US20120021863A1 - Hypoid gear set for drive axle - Google Patents
Hypoid gear set for drive axle Download PDFInfo
- Publication number
- US20120021863A1 US20120021863A1 US12/841,243 US84124310A US2012021863A1 US 20120021863 A1 US20120021863 A1 US 20120021863A1 US 84124310 A US84124310 A US 84124310A US 2012021863 A1 US2012021863 A1 US 2012021863A1
- Authority
- US
- United States
- Prior art keywords
- gear
- pinion
- hypoid
- ring gear
- ring
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H1/00—Toothed gearings for conveying rotary motion
- F16H1/02—Toothed gearings for conveying rotary motion without gears having orbital motion
- F16H1/04—Toothed gearings for conveying rotary motion without gears having orbital motion involving only two intermeshing members
- F16H1/12—Toothed gearings for conveying rotary motion without gears having orbital motion involving only two intermeshing members with non-parallel axes
- F16H1/14—Toothed gearings for conveying rotary motion without gears having orbital motion involving only two intermeshing members with non-parallel axes comprising conical gears only
- F16H1/145—Toothed gearings for conveying rotary motion without gears having orbital motion involving only two intermeshing members with non-parallel axes comprising conical gears only with offset axes, e.g. hypoïd gearings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H1/00—Toothed gearings for conveying rotary motion
- F16H1/02—Toothed gearings for conveying rotary motion without gears having orbital motion
- F16H1/04—Toothed gearings for conveying rotary motion without gears having orbital motion involving only two intermeshing members
- F16H1/12—Toothed gearings for conveying rotary motion without gears having orbital motion involving only two intermeshing members with non-parallel axes
- F16H1/18—Toothed gearings for conveying rotary motion without gears having orbital motion involving only two intermeshing members with non-parallel axes the members having helical, herringbone, or like teeth
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H48/00—Differential gearings
- F16H48/06—Differential gearings with gears having orbital motion
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H57/00—General details of gearing
- F16H57/02—Gearboxes; Mounting gearing therein
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49462—Gear making
- Y10T29/49465—Gear mounting
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T74/00—Machine element or mechanism
- Y10T74/19—Gearing
- Y10T74/19642—Directly cooperating gears
- Y10T74/19688—Bevel
- Y10T74/19693—Motor vehicle drive
Definitions
- the subject invention relates to a hypoid ring and pinion gear set for commercial and off-highway vehicles that can achieve a large range of gear ratios within a single carrier packaging space.
- a single reduction drive axle includes a carrier with a pinion gear in meshing engagement with a ring gear.
- the pinion gear receives driving input from a vehicle driveshaft and the ring gear is configured to drive a differential gear assembly, which drives axle shafts to rotate laterally spaced wheels.
- Vehicle applications with single reduction axles include carrier configurations with spiral bevel gears or hypoid gears that can accommodate gear ratios of 7:1 to 2.5:1. Spiral bevel gears can achieve gear ratios as fast as 1:1; however, hypoid gears traditionally have not been able to achieve these faster ratios.
- planetary gear sets are included at laterally spaced wheel ends and are used in combination with a hypoid ring and pinion input gear set.
- the additional hub reduction may require the carrier to have faster ratios which cannot be achieved with current hypoid gear carrier configurations.
- the pinion size would become so large that it would be very difficult, if not impossible, to package the ring and pinion gear set within existing carriers.
- a hypoid gear set for a vehicle drivetrain includes a pinion gear in meshing engagement with a ring gear.
- the ring and pinion gear provide a predetermined gear ratio that can be increased up to fifty percent faster within a single carrier packaging envelope that is defined by a maximum ring gear diameter.
- the pinion and ring gears mesh with each other to provide a gear ratio range of 1.3:1 to 7.0:1 within the single carrier packaging envelope.
- the single carrier packaging envelope is no larger than an amount of space required to package a hypoid gear set having a maximum ring gear diameter of 600 mm.
- the hypoid gear set has a negative pinion offset.
- FIG. 1 comprises a schematic top view of a drive axle for a commercial vehicle that incorporates the subject invention.
- FIGS. 2A-2B comprise a front view of a prior art configuration with a left hand spiral pinion gear.
- FIGS. 3A-3B comprise a front view of a prior art configuration with a right hand spiral pinion gear.
- FIG. 4 comprises a front view of a ring and pinion gear set incorporating the subject invention with a right-hand spiral pinion gear below center configuration.
- FIG. 5 comprises a front view of a ring and pinion gear set incorporating the subject invention with a left-hand spiral pinion gear above center configuration.
- a vehicle drivetrain 12 includes a power source 14 , gearbox 16 , and drive shaft 18 that is coupled to a drive axle 20 .
- the power source 14 can comprise an engine or electric motor, for example.
- the gearbox 16 can comprise any combination of the following: for example, a main transmission, auxiliary transmission, drop box, transfer case, etc.
- the gearbox 16 may not be required for the drivetrain 12 .
- the drive axle 20 of FIG. 1 comprises a single reduction axle that includes a carrier assembly 22 positioned within an axle housing 24 as known.
- the carrier assembly 22 includes a hypoid pinion gear 26 , operably coupled to the drive shaft 18 , and which is in driving engagement with a hypoid ring gear 28 .
- the carrier also includes a differential gear assembly 30 which is driven by the ring gear 28 , and drives a pair of axle shafts 34 that drive laterally spaced vehicle wheels 36 .
- the drive axle 20 could comprise a double reduction axle, which would include an additional planetary gear set 38 (shown in dashed lines in FIG. 1 ) at each wheel end.
- the carrier has a carrier housing portion that defines an internal cavity 40 , which receives the hypoid pinion gear 26 , hypoid ring gear 28 , and differential gear assembly 30 .
- the internal cavity 40 defines a maximum allowable packaging envelope PE to receive these components.
- the internal cavity must be able to accommodate a gear set that can provide the desired range of gear ratios. This will be discussed in greater detail below.
- the drivetrain 12 is utilized in a commercial vehicle application.
- Commercial vehicles are used for transporting products for business or commercial purposes and include vehicles such as delivery trucks, tractor-trailers, and eighteen-wheelers, for example.
- the drivetrain 12 could also be used in off-highway vehicle applications such as loaders, lifters, skidders, etc.
- Traditional hypoid gear designs for the ring and pinion gear include either a left hand spiral pinion gear meshing with a right hand spiral ring gear in a pinion below center configuration, or a right hand spiral pinion gear meshing with a left had spiral ring gear in a pinion above center configuration. These traditional configurations are shown in FIGS. 2A and 3A .
- FIGS. 2A-2B show a traditional hypoid ring gear 100 having a front face 102 with a plurality of ring gear teeth 104 .
- a hypoid pinion gear 106 includes a pinion shaft 108 and a plurality of pinion gear teeth 112 .
- Convention for determining whether the gear set is a pinion above center configuration or a pinion below center configuration requires that, when facing the front face 102 of the ring gear 100 , the pinion 106 is positioned at the right hand side of the ring gear 100 to mesh with the ring gear teeth 104 .
- This configuration is shown in FIGS. 2A and 3A .
- the pinion gear 106 is defined as being below a ring gear center horizontal axis 114 and in FIG. 3A the pinion gear 106 is defined as being above the ring gear center horizontal axis 114 .
- the pinion gear 106 has a left hand spiral and the ring gear 100 has a right hand spiral.
- the pinion gear 106 has a right hand spiral and the ring gear 100 has a left hand spiral.
- left hand spiral pinion gears are always positioned below a center of the mating ring gear and right hand spiral pinion gears are always positioned above a center of the mating ring gear.
- FIG. 2B is the configuration of FIG. 2A rotated 180 degrees about ring gear axis 114 .
- FIG. 3B is the configuration of 3 A rotated 180 degrees about ring gear axis 114 .
- drive axles with hypoid ring and pinion gear sets for commercial vehicle applications have gear ratios in the range of 2.5:1 to 7:1.
- hub reductions such as those used in double reduction axles with planetary gear sets 38 at the wheel ends, faster gear ratios may needed for high speed applications.
- Hypoid gear ratios faster than 2.5:1 are very difficult, if not impossible, to package within the current carrier configurations.
- the subject hyoid ring gear 28 and pinion gear 26 are uniquely configured to achieve gear ratios below the typical 2.5:1 ratio, thus extending the overall ratio range to 1.3:1 to 7.0:1 in one single packaging envelope for a drive axle 20 as used in commercial vehicle applications.
- the drive axle 20 can comprise either a single reduction drive axle or a double reduction axle. This offers a significant competitive advantage over prior designs as the hypoid gear set provides faster gear ratios without having to increase carrier size. This is advantageous from cost, weight, and packaging perspectives.
- the hypoid gear set is uniquely configured such that a wider range of ratios can be packaged within a single maximum carrier packaging envelope.
- This packaging envelope is defined as being no larger than an amount of space required to package a differential and a hypoid gear set having a maximum ring gear diameter of 600 mm.
- the hypoid gear set has a predetermined gear ratio that can be varied up to a fifty percent faster ratio all within this single maximum packaging enveloped defined by the maximum ring gear diameter of 600 mm. This will be discussed in greater detail below.
- the hypoid gear set is able to provide this wider range of ratios by utilizing a negative pinion offset configuration.
- a negative pinion offset configuration the pinion gear has a smaller spiral angle than the spiral angle of the ring gear.
- the pinion gear has a greater spiral angle than the spiral angle of the ring gear.
- Negative pinion offset can have offset below the gear center axis with a right spiral pinion ( FIG. 4 ), or an offset above center with a left hand spiral pinion ( FIG. 5 ).
- the ring gear 28 includes a front face 40 having a plurality of ring gear teeth 42 .
- the pinion gear 26 includes a pinion shaft 50 and a plurality of pinion gear teeth 54 .
- the pinion gear 26 is positioned at the right side of the front face 40 with the pinion teeth 54 in meshing engagement with the ring gear teeth 42 .
- the pinion shaft 50 extends off to the right to be coupled to the driveshaft 18 .
- FIG. 4 shows a configuration where a pinion gear axis 56 is offset below a ring gear axis 58 .
- the pinion gear 26 has a right hand spiral and the ring gear 28 has a left hand spiral.
- the configuration shown in FIG. 4 can achieve faster gear ratios because the pinion gear head size decreases as result of the negative pinion offset configuration.
- gear ratio is the ratio between the number of teeth in the ring gear and pinion gear.
- pinion gear head size increases as offset increases and ratios only as fast as 2.5:1 can be achieved.
- pinion gear head size decreases as offset increases. This allows pinion gear head size to be minimized within a single packaging envelope in order to achieve the desired faster ratios.
- a faster gear ratio can be achieved by utilizing a negative pinion offset.
- a gear ratio of 2.47:1 can be achieved with a pinion outside diameter being 222 mm.
- a gear ratio of 1.86:1 can be achieved with a much smaller pinion gear (outside diameter of 188 mm).
- ring gear spiral angles, pinion gear spiral angles, and other tooth design parameters can be varied/adjusted as needed to maintain desired contact ratios, durability, and strength requirements. This provides approximately the same desired level of quietness for a faster ratio as would be achieved with the comparable traditional configuration having a higher gear ratio.
- the negative pinion offset configurations are especially beneficial for commercial vehicle applications which have low input speeds typical in modern engines.
- the subject negative pinion offset configurations are utilized with a minimum ring gear diameter of 100 mm for double reduction axles and a minimum ring gear diameter of 300 mm for single reduction axles.
- the maximum ring gear diameter would be approximately 600 mm.
- the amount of pinion offset is determined based on the type of axle and commercial application.
- offset is within the range of 25-55 mm from a gear centerline.
- Pinion offset is chosen based on strength reasons for a given type of axle and application.
- various pinion offsets are studied to determine how wide the range of gear ratios can be within a specified packaging space, which still meets the desired strength and noise requirements.
- the gear ratio offering can be increased significantly toward faster ratios not previously achievable, and all within a single traditional sized packing envelope.
- FIG. 5 also shows a negative offset configuration wherein the left hand spiral pinion has an offset above the gear center axis 58 .
- hypoid gear design uses hypoid ring and pinion gears with a certain combination of pinion offset, pinion spiral hand, and other gear parameters to allow gear ratios to be 50% faster within a traditional existing axle housing envelope.
- negative pinion offset is never utilized due to concerns regarding noise and durability.
- the subject hypoid gears with negative pinion offset avoid these potential concerns by providing a ring gear spiral angle within a range of 30 to 50 degrees in combination with other tooth design parameters.
- the hypoid gear set has tooth design parameters set to achieve a profile tooth contact ratio between 1.0 and 1.4 and to achieve a tooth face contact ratio between 1.1 and 1.5. Tooth design parameters are tooth combination, ring gear pitch diameter, pinion offset, face width, pressure angle, whole depth, etc.
- the resulting negative pinion offset configuration in combination with the gear parameters discussed above, allows the new gear configuration with faster available ratios to be installed within existing axle housings as well as allowing existing ring gear and pinion forgings to be used.
- the new configuration also retains approximately the same gear strength of the slower gear ratios using traditional configurations.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Retarders (AREA)
- Gear Transmission (AREA)
Abstract
Description
- The subject invention relates to a hypoid ring and pinion gear set for commercial and off-highway vehicles that can achieve a large range of gear ratios within a single carrier packaging space.
- A single reduction drive axle includes a carrier with a pinion gear in meshing engagement with a ring gear. The pinion gear receives driving input from a vehicle driveshaft and the ring gear is configured to drive a differential gear assembly, which drives axle shafts to rotate laterally spaced wheels. Vehicle applications with single reduction axles include carrier configurations with spiral bevel gears or hypoid gears that can accommodate gear ratios of 7:1 to 2.5:1. Spiral bevel gears can achieve gear ratios as fast as 1:1; however, hypoid gears traditionally have not been able to achieve these faster ratios.
- For commercial and off-highway vehicles with double reduction axles, planetary gear sets are included at laterally spaced wheel ends and are used in combination with a hypoid ring and pinion input gear set. The additional hub reduction may require the carrier to have faster ratios which cannot be achieved with current hypoid gear carrier configurations. In order to achieve these faster gear ratios, i.e. less than 2.5:1, the pinion size would become so large that it would be very difficult, if not impossible, to package the ring and pinion gear set within existing carriers.
- A hypoid gear set for a vehicle drivetrain includes a pinion gear in meshing engagement with a ring gear. The ring and pinion gear provide a predetermined gear ratio that can be increased up to fifty percent faster within a single carrier packaging envelope that is defined by a maximum ring gear diameter.
- In one example, the pinion and ring gears mesh with each other to provide a gear ratio range of 1.3:1 to 7.0:1 within the single carrier packaging envelope.
- In one configuration, the single carrier packaging envelope is no larger than an amount of space required to package a hypoid gear set having a maximum ring gear diameter of 600 mm.
- In one example, the hypoid gear set has a negative pinion offset.
- These and other features of the present invention can be best understood from the following specification and drawings, the following of which is a brief description.
-
FIG. 1 comprises a schematic top view of a drive axle for a commercial vehicle that incorporates the subject invention. -
FIGS. 2A-2B comprise a front view of a prior art configuration with a left hand spiral pinion gear. -
FIGS. 3A-3B comprise a front view of a prior art configuration with a right hand spiral pinion gear. -
FIG. 4 comprises a front view of a ring and pinion gear set incorporating the subject invention with a right-hand spiral pinion gear below center configuration. -
FIG. 5 comprises a front view of a ring and pinion gear set incorporating the subject invention with a left-hand spiral pinion gear above center configuration. - As shown in
FIG. 1 , avehicle drivetrain 12 includes a power source 14,gearbox 16, and driveshaft 18 that is coupled to adrive axle 20. The power source 14 can comprise an engine or electric motor, for example. Thegearbox 16 can comprise any combination of the following: for example, a main transmission, auxiliary transmission, drop box, transfer case, etc. Optionally, thegearbox 16 may not be required for thedrivetrain 12. - The
drive axle 20 ofFIG. 1 comprises a single reduction axle that includes a carrier assembly 22 positioned within anaxle housing 24 as known. The carrier assembly 22 includes ahypoid pinion gear 26, operably coupled to thedrive shaft 18, and which is in driving engagement with ahypoid ring gear 28. The carrier also includes adifferential gear assembly 30 which is driven by thering gear 28, and drives a pair ofaxle shafts 34 that drive laterally spacedvehicle wheels 36. Optionally, thedrive axle 20 could comprise a double reduction axle, which would include an additional planetary gear set 38 (shown in dashed lines inFIG. 1 ) at each wheel end. - The carrier has a carrier housing portion that defines an
internal cavity 40, which receives thehypoid pinion gear 26,hypoid ring gear 28, anddifferential gear assembly 30. Theinternal cavity 40 defines a maximum allowable packaging envelope PE to receive these components. In order to reduce weight and prevent interferences with vehicle frame and suspension components, it is important to minimize the size of the axle housing, and in turn the carrier housing portion. However, the internal cavity must be able to accommodate a gear set that can provide the desired range of gear ratios. This will be discussed in greater detail below. - In one example, the
drivetrain 12 is utilized in a commercial vehicle application. Commercial vehicles are used for transporting products for business or commercial purposes and include vehicles such as delivery trucks, tractor-trailers, and eighteen-wheelers, for example. Thedrivetrain 12 could also be used in off-highway vehicle applications such as loaders, lifters, skidders, etc. - Traditional hypoid gear designs for the ring and pinion gear include either a left hand spiral pinion gear meshing with a right hand spiral ring gear in a pinion below center configuration, or a right hand spiral pinion gear meshing with a left had spiral ring gear in a pinion above center configuration. These traditional configurations are shown in
FIGS. 2A and 3A . -
FIGS. 2A-2B show a traditionalhypoid ring gear 100 having afront face 102 with a plurality ofring gear teeth 104. Ahypoid pinion gear 106 includes apinion shaft 108 and a plurality ofpinion gear teeth 112. Convention for determining whether the gear set is a pinion above center configuration or a pinion below center configuration requires that, when facing thefront face 102 of thering gear 100, thepinion 106 is positioned at the right hand side of thering gear 100 to mesh with thering gear teeth 104. This configuration is shown inFIGS. 2A and 3A . InFIG. 2A thepinion gear 106 is defined as being below a ring gear centerhorizontal axis 114 and inFIG. 3A thepinion gear 106 is defined as being above the ring gear centerhorizontal axis 114. - In
FIG. 2A , thepinion gear 106 has a left hand spiral and thering gear 100 has a right hand spiral. InFIG. 3A , thepinion gear 106 has a right hand spiral and thering gear 100 has a left hand spiral. In this standard convention, left hand spiral pinion gears are always positioned below a center of the mating ring gear and right hand spiral pinion gears are always positioned above a center of the mating ring gear. These conventional configurations provide the desired strength, noise, and ratio characteristics required for commercial vehicle applications. -
FIG. 2B is the configuration ofFIG. 2A rotated 180 degrees aboutring gear axis 114. Similarly,FIG. 3B is the configuration of 3A rotated 180 degrees aboutring gear axis 114. - Traditionally, drive axles with hypoid ring and pinion gear sets for commercial vehicle applications have gear ratios in the range of 2.5:1 to 7:1. When hub reductions are used, such as those used in double reduction axles with planetary gear sets 38 at the wheel ends, faster gear ratios may needed for high speed applications. Hypoid gear ratios faster than 2.5:1 are very difficult, if not impossible, to package within the current carrier configurations.
- The subject
hyoid ring gear 28 andpinion gear 26, shown inFIGS. 4 and 5 , are uniquely configured to achieve gear ratios below the typical 2.5:1 ratio, thus extending the overall ratio range to 1.3:1 to 7.0:1 in one single packaging envelope for adrive axle 20 as used in commercial vehicle applications. Thedrive axle 20 can comprise either a single reduction drive axle or a double reduction axle. This offers a significant competitive advantage over prior designs as the hypoid gear set provides faster gear ratios without having to increase carrier size. This is advantageous from cost, weight, and packaging perspectives. The hypoid gear set is uniquely configured such that a wider range of ratios can be packaged within a single maximum carrier packaging envelope. This packaging envelope is defined as being no larger than an amount of space required to package a differential and a hypoid gear set having a maximum ring gear diameter of 600 mm. In this configuration the hypoid gear set has a predetermined gear ratio that can be varied up to a fifty percent faster ratio all within this single maximum packaging enveloped defined by the maximum ring gear diameter of 600 mm. This will be discussed in greater detail below. - As shown in
FIGS. 4 and 5 , the hypoid gear set is able to provide this wider range of ratios by utilizing a negative pinion offset configuration. In a negative pinion offset configuration, the pinion gear has a smaller spiral angle than the spiral angle of the ring gear. Conversely, in a positive offset configuration, the pinion gear has a greater spiral angle than the spiral angle of the ring gear. To faster ratios with hypoid gears, i.e. ratios faster than 2.5:1, the hypoid gear set has a negative pinion offset. Negative pinion offset can have offset below the gear center axis with a right spiral pinion (FIG. 4 ), or an offset above center with a left hand spiral pinion (FIG. 5 ). - As shown in
FIGS. 4 and 5 , thering gear 28 includes afront face 40 having a plurality ofring gear teeth 42. Thepinion gear 26 includes apinion shaft 50 and a plurality ofpinion gear teeth 54. Using standard conventions, thepinion gear 26 is positioned at the right side of thefront face 40 with thepinion teeth 54 in meshing engagement with thering gear teeth 42. Thepinion shaft 50 extends off to the right to be coupled to thedriveshaft 18. -
FIG. 4 shows a configuration where apinion gear axis 56 is offset below aring gear axis 58. In this configuration, thepinion gear 26 has a right hand spiral and thering gear 28 has a left hand spiral. When compared to a conventional hypoid gear set with the left hand spiral pinion being offset below the ring gear axis (FIG. 2A ), the configuration shown inFIG. 4 can achieve faster gear ratios because the pinion gear head size decreases as result of the negative pinion offset configuration. - As known, gear ratio is the ratio between the number of teeth in the ring gear and pinion gear. In traditional configurations with positive pinion offset, pinion gear head size increases as offset increases and ratios only as fast as 2.5:1 can be achieved. When a negative pinion offset relative to a
gear center 58 is utilized, pinion gear head size decreases as offset increases. This allows pinion gear head size to be minimized within a single packaging envelope in order to achieve the desired faster ratios. - Thus, for a hypoid ring gear having a set pitch diameter, a faster gear ratio can be achieved by utilizing a negative pinion offset. For example, for a ring gear having a pitch diameter of 381 mm and a left hand spiral pinion offset below center with (traditional configuration as shown in
FIG. 2A ), a gear ratio of 2.47:1 can be achieved with a pinion outside diameter being 222 mm. Using the same ring gear pitch diameter and same pinion offset amount with a negative value (right hand spiral pinion below center), a gear ratio of 1.86:1 can be achieved with a much smaller pinion gear (outside diameter of 188 mm). Further, ring gear spiral angles, pinion gear spiral angles, and other tooth design parameters can be varied/adjusted as needed to maintain desired contact ratios, durability, and strength requirements. This provides approximately the same desired level of quietness for a faster ratio as would be achieved with the comparable traditional configuration having a higher gear ratio. - As discussed above, the negative pinion offset configurations are especially beneficial for commercial vehicle applications which have low input speeds typical in modern engines. For these types of applications, the subject negative pinion offset configurations are utilized with a minimum ring gear diameter of 100 mm for double reduction axles and a minimum ring gear diameter of 300 mm for single reduction axles. The maximum ring gear diameter would be approximately 600 mm.
- Further, the amount of pinion offset is determined based on the type of axle and commercial application. In the negative pinion offset configurations, offset is within the range of 25-55 mm from a gear centerline. Pinion offset is chosen based on strength reasons for a given type of axle and application. In initial design stages for a carrier, various pinion offsets are studied to determine how wide the range of gear ratios can be within a specified packaging space, which still meets the desired strength and noise requirements. With the subject negative pinion offset configurations, the gear ratio offering can be increased significantly toward faster ratios not previously achievable, and all within a single traditional sized packing envelope. Once offset is established for the given type of axle, it is preferred to remain unchanged as subsequently changing offset would require new carrier castings. With the negative pinion offset configuration, faster ratios can be provided within this same casting.
-
FIG. 5 also shows a negative offset configuration wherein the left hand spiral pinion has an offset above thegear center axis 58. - The hypoid gear design uses hypoid ring and pinion gears with a certain combination of pinion offset, pinion spiral hand, and other gear parameters to allow gear ratios to be 50% faster within a traditional existing axle housing envelope. In general, negative pinion offset is never utilized due to concerns regarding noise and durability.
- The subject hypoid gears with negative pinion offset avoid these potential concerns by providing a ring gear spiral angle within a range of 30 to 50 degrees in combination with other tooth design parameters. For example, the hypoid gear set has tooth design parameters set to achieve a profile tooth contact ratio between 1.0 and 1.4 and to achieve a tooth face contact ratio between 1.1 and 1.5. Tooth design parameters are tooth combination, ring gear pitch diameter, pinion offset, face width, pressure angle, whole depth, etc.
- The resulting negative pinion offset configuration, in combination with the gear parameters discussed above, allows the new gear configuration with faster available ratios to be installed within existing axle housings as well as allowing existing ring gear and pinion forgings to be used. The new configuration also retains approximately the same gear strength of the slower gear ratios using traditional configurations.
- Although a preferred embodiment of this invention has been disclosed, a worker of ordinary skill in this art would recognize that certain modifications would come within the scope of this invention. For that reason, the following claims should be studied to determine the true scope and content of this invention.
Claims (20)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/841,243 US20120021863A1 (en) | 2010-07-22 | 2010-07-22 | Hypoid gear set for drive axle |
US13/677,572 US9022893B2 (en) | 2010-07-22 | 2012-11-15 | Hypoid gear set for drive axle |
US14/680,489 US20150211604A1 (en) | 2010-07-22 | 2015-04-07 | Hypoid Gear Set For Drive Axle |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/841,243 US20120021863A1 (en) | 2010-07-22 | 2010-07-22 | Hypoid gear set for drive axle |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/677,572 Continuation US9022893B2 (en) | 2010-07-22 | 2012-11-15 | Hypoid gear set for drive axle |
Publications (1)
Publication Number | Publication Date |
---|---|
US20120021863A1 true US20120021863A1 (en) | 2012-01-26 |
Family
ID=45494086
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/841,243 Abandoned US20120021863A1 (en) | 2010-07-22 | 2010-07-22 | Hypoid gear set for drive axle |
US13/677,572 Active US9022893B2 (en) | 2010-07-22 | 2012-11-15 | Hypoid gear set for drive axle |
US14/680,489 Abandoned US20150211604A1 (en) | 2010-07-22 | 2015-04-07 | Hypoid Gear Set For Drive Axle |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/677,572 Active US9022893B2 (en) | 2010-07-22 | 2012-11-15 | Hypoid gear set for drive axle |
US14/680,489 Abandoned US20150211604A1 (en) | 2010-07-22 | 2015-04-07 | Hypoid Gear Set For Drive Axle |
Country Status (1)
Country | Link |
---|---|
US (3) | US20120021863A1 (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8998766B1 (en) | 2013-09-30 | 2015-04-07 | Ford Global Technologies, Llc | Low profile vehicle axle |
US20150340926A1 (en) * | 2014-05-23 | 2015-11-26 | Timothy K. Searfoss | Gear Motor |
US20160131241A1 (en) * | 2014-11-12 | 2016-05-12 | Klingelnberg Ag | Bevel gear or hypoid gear having conical tooth shape in the longitudinal direction and having constant tooth gap width in the base |
CN112154282A (en) * | 2018-05-10 | 2020-12-29 | 阿文美驰技术有限责任公司 | Axle assembly with electric motor module and method of manufacture |
CN113348104A (en) * | 2019-02-15 | 2021-09-03 | 格里森工场 | Electric drive with high reduction ratio |
US11225107B1 (en) | 2020-09-09 | 2022-01-18 | Mahindra N.A. Tech Center | Axle carrier housing with reinforcement structure |
US20220065339A1 (en) * | 2019-03-29 | 2022-03-03 | Aisin Corporation | Differential gear mechanism and method for designing the same |
US11535057B2 (en) | 2020-09-09 | 2022-12-27 | Mahindra N.A. Tech Center | Axle assembly with sealed wheel end bearings and sealed pinion input bearings |
US11648745B2 (en) | 2020-09-09 | 2023-05-16 | Mahindra N.A. Tech Center | Modular tooling for axle housing and manufacturing process |
US11655891B2 (en) | 2020-09-09 | 2023-05-23 | Mahindra N.A. Tech Center | Method of machining an axle carrier housing |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9457654B2 (en) | 2015-01-20 | 2016-10-04 | Arvinmeritor Technology, Llc | Drive axle system |
US10011174B2 (en) | 2016-11-04 | 2018-07-03 | Dana Heavy Vehicle Systems Group, Llc | Tandem axle gearing arrangement |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4651587A (en) * | 1985-08-01 | 1987-03-24 | Eaton Corporation | Ring gear/pinion gear design |
US4733578A (en) * | 1986-12-31 | 1988-03-29 | Dana Corporation | Bevel gear differential with conical spherical gear seats |
US6855087B2 (en) * | 2002-11-19 | 2005-02-15 | Visteon Global Technologies, Inc. | Axle assembly |
US20060276292A1 (en) * | 2004-06-01 | 2006-12-07 | Dumitru Puiu | Drive axle assembly with torque distributing limited slip differential unit |
US20090277298A1 (en) * | 2006-03-03 | 2009-11-12 | Magna Steyr Fahrzeugtechnik Ag & Co. Kg | Operable transmission, working fluid for such a transmission, and method for commissioning the same |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR1230462A (en) * | 1957-10-01 | 1960-09-15 | ||
US2973660A (en) * | 1958-09-03 | 1961-03-07 | Popper Jakhin Boaz | Cooperating wedges including mating worms |
US3679016A (en) | 1970-09-09 | 1972-07-25 | North American Rockwell | Vehicle provided with four wheel drive system |
US4095675A (en) | 1976-07-28 | 1978-06-20 | Rockwell International Corporation | Multi-speed planetary drive axle assembly |
US4207780A (en) | 1976-07-28 | 1980-06-17 | Rockwell International Corporation | Multi-speed planetary drive axle assembly |
US6569053B2 (en) | 2001-09-05 | 2003-05-27 | Meritor Heavy Vehicle Technology, Llc | Eccentric pinion cage |
US6705965B2 (en) | 2002-03-29 | 2004-03-16 | Meritor Heavy Vehicle Technology, Llc | Carrier assembly for drive axle |
US6648788B1 (en) | 2002-04-26 | 2003-11-18 | Meritor Heavy Vehicle Technology, Llc | Forward carrier assembly for tandem axle |
US6949046B2 (en) | 2003-10-17 | 2005-09-27 | Arvinmeritor Technology, Llc | Gear to case assembly for drive axle |
US6991571B2 (en) | 2003-12-09 | 2006-01-31 | Arvinmeritor Technology, Llc | Variable ratio drive system |
US20050202921A1 (en) * | 2004-03-09 | 2005-09-15 | Ford Global Technologies, Llc | Application of novel surface finishing technique for improving rear axle efficiency |
US8388767B2 (en) | 2004-09-08 | 2013-03-05 | Arvinmeritor Technology, Llc | Carbonitriding low manganese medium carbon steel |
US7186198B2 (en) * | 2005-02-24 | 2007-03-06 | Selva Jr Efrain A | Transaxle |
US7866433B2 (en) | 2007-07-25 | 2011-01-11 | Arvinmeritor Technology, Llc | Carrier assembly |
-
2010
- 2010-07-22 US US12/841,243 patent/US20120021863A1/en not_active Abandoned
-
2012
- 2012-11-15 US US13/677,572 patent/US9022893B2/en active Active
-
2015
- 2015-04-07 US US14/680,489 patent/US20150211604A1/en not_active Abandoned
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4651587A (en) * | 1985-08-01 | 1987-03-24 | Eaton Corporation | Ring gear/pinion gear design |
US4733578A (en) * | 1986-12-31 | 1988-03-29 | Dana Corporation | Bevel gear differential with conical spherical gear seats |
US6855087B2 (en) * | 2002-11-19 | 2005-02-15 | Visteon Global Technologies, Inc. | Axle assembly |
US20060276292A1 (en) * | 2004-06-01 | 2006-12-07 | Dumitru Puiu | Drive axle assembly with torque distributing limited slip differential unit |
US20090277298A1 (en) * | 2006-03-03 | 2009-11-12 | Magna Steyr Fahrzeugtechnik Ag & Co. Kg | Operable transmission, working fluid for such a transmission, and method for commissioning the same |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8998766B1 (en) | 2013-09-30 | 2015-04-07 | Ford Global Technologies, Llc | Low profile vehicle axle |
US20150340926A1 (en) * | 2014-05-23 | 2015-11-26 | Timothy K. Searfoss | Gear Motor |
US9812923B2 (en) * | 2014-05-23 | 2017-11-07 | Aero Industries, Inc. | Gear motor |
US20160131241A1 (en) * | 2014-11-12 | 2016-05-12 | Klingelnberg Ag | Bevel gear or hypoid gear having conical tooth shape in the longitudinal direction and having constant tooth gap width in the base |
CN112154282A (en) * | 2018-05-10 | 2020-12-29 | 阿文美驰技术有限责任公司 | Axle assembly with electric motor module and method of manufacture |
US11988271B2 (en) | 2018-05-10 | 2024-05-21 | Arvinmeritor Technology, Llc | Axle assembly having an electric motor module and method of manufacture |
CN113348104A (en) * | 2019-02-15 | 2021-09-03 | 格里森工场 | Electric drive with high reduction ratio |
JP2022520650A (en) * | 2019-02-15 | 2022-03-31 | ザ グリーソン ワークス | Electric drive with high deceleration transmission |
US11662006B2 (en) * | 2019-03-29 | 2023-05-30 | Aisin Corporation | Differential gear mechanism and method for designing the same |
US20220065339A1 (en) * | 2019-03-29 | 2022-03-03 | Aisin Corporation | Differential gear mechanism and method for designing the same |
US11225107B1 (en) | 2020-09-09 | 2022-01-18 | Mahindra N.A. Tech Center | Axle carrier housing with reinforcement structure |
US11655891B2 (en) | 2020-09-09 | 2023-05-23 | Mahindra N.A. Tech Center | Method of machining an axle carrier housing |
US11648745B2 (en) | 2020-09-09 | 2023-05-16 | Mahindra N.A. Tech Center | Modular tooling for axle housing and manufacturing process |
US11535057B2 (en) | 2020-09-09 | 2022-12-27 | Mahindra N.A. Tech Center | Axle assembly with sealed wheel end bearings and sealed pinion input bearings |
Also Published As
Publication number | Publication date |
---|---|
US9022893B2 (en) | 2015-05-05 |
US20150211604A1 (en) | 2015-07-30 |
US20130074625A1 (en) | 2013-03-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9022893B2 (en) | Hypoid gear set for drive axle | |
US7314105B2 (en) | Electric drive axle assembly with independent dual motors | |
US6811514B2 (en) | Electronic drive unit assembly for heavy duty vehicles | |
US20200276897A1 (en) | Drive device for a vehicle axle of a two-track vehicle | |
US6964629B2 (en) | Differential gears with optimized number of teeth | |
US7479085B2 (en) | Axle having dual planetary reduction | |
US10072712B2 (en) | Shaft coupling arrangement | |
JP7260287B2 (en) | axle drive system | |
CN103057406A (en) | Direct through type single-stage reduction drive axle | |
US20050054471A1 (en) | Drive axle assembly and differential | |
KR102080773B1 (en) | Through type helical gear structure of vehicle | |
CN201155547Y (en) | Double stage non-run-through type main reducing gear | |
CN202965952U (en) | Directly through type single-stage reducing drive axle | |
CN107031391A (en) | Compact vehicle transmission system | |
US11255418B2 (en) | Powertrain for a motor vehicle, differential planetary gear system for a powertrain, and motor vehicle comprising a powertrain | |
KR102285360B1 (en) | Axle device | |
CN206889587U (en) | A kind of light-duty planetary reduction gear box | |
CN221323196U (en) | Driving axle of heavy truck | |
CN203703046U (en) | Differential mechanism of worm and gear cardan joint | |
US20050096174A1 (en) | Differential gear for a vehicle | |
CN104019209A (en) | Differential mechanism | |
EP1527933A2 (en) | Power transmission system for vehicle including a differential | |
US11732789B2 (en) | Assembly for use in an electric vehicle | |
CN215410041U (en) | Triple gear of inter-axle drive axle | |
CN219588049U (en) | Differential mechanism assembly |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: ARVINMERITOR TECHNOLOGY, LLC, MICHIGAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HIRAO, WAGNER YUKIO;CHUNG, I-CHAO;VARELA, TOMAZ DOPICO;AND OTHERS;REEL/FRAME:024724/0097 Effective date: 20100720 |
|
AS | Assignment |
Owner name: JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT Free format text: SECURITY AGREEMENT;ASSIGNOR:ARVINMERITOR TECHNOLOGY, LLC;REEL/FRAME:028106/0360 Effective date: 20120423 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |
|
AS | Assignment |
Owner name: AXLETECH INTERNATIONAL IP HOLDINGS, LLC, MICHIGAN Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:061521/0550 Effective date: 20220803 Owner name: MERITOR TECHNOLOGY, LLC, MICHIGAN Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:061521/0550 Effective date: 20220803 Owner name: MOTOR HEAVY VEHICLE SYSTEMS, LLC, MICHIGAN Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:061521/0550 Effective date: 20220803 Owner name: ARVINMERITOR OE, LLC, MICHIGAN Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:061521/0550 Effective date: 20220803 Owner name: MERITOR HEAVY VEHICLE SYSTEMS, LLC, MICHIGAN Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:061521/0550 Effective date: 20220803 Owner name: ARVINMERITOR TECHNOLOGY, LLC, MICHIGAN Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:061521/0550 Effective date: 20220803 Owner name: MAREMOUNT CORPORATION, MICHIGAN Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:061521/0550 Effective date: 20220803 Owner name: EUCLID INDUSTRIES, LLC, MICHIGAN Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:061521/0550 Effective date: 20220803 Owner name: GABRIEL RIDE CONTROL PRODUCTS, INC., MICHIGAN Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:061521/0550 Effective date: 20220803 Owner name: ARVIN TECHNOLOGIES, INC., MICHIGAN Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:061521/0550 Effective date: 20220803 Owner name: MERITOR TRANSMISSION CORPORATION, MICHIGAN Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:061521/0550 Effective date: 20220803 Owner name: ARVINMERITOR, INC., MICHIGAN Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:061521/0550 Effective date: 20220803 |