US20120037067A1 - Cubic silicon carbide film manufacturing method, and cubic silicon carbide film-attached substrate manufacturing method - Google Patents

Cubic silicon carbide film manufacturing method, and cubic silicon carbide film-attached substrate manufacturing method Download PDF

Info

Publication number
US20120037067A1
US20120037067A1 US13/189,776 US201113189776A US2012037067A1 US 20120037067 A1 US20120037067 A1 US 20120037067A1 US 201113189776 A US201113189776 A US 201113189776A US 2012037067 A1 US2012037067 A1 US 2012037067A1
Authority
US
United States
Prior art keywords
silicon carbide
cubic
carbide film
silicon
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/189,776
Inventor
Yukimune Watanabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Assigned to SEIKO EPSON CORPORATION reassignment SEIKO EPSON CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: WATANABE, YUKIMUNE
Publication of US20120037067A1 publication Critical patent/US20120037067A1/en
Priority to US14/737,281 priority Critical patent/US9732439B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/10Heating of the reaction chamber or the substrate
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/14Feed and outlet means for the gases; Modifying the flow of the reactive gases
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • C30B25/186Epitaxial-layer growth characterised by the substrate being specially pre-treated by, e.g. chemical or physical means
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/36Carbides

Definitions

  • the present invention relates to cubic silicon carbide film manufacturing methods, and cubic silicon carbide film-attached substrate manufacturing methods. Specifically, the invention relates to a cubic silicon carbide film manufacturing method that forms a cubic silicon carbide (SiC) film, an expected wide bandgap semiconductor, on a silicon substrate or on a monocrystalline silicon film formed on the substrate, and to a method for manufacturing a cubic silicon carbide film-attached substrate that includes a cubic silicon carbide film formed on a silicon substrate or on a monocrystalline silicon film formed on the substrate.
  • SiC cubic silicon carbide
  • Silicon carbide SiC
  • SiC Silicon carbide
  • a wide bandgap semiconductor having a bandgap of 2.2 eV (300 K) more than twice as large as that of silicon (Si) has generated interest as semiconductor material for power devices, or as material for high-voltage devices.
  • the crystal forming temperature of silicon carbide (SiC) is higher than that of silicon (Si), and obtaining silicon carbide (SiC) single crystal ingots by a pull method from a liquid phase is not as easy as in silicon.
  • An alternative method, called a sublimation method is thus used to form silicon carbide (SiC) single crystal ingots.
  • SiC silicon carbide
  • the heteroepitaxial technique has thus been studied as one way of increasing the diameter of silicon carbide (SiC) substrates.
  • the cubic silicon carbide has a lattice constant of 4.359 angstroms, about 20% smaller than the lattice constant (5.4307 angstroms) of monocrystalline silicon. This, combined with different coefficients of thermal expansion, makes it very difficult to obtain a high-quality epitaxial film that has few crystal defects.
  • the monocrystalline silicon and the cubic silicon carbide have different coefficients of thermal expansion, bending of the silicon substrate generates stress while the substrate is cooled to room temperature after the epitaxial growth of the cubic silicon carbide film.
  • the stress translates into crystal defects in the cubic silicon carbide film. The adverse effect of such stress can be effectively avoided by lowering the epitaxial growth temperature.
  • epitaxial growth involves growth in a gas phase (CVD method).
  • the growth temperature can be lowered, for example, by (1) allowing growth under a high vacuum, or (2) by using a source gas that easily decomposes at low temperatures, or a source gas that has Si—C bonds.
  • a drawback of lowering growth temperature is that it slows the growth rate.
  • the epitaxial growth temperature of the cubic silicon carbide (3C—SiC) remains at 1,200° C. to 1,300° C., a temperature range no different from the epitaxial growth temperatures of common cubic silicon carbides (3C—SiC).
  • the different coefficients of thermal expansion cause stress while cooling the substrate, and the stress translates into crystal defects. It has thus been difficult to reduce the crystal defects of the cubic silicon carbide film.
  • An advantage of some aspects of the invention is to provide a cubic silicon carbide film manufacturing method with which a high-quality cubic silicon carbide film with few crystal defects can be grown at high speed, and a cubic silicon carbide film-attached substrate manufacturing method with which a high-quality cubic silicon carbide film with few crystal defects can be grown at high speed on a silicon substrate, or on a monocrystalline silicon film formed on the substrate.
  • An aspect of the invention is directed to a method for manufacturing a cubic silicon carbide film, the method including: a first step of introducing a carbon-containing gas onto a silicon substrate or onto a monocrystalline silicon film formed on the substrate, and rapidly heating the silicon substrate or the monocrystalline silicon film to an epitaxial growth temperature of cubic silicon carbide so as to carbonize a surface of the silicon substrate or the monocrystalline silicon film and form a cubic silicon carbide film; and a second step of introducing a carbon-containing gas and a silicon-containing gas onto the cubic silicon carbide film while maintaining the cubic silicon carbide film at the epitaxial growth temperature of cubic silicon carbide, so as to allow further epitaxial growth of the cubic silicon carbide film.
  • a carbon-containing gas is introduced onto the silicon substrate or the monocrystalline silicon film, and the silicon substrate surface or the monocrystalline silicon film is rapidly heated to the epitaxial growth temperature of cubic silicon carbide to carbonize the silicon substrate surface or the monocrystalline silicon film with the carbon-containing gas and form a cubic silicon carbide film.
  • a carbon-containing gas and a silicon-containing gas are introduced onto the cubic silicon carbide film while maintaining the cubic silicon carbide film at the epitaxial growth temperature of the cubic silicon carbide, so as to allow further epitaxial growth of the cubic silicon carbide film.
  • a high-quality cubic silicon carbide film with few crystal defects can thus be obtained at high speed.
  • the cubic silicon carbide film manufacturing method may further include a third step of forming a monocrystalline silicon film on the cubic silicon carbide film by introducing a silicon-containing gas onto the cubic silicon carbide film epitaxially grown in the second step, with the cubic silicon carbide film being set to an epitaxial growth temperature of monocrystalline silicon, wherein the first step and the second step are sequentially performed after the third step.
  • the third step is performed that forms a monocrystalline silicon film on the cubic silicon carbide film by introducing a silicon-containing gas onto the cubic silicon carbide film epitaxially grown in the second step, with the cubic silicon carbide film being set to an epitaxial growth temperature of monocrystalline silicon, and the first and second steps are sequentially performed after the third step.
  • the cubic silicon carbide film can be obtained in a desired thickness as a laminate of epitaxially grown cubic silicon carbide layers. In this way, a high-quality cubic silicon carbide film of a desired thickness with few crystal defects can easily be obtained at high speed.
  • the rapid heating may be performed at a rate of temperature increase of from 5° C./sec to 200° C./sec.
  • the carbon-containing gas and the silicon-containing gas may be switched by controlling a flow rate of the carbon-containing gas and a flow rate of the silicon-containing gas.
  • switching between the carbon-containing gas and the silicon-containing gas can be easily and conveniently performed by controlling the flow rate of the carbon-containing gas and the flow rate of the silicon-containing gas.
  • the carbon-containing gas may contain hydrocarbon gas.
  • the carbon atoms contained in the carbon-containing gas bind to the silicon atoms in the monocrystalline silicon film to generate a cubic silicon carbide film. In this way, a cubic silicon carbide film can easily be formed on the surface of the silicon substrate.
  • the silicon-containing gas may contain silane gas.
  • the silicon atoms generated by the decomposition of the silicon-containing gas form a monocrystalline silicon film on the silicon substrate or the monocrystalline silicon film. In this way, the monocrystalline silicon film can easily be formed.
  • Another aspect of the invention is directed to a method for manufacturing a cubic silicon carbide film-attached substrate that includes a cubic silicon carbide film formed on a silicon substrate or on a monocrystalline silicon film formed on the substrate, the method including: a first step of introducing a carbon-containing gas onto the silicon substrate or the monocrystalline silicon film, and rapidly heating the silicon substrate or the monocrystalline silicon film to an epitaxial growth temperature of cubic silicon carbide so as to carbonize a surface of the silicon substrate or the monocrystalline silicon film and form the cubic silicon carbide film; a second step of introducing a carbon-containing gas and a silicon-containing gas onto the cubic silicon carbide film while maintaining the cubic silicon carbide film at the epitaxial growth temperature of cubic silicon carbide, so as to allow further epitaxial growth of the cubic silicon carbide film.
  • a carbon-containing gas is introduced onto the silicon substrate or the monocrystalline silicon film, and the silicon substrate surface or the monocrystalline silicon film is rapidly heated to the epitaxial growth temperature of cubic silicon carbide to carbonize the silicon substrate surface or the monocrystalline silicon film with the carbon-containing gas and form a cubic silicon carbide film.
  • a carbon-containing gas and a silicon-containing gas are introduced onto the cubic silicon carbide film while maintaining the cubic silicon carbide film at the epitaxial growth temperature of cubic silicon carbide, so as to allow further epitaxial growth of the cubic silicon carbide film.
  • a substrate including such a high-quality cubic silicon carbide film with few crystal defects can thus be obtained at high speed.
  • the cubic silicon carbide film-attached substrate manufacturing method may further include a third step of forming a monocrystalline silicon film on the cubic silicon carbide film by introducing a silicon-containing gas onto the cubic silicon carbide film epitaxially grown in the second step, with the cubic silicon carbide film being set to an epitaxial growth temperature of monocrystalline silicon, wherein the first step and the second step are sequentially performed after the third step.
  • the third step is performed that forms a monocrystalline silicon film on the cubic silicon carbide film by introducing a silicon-containing gas onto the cubic silicon carbide film epitaxially grown in the second step, with the cubic silicon carbide film being set to an epitaxial growth temperature of monocrystalline silicon, and the first and second steps are sequentially performed after the third step.
  • the cubic silicon carbide film can be obtained in a desired thickness as a laminate of epitaxially grown cubic silicon carbide layers. In this way, a substrate including a high-quality cubic silicon carbide film of a desired thickness with few crystal defects can be obtained at high speed.
  • FIG. 1 is a cross sectional view illustrating a cubic silicon carbide film-attached substrate of an embodiment of the invention.
  • FIG. 2 is a diagram representing the relationship between substrate temperature and the flow rates of carbon source gas and silicon source gas in each section of a temperature cycle of Example 1 of the invention.
  • FIG. 3 is a diagram representing the relationship between substrate temperature and the flow rates of carbon source gas and silicon source gas in each section of a temperature cycle of Example 2 of the invention.
  • FIG. 4 is a diagram representing the relationship between substrate temperature and the flow rates of carbon source gas and silicon source gas in each section of a temperature cycle of Example 3 of the invention.
  • FIG. 5 is a diagram representing the relationship between substrate temperature and the flow rates of carbon source gas and silicon source gas in each section of a temperature cycle of Example 4 of the invention.
  • FIG. 6 is a diagram representing the relationship between substrate temperature and the flow rates of carbon source gas and silicon source gas in each section of a temperature cycle of Example 5 of the invention.
  • FIG. 7 is a diagram representing the relationship between substrate temperature and the flow rates of carbon source gas and silicon source gas in each section of a temperature cycle of Example 6 of the invention.
  • FIG. 8 is a diagram representing the growth time dependence of the thickness of a cubic silicon carbide film formed in Example 6 of the invention, and of the thickness of a cubic silicon carbide film formed by a continuous process.
  • FIG. 9 is a diagram representing the relationship between the rate of temperature increase and the thickness of the cubic silicon carbide film of Example 7 of the invention.
  • FIG. 10 is a diagram representing changes in substrate temperature with the rate of temperature increase solely varied for the temperature increase of from 900° C. to 950° C.
  • FIG. 11 is a diagram representing the thickness of a carbide layer formed by the rapid heating of a substrate from 900° C. to 950° C., and of a carbide layer formed by low-speed heating.
  • FIG. 1 is a cross sectional view illustrating a cubic silicon carbide film-attached substrate of an embodiment of the invention.
  • a cubic silicon carbide film-attached substrate 1 includes a cubic silicon carbide (3C—SiC) film 3 as a 20-layer laminate of cubic silicon carbide (3C—SiC) films 3 a to 3 t formed on a surface 2 a of a silicon (Si) substrate 2 .
  • the lamination of the cubic silicon carbide (3C—SiC) films 3 a to 3 t in 20 layers forms the cubic silicon carbide (3C—SiC) film 3 as a high-quality laminate of a desired thickness with few crystal defects.
  • a method for manufacturing the cubic silicon carbide film-attached substrate 1 is described below.
  • the silicon substrate 2 is prepared, and housed in the chamber of a heat treatment furnace. After creating a vacuum in the chamber, the silicon substrate 2 is heated to raise the substrate temperature to a predetermined temperature of, for example, 750° C., and heat-treated for a predetermined time period of, for example, 5 minutes to clean the natural oxide film and the like on the surface 2 a of the silicon substrate 2 .
  • the temperature of the silicon substrate 2 is set to a temperature of from room temperature to the epitaxial growth temperature T 1 of monocrystalline silicon.
  • the epitaxial growth of the cubic silicon carbide proceeds slowly, and thus the temperature T 1 set for the temperature of the silicon substrate 2 can limit the epitaxial growth to only the monocrystalline silicon.
  • the silicon substrate 2 is rapidly heated to the epitaxial growth temperature T 2 of cubic silicon carbide higher than the epitaxial growth temperature T 1 of monocrystalline silicon while introducing a carbon source gas (carbon-containing gas) onto the silicon substrate 2 .
  • a carbon source gas carbon-containing gas
  • the carbon source gas is preferably hydrocarbon gas.
  • Preferred examples include methane (CH 4 ), ethane (C 2 H 6 ) acethylene (C 2 H 2 ) ethylene (C 2 H 4 ), propane (C 3 H 8 ), n-butane (n-C 4 H 10 ), isobutane (i-C 4 H 10 ), and neopentane (neo-C 5 H 12 ). These may be used either alone or as a mixture of two or more.
  • the rapid heating is the heating that raises the temperature at a rate of temperature increase that exceeds the reference rate of temperature increase of, for example, 10° C./min.
  • the rate of temperature increase in rapid heating is preferably from 5° C./sec to 200° C./sec.
  • a rate of temperature increase below 5° C./sec is too slow, and may cause silicon to sublime from the surface of the silicon substrate 2 and roughen the surface, if the carbon gas supply is small. With a large carbon gas supply, such a slow rate may lead to formation of a thin carbide layer on the surface of the silicon substrate 2 , preventing further growth and impairing the growth rate increasing effect.
  • a rate of temperature increase in excess of 200° C./sec in rapid heating makes the heating too rapid, and fails to sufficiently carbonize the surface of the silicon substrate 2 , resulting in insufficient silicon carbide generation.
  • the carbon source gas For the introduction of the carbon source gas, only the carbon source gas can be introduced by separately controlling the flow rates of the carbon source gas and the silicon source gas (silicon-containing gas).
  • the carbon source gas carbonizes the surface of the silicon substrate 2 , and forms a cubic silicon carbide film.
  • the temperature of the silicon substrate 2 is held at epitaxial growth temperature T 2 , and the flow rates of the carbon source gas and the silicon source gas are set to the flow rates suitable for the epitaxial growth of cubic silicon carbide.
  • the silicon source gas is preferably silane gas.
  • Preferred examples include monosilane (SiH 4 ), disilane (Si 2 H 6 ), trisilane (Si 3 H 8 ), tetrasilane (Si 4 H 10 ) dichlorosilane (SiH 2 Cl 2 ), tetrachlorosilane (SiCl 4 ) trichlorosilane (SiHCl 3 ), and hexachlorodisilane (Si 2 Cl 6 ). These may be used either alone or as a mixture of two or more.
  • the cubic silicon carbide film 3 a is formed on the cubic silicon carbide film by the epitaxial growth of cubic silicon carbide.
  • the flow rate of the silicon source gas is set to the flow rate suitable for the epitaxial growth of monocrystalline silicon.
  • a monocrystalline silicon film is formed on the cubic silicon carbide film 3 a by the epitaxial growth of monocrystalline silicon.
  • the monocrystalline silicon epitaxial growth and the subsequent steps are repeated until the resulting cubic silicon carbide film has a desired thickness.
  • the cubic silicon carbide film-attached substrate 1 can be obtained that has the cubic silicon carbide film 3 of a desired thickness.
  • the cubic silicon carbide film-attached substrate 1 can be obtained that has the cubic silicon carbide film 3 formed as a 20-layer laminate of the cubic silicon carbide films 3 a to 3 t , as illustrated in FIG. 1 .
  • the cubic silicon carbide film-attached substrate manufacturing method of the present embodiment the cubic silicon carbide film-attached substrate 1 including the cubic silicon carbide film formed in high quality with few crystal defects can be quickly obtained at a low epitaxial growth temperature after the repeated steps of generating and growing the cubic silicon carbide film, generating a monocrystalline silicon film on the cubic silicon carbide film, and generating and growing the cubic silicon carbide film by the carbonization of the monocrystalline silicon film.
  • FIG. 2 is a diagram representing the relationship between substrate temperature and the flow rates of carbon source gas and silicon source gas in each section of the temperature cycle of Example 1.
  • neopentane neo-C 5 H 12
  • dichlorosilane SiH 2 Cl 2
  • the monocrystalline silicon epitaxial growth temperature T 1 and cubic silicon carbide epitaxial growth temperature T 2 were 800° C. and 1,000° C., respectively.
  • the carbon source gas and the silicon source gas were set to have optimum flow rates Fc 1 to Fc 4 and Fsi 1 to Fsi 4 , respectively, for section S 1 (rapid heating carbonization process), section S 2 (cubic silicon carbide film epitaxial growth process), section S 3 (substrate temperature lowering process), and section S 4 (monocrystalline silicon epitaxial growth process).
  • the carbon source gas flow rate Fc 1 3 sccm
  • the silicon source gas flow rate Fsi 1 0 sccm.
  • section S 4 monocrystalline silicon epitaxial growth process
  • FIG. 3 is a diagram representing the relationship between substrate temperature and the flow rates of carbon source gas and silicon source gas in each section of the temperature cycle of Example 2.
  • FIG. 4 is a diagram representing the relationship between substrate temperature and the flow rates of carbon source gas and silicon source gas in each section of the temperature cycle of Example 3.
  • section S 1 rapid heating carbonization process
  • both the carbon source gas and the silicon source gas are introduced.
  • the introduction of the silicon source gas does not pose any problem, because the effect of carbonization by the carbon source gas far exceeds the growth by the silicon source gas.
  • FIG. 5 is a diagram representing the relationship between substrate temperature and the flow rates of carbon source gas and silicon source gas in each section of the temperature cycle of Example 4.
  • section S 4 (monocrystalline silicon epitaxial growth process) both the carbon source gas and the silicon source gas are introduced.
  • the introduction of the carbon source gas and the silicon source gas does not pose any problem, because this temperature range is the silicon epitaxial growth range by the silicon source gas, where there is no epitaxial growth of cubic silicon carbide.
  • FIG. 6 is a diagram representing the relationship between substrate temperature and the flow rates of carbon source gas and silicon source gas in each section of the temperature cycle of Example 5.
  • both the carbon source gas and the silicon source gas are introduced in section S 4 (monocrystalline silicon epitaxial growth process).
  • the introduction of the carbon source gas and the silicon source gas does not pose any problem, because this temperature range is the silicon epitaxial growth range by the silicon source gas, where there is no epitaxial growth of cubic silicon carbide.
  • a cubic silicon carbide film can be quickly obtained in high quality with few crystal defects at a low epitaxial growth temperature also in Examples 2 to 5, by optimally setting the carbon source gas flow rates Fc 1 , Fc 2 , Fc 3 , Fc 4 , and the silicon source gas flow rates Fsi 1 , Fsi 2 , Fsi 3 , Fsi 4 for each section.
  • FIG. 7 is a diagram representing the relationship between substrate temperature and the flow rates of carbon source gas and silicon source gas in each section of the temperature cycle of Example 6.
  • neopentane neo-C 5 H 12
  • dichlorosilane SiH 2 Cl 2
  • Section S 1 rapid heating carbonization process
  • section S 2 cubic silicon carbide film epitaxial growth process
  • section S 3 substrate temperature lowering process
  • section S 4 monocrystalline silicon epitaxial growth process
  • Fc 4 0 sccm
  • the epitaxial growth was also performed in 10 cycles and in 20 cycles using the same temperature cycle.
  • FIG. 8 is a diagram representing the growth time dependence of the thickness of the cubic silicon carbide film formed by the cycle process of FIG. 7 , and of the cubic silicon carbide film formed by a common continuous process that involves epitaxial growth at constant temperature.
  • the cycle process time is represented by the product of the number of cycles and the total growth time in section S 1 (rapid heating carbonization process), section (cubic silicon carbide film epitaxial, growth process), and section S 3 (substrate temperature lowering process).
  • the growth rate in the cycle process was 33.1 nm/hour, as opposed to 25.1 nm/hour in the continuous process, demonstrating that the growth rate can be increased by performing the cycle process, given the same process conditions.
  • the increase in growth rate over the continuous process is only slightly higher than 1.3 fold in FIG. 8 . This is because the process time was not optimized for each section.
  • the growth rate can be further improved by optimizing the process time of each section.
  • FIG. 9 is a diagram representing the relationship between the rate of temperature increase and the thickness of the cubic silicon carbide film of Example 7.
  • the figure represents the thickness of the cubic silicon carbide film formed after heating the silicon substrate to 600° C., when (1) the substrate was subsequently heated to 1,000° C. at a rate of temperature increase of 180° C./sec, and carbonized at 1,000° C. for 10 minutes while introducing the carbon source gas ethylene (C 2 H 4 ) at a flow rate of 3 sccm, (2) the substrate was subsequently heated to 1,000° C. at a rate of temperature increase of 150° C./sec, and carbonized at 1,000° C.
  • C 2 H 4 carbon source gas
  • FIG. 10 is a diagram representing changes in substrate temperature with the rate of temperature increase solely varied for the temperature increase of from 900° C. to 950° C.
  • the solid line indicates temperature changes in carbonization performed by increasing the temperature at a slow rate of temperature increase of 10° C./min until the substrate temperature of 900° C., followed by rapid heating from the substrate temperature of 900° C. to 950° C. at a rate of temperature increase of 5° C./sec.
  • the broken line indicates temperature changes in the case where the temperature was increased at a slow rate of temperature increase of 10° C./min until the substrate temperature reached 950° C.
  • FIG. 11 represents the thicknesses of carbide layers formed after the carbonization performed at 950° C. for 5 minutes upon the temperature reaching 950° C. along the paths of the solid line and broken line in the presence of the carbon source gas ethylene (C 2 H 4 ) flowed at a rate of 10 sccm. It can be seen from the figure that the rapid heating of the substrate from 900° C. to 950° C. promoted the carbonization reaction further compared to the gradual heating, and formed the carbide film in a shorter time period.
  • C 2 H 4 carbon source gas
  • the rapid heating allows the cubic silicon carbide film to be formed more quickly than the common process, and thus enables formation of the cubic silicon carbide film at high speed even at relatively low temperatures.
  • the cubic silicon carbide film can be formed at low temperature, generation of crystal defects due to the difference in the thermal expansion of the silicon substrate and the cubic silicon carbide film can be suppressed, and a high-quality cubic silicon carbide film with few crystal defects can be formed.
  • the cubic silicon carbide film-attached substrate 1 of the present embodiment is configured to include the cubic silicon carbide film 3 formed as a 20-layer laminate of the cubic silicon carbide films 3 a to 3 t on the surface 2 a of the silicon substrate 2 .
  • the number of the laminated layers in the cubic silicon carbide film may be decided according to the required characteristics.
  • the invention is equally effective when the silicon substrate 2 is replaced with a substrate that includes a monocrystalline silicon film formed on the substrate surface.
  • the monocrystalline silicon film needs to be sufficiently thick to allow carbonization by rapid heating.
  • the monocrystalline silicon carbide film-attached substrate 1 also can be used as semiconductor material for the next generation of low-loss power devices.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

A method for manufacturing a cubic silicon carbide film includes: a first step of introducing a carbon-containing gas onto a silicon substrate and rapidly heating the silicon substrate to an epitaxial growth temperature of cubic silicon carbide so as to carbonize a surface of the silicon substrate and form a cubic silicon carbide film; and a second step of introducing a carbon-containing gas and a silicon-containing gas onto the cubic silicon carbide film while maintaining the cubic silicon carbide film at the epitaxial growth temperature of cubic silicon carbide, so as to allow further epitaxial growth of the cubic silicon carbide film.

Description

  • The entire disclosure of Japanese Patent Application No. 2010-181206, filed Aug. 13, 2010 is expressly incorporated by reference herein.
  • BACKGROUND
  • 1. Technical Field
  • The present invention relates to cubic silicon carbide film manufacturing methods, and cubic silicon carbide film-attached substrate manufacturing methods. Specifically, the invention relates to a cubic silicon carbide film manufacturing method that forms a cubic silicon carbide (SiC) film, an expected wide bandgap semiconductor, on a silicon substrate or on a monocrystalline silicon film formed on the substrate, and to a method for manufacturing a cubic silicon carbide film-attached substrate that includes a cubic silicon carbide film formed on a silicon substrate or on a monocrystalline silicon film formed on the substrate.
  • 2. Related Art
  • Silicon carbide (SiC), a wide bandgap semiconductor having a bandgap of 2.2 eV (300 K) more than twice as large as that of silicon (Si), has generated interest as semiconductor material for power devices, or as material for high-voltage devices.
  • The crystal forming temperature of silicon carbide (SiC) is higher than that of silicon (Si), and obtaining silicon carbide (SiC) single crystal ingots by a pull method from a liquid phase is not as easy as in silicon. An alternative method, called a sublimation method, is thus used to form silicon carbide (SiC) single crystal ingots. However, it is difficult with the sublimation method to obtain large-diameter silicon carbide (SiC) single crystal ingots that have few crystal defects. This has limited the diameter of the currently available silicon carbide (SiC) substrates in the market to 3 to 4 inches, and has made the price of these products very expensive.
  • Cubic silicon carbide (3C—SiC), a variation of silicon carbide (SiC), has relatively low crystal forming temperature, and can be epitaxially grown (heteroepitaxy growth) on inexpensive silicon substrates. The heteroepitaxial technique has thus been studied as one way of increasing the diameter of silicon carbide (SiC) substrates.
  • The cubic silicon carbide has a lattice constant of 4.359 angstroms, about 20% smaller than the lattice constant (5.4307 angstroms) of monocrystalline silicon. This, combined with different coefficients of thermal expansion, makes it very difficult to obtain a high-quality epitaxial film that has few crystal defects.
  • Further, because the monocrystalline silicon and the cubic silicon carbide have different coefficients of thermal expansion, bending of the silicon substrate generates stress while the substrate is cooled to room temperature after the epitaxial growth of the cubic silicon carbide film. The stress translates into crystal defects in the cubic silicon carbide film. The adverse effect of such stress can be effectively avoided by lowering the epitaxial growth temperature.
  • Generally, epitaxial growth involves growth in a gas phase (CVD method). In the CVD method, the growth temperature can be lowered, for example, by (1) allowing growth under a high vacuum, or (2) by using a source gas that easily decomposes at low temperatures, or a source gas that has Si—C bonds. A drawback of lowering growth temperature is that it slows the growth rate.
  • As a countermeasure, a method has been proposed in which silicon source gas and carbon source gas are alternately flowed to enable formation of a cubic silicon carbide (3C—SiC) epitaxial film with few crystal defects at a practical growth rate (see JP-A-2001-335935).
  • While the method of the foregoing publication enables formation of an epitaxial film with few crystal defects with the alternately flowed silicon source gas and carbon source gas, the epitaxial growth temperature of the cubic silicon carbide (3C—SiC) remains at 1,200° C. to 1,300° C., a temperature range no different from the epitaxial growth temperatures of common cubic silicon carbides (3C—SiC). Thus, the different coefficients of thermal expansion cause stress while cooling the substrate, and the stress translates into crystal defects. It has thus been difficult to reduce the crystal defects of the cubic silicon carbide film.
  • SUMMARY
  • An advantage of some aspects of the invention is to provide a cubic silicon carbide film manufacturing method with which a high-quality cubic silicon carbide film with few crystal defects can be grown at high speed, and a cubic silicon carbide film-attached substrate manufacturing method with which a high-quality cubic silicon carbide film with few crystal defects can be grown at high speed on a silicon substrate, or on a monocrystalline silicon film formed on the substrate.
  • An aspect of the invention is directed to a method for manufacturing a cubic silicon carbide film, the method including: a first step of introducing a carbon-containing gas onto a silicon substrate or onto a monocrystalline silicon film formed on the substrate, and rapidly heating the silicon substrate or the monocrystalline silicon film to an epitaxial growth temperature of cubic silicon carbide so as to carbonize a surface of the silicon substrate or the monocrystalline silicon film and form a cubic silicon carbide film; and a second step of introducing a carbon-containing gas and a silicon-containing gas onto the cubic silicon carbide film while maintaining the cubic silicon carbide film at the epitaxial growth temperature of cubic silicon carbide, so as to allow further epitaxial growth of the cubic silicon carbide film.
  • According to the cubic silicon carbide film manufacturing method of the aspect of the invention, a carbon-containing gas is introduced onto the silicon substrate or the monocrystalline silicon film, and the silicon substrate surface or the monocrystalline silicon film is rapidly heated to the epitaxial growth temperature of cubic silicon carbide to carbonize the silicon substrate surface or the monocrystalline silicon film with the carbon-containing gas and form a cubic silicon carbide film.
  • Further, a carbon-containing gas and a silicon-containing gas are introduced onto the cubic silicon carbide film while maintaining the cubic silicon carbide film at the epitaxial growth temperature of the cubic silicon carbide, so as to allow further epitaxial growth of the cubic silicon carbide film.
  • In this way, a high-quality cubic silicon carbide film with few crystal defects can be formed more quickly than when the cubic silicon carbide film is epitaxially grown at a constant temperature.
  • A high-quality cubic silicon carbide film with few crystal defects can thus be obtained at high speed.
  • The cubic silicon carbide film manufacturing method according to the aspect of the invention may further include a third step of forming a monocrystalline silicon film on the cubic silicon carbide film by introducing a silicon-containing gas onto the cubic silicon carbide film epitaxially grown in the second step, with the cubic silicon carbide film being set to an epitaxial growth temperature of monocrystalline silicon, wherein the first step and the second step are sequentially performed after the third step.
  • In the cubic silicon carbide film manufacturing method of this configuration, the third step is performed that forms a monocrystalline silicon film on the cubic silicon carbide film by introducing a silicon-containing gas onto the cubic silicon carbide film epitaxially grown in the second step, with the cubic silicon carbide film being set to an epitaxial growth temperature of monocrystalline silicon, and the first and second steps are sequentially performed after the third step. Thus, the cubic silicon carbide film can be obtained in a desired thickness as a laminate of epitaxially grown cubic silicon carbide layers. In this way, a high-quality cubic silicon carbide film of a desired thickness with few crystal defects can easily be obtained at high speed.
  • In the cubic silicon carbide film manufacturing method according to the aspect of the invention, the rapid heating may be performed at a rate of temperature increase of from 5° C./sec to 200° C./sec.
  • With the rapid heating being performed a rate of temperature increase of from 5° C./sec to 200° C./sec, in the cubic silicon carbide film manufacturing method according to the aspect of the invention, a high-quality cubic silicon carbide film with few crystal defects can be obtained at even higher speed.
  • In the cubic silicon carbide film manufacturing method according to the aspect of the invention, the carbon-containing gas and the silicon-containing gas may be switched by controlling a flow rate of the carbon-containing gas and a flow rate of the silicon-containing gas.
  • In the cubic silicon carbide film manufacturing method of this configuration, switching between the carbon-containing gas and the silicon-containing gas can be easily and conveniently performed by controlling the flow rate of the carbon-containing gas and the flow rate of the silicon-containing gas.
  • In the cubic silicon carbide film manufacturing method according to the aspect of the invention, the carbon-containing gas may contain hydrocarbon gas.
  • In the cubic silicon carbide film manufacturing method of this configuration, the carbon atoms contained in the carbon-containing gas bind to the silicon atoms in the monocrystalline silicon film to generate a cubic silicon carbide film. In this way, a cubic silicon carbide film can easily be formed on the surface of the silicon substrate.
  • In the cubic silicon carbide film manufacturing method according to the aspect of the invention, the silicon-containing gas may contain silane gas.
  • In the cubic silicon carbide film manufacturing method of this configuration, the silicon atoms generated by the decomposition of the silicon-containing gas form a monocrystalline silicon film on the silicon substrate or the monocrystalline silicon film. In this way, the monocrystalline silicon film can easily be formed.
  • Another aspect of the invention is directed to a method for manufacturing a cubic silicon carbide film-attached substrate that includes a cubic silicon carbide film formed on a silicon substrate or on a monocrystalline silicon film formed on the substrate, the method including: a first step of introducing a carbon-containing gas onto the silicon substrate or the monocrystalline silicon film, and rapidly heating the silicon substrate or the monocrystalline silicon film to an epitaxial growth temperature of cubic silicon carbide so as to carbonize a surface of the silicon substrate or the monocrystalline silicon film and form the cubic silicon carbide film; a second step of introducing a carbon-containing gas and a silicon-containing gas onto the cubic silicon carbide film while maintaining the cubic silicon carbide film at the epitaxial growth temperature of cubic silicon carbide, so as to allow further epitaxial growth of the cubic silicon carbide film.
  • According to the cubic silicon carbide film-attached substrate manufacturing method of the aspect of the invention, a carbon-containing gas is introduced onto the silicon substrate or the monocrystalline silicon film, and the silicon substrate surface or the monocrystalline silicon film is rapidly heated to the epitaxial growth temperature of cubic silicon carbide to carbonize the silicon substrate surface or the monocrystalline silicon film with the carbon-containing gas and form a cubic silicon carbide film.
  • Further, a carbon-containing gas and a silicon-containing gas are introduced onto the cubic silicon carbide film while maintaining the cubic silicon carbide film at the epitaxial growth temperature of cubic silicon carbide, so as to allow further epitaxial growth of the cubic silicon carbide film.
  • In this way, a high-quality cubic silicon carbide film with few crystal defects can be formed more quickly than when the cubic silicon carbide film is epitaxially grown at a constant temperature.
  • A substrate including such a high-quality cubic silicon carbide film with few crystal defects can thus be obtained at high speed.
  • The cubic silicon carbide film-attached substrate manufacturing method according to the aspect of the invention may further include a third step of forming a monocrystalline silicon film on the cubic silicon carbide film by introducing a silicon-containing gas onto the cubic silicon carbide film epitaxially grown in the second step, with the cubic silicon carbide film being set to an epitaxial growth temperature of monocrystalline silicon, wherein the first step and the second step are sequentially performed after the third step.
  • In the cubic silicon carbide film-attached substrate manufacturing method of this configuration, the third step is performed that forms a monocrystalline silicon film on the cubic silicon carbide film by introducing a silicon-containing gas onto the cubic silicon carbide film epitaxially grown in the second step, with the cubic silicon carbide film being set to an epitaxial growth temperature of monocrystalline silicon, and the first and second steps are sequentially performed after the third step. Thus, the cubic silicon carbide film can be obtained in a desired thickness as a laminate of epitaxially grown cubic silicon carbide layers. In this way, a substrate including a high-quality cubic silicon carbide film of a desired thickness with few crystal defects can be obtained at high speed.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The invention will be described with reference to the accompanying drawings, wherein like numbers reference like elements.
  • FIG. 1 is a cross sectional view illustrating a cubic silicon carbide film-attached substrate of an embodiment of the invention.
  • FIG. 2 is a diagram representing the relationship between substrate temperature and the flow rates of carbon source gas and silicon source gas in each section of a temperature cycle of Example 1 of the invention.
  • FIG. 3 is a diagram representing the relationship between substrate temperature and the flow rates of carbon source gas and silicon source gas in each section of a temperature cycle of Example 2 of the invention.
  • FIG. 4 is a diagram representing the relationship between substrate temperature and the flow rates of carbon source gas and silicon source gas in each section of a temperature cycle of Example 3 of the invention.
  • FIG. 5 is a diagram representing the relationship between substrate temperature and the flow rates of carbon source gas and silicon source gas in each section of a temperature cycle of Example 4 of the invention.
  • FIG. 6 is a diagram representing the relationship between substrate temperature and the flow rates of carbon source gas and silicon source gas in each section of a temperature cycle of Example 5 of the invention.
  • FIG. 7 is a diagram representing the relationship between substrate temperature and the flow rates of carbon source gas and silicon source gas in each section of a temperature cycle of Example 6 of the invention.
  • FIG. 8 is a diagram representing the growth time dependence of the thickness of a cubic silicon carbide film formed in Example 6 of the invention, and of the thickness of a cubic silicon carbide film formed by a continuous process.
  • FIG. 9 is a diagram representing the relationship between the rate of temperature increase and the thickness of the cubic silicon carbide film of Example 7 of the invention.
  • FIG. 10 is a diagram representing changes in substrate temperature with the rate of temperature increase solely varied for the temperature increase of from 900° C. to 950° C.
  • FIG. 11 is a diagram representing the thickness of a carbide layer formed by the rapid heating of a substrate from 900° C. to 950° C., and of a carbide layer formed by low-speed heating.
  • DESCRIPTION OF EXEMPLARY EMBODIMENTS
  • An embodiment of a cubic silicon carbide film manufacturing method and a cubic silicon carbide film-attached substrate manufacturing method according to the invention is described below.
  • For ease of explaining the content of the invention, the dimensions including the shapes of the structural components described herein do not necessarily reflect the actual measurements.
  • FIG. 1 is a cross sectional view illustrating a cubic silicon carbide film-attached substrate of an embodiment of the invention. As illustrated in the figure, a cubic silicon carbide film-attached substrate 1 includes a cubic silicon carbide (3C—SiC) film 3 as a 20-layer laminate of cubic silicon carbide (3C—SiC) films 3 a to 3 t formed on a surface 2 a of a silicon (Si) substrate 2.
  • In the cubic silicon carbide film-attached substrate 1, the lamination of the cubic silicon carbide (3C—SiC) films 3 a to 3 t in 20 layers forms the cubic silicon carbide (3C—SiC) film 3 as a high-quality laminate of a desired thickness with few crystal defects.
  • A method for manufacturing the cubic silicon carbide film-attached substrate 1 is described below.
  • First, the silicon substrate 2 is prepared, and housed in the chamber of a heat treatment furnace. After creating a vacuum in the chamber, the silicon substrate 2 is heated to raise the substrate temperature to a predetermined temperature of, for example, 750° C., and heat-treated for a predetermined time period of, for example, 5 minutes to clean the natural oxide film and the like on the surface 2 a of the silicon substrate 2.
  • Then, the temperature of the silicon substrate 2 is set to a temperature of from room temperature to the epitaxial growth temperature T1 of monocrystalline silicon. At temperature T1, the epitaxial growth of the cubic silicon carbide proceeds slowly, and thus the temperature T1 set for the temperature of the silicon substrate 2 can limit the epitaxial growth to only the monocrystalline silicon.
  • Thereafter, the silicon substrate 2 is rapidly heated to the epitaxial growth temperature T2 of cubic silicon carbide higher than the epitaxial growth temperature T1 of monocrystalline silicon while introducing a carbon source gas (carbon-containing gas) onto the silicon substrate 2.
  • The carbon source gas is preferably hydrocarbon gas. Preferred examples include methane (CH4), ethane (C2H6) acethylene (C2H2) ethylene (C2H4), propane (C3H8), n-butane (n-C4H10), isobutane (i-C4H10), and neopentane (neo-C5H12). These may be used either alone or as a mixture of two or more.
  • The rapid heating is the heating that raises the temperature at a rate of temperature increase that exceeds the reference rate of temperature increase of, for example, 10° C./min. The rate of temperature increase in rapid heating is preferably from 5° C./sec to 200° C./sec.
  • In rapid heating, a rate of temperature increase below 5° C./sec is too slow, and may cause silicon to sublime from the surface of the silicon substrate 2 and roughen the surface, if the carbon gas supply is small. With a large carbon gas supply, such a slow rate may lead to formation of a thin carbide layer on the surface of the silicon substrate 2, preventing further growth and impairing the growth rate increasing effect. On the other hand, a rate of temperature increase in excess of 200° C./sec in rapid heating makes the heating too rapid, and fails to sufficiently carbonize the surface of the silicon substrate 2, resulting in insufficient silicon carbide generation.
  • For the introduction of the carbon source gas, only the carbon source gas can be introduced by separately controlling the flow rates of the carbon source gas and the silicon source gas (silicon-containing gas).
  • In the process of rapid heating, the carbon source gas carbonizes the surface of the silicon substrate 2, and forms a cubic silicon carbide film.
  • Upon the substrate temperature reaching the cubic silicon carbide epitaxial growth temperature T2, the temperature of the silicon substrate 2 is held at epitaxial growth temperature T2, and the flow rates of the carbon source gas and the silicon source gas are set to the flow rates suitable for the epitaxial growth of cubic silicon carbide.
  • The silicon source gas is preferably silane gas. Preferred examples include monosilane (SiH4), disilane (Si2H6), trisilane (Si3H8), tetrasilane (Si4H10) dichlorosilane (SiH2Cl2), tetrachlorosilane (SiCl4) trichlorosilane (SiHCl3), and hexachlorodisilane (Si2Cl6). These may be used either alone or as a mixture of two or more. During this process, the cubic silicon carbide film 3 a is formed on the cubic silicon carbide film by the epitaxial growth of cubic silicon carbide.
  • Thereafter, the supply of the carbon source gas and the silicon source gas is stopped, and the temperature of the silicon substrate 2 is lowered to the epitaxial growth temperature T1 of monocrystalline silicon.
  • Upon the silicon substrate 2 reaching the monocrystalline silicon epitaxial growth temperature T1, the flow rate of the silicon source gas is set to the flow rate suitable for the epitaxial growth of monocrystalline silicon.
  • During this process, a monocrystalline silicon film is formed on the cubic silicon carbide film 3 a by the epitaxial growth of monocrystalline silicon.
  • The monocrystalline silicon epitaxial growth and the subsequent steps are repeated until the resulting cubic silicon carbide film has a desired thickness.
  • In this embodiment, the following steps (1) to (4) are repeated.
      • (1) The step of allowing monocrystalline silicon to epitaxially grow on the cubic silicon carbide film 3 a while introducing silicon source gas, upon the substrate temperature reaching the monocrystalline silicon epitaxial growth temperature T1.
      • (2) The step of rapidly heating the substrate to the epitaxial growth temperature T2 of cubic silicon carbide while introducing carbon source gas onto the monocrystalline silicon film formed on the cubic silicon carbide film 3 a.
      • (3) The step of allowing the cubic silicon carbide film to epitaxially grow while introducing carbon source gas and silicon source gas at predetermined flow rates, upon the substrate temperature reaching the epitaxial growth temperature T2.
      • (4) The step of stopping the supply of the carbon source gas and the silicon source gas, and lowering the substrate temperature to the monocrystalline silicon epitaxial growth temperature T1.
  • By repeating these steps (1) to (4) multiple times, the cubic silicon carbide film-attached substrate 1 can be obtained that has the cubic silicon carbide film 3 of a desired thickness.
  • For example, by repeating these steps 19 times, the cubic silicon carbide film-attached substrate 1 can be obtained that has the cubic silicon carbide film 3 formed as a 20-layer laminate of the cubic silicon carbide films 3 a to 3 t, as illustrated in FIG. 1.
  • With the cubic silicon carbide film-attached substrate manufacturing method of the present embodiment, the cubic silicon carbide film-attached substrate 1 including the cubic silicon carbide film formed in high quality with few crystal defects can be quickly obtained at a low epitaxial growth temperature after the repeated steps of generating and growing the cubic silicon carbide film, generating a monocrystalline silicon film on the cubic silicon carbide film, and generating and growing the cubic silicon carbide film by the carbonization of the monocrystalline silicon film.
  • EXAMPLES
  • The invention is described below in more detail based on Examples. Note, however, that the invention is not limited by the following Examples.
  • Example 1
  • FIG. 2 is a diagram representing the relationship between substrate temperature and the flow rates of carbon source gas and silicon source gas in each section of the temperature cycle of Example 1. In this example, neopentane (neo-C5H12) and dichlorosilane (SiH2Cl2) were used as carbon source gas and silicon source gas, respectively. The monocrystalline silicon epitaxial growth temperature T1 and cubic silicon carbide epitaxial growth temperature T2 were 800° C. and 1,000° C., respectively.
  • The carbon source gas and the silicon source gas were set to have optimum flow rates Fc1 to Fc4 and Fsi 1 to Fsi 4, respectively, for section S1 (rapid heating carbonization process), section S2 (cubic silicon carbide film epitaxial growth process), section S3 (substrate temperature lowering process), and section S4 (monocrystalline silicon epitaxial growth process).
  • Here, because only the carbon source gas needs to be introduced in section S1 (rapid heating carbonization process), the carbon source gas flow rate Fc1=3 sccm, and the silicon source gas flow rate Fsi 1=0 sccm.
  • In section S2 (cubic silicon carbide film epitaxial growth process), both the carbon source gas and the silicon source gas need to be introduced in good balance. Accordingly, the carbon source gas flow rate Fc2=5 sccm, and the silicon source gas flow rate Fsi 2=5 sccm.
  • Section S3 (substrate temperature lowering process) does not require the supply of carbon source gas and silicon source gas. Accordingly, the carbon source gas flow rate Fc3=0 sccm, and the silicon source gas flow rate Fsi 3=0 sccm.
  • In section S4 (monocrystalline silicon epitaxial growth process), only the silicon source gas needs to be introduced. Accordingly, the carbon source gas flow rate Fc4=0 sccm, and the silicon source gas flow rate Fsi 4=20 sccm.
  • By optimally setting the carbon source gas flow rates Fc1, Fc2, Fc3, Fc4, and the silicon source gas flow rates Fsi 1, Fsi 2, Fsi 3, Fsi 4 for sections S1 to S4, a cubic silicon carbide film was quickly obtained in high quality with few crystal defects at a low epitaxial growth temperature.
  • Example 2
  • FIG. 3 is a diagram representing the relationship between substrate temperature and the flow rates of carbon source gas and silicon source gas in each section of the temperature cycle of Example 2. Example 2 differs from Example 1 in that the carbon source gas flow rate Fc2=3 sccm, and that the silicon source gas flow rate Fsi 2=0 sccm.
  • In section S2 (cubic silicon carbide film epitaxial growth process), the carbon source gas flow rate Fc2=3 sccm, and the silicon source gas flow rate Fsi 2=0 sccm. This creates an atmosphere with the excess carbon source gas, and promotes carbonization and thus the generation of the cubic silicon carbide film.
  • Example 3
  • FIG. 4 is a diagram representing the relationship between substrate temperature and the flow rates of carbon source gas and silicon source gas in each section of the temperature cycle of Example 3. Example 3 differs from Example 1 in that the carbon source gas flow rate Fc1=Fc2=5 sccm, and Fc3=Fc4=0 sccm, and that the silicon source gas flow rate Fsi 1=Fsi 2=Fsi 3=Fc4=20 sccm.
  • In section S1 (rapid heating carbonization process), here, both the carbon source gas and the silicon source gas are introduced. However, the introduction of the silicon source gas does not pose any problem, because the effect of carbonization by the carbon source gas far exceeds the growth by the silicon source gas.
  • Example 4
  • FIG. 5 is a diagram representing the relationship between substrate temperature and the flow rates of carbon source gas and silicon source gas in each section of the temperature cycle of Example 4. Example 4 differs from Example 1 in that the carbon source gas flow rate Fc1=Fc2=Fc3=Fc4=5 sccm, and that the silicon source gas flow rate Fsi 1=Fsi 2=Fsi 3=Fc4=20 sccm.
  • In section S4 (monocrystalline silicon epitaxial growth process), both the carbon source gas and the silicon source gas are introduced. However, the introduction of the carbon source gas and the silicon source gas does not pose any problem, because this temperature range is the silicon epitaxial growth range by the silicon source gas, where there is no epitaxial growth of cubic silicon carbide.
  • Example 5
  • FIG. 6 is a diagram representing the relationship between substrate temperature and the flow rates of carbon source gas and silicon source gas in each section of the temperature cycle of Example 5. Example 5 differs from Example 1 in that the carbon source gas flow rate Fc1=Fc2=Fc3=Fc4=5 sccm, and that the silicon source gas flow rate Fsi 1=Fsi 2=Fsi 3=0 scam, Fc4=20 scam.
  • As in Example 4, both the carbon source gas and the silicon source gas are introduced in section S4 (monocrystalline silicon epitaxial growth process). However, the introduction of the carbon source gas and the silicon source gas does not pose any problem, because this temperature range is the silicon epitaxial growth range by the silicon source gas, where there is no epitaxial growth of cubic silicon carbide.
  • As in Example 1, a cubic silicon carbide film can be quickly obtained in high quality with few crystal defects at a low epitaxial growth temperature also in Examples 2 to 5, by optimally setting the carbon source gas flow rates Fc1, Fc2, Fc3, Fc4, and the silicon source gas flow rates Fsi 1, Fsi 2, Fsi 3, Fsi 4 for each section.
  • Example 6
  • FIG. 7 is a diagram representing the relationship between substrate temperature and the flow rates of carbon source gas and silicon source gas in each section of the temperature cycle of Example 6. In this example, neopentane (neo-C5H12) and dichlorosilane (SiH2Cl2) were used as carbon source gas and silicon source gas, respectively, and 5 cycles of epitaxial growth were performed at the monocrystalline silicon epitaxial growth temperature T1 and cubic silicon carbide epitaxial growth temperature T2 of 900° C. and 1,000° C., respectively.
  • Section S1 (rapid heating carbonization process), section S2 (cubic silicon carbide film epitaxial growth process), section S3 (substrate temperature lowering process), and section S4 (monocrystalline silicon epitaxial growth process) were set to 60 seconds, 300 seconds, 120 seconds, and 300 seconds, respectively. The flow rates of the carbon source gas were Fc1=1 sccm, Fc2=Fc3=5 sccm, Fc4=0 sccm. The flow rates of the silicon source gas were Fsi 1=0 sccm, Fsi 2=Fsi 3=Fsi 4=20 sccm.
  • The epitaxial growth was also performed in 10 cycles and in 20 cycles using the same temperature cycle.
  • FIG. 8 is a diagram representing the growth time dependence of the thickness of the cubic silicon carbide film formed by the cycle process of FIG. 7, and of the cubic silicon carbide film formed by a common continuous process that involves epitaxial growth at constant temperature.
  • The continuous process was performed under the conditions of: substrate temperature=1,000° C.; the flow rate of the carbon source gas (neopentane (neo-C5H12))=5 sccm; and the flow rate of the silicon source gas (dichlorosilane (SiH2Cl2))=20 sccm.
  • The cycle process time is represented by the product of the number of cycles and the total growth time in section S1 (rapid heating carbonization process), section (cubic silicon carbide film epitaxial, growth process), and section S3 (substrate temperature lowering process).
  • The growth rate in the cycle process was 33.1 nm/hour, as opposed to 25.1 nm/hour in the continuous process, demonstrating that the growth rate can be increased by performing the cycle process, given the same process conditions.
  • The increase in growth rate over the continuous process is only slightly higher than 1.3 fold in FIG. 8. This is because the process time was not optimized for each section. The growth rate can be further improved by optimizing the process time of each section.
  • Example 7
  • FIG. 9 is a diagram representing the relationship between the rate of temperature increase and the thickness of the cubic silicon carbide film of Example 7. The figure represents the thickness of the cubic silicon carbide film formed after heating the silicon substrate to 600° C., when (1) the substrate was subsequently heated to 1,000° C. at a rate of temperature increase of 180° C./sec, and carbonized at 1,000° C. for 10 minutes while introducing the carbon source gas ethylene (C2H4) at a flow rate of 3 sccm, (2) the substrate was subsequently heated to 1,000° C. at a rate of temperature increase of 150° C./sec, and carbonized at 1,000° C. for 5 minutes while introducing the ethylene (C2H4) gas at a flow rate of 10 sccm, and (3) the substrate was subsequently heated to 1,000° C. at a rate of temperature increase of 10′C/sec, and carbonized at 1,000° C. for 5 minutes while introducing the ethylene (C2H4) gas at a flow rate of 10 sccm.
  • It can be seen from the figure that the rapid heating to 1,000° C. at the rate of temperature increase of 150° C./sec or more quickly forms a cubic silicon carbide film that is about three times as thick as that formed without rapid heating.
  • FIG. 10 is a diagram representing changes in substrate temperature with the rate of temperature increase solely varied for the temperature increase of from 900° C. to 950° C.
  • In the figure, the solid line indicates temperature changes in carbonization performed by increasing the temperature at a slow rate of temperature increase of 10° C./min until the substrate temperature of 900° C., followed by rapid heating from the substrate temperature of 900° C. to 950° C. at a rate of temperature increase of 5° C./sec.
  • The broken line indicates temperature changes in the case where the temperature was increased at a slow rate of temperature increase of 10° C./min until the substrate temperature reached 950° C.
  • FIG. 11 represents the thicknesses of carbide layers formed after the carbonization performed at 950° C. for 5 minutes upon the temperature reaching 950° C. along the paths of the solid line and broken line in the presence of the carbon source gas ethylene (C2H4) flowed at a rate of 10 sccm. It can be seen from the figure that the rapid heating of the substrate from 900° C. to 950° C. promoted the carbonization reaction further compared to the gradual heating, and formed the carbide film in a shorter time period.
  • At temperatures of 900° C. and lower, there was epitaxial growth of monocrystalline silicon, but substantially no epitaxial growth of the cubic silicon carbide film was observed. Thus, by subjecting the substrate to repeated temperature changes between the monocrystalline silicon epitaxial growth temperature range of 900° C. or less and the rapid heating range of from 900° C. to 950° C., it is possible to alternately perform (1) the epitaxial growth of monocrystalline silicon, and (2) the generation of the cubic silicon carbide film by the carbonization of the monocrystalline silicon, and the epitaxial growth of the cubic silicon carbide film.
  • The rapid heating allows the cubic silicon carbide film to be formed more quickly than the common process, and thus enables formation of the cubic silicon carbide film at high speed even at relatively low temperatures.
  • Further, because the cubic silicon carbide film can be formed at low temperature, generation of crystal defects due to the difference in the thermal expansion of the silicon substrate and the cubic silicon carbide film can be suppressed, and a high-quality cubic silicon carbide film with few crystal defects can be formed.
  • The cubic silicon carbide film-attached substrate 1 of the present embodiment is configured to include the cubic silicon carbide film 3 formed as a 20-layer laminate of the cubic silicon carbide films 3 a to 3 t on the surface 2 a of the silicon substrate 2. However, the number of the laminated layers in the cubic silicon carbide film may be decided according to the required characteristics.
  • Further, the invention is equally effective when the silicon substrate 2 is replaced with a substrate that includes a monocrystalline silicon film formed on the substrate surface. In this case, the monocrystalline silicon film needs to be sufficiently thick to allow carbonization by rapid heating.
  • The monocrystalline silicon carbide film-attached substrate 1 also can be used as semiconductor material for the next generation of low-loss power devices.

Claims (8)

What is claimed is:
1. A method of manufacturing a cubic silicon carbide film, comprising:
introducing a first gas that contains carbon onto a silicon substrate or onto a monocrystalline silicon film disposed on the substrate,
forming a first cubic silicon carbide film by heating the silicon substrate or the monocrystalline silicon film to an epitaxial growth temperature of cubic silicon carbide so as to carbonize a surface of the silicon substrate or the monocrystalline silicon film; and
forming a second cubic carbide film by introducing the first gas that contains carbon and a second gas that contains silicon onto the first cubic silicon carbide film while maintaining the first cubic silicon carbide film at the epitaxial growth temperature of cubic silicon carbide so as to perform further epitaxial growth of cubic silicon carbide film.
2. The method according to claim 1, further comprising:
forming a monocrystalline silicon film on the second cubic silicon carbide film by introducing the second gas that contains silicon onto the second cubic silicon carbide film, a temperature of the second cubic silicon carbide film being set to the epitaxial growth temperature of monocrystalline silicon;
after the forming the monocrystalline silicon on the second cubic silicon carbide film, introducing the first gas that contains the carbon;
forming a third cubic silicon carbide film by heating the monocrystalline silicon film to an epitaxial growth temperature of cubic silicon carbide so as to carbonize a surface of the monocrystalline silicon film; and
forming a fourth cubic carbide film by introducing the first gas that contains the carbon and the second gas that contains silicon onto the third cubic silicon carbide film while maintaining the third cubic silicon carbide film at the epitaxial growth temperature of cubic silicon carbide so as to perform further epitaxial growth of the cubic silicon carbide film.
3. The method according to claim 1,
a rate of temperature rising of the heating being in a range of 5° C./sec to 200° C./sec.
4. The method according to claim 1,
switching of the first gas and the second gas being performed by controlling a flow rate of the first gas and a flow rate of the second gas.
5. The method according to claim 1,
the first gas containing hydrocarbon.
6. The method according to claim 1,
the second gas containing silane.
7. A method of manufacturing a substrate including cubic silicon carbide film the method comprising:
introducing a first gas that contains carbon onto a silicon substrate or onto a monocrystalline silicon film disposed on the substrate,
forming a first cubic silicon carbide film by heating the silicon substrate or the monocrystalline silicon film to an epitaxial growth temperature of cubic silicon carbide so as to carbonize a surface of the silicon substrate or the monocrystalline silicon film; and
forming a second cubic carbide film by introducing the first gas that contains carbon and the second gas that contains silicon onto the first cubic silicon carbide film while maintaining the first cubic silicon carbide film at the epitaxial growth temperature of cubic silicon carbide so as to perform further epitaxial growth of cubic silicon carbide film.
8. The method according to claim 7, further comprising:
forming a monocrystalline silicon film on the second cubic silicon carbide film by introducing a second gas that contains silicon onto the second cubic silicon carbide film, a temperature of the second cubic silicon carbide film being set to the epitaxial growth temperature of monocrystalline silicon;
after the forming the monocrystalline silicon on the second cubic silicon carbide film, introducing the first gas that contains the carbon;
forming a third cubic silicon carbide film by heating the monocrystalline silicon film to an epitaxial growth temperature of cubic silicon carbide so as to carbonize a surface of the monocrystalline silicon film; and
forming a fourth cubic carbide film by introducing the first gas that contains the carbon and the second gas that contains the silicon onto the third cubic silicon carbide film while maintaining the third cubic silicon carbide film at the epitaxial growth temperature of cubic silicon carbide so as to perform further epitaxial growth of the cubic silicon carbide film.
US13/189,776 2010-08-13 2011-07-25 Cubic silicon carbide film manufacturing method, and cubic silicon carbide film-attached substrate manufacturing method Abandoned US20120037067A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/737,281 US9732439B2 (en) 2010-08-13 2015-06-11 Method of forming a laminate of epitaxially grown cubic silicon carbide layers, and method of forming a substrate-attached laminate of epitaxially grown cubic silicon carbide layers

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010181206A JP5720140B2 (en) 2010-08-13 2010-08-13 Method for manufacturing cubic silicon carbide film and method for manufacturing substrate with cubic silicon carbide film
JP2010-181206 2010-08-13

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/737,281 Division US9732439B2 (en) 2010-08-13 2015-06-11 Method of forming a laminate of epitaxially grown cubic silicon carbide layers, and method of forming a substrate-attached laminate of epitaxially grown cubic silicon carbide layers

Publications (1)

Publication Number Publication Date
US20120037067A1 true US20120037067A1 (en) 2012-02-16

Family

ID=45563841

Family Applications (2)

Application Number Title Priority Date Filing Date
US13/189,776 Abandoned US20120037067A1 (en) 2010-08-13 2011-07-25 Cubic silicon carbide film manufacturing method, and cubic silicon carbide film-attached substrate manufacturing method
US14/737,281 Active 2031-08-20 US9732439B2 (en) 2010-08-13 2015-06-11 Method of forming a laminate of epitaxially grown cubic silicon carbide layers, and method of forming a substrate-attached laminate of epitaxially grown cubic silicon carbide layers

Family Applications After (1)

Application Number Title Priority Date Filing Date
US14/737,281 Active 2031-08-20 US9732439B2 (en) 2010-08-13 2015-06-11 Method of forming a laminate of epitaxially grown cubic silicon carbide layers, and method of forming a substrate-attached laminate of epitaxially grown cubic silicon carbide layers

Country Status (2)

Country Link
US (2) US20120037067A1 (en)
JP (1) JP5720140B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150287613A1 (en) * 2014-04-04 2015-10-08 Marko J. Tadjer Basal plane dislocation elimination in 4h-sic by pulsed rapid thermal annealing
CN117293015A (en) * 2023-11-23 2023-12-26 希科半导体科技(苏州)有限公司 Growth method of silicon carbide epitaxial layer of silicon substrate and silicon-based silicon carbide epitaxial wafer

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6628673B2 (en) * 2016-04-05 2020-01-15 昭和電工株式会社 Manufacturing method of epitaxial silicon carbide single crystal wafer

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4623425A (en) * 1983-04-28 1986-11-18 Sharp Kabushiki Kaisha Method of fabricating single-crystal substrates of silicon carbide
JP2002057109A (en) * 2000-08-10 2002-02-22 Hoya Corp Silicon carbide-manufacturing method, silicon carbide, and semiconductor device
US20020096104A1 (en) * 2001-01-19 2002-07-25 Hoya Corporation Single crystal SiCand method of producing the same as well as SiC semiconductor device and SiC composite material
US6821340B2 (en) * 2000-05-31 2004-11-23 Hoya Corporation Method of manufacturing silicon carbide, silicon carbide, composite material, and semiconductor element
US7416605B2 (en) * 2007-01-08 2008-08-26 Freescale Semiconductor, Inc. Anneal of epitaxial layer in a semiconductor device
US7763529B2 (en) * 2008-10-01 2010-07-27 National Tsing Hua University Method of fabricating silicon carbide (SiC) layer

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004343133A (en) * 2004-06-21 2004-12-02 Hoya Corp Manufacturing method of silicon carbide, silicon carbide, and semiconductor device
US20100072485A1 (en) * 2007-03-26 2010-03-25 Kyoto University Semiconductor device and semiconductor manufacturing method
JP2009158702A (en) * 2007-12-26 2009-07-16 Kyushu Institute Of Technology Light-emitting device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4623425A (en) * 1983-04-28 1986-11-18 Sharp Kabushiki Kaisha Method of fabricating single-crystal substrates of silicon carbide
US6821340B2 (en) * 2000-05-31 2004-11-23 Hoya Corporation Method of manufacturing silicon carbide, silicon carbide, composite material, and semiconductor element
JP2002057109A (en) * 2000-08-10 2002-02-22 Hoya Corp Silicon carbide-manufacturing method, silicon carbide, and semiconductor device
US20020096104A1 (en) * 2001-01-19 2002-07-25 Hoya Corporation Single crystal SiCand method of producing the same as well as SiC semiconductor device and SiC composite material
US7416605B2 (en) * 2007-01-08 2008-08-26 Freescale Semiconductor, Inc. Anneal of epitaxial layer in a semiconductor device
US7763529B2 (en) * 2008-10-01 2010-07-27 National Tsing Hua University Method of fabricating silicon carbide (SiC) layer

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150287613A1 (en) * 2014-04-04 2015-10-08 Marko J. Tadjer Basal plane dislocation elimination in 4h-sic by pulsed rapid thermal annealing
US10403509B2 (en) * 2014-04-04 2019-09-03 The Government Of The United States Of America, As Represented By The Secretary Of The Navy Basal plane dislocation elimination in 4H—SiC by pulsed rapid thermal annealing
CN117293015A (en) * 2023-11-23 2023-12-26 希科半导体科技(苏州)有限公司 Growth method of silicon carbide epitaxial layer of silicon substrate and silicon-based silicon carbide epitaxial wafer

Also Published As

Publication number Publication date
JP5720140B2 (en) 2015-05-20
US20150275394A1 (en) 2015-10-01
US9732439B2 (en) 2017-08-15
JP2012041204A (en) 2012-03-01

Similar Documents

Publication Publication Date Title
US10199219B2 (en) Method of manufacturing semiconductor device, substrate processing apparatus, and recording medium
CN103228827B (en) Method for producing epitaxial silicon carbide single crystal substrate
WO2016010126A1 (en) Method for producing epitaxial silicon carbide wafers
US9732439B2 (en) Method of forming a laminate of epitaxially grown cubic silicon carbide layers, and method of forming a substrate-attached laminate of epitaxially grown cubic silicon carbide layers
JP2011135051A5 (en)
JP7290135B2 (en) Semiconductor substrate manufacturing method and SOI wafer manufacturing method
US9758902B2 (en) Method for producing 3C-SiC epitaxial layer, 3C-SiC epitaxial substrate, and semiconductor device
US7763529B2 (en) Method of fabricating silicon carbide (SiC) layer
JP2012151401A (en) Semiconductor substrate and method for manufacturing the same
JP5024886B2 (en) Planarization processing method and crystal growth method
JP2006253617A (en) SiC SEMICONDUCTOR AND ITS MANUFACTURING METHOD
JP5573725B2 (en) Method for manufacturing cubic silicon carbide semiconductor substrate
Hernandez et al. Study of surface defects on 3C–SiC films grown on Si (1 1 1) by CVD
Kubo et al. Epitaxial growth of 3C-SiC on Si (111) using hexamethyldisilane and tetraethylsilane
JP6927429B2 (en) Manufacturing method of SiC epitaxial substrate
JP2004363510A (en) Manufacturing method of semiconductor substrate
WO2015097852A1 (en) METHOD FOR FORMING SINGLE CRYSTAL SiC EPITAXIAL FILM
WO2012090268A1 (en) Monocrystalline silicon carbide epitaxial substrate, method for producing same, and monocrystalline sic device
JP4766642B2 (en) SiC semiconductor and SiC epitaxial growth method
JP5315944B2 (en) Manufacturing method of silicon epitaxial wafer
JP7218832B1 (en) Manufacturing method of heteroepitaxial wafer
CN106399967B (en) A kind of preparation method of SiC thin-film material
JP2015078094A (en) Sic layer forming method, 3c-sic epitaxial substrate manufacturing method, and 3c-sic epitaxial substrate
JP7259906B2 (en) Manufacturing method of heteroepitaxial wafer
JP5267271B2 (en) Semiconductor substrate manufacturing method and semiconductor substrate

Legal Events

Date Code Title Description
AS Assignment

Owner name: SEIKO EPSON CORPORATION, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:WATANABE, YUKIMUNE;REEL/FRAME:026645/0733

Effective date: 20110623

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION