US20120061063A1 - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
US20120061063A1
US20120061063A1 US12/917,437 US91743710A US2012061063A1 US 20120061063 A1 US20120061063 A1 US 20120061063A1 US 91743710 A US91743710 A US 91743710A US 2012061063 A1 US2012061063 A1 US 2012061063A1
Authority
US
United States
Prior art keywords
flowing path
heat exchanger
spiral flowing
flow
exchanger according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/917,437
Inventor
Numen Luo
Li-Dong Zhang
Wess Juan
Shyy-Woei Chang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asia Vital Components Co Ltd
Original Assignee
Asia Vital Components Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asia Vital Components Co Ltd filed Critical Asia Vital Components Co Ltd
Assigned to ASIA VITAL COMPONENTS CO., LTD. reassignment ASIA VITAL COMPONENTS CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CHANG, SHYY-WOEI, MR., JUAN, WESS, MR., LUO, NUMEN, MR., ZHANG, LI-DONG, MR.
Publication of US20120061063A1 publication Critical patent/US20120061063A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/12Elements constructed in the shape of a hollow panel, e.g. with channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/06Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
    • F28F13/12Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media by creating turbulence, e.g. by stirring, by increasing the force of circulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/46Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
    • H01L23/473Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing liquids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/04Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being spirally coiled
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • FIG. 6 is a cross-sectional view showing the heat exchanger according to a third embodiment of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

A heat exchanger includes a body. Both sides of the body are provided with a first flowing path set and a second flowing path set. The first flowing path set and the second flowing path set are provided with a plurality of flow-disturbing portions on both sides of the body respectively. The body is provided with an inlet and an outlet in communication with the first flowing path set and the second flowing path set. A working fluid circulates in the first flowing path set and the second flowing path set. The flow-disturbing portions make the working fluid to generate separated eddies to increase the strength of turbulent flow and to improve the heat-conducting efficiency of the heat exchanger greatly.

Description

  • This application claims the priority benefit of Taiwan patent application number 099130454 filed on Sep. 9, 2010.
  • BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • The present invention relates to a heat exchanger, and in particular to a heat exchanger with an improved heat-conducting efficiency.
  • 2. Description of Prior Art
  • With the advancement of electronic technology, electronic apparatuses such as notebook computers, communication casings or the like have been widely used in our daily life. However, electronic elements provided in the electronic apparatus generate waste heat during its operation, and such waste heat generated by the electronic elements will be accumulated in the electronic apparatus, which raises the temperature of the electronic elements and makes the over-heated electronic elements to suffer damage or deteriorate its operating efficiency.
  • Conventionally, a heat-dissipating fan is mounted in the electronic apparatus so as to dissipate the above-mentioned waste heat. However, the amount of airflow generated by the heat-dissipating fan is insufficient so that its heat-dissipating effect is not good enough. Thus, another solution is proposed, in which a liquid cooling device is directly adhered to a heat-generating element such as a central processing unit, a micro processing unit, a south bridge chip, a north bridge chip or other electronic elements. A working fluid is introduced by a pump from a reservoir into the liquid cooling device, so that the heat generated by the heat-generating element can be exchanged with the working fluid. Then, the working fluid having absorbed the heat flows from an outlet of the liquid cooling device to a heat-dissipating module. After the working fluid releases the absorbed heat to the heat-dissipating module, the working fluid is cooled and delivered back to the reservoir. The circulation of the working fluid facilitates the heat dissipation of the electronic element, thereby reducing the temperature of the heat-generating element and maintaining its normal operation.
  • Although the liquid cooling device achieves a better heat-dissipating effect than the conventional heat-dissipating fan, the liquid cooling device still has another problem. That is, one surface (i.e., the heat-absorbing surface) of the liquid cooling device is adhered to the heat-generating element, so that only a lower layer of the working fluid is effective to heat-exchange with the heat-absorbing surface. Thus, the middle and upper layers of the liquid are ineffective. Further, the time for the working fluid staying in the liquid cooling device is so short that the working fluid does not absorb enough amount of the heat but has to flow toward the heat-dissipating module immediately. As a result, the liquid cooling device cannot exhibit an excellent liquid-cooling efficiency, which also deteriorates its heat-conducting effect and heat-dissipating effect.
  • Furthermore, the flowing paths within the conventional liquid cooling device are arranged in single direction, so that the time for the working fluid staying in the flowing paths is shorter, which makes the working fluid unable to take away sufficient amount of heat. Thus, the heat-exchanging efficiency and the heat-conducting effect of the liquid cooling device are insufficient, and the heat-dissipating effect thereof is also bad.
  • According to the above, the conventional liquid cooling device has the following problems: (1) insufficient heat-exchanging efficiency; and (2) bad heat-dissipating effect.
  • In view of the above, the present inventor proposes a novel heat exchanger based on his expert experience and delicate researches.
  • SUMMARY OF THE INVENTION
  • In order to solve the above problems, an objective of the present invention is to provide a heat exchanger, in which a working fluid can generate separated eddies to increase the strength of turbulent flow, thereby improving the heat-conducting effect of the heat exchanger.
  • In order to achieve the above objective, the present invention is to provide a heat exchanger including: a body, a first flowing path set, a second flowing path set, a first cover and a second cover. The body has a first surface, a second surface and a third surface. The first surface and the second surface are provided on both sides of the body respectively. The third surface is vertically connected to the first surface and the second surface. The third surface is provided with an inlet and an outlet. The first flowing path set is provided on the first surface and has a first spiral flowing path and a second spiral flowing path. The first spiral flowing path and the second spiral flowing path are in communication with each other. The first spiral flowing path and the second spiral flowing path are in communication with the inlet and the outlet. The first spiral flowing path and the second spiral flowing path have a plurality of flow-disturbing portions on the first surface of the body respectively. The second flowing path set is provided on the second surface and has a third spiral flowing path and a fourth spiral flowing path. The third spiral flowing path and the fourth spiral flowing path are in communication with each other. The third spiral flowing path and the fourth spiral flowing path are in communication with the inlet and the outlet. The third spiral flowing path and the fourth spiral flowing path have a plurality of flow-disturbing portions on the second surface of the body. The first cover covers the first surface, and the second cover covers the second surface.
  • Since both sides of the heat exchanger are provided with the spiral flowing paths, the heat-exchanging efficiency of the heat exchanger is improved greatly. Further, since the inner walls of the spiral flowing paths are provided with the flow-disturbing portions, the working fluid can generate separated eddies to increase the strength of the turbulent flow, thereby increasing the heat-conducting effect of the heat exchanger.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is an exploded perspective view showing a heat exchanger according to a first embodiment of the present invention;
  • FIG. 2 is an assembled perspective view showing the heat exchanger according to the first embodiment of the present invention;
  • FIG. 3 is a cross-sectional view showing the heat exchanger according to the first embodiment of the present invention;
  • FIG. 4 is an exploded perspective view showing a heat exchanger according to a second embodiment of the present invention;
  • FIG. 5 is a cross-sectional view showing the heat exchanger according to the second embodiment of the present invention;
  • FIG. 6 is a cross-sectional view showing the heat exchanger according to a third embodiment of the present invention; and
  • FIG. 7 is a schematic view showing the operation of the heat exchanger of the present invention.
  • DETAILED DESCRIPTION OF THE INVENTION
  • Please refer to FIGS. 1 to 3 showing the first embodiment of the present invention. The present invention provides a heat exchanger. The heat exchanger 1 of the present invention includes a body 11, a first flowing path set 12, a second flowing path set 13, a first cover 14, and a second cover 15.
  • The body 11 has a first surface 111, a second surface 112 and a third surface 113. The first surface 111 and the second surface 112 are provided on both sides of the body 11 respectively. The third surface 113 is vertically connected to the first surface 111 and the second surface 112. The third surface 113 is provided with an inlet 114 and an outlet 115.
  • The first flowing path set 12 is provided on the first surface 111 and has a first spiral flowing path 121 and a second spiral flowing path 122. The first spiral flowing path 121 and the second spiral flowing path 122 are in communication with each other. The first spiral flowing path 121 and the second spiral flowing path 122 are in communication with the inlet 114 and the outlet 115. The first spiral flowing path 121 and the second spiral flowing path 122 have a plurality of flow-disturbing portions 16 on the first surface 111 of the body 11.
  • One end of the first spiral flowing path set 121 is connected to the inlet 114, and the other end of the first spiral flowing path 121 is connected to one end of the second spiral flowing path 122. The other end of the second spiral flowing path 122 is connected to the outlet 115.
  • The second flowing path set 13 is provided on the second surface 112 and has a third spiral flowing path 131 and a fourth spiral flowing path 132. The third spiral flowing path 131 and the fourth spiral flowing path 132 are in communication with each other. The third spiral flowing path 131 and the fourth spiral flowing path 132 are in communication with the inlet 114 and the outlet 115. The third spiral flowing path 131 and the fourth spiral flowing path 132 have a plurality of flow-disturbing portions 16 on the second surface 113 of the body 11.
  • One end of the third spiral flowing path set 131 is connected to the inlet 114, and the other end of the third spiral flowing path 131 is connected to one end of the fourth spiral flowing path 132. The other end of the fourth spiral flowing path 132 is connected to the outlet 115.
  • The first cover 14 covers the first surface 111, and the second cover 15 covers the second surface 112.
  • The body 11 further has a center 116. The first, second, third and fourth spiral flowing paths 121, 122, 131, 132 are formed by spirally extending from the center 116 to the periphery of the body 11. The turning radius of the first, second, third and fourth spiral flowing paths 121, 122, 131, 132 gradually increases from the center 116 to the periphery of the body 11.
  • Each of the flow-disturbing portions 16 is a continuous or segmented protrusion rib. Alternatively, the flow-disturbing portions may be separated protrusions or have other suitable shapes. The flow-disturbing portions 16 are arranged obliquely or tangentially.
  • Please refer to FIGS. 4 and 5, which showing the second embodiment of the present invention. The structural features of the second embodiment are substantially the same as those of the first embodiment, and thus the redundant description is omitted for simplicity. The difference between the second embodiment and the first embodiment lies as follows. The first cover 14 covers the first surface 111. The second cover 15 covers the second surface 112. The surface of first cover 14 facing the first flowing path set 12 and the surface of the second cover 15 facing the second flowing path set 13 are provided with other flow-disturbing portions 16 respectively.
  • Please refer to FIG. 6, which showing the third embodiment of the present invention. The structural features of the third embodiment are substantially the same as those of the first embodiment, and thus the redundant description is omitted for simplicity. The difference between the third embodiment and the first embodiment lies in that the flow-disturbing portions 16 in the third embodiment are continuous or segmented grooves, and they are arranged obliquely or tangentially.
  • Please refer to FIG. 6 again and FIG. 7. FIG. 6 is a cross-sectional view showing the heat exchanger according to the third embodiment of the present invention, and FIG. 7 is a schematic view showing the operation of the heat exchanger of the present invention. As shown in these figures, the working fluid 2 flows into the first spiral flowing path 121 and the third spiral flowing path 131 fir circulation via the inlet 114 of the heat exchanger 1. Then, the working fluid 2 enter the second spiral flowing path 122 and the fourth spiral flowing path 132 along the first spiral flowing path 121 and the third spiral flowing path 131. Finally, the working fluid 2 flows along the second spiral flowing path 122 and the fourth spiral flowing path 132 to the outlet 115, thereby draining out of the heat exchanger 1. When the working fluid 2 circulates in the first, second, third, fourth spiral flowing paths 121, 122, 131 and 132, since the flow-disturbing portions 16 are provided in the first, second, third and fourth spiral flowing paths 121, 122, 131 and 132, the flow-disturbing portions 16 can make the working fluid 2 to generate separated eddies, thereby increasing the strength of turbulent flow and improving the heat-conducting efficiency of the heat exchanger 1 greatly.
  • Although the present invention has been described with reference to the foregoing preferred embodiments, it will be understood that the invention is not limited to the details thereof. Various equivalent variations and modifications can still occur to those skilled in this art in view of the teachings of the present invention. Thus, all such variations and equivalent modifications are also embraced within the scope of the invention as defined in the appended claims.

Claims (20)

What is claimed is:
1. A heat exchanger, including:
a body having a first surface, a second surface and a third surface, the first surface and the second surface being provided on both sides of the body respectively, the third surface being vertically connected to the first surface and the second surface, the third surface being provided with an inlet and an outlet;
a first flowing path set provided on the first surface and having a first spiral flowing path and a second spiral flowing path, the first spiral flowing path and the second spiral flowing path being in communication with each other, the first spiral flowing path and the second spiral flowing path being in communication with the inlet and the outlet respectively, the first spiral flowing path and the second spiral flowing path having a plurality of flow-disturbing portions on the first surface of the body;
a second flowing path set provided on the second surface and having a third spiral flowing path and a fourth spiral flowing path, the third spiral flowing path and the fourth spiral flowing path being in communication with each other, the third spiral flowing path and the fourth spiral flowing path being in communication with the inlet and the outlet respectively, the third spiral flowing path and the fourth spiral flowing path having a plurality of flow-disturbing portions on second surface of the body;
a first cover covering the first surface; and
a second cover covering the second surface.
2. The heat exchanger according to 1, wherein each of the flow-disturbing portions is a protrusion rib.
3. The heat exchanger according to 1, wherein each of the flow-disturbing portions is a recess groove.
4. The heat exchanger according to 1, wherein one end of the first spiral flowing path is connected to the inlet, the other end of the first spiral flowing path is connected to one end of the second spiral flowing path, the other end of the second spiral flowing path is connected to the outlet.
5. The heat exchanger according to 1, wherein one end of the third spiral flowing path is connected to the inlet, the other end of the third spiral flowing path is connected to one end of the fourth spiral flowing path, the other end of the fourth spiral flowing path is connected to the outlet.
6. The heat exchanger according to 1, wherein the first cover is provided with a plurality of flow-disturbing portions to correspond to the first flowing path set.
7. The heat exchanger according to 1, wherein the second cover is provided with a plurality of flow-disturbing portions to correspond to the second flowing path set.
8. The heat exchanger according to 1, wherein the body further has a center, the first, second, third and fourth spiral flowing paths are constituted by radially extending from the center to the periphery of the body, the turning radius of the first, second, third and fourth spiral flowing paths gradually increases from the center to the periphery of the body.
9. The heat exchanger according to 6, wherein the flow-disturbing portion is a protrusion rib.
10. The heat exchanger according to 7, wherein the flow-disturbing portion is a protrusion rib.
11. The heat exchanger according to 6, wherein the flow-disturbing portion is a recess groove.
12. The heat exchanger according to 7, wherein the flow-disturbing portion is a recess groove.
13. The heat exchanger according to 1, wherein the flow-disturbing portion is arranged obliquely or tangentially.
14. The heat exchanger according to 2, wherein the flow-disturbing portion is arranged obliquely or tangentially.
15. The heat exchanger according to 3, wherein the flow-disturbing portion is arranged obliquely or tangentially.
16. The heat exchanger according to 6, wherein the flow-disturbing portion is arranged obliquely or tangentially.
17. The heat exchanger according to 7, wherein the flow-disturbing portion is arranged obliquely or tangentially.
18. The heat exchanger according to 1, wherein the flow-disturbing portion is continuous or segmented.
19. The heat exchanger according to 2, wherein the flow-disturbing portion is continuous or segmented.
20. The heat exchanger according to 3, wherein the flow-disturbing portion is continuous or segmented.
US12/917,437 2010-09-09 2010-11-01 Heat exchanger Abandoned US20120061063A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW099130454A TW201211739A (en) 2010-09-09 2010-09-09 Heat exchanger structure
TW099130454 2010-09-09

Publications (1)

Publication Number Publication Date
US20120061063A1 true US20120061063A1 (en) 2012-03-15

Family

ID=45805527

Family Applications (1)

Application Number Title Priority Date Filing Date
US12/917,437 Abandoned US20120061063A1 (en) 2010-09-09 2010-11-01 Heat exchanger

Country Status (2)

Country Link
US (1) US20120061063A1 (en)
TW (1) TW201211739A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150075754A1 (en) * 2013-09-17 2015-03-19 Ge Aviation Systems Llc Single-pass cold plate assembly
US20190049148A1 (en) * 2016-02-09 2019-02-14 Sermeta Deflector for condensation heat exchanger and exchanger provided with such a deflector
CN114353560A (en) * 2021-11-26 2022-04-15 中国船舶重工集团公司第七一九研究所 Cooling device for deep sea supercritical carbon dioxide power system

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3330334A (en) * 1965-08-23 1967-07-11 Zimmermann & Jansen Gmbh Closure plate for hot blast valve
US4577683A (en) * 1983-05-28 1986-03-25 Kienzle Apparate Gmbh Heat exchanger with separate helical ducts
US4614227A (en) * 1983-11-02 1986-09-30 Bbc Brown, Boveri & Company Limited Cooling body for the liquid cooling of high-power semiconductor components
EP0613179A1 (en) * 1993-02-26 1994-08-31 Gec Alsthom Limited Heat sink
US5539617A (en) * 1992-09-22 1996-07-23 Siemens Aktiengesellschaft Liquid-coolant cooling element
US20050011635A1 (en) * 2003-07-15 2005-01-20 Industrial Technology Research Institute Cold plate with vortex generator
US20050092007A1 (en) * 2003-10-30 2005-05-05 International Business Machines Corporation Cooling of surface temperature of a device
US7073569B1 (en) * 2005-04-07 2006-07-11 Delphi Technologies, Inc. Cooling assembly with spirally wound fin
US20060231236A1 (en) * 2005-04-14 2006-10-19 Michael Spokoiny Heat dissipating device
US20070062674A1 (en) * 2005-03-18 2007-03-22 Mitsubishi Electric Corporation Cooling structure, heatsink and cooling method of heat generator

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3330334A (en) * 1965-08-23 1967-07-11 Zimmermann & Jansen Gmbh Closure plate for hot blast valve
US4577683A (en) * 1983-05-28 1986-03-25 Kienzle Apparate Gmbh Heat exchanger with separate helical ducts
US4614227A (en) * 1983-11-02 1986-09-30 Bbc Brown, Boveri & Company Limited Cooling body for the liquid cooling of high-power semiconductor components
US5539617A (en) * 1992-09-22 1996-07-23 Siemens Aktiengesellschaft Liquid-coolant cooling element
EP0613179A1 (en) * 1993-02-26 1994-08-31 Gec Alsthom Limited Heat sink
US20050011635A1 (en) * 2003-07-15 2005-01-20 Industrial Technology Research Institute Cold plate with vortex generator
US20050092007A1 (en) * 2003-10-30 2005-05-05 International Business Machines Corporation Cooling of surface temperature of a device
US20070062674A1 (en) * 2005-03-18 2007-03-22 Mitsubishi Electric Corporation Cooling structure, heatsink and cooling method of heat generator
US7073569B1 (en) * 2005-04-07 2006-07-11 Delphi Technologies, Inc. Cooling assembly with spirally wound fin
US20060231236A1 (en) * 2005-04-14 2006-10-19 Michael Spokoiny Heat dissipating device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150075754A1 (en) * 2013-09-17 2015-03-19 Ge Aviation Systems Llc Single-pass cold plate assembly
US20190049148A1 (en) * 2016-02-09 2019-02-14 Sermeta Deflector for condensation heat exchanger and exchanger provided with such a deflector
US10900692B2 (en) * 2016-02-09 2021-01-26 Sermeta Deflector for condensation heat exchanger and exchanger provided with such a deflector
CN114353560A (en) * 2021-11-26 2022-04-15 中国船舶重工集团公司第七一九研究所 Cooling device for deep sea supercritical carbon dioxide power system

Also Published As

Publication number Publication date
TW201211739A (en) 2012-03-16
TWI380161B (en) 2012-12-21

Similar Documents

Publication Publication Date Title
US9677820B2 (en) Electronic device and liquid cooling heat dissipation structure thereof
US10285303B2 (en) Electronic device with integrated passive and active cooling
CN101568248B (en) Cooling apparatus for electronic device and electronic device including the same
TW202020617A (en) Liquid-cooling heat exchange apparatus
EP1675451B1 (en) Liquid cooling module
US20060185378A1 (en) Liquid-cooling heat dissipation assembly
US20070227699A1 (en) Method, apparatus and system for flow distribution through a heat exchanger
EP1710660A2 (en) Cooling system for an electronic system
US20100126703A1 (en) Motor device with heat dissipating capability
US20070175610A1 (en) Heat dissipating device
US20110168360A1 (en) Heat exchanger
US20090205810A1 (en) Liquid cooling device
TWI752613B (en) Water cooling heat dissipation deivce
US7430119B2 (en) Impeller and aligned cold plate
US20090090489A1 (en) Water-cooling heat-dissipating module of electronic apparatus
US20070076376A1 (en) Method, apparatus and computer system for providing for the transfer of thermal energy
US20050183848A1 (en) Coolant tray of liquid based cooling device
US20120061063A1 (en) Heat exchanger
US20210195794A1 (en) Novel mechanical pump liquid-cooling heat dissipation system
JP5117287B2 (en) Electronic equipment cooling system
TWI753301B (en) Heat exchange device and liquid-cooled heat dissipation system having the same
TWI803359B (en) Cold plate
TWM454562U (en) Liquid cooling heat dissipation module
CN202585392U (en) Liquid-cooled radiator
CN102131367B (en) Heat exchanger structure

Legal Events

Date Code Title Description
AS Assignment

Owner name: ASIA VITAL COMPONENTS CO., LTD., TAIWAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LUO, NUMEN, MR.;ZHANG, LI-DONG, MR.;JUAN, WESS, MR.;AND OTHERS;REEL/FRAME:025230/0554

Effective date: 20101101

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION