=C)C2CC(C(C)C)CCC21C IEICDHBPEPUHOB-UHFFFAOYSA-N 0.000 description 1
- UNXHWFMMPAWVPI-ZXZARUISSA-N erythritol Chemical compound OC[C@H](O)[C@H](O)CO UNXHWFMMPAWVPI-ZXZARUISSA-N 0.000 description 1
- 235000019414 erythritol Nutrition 0.000 description 1
- 229940009714 erythritol Drugs 0.000 description 1
- 239000012183 esparto wax Substances 0.000 description 1
- 125000004185 ester group Chemical group 0.000 description 1
- 125000001033 ether group Chemical group 0.000 description 1
- HCRBXQFHJMCTLF-LURJTMIESA-N ethyl (2s)-2-methylbutanoate Chemical compound CCOC(=O)[C@@H](C)CC HCRBXQFHJMCTLF-LURJTMIESA-N 0.000 description 1
- FARYTWBWLZAXNK-WAYWQWQTSA-N ethyl (z)-3-(methylamino)but-2-enoate Chemical compound CCOC(=O)\C=C(\C)NC FARYTWBWLZAXNK-WAYWQWQTSA-N 0.000 description 1
- MRYSSTRVUMCKKB-UHFFFAOYSA-N ethyl 2-hydroxyhexanoate Chemical compound CCCCC(O)C(=O)OCC MRYSSTRVUMCKKB-UHFFFAOYSA-N 0.000 description 1
- AISZSTYLOVXFII-UHFFFAOYSA-N ethyl 2-octenoate Chemical compound CCCCCC=CC(=O)OCC AISZSTYLOVXFII-UHFFFAOYSA-N 0.000 description 1
- JJOYCHKVKWDMEA-UHFFFAOYSA-N ethyl cyclohexanecarboxylate Chemical compound CCOC(=O)C1CCCCC1 JJOYCHKVKWDMEA-UHFFFAOYSA-N 0.000 description 1
- 125000004494 ethyl ester group Chemical group 0.000 description 1
- 229940116333 ethyl lactate Drugs 0.000 description 1
- 229940005667 ethyl salicylate Drugs 0.000 description 1
- 229940071087 ethylenediamine disuccinate Drugs 0.000 description 1
- 108010093305 exopolygalacturonase Proteins 0.000 description 1
- LTUMRKDLVGQMJU-UHFFFAOYSA-N famesylacetone Natural products CC(C)=CCCC(C)=CCCC(C)=CCCC(C)=O LTUMRKDLVGQMJU-UHFFFAOYSA-N 0.000 description 1
- 229940043259 farnesol Drugs 0.000 description 1
- LTUMRKDLVGQMJU-IUBLYSDUSA-N farnesyl acetone Chemical compound CC(C)=CCC\C(C)=C\CC\C(C)=C\CCC(C)=O LTUMRKDLVGQMJU-IUBLYSDUSA-N 0.000 description 1
- 235000019233 fast yellow AB Nutrition 0.000 description 1
- 235000019211 fat replacer Nutrition 0.000 description 1
- 235000019387 fatty acid methyl ester Nutrition 0.000 description 1
- 239000001148 ferula galbaniflua oil terpeneless Substances 0.000 description 1
- ARJWAURHQDJJAC-GQCTYLIASA-N filbertone Chemical compound CCC(C)C(=O)\C=C\C ARJWAURHQDJJAC-GQCTYLIASA-N 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000000796 flavoring agent Substances 0.000 description 1
- 235000019634 flavors Nutrition 0.000 description 1
- 235000013312 flour Nutrition 0.000 description 1
- 239000007850 fluorescent dye Substances 0.000 description 1
- 229940044170 formate Drugs 0.000 description 1
- 238000004108 freeze drying Methods 0.000 description 1
- 235000015203 fruit juice Nutrition 0.000 description 1
- 239000005350 fused silica glass Substances 0.000 description 1
- 108020001507 fusion proteins Proteins 0.000 description 1
- 102000037865 fusion proteins Human genes 0.000 description 1
- 229930182830 galactose Natural products 0.000 description 1
- 229960003082 galactose Drugs 0.000 description 1
- IFYYFLINQYPWGJ-VIFPVBQESA-N gamma-Decalactone Natural products CCCCCC[C@H]1CCC(=O)O1 IFYYFLINQYPWGJ-VIFPVBQESA-N 0.000 description 1
- PHXATPHONSXBIL-JTQLQIEISA-N gamma-Undecalactone Natural products CCCCCCC[C@H]1CCC(=O)O1 PHXATPHONSXBIL-JTQLQIEISA-N 0.000 description 1
- JBFHTYHTHYHCDJ-UHFFFAOYSA-N gamma-caprolactone Chemical compound CCC1CCC(=O)O1 JBFHTYHTHYHCDJ-UHFFFAOYSA-N 0.000 description 1
- IPBFYZQJXZJBFQ-UHFFFAOYSA-N gamma-octalactone Chemical compound CCCCC1CCC(=O)O1 IPBFYZQJXZJBFQ-UHFFFAOYSA-N 0.000 description 1
- 229940020436 gamma-undecalactone Drugs 0.000 description 1
- 150000002270 gangliosides Chemical class 0.000 description 1
- 230000002496 gastric effect Effects 0.000 description 1
- HIGQPQRQIQDZMP-UHFFFAOYSA-N geranil acetate Natural products CC(C)=CCCC(C)=CCOC(C)=O HIGQPQRQIQDZMP-UHFFFAOYSA-N 0.000 description 1
- HIGQPQRQIQDZMP-DHZHZOJOSA-N geranyl acetate Chemical compound CC(C)=CCC\C(C)=C\COC(C)=O HIGQPQRQIQDZMP-DHZHZOJOSA-N 0.000 description 1
- OJIGFVZZEVQUNV-UHFFFAOYSA-N germacrene D Natural products CC(C)C1CCC=C(/C)CCC(=C)C=C1 OJIGFVZZEVQUNV-UHFFFAOYSA-N 0.000 description 1
- GXEGJTGWYVZSNR-OMQMMEOVSA-N germacrene-B Natural products CC(C)=C1CC\C(C)=C/CC\C(C)=C/C1 GXEGJTGWYVZSNR-OMQMMEOVSA-N 0.000 description 1
- 235000008397 ginger Nutrition 0.000 description 1
- 108010061330 glucan 1,4-alpha-maltohydrolase Proteins 0.000 description 1
- 235000012209 glucono delta-lactone Nutrition 0.000 description 1
- 229960002442 glucosamine Drugs 0.000 description 1
- 108010046301 glucose peroxidase Proteins 0.000 description 1
- 229940097043 glucuronic acid Drugs 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- YQEMORVAKMFKLG-UHFFFAOYSA-N glycerine monostearate Natural products CCCCCCCCCCCCCCCCCC(=O)OC(CO)CO YQEMORVAKMFKLG-UHFFFAOYSA-N 0.000 description 1
- UHUSDOQQWJGJQS-UHFFFAOYSA-N glycerol 1,2-dioctadecanoate Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCC(CO)OC(=O)CCCCCCCCCCCCCCCCC UHUSDOQQWJGJQS-UHFFFAOYSA-N 0.000 description 1
- SVUQHVRAGMNPLW-UHFFFAOYSA-N glycerol monostearate Natural products CCCCCCCCCCCCCCCCC(=O)OCC(O)CO SVUQHVRAGMNPLW-UHFFFAOYSA-N 0.000 description 1
- ZEMPKEQAKRGZGQ-XOQCFJPHSA-N glycerol triricinoleate Natural products CCCCCC[C@@H](O)CC=CCCCCCCCC(=O)OC[C@@H](COC(=O)CCCCCCCC=CC[C@@H](O)CCCCCC)OC(=O)CCCCCCCC=CC[C@H](O)CCCCCC ZEMPKEQAKRGZGQ-XOQCFJPHSA-N 0.000 description 1
- 150000002313 glycerolipids Chemical class 0.000 description 1
- 150000002327 glycerophospholipids Chemical class 0.000 description 1
- 125000001046 glycoluril group Chemical group [H]C12N(*)C(=O)N(*)C1([H])N(*)C(=O)N2* 0.000 description 1
- 150000002337 glycosamines Chemical class 0.000 description 1
- 229930182470 glycoside Natural products 0.000 description 1
- 150000002339 glycosphingolipids Chemical class 0.000 description 1
- HHLFWLYXYJOTON-UHFFFAOYSA-N glyoxylic acid Chemical compound OC(=O)C=O HHLFWLYXYJOTON-UHFFFAOYSA-N 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 235000002532 grape seed extract Nutrition 0.000 description 1
- 239000008169 grapeseed oil Substances 0.000 description 1
- 239000004519 grease Substances 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 239000005337 ground glass Substances 0.000 description 1
- 229960001867 guaiacol Drugs 0.000 description 1
- TWVJWDMOZJXUID-QJPTWQEYSA-N guaiol Natural products OC(C)(C)[C@H]1CC=2[C@H](C)CCC=2[C@@H](C)CC1 TWVJWDMOZJXUID-QJPTWQEYSA-N 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 125000001475 halogen functional group Chemical group 0.000 description 1
- 150000005826 halohydrocarbons Chemical class 0.000 description 1
- 239000010468 hazelnut oil Substances 0.000 description 1
- IUJAMGNYPWYUPM-UHFFFAOYSA-N hentriacontane Chemical compound CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC IUJAMGNYPWYUPM-UHFFFAOYSA-N 0.000 description 1
- 125000000623 heterocyclic group Chemical group 0.000 description 1
- JHEPBQHNVNUAFL-UHFFFAOYSA-N hex-1-en-1-ol Chemical compound CCCCC=CO JHEPBQHNVNUAFL-UHFFFAOYSA-N 0.000 description 1
- UFLHIIWVXFIJGU-UHFFFAOYSA-N hex-3-en-1-ol Natural products CCC=CCCO UFLHIIWVXFIJGU-UHFFFAOYSA-N 0.000 description 1
- DWMMZQMXUWUJME-UHFFFAOYSA-N hexadecyl octanoate Chemical compound CCCCCCCCCCCCCCCCOC(=O)CCCCCCC DWMMZQMXUWUJME-UHFFFAOYSA-N 0.000 description 1
- IIRDTKBZINWQAW-UHFFFAOYSA-N hexaethylene glycol Chemical compound OCCOCCOCCOCCOCCOCCO IIRDTKBZINWQAW-UHFFFAOYSA-N 0.000 description 1
- BIJDEFYQQXKLIY-UHFFFAOYSA-N hexyl acetate;nonyl acetate Chemical compound CCCCCCOC(C)=O.CCCCCCCCCOC(C)=O BIJDEFYQQXKLIY-UHFFFAOYSA-N 0.000 description 1
- 229920001903 high density polyethylene Polymers 0.000 description 1
- 239000004700 high-density polyethylene Substances 0.000 description 1
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 1
- 229910052892 hornblende Inorganic materials 0.000 description 1
- ZJIQIJIQBTVTDY-VOTSOKGWSA-N hotrienol Chemical compound CC(=C)\C=C\CC(C)(O)C=C ZJIQIJIQBTVTDY-VOTSOKGWSA-N 0.000 description 1
- ZJIQIJIQBTVTDY-SNVBAGLBSA-N hotrienol Natural products CC(=C)C=CC[C@](C)(O)C=C ZJIQIJIQBTVTDY-SNVBAGLBSA-N 0.000 description 1
- 150000001469 hydantoins Chemical class 0.000 description 1
- 229920001600 hydrophobic polymer Polymers 0.000 description 1
- 229920013821 hydroxy alkyl cellulose Polymers 0.000 description 1
- WPFVBOQKRVRMJB-UHFFFAOYSA-N hydroxycitronellal Chemical compound O=CCC(C)CCCC(C)(C)O WPFVBOQKRVRMJB-UHFFFAOYSA-N 0.000 description 1
- 235000010977 hydroxypropyl cellulose Nutrition 0.000 description 1
- 239000001863 hydroxypropyl cellulose Substances 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 230000002779 inactivation Effects 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- CDAISMWEOUEBRE-GPIVLXJGSA-N inositol Chemical compound O[C@H]1[C@H](O)[C@@H](O)[C@H](O)[C@H](O)[C@@H]1O CDAISMWEOUEBRE-GPIVLXJGSA-N 0.000 description 1
- 229960000367 inositol Drugs 0.000 description 1
- PANBRUWVURLWGY-UHFFFAOYSA-N intreleven aldehyde Natural products CCCCCCCCC=CC=O PANBRUWVURLWGY-UHFFFAOYSA-N 0.000 description 1
- 229930002839 ionone Natural products 0.000 description 1
- 150000002499 ionone derivatives Chemical class 0.000 description 1
- YAQXGBBDJYBXKL-UHFFFAOYSA-N iron(2+);1,10-phenanthroline;dicyanide Chemical compound [Fe+2].N#[C-].N#[C-].C1=CN=C2C3=NC=CC=C3C=CC2=C1.C1=CN=C2C3=NC=CC=C3C=CC2=C1 YAQXGBBDJYBXKL-UHFFFAOYSA-N 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 229940117955 isoamyl acetate Drugs 0.000 description 1
- DIICMQCJAQLQPI-UHFFFAOYSA-N isobornyl propionate Natural products CCC(=O)C1CC2CCC1(C)C2(C)C DIICMQCJAQLQPI-UHFFFAOYSA-N 0.000 description 1
- GAIBLDCXCZKKJE-UHFFFAOYSA-N isogermacrene D Natural products CC(C)C1CCC(C)=CCCC(=C)C=C1 GAIBLDCXCZKKJE-UHFFFAOYSA-N 0.000 description 1
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 1
- XUGNVMKQXJXZCD-UHFFFAOYSA-N isopropyl palmitate Chemical compound CCCCCCCCCCCCCCCC(=O)OC(C)C XUGNVMKQXJXZCD-UHFFFAOYSA-N 0.000 description 1
- 239000012182 japan wax Substances 0.000 description 1
- 239000001851 juniperus communis l. berry oil Substances 0.000 description 1
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 1
- 238000005907 ketalization reaction Methods 0.000 description 1
- 125000000468 ketone group Chemical group 0.000 description 1
- 150000003951 lactams Chemical class 0.000 description 1
- 239000000832 lactitol Substances 0.000 description 1
- VQHSOMBJVWLPSR-JVCRWLNRSA-N lactitol Chemical compound OC[C@H](O)[C@@H](O)[C@@H]([C@H](O)CO)O[C@@H]1O[C@H](CO)[C@H](O)[C@H](O)[C@H]1O VQHSOMBJVWLPSR-JVCRWLNRSA-N 0.000 description 1
- 235000010448 lactitol Nutrition 0.000 description 1
- 229960003451 lactitol Drugs 0.000 description 1
- 150000002596 lactones Chemical group 0.000 description 1
- 229960001375 lactose Drugs 0.000 description 1
- 229940039717 lanolin Drugs 0.000 description 1
- 238000004900 laundering Methods 0.000 description 1
- 238000010412 laundry washing Methods 0.000 description 1
- 239000001102 lavandula vera Substances 0.000 description 1
- 235000018219 lavender Nutrition 0.000 description 1
- RYZCLUQMCYZBJQ-UHFFFAOYSA-H lead(2+);dicarbonate;dihydroxide Chemical compound [OH-].[OH-].[Pb+2].[Pb+2].[Pb+2].[O-]C([O-])=O.[O-]C([O-])=O RYZCLUQMCYZBJQ-UHFFFAOYSA-H 0.000 description 1
- 229910021514 lead(II) hydroxide Inorganic materials 0.000 description 1
- 229940067606 lecithin Drugs 0.000 description 1
- GDBQQVLCIARPGH-ULQDDVLXSA-N leupeptin Chemical compound CC(C)C[C@H](NC(C)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@H](C=O)CCCN=C(N)N GDBQQVLCIARPGH-ULQDDVLXSA-N 0.000 description 1
- 108010052968 leupeptin Proteins 0.000 description 1
- 229920005610 lignin Polymers 0.000 description 1
- SDQFDHOLCGWZPU-UHFFFAOYSA-N lilial Chemical compound O=CC(C)CC1=CC=C(C(C)(C)C)C=C1 SDQFDHOLCGWZPU-UHFFFAOYSA-N 0.000 description 1
- BCTBAGTXFYWYMW-UHFFFAOYSA-N linalool oxide pyranoside Chemical compound CC1(C)OC(C)(C=C)CCC1O BCTBAGTXFYWYMW-UHFFFAOYSA-N 0.000 description 1
- 229920000092 linear low density polyethylene Polymers 0.000 description 1
- 239000004707 linear low-density polyethylene Substances 0.000 description 1
- KQQKGWQCNNTQJW-UHFFFAOYSA-N linolenic acid Natural products CC=CCCC=CCC=CCCCCCCCC(O)=O KQQKGWQCNNTQJW-UHFFFAOYSA-N 0.000 description 1
- 229960004488 linolenic acid Drugs 0.000 description 1
- FCCDDURTIIUXBY-UHFFFAOYSA-N lipoamide Chemical compound NC(=O)CCCCC1CCSS1 FCCDDURTIIUXBY-UHFFFAOYSA-N 0.000 description 1
- 229920006008 lipopolysaccharide Polymers 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 239000001886 liquidambar orientalis Substances 0.000 description 1
- SXQCTESRRZBPHJ-UHFFFAOYSA-M lissamine rhodamine Chemical compound [Na+].C=12C=CC(=[N+](CC)CC)C=C2OC2=CC(N(CC)CC)=CC=C2C=1C1=CC=C(S([O-])(=O)=O)C=C1S([O-])(=O)=O SXQCTESRRZBPHJ-UHFFFAOYSA-M 0.000 description 1
- HGPXWXLYXNVULB-UHFFFAOYSA-M lithium stearate Chemical compound [Li+].CCCCCCCCCCCCCCCCCC([O-])=O HGPXWXLYXNVULB-UHFFFAOYSA-M 0.000 description 1
- 229920001684 low density polyethylene Polymers 0.000 description 1
- 239000004702 low-density polyethylene Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910001629 magnesium chloride Inorganic materials 0.000 description 1
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 description 1
- 239000000347 magnesium hydroxide Substances 0.000 description 1
- 229910001862 magnesium hydroxide Inorganic materials 0.000 description 1
- 229960004995 magnesium peroxide Drugs 0.000 description 1
- 235000019359 magnesium stearate Nutrition 0.000 description 1
- 239000001630 malic acid Substances 0.000 description 1
- 235000011090 malic acid Nutrition 0.000 description 1
- VQHSOMBJVWLPSR-WUJBLJFYSA-N maltitol Chemical compound OC[C@H](O)[C@@H](O)[C@@H]([C@H](O)CO)O[C@H]1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1O VQHSOMBJVWLPSR-WUJBLJFYSA-N 0.000 description 1
- 235000010449 maltitol Nutrition 0.000 description 1
- 239000000845 maltitol Substances 0.000 description 1
- 229940035436 maltitol Drugs 0.000 description 1
- 229960003017 maltose monohydrate Drugs 0.000 description 1
- 229940099596 manganese sulfate Drugs 0.000 description 1
- 239000011702 manganese sulphate Substances 0.000 description 1
- 235000007079 manganese sulphate Nutrition 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- SQQMAOCOWKFBNP-UHFFFAOYSA-L manganese(II) sulfate Chemical compound [Mn+2].[O-]S([O-])(=O)=O SQQMAOCOWKFBNP-UHFFFAOYSA-L 0.000 description 1
- 229960001855 mannitol Drugs 0.000 description 1
- 229940041290 mannose Drugs 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 230000010534 mechanism of action Effects 0.000 description 1
- 150000007974 melamines Chemical class 0.000 description 1
- 239000001098 melissa officinalis l. leaf oil Substances 0.000 description 1
- 108010003855 mesentericopeptidase Proteins 0.000 description 1
- HEBKCHPVOIAQTA-UHFFFAOYSA-N meso ribitol Natural products OCC(O)C(O)C(O)CO HEBKCHPVOIAQTA-UHFFFAOYSA-N 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- UZKWTJUDCOPSNM-UHFFFAOYSA-N methoxybenzene Substances CCCCOC=C UZKWTJUDCOPSNM-UHFFFAOYSA-N 0.000 description 1
- GEWDNTWNSAZUDX-KWKBKKAHSA-N methyl (+)-7-isojasmonate Chemical compound CC\C=C/C[C@H]1[C@@H](CC(=O)OC)CCC1=O GEWDNTWNSAZUDX-KWKBKKAHSA-N 0.000 description 1
- KVWWIYGFBYDJQC-MNOVXSKESA-N methyl 2-[(1r,2s)-3-oxo-2-pentylcyclopentyl]acetate Chemical compound CCCCC[C@H]1[C@@H](CC(=O)OC)CCC1=O KVWWIYGFBYDJQC-MNOVXSKESA-N 0.000 description 1
- GEWDNTWNSAZUDX-UHFFFAOYSA-N methyl 7-epi-jasmonate Natural products CCC=CCC1C(CC(=O)OC)CCC1=O GEWDNTWNSAZUDX-UHFFFAOYSA-N 0.000 description 1
- CRVGTESFCCXCTH-UHFFFAOYSA-N methyl diethanolamine Chemical compound OCCN(C)CCO CRVGTESFCCXCTH-UHFFFAOYSA-N 0.000 description 1
- 150000004702 methyl esters Chemical class 0.000 description 1
- BHIWKHZACMWKOJ-UHFFFAOYSA-N methyl isobutyrate Chemical compound COC(=O)C(C)C BHIWKHZACMWKOJ-UHFFFAOYSA-N 0.000 description 1
- 229960001047 methyl salicylate Drugs 0.000 description 1
- GYNNXHKOJHMOHS-UHFFFAOYSA-N methyl-cycloheptane Natural products CC1CCCCCC1 GYNNXHKOJHMOHS-UHFFFAOYSA-N 0.000 description 1
- VBPSVYDSYVJIPX-UHFFFAOYSA-N methylbutenol Natural products CCC=C(C)O VBPSVYDSYVJIPX-UHFFFAOYSA-N 0.000 description 1
- ZLQJVGSVJRBUNL-UHFFFAOYSA-N methylumbelliferone Natural products C1=C(O)C=C2OC(=O)C(C)=CC2=C1 ZLQJVGSVJRBUNL-UHFFFAOYSA-N 0.000 description 1
- 238000001471 micro-filtration Methods 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- 108010020132 microbial serine proteinases Proteins 0.000 description 1
- 235000021239 milk protein Nutrition 0.000 description 1
- 150000002759 monoacylglycerols Chemical class 0.000 description 1
- 150000004682 monohydrates Chemical class 0.000 description 1
- 229910000403 monosodium phosphate Inorganic materials 0.000 description 1
- 235000019799 monosodium phosphate Nutrition 0.000 description 1
- 239000001627 myristica fragrans houtt. fruit oil Substances 0.000 description 1
- 229940043348 myristyl alcohol Drugs 0.000 description 1
- 125000001421 myristyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 229940078812 myristyl myristate Drugs 0.000 description 1
- YDLYQMBWCWFRAI-UHFFFAOYSA-N n-Hexatriacontane Natural products CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC YDLYQMBWCWFRAI-UHFFFAOYSA-N 0.000 description 1
- 239000002018 neem oil Substances 0.000 description 1
- 230000023837 negative regulation of proteolysis Effects 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- VVGIYYKRAMHVLU-UHFFFAOYSA-N newbouldiamide Natural products CCCCCCCCCCCCCCCCCCCC(O)C(O)C(O)C(CO)NC(=O)CCCCCCCCCCCCCCCCC VVGIYYKRAMHVLU-UHFFFAOYSA-N 0.000 description 1
- 150000002815 nickel Chemical class 0.000 description 1
- 239000001711 nigella sativa Substances 0.000 description 1
- 150000002828 nitro derivatives Chemical class 0.000 description 1
- 229910000069 nitrogen hydride Inorganic materials 0.000 description 1
- 239000001006 nitroso dye Substances 0.000 description 1
- YZUUTMGDONTGTN-UHFFFAOYSA-N nonaethylene glycol Chemical compound OCCOCCOCCOCCOCCOCCOCCOCCOCCO YZUUTMGDONTGTN-UHFFFAOYSA-N 0.000 description 1
- SXLLDUPXUVRMEE-UHFFFAOYSA-N nonanediperoxoic acid Chemical compound OOC(=O)CCCCCCCC(=O)OO SXLLDUPXUVRMEE-UHFFFAOYSA-N 0.000 description 1
- BTSIZIIPFNVMHF-UHFFFAOYSA-N nor-leaf alcohol Natural products CCC=CCO BTSIZIIPFNVMHF-UHFFFAOYSA-N 0.000 description 1
- 235000019488 nut oil Nutrition 0.000 description 1
- GTDQGKWDWVUKTI-UHFFFAOYSA-N o-aminoacetophenone Chemical compound CC(=O)C1=CC=CC=C1N GTDQGKWDWVUKTI-UHFFFAOYSA-N 0.000 description 1
- 229940078552 o-xylene Drugs 0.000 description 1
- 150000007823 ocimene derivatives Chemical class 0.000 description 1
- APFBWMGEGSELQP-UHFFFAOYSA-N octa-1,5-dien-3-ol Chemical compound CCC=CCC(O)C=C APFBWMGEGSELQP-UHFFFAOYSA-N 0.000 description 1
- LWRKMRFJEUFXIB-UHFFFAOYSA-N octa-3,5-dien-2-one Chemical compound CCC=CC=CC(C)=O LWRKMRFJEUFXIB-UHFFFAOYSA-N 0.000 description 1
- 229940038384 octadecane Drugs 0.000 description 1
- 229960002446 octanoic acid Drugs 0.000 description 1
- 230000009965 odorless effect Effects 0.000 description 1
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 1
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 1
- 235000021313 oleic acid Nutrition 0.000 description 1
- ALSTYHKOOCGGFT-MDZDMXLPSA-N oleyl alcohol Chemical compound CCCCCCCC\C=C\CCCCCCCCO ALSTYHKOOCGGFT-MDZDMXLPSA-N 0.000 description 1
- 238000006384 oligomerization reaction Methods 0.000 description 1
- 239000004006 olive oil Substances 0.000 description 1
- 235000008390 olive oil Nutrition 0.000 description 1
- 150000007530 organic bases Chemical class 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 235000006408 oxalic acid Nutrition 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 238000006864 oxidative decomposition reaction Methods 0.000 description 1
- GKWCCSUCDFFLBP-UHFFFAOYSA-N oxirane Chemical compound C1CO1.C1CO1 GKWCCSUCDFFLBP-UHFFFAOYSA-N 0.000 description 1
- 150000002924 oxiranes Chemical group 0.000 description 1
- 125000005429 oxyalkyl group Chemical group 0.000 description 1
- XLPDVYGDNRIQFV-UHFFFAOYSA-N p-Cymen-8-ol Chemical compound CC1=CC=C(C(C)(C)O)C=C1 XLPDVYGDNRIQFV-UHFFFAOYSA-N 0.000 description 1
- 125000000913 palmityl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 229940101267 panthenol Drugs 0.000 description 1
- 235000020957 pantothenol Nutrition 0.000 description 1
- 239000011619 pantothenol Substances 0.000 description 1
- FJKROLUGYXJWQN-UHFFFAOYSA-N papa-hydroxy-benzoic acid Natural products OC(=O)C1=CC=C(O)C=C1 FJKROLUGYXJWQN-UHFFFAOYSA-N 0.000 description 1
- 239000000123 paper Substances 0.000 description 1
- QNGNSVIICDLXHT-UHFFFAOYSA-N para-ethylbenzaldehyde Natural products CCC1=CC=C(C=O)C=C1 QNGNSVIICDLXHT-UHFFFAOYSA-N 0.000 description 1
- RUVINXPYWBROJD-UHFFFAOYSA-N para-methoxyphenyl Natural products COC1=CC=C(C=CC)C=C1 RUVINXPYWBROJD-UHFFFAOYSA-N 0.000 description 1
- 239000000312 peanut oil Substances 0.000 description 1
- 108010087558 pectate lyase Proteins 0.000 description 1
- 239000001814 pectin Substances 0.000 description 1
- 235000010987 pectin Nutrition 0.000 description 1
- 229920001277 pectin Polymers 0.000 description 1
- 108020004410 pectinesterase Proteins 0.000 description 1
- GJYMQFMQRRNLCY-UHFFFAOYSA-N pent-3-en-2-ol Chemical compound CC=CC(C)O GJYMQFMQRRNLCY-UHFFFAOYSA-N 0.000 description 1
- HVAMZGADVCBITI-UHFFFAOYSA-N pent-4-enoic acid Chemical compound OC(=O)CCC=C HVAMZGADVCBITI-UHFFFAOYSA-N 0.000 description 1
- XNLICIUVMPYHGG-UHFFFAOYSA-N pentan-2-one Chemical compound CCCC(C)=O XNLICIUVMPYHGG-UHFFFAOYSA-N 0.000 description 1
- CFNJLPHOBMVMNS-UHFFFAOYSA-N pentyl butyrate Chemical compound CCCCCOC(=O)CCC CFNJLPHOBMVMNS-UHFFFAOYSA-N 0.000 description 1
- 239000010451 perlite Substances 0.000 description 1
- 235000019362 perlite Nutrition 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 125000002080 perylenyl group Chemical group C1(=CC=C2C=CC=C3C4=CC=CC5=CC=CC(C1=C23)=C45)* 0.000 description 1
- CSHWQDPOILHKBI-UHFFFAOYSA-N peryrene Natural products C1=CC(C2=CC=CC=3C2=C2C=CC=3)=C3C2=CC=CC3=C1 CSHWQDPOILHKBI-UHFFFAOYSA-N 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 239000000546 pharmaceutical excipient Substances 0.000 description 1
- 238000005191 phase separation Methods 0.000 description 1
- 150000002989 phenols Chemical class 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- HXITXNWTGFUOAU-UHFFFAOYSA-N phenylboronic acid Chemical class OB(O)C1=CC=CC=C1 HXITXNWTGFUOAU-UHFFFAOYSA-N 0.000 description 1
- 229940067107 phenylethyl alcohol Drugs 0.000 description 1
- 229940096826 phenylmercuric acetate Drugs 0.000 description 1
- 150000003907 phosphatidylinositol monophosphates Chemical class 0.000 description 1
- 150000003905 phosphatidylinositols Chemical class 0.000 description 1
- AQSJGOWTSHOLKH-UHFFFAOYSA-N phosphite(3-) Chemical class [O-]P([O-])[O-] AQSJGOWTSHOLKH-UHFFFAOYSA-N 0.000 description 1
- 150000003021 phthalic acid derivatives Chemical class 0.000 description 1
- BOTWFXYSPFMFNR-PYDDKJGSSA-N phytol Chemical compound CC(C)CCC[C@@H](C)CCC[C@@H](C)CCC\C(C)=C\CO BOTWFXYSPFMFNR-PYDDKJGSSA-N 0.000 description 1
- 239000001909 pimpinella anisum Substances 0.000 description 1
- LCYXQUJDODZYIJ-UHFFFAOYSA-N pinocarveol Chemical compound C1C2C(C)(C)C1CC(O)C2=C LCYXQUJDODZYIJ-UHFFFAOYSA-N 0.000 description 1
- 229930006721 pinocarveol Natural products 0.000 description 1
- VPSRGTGHZKLTBU-UHFFFAOYSA-N piperitol Natural products COc1ccc(cc1OCC=C(C)C)C2OCC3C2COC3c4ccc5OCOc5c4 VPSRGTGHZKLTBU-UHFFFAOYSA-N 0.000 description 1
- 239000000419 plant extract Substances 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 239000003495 polar organic solvent Substances 0.000 description 1
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 1
- 229920002285 poly(styrene-co-acrylonitrile) Polymers 0.000 description 1
- 229920002239 polyacrylonitrile Polymers 0.000 description 1
- 229920000767 polyaniline Polymers 0.000 description 1
- 229920001748 polybutylene Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 229920002959 polymer blend Polymers 0.000 description 1
- 229920000306 polymethylpentene Polymers 0.000 description 1
- 239000011116 polymethylpentene Substances 0.000 description 1
- 229920002503 polyoxyethylene-polyoxypropylene Polymers 0.000 description 1
- 229920001184 polypeptide Polymers 0.000 description 1
- 150000004804 polysaccharides Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920001021 polysulfide Polymers 0.000 description 1
- 239000005077 polysulfide Substances 0.000 description 1
- 150000008117 polysulfides Polymers 0.000 description 1
- 229920002620 polyvinyl fluoride Polymers 0.000 description 1
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 1
- 150000003109 potassium Chemical class 0.000 description 1
- 235000019828 potassium polyphosphate Nutrition 0.000 description 1
- 235000019353 potassium silicate Nutrition 0.000 description 1
- 229940088417 precipitated calcium carbonate Drugs 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- ASUAYTHWZCLXAN-UHFFFAOYSA-N prenol Chemical compound CC(C)=CCO ASUAYTHWZCLXAN-UHFFFAOYSA-N 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 239000011164 primary particle Substances 0.000 description 1
- UIIIBRHUICCMAI-UHFFFAOYSA-N prop-2-ene-1-sulfonic acid Chemical compound OS(=O)(=O)CC=C UIIIBRHUICCMAI-UHFFFAOYSA-N 0.000 description 1
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical class CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 1
- HUAZGNHGCJGYNP-UHFFFAOYSA-N propyl butyrate Chemical compound CCCOC(=O)CCC HUAZGNHGCJGYNP-UHFFFAOYSA-N 0.000 description 1
- HTUIWRWYYVBCFT-UHFFFAOYSA-N propyl hexanoate Chemical compound CCCCCC(=O)OCCC HTUIWRWYYVBCFT-UHFFFAOYSA-N 0.000 description 1
- MCSINKKTEDDPNK-UHFFFAOYSA-N propyl propionate Chemical compound CCCOC(=O)CC MCSINKKTEDDPNK-UHFFFAOYSA-N 0.000 description 1
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 1
- 235000019833 protease Nutrition 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- 230000002797 proteolythic effect Effects 0.000 description 1
- 239000001944 prunus armeniaca kernel oil Substances 0.000 description 1
- 235000019423 pullulan Nutrition 0.000 description 1
- 239000008262 pumice Substances 0.000 description 1
- 239000008171 pumpkin seed oil Substances 0.000 description 1
- 150000003220 pyrenes Chemical class 0.000 description 1
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 1
- 230000001698 pyrogenic effect Effects 0.000 description 1
- 229910052903 pyrophyllite Inorganic materials 0.000 description 1
- NYCVCXMSZNOGDH-UHFFFAOYSA-N pyrrolidine-1-carboxylic acid Chemical compound OC(=O)N1CCCC1 NYCVCXMSZNOGDH-UHFFFAOYSA-N 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- FZUOVNMHEAPVBW-UHFFFAOYSA-L quinoline yellow ws Chemical compound [Na+].[Na+].O=C1C2=CC=CC=C2C(=O)C1C1=NC2=C(S([O-])(=O)=O)C=C(S(=O)(=O)[O-])C=C2C=C1 FZUOVNMHEAPVBW-UHFFFAOYSA-L 0.000 description 1
- GRWFGVWFFZKLTI-UHFFFAOYSA-N rac-alpha-Pinene Natural products CC1=CCC2C(C)(C)C1C2 GRWFGVWFFZKLTI-UHFFFAOYSA-N 0.000 description 1
- KKOXKGNSUHTUBV-UHFFFAOYSA-N racemic zingiberene Natural products CC(C)=CCCC(C)C1CC=C(C)C=C1 KKOXKGNSUHTUBV-UHFFFAOYSA-N 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000010526 radical polymerization reaction Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000002940 repellent Effects 0.000 description 1
- 235000020944 retinol Nutrition 0.000 description 1
- 229960003471 retinol Drugs 0.000 description 1
- 239000011607 retinol Substances 0.000 description 1
- PYWVYCXTNDRMGF-UHFFFAOYSA-N rhodamine B Chemical compound [Cl-].C=12C=CC(=[N+](CC)CC)C=C2OC2=CC(N(CC)CC)=CC=C2C=1C1=CC=CC=C1C(O)=O PYWVYCXTNDRMGF-UHFFFAOYSA-N 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 229930006696 sabinene Natural products 0.000 description 1
- 239000010670 sage oil Substances 0.000 description 1
- 150000003873 salicylate salts Chemical class 0.000 description 1
- 229960004889 salicylic acid Drugs 0.000 description 1
- 238000007127 saponification reaction Methods 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 229940087119 scoparium Drugs 0.000 description 1
- CDAISMWEOUEBRE-UHFFFAOYSA-N scyllo-inosotol Natural products OC1C(O)C(O)C(O)C(O)C1O CDAISMWEOUEBRE-UHFFFAOYSA-N 0.000 description 1
- 150000003333 secondary alcohols Chemical class 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- 230000001953 sensory effect Effects 0.000 description 1
- 239000008159 sesame oil Substances 0.000 description 1
- 235000011803 sesame oil Nutrition 0.000 description 1
- 239000012176 shellac wax Substances 0.000 description 1
- USDOQCCMRDNVAH-UHFFFAOYSA-N sigma-cadinene Natural products C1C=C(C)CC2C(C(C)C)CC=C(C)C21 USDOQCCMRDNVAH-UHFFFAOYSA-N 0.000 description 1
- KCIKCCHXZMLVDE-UHFFFAOYSA-N silanediol Chemical compound O[SiH2]O KCIKCCHXZMLVDE-UHFFFAOYSA-N 0.000 description 1
- 125000005624 silicic acid group Chemical class 0.000 description 1
- 125000005373 siloxane group Chemical group [SiH2](O*)* 0.000 description 1
- RYMZZMVNJRMUDD-HGQWONQESA-N simvastatin Chemical compound C([C@H]1[C@@H](C)C=CC2=C[C@H](C)C[C@@H]([C@H]12)OC(=O)C(C)(C)CC)C[C@@H]1C[C@@H](O)CC(=O)O1 RYMZZMVNJRMUDD-HGQWONQESA-N 0.000 description 1
- 239000002893 slag Substances 0.000 description 1
- 239000012748 slip agent Substances 0.000 description 1
- WXMKPNITSTVMEF-UHFFFAOYSA-M sodium benzoate Chemical compound [Na+].[O-]C(=O)C1=CC=CC=C1 WXMKPNITSTVMEF-UHFFFAOYSA-M 0.000 description 1
- 239000004299 sodium benzoate Substances 0.000 description 1
- 235000010234 sodium benzoate Nutrition 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 229910001415 sodium ion Inorganic materials 0.000 description 1
- 235000019795 sodium metasilicate Nutrition 0.000 description 1
- 239000012418 sodium perborate tetrahydrate Substances 0.000 description 1
- 239000001488 sodium phosphate Substances 0.000 description 1
- 229910000162 sodium phosphate Inorganic materials 0.000 description 1
- YPPQYORGOMWNMX-UHFFFAOYSA-L sodium phosphonate pentahydrate Chemical compound [Na+].[Na+].[O-]P([O-])=O YPPQYORGOMWNMX-UHFFFAOYSA-L 0.000 description 1
- 229940048086 sodium pyrophosphate Drugs 0.000 description 1
- 229960004025 sodium salicylate Drugs 0.000 description 1
- 229910000031 sodium sesquicarbonate Inorganic materials 0.000 description 1
- 235000018341 sodium sesquicarbonate Nutrition 0.000 description 1
- 229910052938 sodium sulfate Inorganic materials 0.000 description 1
- 235000011152 sodium sulphate Nutrition 0.000 description 1
- 235000010265 sodium sulphite Nutrition 0.000 description 1
- UGTZMIPZNRIWHX-UHFFFAOYSA-K sodium trimetaphosphate Chemical compound [Na+].[Na+].[Na+].[O-]P1(=O)OP([O-])(=O)OP([O-])(=O)O1 UGTZMIPZNRIWHX-UHFFFAOYSA-K 0.000 description 1
- IBDSNZLUHYKHQP-UHFFFAOYSA-N sodium;3-oxidodioxaborirane;tetrahydrate Chemical compound O.O.O.O.[Na+].[O-]B1OO1 IBDSNZLUHYKHQP-UHFFFAOYSA-N 0.000 description 1
- SIXNTGDWLSRMIC-UHFFFAOYSA-N sodium;toluene Chemical compound [Na].CC1=CC=CC=C1 SIXNTGDWLSRMIC-UHFFFAOYSA-N 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 239000011877 solvent mixture Substances 0.000 description 1
- BATOPAZDIZEVQF-UHFFFAOYSA-N sorbic aldehyde Natural products CC=CC=CC=O BATOPAZDIZEVQF-UHFFFAOYSA-N 0.000 description 1
- 229960002920 sorbitol Drugs 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 239000012177 spermaceti Substances 0.000 description 1
- 229940084106 spermaceti Drugs 0.000 description 1
- 235000019385 spermaceti wax Nutrition 0.000 description 1
- 150000003408 sphingolipids Chemical class 0.000 description 1
- 229910052596 spinel Inorganic materials 0.000 description 1
- 239000011029 spinel Substances 0.000 description 1
- 238000001694 spray drying Methods 0.000 description 1
- 229940032094 squalane Drugs 0.000 description 1
- 125000004079 stearyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 235000003702 sterols Nutrition 0.000 description 1
- PJANXHGTPQOBST-UHFFFAOYSA-N stilbene Chemical class C=1C=CC=CC=1C=CC1=CC=CC=C1 PJANXHGTPQOBST-UHFFFAOYSA-N 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 229920003048 styrene butadiene rubber Polymers 0.000 description 1
- 125000000547 substituted alkyl group Chemical group 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 229960004793 sucrose Drugs 0.000 description 1
- 150000003445 sucroses Chemical class 0.000 description 1
- IIACRCGMVDHOTQ-UHFFFAOYSA-N sulfamic acid Chemical compound NS(O)(=O)=O IIACRCGMVDHOTQ-UHFFFAOYSA-N 0.000 description 1
- HXJUTPCZVOIRIF-UHFFFAOYSA-N sulfolane Chemical compound O=S1(=O)CCCC1 HXJUTPCZVOIRIF-UHFFFAOYSA-N 0.000 description 1
- 125000000472 sulfonyl group Chemical group *S(*)(=O)=O 0.000 description 1
- 150000003464 sulfur compounds Chemical class 0.000 description 1
- 239000002600 sunflower oil Substances 0.000 description 1
- 230000000475 sunscreen effect Effects 0.000 description 1
- 239000000516 sunscreening agent Substances 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 229950009390 symclosene Drugs 0.000 description 1
- 235000020357 syrup Nutrition 0.000 description 1
- 239000006188 syrup Substances 0.000 description 1
- 239000007885 tablet disintegrant Substances 0.000 description 1
- KUCOHFSKRZZVRO-UHFFFAOYSA-N terephthalaldehyde Chemical compound O=CC1=CC=C(C=O)C=C1 KUCOHFSKRZZVRO-UHFFFAOYSA-N 0.000 description 1
- KKEYFWRCBNTPAC-UHFFFAOYSA-L terephthalate(2-) Chemical compound [O-]C(=O)C1=CC=C(C([O-])=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-L 0.000 description 1
- 229940116411 terpineol Drugs 0.000 description 1
- 229920001897 terpolymer Polymers 0.000 description 1
- 229950011008 tetrachloroethylene Drugs 0.000 description 1
- VZGDMQKNWNREIO-UHFFFAOYSA-N tetrachloromethane Chemical compound ClC(Cl)(Cl)Cl VZGDMQKNWNREIO-UHFFFAOYSA-N 0.000 description 1
- UHUFTBALEZWWIH-UHFFFAOYSA-N tetradecanal Chemical compound CCCCCCCCCCCCCC=O UHUFTBALEZWWIH-UHFFFAOYSA-N 0.000 description 1
- BORJONZPSTVSFP-UHFFFAOYSA-N tetradecyl 2-hydroxypropanoate Chemical compound CCCCCCCCCCCCCCOC(=O)C(C)O BORJONZPSTVSFP-UHFFFAOYSA-N 0.000 description 1
- DZKXJUASMGQEMA-UHFFFAOYSA-N tetradecyl tetradecanoate Chemical compound CCCCCCCCCCCCCCOC(=O)CCCCCCCCCCCCC DZKXJUASMGQEMA-UHFFFAOYSA-N 0.000 description 1
- UWHCKJMYHZGTIT-UHFFFAOYSA-N tetraethylene glycol Chemical compound OCCOCCOCCOCCO UWHCKJMYHZGTIT-UHFFFAOYSA-N 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 239000001577 tetrasodium phosphonato phosphate Substances 0.000 description 1
- 108010031354 thermitase Proteins 0.000 description 1
- 150000003568 thioethers Chemical class 0.000 description 1
- 239000010496 thistle oil Substances 0.000 description 1
- UIERETOOQGIECD-ONEGZZNKSA-N tiglic acid Chemical compound C\C=C(/C)C(O)=O UIERETOOQGIECD-ONEGZZNKSA-N 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
- PGTJIOWQJWHTJJ-UHFFFAOYSA-N trans-Calamenene Natural products C1=C(C)C=C2C(C(C)C)CCC(C)C2=C1 PGTJIOWQJWHTJJ-UHFFFAOYSA-N 0.000 description 1
- RUVINXPYWBROJD-ONEGZZNKSA-N trans-anethole Chemical compound COC1=CC=C(\C=C\C)C=C1 RUVINXPYWBROJD-ONEGZZNKSA-N 0.000 description 1
- BJIOGJUNALELMI-UHFFFAOYSA-N trans-isoeugenol Natural products COC1=CC(C=CC)=CC=C1O BJIOGJUNALELMI-UHFFFAOYSA-N 0.000 description 1
- HPOHAUWWDDPHRS-UHFFFAOYSA-N trans-piperitol Natural products CC(C)C1CCC(C)=CC1O HPOHAUWWDDPHRS-UHFFFAOYSA-N 0.000 description 1
- KXSDPILWMGFJMM-UHFFFAOYSA-N trans-sabinene hydrate Natural products CC1(O)CCC2(C(C)C)C1C2 KXSDPILWMGFJMM-UHFFFAOYSA-N 0.000 description 1
- LOIYMIARKYCTBW-OWOJBTEDSA-N trans-urocanic acid Chemical compound OC(=O)\C=C\C1=CNC=N1 LOIYMIARKYCTBW-OWOJBTEDSA-N 0.000 description 1
- LOIYMIARKYCTBW-UHFFFAOYSA-N trans-urocanic acid Natural products OC(=O)C=CC1=CNC=N1 LOIYMIARKYCTBW-UHFFFAOYSA-N 0.000 description 1
- 238000005809 transesterification reaction Methods 0.000 description 1
- 238000012250 transgenic expression Methods 0.000 description 1
- 229940074410 trehalose Drugs 0.000 description 1
- LGWZGBCKVDSYPH-UHFFFAOYSA-N triacontane Chemical compound [CH2]CCCCCCCCCCCCCCCCCCCCCCCCCCCCC LGWZGBCKVDSYPH-UHFFFAOYSA-N 0.000 description 1
- OLTHARGIAFTREU-UHFFFAOYSA-N triacontane Natural products CCCCCCCCCCCCCCCCCCCCC(C)CCCCCCCC OLTHARGIAFTREU-UHFFFAOYSA-N 0.000 description 1
- 229940062627 tribasic potassium phosphate Drugs 0.000 description 1
- ZKWDCFPLNQTHSH-UHFFFAOYSA-N tribromoisocyanuric acid Chemical compound BrN1C(=O)N(Br)C(=O)N(Br)C1=O ZKWDCFPLNQTHSH-UHFFFAOYSA-N 0.000 description 1
- 229960002415 trichloroethylene Drugs 0.000 description 1
- 150000005691 triesters Chemical class 0.000 description 1
- 235000019798 tripotassium phosphate Nutrition 0.000 description 1
- HRXKRNGNAMMEHJ-UHFFFAOYSA-K trisodium citrate Chemical compound [Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O HRXKRNGNAMMEHJ-UHFFFAOYSA-K 0.000 description 1
- 229940038773 trisodium citrate Drugs 0.000 description 1
- 235000019801 trisodium phosphate Nutrition 0.000 description 1
- WCTAGTRAWPDFQO-UHFFFAOYSA-K trisodium;hydrogen carbonate;carbonate Chemical compound [Na+].[Na+].[Na+].OC([O-])=O.[O-]C([O-])=O WCTAGTRAWPDFQO-UHFFFAOYSA-K 0.000 description 1
- 238000000108 ultra-filtration Methods 0.000 description 1
- ORHBXUUXSCNDEV-UHFFFAOYSA-N umbelliferone Chemical compound C1=CC(=O)OC2=CC(O)=CC=C21 ORHBXUUXSCNDEV-UHFFFAOYSA-N 0.000 description 1
- HFTAFOQKODTIJY-UHFFFAOYSA-N umbelliferone Natural products Cc1cc2C=CC(=O)Oc2cc1OCC=CC(C)(C)O HFTAFOQKODTIJY-UHFFFAOYSA-N 0.000 description 1
- KMPQYAYAQWNLME-UHFFFAOYSA-N undecanal Chemical compound CCCCCCCCCCC=O KMPQYAYAQWNLME-UHFFFAOYSA-N 0.000 description 1
- XSMIOONHPKRREI-UHFFFAOYSA-N undecane-1,11-diol Chemical compound OCCCCCCCCCCCO XSMIOONHPKRREI-UHFFFAOYSA-N 0.000 description 1
- KJIOQYGWTQBHNH-UHFFFAOYSA-N undecanol Chemical compound CCCCCCCCCCCO KJIOQYGWTQBHNH-UHFFFAOYSA-N 0.000 description 1
- 125000004417 unsaturated alkyl group Chemical group 0.000 description 1
- 150000003672 ureas Chemical class 0.000 description 1
- 229940116269 uric acid Drugs 0.000 description 1
- WCTNXGFHEZQHDR-UHFFFAOYSA-N valencene Natural products C1CC(C)(C)C2(C)CC(C(=C)C)CCC2=C1 WCTNXGFHEZQHDR-UHFFFAOYSA-N 0.000 description 1
- LSGOVYNHVSXFFJ-UHFFFAOYSA-N vanadate(3-) Chemical compound [O-][V]([O-])([O-])=O LSGOVYNHVSXFFJ-UHFFFAOYSA-N 0.000 description 1
- MWOOGOJBHIARFG-UHFFFAOYSA-N vanillin Chemical compound COC1=CC(C=O)=CC=C1O MWOOGOJBHIARFG-UHFFFAOYSA-N 0.000 description 1
- 235000012141 vanillin Nutrition 0.000 description 1
- FGQOOHJZONJGDT-UHFFFAOYSA-N vanillin Natural products COC1=CC(O)=CC(C=O)=C1 FGQOOHJZONJGDT-UHFFFAOYSA-N 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
- 235000015112 vegetable and seed oil Nutrition 0.000 description 1
- 235000019871 vegetable fat Nutrition 0.000 description 1
- 239000003981 vehicle Substances 0.000 description 1
- PXXNTAGJWPJAGM-UHFFFAOYSA-N vertaline Natural products C1C2C=3C=C(OC)C(OC)=CC=3OC(C=C3)=CC=C3CCC(=O)OC1CC1N2CCCC1 PXXNTAGJWPJAGM-UHFFFAOYSA-N 0.000 description 1
- 239000010679 vetiver oil Substances 0.000 description 1
- 229920006163 vinyl copolymer Polymers 0.000 description 1
- ZTWTYVWXUKTLCP-UHFFFAOYSA-N vinylphosphonic acid Chemical compound OP(O)(=O)C=C ZTWTYVWXUKTLCP-UHFFFAOYSA-N 0.000 description 1
- 235000019155 vitamin A Nutrition 0.000 description 1
- 239000011719 vitamin A Substances 0.000 description 1
- 235000019154 vitamin C Nutrition 0.000 description 1
- 239000011718 vitamin C Substances 0.000 description 1
- 235000019165 vitamin E Nutrition 0.000 description 1
- 239000011709 vitamin E Substances 0.000 description 1
- 239000008170 walnut oil Substances 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
- 239000010497 wheat germ oil Substances 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
- 230000037303 wrinkles Effects 0.000 description 1
- 229920001285 xanthan gum Polymers 0.000 description 1
- 108010068608 xanthan lyase Proteins 0.000 description 1
- BURBOJZOZGMMQF-UHFFFAOYSA-N xanthoxylol Natural products C1=C(O)C(OC)=CC=C1C1C(COC2C=3C=C4OCOC4=CC=3)C2CO1 BURBOJZOZGMMQF-UHFFFAOYSA-N 0.000 description 1
- ZFNVDHOSLNRHNN-UHFFFAOYSA-N xi-3-(4-Isopropylphenyl)-2-methylpropanal Chemical compound O=CC(C)CC1=CC=C(C(C)C)C=C1 ZFNVDHOSLNRHNN-UHFFFAOYSA-N 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
- 150000003738 xylenes Chemical class 0.000 description 1
- 239000000811 xylitol Substances 0.000 description 1
- HEBKCHPVOIAQTA-SCDXWVJYSA-N xylitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)CO HEBKCHPVOIAQTA-SCDXWVJYSA-N 0.000 description 1
- 235000010447 xylitol Nutrition 0.000 description 1
- 229960002675 xylitol Drugs 0.000 description 1
- 108010083879 xyloglucan endo(1-4)-beta-D-glucanase Proteins 0.000 description 1
- 238000004383 yellowing Methods 0.000 description 1
- 229910001845 yogo sapphire Inorganic materials 0.000 description 1
- XOOUIPVCVHRTMJ-UHFFFAOYSA-L zinc stearate Chemical compound [Zn+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O XOOUIPVCVHRTMJ-UHFFFAOYSA-L 0.000 description 1
- UZFLPKAIBPNNCA-FPLPWBNLSA-N α-ionone Chemical compound CC(=O)\C=C/C1C(C)=CCCC1(C)C UZFLPKAIBPNNCA-FPLPWBNLSA-N 0.000 description 1
- 229910003319 β-Na2Si2O5 Inorganic materials 0.000 description 1
- 229930007850 β-damascenone Natural products 0.000 description 1
- NOPLRNXKHZRXHT-PVMFERMNSA-N β-sinensal Chemical compound O=CC(\C)=C/CCC(/C)=C/CCC(=C)C=C NOPLRNXKHZRXHT-PVMFERMNSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D11/00—Special methods for preparing compositions containing mixtures of detergents
- C11D11/0082—Special methods for preparing compositions containing mixtures of detergents one or more of the detergent ingredients being in a liquefied state, e.g. slurry, paste or melt, and the process resulting in solid detergent particles such as granules, powders or beads
- C11D11/0088—Special methods for preparing compositions containing mixtures of detergents one or more of the detergent ingredients being in a liquefied state, e.g. slurry, paste or melt, and the process resulting in solid detergent particles such as granules, powders or beads the liquefied ingredients being sprayed or adsorbed onto solid particles
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D17/00—Detergent materials or soaps characterised by their shape or physical properties
- C11D17/0034—Fixed on a solid conventional detergent ingredient
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D17/00—Detergent materials or soaps characterised by their shape or physical properties
- C11D17/0039—Coated compositions or coated components in the compositions, (micro)capsules
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/16—Organic compounds
- C11D3/37—Polymers
- C11D3/3746—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
- C11D3/3749—Polyolefins; Halogenated polyolefins; Natural or synthetic rubber; Polyarylolefins or halogenated polyarylolefins
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/50—Perfumes
- C11D3/502—Protected perfumes
- C11D3/505—Protected perfumes encapsulated or adsorbed on a carrier, e.g. zeolite or clay
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/249921—Web or sheet containing structurally defined element or component
- Y10T428/249953—Composite having voids in a component [e.g., porous, cellular, etc.]
- Y10T428/249955—Void-containing component partially impregnated with adjacent component
- Y10T428/249958—Void-containing component is synthetic resin or natural rubbers
Definitions
- the invention concerns a fluid reservoir based on a polymer substrate, its applications, and a process for manufacturing such fluid reservoir
- particulate carriers that can absorb fluids and, depending on the application, also store them and release them again when needed.
- This inclusion mixture is a particulate fluid reservoir made of a porous, particulate polymer substrate, which is charged with 5% by weight to 95% by weight, based on the total weight of the charged polymer substrate, of an inclusion mixture.
- the particulate fluid reservoir is, therefore, understood to be a porous polymer substrate in which high proportions of fluid, such are perfume, are immobilized reliably and stably. Release of the fluid can be accomplished, for instance, by temperature elevation and/or mechanical stress. Thus it is possible to create a sort of liquid depot that can be opened if needed.
- the fluid reservoir can advantageously be incorporated into various matrices without a problem, even in liquid matrices, without there being any significant disadvantageous interaction with the matrix.
- the inclusion mixtures are preferably distinguished by the fact that they transform into a molten state essentially without decomposition. That means that, at the particular temperature stress that is required to convert them to the molten state, they are not subject to any major degradation reactions, so that a inclusion mixture according to the invention preferably remains unaltered, in the greatest part, even after its transformation to a molten state and the subsequent transformation back into the solid state. That is in contrast to an object that suffers decompositions in transformation into the molten state, so that the object, after returning to the solid state, clearly differs from its initial condition, such as with respect to its appearance, its feel, its odor, or other aspects.
- An inclusion mixture is preferably considered highly viscous if the Brookfield viscosity at 25° C. is greater than 2500 mPas, preferably 5,000 mPas, especially 7,500 mPas, preferably 10,000 mPas and particularly preferably 25,000 mPas. (Viscosity measurement in a Brookfield Model DV II Viscosimeter with Spindle 3 at 20 rpm).
- Fragrances and nonionic surfactants are most highly preferred, especially in mixtures.
- fragment and “perfume oil” are used synonymously. They mean, particularly, all those substances, or mixtures of them, which are perceived by humans and animals as odors, especially those perceived by humans as fragrances.
- ester-type fragrance compounds include, for example, benzyl acetate, phenoxyethyl isobutyrate, p-tert.-butylcyclohexyl acetate, linalyl acetate, dimethylbenzylcarbinyl acetate, phenylethyl acetate, linalyl benzoate, benzyl formate, ethyl methylphenyl glycinate, allylcyclohexyl propionate, styrallyl propionate and benzyl salicylate.
- the ethers include, for example, benzyl ethyl ether.
- the aldehydes include, for example, the linear alkanals with 8-18 C atoms, citral, citronellal, cittronellyloxyacetaldehyde, cyclamen aldehyde, hydroxycitronellal, lilial and bourgeonal.
- the ketones include, for example, the ionones, isomethylionone and methyl cedryl ketone.
- the alcohols include anethol, citronellol, eugenol, geraniol, linalool, phenylethyl alcohol and terpineol.
- the principal hydrocarbons are the terpenes and balsams. However, it is preferable to use mixtures of different fragrances which together produce a pleasant fragrance note.
- the perfume oils can, obviously, also contain natural mixtures of fragrances, such as are available from plant or animal sources, such as pine, citrus, jasmine, lily, rose or ylang-ylang oil.
- Ethereal oils of low volatility that are used primarily as aroma components are also suitable perfume oils, such as sage oil, camilla oil, clove oil, melissa oil, mint oil, cinnamon leaf oil, linden blossom oil, juniper berry oil, vetiver oil, galbanum oil, and labdanum oil.
- fragrances that can be used are selected from fragrances with
- the fluid is preferably an essentially hydrophobic liquid.
- Typical hydrophobic groups are, for example, long-chain or aromatic hydrocarbon groups.
- Perfume oils are as a general rule hydrophobic liquids.
- the fluid can preferably contain liquid cosmetic ingredients, such as oils.
- oils can advantageously be completely synthetic oils such as silicone oils, vegetable and/or animal fat oils (triglycerides of medium or unsaturated fatty acids) and/or ethereal oils (such as from plant parts).
- the inclusion mixture advantageously the fluid, can preferably contain one or more skin-care and/or skin-protective active substances.
- Skin-care active substances are all those active substances that give the skin a sensory and/or cosmetic advantage. Active skin-care substances are preferably selected from the following substances:
- the inclusion mixture can preferably contain oil with antiseptic action, preferably ethereal oil, selected in particular from the group of Angelica fine— Angelica archangelica , Anis— Pimpinella anisum , Benzoe slam— Styrax tokinensis , Cabreuva— Myrocarus fastigiatus , Cajeput— Melaleuca leucadendron , Cistrose— Cistrus ladaniferus , Copaiba balsam— Copaifera reticulata , costus root— Saussurea discolor , silver fir needles— Abies alba , elemi— Canarium luzonicum ; fennel— Foeniculum dulce ; spruce— Picea abies ; geranium— Pelargonium graveolens ; ho leaves— Cinnamonum camphora ; immortelle (straw flowers)— Helichrysum ang .; ginger extra— Zingiber off
- the inclusion mixture can preferably contain skin-protective active substances, advantageously skin-protecting oil.
- the skin-protecting substance is advantageously a skin-protecting oil, for example, also a carrier oil, particularly selected from the group of algal oil, Oleum phaeophyceae, Aloe vera oil, Aloe vera brasiliana, apricot kernel oil, Prunus armeniaca , arnica oil, Arnica montana , avacodo oil Persea americana , borage oil Borago officianalis , calendula oil Calendula officinalis , camellia oil Camellia oleifera , thistle oil Carthaqmus tinctorius , peanut oil Arachis hypogaea , hemp oil Cannabis sativa , hazelnut oil Corylus avellana , Saint John's wort oil Hypericum perforatum , jojoba oil Simondsia chinensis
- the inclusion mixture can preferably contain humidity control factors, such as those selected from the following group: amino acids, chitosan or chitosan salts/derivatives, ethylene glycol, glucosamine, glycerol, diglycerol, triglycerol, uric acid, honey and hardened honey, creatinine, hydrolysis products of collagen, lactitol, polyols and polyol derivatives (such as butylene glycol, erythritol, propylene glycol, 1,2,6-hexanetriol, polyethylene glycols such as PEG-4, PEG-6, PET-7, PEG-8, PEG-9, PEG-10, PEG-12, PEG-14, PEG-16, PEG-18, PEG-20), pyrrolidine carboxylic acid, sugars and sugar derivatives (such as fructose, glucose, maltose, maltitol, mannitol, inositol, sorbitol, sorbity
- humidity control factors
- the polymer substrate is hydrophobic.
- the longitudinal diameter of the fluid reservoir is between 20 um and 30 cm.
- Lower limits can also be 30 ⁇ m, 40 ⁇ m, 50 ⁇ m, 60 ⁇ m, 70 um, 80 ⁇ m or 100 ⁇ m, or even higher values such as 200 ⁇ m, 300 ⁇ m, 400 ⁇ m, 500 ⁇ m, 600 ⁇ m, etc.
- Upper limits can also be 20 cm, 15 cm, 10 cm, 5 cm, 3 cm, 1 cm, 0.5 cm, 0.25 cm, 0.1 cm or 0.01 cm or even lower values such as 0.005 cm, etc.
- the polymer substrate is at least partially built up of polymers selected from polyolefins, fluoropolymers, styrene polymers, copolymers of those polymers and/or mixtures of the polymers named above.
- polypropylenes, polyethylenes, etc. are particularly preferred.
- Hydrophobic polymer substrates are used preferably.
- HDPE, LDPE, LLDPE, or UHMW-PE are particularly advantageous polyethylenes.
- Poly(4-methyl-1-pentene), poly(1-butene) or polyisobutene are particularly preferred, and, as copolymers, ethylene-propylene copolymers or ethylene-vinyl acetate copolymers.
- fluoropolymers examples include polyvinylidene fluoride and polyvinyl fluoride and the copolymers poly(tetrafluoroethylene-co-hexafluoropropylene), poly(tetrafluoroethylene-co-perfluoroalkyl vinyl ether) and poly(ethylene-co-tetrafluoroethylene).
- styrene polymers polystyrene and styrene-acrylonitrile copolymers, styrene-butadiene copolymers and acrylonitrile butadiene styrene copolymers are preferred.
- polymer substrates based on polyolefins, and especially based on polypropylene or polyethylene are particularly preferred.
- cross-linked (co-)polymers are likewise preferred.
- the polymer substrate has at least partially an open-pore structure with a mean pore diameter preferably between 1 ⁇ m and 300 ⁇ m before charging with the inclusion mixture.
- the lower limit can also have values such as 5 ⁇ m, 10 ⁇ m, 15 ⁇ m, 20 ⁇ m, 25 ⁇ m or 30 ⁇ m, etc.
- the upper limits can also be at values such as 280 ⁇ m, 260 ⁇ m, 240 ⁇ m or 220 ⁇ m, etc.
- a usable porous particulate polymer substrate with at least partially open-pore structure can have a spongy cellular or even a network-like or coral-like microstructure.
- the pore structure should be at least partially open-pore. That is, the pores in the polymer substrate must be in fluid contact with each other, at least in subregions of the substrate structure, and the particles of the polymer substrate should be open-pored in at least subregions of their external surface. That allows adequate permeability to the fluids.
- use of a particulate polymer substrate with at least partial open-pore structure allows extensive fluid uptake.
- the polymer substrate used according to the invention has a mean pore diameter in the range between 4 and 110 ⁇ m. A mean pore diameter in the range of 5 to 50 ⁇ m is especially preferred. Polymer substrates with such preferred pore diameters exhibit good charging ability.
- the inclusion mixture transforms essentially without decomposition into a molten state at temperatures below 100° C., advantageously below 90° C., in an advantageous manner below 80° C., especially below 70° C.
- the inclusion mixture comprises at least 20% by weight, preferably at least 30% by weight, advantageously at least 40% by weight, in a very advantageous manner at least 50% by weight, in an especially advantageous manner at least 60% by weight, in an extremely advantageous manner at least 70% by weight, in the utmost advantageous manner at least 80% by weight, in an even more advantageous manner at least 90% by weight, particularly at least 95% by weight, but in the most advantageous manner 100% by weight of the components fluid and additive(s) having melting points or flow points in the range of 25° C. to 120° C.
- the additives contained in the inclusion mixture having a melting point or flow point in the range of 25° C. to 120° C. are at least partially soluble in the fluid, preferably essentially completely soluble in the fluid near their particular flow point.
- the inclusion mixture is highly viscous or particularly solid at temperatures up to ⁇ 22° C., advantageously up to ⁇ 28° C., in a very advantageous manner up to ⁇ 32° C., in a particularly advantageous manner up to ⁇ 38° C., in a quite particularly advantageous manner up to ⁇ 42° C., in a further advantageous manner up to ⁇ 48° C., in a still further advantageous manner up to ⁇ 55° C., in an even more advantageous manner up to ⁇ 60° C.
- the flow point of the additive that is able to flow at elevated temperatures, or of the mixture of these additives is greater than 25° C., preferably in the range of 30 to 90° C., advantageously in the range of 35 to 70° C. and particularly in the range of 40 to 60° C.
- the inclusion mixture comprises up to 90% by weight, preferably 10 to 80% by weight, but especially preferably less than 70% by weight, that is, advantageously 15 to 65% by weight, in a very advantageous manner up to 55% by weight, in an even more advantageous manner 28 to 50% by weight of additives that are able to flow at elevated temperatures (that is, additives with flow points or melting points in the range of 25° C. to 120° C.), based on the total inclusion mixture with which the polymer substrate is charged.
- the inclusion mixture comprises more than 5% by weight of fluid(s), preferably more than 10% by weight, advantageously 15 to 90% by weight, in a very advantageous manner 20 to 80% by weight, in an even more advantageous manner 25 to 75% by weight, especially 30 to 72% by weight of fluid(s), based on the total inclusion mixture with which the polymer substrate is charged.
- the fluid reservoir contains less than 25% by weight, preferably less than 15% by weight, advantageously less than 10% by weight, even more advantageously less than 5% by weight of water, based on the total fluid reservoir, and in particular it is completely free of water.
- the additives contained in the inclusion mixture are selected from the group of fatty alcohols, fatty acids, silicones (silicone oils), paraffins, nonionic surfactants, esterquats, glycerides of fatty acids (natural oils), waxes, mono, di or tri-glycerides, carbohydrates and/or polyalkylene glycols.
- sugars can be used here to advantage.
- Some examples are alpha-D-glucose monohydrate (melting point in the range of 83-86° C.), alpha-D-galactose monohydrate (melting point in the range of 118-120° C.) or maltose monohydrate (melting point in the range of 102-103° C.).
- the derivatives are also suitable, for instance, amino sugars such as D-glucosamine (melting point of the ⁇ -form: 88° C.) or deoxysugars such as rhamnose monohydrate (melting point 92-94° C.).
- Suitable paraffins can be, for instance, octadecane, nonadecane, eicosane, docosane, tricosane, tetracosane, pentacosane, hexacosane, octacosane, nonacosane or triacosan, to name some examples.
- Suitable fatty alcohols can be, for instance, 1-tridecanol, 1-tetradecanol, 1-pentadecanol, 1-hexadecanol, 1-heptadecanol, 1-octadecanol, 9-trans-octadecen-1-ol, 1-nonadecanol, 1-eicosanol, 1-heneicosanol, 1-docosanol, 12-cis-docosen-1-ol, or 3-trans-docosen-1-ol, to name some examples.
- They also include the so-called wax alcohols, fatty alcohols with about 24-36 carbon atoms, such as triacontanol-1 or melissyl alcohol.
- They also include unsaturated fatty alcohols such as elaidyl alcohol, eruca alcohol or brassidyl alcohol. They also include Guerbet alcohols such as C 32 H 66 O or C 36 H 74 O. They also include alkanediols such as undecane-1,11-diol or dodecane-1,12-diol.
- Suitable nonionic surfactants can be, for instance, fatty alcohol polyglycol ethers, such as C 14 H 29 —O—(CH 2 CH 2 O) 2 H, C 10 H 21 —O—(CH 2 CH 2 O) 8 H, C 12 H 25 —O—(CH 2 CH 2 O) 6 H, C 14 H 29 —O—(CH 2 CH 2 O) 4 H, C 16 H 33 —O—(CH 2 CH 2 O) 12 H, or C 18 H 37 —O—(CH 2 CH 2 O) 4 H, to name some examples.
- fatty alcohol polyglycol ethers such as C 14 H 29 —O—(CH 2 CH 2 O) 2 H, C 10 H 21 —O—(CH 2 CH 2 O) 8 H, C 12 H 25 —O—(CH 2 CH 2 O) 6 H, C 14 H 29 —O—(CH 2 CH 2 O) 4 H, C 16 H 33 —O—(CH 2 CH 2 O) 12 H, or C 18 H 37 —O—
- Suitable fatty acids can be, for instance, capric acid, undecanoic acid, lauric acid, tridecanoic acid, tetradecanoic acid, pentadecanoic acid, palmitic acid, margaric acid, stearic acid, nonadecanoic acid, arachidic acid, behenic acid, lignoceric acid, cerotinic acid, crotonic acid, erucic acid, eleostearic acid, or melissic acid, to name some examples.
- Esters of fatty acids such as the methyl or ethyl esters of behenic or arachidic acid can also be suitable, to name some examples.
- Mono, di or triglycerides such as the corresponding glycerides of lauric acid, palmitic acid or capric acid, are also suitable, to name some examples.
- Suitable waxes can be natural waxes such as carnauba wax, candelilla wax, esparto wax, guaruma wax, Japan wax, cork wax or montane wax; also animal waxes such as beeswax, wool wax, shellac wax or spermaceti wax; also synthetic waxes such as polyalkylene waxes or polyethylene glycol waxes, likewise chemically modified waxes such as hydrogenated jojoba wax or montane ester wax.
- natural waxes such as carnauba wax, candelilla wax, esparto wax, guaruma wax, Japan wax, cork wax or montane wax
- animal waxes such as beeswax, wool wax, shellac wax or spermaceti wax
- synthetic waxes such as polyalkylene waxes or polyethylene glycol waxes, likewise chemically modified waxes such as hydrogenated jojoba wax or montane ester wax.
- the inclusion mixture can also contain other additional substances having a melting point above 120° C., such as appropriate carbohydrates, advantageously sugars, such as sucrose (melting point 185-186° C.).
- the inclusion mixture contains other solids, preferably solids commonly used in laundry detergents, that is likewise a preferred embodiment.
- the proportion of solids in the inclusion mixture is less than 50%, preferably less than 30%, advantageously less than 25%, especially less than 15%, in an entirely preferred manner less than 10%, based on the total inclusion mixture with which the polymer substrate is charged, this is a further preferred embodiment.
- the solids contained in the inclusion mixture have a d50 value of less than 0.2 mm, preferably less than 0.1 mm, especially less than 0.05 mm.
- the inclusion mixture contains solids selected from the group of zeolites, bentonites, silicates, phosphates, urea and/or its derivatives, sulfates, carbonates, citrates, citric acid, acetates and/or salts of the anionic surfactants, this is a further preferred embodiment.
- the fluid reservoir has a size such that it can be grasped by human hands and can be used for manual treatment of objects. For instance, one can rub surfaces with a fluid reservoir in stick form, as in hand washing of textiles.
- the fluid reservoir can have any desired form. It can preferably be rather spherical, oval, cylindrical, or granular, or have any other regular or irregular shape.
- a fluid reservoir that contains at least one, preferably two or more substances usually contained in laundry detergents or cleaners, preferably a substance from the group of surfactants, builder substances (inorganic and organic builders), bleaching agents, bleach activators, bleach stabilizers, bleach catalysts, enzymes, special polymers (for example, those with co-builder properties), antiredeposition agents, optical brighteners, UV-protecting substances, soil repellents, electrolytes, coloring agents, odorants, scents, perfume carriers, pH-adjusting agents, complexing agents, fluorescence agents, foam inhibitors, anti-wrinkling agents, antioxidants, quaternary ammonium compounds, antistatics, ironing aids, UV absorbers, antiredeposition agents, germicides, antimicrobially active substances, fungicides, viscosity regulators, luster agents, color transfer inhibitors, shrinkage inhibitors, corrosion inhibitors, preservatives, plasticizers, softening rinses, protein hydrolysates, phobing and impregnating agents, hydrotrop
- the fluid reservoir according to the invention is characterized advantageously by the fact that high proportions of liquid, such as perfume, for instance, are reliably immobilized for long periods in the porous polymer substrate and are not released until there is an external stimulus, such as a temperature increase and/or mechanical stress.
- the external, visible, surface of the polymer substrate can preferably be occupied by the inclusion mixture, so that one can also advantageously speak of a coated polymer substrate
- the fluid reservoir is coated.
- Coating agents can be used for the coating. These are substances that give the outer surface of the object to be coated a glossy appearance and/or form a coating (an envelope) on the outer surface. Solid and/or liquid substances can be used as coating agents. They are preferably those that prevent or delay penetration of moisture or prevent or delay loss of aroma.
- Suitable coating agents can contain water-soluble, water-dispersible and/or water-insoluble (co)-polymers.
- the layer of coating itself can be soluble or insoluble in water.
- Water soluble polymers contain a proportion of hydrophilic groups sufficient for water solubility, and are advantageously not cross-linked.
- the hydrophilic groups can be nonionic, anionic, cationic or zwitterionic, for instance: —NH 2 , —OH, —SH, —O—, —COOH, —COO— ⁇ M + , —SO 3 ⁇ M + , —PO 3 ⁇ 2 M +2 , —NH 3 + .
- the individual polymers can contain different hydrophilic groups at the same time, such as ionic and nonionic and/or anionic and cationic groups.
- Preferred water-soluble polymers can be, for example, natural polysaccharides and/or peptides, such as starches, alginates, pectins, plant gums, caseins, gelatins, etc.
- Preferred water-soluble polymers can be, for example, semisynthetic polymers, such as cellulose ethers or starch ethers.
- Preferred water-soluble polymers can be, for example, biotechnologically produced products, such as pullulan, curdlan or xanthan.
- Preferred water-soluble polymers can be, for example, synthetic polymers, such as homopolymers and/or copolymers of (meth)acrylic acid and its derivatives, of maleic acid, vinylsulfonic acid, vinylphosphonic acid, polyvinyl alcohol, polyethyleneimine, polyvinylpyrrolidone and the like.
- Preferred coating agents contain water-soluble (co)-polymers, especially those having a melting point or softening point in the range of 48° C. to 300° C., advantageously in the range of 48° C. to 200° C., and in a further advantageous manner in the range of 48° C. to 200° C.
- Suitable water-soluble (co)-polymers with an appropriate melting or softening point can advantageously be selected from the group comprising polyalkylene glycols, polyethylene terephthalates, polyvinyl alcohols and mixture of them.
- the coating can contain, aside from the actual coating agent, or independently of it, other ingredients, such as, advantageously, textile-softening compounds and/or perfume.
- first coating e.g., one containing a textile-softening compound and then giving the resulting object a further coating, such as one containing water-soluble polymer and perfume.
- the coating of the fluid reservoir comprises lipids and/or silicone oils.
- Preferred lipids are
- the optional coating has colored substances or dyes, brighteners and/or pigments, advantageously in the nanoscale range or in the micrometer range, preferably white pigments, particularly selected from titanium dioxide pigments, such as, in particular, anatase pigments and/or rutile pigments, zinc sulfide pigments, zinc oxide (zinc white), antimony trioxide (antimony white), basic lead carbonate (white lead), 2PbCO 3 .Pb(OH) 2 , or lithopone, ZnS+BaSO 4 . It can preferably also contain white additives such as preferably calcium carbonate, talc, 3MgO.4SiO 2 .H 2 O and/or barium sulfate.
- white pigments particularly selected from titanium dioxide pigments, such as, in particular, anatase pigments and/or rutile pigments, zinc sulfide pigments, zinc oxide (zinc white), antimony trioxide (antimony white), basic lead carbonate (white lead), 2PbCO 3
- the pigments that can preferably be components of an optional coating can be any suitable pigments that can preferably be components of an optional coating.
- the optional coating can preferably also comprise the following substances:
- the optional coating of the fluid reservoir according to the invention is sensitive to pH and/or temperature and/or ionic strength or contains materials sensitive to pH and/or temperature and/or ionic strength.
- pH sensitivity, temperature sensitivity and/or ionic strength sensitivity means here that the coating or the materials making up the coating
- all those materials for which the integrity is a function of the temperature and/or the pH and/or the ionic strength, or also those materials that lose their integrity because of mechanical stress, such as occurs in the coarse of an automatic laundry washing process serve as suitable materials.
- the pH sensitivity of the (optional) coating can be utilized advantageously.
- the (optional) coating can, for example, be of such a nature that it dissolves, partially or completely, if the pH drops below a critical level. That can occur in a laundering process, for instance, if the alkaline wash water is removed from the machine and fresh water is supplied to the machine, preferably in the rinsing portion of the washing process. Then on contact with the fresh water the coating partially or completely loses its integrity, making the granulation penetrable by the water.
- the particular pH at which the coating disintegrates partially or completely can be adjusted arbitrarily, so that, for example, the material loses its integrity partially or completely if, for example, the pH drops below 9.0 but remains essentially inert as long as the pH is greater than 10.
- inert is to be understood according to the invention in the usual sense, that is, that there is essentially no physical or chemical reaction of the material of the coating with its environment but that the material of the coating is physically and chemically resistant to it, so that the granulation is essentially protected from penetration of the environment, such as the wash liquor.
- Preferred coating materials can be any coating materials.
- Polyvinyl alcohols (abbreviated PVAL, or occasionally also PVOH) is the designation for polymers having the general structure
- the usual commercial polyvinyl alcohols which are marketed as yellowish-white powders or granulations having degrees of polymerization in the range of about 100 to 2500 (molecular weights of about 4,000 to 100,000 g/mole) have degrees of hydrolysis of 98-99 or 87-89 mole-%, thus containing a residual content of acetyl groups.
- Manufacturers characterize the polyvinyl alcohols by stating the degree of polymerization of the initial polymer, the degree of hydrolysis, the saponification number, or the viscosity of the solution.
- polyvinyl alcohols are soluble in water and the less polar organic solvents (formamide, dimethylformamide or dimethylsulfoxide). They are not attacked by (chlorinated) hydrocarbons, esters, fats and oils. Polyvinyl alcohols are classifed as toxicologically unobjectionable and are at least partially biodegradable. The water solubility can be reduced by post-treatment with aldehydes (acetalization), complexing with nickel or copper salts, or treatment with dichromates, boric acid or borax. Polyvinyl alcohol coatings are largely impermeable to gases such as oxygen, nitrogen, helium, hydrogen or carbon dioxide, but allow water vapor to penetrate.
- gases such as oxygen, nitrogen, helium, hydrogen or carbon dioxide
- those coatings are preferred that comprise, at least in part, a polyvinyl alcohol with a degree of hydrolysis advantageously 70 to 100 mole-%, preferably 80 to 90 mole-%, especially preferably 81 to 89 mole-%, and particularly 82 to 88 mole-%.
- the film material used comprises at least 20% by weight, especially preferably at least 40% by weight, quite particularly preferably at least 60% by weight, and particularly at least 80% by weight of a polyvinyl alcohol for which the degree of hydrolysis is 70 to 100 mole-%, preferably 80 to 90 mole-%, especially preferably 81 to 89 mole-%, and particularly 82 to 88 mole-%.
- the total coating prefferably contains at least 20% by weight, especially preferably at least 40% by weight, quite particularly preferably at least 60% by weight and particularly at least 80% by weight of a polyvinyl alcohol for which the degree of hydrolysis is 70 to 100 mole-%, preferably 80 to 90 mole-%, especially preferably 81 to 89 mole-%, and particularly 82 to 88 mole-%.
- Polyvinyl alcohols of a particular molecular weight molecular range are used preferably as coating materials. It is preferred according to the invention that the film material comprise a polyvinyl alcohol having a molecular weight in the range of 10,000 to 100,000 g/mol, preferably 11,000 to 90,000 g/mol, especially preferably 12,000 to 80,000 g/mol, and particularly 13,000 to 70,000 g/mol.
- polyvinyl alcohols described above are broadly available commercially, as under the Mowiol® trade name (Clariant).
- Polyvinyl alcohols particularly suitable in the context of the present invention include, for example, Mowiol® 3-83, Mowiol® 4-88, Mowiol® 5-88, Mowiol® 8-88 and L648, L734, Mowiflex LPTC 221 from KSE and compounds from Texas Polymers, such as Vinex 2034.
- ELVANOL® 51-05, 52-22, 50-42, 85-82, 75-15, T-25, T-66, 90-50 DuPont trademarks
- ALCOTEX® 72.5, 78, B72, F80/40, F88/4, F88/26, F88/40, F88/47 trademarks of Harlow Chemical Co.
- Gonozo ⁇ de® NK-05, A-300, AH-22, C-500, GH-20, GL-03, GM-14L, KA-20, KA-500, KH-20, KP-06, N-300, NH-26, NM11Q, KZ-06 trademarks of Nippon Gohsei K. K.
- ERKOL types from Wacker are also suitable.
- the water-solubility of PVAL can be altered by post-treatment with aldehydes (acetalization) or ketones (ketalization).
- aldehydes acetalization
- ketones ketalization
- Polyvinyl alcohols that have been acetalized or ketalized with the aldehyde or ketone groups of saccharides or polysaccharides or mixture of them have proven particularly advantageous because of their outstandingly good solubility in cold water and are specially preferred.
- the reaction products of PVAL and starch are used as extremely advantageous.
- the water solubility can be further altered by complexing with nickel or copper salts or by treatment with dichromates, boric acid, or borax, so that it can be adjusted deliberately to desired values.
- Films of PVAL are largely impermeable to gases such as oxygen, nitrogen, helium, hydrogen, and carbon dioxide, but allow water vapor to penetrate.
- PVP polyvinylpyrrolidone
- PVPs are produced by radical polymerization of 1-vinylpyrollidone.
- Typical commercial PVPs have molecular weights in the range of preferably about 2,500 to 750,000 g/mol and are marketed as white hygroscopic powders or as aqueous solutions.
- PEOX polyethylene oxides
- PEOX polyalkylene glycols having the general formula
- ethylene oxide oxirane
- ethylene glycol as the starting molecule in systems usually containing traces of water. They have molecular weights in the range of about 200 to 5,000,000 g/mol, and corresponding degrees of polymerization of about 5 to >100,000.
- Polyethylene oxides have an extremely low concentration of reactive hydroxyl terminal groups, and have only weak properties of glycols.
- gelatin is a polypeptide (molecular weight: about 15,000 to >250,000 g/mol) obtained primarily by hydrolysis of collagen contained in animal skin and bones under acidic or alkaline conditions.
- the amino acid composition of gelatin largely corresponds to that of the collagen from which it was obtained, and varies, depending on the source.
- Coating materials that comprise a polymer from the group of starches and starch derivatives, cellulose and cellulose derivatives, especially methylcellulose and mixture of those are preferred in the context of the present invention.
- Starch is a homoglycan, in which the glucose units are joined by ⁇ -glycoside bonds.
- Starch is composed of two components having different molecular weights: about 20 to 30% straight-chain amylose (molecular weight about 50,000 to 150,000) and 70 to 80% branched-chain amylopectin (molecular weight about 300,000 to 2,000,000). It also contains traces of lipids, phosphoric acid and cations. While amylose forms long intertwined chains of about 300 to 1,200 glucose molecules because of the 1,4 bonding, the amylopectin chain branches through 1,6 bonds after an average of 25 glucose units, giving a branch-like structure with about 1,500 to 12,000 glucose molecules.
- Starch derivatives that can be obtained by polymer-like reactions of starch are also suitable, along with pure starch, for producing water-soluble envelopes in the context of the present invention.
- chemically modified starches comprise products of esterifications or etherifications, in which hydroxyl hydrogen atoms are substituted.
- starches in which the hydroxyl groups are replaced by functional groups not bound through an oxygen atom can also be used as starch derivatives.
- the group of starch derivatives includes, for example, alkali starches, carboxymethylstarch (CMS), starch esters and starch ethers, as well as amino starches.
- Pure cellulose has the empirical formula (C 6 H 10 O 5 ) n .
- it is a ⁇ -1,4-polyacetal of cellobiose, which is itself made up of two molecules of glucose.
- Suitable celluloses consist of about 500 to 5,000 glucose units, and accordingly have average molecular weights of 50,000 to 500,000.
- cellulose derivatives that can be obtained from cellulose by polymer-like reactions are usable as disintegrants based on cellulose.
- Such chemically modified celluloses include, for example, products of esterifications or etherifications in which hydroxyl hydrogen atoms are replaced.
- celluloses in which the hydroxyl groups are replaced by functional groups not bound through oxygen atoms can also be used as cellulose derivatives.
- the group of cellulose derivatives includes, for example, alkali celluloses, carboxymethylcellulose (CMS), cellulose esters and ethers, and amino celluloses.
- a further object of the present invention is a process for producing a fluid reservoir according to the invention, in which one brings a mixture of additives that are highly viscous or solid at T ⁇ 20° C., and fluids, to a liquid state by heating, mixes this flowable mixture with a porous polymer substrate, and then lets it cool.
- the accessible pore system of the polymer substrate can be fully charged if necessary and the pores can also be sealed preferably by cooling after charging.
- the polymer is preheated to a temperature of 25°-150° C. before it is mixed with the flowable mixture, that is a preferred embodiment.
- the cooling of the mixture is accelerated by adding cold.
- liquid carbon dioxide CO 2
- mixing them further
- removing the liquid carbon dioxide by, for example, simply reducing the pressure in the system so that vaporization can occur. If the expansion of the carbon dioxide is intentionally slowed, particularly advantageous fluid reservoirs can be produced. It is advantageous to work with liquid carbon dioxide in a pressure range of 20 bar to 70 bar at 20° C. Carbon dioxide can likewise be used in other pressure ranges and temperature ranges as long as it is liquid under those conditions.
- Laundry detergents or cleaners containing fluid reservoirs according to the invention, and likewise a cosmetic containing fluid reservoirs according to the invention are an extremely preferred subject of the present invention.
- fluid reservoirs according to the invention especially in the form of fragrance blocks and/or fragrance bags for odorizing rooms, vehicles, or closets is likewise a further preferred subject of the invention.
- fluid reservoirs according to the invention for odorizing objects, preferably laundry detergents, washing machines and cleaning machines, dry laundry and packages is likewise a further preferred subject of the invention.
- fluid reservoirs that hold ingredients of manual dishwashing agents selected, for example, from
- fluid reservoirs may be preferred that contain ingredients of machine dishwashing agents, selected, for example, from the following:
- phosphates such as pentasodium triphosphate, phosphonates, citrates, such as sodium citrate, sodium polycarboxylates, sodium metasilicate, soda, sodium bicarbonate, sodium disilicate, active chlorine, sodium perborate, bleach activator, such as TAED, enzymes, such as proteases and amylases, (low-foam) nonionic surfactants, silver and glass protection, odorants.
- fluid reservoirs may be preferred which contain ingredients of textile detergents, for instance, selected from the following:
- anionic surfactants such as preferably alkylbenzenesulfonate and/or alkyl sulfate, nonionic surfactants such as preferably fatty alcohol polyglycol ether, alkyl polyglucoside and/or fatty acid glucamide, builders, such as preferably zeolite, polycarboxylate and/or sodium citrate, alkalies, such as preferably sodium carbonate, alcohols such as preferably ethanol and/or glycerol, bleaching agents such as preferably sodium perborate and/or sodium percarbonate, corrosion inhibitors such as preferably sodium silicate, stabilizers, such as preferably phosphonates, foam inhibitors such as preferably soaps, silicone oils and/or paraffins, enzymes such as preferably proteases, amylases, cellulases, and/or lipases, antiredeposition agents such as preferably carboxymethylcellulose, discoloration inhibitors such as preferably polyvinylpyrrolidone derivatives, adjusting agents such as preferably sodium
- fluid reservoirs may be preferred which contain ingredients of all-purpose cleaners, selected, for instance, from the following:
- surfactants such as alkane sulfonates, alkylbenzenesulfonates, alkyl polyglucosides, fatty alcohol polyglycol ether sulfates, fatty alcohol polyglycol ethers, builders such as trisodium citrate, the sodium salt of nitrilotriacetic acid, sodium phosphonate, pentasodium triphosphate, solvents and hydrotropes (solubilizers), such as ethanol, propylene glycol ether, sodium toluene or cumene sulfonate, odorants, colorants, or preservatives.
- Acidic all-purpose cleaners contain acids, such as preferably acetic acid, citric or maleic acid. All-purpose cleaners adjusted to be (weakly) alkaline contain alkalies, such as preferably sodium hydroxide or soda [sodium carbonate].
- a toilet block according to the invention for hanging in the toilet bowl or flush tank, for instance, can release small amounts of acids, surfactant and/or fragrance and thus slow the deposition of contaminants.
- a further subject of the invention is a product such as preferably a household sponge, rag or towel, with which at least one surface of the product is filled with firmly attached fluid reservoirs.
- a product such as preferably a household sponge, rag or towel, with which at least one surface of the product is filled with firmly attached fluid reservoirs.
- a scouring sponge having its scouring side occupied by the fluid reservoirs.
- a fluid reservoir that contains at least one, preferably two or more substances typically contained in laundry detergents or cleaners is a preferred embodiment of the invention.
- a fluid reservoir according to the invention that contains a laundry detergent or cleaner is a highly preferred subject of the present invention.
- ingredients of laundry detergents or cleaning agents that can advantageously be contained in the fluid reservoir or which can be contained in a laundry detergent or cleaner that contains fluid reservoirs according to the invention are described in more detail.
- Builders include, in particular, zeolites, silicates, carbonates, organic cobuilders and, if there are no ecological prejudices against their use, also the phosphates.
- the applicable finely crystalline synthetic zeolite that contains bound water is preferably Zeolite A and/or P.
- Zeolite MAP® commercial product of the Crosfield company
- Zeolite X is also usable, as are mixtures of A, X and/or P.
- a co-crystallizate of Zeolite X and Zeolite A (ca. 80% by weight Zeolite X) sold by CONDEA Augusta S. p. A as VEGOBOND AX® is commercially available and preferred for use in the context of the present invention. It can be described by the formula
- the zeolite can also be as a powdering agent.
- Suitable zeolites have preferably have a mean particle size less than 10 ⁇ m (volume distribution; measuring method: Coulter Counter) and contain preferably 18 to 22% by weight, particularly 20 to 22% by weight bound water.
- Suitable crystalline lamellar sodium silicates have the general formula NaMSi x O 2x+1 .H 2 O, in which means sodium or hydrogen, x is a number from 1.9 to 4 and y is a number from 0 to 20, and preferred values for x are 2, 3 or 4.
- Preferred crystalline lamellar silicates having the formula stated are those in which M stands for sodium and x takes on the value of 2 or 3. In particular, both ⁇ - and ⁇ -sodium disilicate, Na 2 Si 2 O 5 .yH 2 O, are preferred.
- the crystalline lamellar silicates having the formula NaMSi x O 2x+1 .yH 2 O are, for example, sold by Clarian GmbH (Germany) under the trade name Na-SKS.
- silicates examples include Na-SKS-1 (Na 2 Si 22 O 45 .xH 2 O, kenyaite), Na-SKS-2 (Na 2 Si 14 O 29 .xH 2 O (magadite), Na-SKS-3 (Na 2 Si 8 O 17 .xH 2 O) or Na-SKS-4 (Na 2 Si 4 O 9 .xH 2 O, makatite).
- Crystalline lamellar silicates having the formula NaMSi x O 2x+1 .yH 2 O, in which x stands for 2, are also particularly suitable.
- the particularly suitable ones of these are Na-SKS-5 ( ⁇ -Na 2 Si 2 O 5 ), Na-SKS-7 ( ⁇ -Na 2 Si 2 O 5 , natrosilite), Na-SKS-9 (NaHSi 2 O 5 .H 2 O), Na-SKS-10 (NaHSi 2 O 5 .3H 2 O, kanemite), Na-SKS-11 (t-Na 2 Si 2 O 5 ) and Na-SKS-13 (NaHSi 2 O 5 ), but especially Na-SKS-6 ( ⁇ -Na 2 Si 2 O 5 ).
- Amorphous sodium silicates having a Na 2 O:SiO 2 ratio of 1:2 to 1:3.3, preferably 1:2 to 1:2.8 and particularly 1:2 to 1:2.6 which have delayed dissolution and exhibit secondary washing properties are also usable.
- the delay of dissolution compared with the usual sodium silicates can be accomplished in various ways, such as by surface treatment, compounding, compacting/compressing or by overdrying.
- the term “amorphous” is understood to include “X-ray amorphous”. This means that the silicates do not give sharp X-ray reflections in X-ray diffraction experiments, such as are typical of crystalline substances.
- the silicate articles give diffuse or even sharp diffraction maxima in electron diffraction experiments, that can lead to very good or even particularly good builder characteristics. That can be interpreted to mean that the products have microcrystalline regions of the magnitude of 10 to a few hundred nm, with values up to a maximum of 50 nm and particularly up to a maximum of 20 nm preferred.
- Such so-called X-ray amorphous silicates likewise exhibit delayed dissolution in comparison with the usual water glasses. Compressed/compacted amorphous silicates, compounded amorphous silicates and over-dried X-ray amorphous silicates are particularly preferred.
- this/these silicate(s), preferably alkali silicates, especially preferably crystalline or amorphous alkali disilicates, to be contained in laundry detergents or cleaners in proportions of 10 to 60% by weight, preferably 15 to 50% by weight, and especially 20 to 40% by weight, based in each case on the weight of the laundry detergent or cleaner.
- the generally known phosphates as builder substances, as long as it is not necessary to avoid such use for ecological reasons. That is particularly the case for use of agents according to the invention as washing agents for dishwashing machines.
- the alkali metal phosphates are the most important for the laundry detergent and cleaner industry, with particular preference for pentasodium or pentapotassium triphosphate (sodium or potassium tripolyphosphate).
- Alkali metal phosphate is the summary designation for the alkali metal (especially sodium and potassium) salts of the various phosphoric acids, in which one can distinguish metaphosphoric acids, (HPO 3 ) n , and orthohosphoric acid, H 3 PO 4 , along with representatives of higher molecular weight.
- the phosphates combine several advantages: they act as alkali carriers, prevent lime deposition on machine parts or lime incrustations in cloth, and also contribute to the cleaning power.
- Suitable phosphates are sodium dihydrogen phosphate, NaH 2 PO 4 , in the form of the dihydrate (density 1.91 g/cm 3 , melting point 60° C.) or in the form of the monohydrate (density 2.04 g/cm 3 ); disodium hydrogen phosphate (secondary sodium phosphate), Na 2 HPO 4 , which can be used anhydrous or with 2 moles of H 2 O (density 2.066 g/cm 3 , water loss at 95° C.), 7 moles (density 1.68 g/cm 3 , melting point 48° C. with loss of 5H 2 O) and 12 moles of water (density 1.52 g/cm 3 , melting point 35° C.
- trisodium phosphate (tertiary sodium phosphate) Na 3 PO 4 which can be used as the dodecahydrate, as the decahydrate (equivalent to 19-20% P 2 O 5 ) or in the anhydrous form (equivalent to 39-40% P 2 O 5 ).
- Tripotassium phosphate (tertiary or tribasic potassium phosphate), K 3 PO 4 , is another preferred phosphate.
- Tetrasodium diphosphate sodium pyrophosphate
- Na 4 P 2 O 7 is also preferred. It exists in the anhydrous form (density 2.534 g/cm 3 , melting point 988°, also reported as 880°) and as the decahydrate (density 1.815-1.836 g/cm 3 , melting point 94° with loss of water).
- the corresponding potassium salt, potassium diphosphate (potassium pyrophosphate), K 4 P 2 O 7 is also preferred.
- the industrially important pentasodium triphosphate Na 5 P 3 O 10
- the corresponding potassium salt, pentapotassium triphosphate (K 5 P 3 O 10 ) (potassium tripolyphosphate) is commercially available as, for example, a 50% by weight solution (>23% P 2 O 5 , 25% K 2 O).
- the potassium polyphosphates are widely used in the detergent or cleaning agent industry.
- Sodium potassium tripolyphosphates also exist. They are likewise usable in the context of the present invention. They are produced, for example, if sodium trimetaphosphate is hydrolyzed with KOH:
- the preferred agents contain this/these phosphate(s), preferably alkali metal phosphates, especially preferably pentasodium or pentapotassium triphosphate (sodium or potassium tripolyphosphate) in proportions of 5 to 80% by weight, preferably 15 to 75% by weight, and especially 20 to 70% by weight, based in each case on the weight of the laundry detergent or cleaner.
- alkali metal phosphates especially preferably pentasodium or pentapotassium triphosphate (sodium or potassium tripolyphosphate) in proportions of 5 to 80% by weight, preferably 15 to 75% by weight, and especially 20 to 70% by weight, based in each case on the weight of the laundry detergent or cleaner.
- potassium tripolyphosphate and sodium tripolyphosphate in particular, in a weight ratio of more than 1:1, preferably more than 2:1, preferably more than 5:1, especially preferably more than 10:1 and particularly more than 20:1. It is particularly preferable to use potassium tripolyphosphate alone without admixtures of other phosphates.
- Alkali carriers are other builders.
- Alkali carriers include, for example, alkali metal hydroxides, alkali metal carbonates, alkali metal bicarbonates, alkali metal sesquicarbonates, the alkali silicate and alkali metasilicates mentioned, and mixtures of those substances.
- the alkali carbonates especially sodium carbonate, sodium bicarbonate, or sodium sesquicarbonate.
- a builder system comprising a mixture of tripolyphosphate and sodium carbonate is particularly preferred.
- a builder system comprising a mixture of tripolyphosphate and sodium carbonate and sodium disilicate is likewise particularly preferred.
- the alkali metal hydroxides are used in low proportions if at all because of their poor chemical compatibility with the other ingredients of laundry detergents and cleaners, in comparison with other builders. They are preferably used in proportions of less than 10% by weight, preferably less than 6% by weight, especially preferably below 4% by weight, and particularly below 2% by weight, based in each case on the total weight of the laundry detergent or cleaner. Agents that contain less than 0.5%, based on their total weight, and especially no alkali metal hydroxides, are particularly preferred,
- Agents that contain less than 20% by weight, preferably less than 17% by weight, preferably less than 13% by weight, and particularly less than 9% by weight, based in each case on the weight of the cleaner, of carbonate(s) and/or bicarbonate(s), preferably alkali carbonate(s), especially preferably sodium carbonate can be particularly preferred.
- Polycarboxylates/polycarboxylic acids, polymeric polycarboxylates, aspartic acid, polyacetals, dextrins, other organic cobuilders (see below) and phosphonates must be mentioned as organic cobuilders. These classes of materials are described in the following.
- polycarboxylic acids examples include those carboxylic acids that bear more than one acid function. Examples of those include citric acid, adipic acid, succinic acid, glutaric acid, malic acid, tartaric acid, maleic acid, fumaric acid, sugar acids, aminocarboxylic acids, and nitrilotriacetic acid (NTA) as long as their use in not objectionable for ecological reasons, and mixtures of them.
- Preferred salts are the salts of the polycarboxylic acids such as citric acid, adipic acid, succinic acid, glutaric acid, tartaric acid, sugar acids, and mixtures of those.
- the acids can also be used as such.
- the acids aside from their builder action, typically also have the property of an acidifying component and so also serve to adjust a lower and milder pH of the laundry detergent or cleaner.
- citric acid, succinic acid, glutaric acid, adipic acid, gluconic acid, and arbitrary mixtures of them must be named.
- Polymeric polycarboxylates are further suitable as builders. They include, for example, the alkali metal salts of polyacrylic acid or polymethacrylic acid, for instance, those with relative molecular weights of 500 to 70,000 g/mol.
- the molecular weights stated for polymeric polycarboxylates are, in the sense of this document, weight-average molecular weights, M w , of the particular acid form. They are basically determined by means of gel permeation chromatography (GPC) using a UV detector. The measurement is made versus an external polyacrylic acid standard, which gives realistic molecular weights because of its structural relation with the polymers being examined. These figures clearly diverge from the molecular weight data found when polystyrenesulfonic acids are used as standards. The molecular weights measured with polystyrenesulfonic acids are generally distinctly higher than those reported in this document.
- Polyacrylates preferably having molecular weights of 2,000 to 20,000 are especially suitable polymers. Again, the short-chain polyacrylates of this group, having molecular weights of 2,000 to 10,000 are preferred, and those with molecular weights of 3,000 to 5,000 are particularly preferred of this group because of their superior solubility.
- Copolymeric polycarboxylates are further suitable, especially those that are copolymers of acrylic acid with methacrylic acid and of acrylic acid or methacrylic acid with maleic acid.
- the copolymers of acrylic acid with maleic acid that contain 50 to 90% by weight acrylic acid and 50 to 10% by weight maleic acid have proven particularly suitable.
- Their relative molecular weights, based on the free acids, are generally 2,000 to 70,000 g/mol, preferably 20,000 to 50,000 g/mol, preferably 20,000 to 50,000 g/mol, and particularly 30,000 to 40,000 g/mol:
- the (co)polymeric polycarboxylates can be used either as the powder or as the aqueous solution.
- Laundry detergents or cleaners contain preferably 0.5 to 20% by weight optionally (co)polymeric polycarboxylates, and especially 3 to 10% by weight.
- the polymers can also contain allylsulfonic acids, such as allyloxybenzensulfonic acid and methallylsulfonic acid as monomers to improve the water solubility.
- allylsulfonic acids such as allyloxybenzensulfonic acid and methallylsulfonic acid as monomers to improve the water solubility.
- Biodegradable polymers made up of more than two different monomer units are particularly preferred, such as those that contain as monomers salts of acrylic acid and maleic acid as well as vinyl alcohol or vinyl alcohol derivatives, or which contain as monomers salts of acrylic acid and 2-alkylallylsulfonic acid as well as sugar derivatives.
- copolymers are those that contain as monomers preferably acrolein and acrylic acid/acrylic acid salts or acrolein and vinyl acetate.
- polymeric aminodicarboxylic acids, their salts, or their precursors must be mentioned as other preferred builder substances.
- Polyaspartic acids or their salts are especially preferred.
- Polyacetals which can be obtained by reaction of dialdehydes with polyol carboxylic acids having 5 to 7 C atoms and at least 3 hydroxyl groups are other suitable builder substances.
- Preferred polyacetals are obtained from dialdehydes such as glyoxylate, glutaraldehyde and terephthaldehyde or mixtures of them and from polyol carboxylic acids such as gluconic acid and/or gluconoheptanoic acid.
- Dextrins such as oligomers or polymers of carbohydrates, which can be obtained by partial hydrolysis of starches, are other suitable organic builder substances.
- the hydrolysis can be done by the usual processes, such as acid-catalyzed or enzyme-catalyzed processes. They are preferably hydrolysis products with mean molecular weights in the range of 400 to 500,000 g/mol.
- DE is a useful measure of the reducing action of a polysaccharide in comparison with dextrose, which has a DE of 100.
- Both maltodextrins with a DE between 3 and 20, and dry glucose syrups with DEs between 20 and 37 are usable, as are the so-called yellow dextrins and white dextrins with higher molecular weights in the range of 2,000 to 30,000 g/mol.
- oxidized derivatives of such dextrins are products of their reaction with oxidizing agents which are able to oxidize at least one alcohol function of the saccharide ring to the carboxylic acid function.
- Oxydisuccinates and other derivatives of disuccinates, preferably ethylenediamine disuccinate are other suitable cobuilders. It is preferable to use ethylenediamine-N,N′-disuccinate (EDDS) in the form of its sodium or magnesium salt. Glycerol disuccinate and glycerol trisuccinate are also preferred in this respect. Suitable proportions for use in formulations containing zeolite and/or silicate can, for example, be 3 to 15% by weight.
- Examples of other usable organic cobuilders are acetylated hydroxycarboxylic acids or their salts, which can optionally be in the lactone form and which have at least 4 carbon atoms and at least one hydroxyl group as well as not more than two acid groups.
- the group of surfactants includes the nonionic, anionic, cationic and amphoteric surfactants.
- nonionic surfactants known to those skilled in the art can be used as the nonionic surfactants.
- Low-foaming nonionic surfactants can be used as preferred nonionic surfactants, for instance.
- the laundry detergent or cleaner it is particularly preferable for the laundry detergent or cleaner to contain nonionic surfactants from the group of alkoxylated alcohols. It is preferable to use as nonionic surfactants alkoxylated, advantageously ethoxylated, particularly primary alcohols having preferably 8 to 18 C atoms and an average of 1 to 12 moles of ethylene oxide (EO) per mole of alcohol.
- EO ethylene oxide
- the alcohol group can be linear or, preferably, methyl-branched in the 2 position, or it can contain a mixture of linear and methyl-branched groups, such as those that commonly occur in oxoalcohol groups.
- alcohol ethoxylates having linear groups of alcohols of natural origin having 12 to 18 C atoms, such as those from coco, palm, tallow, or oleyl alcohol, and an average of 2 to 8 moles of EO per mole of alcohol are preferred.
- the preferred ethoxylated alcohols include, for example, C 12-14 alcohols with 3 EO or 4 EO, C 9-11 alcohols having 7 EO, C 13-15 alcohols having 3 EO, 5 EO, 7 EO or 8 EO, C 12-15 alcohols having 3 EO, 5 EO or 7 EO, and mixtures of those, such as mixtures of C 12-14 alcohols with 3 EO and C 12-18 alcohol with 5 EO.
- the degrees of ethoxylation stated are statistical averages, which can be an integer or fraction for a particular product.
- Preferred alcohol ethoxylates exhibit a narrowed homolog distribution (narrow-range ethoxylates, NRE).
- fatty alcohols having more than 12 EO can also be used. Examples of those are tallow alcohols having 14 EO, 25 EO, 30 EO or 40 EO.
- alkyl glycosides of the general formula RO(G) x in which R is a primary straight-chain or methyl-branched aliphatic group, especially one methyl-branched in the 2 position, having 8 to 22, preferably 12 to 18 C atoms, and G is the symbol for a glycose unit having 5 or 6 C atoms, preferably glucose.
- the degree of oligomerization, x which indicates the distribution of monoglycosides and oligoglycosides, is an arbitrary number between 1 and 10. It is preferable for x to be 1.2 to 1.4.
- nonionic surfactants that can be used either as the only nonionic surfactant or in combination with other nonionic surfactants, is that of the alkoxylated, preferably ethoxylated or ethoxylated and propoxylated fatty acid alkyl esters, preferably having 1 to 4 carbon atoms in the alky chains.
- Nonionic surfactants of the amine oxide type such as N-cocoalkyl-N,N-dimethylamine oxide and N-tallowalkyl-N,N-dihydroxyethylamine oxide, and the fatty acid alkanolamides, can also be suitable.
- the proportion of these nonionic surfactants preferably does not exceed that of the ethoxylated fatty alcohols, and is particularly not more than half of that.
- R stands for an aliphatic acyl group having 6 to 22 carbon atoms
- R 1 stands for hydrogen, or an alkyl or hydroxyalkyl group with 1 to 4 carbon atoms
- [Z] stands for a linear or branched polyhydroxyalkyl group with 3 to 10 carbon atoms and 3 to 10 hydroxyl groups are also preferred surfactants.
- the poyhydroxyfatty acid amides are known substances that can normally be obtained by reductive amination of a reducing sugar with ammonia, an alkylamine or an alkanolamine, then subsequent acylation with a fatty acid, a fatty acid alkyl ester or a fatty acid chloride.
- the group of polyhydroxyfatty acid amides also includes compounds of the formula
- R stands for a linear or branched alkyl or alkenyl group having 7 to 12 carbon atoms
- R 1 stands for a linear, branched or cyclic alkyl group or an aryl group having 2 to 18 carbon atoms
- R 2 stands for a linear, branched or cyclic alkyl group or an aryl group or an oxyalkyl group having 1 to 8 carbon atoms, with C 1-4 -alkyl or phenyl groups preferred
- [Z] stands for a linear polyhydroxyalkyl group, the alkyl chain of which is substituted with at least two hydroxyl groups, or alkoxylated, preferably ethoxylated or propoxylated derivatives of these groups.
- [Z] is preferably obtained by reductive amination of a reducing sugar, such as glucose, fructose, maltose, lactose, galactose, mannose or xylose.
- a reducing sugar such as glucose, fructose, maltose, lactose, galactose, mannose or xylose.
- the N-alkoxy- or N-aryloxy-substituted compounds can, for example, be converted into the desired polyhydroxy fatty acid amides by reaction with fatty acid methyl esters in the presence of an alkoxide as the catalyst.
- Surfactants containing one or more tallow alcohols having 20 to 30 EO in combination with a silicone antifoam can be used with particular preference.
- Nonionic surfactants of the group of the alkoxylated alcohols particularly preferably from the group of mixed alkoxylated alcohols and especially from the group of EO-AO-0EO nonionic surfactants are likewise used with special preference.
- Nonionic surfactants having melting points above room temperature are particularly preferred.
- Nonionic surfactants that can be solid or highly viscous at room temperature, having softening or melting points in the stated temperature range, are suitable nonionic surfactants. If nonionic surfactants that are highly viscous at room temperature are used, it is preferable for them to have a viscosity above 20 Pa ⁇ s, preferably above 35 Pa ⁇ s, and particularly above 40 Pa ⁇ s. Surfactants having a waxy consistency at room temperature are also preferred.
- Surfactants used preferably, that are solid are room temperature are derived from the groups of alkoxylated nonionic surfactants, especially the ethoxylated primary alcohols and mixtures of these surfactants having more complex structure, such as polyoxypropylene/polyoxyethylene/polyoxypropylene ((PO/EO/PO) nonionic surfactants). Such ((PO/EO/PO) nonionic surfactants are further distinguished by good foam control.
- the nonionic surfactant having a melting point above room temperature is an ethoxylated nonionic surfactant obtained from the reaction of a monohydroxyalkanol or alkylphenol having 6 to 20 C atoms with preferably at least 12 moles, especially preferably at least 15 moles, and particularly at least 20 moles of ethylene oxide per mole of alcohol or alkylphenol.
- a particularly preferred nonionic surfactant that is solid at room temperature is obtained from a straight-chain fatty alcohol having 16 to 20 carbon atoms (C 16-20 alcohol), preferably a C 18 alcohol, and at least 12 moles, preferably at least 15 moles, and especially at least 20 moles of ethylene oxide.
- C 16-20 alcohol straight-chain fatty alcohol having 16 to 20 carbon atoms
- C 18 alcohol preferably a C 18 alcohol
- at least 12 moles preferably at least 15 moles, and especially at least 20 moles of ethylene oxide.
- the so-called “narrow range ethoxylates” are especially preferred.
- Ethoxylated nonionic surfactants obtained from C 6-20 monohydroxyalkanols or C 8-20 alkylphenols or C 18-20 fatty alcohols and more than 12 moles, preferably more than 15 moles, and especially more than 20 moles of ethylene oxide per mole of alcohol are used with special preference.
- nonionic surfactant that is solid at room temperature also to have propylene oxide units in the molecule.
- PO units make up as much as 25% by weight, especially preferably up to 20% by weight, and particularly up to 15% by weight of the total molecular weight of the nonionic surfactant.
- Especially preferred nonionic surfactants are ethoxylated monohydroxyalkanols or alkylphenols that also have polyoxyethylene-polyoxypropylene block copolymer units.
- the alcohol or alkylphenol portion of such nonionic surfactant molecules preferably amounts to more than 30% by weight, especially preferably more than 50% by weight, and particularly more than 70% by weight of the total molecular weights of such nonionic surfactants.
- Preferred agents are distinguished by containing ethoxylated and propoxylated nonionic surfactants in which the propylene oxide units in the molecule amount to as much as 25% by weight, preferably 20% by weight, and particularly 15% by weight of the total molecular weight of the nonionic surfactant.
- nonionic surfactants that can be used with particular preference, having melting points above room temperature, contain 40 to 70% of a polyoxypropylene/polyoxyethylene/polyoxypropylene block polymer blend that contains 75% by weight of an inverse block copolymer of polyoxyethylene and polyoxypropylene with 17 moles of ethylene oxide and 44 moles of propylene oxide, and 25% % by weight of a block copolymer of polyoxyethylene and polyoxypropylene, initiated with trimethylolpropane and containing 24 moles of ethylene oxide and 99 moles of propylene oxide per mole of trimethylolpropane.
- Nonionic surfactants that can be used with special preference are, for example, obtainable from Olin Chemicals under the name Poly Tergene SLF-18.
- R 1 stands for a linear or branched aliphatic hydrocarbon group having 4 to 18 carbon atoms, or mixtures of them
- R 2 stands for a linear or branched hydrocarbon group having 2 to 26 carbon atoms, or mixtures of them
- x stands for values between 0.5 and 1.5
- y stands for a value of at least 15, are other specially preferred nonionic surfactants.
- nonionic surfactants that can be used preferably are the end-group-capped poly(oxyalkylated) nonionic surfactants having the formula
- R 1 and R 2 stand for linear or branched, saturated or unsaturated aliphatic or aromatic hydrocarbon groups with 1 to 30 carbon atoms
- R 3 stands for H or a methyl, ethyl, n-propyl, isopropyl, n-butyl, 2-butyl, or 2-methyl-2-butyl group
- x stands for values between 1 and 30, and k and j stand for values between 1 and 12, preferably between 1 and 5. If x ⁇ 2, each R 3 on the preceding formula
- R 1 and R 2 are preferably linear or branched, saturated or unsaturated, aliphatic or aromatic hydrocarbon groups having 6 to 22 carbon atoms, with groups having 8 to 18 C atoms being especially preferred.
- H, —CH 3 or —CH 2 CH 3 are especially preferred for the group R 3 .
- Especially preferred values of x are in the range of 1 to 20, preferably 6 to 15.
- each R 3 in the preceding formula can be different if x ⁇ 2.
- the alkylene oxide unit in the square brackets can be varied.
- the value of x was selected to be 3, and can be larger, with the range of variation increasing with rising x values and, for example, a large number of (EO) groups combined with a small number of (PO) groups, or conversely.
- R 1 , R 2 , and R 3 are defined as above, and x stands for numbers from 1 to 30, preferably from 1 to 20 and particularly from 6 to 18.
- Surfactants in which the groups R 1 and R 2 have 9 to 14 C atoms, R 3 stands for H and x has values of 6 to 15 are particularly referred.
- R 1 and R 2 stand for linear or branched, saturated or unsaturated, aliphatic or aromatic hydrocarbon groups having 1 to 30 carbon atoms
- R 3 stands for H or for a methyl, ethyl, n-propyl, isopropyl, n-butyl, 2-butyl, or 2-methyl-2-butyl group
- x stands for values between 1 and 30, and k and j stand for values between 1 and 12, preferably between 1 and 5 are preferred.
- R 1 O[CH 2 CH(R 3 )O] x CH 2 CH(OH)CH 2 OR 2 ,
- x stands for numbers from 1 to 30, preferably from 1 to 20 and particularly from 6 to 18, are particularly preferred.
- nonionic surfactants having alternating ethylene oxide and alkylene oxide units have proven to be particularly preferred in the context of the present invention.
- surfactants with EO-AO-EO-AO blocks are preferred, with one to ten EO or AO groups in each block being joined together before a block from the other group follows.
- R 1 standing for a straight or branched, saturated or singly or multiply unsaturated C 6-24 alkyl or alkenyl group
- each group R 2 or R 3 independently of each other, is selected from —CH 3 , —CH 2 —CH 3 , —CH 2 CH 2 —CH 3 , CH(CH 3 ) 2
- the preferred nonionic surfactants having the formula above can be produced from the corresponding alcohols, R 1 —OH and ethylene oxide or alkylene oxide.
- the group R 1 in the formula above can vary, depending on the source of the alcohol. If natural sources are used, the group R 1 has an even number of carbon atoms and is generally unbranched.
- the linear groups from alcohols of natural origin with 12 to 18 C atoms, such as from coconut, palm, tallow, or oleyl alcohol, are preferred.
- Examples of alcohols accessible from synthetic sources are the Guerbet alcohols or groups methyl-branched at the 2 position, or mixtures of linear and methyl-branched groups, such as usually occur in oxoalcohol groups.
- R 1 in the formula above stands for an alkyl group having 6 to 24, preferably 8 to 20, especially preferably 9 to 15 and particularly 9 to 11 carbon atoms.
- R 2 or R 3 independently of each other, are selected from —CH 2 CH 2 CH 3 or —CH(CH 3 ) 2 are suitable.
- Preferred nonionic surfactants are those of the formula above in which R 2 or R 3 stands for a group —CH 3 , w and x, independently of each other, stand for values of 3 or 4, and y and z, independently of each other, stand for values of 1 or 2.
- nonionic surfactants are particularly preferred that have a C 9-15 -alkyl group with 1 to 4 ethylene oxide units, followed by 1 to 4 propylene oxide units, followed by 1 to 4 ethylene oxide units, followed by 1 to 4 propylene oxide units.
- Those surfactants have the required low viscosity in aqueous solution and can be used with special preference according to the invention.
- nonionic surfactants are the end-group-capped poly(oxyalkylated) nonionic surfactants having the formula
- R 1 O[CH 2 CH(R 3 )O] x R 2 ,
- R 1 stands for linear or branched, saturated or unsaturated, aliphatic or aromatic hydrocarbon groups with 1 to 30 carbon atoms
- R 2 stands for linear or branched, saturated or unsaturated, aliphatic or aromatic hydrocarbon groups with 1 to 30 carbon atoms, preferably having betwen 1 and 5 hydroxyl groups and preferably further functionalized with an ether group
- R 3 stands for H or a methyl, ethyl, n-propyl, iso-propyl, n-butyl or 2-methyl-2-butyl group
- x stands for values between 1 and 40.
- R 3 in the general formula above stands for H.
- R 1 stands for a linear or branched, saturated or unsaturated, aliphatic or aromatic having 1 to 30 carbon atoms, preferably having 4 to 20 carbon atoms
- R 2 stands for linear or branched, saturated or unsaturated, aliphatic or aromatic hydrocarbon groups having 1 to 30-carbon atoms, preferably having between 1 and 5 hydroxyl groups, and x stands for values between 1 and 40.
- R 1 stands for linear or branched, saturated or unsaturated, aliphatic or aromatic hydrocarbon groups with 1 to 30 carbon atoms, preferably with 4 to 20 carbon atoms, also have a linear or branched, saturated or unsaturated, aliphatic or aromatic hydrocarbon group R 2 with 1 to 30 carbon atoms, which is adjacent to a monohydroxylated intermediate group —CH 2 CH(OH)—.
- x stands for values between 1 and 90.
- Nonionic surfactants having the general formula
- R 1 O[CH 2 CH 2 O] x CH 2 CH(OH)R 2 ,
- R 1 stands for linear or branched, saturated or unsaturated, aliphatic or aromatic hydrocarbon groups with 1 to 30 carbon atoms, preferably with 4 to 22 carbon atoms, also a linear or branched, saturated or unsaturated, aliphatic or aromatic hydrocarbon group R 2 with 1 to 30 carbon atoms, preferably 2 to 22 carbon atoms, which is adjacent to a monohydroxylated intermediate group —CH 2 CH(OH)— and in which x stands for values between 40 and 80, preferably for values between 40 and 60.
- R 1 stands for linear or branched, saturated or unsaturated, aliphatic or aromatic hydrocarbon groups with 1 to 30 carbon atoms, preferably with 4 to 22 carbon atoms
- R 2 with 1 to 30 carbon atoms, preferably 2 to 22 carbon atoms, which is adjacent to a monohydroxylated intermediate group —CH 2 CH(OH)— and in which x stands for values between 40 and 80, preferably for values between 40 and 60.
- the corresponding end-group-capped poly(oxyalkylated) nonionic surfactants having the formula above can be obtained, for instance, by reacting a terminal epoxide having the fomula R 2 CH(O)CH 2 with an ethoxylated alcohol having the formula R 1 O[CH 2 CH 2 O] x-1 CH 2 CH 2 OH.
- R 1 O[CH 2 CH 2 O] x [CH 2 CH(CH 3 )O] y CH 2 CH(OH)R 2 ,
- R 1 and R 2 independently of each other, stand for a linear or branched, saturated or singly or multiply unsaturated, hydrocarbon group having 2 to 26 carbon atoms
- R 3 independently of each other, is selected from —CH 3 , —CH 2 CH 3 , —CH 2 CH 2 —CH 3 , or —CH(CH 3 ) 2 , but with —CH 3 preferred
- x and y independently of each other, stand for values between 1 and 32, with nonionic surfactants in which the values of x are from 15 to 32 and the values of y are 0.5 and 1.5 quite particularly preferred.
- R 1 and R 2 independently of each other, stand for a linear or branched, saturated or multiply unsaturated, hydrocarbon group having 2 to 26 carbon atoms
- R 3 independently of each other, is selected from —CH 3 , —CH 2 CH 3 , —CH 2 CH 2 —CH 3 , or CH(CH 3 ) 2 , but with —CH 3 preferred
- x and y independently of each other stand for values between 1 and 32, with nonionic surfactants having values of x of 15 to 32 and of y of 0.5 and 1.5 are quite particularly preferred.
- the carbon chain lengths stated, as well as the degrees of ethoxylation or alkoxylation for the preceding nonionic surfactants are statistical averages, which can be integers or fractions for a particular product. Because of the production process, commercial products of the formulas stated generally are not made up of individual representatives, but of mixtures, so that there can be fractional numbers for both the carbon chain lengths and for the degrees of ethoxylation or alkoxylation.
- nonionic surfactants named above can be used not only as individual substances but also as surfactant mixtures of two, three, four or more surfactants.
- Surfactant mixtures are not considered mixtures of nonionic surfactants which in their totality fall in one of the general formulas given above, but rather mixtures containing two, three, four or more nonionic surfactants that can be described by different ones of the general formulas presented above,
- anionic surfactants those of the sulfonate and sulfate type are used.
- the preferred surfactants of the sulfonate type are C 9-13 -alkylbenzene-sulfonates, olefin sulfonates, i.e., mixtures of alkene and hydroxyalkane sulfonates, and disulfonates, such as are obtained, for example, from C 12-18 -monoolefins with terminal or internal double bonding by sulfonation with gaseous sulfur trioxide and subsequent acidic or alkaline hydrolysis of the sulfonation products.
- Alkane sulfonates obtained from C 12-18 -alkanes, for instance, by sulfochlorination or sulfoxidation with subsequent hydrolysis or neutralization, are also suitable.
- Esters of ⁇ -sulfofatty acids esters sulfonates
- esters of hydrogenated coco, palm kernel or tallow fatty acids are also suitable.
- Sulfonated fatty acid glycerol esters are other suitable anionic surfactants.
- Fatty acid glycerol esters are understood to be the mono, di and tri-esters, and mixtures of them, such as are obtained on production by esterification of a monoglycerol with 1 to 3 moles of fatty acid, or transesterification of triglycerides with 0.3 to 2 moles of glycerol.
- Preferred sulfonated fatty acid glycerol esters are sulfonation products of saturated fatty acids having 6 to 22 carbon atoms, such as caproic acid, caprylic acid, capric acid, myristic acid, lauric acid, palmitic acid, stearic acid or behenic acid.
- Preferred alk(en)yl sulfates are the alkali, and especially the sodium salts of the sulfuric acid hemiesters of the C 12 -C 18 fatty alcohols, for example, of coco fatty alcohol, tallow fatty alcohol, lauryl, myristyl, cetyl or stearyl alcohol or of the C 10 -C 20 oxoalcohols and the hemiesters of secondary alcohols having those chain lengths.
- Alk(en)yl sulfates of the specified chain lengths which comprise a synthetically produced straight chain petrochemically based alkyl group, which have degradative behavior similar to the adequate compounds based on fatty chemical raw materials are also preferred.
- the C 12 -C 16 -alkyl sulfates, C 12 -C 15 -alkyl sulfates, and C 14 -C 15 -alkyl sulfates are preferred from the viewpoint of detergent technology.
- 2,3-alkyl sulfates, which can be obtained from Shell Oil Company under the DAN® name are also suitable anionic surfactants.
- the sulfuric acid hemiesters of straight-chain or branched C 7-21 alcohols ethoxylated with 1 to 6 moles of ethylene oxide are also suitable, such as 2-methyl branched C 9-11 -alcohols with an average of 3.5 moles of ethylene oxide (EO) or C 12-18 fatty alcohols with 1 to 4 EO.
- EO ethylene oxide
- the salts of the alkyl sulfosuccinic acids are other suitable anionic surfactants. They are also called sulfosuccinates or sulfosuccinic acid esters, and are hemiesters or diesters of sulfosuccinic acid with alcohols, preferably fatty alcohols and particularly ethoxylated fatty alcohols.
- Preferred sulfosuccinates comprise C 8-18 fatty alcohol groups or mixtures of them.
- Particularly preferred sulfosuccinates comprise a fatty alcohol group derived from ethoxylated fatty alcohols which are themselves considered nonionic surfactants.
- sulfosuccinates the fatty alcohol groups of which are derived from ethoxylated fatty alcohols with limited homolog distribution are particularly preferred.
- alk(en)ylsuccinic acids with preferably 8 to 18 carbon atoms, or their salts, in the alk(en)yl chain.
- Soaps in particular, can be considered as other anionic surfactants.
- Soaps of saturated fatty acids such as the salts of lauric acid, myristic acid, palmitic acid, stearic acid, hydrogenated erucic acid and behenic acid, as well as soap mixtures derived particularly from natural fatty acids, such as coco, palm kernel or tallow fatty acids, are suitable.
- the anionic surfactants can be in the form of their sodium, potassium or ammonium salts, as well as soluble salts of organic bases such as mono-, di- or tri-ethanolamine.
- the anionic surfactants are preferably in the form of their sodium or potassium salts, and particularly the sodium salts.
- the proportion of anionic surfactant in laundry detergents or cleaners can, for example, be in the range of 1-60% by weight, advantageously 5-40% by weight, and particularly 10-30% by weight.
- Cationic surfactants and/or amphoteric surfactants can also be used in place of the specified surfactants or in combination with them.
- Cationic compounds of the following formulas, for example, can be used as cationically active substances:
- each R 1 group is selected, independently of each other, from C 1-6 -alkyl, alkenyl or hydroxyalkyl groups
- each R 2 group is selected, independently of each other, from C 8-28 -alkyl or alkenyl groups
- R 3 R 1 or (CH 2 ) n -T-R 2
- R 4 R 1 or R 2 or (CH 2 ) n -T-R 2
- T —CH 2 —, —O—CO— or —CO—O—
- n is an integer from 0 to 5.
- the proportion of cationic and/or amphoteric surfactants can preferably be less than 10% by weight, preferably less than 5% by weight, quite particularly preferably less than 2% by weight and particularly less than 1% by weight. It can also be preferable that no cationic or amphoteric surfactants are contained.
- the group of polymers includes in particular the polymers with laundry detergent or cleaning action, such as the polymers that act as water softeners.
- the polymers that act as water softeners include cationic, anionic and amphoteric polymers.
- cationic, anionic and amphoteric polymers are usable along with nonionic polymers in laundry detergents or cleaners.
- “Cationic polymers” in the sense of the present invention are polymers bearing a positive charge in the polymer molecule. That can be accomplished, for example, by (alkyl)-ammonium groups or other positively charged groups in the polymer chain.
- Particularly preferred cationic polymers are derived from the groups of quaternized cellulose derivatives, polysiloxanes with quaternary groups, cationic guar derivatives, polymeric dimethyldiallylammonium salts, and their copolymers with esters and amides of acrylic acid and methacrylic acid, copolymers of vinylpyrrolidone with quaternized derivatives of dialkylamino-acrylate and -methacrylate, vinylpyrrolidone-methylimidazolinium chloride copolymers, quaternized polyvinyl alcohols or the polymers with INCI names Polyquaternium 2, Polyquaternium 7, Polyquaternium 18 and Polyquaternium 27.
- Amphoteric polymers in the sense of the present invention have also negatively charged groups or monomer units in the polymer chain, along with a positively charged group. These groups can, for example, be carboxylic acids, sulfonic acids, or phosphoric acids.
- Preferred laundry detergents or cleaning agents are characterized by comprising a polymer having monomer units with the formula R 1 R 2 C ⁇ CR 3 R 4 , in which each group R 1 , R 2 , R 3 , R 4 , is selected, independently of each other, from hydrogen, derivatized hydroxyl group, C 1-30 linear or branched alkyl groups, aryl, aryl-substituted C 1-30 linear or branched alkyl groups, polyalkoxylated alkyl groups, heteroatomic organic groups having at least one positive charge without charged nitrogen, at least one quaternized N atom or at least one amino group having a positive charge in the pH sub-range of 2 to 11, or salts of them, provided that at least one group R 1 , R 2 , R 3 , R 4 is a heteroatomic organic group having at least one positive charge without charged nitrogen, at least one quaternized N atom or at least one amino group with a positive charge.
- specially preferred cationic or amphoteric polymers contain as the monomer unit a compound having the general formula
- R 1 and R 4 independently of each other stand for H or for a linear or branched hydrocarbon group having 1 to 6 carbon atoms
- R 2 and R 3 independently of each other, stand for an alkyl, hydroxylalkyl, or aminoalkyl group in which the alkyl group is linear or branched and has between 1 and 6 carbon atoms, and which is preferably a methyl group
- x and y independently of each other, stand for integers between 1 and 3.
- X ⁇ represents a counterion, preferably a counterion from the group of chloride, bromide, iodide, sulfate, bisulfate, methosulfate, lauryl sulfate, dodecylbenzenesulfonate, p-toluenesulfonate (tosylate), cumenesulfonate, xylenesulfonate, phosphate, citrate, formate, acetate or mixtures of them.
- R 1 and R 4 groups in the formula above are selected from —CH 3 , —CH 2 CH 3 , —CH 2 CH 2 CH 3 , —CH(CH 3 )—CH 3 , —CH 2 OH, —CH 2 CH 2 OH, —CH(OH)—CH 3 , CH 2 —CH 2 —CH 2 —OH, —CH 2 —CH(OH)—CH 3 , —CH(OH)—CH 2 —CH 3 and —CH 2 —CH 2 —O) n H.
- DADMAC diallyldimethylammonium chloride
- R 1 , R 2 , R 3 , R 4 , and R 5 stand for a linear or branched saturated or unsaturated alkyl or hydroxyalkyl group having 1 to 6 carbon atoms, preferably for a linear or branched alkyl group selected from —CH 3 , —CH 2 CH 3 , —CH 2 CH 2 CH 3 , —CH(CH 3 )—CH 3 , —CH 2 OH, —CH 2 CH 2 OH, —CH(OH)—CH 3 , —CH 2 —CH 2 —CH 2 —OH, —CH 2 —CH(OH)—CH 3 , —CH(OH)—CH 2 —CH 3 and —(CH 2 —CH 2 —O) n H and x stands for an integer between 1 and 6.
- MAPTAC methylacrylamidopropyl-trimethylammonium chloride
- Polymers that comprise as monomer units diallyldimethylammonium salts and/or acrylamidopropyltrimethylammonium salts are preferred according to the invention.
- amphoteric polymers mentioned previously have not only cationic groups but also anionic groups or monomer units.
- anionic monomer units are derived, for instance, from the group of linear or branched saturated or unsaturated carboxylates, the linear or branched, saturated or unsaturated phosphonates, the linear or branched, saturated or unsaturated sulfates, or the linear or branched, saturated or unsaturated sulfonates.
- Preferred monomer units are acrylic acid, (meth)acrylic acid, dimethylacrylic acid, ethylacrylic acid, cyanoacrylic acid, vinylacetic acid, allylacetic acid, crotonic acid, maleic acid, fumaric acid, cinnamic acid and its derivatives, the allylsulfonic acids such as allyloxybenzenesulfonic acid and methallylsulfonic acids or the allylphosphonic acids.
- Preferred usable amphoteric polymers are derived from the groups of the alkylacrylamide/acrylic acid copolymers, the alkylacrylamide/methacrylic acid copolymers, the alkylacrylamide/methylmethacrylic acid copolymers, the alkylacrylamide/acrylic acid/alkyl-aminoalkyl(meth)acrylic acid copolymers, the alkylacrylamide/methacrylic acid/alkylamino(meth)acrylic acid copolymers, the alkylacrylamide/methylmethacrylic acid/alkylaminoalkyl(meth)acrylic acid copolymers, the acrylamide/alkylmethacrylate/alkylaminoethylmethacrylate/alkyl methacrylate copolymers and the copolymers of unsaturated carboxylic acids, cationically derivatized unsaturated carboxylic acids and optionally other ionic or nonionic polymers.
- Preferred usable zwitterionic polymers are derived from the group of acrylamidoalkyltrialkylammonium chloride/acrylic acid copolymers and their alkali and ammonium salts, the acrylamidoalkyltrialkylammonium chloride/methacrylic acid copolymers and their alkali and ammonium salts, and the methacryloylethylbetaine/methacrylate copolymers.
- amphoteric polymers that comprise, along with one or more anionic monomers, methacrylamido-trialkylammonium chloride and dimethyl(diallyl)ammonium chloride as cationic monomers.
- amphoteric polymers are derived from the group of methacrylamido-alkyl-trialkylammonium chloride/dimethyl(diallyl)ammonium chloride/acrylic acid copolymers, the methacrylamidoalkyltrialkylammonium chloride/dimethyl(diallyl)ammonium chloride/methacrylic acid copolymers and the methacrylamidoalkyltrialkylammonium chloride/dimethyl(diallyl)ammonium chloride/alkyl(meth)acrylic acid copolymers and their alkali and ammonium salts.
- Laundry detergents or cleaners can comprise the previously named cationic and/or amphoteric polymers preferably in proportions between 0.01 and 10% by weight, based in each case on the total weight of the laundry detergent or cleaning agent.
- those detergents or cleaning agents are preferred in which the proportion of cationic and/or amphoteric polymers is between 0.01 and 8% by weight, preferably between 0.01 and 6% by weight, preferably between 0.01 and 4% by weight, especially preferably between 0.01 and 2% by weight, and particularly between 0.01 and 1% by weight, based in each case on the total weight of the machine dish-washing agent.
- Preferred agents can also be entirely free of cationic and/or amphoteric polymers.
- Polymers that act as water softeners are, for example, the polymers that contain sulfonic acid groups. They can be used with special preference.
- Copolymers of unsaturated carboxylic acids, monomers containing sulfonic acid groups and optionally other ionic or nonionic monomers are specially preferred as polymers containing sulfonic acid groups.
- R 1 to R 3 are, independently of each other, a straight-chain or branched saturated alkyl group with 2 to 12 carbon atoms, a straight-chain or branched, singly or multiply unsaturated alkenyl group with 2 to 12 carbon atoms, an —NH 2 , —OH, or —COOH substituted alkyl or alkenyl group or or COOR 4 in which R 4 is a saturated or unsaturated, linear or branched hydrocarbon group with 1 to 12 carbon atoms.
- R 3 CH 3
- R 6 and R 7 independently of each other are selected from —H, —CH 3 , —CH 2 CH 3 , —CH 2 CH 2 —CH 3 , or —CH(CH 3 ) 2
- Particularly preferred monomers comprising sulfonic acid groups include 1-acrylamido-1-propanesulfonic acid, 2-acrylamido-2-propanesulfonic acid, 2-acrylamido-2-methyl-1-propanesulfonic acid, 2-methacrylamido-2-methyl-1-propanesulfonic acid, 3-methacrylamido-2-hydroxypropanesulfonic acid, allylsulfonic acid, methallylsulfonic acid, allyloxybenzenesulfonic acid, methallyloxybenzenesulfonic acid, 2-hydroxy-3-(2-propenyloxy)-propane-sulfonic acid, 2-methyl-2-propene-1-sulfonic acid, styrenesulfonic acid, vinylsulfonic acid, 3-sulfopropyl acrylate, 2-sulfopropyl methacrylate, sulfomethacrylamide, sulfomethyl methacrylamide and water-soluble salts of
- ionic or nonionic monomers that can be considered include in particular ethylenically unsaturated compounds.
- the proportion of these other ionic or nonionic monomers in the polymers used is preferably less than 20% by weight, based on the polymer.
- Polymers to be used especially preferably consist solely of monomers of the formula R 1 (R 2 )C ⁇ C(R 3 )COOH and monomers of the formula R 5 (R 6 ) ⁇ C(R 7 )—X—SO 3 H.
- the copolymers can comprise the monomers of groups i) and ii), and optionally iii), in varying proportions. All the representatives of group i) can be combined with all the representatives of group ii) and with all the representatives of group iii). Especially preferred polymers have certain structural units that will be described in the following.
- copolymers comprising structural units of the formula
- m and p each stand for a real integer between 1 and 2000
- polymers are made by copolymerization of acrylic acid with an acrylic acid derivative comprising sulfonic acid groups. If one copolymerizes that sulfonic acid-comprising acrylic acid derivative with methacrylic acid, one gets a different polymer, the use of which is also preferred.
- the corresponding copolymers comprise structural units having the formula
- acrylic acid and/or methacrylic acid can also be copolymerized with methacrylic acid derivatives that contain sulfonic acid groups, thus changing the structural units in the molecule.
- methacrylic acid derivatives that contain sulfonic acid groups
- Copolymers are also preferred that have structural units of the formula
- maleic acid can also be used as a particularly preferred monomer of group 1).
- copolymers preferred according to the invention which comprise structural units having the formula
- Copolymers are also preferred that have structural units of the formula
- copolymers preferred are those that comprise structural units having the formulas
- the sulfonic acid groups in the polymers can be partially or entirely in the neutralized form. That is, the acidic hydrogen atom of the sulfonic acid group can, in some or all the sulfonic acid groups, be replaced by metal ions, preferably metal ions and particularly sodium ions. Use of partially of entirely neutralized copolymers comprising sulfonic acid groups is preferred according to the invention.
- the monomer distribution of the copolymers preferably used according to the invention is preferably 5 to 95% by weight each of i) or ii) for copolymers that comprise only monomers of groups i) and ii); especially preferably 50 to 90% by weight monomer from group i) and 10 to 50% by weight of monomer from group ii), based on the polymer in each case.
- terpolymers those comprising 20 to 85% by weight monomer from group i), 10 to 60% by weight monomer from group ii) and 5 to 30% by weight from group iii) are especially preferred.
- the molecular weights of the sulfo-copolymers preferably used according to the invention can be varied to adapt the properties of the polymer to the desired application.
- Preferred laundry detergents or cleaners are characterized by the copolymers having molecular weights of 2,000 to 200,000 g/mole, preferably 4,000 to 25,000 g/mole, and particularly 5,000 to 15,000 g/mole.
- Bleaching agents are substances with washing or cleaning action that can be used with special preference. Of the compounds that produce H 2 O 2 in water and act as bleaching agents. sodium percarbonate, sodium perborate tetrahydrate and sodium perborate monohydrate are particularly important. Examples of other usable bleaching agents include peroxypyrophosphate, citrate perhydrate, and peracid salts or peracids such as perbenzoate, peroxophthalate, diperazelaic acid, phthaliminoperacid or diperdodecanedioic acid that provide H 2 O 2 . It is also possible to use bleaching agents of the group of organic bleaching agents. Typical organic bleaching agents are the diacyl peroxides such as dibenzoyl peroxide.
- peroxy acids of which the alkyl peroxyacids and aryl peroxyacids must be mentioned in particular as examples.
- Preferred representatives that can be used are (a) peroxybenzoic acid and its ring-substituted derivatives such as alkylperoxybenzoic acids, as well as peroxy- ⁇ -naphthoic acid and magnesium mono-perphthalate; (b) the aliphatic or substituted aliphatic peroxyacids, such as peroxylauric acid, peroxystearic acid, ⁇ -phthalimidoperoxycapric acid, [phthaliminoperoxyhexanoic acid, (PAP)], o-carboxybenzamidoperoxycapric acid, N-nonenylamidoperadipic acid and N-nonenylamidopersuccinate, and (c) aliphatic and araliphatic peroxydicarboxcylic acids such as 1,12-diperoxycarboxylic acid, 1,9
- Substances that release chlorine or bromine can also be used as bleaching agents.
- the suitable materials that release chlorine or bromine that can be considered include, for instance, heterocyclic N-bromamides and N-chloramides, such as trichloroisocyanuric acid, tribromoisocyanuric acid, dibromoisocyanuric acid and/or dichloroisocyanuric acid (DICA) and/or their salts with cations such as potassium and sodium.
- heterocyclic N-bromamides and N-chloramides such as trichloroisocyanuric acid, tribromoisocyanuric acid, dibromoisocyanuric acid and/or dichloroisocyanuric acid (DICA) and/or their salts with cations such as potassium and sodium.
- DICA dichloroisocyanuric acid
- Hydantoin compounds such as 1,3-dichloro-5,5-dimethylhydantoin are also suitable.
- Laundry detergents or cleaners that contain 1 to 35% by weight, preferably 2.5 to 30% by weight, especially preferably 3.5 to 30% by weight and particularly 5 to 15% by weight bleaching agent, preferably sodium percarbonate, are preferred according to the invention.
- the active oxygen content of the laundry detergent or cleaner is preferably between 0.4 and 10% by weight, especially preferably between 0.5 and 8% by weight, and particularly between 0.6 and 5% by weight, based in each case on the total weight of the laundry detergent or cleaner.
- Specially preferred agents have an active oxygen content greater than 0.3% by weight, preferably above 0.7% by weight, especially preferably above 0.8% by weight and particularly above 1.0% by weight.
- Bleach activators are used in laundry detergents or cleaners, for example, to get good bleaching action in washing at temperatures of 60° C. and below.
- Compounds that yield aliphatic peroxocarboxylic acids with preferably 1 to 10 C atoms, especially 2 to 4 C atoms and/or optionally substituted perbenzoic acid, under perhydrolysis conditions can be used as bleach activators.
- Substances bearing O-acyl and/or N-acyl groups of the specified number of C atoms and/or optionally substituted benzoyl groups are suitable.
- Multiply acylated alkylenediamines are preferred, especially tetraacetylethylenediamine (TAED), acylated triazine derivatives, especially 1,5-diacetyl-1,4-dioohexahydro-1,3,5-triazine (DADHT), acylated glycolurils, especially tetraacetylglycoluril (TAGU), N-acylimides, especially N-nonanoylsuccinimide (NOSI), acylated phenolsulfonates, especially n-nonanoyl- or iso-nonanoyl-oxybenzenesulfonate (n- or iso-NOBS), carboxylic acid anhydrides, especially phthalic anhydride, acylated multifunctional alcohols, especially triacetin, ethylene glycol diacetate, isopropenyl acetate, 2,5-diacetoxy-2,5-dihydrofuran.
- bleach activators used preferably in the context of the present invention are compounds from the group of cationic nitriles, especially cationic nitriles having the formula
- R 1 stands for —H, —CH 3 , a C 2-24 -alkyl or alkenyl group, a substituted C 2-24 -alkyl or alkenyl group having at least one substituent from the group —Cl, —Br, OH, —NH 2 , —CN, an alkyl or alkenylaryl group with a C 1-24 -alkyl group and at least one other substituent on the aromatic ring, or for a substituted alkyl or alkenylaryl group having at least one other substituent on the aromatic ring, R 2 and R 3 , independently of each other, are selected from —CH 2 —CN, —CH 3 , —CH 2 CH 3 , —CH 2 CH 2 CH 3 , —CH(CH 3 )—CH 3 , —CH 2 OH, —CH 2 —CH 2 —OH, —CH(OH)CH 3 , —CH 2 —CH 2 —CH 2 —OH, —CH
- Substances that bear O-acyl and/or N-acyl groups of the stated number of carbon atoms and/or optionally substituted benzoyl groups are suitable.
- the preferred compounds are multiply acylated alkylenediamines, especially tetraacetylethylenediamine (TAED), acylated triazine derivatives, especially 1,5-diacetyl-2,4-dioxohexahydro-1,3,5-triazine (DADHT), acylated glycourils, especially tetraacetylglycouril (TAGU), N-acyl imides, especially N-nonanoylsuccinimide (NOSI), acylated phenolsulfonates, especially n-nonanoyloxybenzenesulfonate or iso-nonanoyloxybenzenesulfonate (n- or iso-NOBS), carboxylic acid anhydrides, especially phthalic anhydride, acylated multifunctional alcohols, especially triacetin, ethylene glycol diacetate, 2,5-diacetoxy-2,5-dihydrofuran, N-
- bleach activators other than the optional nitrilquats are to be used, it is preferable to use bleach activators from the group of multiply acylated alkylenediamines, especially tetraacetylethylenediamine (TAED), N-acyl imides, especially N-nonanoylsuccinimide (NOSI), acylated phenolsulfonates, especially n-nonanoyloxybenzenesulfonate or iso-nonanoyloxybenzenesulfonate (n- or iso-NOBS), N-methylmorpholinium-acetonitrile-methylsulfate (MMA), preferably in proportions of up to 10% by weight, especially 0.1% by weight up to 8% by weight, particularly 2 to 8% by weight and especially preferably 2 to 6% by weight, based in each case on the total weight of the laundry detergent or cleaner containing the bleach activator.
- TAED tetraacetylethylenediamine
- bleach catalysts can also be used instead of, or in addition to, the conventional bleach activators.
- These substances are transition metal salts or transition metal complexes such as Mn, Fe, Co, Ru or Mo salene complexes or carbonyl complexes that intensify bleaching.
- Transition metal salts or transition metal complexes such as Mn, Fe, Co, Ru, Mo, Ti, V and Cu with N-containing tripod ligands, and Co, Fe, Cu and Ru ammine complexes are also usable as bleach activators.
- Bleach-intensifying transition metal complexes especially those having Mn, Fe, Co, Cu, Mo, V, Ti and/or Ru as the central atom, preferably selected from the group of manganese and/or cobalt salts and/or complexes, especially preferably the cobalt(ammine) complexes, the cobalt(acetato) complexes, the cobalt(carbonyl) complexes, and the chlorides of cobalt or of manganese, of manganese sulfate, can optionally be used in the usual proportions, preferably in a proportion up to 5% by weight, especially from 0.0025% by weight to 1% by weight and especially preferably from 0.01% by weight to 0.25% by weight, based in each case on the total weight of the laundry detergent or cleaner containing the bleach activator. In special cases, though, even more bleach activator can be used.
- Enzymes can be used to increase the washing or cleaning ability of laundry detergents or cleaners. Those include in particular proteases, amylases, lipases, hemicellulases, cellulases or oxidoreductases, and, preferably, mixtures of them. These enzymes are of natural origin in principle. Improved variants, based on the natural molecules, are available for use in laundry detergents and cleaners. They are preferably used appropriately. Laundry detergents or cleaners contain enzymes preferably in total proportions of 1 ⁇ 10 ⁇ 6 to 5% by weight, based on the active protein. The protein concentration can be determined with known methods, such as the BCA procedure or the biuret procedure.
- subtilisin type examples include the subtilisins BPN′ and Carlsberg, Protease PB92, subtilisins 147 and 309, the alkaline protease from Bacillus lentus , subtilisin DY and the subtilases, but not the enzymes thermitase, Proteinase K, and the proteases TW3 and TW7, which are no longer classified with the subtilisins in the narrower sense.
- Subtilisin Carlsberg in the further-developed form, is available from Novozymes A/S, Bagsvrd, Denmark, under the trade name Alcalase®.
- Subtilisins 147 and 309 are offered as Esperase® or Savinase® by Novozymes.
- the variants listed under the designation BLAP® are derived from the protease of Bacillus lentus DSM 5483.
- Examples of other usable proteases are those available under the trade names Durazym®, Relase®, Everlase®, Nafizym, Natalase®, Kannase® and Ovozymes® from Novozymes; those available under the trade names Purafect®, Purafect®, OxP and Properase from Genencor; those available under the trade name of Protosol® from Advanced Biochemical Ltd., Thane, India; those available under the trade name Wuxi® from Wuxi Snyder Bioproducts Ltd., China; those available under the trade names Proleather® and Protease P® from Amano Pharmaceuticals, Ltd., Nagoya, Japan; and those available under the trade name Proteinase K-16 from Kao Corp., Tokyo, Japan.
- amylases usable according to the invention include the ⁇ -amylases of Bacillus licheniformis, B. amyloliquefaciens or B. stearothermohilus , as well as the improvements on them for use in laundry detergents and cleaners.
- the enzyme from B. licheniformis is available from Novozymes as Termamyl®, and from Genencor as Purastar® ST. Further developments of these ⁇ -amylases are available from Novozymes as Duramyl® and Termamyl® ultra; from Genencor as Purastar® OxAm, and from Daiwa Seiko Inc., Tokyo, Japan, as Keistase®.
- amyloliquefaciens is offered by Novozymes as BAN®, and variants derived from the ⁇ -amylase from B. stearothermophilus are offered as BSG® and Novamyl®, likewise from Novozymes.
- the ⁇ -amylase from Bacillus sp. A 7-7 (DSM 12368) and the cyclodextrin-glucanotransferase (CGTase) from B. agaradherens (DSM 9948) are also recommended for this purpose.
- Amylase-LT® is another commercial product.
- Lipases or cutinases are also usable according to the invention, especially because of their triglyceride-hydrolyzing activities, but also to generate peracids in situ from suitable precursors.
- these include, for example, the lipases originally available from Humicola lanuginosa ( Thermomyces lanuginosus ), or further-developed lipases, especially those with the amino acid replacement D96L. They are marketed by Novozymes, for example, under the trade names Lipolase®, Lipolase® Ultra, LipoPrime®, Lipozyme® and Lipex®. Cutinases originally isolated from Fusarium solani pisi and Humicola insolens are also usable, for example.
- lipases are available from Amano under the names Lipase CE.
- usable lipases are available from Amano under the names Lipase CE®, Lipase P®, Lipase B®, or Lipase CES®, Lipase AKG®, Bacillus sp. Lipase®, Lipase AP®, Lipase M-AP® and Lipase AML®.
- the lipases or cutinases from Genencor are also usable, for example. Their starting enzymes were originally isolated from Pseudomonas mendocina and Fusarium solanii .
- Lipase® and Lipomax® originally marketed by Gist-Brocades and the enzymes marketed by Meito Sangyko KK, Japan, as Lipase MY-30®, Lipase OF® and Lipase PL®, as well as the Genencor product Lumafast®.
- Suitable mannanases are available, for example, as Gamanase® and Pectinex AR® from Novozymes, as Rohapec® B1L from AB Enzymes and as Pyrolase® from Diversa Corp., San Diego, Calif., USA.
- the ⁇ -glucanase obtained from B. subtilis is available as Cereflo® from Novozymes.
- Oxidoreductases such as oxidases, oxygenases, catalases, peroxidases such as halo-, chloro-, bromo-, ligno-, glucose- or manganese peroxidases, dioxygenases or laccases (phenol oxidases, polyphenol oxidases) can be used according to the invention to increase the bleaching action.
- Denilite® 1 and 2 from Novozymes must be mentioned as suitable commercial products. It is advantageous to add additional preferably organic, especially preferably aromatic compounds that interact with the enzymes to strengthen the activity of the oxidoreductases in question (enhancers) or to assure electron flow when the redox potentials of the oxidizing enzymes and the dirt are greatly different (mediators).
- the enzymes are, for example, either produced originally from microorganisms, such as those of the genera Bacillus, Streptomyces, Humicola or Pseudomonas , and/or are produced by suitable microorganisms by biotechnological processes that are themselves known, such as by transgenic expression hosts of the genera Bacillus or filamentous fungi.
- the enzymes under consideration are preferably purified by processes that are themselves established, for example, by precipitation, sedimentation, concentration, filtration of the liquid phases, microfiltration, ultrafiltration, action of chemicals, deodorization or suitable combinations of those steps.
- the enzymes can be used in any of the forms established at the state of the art. That includes, for instance, the solid preparations obtained by granulation, extrusion or lyophilization or, particularly for agents in liquid or gel forms, solutions of the enzyme, advantageously as concentrated as possible, low in water and/or mixed with stabilizers.
- the enzymes can be encapsulated for both the liquid and solid use forms, such as by spray drying or extrusion of the enzyme solution together with a preferably natural polymer or in the form of capsules, such as those in which the enzyme is enclosed as in a solidified gel or in those of the core-shell type in which the enzyme-containing core is coated with a protective layer that is impermeable to water, air and/or chemicals.
- a protective layer that is impermeable to water, air and/or chemicals.
- Other additional active ingredients such as stabilizers, emulsifiers, pigments, bleaches or colorants can be applied in layered shells.
- Such capsules are applied by methods that are themselves known, such as by shaking or rolling granulation or in fluidized bed processes. Such granulations are advantageously low in dust and stable in storage because of the coating, for example, by application of polymeric film-formers.
- a protein or an enzyme can be protected, particularly during storage, against damages such as inactivation, denaturation or decomposition due to physical influences, oxidation, or proteolytic hydrolysis. If the proteins and/or enzymes are obtained microbiologically, inhibition of proteolysis is especially preferred, particularly if the agent also contains proteases. Laundry detergents or cleaners can contain stabilizers for that purpose. Provision of such an agent is a preferred embodiment of the present invention.
- Reversible protease inhibitors are one group of stabilizers. Benzamidine hydrochloride, borax, boric acids, boronic acids, or their salts or esters are often used, including in particular derivatives having aromatic groups, such as ortho-substituted, meta-substituted and para-substituted phenylboronic acids or their salts or esters. Ovomucoid and leupeptin, among others, must be mentioned as peptidic protease inhibitors. Formation of fusion proteins from proteases and peptide inhibitors is another option.
- enzyme stabilizers include aminoalcohols such as mono-, di- and tri-ethanolamine and -propanolamine and mixtures of them, aliphatic carboxylic acids up to C 12 , such as succinic acid, other dicarboxylic acids or salts of the acids named. End-group-capped fatty acid amide alkoxylates are also suitable. Certain organic acids used as builders can also stabilize a contained enzyme.
- Lower aliphatic alcohols but especially polyols such as glycerol, ethylene glycol, propylene glycol or sorbitol are other enzyme stabilizers that are often used.
- Polyols such as glycerol, ethylene glycol, propylene glycol or sorbitol are other enzyme stabilizers that are often used.
- Calcium salts such as calcium acetate or calcium formate, and magnesium salts, are also used.
- Polyamide oligomers or polymeric compounds such as lignin, water-soluble vinyl copolymers or cellulose ethers, acrylic polymers and/or polyamides stabilize enzyme preparations against physical influences or pH fluctuations, among other things.
- Polymers containing polyamine-N-oxides act as enzyme stabilizers.
- the linear C 8 -C 18 polyoxyalkylenes are other polymeric stabilizers.
- Alkyl polyglycosides can stabilize the enzymic components and can even increase their activity.
- Cross-linked nitrogenous compounds likewise act as enzyme stabilizers.
- Reducing agents and antioxidants increase the stability of the enzymes against oxidative decomposition.
- Sodium sulfite is a sulfur-containing reducing agent, for example.
- peptide-aldehyde stabilizers for example, combinations of polyols, boric acid and/or borax, the combination of boric acid or borate, reducing salts and succinic acid or other dicarboxylic acids, or the combination of boric acid or borate with polyols or polyamino compounds and with reducing salts.
- the action of peptide-aldehyde stabilizers is increased by the combination with boric acid and/or boric acid derivatives and polyols, and is further increased by the additional use of divalent cations such as calcium ions.
- one or more enzymes or enzyme preparations preferably solid protease preparations and/or amylase preparations, in proportions of 0.1 to 5% by weight, preferably of 0.2 to 4.5% by weight, and particularly 0.4 to 4% by weight, based in each case on the total enzyme-containing agent.
- tablettes so-called ‘tablet explosives’
- disintegrants so-called ‘tablet explosives’
- tablet explosives disintegration accelerators are understood to be additives that provide for rapid disintegration of tablets in water or in gastric fluid and for release of pharmaceuticals in absorbable form.
- Carbonate/citric acid systems are disintegrants that have been known for a long time, and other organic acids can also be used.
- swelling disintegrants include synthetic polymers such as polyvinylpyrrolidone (PVP) or natural polymers or modified natural substances such as celluloses and starches and their derivatives, alginates, or casein derivatives.
- Disintegrants can be used preferably in proportions of 0.5 to 10% by weight, preferably 3 to 7% by weight, and particularly 4 to 6% by weight, based in each case on the total weight of the agent containing the disintegrant.
- Disintegrants based on cellulose are used as preferred disintegrants, so that preferred laundry detergents or cleaners contain such a cellulose-based disintegrant in proportions of 0.5 to 10% by weight, preferably 3 to 7% by weight, and particularly 4 to 6% by weight.
- Pure cellulose has the empirical composition (C 6 H 10 O 5 ) n .
- C 6 H 10 O 5 n .
- Suitable celluloses comprise about 500 to 5000 glucose units, and accordingly have average molecular weights of 50,000 to 500,000.
- Cellulose-based disintegrants usable in the context of the present invention also include cellulose derivatives that can be obtained from cellulose by polymer-like reactions.
- Such chemically modified celluloses include, for example, products of esterifications or etherifications, in which hydroxyl hydrogen atoms are substituted.
- celluloses in which the hydroxy groups are replaced by functional groups not bound through an oxygen atom can also be used as cellulose derivatives.
- the group of cellulose derivatives includes, for example, alkali celluloses, carboxymethylcellulose (CMC), cellulose esters and ethers, and amino celluloses.
- the cellulose derivatives named are preferably not used alone as cellulose-based disintegrants, but in mixtures with cellulose.
- the proportion of cellulose derivatives in these mixtures is preferably less than 50% by weight, especially preferably less than 20% by weight, based on the cellulose-based disintegrant. It is particularly preferable to use, as cellulose-based disintegrants, pure cellulose that is free of cellulose derivatives.
- the cellulose used as a disintegrant additive is preferably not used in finely divided form, but converted into a coarser form before mixing into the premixes to be pressed, such as granulated or compacted.
- the particle sizes of such disintegrants are usually greater than 200 ⁇ m, preferably with at least 90% by weight between 300 and 1600 ⁇ m and particularly with at least 90% by weight between 400 and 1200 ⁇ m.
- the coarser cellulose-based disintegrants named above and described in more detail in the documents cited are used preferably in the context of the present invention. They are commercially available, for example, as Arbocel® TF-30-HG from the Rettenmaier company.
- Microcrystalline cellulose can be used as a further cellulose-based disintegrant or as an ingredient of those components.
- This microcrystalline cellulose is obtained by partial hydrolysis of cellulose under conditions such that only the amorphous regions of the cellulose (ca. 30% of the total cellulose) are attacked and completely dissolved while the crystalline regions (ca. 70%) remain undamaged. Subsequent disaggregation of the microfine cellulose resulting from the hydrolysis gives the microcrystalline celluloses, which have primary particle sizes of about 5 ⁇ m and which can, for instance, be compacted into granulations having an average particle size of 200 ⁇ m.
- Preferred disintegrants preferably a disintegrant based on cellulose, preferably in a granular, cogranular or compacted form, can be contained in agents that contain disintegrants in proportions of 0.5 to 10% by weight, preferably 3 to 7% by weight, and particularly 4 to 6% by weight, based in each case on the total weight of the agent containing the disintegrant.
- Effervescent systems that evolve gases can also be preferred tablet disintegrants according to the invention.
- the effervescent gas-evolving systems can consist of a single substance that releases gas on contact with water. Of these compounds, magnesium peroxide in particular must be named. It releases oxygen on contact with water.
- the gas-evolving effervescent system itself comprises at least two components which react with each other, forming gas. Although many systems are conceivable and feasible, releasing, for example nitrogen, oxygen or hydrogen, the effervescent gas-evolving system used in detergents or cleaning agents is chosen from both economic and ecological viewpoints.
- Preferred effervescent systems comprise alkali metal carbonate and/or bicarbonate, and an acidifying agent that is suitable to release carbon dioxide from the alkali metal salts in aqueous solution.
- alkali metal carbonates or bicarbonates the sodium and potassium salts are definitely preferred over the other salts for reasons of cost. Obviously, it is not necessary to use the pure alkali metal carbonates or bicarbonates; rather, mixtures of different carbonates and bicarbonates can be preferred.
- an optional effervescent system it is preferable to use 2 to 20% by weight, preferably 3 to 15% by weight, and particularly 5 to 10% by weight of an alkali metal carbonate or bicarbonate, and 1 to 15, preferably 2 to 12% by weight, and particularly 3 to 10% by weight of an acidifying agent, based in each case on the total weight of the agent.
- boric acid and alkali metal bisulfates, alkali metal dihydrogen phosphates and other inorganic salts can be used as acidifying agents that release carbon dioxide from the alkali salts in aqueous solution.
- organic acidifying agents with citric acid a specially preferred acidifying agent.
- other solid mono-, oligo- and poly-carboxylic acids in particular can also be used.
- tartaric acid, succinic acid, malonic acid, adipic acid, maleic acid, fumaric acid, oxalic acid and polyacrylic acid are preferred.
- Organic sulfonic acids such as amidosulfonic acid are also usable.
- Sokalan® DCS (BASF trademark), a mixture of succinic acid (up to 31% by weight), glutaric acid (up to 50% by weight) and adipic acid (up to 33% by weight) is commercially available and also preferably usable as an acidifying agent in the context of the present invention.
- the preferred acidifying agents in the effervescent system are from the group of organic di- tri- and oligo-carboxylic acids or mixtures of them.
- Preferred colorants the selection of which presents no problem to those skilled in the art, have high storage stability and low sensitivity to the other ingredients of the agent or to light. They do not have any distinct substantivity for the substrates to be treated with the colorant-containing agent, such as textiles, glass, or ceramic or plastic tableware, so as not to stain them.
- colorants in the case of laundry detergents, must not have excessive affinity to textile surfaces, particularly to plastic fibers, while in the case of cleaners one must avoid excessive affinity to glass, ceramic or plastic tableware.
- suitable colorants one must consider that colorants have different degrees of stability to oxidation. In general, water-insoluble colorants are more stable to oxidation than are water-soluble colorants. The concentration of the colorants in laundry detergents or cleaners varies, depending on their solubility and on their sensitivity to oxidation.
- colorants with good water solubility such as the Basacid® Green mentioned above, or Sandolan® Blue, also mentioned above, one typically chooses colorant concentrations in the range of a few hundredths to thousandths of one percent by weight.
- the suitable concentration of the colorant in laundry detergents or cleaners is, on the other hand, typically a few thousandths to ten-thousandths of one percent by weight.
- Preferred colorants are those that can be oxidatively destroyed in the washing process, and mixtures of those with suitable blue colorants, the so-called bluing agents. It has proven advantageous to use colorants that are soluble in water or, at room temperature, in liquid organic substances.
- anionic colorants such as anionic nitroso dyes are suitable.
- one possible colorant is Naphthol Green (Color Index (CI) Part 1: Acid Green 1; Part 2: 10020) which is available commercially for example, as Basacid® Green 970 from BASF, Ludwigshafen, or mixtures of it with suitable blue colorants.
- Pigmosol® Blue 6900 (CI 74160), Pigmosol® Green 8730 (CI 74260), Basonyl® Red 545 FL (CI 45170), Sandolan® Rhodamin EB400 (CI 45100), Basacid® Yellow 094 (CI 47005), Sicovit® Patent Blue 85E 131 (CI 42051), Acid Blue 183 (CAS 12217-22-0, CI Acidblue 183), Pigment Blue 15 (CI 74160), Supranol® Blue GLW (CAS 12219-32-8), Nylosan® Yellow N-7GL SGR (CAS 61814-57-1, CI Acidyellow 218) and/or Sandolan® Blue (CI Acid Blue 12219-26-0).
- the laundry detergents or cleaners can also contain other ingredients that further improve the application-technology and/or aesthetic properties of these agents.
- Preferred agents contain one or more substances from the groups of electrolytes, pH-adjusting substances, fluorescent substances, hydrotropes, foam inhibitors, silicone oils, antiredeposition agents, optical brighteners, graying inhibitors, agents to prevent shrinkage, antiwrinkle agents, color transfer inhibitors, antimicrobially active substances, germicides, fungicides, antioxidants, antistatic agents, ironing aids, phobing and impregnating agents, antiswselling and antislip agents, and UV absorbers.
- a large number of quite varied salts from the group of inorganic salts can be used as electrolytes.
- the alkali and alkaline earth metals are preferred cations, while the halides and sulfates are preferred anions. From the viewpoint of production technology, it is preferable to use NaCl or MgCl 2 in the laundry detergents or cleaners.
- pH-adjusting agents may be indicated to bring the pH of laundry detergents or cleaners to the desired range. All the well-known acids or bases can be used here as long as their use it not ruled out for applications technology or ecological reasons, or for user protection. The proportion of this adjusting agent usually does not exceed 1% by weight of the total formulation.
- Soaps, oils, fats, paraffins or silicone oils can be considered as foam inhibitors. They can optionally be applied to carrier materials.
- inorganic salts such as carbonates or sulfates, cellulose derivatives, silicates, or mixtures of those materials are suitable carriers.
- preferred laundry detergents or cleaners contain paraffins, preferably unbranched paraffins (n-paraffins) and/or silicones, preferably linear polymeric silicones, structured as (R 2 SiO) x , and called silicone oils. These silicone oils are usually clear, colorless, neutral, odorless, hydrophobic liquids with molecular weights between 1,000 and 150,000, and viscosities between 10 and 1,000,000 mPa ⁇ s.
- Suitable antiredeposition agents are, for example, nonionic cellulose ethers such as methylcellulose and methylhydroxypropyl-cellulose, with 15 to 30% by weight methoxyl groups and 1 to 15% by weight hydroxypropyl groups, based in each case on the nonionic cellulose ether, and the polymers of phthalic acid and/or terephthalic acid known at the state of the art, or their derivatives, especially polymers of ethylene terephthalate and/or polyethylene glycol terephthalate, or anionically and/or nonionically modified derivatives of them.
- the sulfonated derivatives of phthalic acid and terephthalic acid polymers are particularly preferred.
- Optical brighteners can be added to laundry detergents or cleaners to prevent graying and yellowing of the textiles treated. These substances adhere to the fibers and cause lightening and simulated bleaching by converting invisible ultraviolet radiation into longer-wave visible light, so that the ultraviolet light absorbed from sunlight is radiated off as a weak bluish fluorescence, which combines with the yellow tone of the grayed or yellowed laundry to give a pure white.
- Suitable compounds are derived, for example, from the substance classes of the 4,4′-diamino-2,2′-stilbenedisulfonic acids (flavonic acids), 4,4′-distyrylbiphenylenes, methylumbelliferone, coumarins, dihydroquinolines, 1,3-diarylpyrazolines, naphthalic acid imides, benzoxazole, benzisoxazol and benzimidazole systems, and pyrene derivatives with heterocyclic substituents.
- flavonic acids 4,4′-diamino-2,2′-stilbenedisulfonic acids
- 4,4′-distyrylbiphenylenes 4,4′-distyrylbiphenylenes, methylumbelliferone, coumarins, dihydroquinolines, 1,3-diarylpyrazolines, naphthalic acid imides, benzoxazole, benzisoxazol and benzimidazole systems,
- Antiredeposition agents have the function of keeping dirt removed from the fibers separated in the liquor, thus preventing readsorption of the dirt.
- Water-soluble colloids most of them organic, are suitable for that. Examples include the water-soluble salts of polymeric carboxylic acids, glue, gelatins, salts of ethersulfonic acids of starch or cellulose, or salts of acidic sulfuric acid esters of cellulose or starch. Polyamides having water-soluble acidic groups are also suitable for this purpose. Soluble starch preparations, and starch products other than those named above, such as degraded starch, aldehyde starches, etc., can also be used. Polyvinylpyrrolidone is also usable.
- Cellulose ethers such as carboxymethylcellulose (sodium salt), methylcellulose, hydroxyalkyl cellulose and mixed ethers such as methyl hydroxyethyl cellulose, methyl hydroxypropyl cellulose, methyl carboxymethyl cellulose, and mixtures of them can also be used as antiredeposition agents.
- Synthetic anti-wrinkle agents can be used because textile surface structures, especially those of rayon, rayon staple fiber, cotton, and mixtures of them can tend to wrinkle because the individual fibers are sensitive to bending, kinking, pressing and crushing transverse to the fiber direction. They include, for example, synthetic products based on fatty acids, fatty acid esters, fatty acid amides, fatty acid alkylol ester, fatty acid alkylolamides or fatty alcohols, usually reacted with ethylene oxide, or products based on lecithin or modified phosphoric acid esters.
- Phobing and impregnating processes serve to provide the textiles with substances that prevent deposition of dirt or make it easier to wash out.
- Preferred phobing and impregnating agents include perfluorinated fatty acids, also in the form of their aluminum and zirconium salts, organic silicates, silicones, polyacrylic acid esters with perfluorinated alcohol components or with polymerizable compounds coupled to perfluorinated acyl or sulfonyl groups.
- Antistatic agents can also be contained.
- the dirt-repelling finish with phobing and impregnating agents is often classified as an easy-care finish.
- Penetration of the impregnating agent in the form of solutions or emulsions of the active substances concerned can be made easier by addition of wetting agents, which reduce the surface tension.
- Water-repellent finishing of textile goods, tents, surfaces, leather, etc, is another area of application of phobing and impregnating agents. In this case, in contrast to making something water-tight, the pores of the cloth are not closed, so that the material remains able to breathe (hydrophobizing).
- the hydrophobizing agents used for hydrophobizing coat textiles, leather, paper, wood, etc., with a very thin layer of hydrophobic groups, such as long alkyl chains or siloxane groups.
- Suitable hydrophobizing agents include, for example, paraffins, waxes, metal soaps, etc. with additions of aluminum or zirconium salts, quaternary ammonium compounds with long-chain alkyl groups, urea derivatives, fatty-acid-modified melamine resins, complex chromium salts, silicones, organotin compounds and glutardialdehyde as well as perfluorinated compounds.
- the hydrophobized materials do not feel greasy. Nevertheless, water droplets bead up on them, as they do on greased materials, without wetting them.
- silicone-impregnated textiles for example, have a soft hand and repel water and dirt. Spots of ink, wine, fruit juices and the like are more easily removed.
- Antimicrobially active substances can be used against microorganisms. Here one distinguishes between bacteriostats, bactericides, fungistats, and fungicides on the basis of their antimicrobial spectrum and their mechanism of action. Examples of important substances of these groups include benzalkonium chloride, alkylarylsulfonates, halophenols and phenylmercuric acetate. Use of these compounds can also be avoided entirely.
- the laundry detergents or cleaners can contain antioxidants to prevent undesired changes to them or to the textiles treated due to the action of oxygen and other oxidative processes.
- This class of compounds includes, for example, substituted phenols, hydroquinones, pyrocatechols and aromatic amines as well as organic sulfides, polysulfides, dithiocarbamates, phosphites and phosphonates.
- Antistatic agents increase the surface conductivity, allowing charges to leak off better.
- External antistatic agents are usually substances with at least one hydrophilic molecular ligand. They provide a more or less hygroscopic film on the surface. These antistatic agents, usually surface-active, can be classified as nitrogenous (amines, amides, quaternary ammonium compounds), phosphor-containing (phosphoric acid esters) and sulfur-containing (alkyl sulfonates, alkyl sulfates) antistatic agents.
- Lauryl (or stearyl) dimethylbenzylammonium chlorides are likewise suitable as antistatic agents for textiles or as additives to laundry agents, in which case a softening effect is also produced.
- Softening rinsers can be used for textile care and to improve the textile properties, such as a softer “hand” (softening) and reduced electrostatic charging (better wearer comfort).
- the active ingredients in softening rinsers are “esterquats”, quaternary ammonium compounds with two hydrophobic groups, such as distearyldimethylammonium chloride, but those are increasingly being replaced by quaternary ammonium compounds that have ester groups in their hydrophobic groups as intended cleavage sites for biodegradation.
- esters with better biodegradability are available, for instance, by esterifying mixtures of methyldiethanolamine and/or triethanolamine with fatty acids and then quaternizing the reaction products with alkylating agents in the known manner.
- Dimethylolethyleneurea is also a suitable finishing agent.
- Silicone derivatives can be used to improve ability to absorb water and rewettability of the treated textiles, and to make ironing of the treated textiles easier. These also improve the ability of laundry detergents or cleaners to rinse out, due their foam-inhibiting properties.
- preferred silicone derivatives include polydialkyl or alkylaryl siloxanes, in which the alkyl groups have one to five C atoms and are partially or completely fluorinated.
- Preferred silicones include polydimethylsiloxanes, which can optionally be derivatized and are then aminofunctional or quaternized, or have Si—OH, Si—H and/or Si—Cl bonds.
- silicones include the polyalkeneoxide-modified polysiloxanes, i.e., polysiloxanes having polyethylene glycols, for instance, and the polyalkylene oxide-modified dimethylpolysiloxanes.
- UV absorbers can also be used according to the invention. They adsorb to the treated textiles and improve the light resistance of the fibers.
- Compounds that have these desired properties are, for example, the compounds that act by non-radiative deactivation and derivatives of benzophenone with substituents in the 2 and/or 4 position.
- Substituted benzotriazoles, acrylates phenyl-substituted in the 3 position (cinnamic acid derivatives), optionally with cyano groups in the 2 position, salicylates, organic nickel complexes and natural material such as umbelliferone and the body's own urocanic acid are also suitable.
- protein hydrolyzates are other preferred active substances from the field of laundry detergents or cleaners in the context of the present invention.
- Protein hydrolyzates are mixtures of products obtained by acid, basic, or enzyme-catalyzed degradations of proteins.
- Protein hydrolyzates of both plant and animal origin can be used according to the invention.
- animal protein hydrolyzates include elastin, collagen, keratin, silk and milk protein hydrolyzates, which can also be in the form of salts.
- use of protein hydrolyzates of plant origin such as soy, almond, rice, pea, potato and wheat protein hydrolyzate, is preferred.
- protein hydrolyzates amino acid mixtures or individual amino acids such as arginine, lysine, histidine or pyroglutamic acid can optionally be used instead. It is likewise possible to use derivatives of the protein hydrolyzates, as in the form of their fatty acid condensation products.
- the non-aqueous solvents that can be used according to the invention include, in particular, the organic solvents, of which only the most important can be listed here: alcohols (methanol, ethanol, propanols, butanols, octanols, cyclohexanol), glycols (ethylene glycol, diethylene glycol), ethers and glycol ethers (diethyl ether, dibutyl ether, anisole, dioxane, tetrahydrofuran, mono, di, tri, polyethylene glycol ethers), ketones (acetone, butanone, cyclohexanone), esters (ethyl acetate, glycol esters), amides and other nitrogenous compounds (dimethylformamide, pyridine, N-methylpyrrolidone, acetonitrile), sulfur compounds (carbon disulfide, dimethylsulfoxide, sulfolan), nitro compounds (nitrobenzene), halohydrocarbons (
- mixtures can for example be used instead of pure solvents, advantageously combining the solution properties of different solvents.
- One such solvent mixture that is especially preferred in the context of the present invention is, for instance, cleaner's naphtha, a mixture of different hydrocarbons suitable for chemical cleaning, preferably having more than 60% by weight of C12 to C14 hydrocarbons, especially preferably more than 80% by weight, and particularly more than 90% by weight, based in each case on the total weight of the mixture, preferably having a boiling point range of 81 to 110° C.
- a porous polymer carrier of cross-linked polypropylene was put into a Lödige mixer, combined with a melt of PEG (polyethylene glycol) 4000 and a perfume oil at 80° C., and mixed. The mixture solidified after about 1-2 minutes.
- cross-linked polypropylene 48% by weight PEG 4000 26% by weight Perfume oil 26% by weight
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Wood Science & Technology (AREA)
- Organic Chemistry (AREA)
- Dispersion Chemistry (AREA)
- Fats And Perfumes (AREA)
- Cosmetics (AREA)
- Detergent Compositions (AREA)
Abstract
Fluid reservoirs which are based on polymer substrates and are capable of storing large amounts of fluids. The storage is reliable and the reemergence from the liquid reservoir is readily controllable, for example, via the temperature or via mechanical actions, to achieve retardation of the fluid release. Also, processes for producing such fluid reservoirs and also their use, for example in washing or cleaning compositions.
Description
- This application is a division of application Ser. No. 12/188, 628, filed Aug. 8, 2008, which is a continuation under 35 U.S.C. §§120 and 365(c) of international application PCT/EP2006/012096, filed on Dec. 15, 2006, claiming priority under 35 U.S.C. §119 of DE 10 2006 005 988.3, filed on Feb. 8, 2006 and DE 10 2006 021 553.2, filed May 8, 2006, all of which are incorporated by reference herein in their entirety.
- The invention concerns a fluid reservoir based on a polymer substrate, its applications, and a process for manufacturing such fluid reservoir
- For many applications, there is a need for particulate carriers that can absorb fluids and, depending on the application, also store them and release them again when needed.
- There are many models for this at the state of the art. As a general rule, certain core materials, such as zeolites, are impregnated with appropriate fluids, such as perfume oil. Often such a system is later coated to prevent undesired loss of the fluid.
- There is, to be sure, a further need for corresponding systems that can absorb preferably even high proportions of fluids, store them reliably, and release them again only after a time delay. Satisfaction of such needs was the objective of this invention.
- This objective was attained, surprisingly, by the subject of the invention. That is a particulate fluid reservoir made of a porous, particulate polymer substrate, which is charged with 5% by weight to 95% by weight, based on the total weight of the charged polymer substrate, of an inclusion mixture. This inclusion mixture:
-
- a) is, as such, highly viscous or solid at temperatures ≦20° C.,
- b) containing fluids, and contains at least one additive that can flow at elevated temperature, having a melting point or flow point in the range of 25° C. to 120° C.,
- c) c) transforms, essentially without decomposition, into a molten state even at temperatures below 120° C.
- The particulate fluid reservoir is, therefore, understood to be a porous polymer substrate in which high proportions of fluid, such are perfume, are immobilized reliably and stably. Release of the fluid can be accomplished, for instance, by temperature elevation and/or mechanical stress. Thus it is possible to create a sort of liquid depot that can be opened if needed.
- The fluid reservoir can advantageously be incorporated into various matrices without a problem, even in liquid matrices, without there being any significant disadvantageous interaction with the matrix.
- The concept “essentially without decomposition” takes into consideration the fact that many, materials or compounds or substances can decompose due to input of thermal energy. That means that in such a case the material in consideration is so altered in its structure by the influence of the temperature that it is transformed into a state that is no longer suitable for its originally intended use.
- In contrast, the inclusion mixtures are preferably distinguished by the fact that they transform into a molten state essentially without decomposition. That means that, at the particular temperature stress that is required to convert them to the molten state, they are not subject to any major degradation reactions, so that a inclusion mixture according to the invention preferably remains unaltered, in the greatest part, even after its transformation to a molten state and the subsequent transformation back into the solid state. That is in contrast to an object that suffers decompositions in transformation into the molten state, so that the object, after returning to the solid state, clearly differs from its initial condition, such as with respect to its appearance, its feel, its odor, or other aspects.
- An inclusion mixture is preferably considered highly viscous if the Brookfield viscosity at 25° C. is greater than 2500 mPas, preferably 5,000 mPas, especially 7,500 mPas, preferably 10,000 mPas and particularly preferably 25,000 mPas. (Viscosity measurement in a Brookfield Model DV II Viscosimeter with Spindle 3 at 20 rpm).
- The fluid is preferably a liquid (at T=20° C.), preferably comprising
- a) liquid fragrances (perfume oils and/or
- b) liquid ingredients of laundry detergents and cleaners, such as preferably surfactants, particularly nonionic surfactants, silicone oils, paraffins and/or
- c) liquid cosmetic ingredients, such as preferably oils, and/or
- d) liquid non-pharmaceutical additives or active ingredients and/or
- e) mixtures of the above.
- Fragrances and nonionic surfactants are most highly preferred, especially in mixtures. In the sense of this invention, the terms “fragrance” and “perfume oil” are used synonymously. They mean, particularly, all those substances, or mixtures of them, which are perceived by humans and animals as odors, especially those perceived by humans as fragrances.
- Individual fragrance compounds such as the synthetic products of the ester, ether, aldehyde, ketone, alcohol and hydrocarbon types can be used as perfume oils. Examples of ester-type fragrance compounds include, for example, benzyl acetate, phenoxyethyl isobutyrate, p-tert.-butylcyclohexyl acetate, linalyl acetate, dimethylbenzylcarbinyl acetate, phenylethyl acetate, linalyl benzoate, benzyl formate, ethyl methylphenyl glycinate, allylcyclohexyl propionate, styrallyl propionate and benzyl salicylate. The ethers include, for example, benzyl ethyl ether. The aldehydes include, for example, the linear alkanals with 8-18 C atoms, citral, citronellal, cittronellyloxyacetaldehyde, cyclamen aldehyde, hydroxycitronellal, lilial and bourgeonal. The ketones include, for example, the ionones, isomethylionone and methyl cedryl ketone. The alcohols include anethol, citronellol, eugenol, geraniol, linalool, phenylethyl alcohol and terpineol. The principal hydrocarbons are the terpenes and balsams. However, it is preferable to use mixtures of different fragrances which together produce a pleasant fragrance note.
- The perfume oils can, obviously, also contain natural mixtures of fragrances, such as are available from plant or animal sources, such as pine, citrus, jasmine, lily, rose or ylang-ylang oil. Ethereal oils of low volatility that are used primarily as aroma components are also suitable perfume oils, such as sage oil, camilla oil, clove oil, melissa oil, mint oil, cinnamon leaf oil, linden blossom oil, juniper berry oil, vetiver oil, galbanum oil, and labdanum oil.
- According to the invention, particular fragrances that can be used are selected from fragrances with
- (a) almond-like odor, such as preferably benzaldehyde, pentanal, heptenal, 5-methylfurfural, methylbutanal, furfural and/or acetophenone; or
- (b) apple-like odor, such as preferably (S)-(+)-ethyl 2-methylbutanoate, diethyl malonate, ethyl butyrate, geranyl butyrate, geranyl isopentanoate, isobutyl acetate, linalyl isopentanoate, (E)-(β-damascone, heptyl 2-methylbutyrate, methyl 3-methylbutyrate, 2-hexenal pentylmethylbutyrate, ethylmethylbutyrate and/or methyl 2-methylbutanoate; or
- (c) apple-peel-like odor, such as preferably ethyl hexanoate, hexyl butanoate and/or hexyl hexanoate; or
- (d) apricot-like odor such as preferably γ-undecalactone, or
- (e) banana-like odor, such as preferably isobutyl acetate, isoamyl acetate, hexenyl acetate and/or pentyl butanoate; or
- (f) bitter-almond-like odor such as preferably 4-acetyltoluene, or
- (g) black-currant-like odor such as preferably mercaptomethyl pentanone and/or methoxymethylbutanethiol, or
- (h) citrus-like odor, such as preferably linalyl pentanoate, heptanal, linalyl isopentanoate, dodecanal, linalyl formate, α-p-dimethylstyrene, p-cymenol, nonanal, β-cubebene, (Z)-limonene oxide, cis-6-ethenyl-tetrahydro-2,2,6-trimethylpyran-3-ol, cis-pyranoid linalool oxide, dihydrolinalool, 6(10)-dihydromyrcenol, dihydromyrcenol, β-farnesene,
- (Z)-β-farnesene, (Z)-ocimene, (E)-limonene oxide, dihydroterpinyl acetate, (+)-limonene, (epoxymethylbutyl)-methylfuran and/or p-cymene; or
- (i) cocoa-like odor, such as preferably dimethylpyrazine, butyl methylbutyrate and/or methylbutanal; or
- (j) coconut-like odor, such as preferably γ-octalactone, γ-nonalactone, methyl laurate, tetradecanol, methyl nonanoate, (3S,3aS,7aR)-3a,4,5,7a-tetrahydro-3,6-dimethylbenzofuran-2(3H)-one, 5-butyldihydro-4-methyl-2-(3H)-furanone, ethyl undecanoate and/or δ-decalactone; or
- (k) cream-like odor such as preferably diethyl acetal, 3-hydroxy-2-butanone, 2,3-pentanedione and/or 4-heptanal; or
- (l) flower-like odor such as preferably benzyl alcohol, phenylacetic acid, tridecanal, p-anisyl alcohol, hexanol, (E,E)-farnesylacetone, methyl geranate, trans-crotonaldehyde, tetradecyl aldehyde, methyl anthranilate, linalool oxide, epoxylinalool, phytol, 10-epi-γ-eudesmol, nerol oxide, ethyl dihydrocinnamate, γ-dodecalactone, hexadecanol, 4-metcapto-4-methyl-2-pentanol, (Z)-ocimene, cetyl alcohol, nerolidol, ethyl (E)-cinnamate, elemicin, pinocarveol, α-bisabolol, (2R,4R)-tetrahydro-4-methyl-2-(2-methyl-1-propenyl)-1H-pyran, (E)-isoelemecin, methyl 2-methylpropanoate, trimethylphenyl butenone, 2-methylanisol, β-farnesol, (E)-isoeugeol, nitrophenylethane, ethyl vanillate, 6-methoxyeugenol, linalool, β-ionone, trimethylphenyl butenone, ethyl benzoate, phenylethyl benzoate, isoeugenol and/or acetophenone; or
- (m) fresh odor, such as preferably methyl hexanoate, undecanone, (Z)-limonene oxide, benzyl acetate, ethyl hydroxyhexanoate, isopropyl hexanoate, pentadecanal, β-elemene, α-zingiberene, (E)-limonene oxide, (E)-p-mentha-2,8-dien-1-ol, menthone, piperitone, (E)-3-hexenol and/or carveol; or
- (n) fruit odor, such as preferably ethyl phenyacetate, geranyl valerate, γ-heptalactone, ethyl propionate, diethyl acetal, geranyl butyrate, ethyl heptanoate, ethyl octanoate, methyl hexanoate, dimethylheptenal, pentanone, ethyl 3-methylbutanoate, geranyl isovalerate, isobutyl acetate, ethoxypropanol, methyl-2-butenal, methyl nonanedione, linalyl acetate, methyl geranate, limonene oxide, hydrocinnamyl alcohol, diethyl succinate, ethylhexanoate, ethylmethylpyrazine, Nryletat, citronellyl butyrate, hexyl acetate nonyl acetate, butyl methylbutyrate, pentenal, isopentyldimethylpyrazine, p-menth-1-en-9-ol, hexadecanone, octyl acetate, γ-dodecalactone, epoxy-β-ionone, ethyl octenoate, ethyl isohexanoate, isobornyl propionate, cedrenol, p-menth-1-en-9-yl acetate, cadinadiene, (Z)-3-hexenyl hexanoate, ethyl cyclohexanoate, 4-methylthio-2-butanone, 3,5-octadienone, methyl cyclohexanecarboxylate, 2-pentylthiophene, α-ocimene, butanediol, ethyl valerate, pentanol, isopiperitone, butyl octanoate, ethyl vanillate, methyl butanoate, 2-methylbutyl acetate, propyl hexanoate, butyl hexanoate, isopropyl butanoate, spathulenol, butanol, δ-dodecalactone, methylquinoxaline, sesquiphellandrene, 2-hexenol, ethyl benzoate, isopropyl benzoate, ethyl lactate and/or citronellyl isobutyrate; or
- (o) geranium-like odor, such as preferably geraniol, (E,Z)-2,4-nonadienal, octadienone and/or o-xylene; or
- (p) grape-like odor, such as preferably ethyl decanoate and/or hexanone; or
- (q) grapefruit-like odor such as preferably (+)-5,6-dimethyl-8-isopropenylbicyclo[4.4.0]dec-1-en-3-one and/or p-menthenethiol; or
- (r) grass-like odor such as preferably 2-ethylpyridine, 2,6-dimethyl-naphthalene, hexanal, and/or (Z)-3-hexenol; or
- (s) green note, preferably 2-ethylhexanol, 6-decenal, dimethylheptenal, hexanol, heptanol, methyl-2-butenal, hexyl octanoate, nonanoic acid, undecanone, methyl geraniate, isobornyl formate, butanal, octanal, nonanal, epoxy-2-decenal, cis-linalool, pyrane oxide, nonanol, alpha,gamma-dimethylallyl alcohol, (Z)-2-penten-1-ol, (Z)-3-hexenyl butanoate, isobutylthiazol, (E)-2-nonenal, 2-dodecanal, (Z)-4-decenal, 2-octenal, 2-hepten-1-al, bicyclogermacrene, 2-octenal, α-thujene, (Z)-β-farnesene, (−)-γ-elemene, 2,4-octadienal, fucoserratene, hexenyl acetate, geranyl acetone, valencene, β-eudesmol, 1-hexenol, (E)-2-undecenal, Artemisia ketone, viridiflorol, 2,6-nonadienal, trimethylphenyl butenone, 2,4-nonadienal, butyl isothiocyanate, 2-pentanol, elemol, 2-hexenal, 3-hexenal, (+)-(E)-limonene oxide, cis-isocitral, dimethyloctadienal, bornyl formate, bornyl isovalerate, isobutyraldehyde, 2,4-hexadienal, trimethylphenyl butenone, nonanone, (E)-2-hexenal, (+)-cis-rosene oxide, menthone, coumarin, (epoxymethylbutyl)-methylfuran, 2-hexenol, (E)-2-hexenol and/or carvyl acetate; or
- (t) green-tea-like odor, preferably (−)-cubenol, or
- (u) herb-like odor, preferably octanone, hexyl octanoate, caryophyllene oxide, methylbutenol, safranal, benzyl benzoate, bornyl butyrate, hexyl acetate, β-bisabolol, piperitol, β-selinene, α-cubebene, p-menth-1-en-9-ol, 1,5,9,9-tetramethyl-12-oxabicyclododeca-4,7-diene, T-muurolol, (−)-cubenol, levomenol, ocimene, α-thujene, p-menth-1-en-9-yl acetate, dehydrocarveol, Artemisia alcohol, γ-muurolene, hydroxypentanone, (Z)-ocimene, β-elemene, δ-cadinol, (E)-β-ocimene, (Z)-dihydrocarvone, α-cadinol, calamenene, (Z)-piperitol, lavandulol, β-bourbonene, (Z)-3-hexenyl 2-methylbutanoate, 4-(1-methylethyl)-benzenemethanol, Artemisia ketone, methyl-2-butenol, heptanol, (E)-dihyrocarvone, p-2-menthen-1-ol, α-curcumene, spathulenol, sesquiphellandrene, citronellyl valerate, bornyl isovalerate, 1,5-octadiene-3-ol, methyl benzoate, 2,3,4,5-tetrahydroanisol and/or hydroxycalamenene; or
- (v) honey-like odor, preferably ethyl cinnamate, β-phenylethyl acetate, phenylacetic acid, phenylethanal, methyl anthranilate, cinnamic acid, β-damascenone, ethyl-(E)-cinnamate, 2-phenylethyl alcohol, citronellyl valerate, phenylethyl benzoate and/or eugenol; or
- (w) hyacinth-like odor, preferably hotrienol, or
- (x) jasmine-like odor, preferably methyl jasmonate, methyl dihydroepijasmonate and/or methyl epijasmonate, or
- (y) lavender-like odor, preferably linalyl valerate and/or linalool, or
- (z) citron-like odor, preferably neral, octanal, δ-3-carene, limonene, geranial, 4-mercapto-4-methyl-2-pentanol, citral, 2,3-dihydro-1,8-cineol and/or α-terpinene; or
- (aa) lily-like odor, preferably dodecanal, or
- (bb) magnolia-like odor, preferably geranyl acetone, or
- (cc) mandarin-like odor, preferably undecanol, or
- (dd) melon-like odor, preferably dimethylheptenal, or
- (ee) mint-like odor, preferably menthone, ethyl salicylate, p-anisaldehyde, 2,4,5,7a-tetrahydro-3,6-dimethylbenzofuran, epoxy-p-menthene, geranial, (methylbutenyl)-methylfuran, dihydrocarvyl acetate, β-cyclocitral, 1,8-cineol, β-phellandrene, methylpentanone, (+)-limonene, dihydrocarveol, (−)-carvone, (E)-p-mentha-2,8-dien-1-ol, isopulegyl acetate. piperitone, 2,3-dihydro-1,8-cineol, α-terpineol, DL-carvone and/or α-phellandrene, or
- (ff) nut-like odor, preferably 5-methyl-(E)-2-hepten-4-one, γ-heptalactone, 2-acetylpyrrol, 3-octen-2-one, dihydromethylcyclopentapyrazine, acetylthiazol, 2-octenal, 2,4-heptadienal, 3-octenone, hydroxypentanone, octanol, dimethylpyrazine, methylquinoxaline and/or acetylpyrroline; or
- (gg) orange-like odor, preferably methyl octanoate, undecanone, decyl alcohol, limonene and/or 2-decenal; or
- (hh) orange-peel-like odor, preferably decanal and/or β-carene; or
- (ii) peach-like, preferably γ-nonalactone, (Z)-6-dodecene-γ-lactone, δ-decalactone, R-δ-decenolactone, hexyl hexanoate, 5-octanolide, γ-decalactone and/or δ-undecalactone; or
- (jj) peppermint-like odor, preferably methyl salicylate and/or l-menthol; or
- (kk) pine-like flavor, preferably α-p-dimethylstyrene, β-pinene, bornyl benzoate, δ-terpinene, dihdroterpinyl acetate and/or α-pinene; or
- (ll) pineapple-like odor, preferably propyl butyrate, propyl propanoate and/or ethyl acetate; or
- (mm) plum-like odor, preferably benzyl butanoate; or
- (nn) raspberry-like odor, preferably β-ionone, or
- (oo) rose-like odor, preferably β-phenethyl acetate, 2-ethylhexanol, geranyl valerate, geranyl acetate, citronellol, geraniol, geranyl butyrate, geranyl isovalerate, citronellyl butyrate, citronellyl acetate, isogeraniol, tetrahydro-4-methyl-2-(2-methyl-1-propenyl)-2,5-cis-2H-pyran, isogeraniol, 2-phenylethyl alcohol, citronellyl valerate and/or citronellyl isobutyrate; or
- (pp) green mint-like odor, preferably carvyl acetate and/or carveol; or
- (qq) strawberry-like odor, preferably hexylmethyl butyrate, methyl cinnamate, pentenal, methyl cinnamate; or
- (rr) sweetish odor, preferably benzyl alcohol, ethylphenyl acetate, tridecanal, nerol, methyl hexanoate, linalyl isovalerate, undecanaldehyde, carophyllene oxide, linalyl acetate, safranal, uncineol, phenylethanal, p-anisaldehyde, eudesmol, ethylmethylpyrazine, citronellyl butyrate, 4-methyl-3-penten-2-one, nonyl acetate, 10-epi-γ-eudesmol, β-bisabolol, (Z)-6-dodecen-γ-lactone, β-farnesene, 2-dodecanal, γ-dodecalactone, epoxy-β-ionone, 2-undecenal, styrene glycol, methyl furaneol, (−)-cis-rosene oxide, (E)-β-ocimene, dimethylmethoxyfuranone, 1,8-cineole, ethylbenzaldehyde, 2-pentylthiophene, α-farnesene, methionol, 7-methoxycoumarin, (Z)-3-hexenyl-2-methylbutanoate, o-aminoacetophenone, viridiflorol, isopiperitone, β-sinensal, ethyl vanillate, methyl butanoate, p-methoxystyrene, 6-methoxyeugeol, 4-hexanolid, δ-dodecalactone, sesquiphellandrene, diethyl malate, linalyl butyrate, guaiacol, coumarin, methyl benzoate, isopropyl benzoate, safrole, durene, γ-butyrolactone, ethyl isobutyrate and/or furfural; or
- (ss) vanilla-like odor, preferably vanillin, methyl vanillate, acetovanillone and/or ethyl vanillate; or
- (tt) watermelon-like odor, preferably 2,4-nordienal, or
- (uu) wood-like odor, preferably α-muurolene, cadina-1,4-dien-3-ol, isocaryophyllene, eudesmol, α-ionone, bornyl butyrate, (E)-α-bergamotene, linalool oxide, ethylpyrazine, 10-epi-γ-eudesmol, germacrene B, trans-sabinene hydrate, dihydrolinalool, isodihydrocarveol, β-farnesene, β-sesquiphellandrene, d-elemene, α-calacorene, epoxy-β-ionone, germacrene D, bicyclogermacrene, alloaromadendrene, α-thujene, oxo-β-ionone, (−)-γ-elemene, γ-muurolene, sabinene, α-guainene, α-copaene, γ-cadinene, nerolidol, β-eudesmol, α-cadinol, δ-cadinene, 4,5-dimethoxy-6-(2-propenyl)-1,3-benzodioxol, [1ar-(1a-alpha, 4a alpha, 7 alpha, 7a beta 7b alpha)]-decahydro-1,1,7-trimethyl-4-methylene-1H-cycloprop[e]azulene, α-gurjunene, guaiol, α-farnesene, γ-selinene, 4-(1-methylethyl)-benzenemethanol, perillene, elemol, α-humulene, b-caryophyllene and/or β-guaiene;
or mixtures of the above. - The fluid is preferably an essentially hydrophobic liquid. Typical hydrophobic groups are, for example, long-chain or aromatic hydrocarbon groups. Perfume oils are as a general rule hydrophobic liquids.
- The fluid can preferably contain liquid cosmetic ingredients, such as oils. Preferred oils can advantageously be completely synthetic oils such as silicone oils, vegetable and/or animal fat oils (triglycerides of medium or unsaturated fatty acids) and/or ethereal oils (such as from plant parts).
- The inclusion mixture, advantageously the fluid, can preferably contain one or more skin-care and/or skin-protective active substances.
- Skin-care active substances are all those active substances that give the skin a sensory and/or cosmetic advantage. Active skin-care substances are preferably selected from the following substances:
- a) waxes, such as, for example, carnauba, spermaceti, beeswax, lanolin and/or derivatives of those and others
- b) hydrophobic plant extracts
- c) hydrocarbons, such as squalene and/or squalane
- d) higher fatty acids, preferably those with at least 12 carbon atoms, such as lauric acid, stearic acid, behenic acid, myristic acid, palmitic acid, oleic acid, linoleic acid, linolenic acid, isostearic acid and/or multiply unsaturated fatty acids and others
- e) higher fatty alcohols, preferably those with at least 12 carbon atoms, such as lauryl alcohol, cetyl alcohol, stearyl alcohol, oleyl alcohol, behenyl alcohol, cholesterol and/or 2-hexadecanol and others
- f) esters, preferably those such as cetyl octanoate, lauryl lactate, myristyl lactate, cetyl lactate, isopropyl myristate, myristyl myristate, isopropyl palmitate, isopropyl adipate, butyl stearate, decyl oleate, cholesterol isostearate, glycerol monostearate, glycerol distearate, glycerol tristearate, alkyl lactates, alkyl citrates and/or alkyl tartrates and others.
- g) lipids, such as, for example, cholesterol, ceramide and/or sucrose esters and others
- h) vitamins such as Vitamins A and E, vitamin alkyl esters, including Vitamin C alkyl esters and others
- i) sunscreens
- j) phospholipids
- k) derivatives of alpha-hydroxyacids
- l) odorants
- m) germicides for cosmetic use, both synthetic such as salicylic acid and/or others, as well as natural ones such as neem oil and/or others.
- n) silicones
and mixtures of components named above. - The inclusion mixture, advantageously the fluid, can preferably contain oil with antiseptic action, preferably ethereal oil, selected in particular from the group of Angelica fine—Angelica archangelica, Anis—Pimpinella anisum, Benzoe slam—Styrax tokinensis, Cabreuva—Myrocarus fastigiatus, Cajeput—Melaleuca leucadendron, Cistrose—Cistrus ladaniferus, Copaiba balsam—Copaifera reticulata, costus root—Saussurea discolor, silver fir needles—Abies alba, elemi—Canarium luzonicum; fennel—Foeniculum dulce; spruce—Picea abies; geranium—Pelargonium graveolens; ho leaves—Cinnamonum camphora; immortelle (straw flowers)—Helichrysum ang.; ginger extra—Zingiber off.; Saint John's wort—Hypericum perforatum; jojoba, German camomile—Matricaria recutita; blue fine camomile: Matricaria chamomilla; Roman camomile: Anthemis nobilis; wild camomile: Ormensis multicaulis; carrot: Daucus carota; dwarf pine—Pinus mugho; lavender: Lavendula hybrida; Litsia cubeba—(May Chang), Manuka—Leptospermum scoparium; melissa—Melissa officinalis; maritime pine—Pinus pinaster; myrrh—Commiphora molmol; myrtle—Myrtis communis; neem—Azadirachta; Niaouli—(MQV) Melaleuca quin. viridiflora; palmarosa—Cymbopogom martini; patchouli—Pogostemon patschule; Peru balsam—Myroxylon balsmaum var. pereirae; raventsara aromatica, rose wood—Aniba rosae odora; sage—Salvia officinalis; horsetail—Equisetaceae; milfoil extra—Achille millefolia; ribwort plantain—Plantago lanceolata; styrax—Liquidambar orientalis; French marigold (marigold)—Tagetes patula; tea tree—Melaleuca alternifolia; tolu balsam—Myroxylon balsamum L.; Virginia cedar—Juniperus virginiana; frankincense (Olibanum)—Boswellia carteria; silver fir—Abies alba.
- The inclusion mixture, advantageously the fluid, can preferably contain skin-protective active substances, advantageously skin-protecting oil. The skin-protecting substance is advantageously a skin-protecting oil, for example, also a carrier oil, particularly selected from the group of algal oil, Oleum phaeophyceae, Aloe vera oil, Aloe vera brasiliana, apricot kernel oil, Prunus armeniaca, arnica oil, Arnica montana, avacodo oil Persea americana, borage oil Borago officianalis, calendula oil Calendula officinalis, camellia oil Camellia oleifera, thistle oil Carthaqmus tinctorius, peanut oil Arachis hypogaea, hemp oil Cannabis sativa, hazelnut oil Corylus avellana, Saint John's wort oil Hypericum perforatum, jojoba oil Simondsia chinensis, carrot oil Daucus carota, coconut oil Cocos nucifera, pumpkin seed oil Curcubita pepo, kukui nut oil Aleurites moluccana, macadamia nut oil Macadamia ternifolia, almond oil Prunus dulcis, olive oil Olea europaea, peach seed oil Prunus persica, rapeseed oil Brassica oleifera, castor oil Ricinus communis, nutmeg oil Nigella sativa, sesame oil Sesamium indicum, sunflower oil Helianthus annus, grapeseed oil Vitis vinifera, walnut oil Juglans regia, wheat germ oil Triticum sativum, with borage oil, hemp oil and almond oil particularly advantageous of these.
- The inclusion mixture, advantageously the fluid, can preferably contain humidity control factors, such as those selected from the following group: amino acids, chitosan or chitosan salts/derivatives, ethylene glycol, glucosamine, glycerol, diglycerol, triglycerol, uric acid, honey and hardened honey, creatinine, hydrolysis products of collagen, lactitol, polyols and polyol derivatives (such as butylene glycol, erythritol, propylene glycol, 1,2,6-hexanetriol, polyethylene glycols such as PEG-4, PEG-6, PET-7, PEG-8, PEG-9, PEG-10, PEG-12, PEG-14, PEG-16, PEG-18, PEG-20), pyrrolidine carboxylic acid, sugars and sugar derivatives (such as fructose, glucose, maltose, maltitol, mannitol, inositol, sorbitol, sorbityl silanediol, sucrose, trehalose, xylose, xylitol, glucuronic acid and its salts), ethoxylated sorbitol (Sorbeth-6, Sorbeth-20, Sorbeth-30, Sorbeth-40), hardened starch hydrolysates and mixtures of hardened wheat protein and PEG-20-acetate copolymer, especially panthenol.
- According to a preferred embodiment the polymer substrate is hydrophobic.
- According to a further preferred embodiment, the longitudinal diameter of the fluid reservoir, measured at its longest dimension, is between 20 um and 30 cm. Lower limits can also be 30 μm, 40 μm, 50 μm, 60 μm, 70 um, 80 μm or 100 μm, or even higher values such as 200 μm, 300 μm, 400 μm, 500 μm, 600 μm, etc. Upper limits can also be 20 cm, 15 cm, 10 cm, 5 cm, 3 cm, 1 cm, 0.5 cm, 0.25 cm, 0.1 cm or 0.01 cm or even lower values such as 0.005 cm, etc.
- According to a preferred embodiment the polymer substrate is at least partially built up of polymers selected from polyolefins, fluoropolymers, styrene polymers, copolymers of those polymers and/or mixtures of the polymers named above.
- For example, polypropylenes, polyethylenes, etc. are particularly preferred. Hydrophobic polymer substrates are used preferably. HDPE, LDPE, LLDPE, or UHMW-PE are particularly advantageous polyethylenes. Poly(4-methyl-1-pentene), poly(1-butene) or polyisobutene are particularly preferred, and, as copolymers, ethylene-propylene copolymers or ethylene-vinyl acetate copolymers. Examples of preferred fluoropolymers include polyvinylidene fluoride and polyvinyl fluoride and the copolymers poly(tetrafluoroethylene-co-hexafluoropropylene), poly(tetrafluoroethylene-co-perfluoroalkyl vinyl ether) and poly(ethylene-co-tetrafluoroethylene). Of the styrene polymers, polystyrene and styrene-acrylonitrile copolymers, styrene-butadiene copolymers and acrylonitrile butadiene styrene copolymers are preferred. However, polymer substrates based on polyolefins, and especially based on polypropylene or polyethylene are particularly preferred. In particular, cross-linked (co-)polymers are likewise preferred.
- According to a preferred embodiment, the polymer substrate has at least partially an open-pore structure with a mean pore diameter preferably between 1 μm and 300 μm before charging with the inclusion mixture. The lower limit can also have values such as 5 μm, 10 μm, 15 μm, 20 μm, 25 μm or 30 μm, etc. The upper limits can also be at values such as 280 μm, 260 μm, 240 μm or 220 μm, etc.
- A usable porous particulate polymer substrate with at least partially open-pore structure can have a spongy cellular or even a network-like or coral-like microstructure. The pore structure should be at least partially open-pore. That is, the pores in the polymer substrate must be in fluid contact with each other, at least in subregions of the substrate structure, and the particles of the polymer substrate should be open-pored in at least subregions of their external surface. That allows adequate permeability to the fluids. Thus use of a particulate polymer substrate with at least partial open-pore structure allows extensive fluid uptake. In a preferred embodiment the polymer substrate used according to the invention has a mean pore diameter in the range between 4 and 110 μm. A mean pore diameter in the range of 5 to 50 μm is especially preferred. Polymer substrates with such preferred pore diameters exhibit good charging ability.
- According to a preferred embodiment the inclusion mixture transforms essentially without decomposition into a molten state at temperatures below 100° C., advantageously below 90° C., in an advantageous manner below 80° C., especially below 70° C.
- According to a further preferred embodiment, the inclusion mixture comprises at least 20% by weight, preferably at least 30% by weight, advantageously at least 40% by weight, in a very advantageous manner at least 50% by weight, in an especially advantageous manner at least 60% by weight, in an extremely advantageous manner at least 70% by weight, in the utmost advantageous manner at least 80% by weight, in an even more advantageous manner at least 90% by weight, particularly at least 95% by weight, but in the most advantageous manner 100% by weight of the components fluid and additive(s) having melting points or flow points in the range of 25° C. to 120° C.
- According to another preferred embodiment the additives contained in the inclusion mixture having a melting point or flow point in the range of 25° C. to 120° C. are at least partially soluble in the fluid, preferably essentially completely soluble in the fluid near their particular flow point.
- According to another preferred embodiment the inclusion mixture is highly viscous or particularly solid at temperatures up to ≦22° C., advantageously up to ≦28° C., in a very advantageous manner up to ≦32° C., in a particularly advantageous manner up to ≦38° C., in a quite particularly advantageous manner up to ≦42° C., in a further advantageous manner up to ≦48° C., in a still further advantageous manner up to ≦55° C., in an even more advantageous manner up to ≦60° C.
- According to a further preferred embodiment, the flow point of the additive that is able to flow at elevated temperatures, or of the mixture of these additives, is greater than 25° C., preferably in the range of 30 to 90° C., advantageously in the range of 35 to 70° C. and particularly in the range of 40 to 60° C.
- According to a further preferred embodiment, the inclusion mixture comprises up to 90% by weight, preferably 10 to 80% by weight, but especially preferably less than 70% by weight, that is, advantageously 15 to 65% by weight, in a very advantageous manner up to 55% by weight, in an even more advantageous manner 28 to 50% by weight of additives that are able to flow at elevated temperatures (that is, additives with flow points or melting points in the range of 25° C. to 120° C.), based on the total inclusion mixture with which the polymer substrate is charged.
- According to a further preferred embodiment, the inclusion mixture comprises more than 5% by weight of fluid(s), preferably more than 10% by weight, advantageously 15 to 90% by weight, in a very advantageous manner 20 to 80% by weight, in an even more advantageous manner 25 to 75% by weight, especially 30 to 72% by weight of fluid(s), based on the total inclusion mixture with which the polymer substrate is charged.
- According to a further preferred embodiment, the fluid reservoir contains less than 25% by weight, preferably less than 15% by weight, advantageously less than 10% by weight, even more advantageously less than 5% by weight of water, based on the total fluid reservoir, and in particular it is completely free of water.
- According to a further preferred embodiment, the additives contained in the inclusion mixture, which have flow points in the temperature range of 25° C. to 120° C., are selected from the group of fatty alcohols, fatty acids, silicones (silicone oils), paraffins, nonionic surfactants, esterquats, glycerides of fatty acids (natural oils), waxes, mono, di or tri-glycerides, carbohydrates and/or polyalkylene glycols.
- As carbohydrates, sugars can be used here to advantage. Some examples are alpha-D-glucose monohydrate (melting point in the range of 83-86° C.), alpha-D-galactose monohydrate (melting point in the range of 118-120° C.) or maltose monohydrate (melting point in the range of 102-103° C.). The derivatives are also suitable, for instance, amino sugars such as D-glucosamine (melting point of the α-form: 88° C.) or deoxysugars such as rhamnose monohydrate (melting point 92-94° C.).
- Suitable paraffins can be, for instance, octadecane, nonadecane, eicosane, docosane, tricosane, tetracosane, pentacosane, hexacosane, octacosane, nonacosane or triacosan, to name some examples.
- Suitable fatty alcohols can be, for instance, 1-tridecanol, 1-tetradecanol, 1-pentadecanol, 1-hexadecanol, 1-heptadecanol, 1-octadecanol, 9-trans-octadecen-1-ol, 1-nonadecanol, 1-eicosanol, 1-heneicosanol, 1-docosanol, 12-cis-docosen-1-ol, or 3-trans-docosen-1-ol, to name some examples. They also include the so-called wax alcohols, fatty alcohols with about 24-36 carbon atoms, such as triacontanol-1 or melissyl alcohol. They also include unsaturated fatty alcohols such as elaidyl alcohol, eruca alcohol or brassidyl alcohol. They also include Guerbet alcohols such as C32H66O or C36H74O. They also include alkanediols such as undecane-1,11-diol or dodecane-1,12-diol.
- Suitable nonionic surfactants can be, for instance, fatty alcohol polyglycol ethers, such as C14H29—O—(CH2CH2O)2H, C10H21—O—(CH2CH2O)8H, C12H25—O—(CH2CH2O)6H, C14H29—O—(CH2CH2O)4H, C16H33—O—(CH2CH2O)12H, or C18H37—O—(CH2CH2O)4H, to name some examples.
- Suitable fatty acids can be, for instance, capric acid, undecanoic acid, lauric acid, tridecanoic acid, tetradecanoic acid, pentadecanoic acid, palmitic acid, margaric acid, stearic acid, nonadecanoic acid, arachidic acid, behenic acid, lignoceric acid, cerotinic acid, crotonic acid, erucic acid, eleostearic acid, or melissic acid, to name some examples.
- Esters of fatty acids, such as the methyl or ethyl esters of behenic or arachidic acid can also be suitable, to name some examples.
- Mono, di or triglycerides, such as the corresponding glycerides of lauric acid, palmitic acid or capric acid, are also suitable, to name some examples.
- Suitable waxes can be natural waxes such as carnauba wax, candelilla wax, esparto wax, guaruma wax, Japan wax, cork wax or montane wax; also animal waxes such as beeswax, wool wax, shellac wax or spermaceti wax; also synthetic waxes such as polyalkylene waxes or polyethylene glycol waxes, likewise chemically modified waxes such as hydrogenated jojoba wax or montane ester wax.
- The inclusion mixture can also contain other additional substances having a melting point above 120° C., such as appropriate carbohydrates, advantageously sugars, such as sucrose (melting point 185-186° C.).
- If the inclusion mixture contains other solids, preferably solids commonly used in laundry detergents, that is likewise a preferred embodiment.
- If the proportion of solids in the inclusion mixture is less than 50%, preferably less than 30%, advantageously less than 25%, especially less than 15%, in an entirely preferred manner less than 10%, based on the total inclusion mixture with which the polymer substrate is charged, this is a further preferred embodiment.
- According to a preferred embodiment the solids contained in the inclusion mixture have a d50 value of less than 0.2 mm, preferably less than 0.1 mm, especially less than 0.05 mm.
- If the inclusion mixture contains solids selected from the group of zeolites, bentonites, silicates, phosphates, urea and/or its derivatives, sulfates, carbonates, citrates, citric acid, acetates and/or salts of the anionic surfactants, this is a further preferred embodiment.
- According to a further preferred embodiment, the fluid reservoir has a size such that it can be grasped by human hands and can be used for manual treatment of objects. For instance, one can rub surfaces with a fluid reservoir in stick form, as in hand washing of textiles.
- The fluid reservoir can have any desired form. It can preferably be rather spherical, oval, cylindrical, or granular, or have any other regular or irregular shape.
- A fluid reservoir that contains at least one, preferably two or more substances usually contained in laundry detergents or cleaners, preferably a substance from the group of surfactants, builder substances (inorganic and organic builders), bleaching agents, bleach activators, bleach stabilizers, bleach catalysts, enzymes, special polymers (for example, those with co-builder properties), antiredeposition agents, optical brighteners, UV-protecting substances, soil repellents, electrolytes, coloring agents, odorants, scents, perfume carriers, pH-adjusting agents, complexing agents, fluorescence agents, foam inhibitors, anti-wrinkling agents, antioxidants, quaternary ammonium compounds, antistatics, ironing aids, UV absorbers, antiredeposition agents, germicides, antimicrobially active substances, fungicides, viscosity regulators, luster agents, color transfer inhibitors, shrinkage inhibitors, corrosion inhibitors, preservatives, plasticizers, softening rinses, protein hydrolysates, phobing and impregnating agents, hydrotropes, silicone oils as well as anti-swelling and anti-slip agents, is a preferred embodiment of the invention.
- It turns out that preferably the following proportions, each based on the total fluid reservoir proportions, each based on the total fluid reservoir, can be particularly advantageous:
-
- porous polymer substrate: preferably 40-75% by weight, especially 40-60% by weight
- fluid in the polymer substrate: preferably 1-30% by weight, especially 20-30% by weight
- additive that can flow at elevated temperatures: preferably 1-30% by weight, especially 20-30% by weight
- The fluid reservoir according to the invention is characterized advantageously by the fact that high proportions of liquid, such as perfume, for instance, are reliably immobilized for long periods in the porous polymer substrate and are not released until there is an external stimulus, such as a temperature increase and/or mechanical stress.
- Although the external, visible, surface of the polymer substrate can preferably be occupied by the inclusion mixture, so that one can also advantageously speak of a coated polymer substrate, it is further possible according to a preferred embodiment to give the fluid reservoir according to the invention, that is, the polymer substrate charged with the inclusion mixture, an additional coating. According to a preferred embodiment of the invention, the fluid reservoir is coated.
- Coating agents can be used for the coating. These are substances that give the outer surface of the object to be coated a glossy appearance and/or form a coating (an envelope) on the outer surface. Solid and/or liquid substances can be used as coating agents. They are preferably those that prevent or delay penetration of moisture or prevent or delay loss of aroma.
- Suitable coating agents can contain water-soluble, water-dispersible and/or water-insoluble (co)-polymers. The layer of coating itself can be soluble or insoluble in water.
- Water soluble polymers contain a proportion of hydrophilic groups sufficient for water solubility, and are advantageously not cross-linked. The hydrophilic groups can be nonionic, anionic, cationic or zwitterionic, for instance: —NH2, —OH, —SH, —O—, —COOH, —COO—−M+, —SO3 −M+, —PO3 −2M+2, —NH3 +.
- etc.
- The individual polymers can contain different hydrophilic groups at the same time, such as ionic and nonionic and/or anionic and cationic groups.
- Preferred water-soluble polymers can be, for example, natural polysaccharides and/or peptides, such as starches, alginates, pectins, plant gums, caseins, gelatins, etc.
- Preferred water-soluble polymers can be, for example, semisynthetic polymers, such as cellulose ethers or starch ethers.
- Preferred water-soluble polymers can be, for example, biotechnologically produced products, such as pullulan, curdlan or xanthan.
- Preferred water-soluble polymers can be, for example, synthetic polymers, such as homopolymers and/or copolymers of (meth)acrylic acid and its derivatives, of maleic acid, vinylsulfonic acid, vinylphosphonic acid, polyvinyl alcohol, polyethyleneimine, polyvinylpyrrolidone and the like.
- Preferred coating agents contain water-soluble (co)-polymers, especially those having a melting point or softening point in the range of 48° C. to 300° C., advantageously in the range of 48° C. to 200° C., and in a further advantageous manner in the range of 48° C. to 200° C.
- Suitable water-soluble (co)-polymers with an appropriate melting or softening point can advantageously be selected from the group comprising polyalkylene glycols, polyethylene terephthalates, polyvinyl alcohols and mixture of them.
- The coating can contain, aside from the actual coating agent, or independently of it, other ingredients, such as, advantageously, textile-softening compounds and/or perfume.
- It is also possible to coat the fluid reservoir multiply, such as by first coating the fluid reservoir with a first coating, e.g., one containing a textile-softening compound and then giving the resulting object a further coating, such as one containing water-soluble polymer and perfume.
- According to a preferred embodiment the coating of the fluid reservoir comprises lipids and/or silicone oils. Preferred lipids are
- (a) lipophilic hydrocarbons (such as triacontane, squalene or carotenoids, etc.)
- (b) lipophilic alcohols (such as wax alcohols, retinol or cholesterol, etc.)
- (c) ether lipids
- (d) lipophilic carboxylic acids (fatty acids)
- (e) lipophilic esters [such as neutral fats—that is, monoacyl glycerols, diacyl glycerols, triacyl glycerols (triglycerides), sterol esters, etc.]
- (f) lipophilic amides (such as ceramides, etc.)
- (g) waxes
- (h) lipids having more than 2 hydrolysis products, such as glycolipids, phospholipids, sphingolipids and/or glycerolipids, etc.
- (i) lipids in the form of higher-molecular-weight conjugates having more than 2 hydrolysis products, such as lipoproteins and/or lipopolysaccharides, etc.
- (j) phosphorus-free glycolipids, such as glycosphingolipids (such as, preferably, cerebrosides, gangliosides, sulfatides) or such as glycoglycerolipids (such as preferably glycosyldiglycerides and glycosylmonoglycerides), etc.
- (k) carbohydrate-free phospholipids, such as sphingophospholipids (such as preferably sphingomyelins) or such as glycerophospholipids (such as preferably lecithins, cephalins, cardiolipids, phosphatidyl inositol and phosphatidyl inositol phosphates, etc.)
- (l) mixtures of those named above.
- In a further preferred embodiment, the optional coating has colored substances or dyes, brighteners and/or pigments, advantageously in the nanoscale range or in the micrometer range, preferably white pigments, particularly selected from titanium dioxide pigments, such as, in particular, anatase pigments and/or rutile pigments, zinc sulfide pigments, zinc oxide (zinc white), antimony trioxide (antimony white), basic lead carbonate (white lead), 2PbCO3.Pb(OH)2, or lithopone, ZnS+BaSO4. It can preferably also contain white additives such as preferably calcium carbonate, talc, 3MgO.4SiO2.H2O and/or barium sulfate.
- In a further preferred embodiment, the pigments that can preferably be components of an optional coating can be
- (a) colored pigments (preferably inorganic colored pigments, especially iron oxide pigments, chromate pigments, iron blue pigments, chromium oxide pigments, ultramarine pigments, pigments of oxide solid solution pigments and/or bismuth vanadate pigments.
- (b) black pigments (e.g., aniline black, perylene black, iron oxide pigments, manganese black and/or spinel black)
- (c) luster pigments (preferably lamellar effect pigments, metal effect pigments such as aluminum pigments (silver bronze), copper pigments and copper/zinc pigments (gold bronzes) and zinc pigments, pearlescent pigments, such as magnesium stearate, zinc stearate, lithium stearate or ethylene glycol distearate or polyethylene terephthalate, interference pigments such as metal oxide mica pigments) and/or
- (d) luminescent pigments such as azomethine fluorescent yellow, silver-dosed and/or copper-dosed zinc sulfide pigments.
- The optional coating can preferably also comprise the following substances:
- (a) carbonates, such as preferably chalk, ground limestone, calcite and/or precipitated calcium carbonate, dolomite and/or barium carbonate
- (b) sulfates, such as preferably barite, blanc fixe and/or calcium sulfate.
- (c) silicates such as preferably talc, pyrophyllite, chlorite, hornblende, mica, or kaolin
- (d) silicic acids, such as preferably quartz, fused silica, cristobalite, diatomaceous earth, Neuberg silica, precipitated silicic acid, pyrogenic silicic acid, ground glass, pumice flour, perlite, calcium metasilicate and/or fibers from melts of glass, basalts, or slags
- (e) oxides, such as especially aluminum hydroxide and/or magnesium hydroxide
- (f) (organic fibers, such as especially textile fibers, cellulose fibers, polyethylene fibers, polypropylene fibers, polyamide fibers, polyacrylonitrile fibers and/or polyester fibers, especially with lengths in the nanometer or micrometer range and/or
- (g) powders, such as powdered starch.
- According to a further preferred embodiment, the optional coating of the fluid reservoir according to the invention is sensitive to pH and/or temperature and/or ionic strength or contains materials sensitive to pH and/or temperature and/or ionic strength.
- The term ‘pH sensitivity, temperature sensitivity and/or ionic strength sensitivity’ means here that the coating or the materials making up the coating
- (a) experience(s) a change (increase or decrease) of solubility (preferably in water); and/or
- (b) experience(s) a change (increase or decrease) of the diffusion density; and/or
- (c) experience(s) a change (acceleration or deceleration) of the rate of dissolution; and/or
- (d) experience(s) a change (increase or decrease) of mechanical stability
if there is a change if the pH, the temperature, or the ionic strength of the medium to which the coating is exposed (e.g., a wash liquor). - For the temperature sensitivity, there is, aside from the options (a) to (d) named above also the additional option (e) according to which the coating or the materials making up the coating experience(s) a change of the state of aggregation from solid to liquid or the reverse on a change of the temperature; that is, the materials melt or solidify.
- In the sense of the invention, all those materials for which the integrity is a function of the temperature and/or the pH and/or the ionic strength, or also those materials that lose their integrity because of mechanical stress, such as occurs in the coarse of an automatic laundry washing process serve as suitable materials.
- The pH sensitivity of the (optional) coating can be utilized advantageously. The (optional) coating can, for example, be of such a nature that it dissolves, partially or completely, if the pH drops below a critical level. That can occur in a laundering process, for instance, if the alkaline wash water is removed from the machine and fresh water is supplied to the machine, preferably in the rinsing portion of the washing process. Then on contact with the fresh water the coating partially or completely loses its integrity, making the granulation penetrable by the water. The particular pH at which the coating disintegrates partially or completely can be adjusted arbitrarily, so that, for example, the material loses its integrity partially or completely if, for example, the pH drops below 9.0 but remains essentially inert as long as the pH is greater than 10.
- The concept “inert” is to be understood according to the invention in the usual sense, that is, that there is essentially no physical or chemical reaction of the material of the coating with its environment but that the material of the coating is physically and chemically resistant to it, so that the granulation is essentially protected from penetration of the environment, such as the wash liquor.
- Preferred coating materials can be
- (a) polymers containing carboxylate groups (polycarboxylates), preferably homopolymers of acrylic acid and/or copolymers of acrylic acid and maleic acid,
- (b) polyethylene glycols, especially those having molecular weights less than about 25,000 g/mole, preferably less than about 10,000 g/mole, advantageously less than about 6,000 g/mole, such as PEG 4000,
- (c) (acetalized) polyvinyl alcohols
- (d) (modified) carbohydrates, preferably mono-, oligo-, and/or poly-saccharides, especially glucose
- (e) polyvinylpyrrolidones
or mixtures of those. - “Polyvinyl alcohols” (abbreviated PVAL, or occasionally also PVOH) is the designation for polymers having the general structure
-
[—CH2—CH(OH)—]n - which also contain in small proportions structural units of the type
-
[—CH2—CH(OH)—CH(OH)—CH2] - The usual commercial polyvinyl alcohols, which are marketed as yellowish-white powders or granulations having degrees of polymerization in the range of about 100 to 2500 (molecular weights of about 4,000 to 100,000 g/mole) have degrees of hydrolysis of 98-99 or 87-89 mole-%, thus containing a residual content of acetyl groups. Manufacturers characterize the polyvinyl alcohols by stating the degree of polymerization of the initial polymer, the degree of hydrolysis, the saponification number, or the viscosity of the solution.
- Depending on their degree of hydrolysis, polyvinyl alcohols are soluble in water and the less polar organic solvents (formamide, dimethylformamide or dimethylsulfoxide). They are not attacked by (chlorinated) hydrocarbons, esters, fats and oils. Polyvinyl alcohols are classifed as toxicologically unobjectionable and are at least partially biodegradable. The water solubility can be reduced by post-treatment with aldehydes (acetalization), complexing with nickel or copper salts, or treatment with dichromates, boric acid or borax. Polyvinyl alcohol coatings are largely impermeable to gases such as oxygen, nitrogen, helium, hydrogen or carbon dioxide, but allow water vapor to penetrate.
- In the context of the present invention, those coatings are preferred that comprise, at least in part, a polyvinyl alcohol with a degree of hydrolysis advantageously 70 to 100 mole-%, preferably 80 to 90 mole-%, especially preferably 81 to 89 mole-%, and particularly 82 to 88 mole-%. In a preferred embodiment the film material used comprises at least 20% by weight, especially preferably at least 40% by weight, quite particularly preferably at least 60% by weight, and particularly at least 80% by weight of a polyvinyl alcohol for which the degree of hydrolysis is 70 to 100 mole-%, preferably 80 to 90 mole-%, especially preferably 81 to 89 mole-%, and particularly 82 to 88 mole-%. It is preferable for the total coating to contain at least 20% by weight, especially preferably at least 40% by weight, quite particularly preferably at least 60% by weight and particularly at least 80% by weight of a polyvinyl alcohol for which the degree of hydrolysis is 70 to 100 mole-%, preferably 80 to 90 mole-%, especially preferably 81 to 89 mole-%, and particularly 82 to 88 mole-%.
- Polyvinyl alcohols of a particular molecular weight molecular range are used preferably as coating materials. It is preferred according to the invention that the film material comprise a polyvinyl alcohol having a molecular weight in the range of 10,000 to 100,000 g/mol, preferably 11,000 to 90,000 g/mol, especially preferably 12,000 to 80,000 g/mol, and particularly 13,000 to 70,000 g/mol.
- The polyvinyl alcohols described above are broadly available commercially, as under the Mowiol® trade name (Clariant). Polyvinyl alcohols particularly suitable in the context of the present invention include, for example, Mowiol® 3-83, Mowiol® 4-88, Mowiol® 5-88, Mowiol® 8-88 and L648, L734, Mowiflex LPTC 221 from KSE and compounds from Texas Polymers, such as Vinex 2034.
- Other polyvinyl alcohols that are especially suitable as coating materials can be found in the table below:
-
Degree of Molecular Melting Designation hydrolysis [%] weight [kDa] point [° C.] Airvol ® 205 88 15-27 230 Vinex ® 2019 88 15-27 170 Vinex ® 2144 88 44-65 205 Vinex ® 1025 99 15-27 170 Vinex ® 2025 88 25-45 192 Gohsefimer ® 5407 30-28 23,600 100 Gohsefimer ® LL02 41-51 17,700 100 - Other polyvinyl alcohols suitable as coating materials are ELVANOL® 51-05, 52-22, 50-42, 85-82, 75-15, T-25, T-66, 90-50 (DuPont trademarks), ALCOTEX® 72.5, 78, B72, F80/40, F88/4, F88/26, F88/40, F88/47 (trademarks of Harlow Chemical Co.), Gonozoïde® NK-05, A-300, AH-22, C-500, GH-20, GL-03, GM-14L, KA-20, KA-500, KH-20, KP-06, N-300, NH-26, NM11Q, KZ-06 (trademarks of Nippon Gohsei K. K.). ERKOL types from Wacker are also suitable.
- The water-solubility of PVAL can be altered by post-treatment with aldehydes (acetalization) or ketones (ketalization). Polyvinyl alcohols that have been acetalized or ketalized with the aldehyde or ketone groups of saccharides or polysaccharides or mixture of them have proven particularly advantageous because of their outstandingly good solubility in cold water and are specially preferred. The reaction products of PVAL and starch are used as extremely advantageous.
- The water solubility can be further altered by complexing with nickel or copper salts or by treatment with dichromates, boric acid, or borax, so that it can be adjusted deliberately to desired values. Films of PVAL are largely impermeable to gases such as oxygen, nitrogen, helium, hydrogen, and carbon dioxide, but allow water vapor to penetrate.
- Other preferred coating materials are characterized in that they comprise polyvinylpyrrolidones. Polyvinylpyrrolidones, abbreviated PVP, can be described by the following general formula
- PVPs are produced by radical polymerization of 1-vinylpyrollidone. Typical commercial PVPs have molecular weights in the range of preferably about 2,500 to 750,000 g/mol and are marketed as white hygroscopic powders or as aqueous solutions.
- Other preferred coating materials are characterized in that they comprise polyethylene oxides. Polyethylene oxides, abbreviated PEOX, are polyalkylene glycols having the general formula
-
H—[O—CH2—CH2]n—OH - They are produced industrially by base-catalyzed polyaddition of ethylene oxide (oxirane) with ethylene glycol as the starting molecule in systems usually containing traces of water. They have molecular weights in the range of about 200 to 5,000,000 g/mol, and corresponding degrees of polymerization of about 5 to >100,000. Polyethylene oxides have an extremely low concentration of reactive hydroxyl terminal groups, and have only weak properties of glycols.
- Other preferred coating materials are characterized in that they comprise gelatins. Gelatin is a polypeptide (molecular weight: about 15,000 to >250,000 g/mol) obtained primarily by hydrolysis of collagen contained in animal skin and bones under acidic or alkaline conditions. The amino acid composition of gelatin largely corresponds to that of the collagen from which it was obtained, and varies, depending on the source.
- Coating materials that comprise a polymer from the group of starches and starch derivatives, cellulose and cellulose derivatives, especially methylcellulose and mixture of those are preferred in the context of the present invention.
- Starch is a homoglycan, in which the glucose units are joined by α-glycoside bonds. Starch is composed of two components having different molecular weights: about 20 to 30% straight-chain amylose (molecular weight about 50,000 to 150,000) and 70 to 80% branched-chain amylopectin (molecular weight about 300,000 to 2,000,000). It also contains traces of lipids, phosphoric acid and cations. While amylose forms long intertwined chains of about 300 to 1,200 glucose molecules because of the 1,4 bonding, the amylopectin chain branches through 1,6 bonds after an average of 25 glucose units, giving a branch-like structure with about 1,500 to 12,000 glucose molecules. Starch derivatives that can be obtained by polymer-like reactions of starch are also suitable, along with pure starch, for producing water-soluble envelopes in the context of the present invention. For example, such chemically modified starches comprise products of esterifications or etherifications, in which hydroxyl hydrogen atoms are substituted. However, starches in which the hydroxyl groups are replaced by functional groups not bound through an oxygen atom can also be used as starch derivatives. The group of starch derivatives includes, for example, alkali starches, carboxymethylstarch (CMS), starch esters and starch ethers, as well as amino starches.
- Pure cellulose has the empirical formula (C6H10O5)n. Considered formally, it is a β-1,4-polyacetal of cellobiose, which is itself made up of two molecules of glucose. Suitable celluloses consist of about 500 to 5,000 glucose units, and accordingly have average molecular weights of 50,000 to 500,000. In the context of the present invention, cellulose derivatives that can be obtained from cellulose by polymer-like reactions are usable as disintegrants based on cellulose. Such chemically modified celluloses include, for example, products of esterifications or etherifications in which hydroxyl hydrogen atoms are replaced. However, celluloses in which the hydroxyl groups are replaced by functional groups not bound through oxygen atoms can also be used as cellulose derivatives. The group of cellulose derivatives includes, for example, alkali celluloses, carboxymethylcellulose (CMS), cellulose esters and ethers, and amino celluloses.
- A further object of the present invention is a process for producing a fluid reservoir according to the invention, in which one brings a mixture of additives that are highly viscous or solid at T≦20° C., and fluids, to a liquid state by heating, mixes this flowable mixture with a porous polymer substrate, and then lets it cool.
- In this way the accessible pore system of the polymer substrate can be fully charged if necessary and the pores can also be sealed preferably by cooling after charging.
- A process for producing a fluid reservoir in which
- a) one or more common fluids at temperatures of 20 to 22° C. are mixed by stirring with additive(s) having a flow point in the range of 20° C. to 100 C and then
- b) the mixture is heated to temperatures in the range of the flow point of the additive, preferably above the flow range, so that a flowable mixture results, and then
- c) while retaining the elevated temperature, other optional additives, especially the usual additives for laundry detergents, advantageously selected from the group of zeolites, bentonites, silicates, phosphates, urea and/or its derivatives, sulfates, carbonates, citrates, citric acid, acetates and/or salts of anionic surfactants are suspended in the mixture, with the mixture still flowable, and then
- d) the flowable mixture is mixed with a porous polymer substrate at temperatures of 25° to 50° C., and finally
- e) the resulting mixture is allowed to cool
is a preferred embodiment of the invention. - If the polymer is preheated to a temperature of 25°-150° C. before it is mixed with the flowable mixture, that is a preferred embodiment.
- In a preferred embodiment the cooling of the mixture is accelerated by adding cold.
- According to a preferred embodiment of the invention it is also possible to suspend the ingredients of an inclusion mixture according to the invention, comprising odorants in particular, and the porous particulate polymer substrate and optionally other additives in liquid carbon dioxide (CO2), mixing them (further) there, and then removing the liquid carbon dioxide, by, for example, simply reducing the pressure in the system so that vaporization can occur. If the expansion of the carbon dioxide is intentionally slowed, particularly advantageous fluid reservoirs can be produced. It is advantageous to work with liquid carbon dioxide in a pressure range of 20 bar to 70 bar at 20° C. Carbon dioxide can likewise be used in other pressure ranges and temperature ranges as long as it is liquid under those conditions.
- Laundry detergents or cleaners containing fluid reservoirs according to the invention, and likewise a cosmetic containing fluid reservoirs according to the invention are an extremely preferred subject of the present invention.
- Use of the fluid reservoirs according to the invention, especially in the form of fragrance blocks and/or fragrance bags for odorizing rooms, vehicles, or closets is likewise a further preferred subject of the invention.
- Use of the fluid reservoirs according to the invention for odorizing objects, preferably laundry detergents, washing machines and cleaning machines, dry laundry and packages is likewise a further preferred subject of the invention.
- Use of the fluid reservoirs according to the invention for odorizing textiles during the washing or drying process, preferably done by machine, is likewise a further preferred subject of the invention.
- Use of the fluid reservoirs according to the invention for direct manual treatment of objects, preferably for rubbing on the objects, especially in manual washing of objects, is likewise a further preferred subject of the invention.
- For instance, fluid reservoirs that hold ingredients of manual dishwashing agents, selected, for example, from
- (a) surfactants, such as alkane sulfonates, alkyl ether sulfates, alkyl polyglucosides and/or cocoamidopropyl-betaine, advantageously those suitable for wetting the material being washed and the dirt, removal of grease and other contaminants,
- (b) (organic) acids, such as citric acid, advantageously suitable for adjusting the pH and for influencing drainage,
- (c) hydrotropes, such as cumene sulfonate, advantageously suited to avoid phase separation,
- (d) fat replacers, such as fatty acid amides, advantageously suitable for replacing skin fat,
- (e) care ingredients, such as Aloe vera extracts, advantageously suitable for skin care,
- (f) fragrances (perfume),
- (g) dyes
- (h) substances with antibacterial action, such as sodium benzoate or sodium salicylate, advantageously suitable for reducing the microbial load.
- (i) preservatives.
- For instance, fluid reservoirs may be preferred that contain ingredients of machine dishwashing agents, selected, for example, from the following:
- phosphates, such as pentasodium triphosphate, phosphonates, citrates, such as sodium citrate, sodium polycarboxylates, sodium metasilicate, soda, sodium bicarbonate, sodium disilicate, active chlorine, sodium perborate, bleach activator, such as TAED, enzymes, such as proteases and amylases, (low-foam) nonionic surfactants, silver and glass protection, odorants.
- For example, fluid reservoirs may be preferred which contain ingredients of textile detergents, for instance, selected from the following:
- anionic surfactants, such as preferably alkylbenzenesulfonate and/or alkyl sulfate, nonionic surfactants such as preferably fatty alcohol polyglycol ether, alkyl polyglucoside and/or fatty acid glucamide, builders, such as preferably zeolite, polycarboxylate and/or sodium citrate, alkalies, such as preferably sodium carbonate, alcohols such as preferably ethanol and/or glycerol, bleaching agents such as preferably sodium perborate and/or sodium percarbonate, corrosion inhibitors such as preferably sodium silicate, stabilizers, such as preferably phosphonates, foam inhibitors such as preferably soaps, silicone oils and/or paraffins, enzymes such as preferably proteases, amylases, cellulases, and/or lipases, antiredeposition agents such as preferably carboxymethylcellulose, discoloration inhibitors such as preferably polyvinylpyrrolidone derivatives, adjusting agents such as preferably sodium sulfate, odorants, optical brighteners, such as preferably stilbene derivatives and/or biphenyl derivatives, and water.
- For example, fluid reservoirs may be preferred which contain ingredients of all-purpose cleaners, selected, for instance, from the following:
- surfactants, such as alkane sulfonates, alkylbenzenesulfonates, alkyl polyglucosides, fatty alcohol polyglycol ether sulfates, fatty alcohol polyglycol ethers, builders such as trisodium citrate, the sodium salt of nitrilotriacetic acid, sodium phosphonate, pentasodium triphosphate, solvents and hydrotropes (solubilizers), such as ethanol, propylene glycol ether, sodium toluene or cumene sulfonate, odorants, colorants, or preservatives. Acidic all-purpose cleaners contain acids, such as preferably acetic acid, citric or maleic acid. All-purpose cleaners adjusted to be (weakly) alkaline contain alkalies, such as preferably sodium hydroxide or soda [sodium carbonate].
- Use of the fluid reservoir according to the invention as toilet blocks is likewise another preferred subject of the invention. A toilet block according to the invention, for hanging in the toilet bowl or flush tank, for instance, can release small amounts of acids, surfactant and/or fragrance and thus slow the deposition of contaminants.
- A further subject of the invention is a product such as preferably a household sponge, rag or towel, with which at least one surface of the product is filled with firmly attached fluid reservoirs. For example, it is advantageous to have a scouring sponge having its scouring side occupied by the fluid reservoirs. When used manually, fluid is released from the reservoir due to the mechanical stress, so that, if the fluid is perfume, a pleasant odor is produced.
- As was discussed previously, a fluid reservoir that contains at least one, preferably two or more substances typically contained in laundry detergents or cleaners is a preferred embodiment of the invention. Furthermore, a fluid reservoir according to the invention that contains a laundry detergent or cleaner is a highly preferred subject of the present invention. In the following, therefore, ingredients of laundry detergents or cleaning agents that can advantageously be contained in the fluid reservoir or which can be contained in a laundry detergent or cleaner that contains fluid reservoirs according to the invention are described in more detail.
- These ingredients include builders. Builders include, in particular, zeolites, silicates, carbonates, organic cobuilders and, if there are no ecological prejudices against their use, also the phosphates.
- The applicable finely crystalline synthetic zeolite that contains bound water is preferably Zeolite A and/or P. Zeolite MAP® (commercial product of the Crosfield company) is especially preferred as Zeolite P. However, Zeolite X is also usable, as are mixtures of A, X and/or P. A co-crystallizate of Zeolite X and Zeolite A (ca. 80% by weight Zeolite X) sold by CONDEA Augusta S. p. A as VEGOBOND AX® is commercially available and preferred for use in the context of the present invention. It can be described by the formula
-
nNa2O.(1-n)K2O.Al2O3.(2-2.5)SiO2.(3.5-5.5)H2O - The zeolite can also be as a powdering agent. Suitable zeolites have preferably have a mean particle size less than 10 μm (volume distribution; measuring method: Coulter Counter) and contain preferably 18 to 22% by weight, particularly 20 to 22% by weight bound water.
- Suitable crystalline lamellar sodium silicates have the general formula NaMSixO2x+1.H2O, in which means sodium or hydrogen, x is a number from 1.9 to 4 and y is a number from 0 to 20, and preferred values for x are 2, 3 or 4. Preferred crystalline lamellar silicates having the formula stated are those in which M stands for sodium and x takes on the value of 2 or 3. In particular, both β- and δ-sodium disilicate, Na2Si2O5.yH2O, are preferred.
- Crystalline lamellar silicates having the general formula NaMSixO2x+1.H2O, in which M represents sodium or hydrogen, x is a number from 1.9 to 22, preferably from 1.9 to 4, and y stands for a number from 0 to 33, can also be used particularly prererably. The crystalline lamellar silicates having the formula NaMSixO2x+1.yH2O are, for example, sold by Clarian GmbH (Germany) under the trade name Na-SKS. Examples of these silicates include Na-SKS-1 (Na2Si22O45.xH2O, kenyaite), Na-SKS-2 (Na2Si14O29.xH2O (magadite), Na-SKS-3 (Na2Si8O17.xH2O) or Na-SKS-4 (Na2Si4O9.xH2O, makatite).
- Crystalline lamellar silicates having the formula NaMSixO2x+1.yH2O, in which x stands for 2, are also particularly suitable. The particularly suitable ones of these are Na-SKS-5 (α-Na2Si2O5), Na-SKS-7 (β-Na2Si2O5, natrosilite), Na-SKS-9 (NaHSi2O5.H2O), Na-SKS-10 (NaHSi2O5.3H2O, kanemite), Na-SKS-11 (t-Na2Si2O5) and Na-SKS-13 (NaHSi2O5), but especially Na-SKS-6 (δ-Na2Si2O5).
- Amorphous sodium silicates having a Na2O:SiO2 ratio of 1:2 to 1:3.3, preferably 1:2 to 1:2.8 and particularly 1:2 to 1:2.6 which have delayed dissolution and exhibit secondary washing properties are also usable. The delay of dissolution compared with the usual sodium silicates can be accomplished in various ways, such as by surface treatment, compounding, compacting/compressing or by overdrying. In the context of this invention the term “amorphous” is understood to include “X-ray amorphous”. This means that the silicates do not give sharp X-ray reflections in X-ray diffraction experiments, such as are typical of crystalline substances. Instead, they always exhibit one or more maxima of the scattered X-radiation indicating a range of several degrees for the angle of diffraction. However, if the silicate articles give diffuse or even sharp diffraction maxima in electron diffraction experiments, that can lead to very good or even particularly good builder characteristics. That can be interpreted to mean that the products have microcrystalline regions of the magnitude of 10 to a few hundred nm, with values up to a maximum of 50 nm and particularly up to a maximum of 20 nm preferred. Such so-called X-ray amorphous silicates likewise exhibit delayed dissolution in comparison with the usual water glasses. Compressed/compacted amorphous silicates, compounded amorphous silicates and over-dried X-ray amorphous silicates are particularly preferred.
- In the context of the present invention it can be preferable for this/these silicate(s), preferably alkali silicates, especially preferably crystalline or amorphous alkali disilicates, to be contained in laundry detergents or cleaners in proportions of 10 to 60% by weight, preferably 15 to 50% by weight, and especially 20 to 40% by weight, based in each case on the weight of the laundry detergent or cleaner.
- Obviously it is also possible to use the generally known phosphates as builder substances, as long as it is not necessary to avoid such use for ecological reasons. That is particularly the case for use of agents according to the invention as washing agents for dishwashing machines. Among the multitude of commercially available phosphates, the alkali metal phosphates are the most important for the laundry detergent and cleaner industry, with particular preference for pentasodium or pentapotassium triphosphate (sodium or potassium tripolyphosphate).
- Alkali metal phosphate is the summary designation for the alkali metal (especially sodium and potassium) salts of the various phosphoric acids, in which one can distinguish metaphosphoric acids, (HPO3)n, and orthohosphoric acid, H3PO4, along with representatives of higher molecular weight. The phosphates combine several advantages: they act as alkali carriers, prevent lime deposition on machine parts or lime incrustations in cloth, and also contribute to the cleaning power.
- Examples of suitable phosphates are sodium dihydrogen phosphate, NaH2PO4, in the form of the dihydrate (density 1.91 g/cm3, melting point 60° C.) or in the form of the monohydrate (density 2.04 g/cm3); disodium hydrogen phosphate (secondary sodium phosphate), Na2HPO4, which can be used anhydrous or with 2 moles of H2O (density 2.066 g/cm3, water loss at 95° C.), 7 moles (density 1.68 g/cm3, melting point 48° C. with loss of 5H2O) and 12 moles of water (density 1.52 g/cm3, melting point 35° C. with loss of 5H2O), but particularly trisodium phosphate (tertiary sodium phosphate) Na3PO4, which can be used as the dodecahydrate, as the decahydrate (equivalent to 19-20% P2O5) or in the anhydrous form (equivalent to 39-40% P2O5).
- Tripotassium phosphate (tertiary or tribasic potassium phosphate), K3PO4, is another preferred phosphate. Tetrasodium diphosphate (sodium pyrophosphate), Na4P2O7 is also preferred. It exists in the anhydrous form (density 2.534 g/cm3, melting point 988°, also reported as 880°) and as the decahydrate (density 1.815-1.836 g/cm3, melting point 94° with loss of water). The corresponding potassium salt, potassium diphosphate (potassium pyrophosphate), K4P2O7 is also preferred.
- The industrially important pentasodium triphosphate, Na5P3O10, is a non-hygroscopic colorless water-soluble salt that is anhydrous or crystallizes with 6H2O. It has the general formula Na—[P(O)(ONa)—O]n—Na with n=3. The corresponding potassium salt, pentapotassium triphosphate (K5P3O10) (potassium tripolyphosphate) is commercially available as, for example, a 50% by weight solution (>23% P2O5, 25% K2O). The potassium polyphosphates are widely used in the detergent or cleaning agent industry. Sodium potassium tripolyphosphates also exist. They are likewise usable in the context of the present invention. They are produced, for example, if sodium trimetaphosphate is hydrolyzed with KOH:
-
(NaPO3)3+2KOH→Na3K2P3O10+H2O - They can be used according to the invention exactly like sodium tripolyphosphate, potassium tripolyphosphate or mixtures of them. Mixtures of sodium tripolyphosphate and sodium potassium tripolyphosphate, or mixtures of potassium tripolyphosphate and sodium potassium tripolyphosphate, or mixtures of sodium tripolyphosphate and potassium tripolyphosphate and sodium potassium tripolyphosphate are also usable according to the invention.
- If phosphates are used as washing or cleaning active substances in laundry detergents or cleaners in the context of the present invention, the preferred agents contain this/these phosphate(s), preferably alkali metal phosphates, especially preferably pentasodium or pentapotassium triphosphate (sodium or potassium tripolyphosphate) in proportions of 5 to 80% by weight, preferably 15 to 75% by weight, and especially 20 to 70% by weight, based in each case on the weight of the laundry detergent or cleaner.
- It is preferable to use potassium tripolyphosphate and sodium tripolyphosphate, in particular, in a weight ratio of more than 1:1, preferably more than 2:1, preferably more than 5:1, especially preferably more than 10:1 and particularly more than 20:1. It is particularly preferable to use potassium tripolyphosphate alone without admixtures of other phosphates.
- Alkali carriers are other builders. Alkali carriers include, for example, alkali metal hydroxides, alkali metal carbonates, alkali metal bicarbonates, alkali metal sesquicarbonates, the alkali silicate and alkali metasilicates mentioned, and mixtures of those substances. In the context of the present invention it is preferred to use the alkali carbonates, especially sodium carbonate, sodium bicarbonate, or sodium sesquicarbonate. A builder system comprising a mixture of tripolyphosphate and sodium carbonate is particularly preferred. A builder system comprising a mixture of tripolyphosphate and sodium carbonate and sodium disilicate is likewise particularly preferred.
- The alkali metal hydroxides are used in low proportions if at all because of their poor chemical compatibility with the other ingredients of laundry detergents and cleaners, in comparison with other builders. They are preferably used in proportions of less than 10% by weight, preferably less than 6% by weight, especially preferably below 4% by weight, and particularly below 2% by weight, based in each case on the total weight of the laundry detergent or cleaner. Agents that contain less than 0.5%, based on their total weight, and especially no alkali metal hydroxides, are particularly preferred,
- It can be especially preferable to use carbonate(s) and/or bicarbonate(s), preferably alkali carbonates, especially preferably sodium carbonate, in proportions of 2 to 50% by weight, preferably 5 to 40% by weight, and particularly 7.5 to 30% by weight, based in each case on the weight of the laundry detergent or cleaner. Agents that contain less than 20% by weight, preferably less than 17% by weight, preferably less than 13% by weight, and particularly less than 9% by weight, based in each case on the weight of the cleaner, of carbonate(s) and/or bicarbonate(s), preferably alkali carbonate(s), especially preferably sodium carbonate, can be particularly preferred.
- Polycarboxylates/polycarboxylic acids, polymeric polycarboxylates, aspartic acid, polyacetals, dextrins, other organic cobuilders (see below) and phosphonates must be mentioned as organic cobuilders. These classes of materials are described in the following.
- Examples of usable organic builders are the polycarboxylic acids, which can be used as their sodium salts. Here ‘polycarboxylic acids’ means those carboxylic acids that bear more than one acid function. Examples of those include citric acid, adipic acid, succinic acid, glutaric acid, malic acid, tartaric acid, maleic acid, fumaric acid, sugar acids, aminocarboxylic acids, and nitrilotriacetic acid (NTA) as long as their use in not objectionable for ecologic reasons, and mixtures of them. Preferred salts are the salts of the polycarboxylic acids such as citric acid, adipic acid, succinic acid, glutaric acid, tartaric acid, sugar acids, and mixtures of those.
- The acids can also be used as such. The acids, aside from their builder action, typically also have the property of an acidifying component and so also serve to adjust a lower and milder pH of the laundry detergent or cleaner. In particular, citric acid, succinic acid, glutaric acid, adipic acid, gluconic acid, and arbitrary mixtures of them must be named.
- Polymeric polycarboxylates are further suitable as builders. They include, for example, the alkali metal salts of polyacrylic acid or polymethacrylic acid, for instance, those with relative molecular weights of 500 to 70,000 g/mol.
- The molecular weights stated for polymeric polycarboxylates are, in the sense of this document, weight-average molecular weights, Mw, of the particular acid form. They are basically determined by means of gel permeation chromatography (GPC) using a UV detector. The measurement is made versus an external polyacrylic acid standard, which gives realistic molecular weights because of its structural relation with the polymers being examined. These figures clearly diverge from the molecular weight data found when polystyrenesulfonic acids are used as standards. The molecular weights measured with polystyrenesulfonic acids are generally distinctly higher than those reported in this document.
- Polyacrylates preferably having molecular weights of 2,000 to 20,000 are especially suitable polymers. Again, the short-chain polyacrylates of this group, having molecular weights of 2,000 to 10,000 are preferred, and those with molecular weights of 3,000 to 5,000 are particularly preferred of this group because of their superior solubility.
- Copolymeric polycarboxylates are further suitable, especially those that are copolymers of acrylic acid with methacrylic acid and of acrylic acid or methacrylic acid with maleic acid. The copolymers of acrylic acid with maleic acid that contain 50 to 90% by weight acrylic acid and 50 to 10% by weight maleic acid have proven particularly suitable. Their relative molecular weights, based on the free acids, are generally 2,000 to 70,000 g/mol, preferably 20,000 to 50,000 g/mol, preferably 20,000 to 50,000 g/mol, and particularly 30,000 to 40,000 g/mol:
- The (co)polymeric polycarboxylates can be used either as the powder or as the aqueous solution. Laundry detergents or cleaners contain preferably 0.5 to 20% by weight optionally (co)polymeric polycarboxylates, and especially 3 to 10% by weight.
- The polymers can also contain allylsulfonic acids, such as allyloxybenzensulfonic acid and methallylsulfonic acid as monomers to improve the water solubility.
- Biodegradable polymers made up of more than two different monomer units are particularly preferred, such as those that contain as monomers salts of acrylic acid and maleic acid as well as vinyl alcohol or vinyl alcohol derivatives, or which contain as monomers salts of acrylic acid and 2-alkylallylsulfonic acid as well as sugar derivatives.
- Other preferred copolymers are those that contain as monomers preferably acrolein and acrylic acid/acrylic acid salts or acrolein and vinyl acetate.
- Likewise, polymeric aminodicarboxylic acids, their salts, or their precursors must be mentioned as other preferred builder substances. Polyaspartic acids or their salts are especially preferred.
- Polyacetals, which can be obtained by reaction of dialdehydes with polyol carboxylic acids having 5 to 7 C atoms and at least 3 hydroxyl groups are other suitable builder substances. Preferred polyacetals are obtained from dialdehydes such as glyoxylate, glutaraldehyde and terephthaldehyde or mixtures of them and from polyol carboxylic acids such as gluconic acid and/or gluconoheptanoic acid.
- Dextrins, such as oligomers or polymers of carbohydrates, which can be obtained by partial hydrolysis of starches, are other suitable organic builder substances. The hydrolysis can be done by the usual processes, such as acid-catalyzed or enzyme-catalyzed processes. They are preferably hydrolysis products with mean molecular weights in the range of 400 to 500,000 g/mol. A polysaccharide having a dextrose equivalent (DE) in the range of 0.5 to 40, and especially 2 to 30, is preferred. DE is a useful measure of the reducing action of a polysaccharide in comparison with dextrose, which has a DE of 100.
- Both maltodextrins with a DE between 3 and 20, and dry glucose syrups with DEs between 20 and 37 are usable, as are the so-called yellow dextrins and white dextrins with higher molecular weights in the range of 2,000 to 30,000 g/mol.
- The oxidized derivatives of such dextrins are products of their reaction with oxidizing agents which are able to oxidize at least one alcohol function of the saccharide ring to the carboxylic acid function.
- Oxydisuccinates and other derivatives of disuccinates, preferably ethylenediamine disuccinate are other suitable cobuilders. It is preferable to use ethylenediamine-N,N′-disuccinate (EDDS) in the form of its sodium or magnesium salt. Glycerol disuccinate and glycerol trisuccinate are also preferred in this respect. Suitable proportions for use in formulations containing zeolite and/or silicate can, for example, be 3 to 15% by weight.
- Examples of other usable organic cobuilders are acetylated hydroxycarboxylic acids or their salts, which can optionally be in the lactone form and which have at least 4 carbon atoms and at least one hydroxyl group as well as not more than two acid groups.
- Furthermore, all the compounds that can form complexes with alkaline earth cations can be used as builders.
- The group of surfactants includes the nonionic, anionic, cationic and amphoteric surfactants.
- All the nonionic surfactants known to those skilled in the art can be used as the nonionic surfactants. Low-foaming nonionic surfactants can be used as preferred nonionic surfactants, for instance. It is particularly preferable for the laundry detergent or cleaner to contain nonionic surfactants from the group of alkoxylated alcohols. It is preferable to use as nonionic surfactants alkoxylated, advantageously ethoxylated, particularly primary alcohols having preferably 8 to 18 C atoms and an average of 1 to 12 moles of ethylene oxide (EO) per mole of alcohol. The alcohol group can be linear or, preferably, methyl-branched in the 2 position, or it can contain a mixture of linear and methyl-branched groups, such as those that commonly occur in oxoalcohol groups. In particular, though, alcohol ethoxylates having linear groups of alcohols of natural origin having 12 to 18 C atoms, such as those from coco, palm, tallow, or oleyl alcohol, and an average of 2 to 8 moles of EO per mole of alcohol are preferred. The preferred ethoxylated alcohols include, for example, C12-14 alcohols with 3 EO or 4 EO, C9-11 alcohols having 7 EO, C13-15 alcohols having 3 EO, 5 EO, 7 EO or 8 EO, C12-15 alcohols having 3 EO, 5 EO or 7 EO, and mixtures of those, such as mixtures of C12-14 alcohols with 3 EO and C12-18 alcohol with 5 EO. The degrees of ethoxylation stated are statistical averages, which can be an integer or fraction for a particular product. Preferred alcohol ethoxylates exhibit a narrowed homolog distribution (narrow-range ethoxylates, NRE). In addition to these nonionic surfactants, fatty alcohols having more than 12 EO can also be used. Examples of those are tallow alcohols having 14 EO, 25 EO, 30 EO or 40 EO.
- One can also use alkyl glycosides of the general formula RO(G)x, in which R is a primary straight-chain or methyl-branched aliphatic group, especially one methyl-branched in the 2 position, having 8 to 22, preferably 12 to 18 C atoms, and G is the symbol for a glycose unit having 5 or 6 C atoms, preferably glucose. The degree of oligomerization, x, which indicates the distribution of monoglycosides and oligoglycosides, is an arbitrary number between 1 and 10. It is preferable for x to be 1.2 to 1.4.
- Another class of preferably usable nonionic surfactants that can be used either as the only nonionic surfactant or in combination with other nonionic surfactants, is that of the alkoxylated, preferably ethoxylated or ethoxylated and propoxylated fatty acid alkyl esters, preferably having 1 to 4 carbon atoms in the alky chains.
- Nonionic surfactants of the amine oxide type, such as N-cocoalkyl-N,N-dimethylamine oxide and N-tallowalkyl-N,N-dihydroxyethylamine oxide, and the fatty acid alkanolamides, can also be suitable. The proportion of these nonionic surfactants preferably does not exceed that of the ethoxylated fatty alcohols, and is particularly not more than half of that.
- Polyhydroxyfatty acid amides having the formula
- in which R stands for an aliphatic acyl group having 6 to 22 carbon atoms, R1 stands for hydrogen, or an alkyl or hydroxyalkyl group with 1 to 4 carbon atoms, and [Z] stands for a linear or branched polyhydroxyalkyl group with 3 to 10 carbon atoms and 3 to 10 hydroxyl groups are also preferred surfactants. The poyhydroxyfatty acid amides are known substances that can normally be obtained by reductive amination of a reducing sugar with ammonia, an alkylamine or an alkanolamine, then subsequent acylation with a fatty acid, a fatty acid alkyl ester or a fatty acid chloride.
- The group of polyhydroxyfatty acid amides also includes compounds of the formula
- in which the R stands for a linear or branched alkyl or alkenyl group having 7 to 12 carbon atoms, R1 stands for a linear, branched or cyclic alkyl group or an aryl group having 2 to 18 carbon atoms and R2 stands for a linear, branched or cyclic alkyl group or an aryl group or an oxyalkyl group having 1 to 8 carbon atoms, with C1-4-alkyl or phenyl groups preferred, and [Z] stands for a linear polyhydroxyalkyl group, the alkyl chain of which is substituted with at least two hydroxyl groups, or alkoxylated, preferably ethoxylated or propoxylated derivatives of these groups.
- [Z] is preferably obtained by reductive amination of a reducing sugar, such as glucose, fructose, maltose, lactose, galactose, mannose or xylose. The N-alkoxy- or N-aryloxy-substituted compounds can, for example, be converted into the desired polyhydroxy fatty acid amides by reaction with fatty acid methyl esters in the presence of an alkoxide as the catalyst.
- Surfactants containing one or more tallow alcohols having 20 to 30 EO in combination with a silicone antifoam can be used with particular preference.
- Nonionic surfactants of the group of the alkoxylated alcohols, particularly preferably from the group of mixed alkoxylated alcohols and especially from the group of EO-AO-0EO nonionic surfactants are likewise used with special preference.
- Nonionic surfactants having melting points above room temperature are particularly preferred. Nonionic surfactant(s) having (a) melting point(s) above 20° C., preferably above 25° C., especially preferably between 25 and 60° C., and particularly between 26.6 and 43.3° C. is/are particularly preferred.
- Low-foaming nonionic surfactants that can be solid or highly viscous at room temperature, having softening or melting points in the stated temperature range, are suitable nonionic surfactants. If nonionic surfactants that are highly viscous at room temperature are used, it is preferable for them to have a viscosity above 20 Pa·s, preferably above 35 Pa·s, and particularly above 40 Pa·s. Surfactants having a waxy consistency at room temperature are also preferred.
- Surfactants used preferably, that are solid are room temperature, are derived from the groups of alkoxylated nonionic surfactants, especially the ethoxylated primary alcohols and mixtures of these surfactants having more complex structure, such as polyoxypropylene/polyoxyethylene/polyoxypropylene ((PO/EO/PO) nonionic surfactants). Such ((PO/EO/PO) nonionic surfactants are further distinguished by good foam control.
- In a preferred embodiment of the present invention, the nonionic surfactant having a melting point above room temperature is an ethoxylated nonionic surfactant obtained from the reaction of a monohydroxyalkanol or alkylphenol having 6 to 20 C atoms with preferably at least 12 moles, especially preferably at least 15 moles, and particularly at least 20 moles of ethylene oxide per mole of alcohol or alkylphenol.
- A particularly preferred nonionic surfactant that is solid at room temperature is obtained from a straight-chain fatty alcohol having 16 to 20 carbon atoms (C16-20 alcohol), preferably a C18 alcohol, and at least 12 moles, preferably at least 15 moles, and especially at least 20 moles of ethylene oxide. Of these, the so-called “narrow range ethoxylates” (see above) are especially preferred.
- Ethoxylated nonionic surfactants obtained from C6-20 monohydroxyalkanols or C8-20 alkylphenols or C18-20 fatty alcohols and more than 12 moles, preferably more than 15 moles, and especially more than 20 moles of ethylene oxide per mole of alcohol are used with special preference.
- It is preferable for the nonionic surfactant that is solid at room temperature also to have propylene oxide units in the molecule. Preferably such PO units make up as much as 25% by weight, especially preferably up to 20% by weight, and particularly up to 15% by weight of the total molecular weight of the nonionic surfactant. Especially preferred nonionic surfactants are ethoxylated monohydroxyalkanols or alkylphenols that also have polyoxyethylene-polyoxypropylene block copolymer units. The alcohol or alkylphenol portion of such nonionic surfactant molecules preferably amounts to more than 30% by weight, especially preferably more than 50% by weight, and particularly more than 70% by weight of the total molecular weights of such nonionic surfactants. Preferred agents are distinguished by containing ethoxylated and propoxylated nonionic surfactants in which the propylene oxide units in the molecule amount to as much as 25% by weight, preferably 20% by weight, and particularly 15% by weight of the total molecular weight of the nonionic surfactant.
- Other nonionic surfactants that can be used with particular preference, having melting points above room temperature, contain 40 to 70% of a polyoxypropylene/polyoxyethylene/polyoxypropylene block polymer blend that contains 75% by weight of an inverse block copolymer of polyoxyethylene and polyoxypropylene with 17 moles of ethylene oxide and 44 moles of propylene oxide, and 25% % by weight of a block copolymer of polyoxyethylene and polyoxypropylene, initiated with trimethylolpropane and containing 24 moles of ethylene oxide and 99 moles of propylene oxide per mole of trimethylolpropane.
- Nonionic surfactants that can be used with special preference are, for example, obtainable from Olin Chemicals under the name Poly Tergene SLF-18.
- Surfactants having the formula
-
R1O[CH2CH(CH3)O]x[CH2CH2O]yCH2CH(OH)R2, - in which R1 stands for a linear or branched aliphatic hydrocarbon group having 4 to 18 carbon atoms, or mixtures of them, R2 stands for a linear or branched hydrocarbon group having 2 to 26 carbon atoms, or mixtures of them, and x stands for values between 0.5 and 1.5, and y stands for a value of at least 15, are other specially preferred nonionic surfactants.
- Other nonionic surfactants that can be used preferably are the end-group-capped poly(oxyalkylated) nonionic surfactants having the formula
-
R1O[CH2CH(R3)O]x[CH2]kCH(OH)[CH2]jOR2, - in which R1 and R2 stand for linear or branched, saturated or unsaturated aliphatic or aromatic hydrocarbon groups with 1 to 30 carbon atoms, R3 stands for H or a methyl, ethyl, n-propyl, isopropyl, n-butyl, 2-butyl, or 2-methyl-2-butyl group, x stands for values between 1 and 30, and k and j stand for values between 1 and 12, preferably between 1 and 5. If x≧2, each R3 on the preceding formula
-
R1O[CH2CH(R3)O]x[CH2]kCH(OH)[CH2]jOR2, - can be different. R1 and R2 are preferably linear or branched, saturated or unsaturated, aliphatic or aromatic hydrocarbon groups having 6 to 22 carbon atoms, with groups having 8 to 18 C atoms being especially preferred. H, —CH3 or —CH2CH3 are especially preferred for the group R3. Especially preferred values of x are in the range of 1 to 20, preferably 6 to 15.
- As described above, each R3 in the preceding formula can be different if x≧2. In this way, the alkylene oxide unit in the square brackets can be varied. For example, if x stands for 3, the group R3 can be selected to make up ethylene oxide (R3=H) or propylene oxide (R3=—CH3) units. They can follow each other in any sequence, such as (EO)(PO)(EO), (EO)(EO)(PO), (EO)(EO)(EO), (PO)(EO)(PO), (PO)(PO)(EO) and (PO)(PO)(PO). Here the value of x was selected to be 3, and can be larger, with the range of variation increasing with rising x values and, for example, a large number of (EO) groups combined with a small number of (PO) groups, or conversely.
- Particularly preferred end-group-capped poly(oxyalkylated) alcohols of the preceding formula have values of k=1 and j=1, so that the preceding formula simplifies to
-
R1O[CH2CH(R3)O]xCH2CH(OH)CH2OR2 - In the latter formula, R1, R2, and R3 are defined as above, and x stands for numbers from 1 to 30, preferably from 1 to 20 and particularly from 6 to 18. Surfactants in which the groups R1 and R2 have 9 to 14 C atoms, R3 stands for H and x has values of 6 to 15 are particularly referred.
- If one combines the latter statements, end-group-capped poly(oxyalkylated) nonionic surfactants having the formula
-
R1O[CH2CH(R3)O]x[CH2]kCH(OH)[CH2]jOR2, - in which R1 and R2 stand for linear or branched, saturated or unsaturated, aliphatic or aromatic hydrocarbon groups having 1 to 30 carbon atoms, R3 stands for H or for a methyl, ethyl, n-propyl, isopropyl, n-butyl, 2-butyl, or 2-methyl-2-butyl group, x stands for values between 1 and 30, and k and j stand for values between 1 and 12, preferably between 1 and 5 are preferred. Surfactants of the type
-
R1O[CH2CH(R3)O]xCH2CH(OH)CH2OR2, - in which x stands for numbers from 1 to 30, preferably from 1 to 20 and particularly from 6 to 18, are particularly preferred.
- Low-foaming nonionic surfactants having alternating ethylene oxide and alkylene oxide units have proven to be particularly preferred in the context of the present invention. Of these, again, surfactants with EO-AO-EO-AO blocks are preferred, with one to ten EO or AO groups in each block being joined together before a block from the other group follows. Here, nonionic surfactants having the general formula
- are preferred, with R1 standing for a straight or branched, saturated or singly or multiply unsaturated C6-24 alkyl or alkenyl group; each group R2 or R3, independently of each other, is selected from —CH3, —CH2—CH3, —CH2CH2—CH3, CH(CH3)2, and the indices w, x, y and z, independently of each other, stand for integers from 1 to 6.
- The preferred nonionic surfactants having the formula above can be produced from the corresponding alcohols, R1—OH and ethylene oxide or alkylene oxide. The group R1 in the formula above can vary, depending on the source of the alcohol. If natural sources are used, the group R1 has an even number of carbon atoms and is generally unbranched. The linear groups from alcohols of natural origin with 12 to 18 C atoms, such as from coconut, palm, tallow, or oleyl alcohol, are preferred. Examples of alcohols accessible from synthetic sources are the Guerbet alcohols or groups methyl-branched at the 2 position, or mixtures of linear and methyl-branched groups, such as usually occur in oxoalcohol groups. Independently of the manner of production of the alcohols used in the nonionic surfactants optionally contained in the agents, those nonionic surfactants are preferred in which R1 in the formula above stands for an alkyl group having 6 to 24, preferably 8 to 20, especially preferably 9 to 15 and particularly 9 to 11 carbon atoms.
- Butylene oxide, along with propylene oxide, is an alkylene oxide unit that can be contained in the preferred nonionic surfactants as an alternate to the ethylene oxide unit. However, even other alkylene oxides, in which R2 or R3, independently of each other, are selected from —CH2CH2CH3 or —CH(CH3)2 are suitable. Preferred nonionic surfactants are those of the formula above in which R2 or R3 stands for a group —CH3, w and x, independently of each other, stand for values of 3 or 4, and y and z, independently of each other, stand for values of 1 or 2.
- In summary, those nonionic surfactants are particularly preferred that have a C9-15-alkyl group with 1 to 4 ethylene oxide units, followed by 1 to 4 propylene oxide units, followed by 1 to 4 ethylene oxide units, followed by 1 to 4 propylene oxide units. Those surfactants have the required low viscosity in aqueous solution and can be used with special preference according to the invention.
- Other preferred nonionic surfactants are the end-group-capped poly(oxyalkylated) nonionic surfactants having the formula
-
R1O[CH2CH(R3)O]xR2, - in which R1 stands for linear or branched, saturated or unsaturated, aliphatic or aromatic hydrocarbon groups with 1 to 30 carbon atoms, R2 stands for linear or branched, saturated or unsaturated, aliphatic or aromatic hydrocarbon groups with 1 to 30 carbon atoms, preferably having betwen 1 and 5 hydroxyl groups and preferably further functionalized with an ether group, R3 stands for H or a methyl, ethyl, n-propyl, iso-propyl, n-butyl or 2-methyl-2-butyl group, and x stands for values between 1 and 40.
- In a particularly preferred embodiment of the present application, R3 in the general formula above stands for H. Of the resulting group of end-group-capped poly(oxyalkylated) nonionic surfactants of the formula
-
R1O[CH2CH2O]xR2 - those nonionic surfactants are particularly preferred in which R1 stands for a linear or branched, saturated or unsaturated, aliphatic or aromatic having 1 to 30 carbon atoms, preferably having 4 to 20 carbon atoms; R2 stands for linear or branched, saturated or unsaturated, aliphatic or aromatic hydrocarbon groups having 1 to 30-carbon atoms, preferably having between 1 and 5 hydroxyl groups, and x stands for values between 1 and 40.
- In particular, those end-group-capped poly(oxyalkylated) nonionic surfactants are preferred that, according to the formula
-
R1O[CH2CH2O]xCH2CH(OH)R2 - have, aside from a group R1, which stands for linear or branched, saturated or unsaturated, aliphatic or aromatic hydrocarbon groups with 1 to 30 carbon atoms, preferably with 4 to 20 carbon atoms, also have a linear or branched, saturated or unsaturated, aliphatic or aromatic hydrocarbon group R2 with 1 to 30 carbon atoms, which is adjacent to a monohydroxylated intermediate group —CH2CH(OH)—. In this formula, x stands for values between 1 and 90.
- Nonionic surfactants having the general formula
-
R1O[CH2CH2O]xCH2CH(OH)R2, - are especially preferred, in which there is, aside from a group R1, which stands for linear or branched, saturated or unsaturated, aliphatic or aromatic hydrocarbon groups with 1 to 30 carbon atoms, preferably with 4 to 22 carbon atoms, also a linear or branched, saturated or unsaturated, aliphatic or aromatic hydrocarbon group R2 with 1 to 30 carbon atoms, preferably 2 to 22 carbon atoms, which is adjacent to a monohydroxylated intermediate group —CH2CH(OH)— and in which x stands for values between 40 and 80, preferably for values between 40 and 60.
- The corresponding end-group-capped poly(oxyalkylated) nonionic surfactants having the formula above can be obtained, for instance, by reacting a terminal epoxide having the fomula R2CH(O)CH2 with an ethoxylated alcohol having the formula R1O[CH2CH2O]x-1CH2CH2OH.
- Especially preferred are those end-group-capped poly(oxyalkylated) nonionic surfactants having the formula
-
R1O[CH2CH2O]x[CH2CH(CH3)O]yCH2CH(OH)R2, - in which R1 and R2, independently of each other, stand for a linear or branched, saturated or singly or multiply unsaturated, hydrocarbon group having 2 to 26 carbon atoms, R3, independently of each other, is selected from —CH3, —CH2CH3, —CH2CH2—CH3, or —CH(CH3)2, but with —CH3 preferred, and x and y, independently of each other, stand for values between 1 and 32, with nonionic surfactants in which the values of x are from 15 to 32 and the values of y are 0.5 and 1.5 quite particularly preferred.
- Surfactants having the general formula
- in which R1 and R2, independently of each other, stand for a linear or branched, saturated or multiply unsaturated, hydrocarbon group having 2 to 26 carbon atoms, R3, independently of each other, is selected from —CH3, —CH2CH3, —CH2CH2—CH3, or CH(CH3)2, but with —CH3 preferred, and x and y independently of each other stand for values between 1 and 32, with nonionic surfactants having values of x of 15 to 32 and of y of 0.5 and 1.5 are quite particularly preferred.
- The carbon chain lengths stated, as well as the degrees of ethoxylation or alkoxylation for the preceding nonionic surfactants are statistical averages, which can be integers or fractions for a particular product. Because of the production process, commercial products of the formulas stated generally are not made up of individual representatives, but of mixtures, so that there can be fractional numbers for both the carbon chain lengths and for the degrees of ethoxylation or alkoxylation.
- Obviously, the nonionic surfactants named above can be used not only as individual substances but also as surfactant mixtures of two, three, four or more surfactants. Surfactant mixtures are not considered mixtures of nonionic surfactants which in their totality fall in one of the general formulas given above, but rather mixtures containing two, three, four or more nonionic surfactants that can be described by different ones of the general formulas presented above,
- As anionic surfactants, those of the sulfonate and sulfate type are used. The preferred surfactants of the sulfonate type are C9-13-alkylbenzene-sulfonates, olefin sulfonates, i.e., mixtures of alkene and hydroxyalkane sulfonates, and disulfonates, such as are obtained, for example, from C12-18-monoolefins with terminal or internal double bonding by sulfonation with gaseous sulfur trioxide and subsequent acidic or alkaline hydrolysis of the sulfonation products. Alkane sulfonates, obtained from C12-18-alkanes, for instance, by sulfochlorination or sulfoxidation with subsequent hydrolysis or neutralization, are also suitable. Esters of α-sulfofatty acids (ester sulfonates), such as the α-sulfonated methyl esters of hydrogenated coco, palm kernel or tallow fatty acids, are also suitable.
- Sulfonated fatty acid glycerol esters are other suitable anionic surfactants. Fatty acid glycerol esters are understood to be the mono, di and tri-esters, and mixtures of them, such as are obtained on production by esterification of a monoglycerol with 1 to 3 moles of fatty acid, or transesterification of triglycerides with 0.3 to 2 moles of glycerol. Preferred sulfonated fatty acid glycerol esters are sulfonation products of saturated fatty acids having 6 to 22 carbon atoms, such as caproic acid, caprylic acid, capric acid, myristic acid, lauric acid, palmitic acid, stearic acid or behenic acid.
- Preferred alk(en)yl sulfates are the alkali, and especially the sodium salts of the sulfuric acid hemiesters of the C12-C18 fatty alcohols, for example, of coco fatty alcohol, tallow fatty alcohol, lauryl, myristyl, cetyl or stearyl alcohol or of the C10-C20 oxoalcohols and the hemiesters of secondary alcohols having those chain lengths. Alk(en)yl sulfates of the specified chain lengths which comprise a synthetically produced straight chain petrochemically based alkyl group, which have degradative behavior similar to the adequate compounds based on fatty chemical raw materials are also preferred. The C12-C16-alkyl sulfates, C12-C15-alkyl sulfates, and C14-C15-alkyl sulfates are preferred from the viewpoint of detergent technology. 2,3-alkyl sulfates, which can be obtained from Shell Oil Company under the DAN® name are also suitable anionic surfactants.
- The sulfuric acid hemiesters of straight-chain or branched C7-21 alcohols ethoxylated with 1 to 6 moles of ethylene oxide are also suitable, such as 2-methyl branched C9-11-alcohols with an average of 3.5 moles of ethylene oxide (EO) or C12-18 fatty alcohols with 1 to 4 EO.
- The salts of the alkyl sulfosuccinic acids are other suitable anionic surfactants. They are also called sulfosuccinates or sulfosuccinic acid esters, and are hemiesters or diesters of sulfosuccinic acid with alcohols, preferably fatty alcohols and particularly ethoxylated fatty alcohols. Preferred sulfosuccinates comprise C8-18 fatty alcohol groups or mixtures of them. Particularly preferred sulfosuccinates comprise a fatty alcohol group derived from ethoxylated fatty alcohols which are themselves considered nonionic surfactants. Again, sulfosuccinates, the fatty alcohol groups of which are derived from ethoxylated fatty alcohols with limited homolog distribution are particularly preferred. Likewise, it is also possible to use alk(en)ylsuccinic acids with preferably 8 to 18 carbon atoms, or their salts, in the alk(en)yl chain.
- Soaps, in particular, can be considered as other anionic surfactants. Soaps of saturated fatty acids, such as the salts of lauric acid, myristic acid, palmitic acid, stearic acid, hydrogenated erucic acid and behenic acid, as well as soap mixtures derived particularly from natural fatty acids, such as coco, palm kernel or tallow fatty acids, are suitable.
- The anionic surfactants, including the soaps, can be in the form of their sodium, potassium or ammonium salts, as well as soluble salts of organic bases such as mono-, di- or tri-ethanolamine. The anionic surfactants are preferably in the form of their sodium or potassium salts, and particularly the sodium salts.
- The proportion of anionic surfactant in laundry detergents or cleaners can, for example, be in the range of 1-60% by weight, advantageously 5-40% by weight, and particularly 10-30% by weight.
- Cationic surfactants and/or amphoteric surfactants can also be used in place of the specified surfactants or in combination with them.
- Cationic compounds of the following formulas, for example, can be used as cationically active substances:
- in which each R1 group is selected, independently of each other, from C1-6-alkyl, alkenyl or hydroxyalkyl groups; each R2 group is selected, independently of each other, from C8-28-alkyl or alkenyl groups; R3=R1 or (CH2)n-T-R2; R4=R1 or R2 or (CH2)n-T-R2; T=—CH2—, —O—CO— or —CO—O—, and n is an integer from 0 to 5.
- The proportion of cationic and/or amphoteric surfactants can preferably be less than 10% by weight, preferably less than 5% by weight, quite particularly preferably less than 2% by weight and particularly less than 1% by weight. It can also be preferable that no cationic or amphoteric surfactants are contained.
- The group of polymers includes in particular the polymers with laundry detergent or cleaning action, such as the polymers that act as water softeners. In general, cationic, anionic and amphoteric polymers are usable along with nonionic polymers in laundry detergents or cleaners.
- “Cationic polymers” in the sense of the present invention are polymers bearing a positive charge in the polymer molecule. That can be accomplished, for example, by (alkyl)-ammonium groups or other positively charged groups in the polymer chain. Particularly preferred cationic polymers are derived from the groups of quaternized cellulose derivatives, polysiloxanes with quaternary groups, cationic guar derivatives, polymeric dimethyldiallylammonium salts, and their copolymers with esters and amides of acrylic acid and methacrylic acid, copolymers of vinylpyrrolidone with quaternized derivatives of dialkylamino-acrylate and -methacrylate, vinylpyrrolidone-methylimidazolinium chloride copolymers, quaternized polyvinyl alcohols or the polymers with INCI names Polyquaternium 2, Polyquaternium 7, Polyquaternium 18 and Polyquaternium 27.
- “Amphoteric polymers” in the sense of the present invention have also negatively charged groups or monomer units in the polymer chain, along with a positively charged group. These groups can, for example, be carboxylic acids, sulfonic acids, or phosphoric acids.
- Preferred laundry detergents or cleaning agents are characterized by comprising a polymer having monomer units with the formula R1R2C═CR3R4, in which each group R1, R2, R3, R4, is selected, independently of each other, from hydrogen, derivatized hydroxyl group, C1-30 linear or branched alkyl groups, aryl, aryl-substituted C1-30 linear or branched alkyl groups, polyalkoxylated alkyl groups, heteroatomic organic groups having at least one positive charge without charged nitrogen, at least one quaternized N atom or at least one amino group having a positive charge in the pH sub-range of 2 to 11, or salts of them, provided that at least one group R1, R2, R3, R4 is a heteroatomic organic group having at least one positive charge without charged nitrogen, at least one quaternized N atom or at least one amino group with a positive charge.
- In the context of the present invention, specially preferred cationic or amphoteric polymers contain as the monomer unit a compound having the general formula
- in which R1 and R4 independently of each other stand for H or for a linear or branched hydrocarbon group having 1 to 6 carbon atoms; R2 and R3, independently of each other, stand for an alkyl, hydroxylalkyl, or aminoalkyl group in which the alkyl group is linear or branched and has between 1 and 6 carbon atoms, and which is preferably a methyl group; x and y, independently of each other, stand for integers between 1 and 3. X− represents a counterion, preferably a counterion from the group of chloride, bromide, iodide, sulfate, bisulfate, methosulfate, lauryl sulfate, dodecylbenzenesulfonate, p-toluenesulfonate (tosylate), cumenesulfonate, xylenesulfonate, phosphate, citrate, formate, acetate or mixtures of them.
- Preferred R1 and R4 groups in the formula above are selected from —CH3, —CH2CH3, —CH2CH2CH3, —CH(CH3)—CH3, —CH2OH, —CH2CH2OH, —CH(OH)—CH3, CH2—CH2—CH2—OH, —CH2—CH(OH)—CH3, —CH(OH)—CH2—CH3 and —CH2—CH2—O)nH.
- Polymers having a cationic monomer unit of the general formula above in which R1 and R4 stand for H, R2 and R3 stand for methyl, and x and y are each 1 are quite specially preferred. The corresponding monomer unit having the formula
- is also known as DADMAC (diallyldimethylammonium chloride) if X=chloride.
- Other specially preferred cationic or amphoteric polymers comprise a monomer unit having the general formula
- in which the R1, R2, R3, R4, and R5, independently of each other, stand for a linear or branched saturated or unsaturated alkyl or hydroxyalkyl group having 1 to 6 carbon atoms, preferably for a linear or branched alkyl group selected from —CH3, —CH2CH3, —CH2CH2CH3, —CH(CH3)—CH3, —CH2OH, —CH2CH2OH, —CH(OH)—CH3, —CH2—CH2—CH2—OH, —CH2—CH(OH)—CH3, —CH(OH)—CH2—CH3 and —(CH2—CH2—O)nH and x stands for an integer between 1 and 6.
- In the context of the present invention, those polymers having a cationic monomer unit of the general formula above in which R1 stands for H and R2, R3, R4, and R5 stand for methyl, and x stands for 3, are quite specially preferred. The corresponding monomer units having the formula
- are also called MAPTAC (methylacrylamidopropyl-trimethylammonium chloride) if X−=chloride.
- Polymers that comprise as monomer units diallyldimethylammonium salts and/or acrylamidopropyltrimethylammonium salts are preferred according to the invention.
- The amphoteric polymers mentioned previously have not only cationic groups but also anionic groups or monomer units. Such anionic monomer units are derived, for instance, from the group of linear or branched saturated or unsaturated carboxylates, the linear or branched, saturated or unsaturated phosphonates, the linear or branched, saturated or unsaturated sulfates, or the linear or branched, saturated or unsaturated sulfonates. Preferred monomer units are acrylic acid, (meth)acrylic acid, dimethylacrylic acid, ethylacrylic acid, cyanoacrylic acid, vinylacetic acid, allylacetic acid, crotonic acid, maleic acid, fumaric acid, cinnamic acid and its derivatives, the allylsulfonic acids such as allyloxybenzenesulfonic acid and methallylsulfonic acids or the allylphosphonic acids.
- Preferred usable amphoteric polymers are derived from the groups of the alkylacrylamide/acrylic acid copolymers, the alkylacrylamide/methacrylic acid copolymers, the alkylacrylamide/methylmethacrylic acid copolymers, the alkylacrylamide/acrylic acid/alkyl-aminoalkyl(meth)acrylic acid copolymers, the alkylacrylamide/methacrylic acid/alkylamino(meth)acrylic acid copolymers, the alkylacrylamide/methylmethacrylic acid/alkylaminoalkyl(meth)acrylic acid copolymers, the acrylamide/alkylmethacrylate/alkylaminoethylmethacrylate/alkyl methacrylate copolymers and the copolymers of unsaturated carboxylic acids, cationically derivatized unsaturated carboxylic acids and optionally other ionic or nonionic polymers.
- Preferred usable zwitterionic polymers are derived from the group of acrylamidoalkyltrialkylammonium chloride/acrylic acid copolymers and their alkali and ammonium salts, the acrylamidoalkyltrialkylammonium chloride/methacrylic acid copolymers and their alkali and ammonium salts, and the methacryloylethylbetaine/methacrylate copolymers.
- Further preferred are amphoteric polymers that comprise, along with one or more anionic monomers, methacrylamido-trialkylammonium chloride and dimethyl(diallyl)ammonium chloride as cationic monomers.
- Specially preferred amphoteric polymers are derived from the group of methacrylamido-alkyl-trialkylammonium chloride/dimethyl(diallyl)ammonium chloride/acrylic acid copolymers, the methacrylamidoalkyltrialkylammonium chloride/dimethyl(diallyl)ammonium chloride/methacrylic acid copolymers and the methacrylamidoalkyltrialkylammonium chloride/dimethyl(diallyl)ammonium chloride/alkyl(meth)acrylic acid copolymers and their alkali and ammonium salts.
- Amphoteric polymers from the group of the methacrylamidopropyltrimethylammonium chloride/dimethyl(diallyl)ammonium chloride/acrylic acid copolymers, the methacrylamidopropyltrimethylammonium chloride/dimethyl(diallyl)ammonium chloride/acrylic acid copolymers and the methacrylamidopropyltrimethylammonium chloride/dimethyl(diallyl)ammonium chloride/alkyl(meth)acrylic acid copolymers and their alkali and ammonium salts are especially preferred.
- Laundry detergents or cleaners can comprise the previously named cationic and/or amphoteric polymers preferably in proportions between 0.01 and 10% by weight, based in each case on the total weight of the laundry detergent or cleaning agent. However, in the context of the present invention, those detergents or cleaning agents are preferred in which the proportion of cationic and/or amphoteric polymers is between 0.01 and 8% by weight, preferably between 0.01 and 6% by weight, preferably between 0.01 and 4% by weight, especially preferably between 0.01 and 2% by weight, and particularly between 0.01 and 1% by weight, based in each case on the total weight of the machine dish-washing agent. Preferred agents can also be entirely free of cationic and/or amphoteric polymers.
- Polymers that act as water softeners are, for example, the polymers that contain sulfonic acid groups. They can be used with special preference.
- Copolymers of unsaturated carboxylic acids, monomers containing sulfonic acid groups and optionally other ionic or nonionic monomers are specially preferred as polymers containing sulfonic acid groups.
- In the context of the present invention, unsaturated carboxylic acids of the formula
-
R1(R2)C═C(R3)COOH - are preferred, in which R1 to R3 are, independently of each other, a straight-chain or branched saturated alkyl group with 2 to 12 carbon atoms, a straight-chain or branched, singly or multiply unsaturated alkenyl group with 2 to 12 carbon atoms, an —NH2, —OH, or —COOH substituted alkyl or alkenyl group or or COOR4 in which R4 is a saturated or unsaturated, linear or branched hydrocarbon group with 1 to 12 carbon atoms.
- Of the unsaturated carboxylic acids that can be described by the preceding formula, acrylic acid (R1=R2=R3=H), methacrylic acid (R1=R2=H; R3=CH3) and/or maleic acid (R1=COOH; R2=R3=H) are preferred.
- Among the monomers containing sulfonic acid groups, those are preferred that have the formula
-
R5(R6)C═C(R7)—X—SO3H - in which R5 to R7, independently of each other, stand for —H, —CH3, a straight-chain or branched saturated alkyl group with 2 to 12 carbon atoms, a straight-chain or branched, singly or multiply unsaturated alkenyl group with 2 to 12 carbon atoms, an —NH2, —OH, or —COOH substituted alkyl or alkenyl group or or COOR4 in which R4 is a saturated or unsaturated, linear or branched hydrocarbon group with 1 to 12 carbon atoms and X stands for an optionally present spacer group selected from —CH2)n— with n=0 to 4, —COO—(CH2)k— with k=1 to 6, —C(O)—NH—C(CH3)2 and —C(O)—NH—CH(CH2CH3)—.
- Of these monomers, the preferred ones are those having the formulas
-
H2C═CH—X—SO3H -
H2C═C(CH3)—X—SO3H -
HO3S—X—(R8)C═C(R7)—X—SO3H - in which R6 and R7 independently of each other are selected from —H, —CH3, —CH2CH3, —CH2CH2—CH3, or —CH(CH3)2, and X stands for an optionally present spacer group selected from —(CH2)n— with n=0 to 4, —COO—(CH2)k— with k=1 to 6, —C(O)—NH—C(CH3)2 and —C(O)—NH—CH(CH2CH3)—.
- Particularly preferred monomers comprising sulfonic acid groups include 1-acrylamido-1-propanesulfonic acid, 2-acrylamido-2-propanesulfonic acid, 2-acrylamido-2-methyl-1-propanesulfonic acid, 2-methacrylamido-2-methyl-1-propanesulfonic acid, 3-methacrylamido-2-hydroxypropanesulfonic acid, allylsulfonic acid, methallylsulfonic acid, allyloxybenzenesulfonic acid, methallyloxybenzenesulfonic acid, 2-hydroxy-3-(2-propenyloxy)-propane-sulfonic acid, 2-methyl-2-propene-1-sulfonic acid, styrenesulfonic acid, vinylsulfonic acid, 3-sulfopropyl acrylate, 2-sulfopropyl methacrylate, sulfomethacrylamide, sulfomethyl methacrylamide and water-soluble salts of the acids named.
- Other ionic or nonionic monomers that can be considered include in particular ethylenically unsaturated compounds. The proportion of these other ionic or nonionic monomers in the polymers used is preferably less than 20% by weight, based on the polymer. Polymers to be used especially preferably consist solely of monomers of the formula R1(R2)C═C(R3)COOH and monomers of the formula R5(R6)═C(R7)—X—SO3H.
- In summary, copolymers of
- i) unsaturated carboxylic acids having the formula R1(R2)C═C(R3)COOH, in which the R1 to R3 independently of each other stand for —H, —CH3, a straight or branched saturated alkyl group with 2 to 12 carbon atoms, a straight or branched, singly or multiply unsaturated alkenyl group with 2 to 12 carbon atoms, or an —NH2, —OH, or —COOH substituted alkyl or alkenyl group as described above or or COOR4 in which R4 is a saturated or unsaturated, linear or branched hydrocarbon group with 1 to 12 carbon atoms,
- ii) monomers comprising sulfonic acid groups, having the formula
-
R5(R6)C═C(R7)—X—SO3H -
- in which the R5 to R7 independently of each other stand for —H, —CH3, a straight or branched saturated alkyl group having 2 to 12 carbon atoms, a straight or branched, singly or multiply unsaturated alkenyl group having 2 to 12 carbon atoms, an —NH2, —OH, or —COOH substituted alkyl or alkenyl group as defined above or or COOR4 in which R4 is a saturated or unsaturated, linear or branched hydrocarbon group with 1 to 12 carbon atoms and X stands for an optionally present spacer group selected from —(CH2)n— with n=0 to 4, —COO—(CH2)k— with k=1 to 6, —C(O)—NH—C(CH3)2— and —C(O)—NH—CH(CH2CH3)—
- iii) and optionally other ionic or nonionic monomers are particularly preferred.
- Other specially preferred copolymers comprise
- i) one or more unsaturated carboxylic acids from the group of acrylic acid, methacrylic acid, and maleic acid,
- ii) one or more monomers containing sulfonic acid groups, having the formulas
-
H2C═CH—X—SO3H -
H2C═C(CH3)—X—SO3H -
HO3S—X—(R6)C═C(R7)—X—SO3H -
- in which R6 and R7, independently of each other, are selected from —H, —CH3, —CH2CH3, —CH2CH2CH3, and —CH(CH3)2, and X stands for an optionally present spacer group selected from —(CH2)n— with n=0 to 4, —COO—(CH2)k— with k=1 to 6, —C(O)—NH—C(CH3)2— and C(O)—NH—CH(CH2CH3)—
- iii) optionally other ionic or nonionic monomers.
- The copolymers can comprise the monomers of groups i) and ii), and optionally iii), in varying proportions. All the representatives of group i) can be combined with all the representatives of group ii) and with all the representatives of group iii). Especially preferred polymers have certain structural units that will be described in the following.
- For instance, copolymers comprising structural units of the formula
-
—[CH2—CHCOOH]m—[CH2—CHC(O)—Y—SO3H]p— - are preferred, in which m and p each stand for a real integer between 1 and 2000, and Y stands for a spacer group selected from substituted or unsubstituted aliphatic, aromatic or substituted aromatic hydrocarbon groups with 1 to 24 carbon atoms, with the preferred spacer groups being those in which Y stands for —O—(CH2)n— with n=0 to 4, for —O—(C6H4)—, for —NH—C(CH3)2—, or —NH—CH(CH2CH3)—.
- These polymers are made by copolymerization of acrylic acid with an acrylic acid derivative comprising sulfonic acid groups. If one copolymerizes that sulfonic acid-comprising acrylic acid derivative with methacrylic acid, one gets a different polymer, the use of which is also preferred. The corresponding copolymers comprise structural units having the formula
-
—[CH2—C(CH3)COOH]m—[CH2—CHC(O)—Y—SO3H]p— - in which m and p each stand for a real integer between 1 and 2000 and Y stands for a spacer group that is selected from substituted or unsubstituted aliphatic, aromatic or substituted aromatic hydrocarbon groups with 1 to 24 carbon atoms, with the preferred spacer groups being those in which Y stands for —O—(CH2)n— with n=0 to 4, for —O—(C6H4)—, for —NH—C(CH3)2—, or —NH—CH(CH2CH3)—.
- Entirely analogously, acrylic acid and/or methacrylic acid can also be copolymerized with methacrylic acid derivatives that contain sulfonic acid groups, thus changing the structural units in the molecule. Thus one can get specially preferred copolymers having structural units of the formula
-
—[CH2—CHCOOH]m—[CH2—C(CH3)C(O)—Y—SO3H]p— - in which m and p each stand for a real integer between 1 and 2000 and Y stands for a spacer group that is selected from substituted or unsubstituted aliphatic, aromatic or substituted aromatic hydrocarbon groups with 1 to 24 carbon atoms, with the preferred spacer groups being those in which Y stands for —O—(CH2)n— with n=0 to 4, for —O—(C6H4)—, for —NH—C(CH3)2—, or —NH—CH(CH2CH3)—. Copolymers are also preferred that have structural units of the formula
-
—[CH2—C(CH3)COOH]m—[CH2—C(CH3)C(O)—Y—SO3H]p— - in which m and p each stand for a real integer between 1 and 2000 and Y stands for a spacer group that is selected from substituted or unsubstituted aliphatic, aromatic or substituted aromatic hydrocarbon groups with 1 to 24 carbon atoms, with the preferred spacer groups being those in which Y stands for —O—(CH2)n— with n=0 to 4, for —O—(C6H4)—, for —NH—C(CH3)2—, or —CH(CH2CH3)—.
- Instead of, or in addition to, acrylic acid and/or methacrylic acid, maleic acid can also be used as a particularly preferred monomer of group 1). In this way, one arrives at copolymers preferred according to the invention which comprise structural units having the formula
-
—[HOOCCH—CHCOOH]m—[CH2—CHC(O)—Y—SO3H]p— - in which m and p each stand for a real integer between 1 and 2000 and Y stands for a spacer group that is selected from substituted or unsubstituted aliphatic, aromatic or substituted aromatic hydrocarbon groups with 1 to 24 carbon atoms, with the preferred spacer groups being those in which Y stands for —O—(CH2)n— with n=0 to 4, for —O—(C6H4)—, for —NH—C(CH3)2—, or —NH—CH(CH2CH3)—. Copolymers are also preferred that have structural units of the formula
-
—[HOOCCH—CHCOOH]m—[CH2—C(CH3)C(O)O—Y—SO3H]p— - in which m and p each stand for a real integer between 1 and 2000 and Y stands for a spacer group that is selected from substituted or unsubstituted aliphatic, aromatic or substituted aromatic hydrocarbon groups with 1 to 24 carbon atoms, with the preferred spacer groups being those in which Y stands for —O—(CH2)n— with n=0 to 4, for —O—(C6H4)—, for —NH—C(CH3)2—, or —CH(CH2CH3)—.
- In summary, the copolymers preferred are those that comprise structural units having the formulas
-
—[CH2—CHCOOH]m—[CH2—CHC(O)—Y—SO3H]p— -
—[CH2—C(CH3)COOH]m—[CH2—CHC(O)—Y—SO3H]p— -
—[CH2—CHCOOH]m—[CH2—C(CH3)C(O)—Y—SO3H]p— -
—[CH2—C(CH3)COOH]m—[CH2—C(CH3)C(O)—Y—SO3H]p— -
—[HOOCCH—CHCOOH]m—[CH2—CHC(O)—Y—SO3H]p— -
—[HOOCCH—CHCOOH]m—[CH2—C(CH3)C(O)O—Y—SO3H]p— - in which m and p each stand for a real integer between 1 and 2000 and Y stands for a spacer group that is selected from substituted or unsubstituted aliphatic, aromatic or substituted aromatic hydrocarbon groups with 1 to 24 carbon atoms, with the preferred spacer groups being those in which Y stands for —O—(CH2)n— with n=0 to 4, for —O—(C6H4)—, for —NH—C(CH3)2—, or —NH—CH(CH2CH3)—.
- The sulfonic acid groups in the polymers can be partially or entirely in the neutralized form. That is, the acidic hydrogen atom of the sulfonic acid group can, in some or all the sulfonic acid groups, be replaced by metal ions, preferably metal ions and particularly sodium ions. Use of partially of entirely neutralized copolymers comprising sulfonic acid groups is preferred according to the invention.
- The monomer distribution of the copolymers preferably used according to the invention is preferably 5 to 95% by weight each of i) or ii) for copolymers that comprise only monomers of groups i) and ii); especially preferably 50 to 90% by weight monomer from group i) and 10 to 50% by weight of monomer from group ii), based on the polymer in each case.
- Of the terpolymers, those comprising 20 to 85% by weight monomer from group i), 10 to 60% by weight monomer from group ii) and 5 to 30% by weight from group iii) are especially preferred.
- The molecular weights of the sulfo-copolymers preferably used according to the invention can be varied to adapt the properties of the polymer to the desired application. Preferred laundry detergents or cleaners are characterized by the copolymers having molecular weights of 2,000 to 200,000 g/mole, preferably 4,000 to 25,000 g/mole, and particularly 5,000 to 15,000 g/mole.
- Bleaching agents are substances with washing or cleaning action that can be used with special preference. Of the compounds that produce H2O2 in water and act as bleaching agents. sodium percarbonate, sodium perborate tetrahydrate and sodium perborate monohydrate are particularly important. Examples of other usable bleaching agents include peroxypyrophosphate, citrate perhydrate, and peracid salts or peracids such as perbenzoate, peroxophthalate, diperazelaic acid, phthaliminoperacid or diperdodecanedioic acid that provide H2O2. It is also possible to use bleaching agents of the group of organic bleaching agents. Typical organic bleaching agents are the diacyl peroxides such as dibenzoyl peroxide. Other typical organic bleaching agents are the peroxy acids, of which the alkyl peroxyacids and aryl peroxyacids must be mentioned in particular as examples. Preferred representatives that can be used are (a) peroxybenzoic acid and its ring-substituted derivatives such as alkylperoxybenzoic acids, as well as peroxy-α-naphthoic acid and magnesium mono-perphthalate; (b) the aliphatic or substituted aliphatic peroxyacids, such as peroxylauric acid, peroxystearic acid, ε-phthalimidoperoxycapric acid, [phthaliminoperoxyhexanoic acid, (PAP)], o-carboxybenzamidoperoxycapric acid, N-nonenylamidoperadipic acid and N-nonenylamidopersuccinate, and (c) aliphatic and araliphatic peroxydicarboxcylic acids such as 1,12-diperoxycarboxylic acid, 1,9-diperoxyazelaic acid, diperoxysebacic acid, diperoxybrassylic acid, the diperoxyphthalic acids, 2-decyldiperoxybutan-1,4-dioic acid, and N,N-terephthaloyl-di(6-aminopercapric acid).
- Substances that release chlorine or bromine can also be used as bleaching agents. The suitable materials that release chlorine or bromine that can be considered include, for instance, heterocyclic N-bromamides and N-chloramides, such as trichloroisocyanuric acid, tribromoisocyanuric acid, dibromoisocyanuric acid and/or dichloroisocyanuric acid (DICA) and/or their salts with cations such as potassium and sodium. Hydantoin compounds, such as 1,3-dichloro-5,5-dimethylhydantoin are also suitable.
- Laundry detergents or cleaners that contain 1 to 35% by weight, preferably 2.5 to 30% by weight, especially preferably 3.5 to 30% by weight and particularly 5 to 15% by weight bleaching agent, preferably sodium percarbonate, are preferred according to the invention.
- The active oxygen content of the laundry detergent or cleaner is preferably between 0.4 and 10% by weight, especially preferably between 0.5 and 8% by weight, and particularly between 0.6 and 5% by weight, based in each case on the total weight of the laundry detergent or cleaner. Specially preferred agents have an active oxygen content greater than 0.3% by weight, preferably above 0.7% by weight, especially preferably above 0.8% by weight and particularly above 1.0% by weight.
- Bleach activators are used in laundry detergents or cleaners, for example, to get good bleaching action in washing at temperatures of 60° C. and below. Compounds that yield aliphatic peroxocarboxylic acids with preferably 1 to 10 C atoms, especially 2 to 4 C atoms and/or optionally substituted perbenzoic acid, under perhydrolysis conditions can be used as bleach activators. Substances bearing O-acyl and/or N-acyl groups of the specified number of C atoms and/or optionally substituted benzoyl groups are suitable. Multiply acylated alkylenediamines are preferred, especially tetraacetylethylenediamine (TAED), acylated triazine derivatives, especially 1,5-diacetyl-1,4-dioohexahydro-1,3,5-triazine (DADHT), acylated glycolurils, especially tetraacetylglycoluril (TAGU), N-acylimides, especially N-nonanoylsuccinimide (NOSI), acylated phenolsulfonates, especially n-nonanoyl- or iso-nonanoyl-oxybenzenesulfonate (n- or iso-NOBS), carboxylic acid anhydrides, especially phthalic anhydride, acylated multifunctional alcohols, especially triacetin, ethylene glycol diacetate, isopropenyl acetate, 2,5-diacetoxy-2,5-dihydrofuran.
- Other bleach activators used preferably in the context of the present invention are compounds from the group of cationic nitriles, especially cationic nitriles having the formula
- in which R1 stands for —H, —CH3, a C2-24-alkyl or alkenyl group, a substituted C2-24-alkyl or alkenyl group having at least one substituent from the group —Cl, —Br, OH, —NH2, —CN, an alkyl or alkenylaryl group with a C1-24-alkyl group and at least one other substituent on the aromatic ring, or for a substituted alkyl or alkenylaryl group having at least one other substituent on the aromatic ring, R2 and R3, independently of each other, are selected from —CH2—CN, —CH3, —CH2CH3, —CH2CH2CH3, —CH(CH3)—CH3, —CH2OH, —CH2—CH2—OH, —CH(OH)CH3, —CH2—CH2—CH2—OH, —CH2—CH(OH)—CH3, —CH(OH)—CH2CH3, —CH2CH2—O)nH with n=1, 2, 3, 4, 5 or 6, and X is an anion.
- A cationic nitrile having the formula
- is specially preferred in which R4, R5 and R6 independently of each other are selected from —CH3, —CH2CH3, —CH2CH2CH3, or —CH(CH3)_CH3, in which R4 can also be —H and X is an anion, and preferably R5=R6=—CH3, and especially R4=R5=R6=—CH3, and compounds of the formulas (CH3)3N(+)CH2—CNX−, (CH3CH2)3N(+)CH2—CNX−, (CH3CH2CH2)3 (+)CH2—CNX−, (CH3CH(CH3))3N(+)CH2—CNX−, or (HO—CH2—CH2)3N(+)CH2—CNX− are especially preferred, in which again, of the group of these substances, the cationic nitrile of the formula (CH3)3N(+)CH2—CNX−, in which X− stands for an anion selected from the group of chloride, bromide, iodide, bisulfate, methosulfate, toluenesulfonate (tosylate) or xylenesulfonate is especially preferred.
- Compounds which under perhydrolysis conditions yield aliphatic peroxocarboxylic acids with preferably 1 to 10 carbon atoms, especially 2 to 4 carbon atoms, and/or atoms, especially 2 to 4 carbon atoms, and/or optionally substituted perbenzoic acids, can also be used as bleach activators. Substances that bear O-acyl and/or N-acyl groups of the stated number of carbon atoms and/or optionally substituted benzoyl groups are suitable. The preferred compounds are multiply acylated alkylenediamines, especially tetraacetylethylenediamine (TAED), acylated triazine derivatives, especially 1,5-diacetyl-2,4-dioxohexahydro-1,3,5-triazine (DADHT), acylated glycourils, especially tetraacetylglycouril (TAGU), N-acyl imides, especially N-nonanoylsuccinimide (NOSI), acylated phenolsulfonates, especially n-nonanoyloxybenzenesulfonate or iso-nonanoyloxybenzenesulfonate (n- or iso-NOBS), carboxylic acid anhydrides, especially phthalic anhydride, acylated multifunctional alcohols, especially triacetin, ethylene glycol diacetate, 2,5-diacetoxy-2,5-dihydrofuran, N-methylmorpholinium-acetonitrile-methylsulfate (MMA) as well as acetylated sorbitol and mannitol or mixtures of them (SORMAN), acylated sugar derivatives, especially pentaacetyl glucose (PAG), pentaacetyl fructose, tetraacetyl xylose and octaacetyl lactose, as well as acetylated, optionally N-alkylated glucamines and gluconolactones, and/or N-acylated lactams, such as N-benzoyl caprolactam. Hydrophilically substituted acylacetals and acyllactams are likewise used preferably. Combinations of conventional bleach activators can also be used.
- To the extent that bleach activators other than the optional nitrilquats are to be used, it is preferable to use bleach activators from the group of multiply acylated alkylenediamines, especially tetraacetylethylenediamine (TAED), N-acyl imides, especially N-nonanoylsuccinimide (NOSI), acylated phenolsulfonates, especially n-nonanoyloxybenzenesulfonate or iso-nonanoyloxybenzenesulfonate (n- or iso-NOBS), N-methylmorpholinium-acetonitrile-methylsulfate (MMA), preferably in proportions of up to 10% by weight, especially 0.1% by weight up to 8% by weight, particularly 2 to 8% by weight and especially preferably 2 to 6% by weight, based in each case on the total weight of the laundry detergent or cleaner containing the bleach activator.
- So-called ‘bleach catalysts’ can also be used Instead of, or in addition to, the conventional bleach activators. These substances are transition metal salts or transition metal complexes such as Mn, Fe, Co, Ru or Mo salene complexes or carbonyl complexes that intensify bleaching. Complexes of Mn, Fe, Co, Ru, Mo, Ti, V and Cu with N-containing tripod ligands, and Co, Fe, Cu and Ru ammine complexes are also usable as bleach activators.
- Bleach-intensifying transition metal complexes, especially those having Mn, Fe, Co, Cu, Mo, V, Ti and/or Ru as the central atom, preferably selected from the group of manganese and/or cobalt salts and/or complexes, especially preferably the cobalt(ammine) complexes, the cobalt(acetato) complexes, the cobalt(carbonyl) complexes, and the chlorides of cobalt or of manganese, of manganese sulfate, can optionally be used in the usual proportions, preferably in a proportion up to 5% by weight, especially from 0.0025% by weight to 1% by weight and especially preferably from 0.01% by weight to 0.25% by weight, based in each case on the total weight of the laundry detergent or cleaner containing the bleach activator. In special cases, though, even more bleach activator can be used.
- Enzymes can be used to increase the washing or cleaning ability of laundry detergents or cleaners. Those include in particular proteases, amylases, lipases, hemicellulases, cellulases or oxidoreductases, and, preferably, mixtures of them. These enzymes are of natural origin in principle. Improved variants, based on the natural molecules, are available for use in laundry detergents and cleaners. They are preferably used appropriately. Laundry detergents or cleaners contain enzymes preferably in total proportions of 1·10−6 to 5% by weight, based on the active protein. The protein concentration can be determined with known methods, such as the BCA procedure or the biuret procedure.
- Of the proteases, those of the subtilisin type are preferred. Examples of those include the subtilisins BPN′ and Carlsberg, Protease PB92, subtilisins 147 and 309, the alkaline protease from Bacillus lentus, subtilisin DY and the subtilases, but not the enzymes thermitase, Proteinase K, and the proteases TW3 and TW7, which are no longer classified with the subtilisins in the narrower sense. Subtilisin Carlsberg, in the further-developed form, is available from Novozymes A/S, Bagsvrd, Denmark, under the trade name Alcalase®. Subtilisins 147 and 309 are offered as Esperase® or Savinase® by Novozymes. The variants listed under the designation BLAP® by Novozymes. The variants listed under the designation BLAP® are derived from the protease of Bacillus lentus DSM 5483.
- Examples of other usable proteases are those available under the trade names Durazym®, Relase®, Everlase®, Nafizym, Natalase®, Kannase® and Ovozymes® from Novozymes; those available under the trade names Purafect®, Purafect®, OxP and Properase from Genencor; those available under the trade name of Protosol® from Advanced Biochemical Ltd., Thane, India; those available under the trade name Wuxi® from Wuxi Snyder Bioproducts Ltd., China; those available under the trade names Proleather® and Protease P® from Amano Pharmaceuticals, Ltd., Nagoya, Japan; and those available under the trade name Proteinase K-16 from Kao Corp., Tokyo, Japan.
- Examples of amylases usable according to the invention include the α-amylases of Bacillus licheniformis, B. amyloliquefaciens or B. stearothermohilus, as well as the improvements on them for use in laundry detergents and cleaners. The enzyme from B. licheniformis is available from Novozymes as Termamyl®, and from Genencor as Purastar® ST. Further developments of these α-amylases are available from Novozymes as Duramyl® and Termamyl® ultra; from Genencor as Purastar® OxAm, and from Daiwa Seiko Inc., Tokyo, Japan, as Keistase®. The α-amylase from B. amyloliquefaciens is offered by Novozymes as BAN®, and variants derived from the α-amylase from B. stearothermophilus are offered as BSG® and Novamyl®, likewise from Novozymes.
- The α-amylase from Bacillus sp. A 7-7 (DSM 12368) and the cyclodextrin-glucanotransferase (CGTase) from B. agaradherens (DSM 9948) are also recommended for this purpose.
- The improvements of the α-amylase from Aspergillus niger and A. oryzae obtainable from Novozymes as Fungamyl® are also suitable. Amylase-LT® is another commercial product.
- Lipases or cutinases are also usable according to the invention, especially because of their triglyceride-hydrolyzing activities, but also to generate peracids in situ from suitable precursors. These include, for example, the lipases originally available from Humicola lanuginosa (Thermomyces lanuginosus), or further-developed lipases, especially those with the amino acid replacement D96L. They are marketed by Novozymes, for example, under the trade names Lipolase®, Lipolase® Ultra, LipoPrime®, Lipozyme® and Lipex®. Cutinases originally isolated from Fusarium solani pisi and Humicola insolens are also usable, for example. Similarly usable lipases are available from Amano under the names Lipase CE. Similarly usable lipases are available from Amano under the names Lipase CE®, Lipase P®, Lipase B®, or Lipase CES®, Lipase AKG®, Bacillus sp. Lipase®, Lipase AP®, Lipase M-AP® and Lipase AML®. The lipases or cutinases from Genencor are also usable, for example. Their starting enzymes were originally isolated from Pseudomonas mendocina and Fusarium solanii. Other important commercial products that must be mentioned are the preparations M1 Lipase® and Lipomax® originally marketed by Gist-Brocades and the enzymes marketed by Meito Sangyko KK, Japan, as Lipase MY-30®, Lipase OF® and Lipase PL®, as well as the Genencor product Lumafast®.
- Enzymes classified as hemicellulases can also be used. They include, for example, mannanases, xanthanlyases, pectinlyases (=pectinases), pectin esterases, pectate lyases, xyloglucanases (=Xylanases), pullulanases and β-glucanases. Suitable mannanases are available, for example, as Gamanase® and Pectinex AR® from Novozymes, as Rohapec® B1L from AB Enzymes and as Pyrolase® from Diversa Corp., San Diego, Calif., USA. The β-glucanase obtained from B. subtilis is available as Cereflo® from Novozymes.
- Oxidoreductases, such as oxidases, oxygenases, catalases, peroxidases such as halo-, chloro-, bromo-, ligno-, glucose- or manganese peroxidases, dioxygenases or laccases (phenol oxidases, polyphenol oxidases) can be used according to the invention to increase the bleaching action. Denilite® 1 and 2 from Novozymes must be mentioned as suitable commercial products. It is advantageous to add additional preferably organic, especially preferably aromatic compounds that interact with the enzymes to strengthen the activity of the oxidoreductases in question (enhancers) or to assure electron flow when the redox potentials of the oxidizing enzymes and the dirt are greatly different (mediators).
- The enzymes are, for example, either produced originally from microorganisms, such as those of the genera Bacillus, Streptomyces, Humicola or Pseudomonas, and/or are produced by suitable microorganisms by biotechnological processes that are themselves known, such as by transgenic expression hosts of the genera Bacillus or filamentous fungi.
- The enzymes under consideration are preferably purified by processes that are themselves established, for example, by precipitation, sedimentation, concentration, filtration of the liquid phases, microfiltration, ultrafiltration, action of chemicals, deodorization or suitable combinations of those steps.
- The enzymes can be used in any of the forms established at the state of the art. That includes, for instance, the solid preparations obtained by granulation, extrusion or lyophilization or, particularly for agents in liquid or gel forms, solutions of the enzyme, advantageously as concentrated as possible, low in water and/or mixed with stabilizers.
- Alternatively, the enzymes can be encapsulated for both the liquid and solid use forms, such as by spray drying or extrusion of the enzyme solution together with a preferably natural polymer or in the form of capsules, such as those in which the enzyme is enclosed as in a solidified gel or in those of the core-shell type in which the enzyme-containing core is coated with a protective layer that is impermeable to water, air and/or chemicals. Other additional active ingredients such as stabilizers, emulsifiers, pigments, bleaches or colorants can be applied in layered shells. Such capsules are applied by methods that are themselves known, such as by shaking or rolling granulation or in fluidized bed processes. Such granulations are advantageously low in dust and stable in storage because of the coating, for example, by application of polymeric film-formers.
- It is further possible to formulate two or more enzymes together so that a single granulation has multiple enzyme activities.
- A protein or an enzyme can be protected, particularly during storage, against damages such as inactivation, denaturation or decomposition due to physical influences, oxidation, or proteolytic hydrolysis. If the proteins and/or enzymes are obtained microbiologically, inhibition of proteolysis is especially preferred, particularly if the agent also contains proteases. Laundry detergents or cleaners can contain stabilizers for that purpose. Provision of such an agent is a preferred embodiment of the present invention.
- Reversible protease inhibitors are one group of stabilizers. Benzamidine hydrochloride, borax, boric acids, boronic acids, or their salts or esters are often used, including in particular derivatives having aromatic groups, such as ortho-substituted, meta-substituted and para-substituted phenylboronic acids or their salts or esters. Ovomucoid and leupeptin, among others, must be mentioned as peptidic protease inhibitors. Formation of fusion proteins from proteases and peptide inhibitors is another option.
- Other enzyme stabilizers include aminoalcohols such as mono-, di- and tri-ethanolamine and -propanolamine and mixtures of them, aliphatic carboxylic acids up to C12, such as succinic acid, other dicarboxylic acids or salts of the acids named. End-group-capped fatty acid amide alkoxylates are also suitable. Certain organic acids used as builders can also stabilize a contained enzyme.
- Lower aliphatic alcohols, but especially polyols such as glycerol, ethylene glycol, propylene glycol or sorbitol are other enzyme stabilizers that are often used. Calcium salts such as calcium acetate or calcium formate, and magnesium salts, are also used.
- Polyamide oligomers or polymeric compounds such as lignin, water-soluble vinyl copolymers or cellulose ethers, acrylic polymers and/or polyamides stabilize enzyme preparations against physical influences or pH fluctuations, among other things. Polymers containing polyamine-N-oxides act as enzyme stabilizers. The linear C8-C18 polyoxyalkylenes are other polymeric stabilizers. Alkyl polyglycosides can stabilize the enzymic components and can even increase their activity. Cross-linked nitrogenous compounds likewise act as enzyme stabilizers.
- Reducing agents and antioxidants increase the stability of the enzymes against oxidative decomposition. Sodium sulfite is a sulfur-containing reducing agent, for example.
- It is preferred to use combinations of stabilizers, for example, combinations of polyols, boric acid and/or borax, the combination of boric acid or borate, reducing salts and succinic acid or other dicarboxylic acids, or the combination of boric acid or borate with polyols or polyamino compounds and with reducing salts. The action of peptide-aldehyde stabilizers is increased by the combination with boric acid and/or boric acid derivatives and polyols, and is further increased by the additional use of divalent cations such as calcium ions.
- It is preferred to use one or more enzymes or enzyme preparations, preferably solid protease preparations and/or amylase preparations, in proportions of 0.1 to 5% by weight, preferably of 0.2 to 4.5% by weight, and particularly 0.4 to 4% by weight, based in each case on the total enzyme-containing agent.
- It is possible to incorporation disintegrants, so-called ‘tablet explosives’, in these agents to make the breakup of solids easier, so as to shorten the disintegration times. According to Römpp (9th Ed., Vol. 6, p. 4440) and Voigt, “Lehrbuch der pharmazeutischen Technologie” [“Textbook of pharmaceutical technology”] (6th Ed., 1987, pages 182-184), ‘tablet explosives’ or disintegration accelerators are understood to be additives that provide for rapid disintegration of tablets in water or in gastric fluid and for release of pharmaceuticals in absorbable form.
- These substances, which are called “explosive” agents because of their action, increase in volume on entry of water. On one hand, they increase their own volume (swelling). On the other hand, release of gases can produce a pressure that breaks the tablets into smaller particles. Carbonate/citric acid systems are disintegrants that have been known for a long time, and other organic acids can also be used. Examples of swelling disintegrants include synthetic polymers such as polyvinylpyrrolidone (PVP) or natural polymers or modified natural substances such as celluloses and starches and their derivatives, alginates, or casein derivatives.
- Disintegrants can be used preferably in proportions of 0.5 to 10% by weight, preferably 3 to 7% by weight, and particularly 4 to 6% by weight, based in each case on the total weight of the agent containing the disintegrant.
- Disintegrants based on cellulose are used as preferred disintegrants, so that preferred laundry detergents or cleaners contain such a cellulose-based disintegrant in proportions of 0.5 to 10% by weight, preferably 3 to 7% by weight, and particularly 4 to 6% by weight. Pure cellulose has the empirical composition (C6H10O5)n. Considered formally, it is a β-1,4-polyacetal of cellobiose which is itself made up of two molecules of glucose. Suitable celluloses comprise about 500 to 5000 glucose units, and accordingly have average molecular weights of 50,000 to 500,000. Cellulose-based disintegrants usable in the context of the present invention also include cellulose derivatives that can be obtained from cellulose by polymer-like reactions. Such chemically modified celluloses include, for example, products of esterifications or etherifications, in which hydroxyl hydrogen atoms are substituted. However, celluloses in which the hydroxy groups are replaced by functional groups not bound through an oxygen atom can also be used as cellulose derivatives. The group of cellulose derivatives includes, for example, alkali celluloses, carboxymethylcellulose (CMC), cellulose esters and ethers, and amino celluloses. The cellulose derivatives named are preferably not used alone as cellulose-based disintegrants, but in mixtures with cellulose. The proportion of cellulose derivatives in these mixtures is preferably less than 50% by weight, especially preferably less than 20% by weight, based on the cellulose-based disintegrant. It is particularly preferable to use, as cellulose-based disintegrants, pure cellulose that is free of cellulose derivatives.
- The cellulose used as a disintegrant additive is preferably not used in finely divided form, but converted into a coarser form before mixing into the premixes to be pressed, such as granulated or compacted. The particle sizes of such disintegrants are usually greater than 200 μm, preferably with at least 90% by weight between 300 and 1600 μm and particularly with at least 90% by weight between 400 and 1200 μm. The coarser cellulose-based disintegrants named above and described in more detail in the documents cited are used preferably in the context of the present invention. They are commercially available, for example, as Arbocel® TF-30-HG from the Rettenmaier company.
- Microcrystalline cellulose can be used as a further cellulose-based disintegrant or as an ingredient of those components. This microcrystalline cellulose is obtained by partial hydrolysis of cellulose under conditions such that only the amorphous regions of the cellulose (ca. 30% of the total cellulose) are attacked and completely dissolved while the crystalline regions (ca. 70%) remain undamaged. Subsequent disaggregation of the microfine cellulose resulting from the hydrolysis gives the microcrystalline celluloses, which have primary particle sizes of about 5 μm and which can, for instance, be compacted into granulations having an average particle size of 200 μm.
- Preferred disintegrants, preferably a disintegrant based on cellulose, preferably in a granular, cogranular or compacted form, can be contained in agents that contain disintegrants in proportions of 0.5 to 10% by weight, preferably 3 to 7% by weight, and particularly 4 to 6% by weight, based in each case on the total weight of the agent containing the disintegrant.
- Effervescent systems that evolve gases can also be preferred tablet disintegrants according to the invention. The effervescent gas-evolving systems can consist of a single substance that releases gas on contact with water. Of these compounds, magnesium peroxide in particular must be named. It releases oxygen on contact with water. Usually, though, the gas-evolving effervescent system itself comprises at least two components which react with each other, forming gas. Although many systems are conceivable and feasible, releasing, for example nitrogen, oxygen or hydrogen, the effervescent gas-evolving system used in detergents or cleaning agents is chosen from both economic and ecological viewpoints. Preferred effervescent systems comprise alkali metal carbonate and/or bicarbonate, and an acidifying agent that is suitable to release carbon dioxide from the alkali metal salts in aqueous solution.
- Of the alkali metal carbonates or bicarbonates, the sodium and potassium salts are definitely preferred over the other salts for reasons of cost. Obviously, it is not necessary to use the pure alkali metal carbonates or bicarbonates; rather, mixtures of different carbonates and bicarbonates can be preferred.
- As an optional effervescent system, it is preferable to use 2 to 20% by weight, preferably 3 to 15% by weight, and particularly 5 to 10% by weight of an alkali metal carbonate or bicarbonate, and 1 to 15, preferably 2 to 12% by weight, and particularly 3 to 10% by weight of an acidifying agent, based in each case on the total weight of the agent.
- For example, boric acid and alkali metal bisulfates, alkali metal dihydrogen phosphates and other inorganic salts can be used as acidifying agents that release carbon dioxide from the alkali salts in aqueous solution. To be sure, it is preferable to use organic acidifying agents, with citric acid a specially preferred acidifying agent. However, other solid mono-, oligo- and poly-carboxylic acids in particular can also be used. Of this group, again, tartaric acid, succinic acid, malonic acid, adipic acid, maleic acid, fumaric acid, oxalic acid and polyacrylic acid are preferred. Organic sulfonic acids such as amidosulfonic acid are also usable. Sokalan® DCS (BASF trademark), a mixture of succinic acid (up to 31% by weight), glutaric acid (up to 50% by weight) and adipic acid (up to 33% by weight) is commercially available and also preferably usable as an acidifying agent in the context of the present invention.
- The preferred acidifying agents in the effervescent system are from the group of organic di- tri- and oligo-carboxylic acids or mixtures of them.
- Preferred colorants, the selection of which presents no problem to those skilled in the art, have high storage stability and low sensitivity to the other ingredients of the agent or to light. They do not have any distinct substantivity for the substrates to be treated with the colorant-containing agent, such as textiles, glass, or ceramic or plastic tableware, so as not to stain them.
- In selection of the colorant, one must take into consideration the fact that the colorants, in the case of laundry detergents, must not have excessive affinity to textile surfaces, particularly to plastic fibers, while in the case of cleaners one must avoid excessive affinity to glass, ceramic or plastic tableware. At the same time, in selection of suitable colorants, one must consider that colorants have different degrees of stability to oxidation. In general, water-insoluble colorants are more stable to oxidation than are water-soluble colorants. The concentration of the colorants in laundry detergents or cleaners varies, depending on their solubility and on their sensitivity to oxidation. For colorants with good water solubility, such as the Basacid® Green mentioned above, or Sandolan® Blue, also mentioned above, one typically chooses colorant concentrations in the range of a few hundredths to thousandths of one percent by weight. For the pigment colorants, which are specially preferred because of their brilliance, but are less water-soluble, such as the Pigmosol® colorants mentioned above, the suitable concentration of the colorant in laundry detergents or cleaners is, on the other hand, typically a few thousandths to ten-thousandths of one percent by weight.
- Preferred colorants are those that can be oxidatively destroyed in the washing process, and mixtures of those with suitable blue colorants, the so-called bluing agents. It has proven advantageous to use colorants that are soluble in water or, at room temperature, in liquid organic substances. For instance, anionic colorants, such as anionic nitroso dyes are suitable. For instance, one possible colorant is Naphthol Green (Color Index (CI) Part 1: Acid Green 1; Part 2: 10020) which is available commercially for example, as Basacid® Green 970 from BASF, Ludwigshafen, or mixtures of it with suitable blue colorants. Other colorants used include Pigmosol® Blue 6900 (CI 74160), Pigmosol® Green 8730 (CI 74260), Basonyl® Red 545 FL (CI 45170), Sandolan® Rhodamin EB400 (CI 45100), Basacid® Yellow 094 (CI 47005), Sicovit® Patent Blue 85E 131 (CI 42051), Acid Blue 183 (CAS 12217-22-0, CI Acidblue 183), Pigment Blue 15 (CI 74160), Supranol® Blue GLW (CAS 12219-32-8), Nylosan® Yellow N-7GL SGR (CAS 61814-57-1, CI Acidyellow 218) and/or Sandolan® Blue (CI Acid Blue 12219-26-0).
- In addition to the preferably usable components described so far, the laundry detergents or cleaners can also contain other ingredients that further improve the application-technology and/or aesthetic properties of these agents. Preferred agents contain one or more substances from the groups of electrolytes, pH-adjusting substances, fluorescent substances, hydrotropes, foam inhibitors, silicone oils, antiredeposition agents, optical brighteners, graying inhibitors, agents to prevent shrinkage, antiwrinkle agents, color transfer inhibitors, antimicrobially active substances, germicides, fungicides, antioxidants, antistatic agents, ironing aids, phobing and impregnating agents, antiswselling and antislip agents, and UV absorbers.
- A large number of quite varied salts from the group of inorganic salts can be used as electrolytes. The alkali and alkaline earth metals are preferred cations, while the halides and sulfates are preferred anions. From the viewpoint of production technology, it is preferable to use NaCl or MgCl2 in the laundry detergents or cleaners.
- Use of pH-adjusting agents may be indicated to bring the pH of laundry detergents or cleaners to the desired range. All the well-known acids or bases can be used here as long as their use it not ruled out for applications technology or ecologic reasons, or for user protection. The proportion of this adjusting agent usually does not exceed 1% by weight of the total formulation.
- Soaps, oils, fats, paraffins or silicone oils can be considered as foam inhibitors. They can optionally be applied to carrier materials. For example, inorganic salts such as carbonates or sulfates, cellulose derivatives, silicates, or mixtures of those materials are suitable carriers. In the context of the present invention, preferred laundry detergents or cleaners contain paraffins, preferably unbranched paraffins (n-paraffins) and/or silicones, preferably linear polymeric silicones, structured as (R2SiO)x, and called silicone oils. These silicone oils are usually clear, colorless, neutral, odorless, hydrophobic liquids with molecular weights between 1,000 and 150,000, and viscosities between 10 and 1,000,000 mPa·s.
- Suitable antiredeposition agents, also called soil repellants, are, for example, nonionic cellulose ethers such as methylcellulose and methylhydroxypropyl-cellulose, with 15 to 30% by weight methoxyl groups and 1 to 15% by weight hydroxypropyl groups, based in each case on the nonionic cellulose ether, and the polymers of phthalic acid and/or terephthalic acid known at the state of the art, or their derivatives, especially polymers of ethylene terephthalate and/or polyethylene glycol terephthalate, or anionically and/or nonionically modified derivatives of them. Of these, the sulfonated derivatives of phthalic acid and terephthalic acid polymers are particularly preferred.
- Optical brighteners (so-called “white toners”) can be added to laundry detergents or cleaners to prevent graying and yellowing of the textiles treated. These substances adhere to the fibers and cause lightening and simulated bleaching by converting invisible ultraviolet radiation into longer-wave visible light, so that the ultraviolet light absorbed from sunlight is radiated off as a weak bluish fluorescence, which combines with the yellow tone of the grayed or yellowed laundry to give a pure white. Suitable compounds are derived, for example, from the substance classes of the 4,4′-diamino-2,2′-stilbenedisulfonic acids (flavonic acids), 4,4′-distyrylbiphenylenes, methylumbelliferone, coumarins, dihydroquinolines, 1,3-diarylpyrazolines, naphthalic acid imides, benzoxazole, benzisoxazol and benzimidazole systems, and pyrene derivatives with heterocyclic substituents.
- Antiredeposition agents have the function of keeping dirt removed from the fibers separated in the liquor, thus preventing readsorption of the dirt. Water-soluble colloids, most of them organic, are suitable for that. Examples include the water-soluble salts of polymeric carboxylic acids, glue, gelatins, salts of ethersulfonic acids of starch or cellulose, or salts of acidic sulfuric acid esters of cellulose or starch. Polyamides having water-soluble acidic groups are also suitable for this purpose. Soluble starch preparations, and starch products other than those named above, such as degraded starch, aldehyde starches, etc., can also be used. Polyvinylpyrrolidone is also usable. Cellulose ethers such as carboxymethylcellulose (sodium salt), methylcellulose, hydroxyalkyl cellulose and mixed ethers such as methyl hydroxyethyl cellulose, methyl hydroxypropyl cellulose, methyl carboxymethyl cellulose, and mixtures of them can also be used as antiredeposition agents.
- Synthetic anti-wrinkle agents can be used because textile surface structures, especially those of rayon, rayon staple fiber, cotton, and mixtures of them can tend to wrinkle because the individual fibers are sensitive to bending, kinking, pressing and crushing transverse to the fiber direction. They include, for example, synthetic products based on fatty acids, fatty acid esters, fatty acid amides, fatty acid alkylol ester, fatty acid alkylolamides or fatty alcohols, usually reacted with ethylene oxide, or products based on lecithin or modified phosphoric acid esters.
- Phobing and impregnating processes serve to provide the textiles with substances that prevent deposition of dirt or make it easier to wash out. Preferred phobing and impregnating agents include perfluorinated fatty acids, also in the form of their aluminum and zirconium salts, organic silicates, silicones, polyacrylic acid esters with perfluorinated alcohol components or with polymerizable compounds coupled to perfluorinated acyl or sulfonyl groups. Antistatic agents can also be contained. The dirt-repelling finish with phobing and impregnating agents is often classified as an easy-care finish. Penetration of the impregnating agent in the form of solutions or emulsions of the active substances concerned can be made easier by addition of wetting agents, which reduce the surface tension. Water-repellent finishing of textile goods, tents, surfaces, leather, etc, is another area of application of phobing and impregnating agents. In this case, in contrast to making something water-tight, the pores of the cloth are not closed, so that the material remains able to breathe (hydrophobizing). The hydrophobizing agents used for hydrophobizing coat textiles, leather, paper, wood, etc., with a very thin layer of hydrophobic groups, such as long alkyl chains or siloxane groups. Suitable hydrophobizing agents include, for example, paraffins, waxes, metal soaps, etc. with additions of aluminum or zirconium salts, quaternary ammonium compounds with long-chain alkyl groups, urea derivatives, fatty-acid-modified melamine resins, complex chromium salts, silicones, organotin compounds and glutardialdehyde as well as perfluorinated compounds. The hydrophobized materials do not feel greasy. Nevertheless, water droplets bead up on them, as they do on greased materials, without wetting them. Thus, silicone-impregnated textiles, for example, have a soft hand and repel water and dirt. Spots of ink, wine, fruit juices and the like are more easily removed.
- Antimicrobially active substances can be used against microorganisms. Here one distinguishes between bacteriostats, bactericides, fungistats, and fungicides on the basis of their antimicrobial spectrum and their mechanism of action. Examples of important substances of these groups include benzalkonium chloride, alkylarylsulfonates, halophenols and phenylmercuric acetate. Use of these compounds can also be avoided entirely.
- The laundry detergents or cleaners can contain antioxidants to prevent undesired changes to them or to the textiles treated due to the action of oxygen and other oxidative processes. This class of compounds includes, for example, substituted phenols, hydroquinones, pyrocatechols and aromatic amines as well as organic sulfides, polysulfides, dithiocarbamates, phosphites and phosphonates.
- Additional use of antistatic agents gives better comfort for the wearer. Antistatic agents increase the surface conductivity, allowing charges to leak off better. External antistatic agents are usually substances with at least one hydrophilic molecular ligand. They provide a more or less hygroscopic film on the surface. These antistatic agents, usually surface-active, can be classified as nitrogenous (amines, amides, quaternary ammonium compounds), phosphor-containing (phosphoric acid esters) and sulfur-containing (alkyl sulfonates, alkyl sulfates) antistatic agents. Lauryl (or stearyl) dimethylbenzylammonium chlorides are likewise suitable as antistatic agents for textiles or as additives to laundry agents, in which case a softening effect is also produced.
- Softening rinsers can be used for textile care and to improve the textile properties, such as a softer “hand” (softening) and reduced electrostatic charging (better wearer comfort). The active ingredients in softening rinsers are “esterquats”, quaternary ammonium compounds with two hydrophobic groups, such as distearyldimethylammonium chloride, but those are increasingly being replaced by quaternary ammonium compounds that have ester groups in their hydrophobic groups as intended cleavage sites for biodegradation.
- Such “esterquats” with better biodegradability are available, for instance, by esterifying mixtures of methyldiethanolamine and/or triethanolamine with fatty acids and then quaternizing the reaction products with alkylating agents in the known manner. Dimethylolethyleneurea is also a suitable finishing agent.
- Silicone derivatives can be used to improve ability to absorb water and rewettability of the treated textiles, and to make ironing of the treated textiles easier. These also improve the ability of laundry detergents or cleaners to rinse out, due their foam-inhibiting properties. Examples of preferred silicone derivatives include polydialkyl or alkylaryl siloxanes, in which the alkyl groups have one to five C atoms and are partially or completely fluorinated. Preferred silicones include polydimethylsiloxanes, which can optionally be derivatized and are then aminofunctional or quaternized, or have Si—OH, Si—H and/or Si—Cl bonds. Other preferred silicones include the polyalkeneoxide-modified polysiloxanes, i.e., polysiloxanes having polyethylene glycols, for instance, and the polyalkylene oxide-modified dimethylpolysiloxanes.
- Finally, UV absorbers can also be used according to the invention. They adsorb to the treated textiles and improve the light resistance of the fibers. Compounds that have these desired properties are, for example, the compounds that act by non-radiative deactivation and derivatives of benzophenone with substituents in the 2 and/or 4 position. Substituted benzotriazoles, acrylates phenyl-substituted in the 3 position (cinnamic acid derivatives), optionally with cyano groups in the 2 position, salicylates, organic nickel complexes and natural material such as umbelliferone and the body's own urocanic acid are also suitable.
- Because of their fiber-protecting action, protein hydrolyzates are other preferred active substances from the field of laundry detergents or cleaners in the context of the present invention. Protein hydrolyzates are mixtures of products obtained by acid, basic, or enzyme-catalyzed degradations of proteins. Protein hydrolyzates of both plant and animal origin can be used according to the invention. Examples of animal protein hydrolyzates include elastin, collagen, keratin, silk and milk protein hydrolyzates, which can also be in the form of salts. According to the invention, use of protein hydrolyzates of plant origin, such as soy, almond, rice, pea, potato and wheat protein hydrolyzate, is preferred. Even though it is preferable to use protein hydrolyzates as such, amino acid mixtures or individual amino acids such as arginine, lysine, histidine or pyroglutamic acid can optionally be used instead. It is likewise possible to use derivatives of the protein hydrolyzates, as in the form of their fatty acid condensation products.
- The non-aqueous solvents that can be used according to the invention include, in particular, the organic solvents, of which only the most important can be listed here: alcohols (methanol, ethanol, propanols, butanols, octanols, cyclohexanol), glycols (ethylene glycol, diethylene glycol), ethers and glycol ethers (diethyl ether, dibutyl ether, anisole, dioxane, tetrahydrofuran, mono, di, tri, polyethylene glycol ethers), ketones (acetone, butanone, cyclohexanone), esters (ethyl acetate, glycol esters), amides and other nitrogenous compounds (dimethylformamide, pyridine, N-methylpyrrolidone, acetonitrile), sulfur compounds (carbon disulfide, dimethylsulfoxide, sulfolan), nitro compounds (nitrobenzene), halohydrocarbons (dichloromethane, chloroform, tetrachloromethane, tri- and tetra-chloroethene, 1,2-dichloroethane, chlorofluorohydrocarbons), hydrocarbons (gasoline, petroleum ether, cyclohexane, methylcyclohexane, decalin, terpene solvents, benzene, toluene, xylenes). Alternatively, mixtures can for example be used instead of pure solvents, advantageously combining the solution properties of different solvents. One such solvent mixture that is especially preferred in the context of the present invention is, for instance, cleaner's naphtha, a mixture of different hydrocarbons suitable for chemical cleaning, preferably having more than 60% by weight of C12 to C14 hydrocarbons, especially preferably more than 80% by weight, and particularly more than 90% by weight, based in each case on the total weight of the mixture, preferably having a boiling point range of 81 to 110° C.
- Other than where otherwise indicated, or where required to distinguish over the prior art, all numbers expressing quantities of ingredients herein are to be understood as modified in all instances by the term “about”. As used herein, the words “may” and “may be” are to be interpreted in an open-ended, non-restrictive manner. At minimum, “may” and “may be” are to be interpreted as definitively including, but not limited to, the composition, structure, or act recited.
- As used herein, and in particular as used herein to define the elements of the claims that follow, the articles “a” and “an” are synonymous and used interchangeably with “at least one” or “one or more,” disclosing or encompassing both the singular and the plural, unless specifically defined herein otherwise. The conjunction “or” is used herein in both in the conjunctive and disjunctive sense, such that phrases or terms conjoined by “or” disclose or encompass each phrase or term alone as well as any combination so conjoined, unless specifically defined herein otherwise.
- The description of a group or class of materials as suitable or preferred for a given purpose in connection with the invention implies that mixtures of any two or more of the members of the group or class are equally suitable or preferred; description of constituents in chemical terms refers to the constituents at the time of addition to any combination specified in the description, and does not necessarily preclude chemical interactions among the constituents of a mixture once mixed. Steps in any method disclosed or claimed need not be performed in the order recited, except as otherwise specifically disclosed or claimed or as needed to render such methods operative.
- Changes in form and substitution of equivalents are contemplated as circumstances may suggest or render expedient. Although specific terms have been employed herein, such terms are intended in a descriptive sense and not for purposes of limitation.
- A porous polymer carrier of cross-linked polypropylene was put into a Lödige mixer, combined with a melt of PEG (polyethylene glycol) 4000 and a perfume oil at 80° C., and mixed. The mixture solidified after about 1-2 minutes.
- Resulting composition of the perfume reservoir:
-
cross-linked polypropylene 48% by weight PEG 4000 26% by weight Perfume oil 26% by weight
Claims (2)
1. A process for producing a fluid reservoir comprising a porous, particulate polymer substrate charged with an inclusion mixture, comprising the steps of heating an additive that is highly viscous or solid at ≦25° C. to bring the additive into a liquid state, combining the liquid additive with a fluid to form a flowable mixture, mixing the flowable mixture with a porous polymer substrate, and cooling said mixture of the porous polymer substrate and the flowable mixture.
2. The process of claim, wherein one or more fluids at temperatures of 20 to 22° C. are mixed with one or more additives having a melting point or flow point of 20° C. to 100° C., heating the mixture less formed to a temperature at or above the flow point or melting point of the additive or additives to form a flowable mixture, optionally adding other solid or liquid additives, mixing the resultant flowable mixture with a porous polymer substrate at a temperature of 25° C. to 150° C., and cooling the resultant mixture of substrate and flowable mixture.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/308,952 US20120077728A1 (en) | 2006-02-08 | 2011-12-01 | Fluid reservoir |
Applications Claiming Priority (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102006005988.3 | 2006-02-08 | ||
DE102006005988 | 2006-02-08 | ||
DE200610021553 DE102006021553A1 (en) | 2006-02-08 | 2006-05-08 | fluid reservoir |
DE102006021553.2 | 2006-05-08 | ||
PCT/EP2006/012096 WO2007090451A1 (en) | 2006-02-08 | 2006-12-15 | Fluid reservoir |
US12/188,628 US8093197B2 (en) | 2006-02-08 | 2008-08-08 | Fluid reservoir |
US13/308,952 US20120077728A1 (en) | 2006-02-08 | 2011-12-01 | Fluid reservoir |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/188,628 Division US8093197B2 (en) | 2006-02-08 | 2008-08-08 | Fluid reservoir |
Publications (1)
Publication Number | Publication Date |
---|---|
US20120077728A1 true US20120077728A1 (en) | 2012-03-29 |
Family
ID=37806078
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/188,628 Expired - Fee Related US8093197B2 (en) | 2006-02-08 | 2008-08-08 | Fluid reservoir |
US13/308,952 Abandoned US20120077728A1 (en) | 2006-02-08 | 2011-12-01 | Fluid reservoir |
US13/329,548 Expired - Fee Related US8349781B2 (en) | 2006-02-08 | 2011-12-19 | Fluid reservoir |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/188,628 Expired - Fee Related US8093197B2 (en) | 2006-02-08 | 2008-08-08 | Fluid reservoir |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/329,548 Expired - Fee Related US8349781B2 (en) | 2006-02-08 | 2011-12-19 | Fluid reservoir |
Country Status (6)
Country | Link |
---|---|
US (3) | US8093197B2 (en) |
EP (1) | EP1981936B1 (en) |
DE (1) | DE102006021553A1 (en) |
ES (1) | ES2405305T3 (en) |
PL (1) | PL1981936T3 (en) |
WO (1) | WO2007090451A1 (en) |
Families Citing this family (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8367596B2 (en) * | 2009-07-30 | 2013-02-05 | The Procter & Gamble Company | Laundry detergent compositions in the form of an article |
CN103037710B (en) | 2010-04-15 | 2016-08-10 | 卓莫赛尔公司 | For the compound of bitterness, compositions and method are reduced or eliminated |
CN102817208B (en) * | 2011-06-09 | 2017-03-01 | 塞罗斯有限公司 | Washing solid particle and its washing methods |
US9150818B2 (en) * | 2011-07-29 | 2015-10-06 | Purecap Laundry, Llc | Laundry cleaning product |
KR20140043502A (en) * | 2011-08-03 | 2014-04-09 | 에어 프로덕츠 앤드 케미칼스, 인코오포레이티드 | Ionic/ionogenic comb copolymer compositions and personal care products containing the same |
US8703205B2 (en) | 2011-08-04 | 2014-04-22 | Hasan Ali ALZAHRANI | Natural compositions and methods of promoting wound healing |
CN103998028B (en) | 2011-10-20 | 2017-12-08 | 卓莫赛尔公司 | For compound, composition and the method for bitter taste to be reduced or eliminated |
DE102014117395A1 (en) * | 2014-11-27 | 2016-06-02 | Vorwerk & Co. Interholding Gmbh | Porous, water-insoluble carrier material with surfactant coating and its use |
EP3317387A4 (en) | 2015-06-30 | 2019-05-01 | Ecolab USA Inc. | Metal silicate and organic deposit inhibitor/dispersant for thermal recovery operations of hydrocarbon fuels |
US10035949B2 (en) | 2015-08-18 | 2018-07-31 | Ecolab Usa Inc. | Fluoro-inorganics for well cleaning and rejuvenation |
EP3241889B1 (en) * | 2016-05-03 | 2019-03-20 | The Procter and Gamble Company | Cleaning composition |
US11273428B2 (en) | 2017-04-10 | 2022-03-15 | Iconic Ventures, Inc. | Vaporizable substance storage device |
US10413685B2 (en) | 2017-04-10 | 2019-09-17 | Iconic Ventures, Inc. | Vaporizer |
US10648115B2 (en) * | 2017-12-01 | 2020-05-12 | The Procter & Gamble Company | Process for treating an article of clothing utilizing water-soluble particles comprising an esterquat |
US10487293B2 (en) | 2017-12-01 | 2019-11-26 | The Procter & Gamble Company | Particulate laundry softening wash additive |
US10640731B2 (en) | 2017-12-01 | 2020-05-05 | The Procter & Gamble Company | Particulate laundry softening wash additive |
US10655084B2 (en) | 2017-12-01 | 2020-05-19 | The Procter & Gamble Company | Particulate laundry softening and freshening wash additive |
CA3096851A1 (en) * | 2018-04-10 | 2019-10-17 | Iconic Ventures, Inc. | Vaporizable substance storage device |
EP3663385A1 (en) | 2018-12-04 | 2020-06-10 | The Procter & Gamble Company | Particulate laundry softening wash additive |
EP3663384A1 (en) | 2018-12-04 | 2020-06-10 | The Procter & Gamble Company | Particulate laundry softening wash additive |
US11365378B1 (en) * | 2019-06-27 | 2022-06-21 | Esembly Inc. | Detergent for cloth diaper laundry |
US20230399585A1 (en) * | 2020-09-09 | 2023-12-14 | Conopco, Inc., D/B/A Unilever | Laundry spray composition |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4496467A (en) * | 1983-02-23 | 1985-01-29 | International Flavors & Fragrances Inc. | Insect repellent, pheremonal, animal repellent diagnostic and/or aroma augmenting or enhancing compositions and articles containing at least a major proportion of poly(epsilon caprolactone)homopolymers, and having imbedded therein one or more functional |
US4521541A (en) * | 1983-02-09 | 1985-06-04 | International Flavors & Fragrances Inc. | Process for forming functional fluid and solid-containing thermoplastic films, uses thereof and process for producing same |
US4842761A (en) * | 1988-03-23 | 1989-06-27 | International Flavors & Fragrances, Inc. | Compositions and methods for controlled release of fragrance-bearing substances |
US5496865A (en) * | 1993-12-08 | 1996-03-05 | Brugg Kabel Ag | Additive-charged porous carrier material |
US6362159B1 (en) * | 1999-10-04 | 2002-03-26 | Unilever Home & Personal Care Usa | Domestic care product |
JP2003026851A (en) * | 2001-07-13 | 2003-01-29 | Mitsui Chemicals Inc | Impregnated product, polyolefin composition containing the impregnated product and method for manufacturing the same, and molded product obtained from the composition |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60163808A (en) * | 1984-02-06 | 1985-08-26 | Kao Corp | Cosmetic |
JP2627642B2 (en) * | 1988-06-11 | 1997-07-09 | チッソ株式会社 | Powder cosmetics |
US5073365A (en) * | 1989-06-01 | 1991-12-17 | Advanced Polymer Systems | Clinical and personal care articles enhanced by lubricants and adjuvants |
DE4124701A1 (en) * | 1991-07-25 | 1993-01-28 | Henkel Kgaa | METHOD FOR THE PRODUCTION OF SOLID DETERGENT AND CLEANING AGENT WITH HIGH SHOCK WEIGHT AND IMPROVED SOLUTION SPEED |
GB9120951D0 (en) * | 1991-10-02 | 1991-11-13 | Unilever Plc | Perfume particles |
DE19757216A1 (en) * | 1997-12-22 | 1999-06-24 | Henkel Kgaa | Detergent particles |
DE19817964A1 (en) * | 1998-04-22 | 1999-10-28 | Henkel Kgaa | Production of encapsulated solid particles (especially nonionic surfactants) for use in detergents for hard surfaces or for machine or manual washing-up or dishwashing liquids |
DE19900490A1 (en) * | 1999-01-08 | 2000-07-13 | Cognis Deutschland Gmbh | Process for the production of loadable plastic foams |
US6790814B1 (en) * | 1999-12-03 | 2004-09-14 | Procter & Gamble Company | Delivery system having encapsulated porous carrier loaded with additives, particularly detergent additives such as perfumes |
US6531444B1 (en) * | 2000-11-09 | 2003-03-11 | Salvona, Llc | Controlled delivery system for fabric care products |
IL139910A (en) | 2000-11-26 | 2006-08-20 | Sakit Ltd | Plastic films containing a fragrance and an odor barrier material within and method for their production |
DE10105801B4 (en) * | 2001-02-07 | 2004-07-08 | Henkel Kgaa | Detergents and cleaning agents comprising fine microparticles with detergent components |
DE10163142A1 (en) | 2001-12-20 | 2003-07-10 | Henkel Kgaa | Polymeric fragrance capsules and their manufacture |
US20050031699A1 (en) * | 2003-06-26 | 2005-02-10 | L'oreal | Porous particles loaded with cosmetically or pharmaceutically active compounds |
DE102004050562A1 (en) * | 2004-10-15 | 2006-05-04 | Henkel Kgaa | Absorbable particles |
-
2006
- 2006-05-08 DE DE200610021553 patent/DE102006021553A1/en not_active Ceased
- 2006-12-15 ES ES06829646T patent/ES2405305T3/en active Active
- 2006-12-15 WO PCT/EP2006/012096 patent/WO2007090451A1/en active Application Filing
- 2006-12-15 EP EP06829646.6A patent/EP1981936B1/en not_active Not-in-force
- 2006-12-15 PL PL06829646T patent/PL1981936T3/en unknown
-
2008
- 2008-08-08 US US12/188,628 patent/US8093197B2/en not_active Expired - Fee Related
-
2011
- 2011-12-01 US US13/308,952 patent/US20120077728A1/en not_active Abandoned
- 2011-12-19 US US13/329,548 patent/US8349781B2/en not_active Expired - Fee Related
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4521541A (en) * | 1983-02-09 | 1985-06-04 | International Flavors & Fragrances Inc. | Process for forming functional fluid and solid-containing thermoplastic films, uses thereof and process for producing same |
US4496467A (en) * | 1983-02-23 | 1985-01-29 | International Flavors & Fragrances Inc. | Insect repellent, pheremonal, animal repellent diagnostic and/or aroma augmenting or enhancing compositions and articles containing at least a major proportion of poly(epsilon caprolactone)homopolymers, and having imbedded therein one or more functional |
US4842761A (en) * | 1988-03-23 | 1989-06-27 | International Flavors & Fragrances, Inc. | Compositions and methods for controlled release of fragrance-bearing substances |
US5496865A (en) * | 1993-12-08 | 1996-03-05 | Brugg Kabel Ag | Additive-charged porous carrier material |
US6362159B1 (en) * | 1999-10-04 | 2002-03-26 | Unilever Home & Personal Care Usa | Domestic care product |
JP2003026851A (en) * | 2001-07-13 | 2003-01-29 | Mitsui Chemicals Inc | Impregnated product, polyolefin composition containing the impregnated product and method for manufacturing the same, and molded product obtained from the composition |
Also Published As
Publication number | Publication date |
---|---|
DE102006021553A1 (en) | 2007-08-16 |
EP1981936B1 (en) | 2013-04-10 |
US8093197B2 (en) | 2012-01-10 |
PL1981936T3 (en) | 2013-09-30 |
US20120093902A1 (en) | 2012-04-19 |
US8349781B2 (en) | 2013-01-08 |
US20090035337A1 (en) | 2009-02-05 |
ES2405305T3 (en) | 2013-05-30 |
WO2007090451A1 (en) | 2007-08-16 |
EP1981936A1 (en) | 2008-10-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8349781B2 (en) | Fluid reservoir | |
US8497234B2 (en) | Solid textile care composition comprising a water-soluble polymer | |
US8518867B2 (en) | Solid textile and/or skin care composition | |
DE102007010109A1 (en) | Particle forming carrier partially coated with a fine particulate active agent carrier matrix, useful e.g. in detergent composition and in a procedure for the fumigation of textiles | |
CA2966951C (en) | Detergent and cleaning agents having improved performance | |
US9523064B2 (en) | Anti-greying detergent | |
US7491686B2 (en) | Detergent or cleaning agent | |
US20100022437A1 (en) | Liquid Support | |
US20170369824A1 (en) | Portioned washing or cleaning agent comprising microcapsules in the powder compartment | |
US20090093391A1 (en) | Liquid washing compositions and liquid cleaning compositions | |
US20070244025A1 (en) | Detergents or cleaning agents | |
US20090305938A1 (en) | Production of Amine Oxide Granulates and the Use Thereof | |
DE102006052662A1 (en) | Foam sponge with depot particles | |
US20090029055A1 (en) | Coated shaped detergent or cleaning agent body | |
US20070287653A1 (en) | Method for production of a dosed washing or cleaning agent | |
US20090029897A1 (en) | Detergent or Cleaning Agent | |
US20090183317A1 (en) | Detergent or Treatment Agent Portion | |
US20080045434A1 (en) | Detergents or cleaning agents | |
US7041632B2 (en) | Perfumed detergent shaped bodies | |
US20030166493A1 (en) | Shaped bodies with subsequent addition of surfactants | |
WO2007131529A1 (en) | Textile treatment agent | |
DE10260833B4 (en) | Process for the treatment of detergents or cleaners | |
DE102004003430A1 (en) | Processing of solid laundry or other detergents containing bleach, useful for recycling e.g. unsaleable material resulting from faulty in manufacture, involves mixing with water, heating mixture to decompose bleach and drying |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: HENKEL AG & CO. KGAA, GERMANY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BAUER, ANDREAS;REEL/FRAME:027790/0498 Effective date: 20120215 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |