US20120020733A1 - Stationary Boom Support System - Google Patents

Stationary Boom Support System Download PDF

Info

Publication number
US20120020733A1
US20120020733A1 US13/188,150 US201113188150A US2012020733A1 US 20120020733 A1 US20120020733 A1 US 20120020733A1 US 201113188150 A US201113188150 A US 201113188150A US 2012020733 A1 US2012020733 A1 US 2012020733A1
Authority
US
United States
Prior art keywords
containment boom
elongated rod
reclamation
proximal end
support structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/188,150
Inventor
Basavaraj Mahadevaiah
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US13/188,150 priority Critical patent/US20120020733A1/en
Publication of US20120020733A1 publication Critical patent/US20120020733A1/en
Priority to US14/132,997 priority patent/US9133593B2/en
Priority to US14/850,121 priority patent/US10138612B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B15/00Cleaning or keeping clear the surface of open water; Apparatus therefor
    • E02B15/04Devices for cleaning or keeping clear the surface of open water from oil or like floating materials by separating or removing these materials
    • E02B15/08Devices for reducing the polluted area with or without additional devices for removing the material
    • E02B15/0828Devices for reducing the polluted area with or without additional devices for removing the material fixed to the side of a boat for containing small leaks in the hull
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B15/00Cleaning or keeping clear the surface of open water; Apparatus therefor
    • E02B15/04Devices for cleaning or keeping clear the surface of open water from oil or like floating materials by separating or removing these materials
    • E02B15/08Devices for reducing the polluted area with or without additional devices for removing the material
    • E02B15/0835Devices for reducing the polluted area with or without additional devices for removing the material fixed to permanent structure, e.g. harbour wall or river bank
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B15/00Cleaning or keeping clear the surface of open water; Apparatus therefor
    • E02B15/04Devices for cleaning or keeping clear the surface of open water from oil or like floating materials by separating or removing these materials
    • E02B15/10Devices for removing the material from the surface
    • E02B15/104Conveyors; Paddle wheels; Endless belts
    • EFIXED CONSTRUCTIONS
    • E03WATER SUPPLY; SEWERAGE
    • E03BINSTALLATIONS OR METHODS FOR OBTAINING, COLLECTING, OR DISTRIBUTING WATER
    • E03B3/00Methods or installations for obtaining or collecting drinking water or tap water
    • E03B3/04Methods or installations for obtaining or collecting drinking water or tap water from surface water

Definitions

  • the present invention relates to containment boom systems and, more specifically, to a containment boom system that is maintained at a distance relative to a fixed point.
  • Oil and chemical spills on surface waters originate from two primary sources—releases from sources in surface water and seepage from shoreline. Releases from sources such as pipelines, ships or other vessels and structures in surface water is an acute condition demanding rapid recovery of large volumes of release. Ineffective recovery results in oil contamination along the shoreline. Seepage from shoreline results in a chronic condition due to gradual migration of releases from storage and conveyance facilities located on the shores. Oil blooms from such seeps contaminate surface waters. Both sources not only present a safety hazard but also pose serious environmental threats to the fragile marine ecosystems vital to local economies.
  • Containment booms are used to keep surface oil spills and the like from entering protected areas.
  • Typical booms include a plastic sleeve with a tubular flotation structure running along the length of the sleeve.
  • a weighted structure causes a portion of the sleeve to form a vertical wall that acts as a barricade to the oil spill.
  • Current booms tend to contain the product for only a short time frame before the oil dissipates or seeps past the boom.
  • Containment booms are only capable of containing the release until the waves gradually breach the containment.
  • the absorbent booms become ineffective presenting a very limited capacity to capture the oil.
  • the oil dissipates or seeps past the boom and absorbent booms.
  • bottom anchors that hold the boom in place can damage the coral reefs on which they rest.
  • the tether that connects the anchor to the boom breaks apart.
  • the booms would then be hurled back on to the shores or strung out into the ocean rendering them ineffective.
  • rocks and other structures on the shore damage the booms resulting in expensive repairs and replacement costs.
  • divers have to tread oily waters to anchor the booms leading to safety hazards.
  • a containment boom system for use in a liquid body that includes a base support structure and a containment boom.
  • An elongated rod has a proximal end and a spaced apart distal end. The proximal end is hingedly attached to the base support structure and extends laterally therefrom.
  • a buoy is coupled to the containment boom and is coupled to the distal end of the elongated rod. The buoy has sufficient buoyancy so as to remain floating on the liquid body while supporting the elongated rod.
  • the invention is a reclamation system for use in a body of water on which is disposed an oil spill.
  • At least one elongated rod has a proximal end and a spaced apart distal end.
  • the proximal end is hingedly attached to a base support structure and extends laterally therefrom.
  • the distal end is supported by a buoy.
  • a first containment boom has a first end secured to a first location and an second end secured to a spaced apart second location.
  • the first containment boom is laterally supported by the at least one elongated rod so that the first containment boom separates a portion of the body of water from the oil spill.
  • a reclamation loop is disposed on a selected side of the first containment boom so that a portion of the reclamation loop is in contact with the oil spill.
  • the reclamation loop includes a material that absorbs oil and that does not absorb water.
  • the reclamation loop is mounted on at least one wheel that allows lateral movement of the reclamation loop.
  • a loop driver is configured to cause the reclamation loop to move laterally in a continuous loop.
  • a reclamation station is coupled to the reclamation loop and is configured to extract oil from the reclamation loop as the loop passes therethrough, thereby reclaiming oil therefrom.
  • the invention is a method of providing lateral support to a containment boom, in which the containment boom is coupled to a buoy.
  • a proximal end of an elongated rod is hingedly attached to a base support structure.
  • a distal end of the elongated rod is hingedly attached to the buoy.
  • the base support structure is coupled to a predetermined location.
  • FIG. 1 is an elevational view of a shore-based boom system.
  • FIG. 2 is a top plan view of the shore-based boom system shown in FIG. 1 .
  • FIG. 3 is an elevational view of a ship-based boom system.
  • FIG. 4 is a top plan view of the ship-based boom system shown in FIG. 3 .
  • FIG. 5 is a top plan view of an active remediation system.
  • FIG. 6 is a top plan view of an active remediation system that includes two boom systems that each extend to a shoreline.
  • FIGS. 7A-7B are two view of a hinge.
  • FIG. 8 is a side view of a structure for attaching a boom to a vertical ferrous wall.
  • FIG. 9A is an elevational view of an embodiment used with a water intake system.
  • FIG. 9B is a plan view of the embodiment shown in FIG. 9A .
  • a containment boom system 100 includes an elongated rod 122 that is coupled at a proximal end to a shore-base support system 130 and that is coupled at a distal end to a boom support buoy 124 and a containment boom 110 , both of which are disposed in a body of water 10 .
  • the containment boom 110 is used to restrict movement of an oil slick 12 , or other such contaminant.
  • the boom support buoy 124 is selected to have sufficient buoyancy to support the elongated rod 122 .
  • the elongated rod 122 can include a metal conduit (e.g., steel conduit or aluminum conduit).
  • the elongated rod 122 could include other materials, such as PVC pipe.
  • the rod 122 can include wood, plastics, polymers, fiberglass, composites, or any other material from which rods can be made.
  • the support buoy could be made of a steel drum, such as a 55 gallon steel drum.
  • the shore-base support system 130 includes a base support structure 132 that is secured to the ground 14 .
  • the support structure 132 is held in place on a ground surface 14 with an anchoring system that may include a plurality of anchoring rods 136 or is secured to a concrete pad 135 , or both.
  • the support structure 132 may be affixed to a stationary object, such as a pier.
  • a hinge 134 is used to secure the proximal end of the elongated rod 122 to the support structure 132 . The hinge 134 allows vertical movement of the distal end of the elongated rod 122 , but restricts lateral movement of the distal end of the elongated rod 122 .
  • the elongated rod 122 is hollow to transport oil from the oil slick 12 , recovered with a remediation system, to a shore-based tank (not shown). In another embodiment, the elongated rod 122 supports a separate hose (not shown) for transporting oil.
  • the boom system can be attached to a vessel such as a ship 30 , a barge, an oil drilling platform or the like, for containing local spills.
  • a vessel such as a ship 30 , a barge, an oil drilling platform or the like
  • a vessel such as a ship 30 , a barge, an oil drilling platform or the like
  • a system includes a mounting structure 210 for coupling the elongated rod 122 to the hull of the ship 30 (which typically includes a ferrous vertical wall).
  • the mounting structure 210 can be affixed to the ship 30 with a magnet disposed in the mounting structure 210 .
  • the mounting structure can be welded to the ship.
  • the boom system can be used with an active reclamation system.
  • a second boom 510 is spaced apart from the primary boom 110 and is supported by the rods 122 .
  • the inner boom 110 extends to the shore, where it is anchored with a pair of securing anchor members 530 .
  • a reclamation loop 540 which in one embodiment could include a line with oleophilic and hydrophobic bristles extending radially therefrom, is placed in the water 10 so that an inner portion of the loop 540 is between the inner boom 110 and the outer boom 510 and so that an outer portion of the loop 540 is placed outside of the outer boom 510 into the spill 12 .
  • the loop 510 rotates over a plurality of pulley wheels 544 (which could include a pair of concave wheels that are arranged so as to trap the reclamation loop 540 therebetween) in the direction of the arrows into reclamation stations 542 , where oil is reclaimed.
  • a plurality of pulley wheels 544 which could include a pair of concave wheels that are arranged so as to trap the reclamation loop 540 therebetween
  • One type of remediation system that can be employed in this embodiment is disclosed in U.S. Pat. No. 6,659,176, which is incorporated herein by reference.
  • a single reclamation station 542 can be employed or, as shown in FIG. 6 , two reclamation stations 542 disposed at opposite ends of the reclamation loop 540 can be used.
  • One embodiment includes two important elements—a stationary containment boom and active oil recovery along the boom. Fixing the boom position is accomplished with surface anchors and rigid connectors that render the boom geostationary. Active oil recovery can then be initiated within the boom using an hydrophobic fabric that is positioned along the boom or other methods.
  • a multi-tiered boom consisting of two sets of stationary booms equipped with hydrophobic fabric can be utilized to increase the containment and recovery efficiency.
  • FIGS. 7A and 7B One example of a hinge 134 for coupling the elongated rod 122 to a support or mounting structure 132 is shown in FIGS. 7A and 7B .
  • Two parallel plates 612 extend upwardly from a base plate 610 and each define a hole 614 passing therethrough. The two plates 612 are spaced apart at a distance sufficient to allow the elongated rod 122 to fit therebetween.
  • the elongated rod 122 defines an opening 630 passing therethrough that is in alignment with the holes 614 .
  • a hinge pin 620 passes through the holes 614 and the opening 630 so as to hold the proximal end of the rod 122 is a vertically pivotal relationship with the vertical plates 612 .
  • a cotter pin 622 may be used to hold the hinge pin 620 in place.
  • a mounting structure 210 for securing the hinge 134 to a vessel 30 with a ferrous hull wall includes a hinge mounting plate 810 to which the hinge 134 is secured and a magnet 820 that is coupled to the hinge mounting plate 810 .
  • the magnet 820 can be a permanent magnet or it can be an electromagnet powered, for example, from the vessel.
  • the hinge mounting plate 810 can be secured to the hull wall with an adhesive or a suction unit (e.g., a suction cup that is continually evacuated with a vacuum pump).
  • the system disclosed herein can be configured either to prevent oil spills from reaching shoreline and water intakes or to contain oil seeps from entering surface waters.
  • one embodiment can be used to hold a containment boom 110 at a predetermined distance from a water inlet 90 , such as an inlet to a water system from a river, a lake or a reservoir. While FIG. 9B shows four elongated rods 122 being used, more may be necessary if the boom 110 is subjected to a substantial amount of hydrodynamic pressure form, such as would be expected in a river. Also, a second containment boom (not shown) that is outside of and substantially concentric with the first containment boom 110 could be employed when using a remediation loop so that the return path of the remediation loop does not contaminate water flowing into the intake 90 .

Abstract

A containment boom system for use in a liquid body includes a base support structure and a containment boom. An elongated rod has a proximal end and a spaced apart distal end. The proximal end is hingedly attached to the base support structure and extends laterally therefrom. A buoy is coupled to the containment boom and is coupled to the distal end of the elongated rod. The buoy has sufficient buoyancy so as to remain floating on the liquid body while supporting the elongated rod.

Description

    CROSS-REFERENCE TO RELATED APPLICATION(S)
  • This application claims the benefit of U.S. Provisional Patent Application Ser. No. 61/367,245, filed Jul. 23, 2010, the entirety of which is hereby incorporated herein by reference.
  • BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • The present invention relates to containment boom systems and, more specifically, to a containment boom system that is maintained at a distance relative to a fixed point.
  • 2. Background
  • Oil and chemical spills on surface waters originate from two primary sources—releases from sources in surface water and seepage from shoreline. Releases from sources such as pipelines, ships or other vessels and structures in surface water is an acute condition demanding rapid recovery of large volumes of release. Ineffective recovery results in oil contamination along the shoreline. Seepage from shoreline results in a chronic condition due to gradual migration of releases from storage and conveyance facilities located on the shores. Oil blooms from such seeps contaminate surface waters. Both sources not only present a safety hazard but also pose serious environmental threats to the fragile marine ecosystems vital to local economies.
  • The current state of the art is to use containment booms and in some instances absorbent booms as well to address the release. Containment booms are used to keep surface oil spills and the like from entering protected areas. Typical booms include a plastic sleeve with a tubular flotation structure running along the length of the sleeve. A weighted structure causes a portion of the sleeve to form a vertical wall that acts as a barricade to the oil spill. Current booms tend to contain the product for only a short time frame before the oil dissipates or seeps past the boom. Containment booms are only capable of containing the release until the waves gradually breach the containment. Upon reaching saturation from oil absorption, the absorbent booms become ineffective presenting a very limited capacity to capture the oil. Eventually, the oil dissipates or seeps past the boom and absorbent booms.
  • Also, bottom anchors that hold the boom in place can damage the coral reefs on which they rest. As the anchors move with wave action, the tether that connects the anchor to the boom breaks apart. The booms would then be hurled back on to the shores or strung out into the ocean rendering them ineffective. When the booms get washed ashore, rocks and other structures on the shore damage the booms resulting in expensive repairs and replacement costs. In some instances, divers have to tread oily waters to anchor the booms leading to safety hazards.
  • Consequently, these remedies only serve as temporary solutions resulting in perpetual and escalating costs. Combating oil releases in surface waters is a serious challenge. Therefore, there is a need to invent a method that eliminates bottom anchors and actively recovers the oil along the boom providing effective containment.
  • Therefore, there is a need for a stationary boom system that does not require bottom anchors or unanchored free floating systems.
  • SUMMARY OF THE INVENTION
  • The disadvantages of the prior art are overcome by the present invention which, in one aspect, is a containment boom system for use in a liquid body that includes a base support structure and a containment boom. An elongated rod has a proximal end and a spaced apart distal end. The proximal end is hingedly attached to the base support structure and extends laterally therefrom. A buoy is coupled to the containment boom and is coupled to the distal end of the elongated rod. The buoy has sufficient buoyancy so as to remain floating on the liquid body while supporting the elongated rod.
  • In another aspect, the invention is a reclamation system for use in a body of water on which is disposed an oil spill. At least one elongated rod has a proximal end and a spaced apart distal end. The proximal end is hingedly attached to a base support structure and extends laterally therefrom. The distal end is supported by a buoy. A first containment boom has a first end secured to a first location and an second end secured to a spaced apart second location. The first containment boom is laterally supported by the at least one elongated rod so that the first containment boom separates a portion of the body of water from the oil spill. A reclamation loop is disposed on a selected side of the first containment boom so that a portion of the reclamation loop is in contact with the oil spill. The reclamation loop includes a material that absorbs oil and that does not absorb water. The reclamation loop is mounted on at least one wheel that allows lateral movement of the reclamation loop. A loop driver is configured to cause the reclamation loop to move laterally in a continuous loop. A reclamation station is coupled to the reclamation loop and is configured to extract oil from the reclamation loop as the loop passes therethrough, thereby reclaiming oil therefrom.
  • In yet another aspect, the invention is a method of providing lateral support to a containment boom, in which the containment boom is coupled to a buoy. A proximal end of an elongated rod is hingedly attached to a base support structure. A distal end of the elongated rod is hingedly attached to the buoy. The base support structure is coupled to a predetermined location.
  • These and other aspects of the invention will become apparent from the following description of the preferred embodiments taken in conjunction with the following drawings. As would be obvious to one skilled in the art, many variations and modifications of the invention may be effected without departing from the spirit and scope of the novel concepts of the disclosure.
  • BRIEF DESCRIPTION OF THE FIGURES OF THE DRAWINGS
  • FIG. 1 is an elevational view of a shore-based boom system.
  • FIG. 2 is a top plan view of the shore-based boom system shown in FIG. 1.
  • FIG. 3 is an elevational view of a ship-based boom system.
  • FIG. 4 is a top plan view of the ship-based boom system shown in FIG. 3.
  • FIG. 5 is a top plan view of an active remediation system.
  • FIG. 6 is a top plan view of an active remediation system that includes two boom systems that each extend to a shoreline.
  • FIGS. 7A-7B are two view of a hinge.
  • FIG. 8 is a side view of a structure for attaching a boom to a vertical ferrous wall.
  • FIG. 9A is an elevational view of an embodiment used with a water intake system.
  • FIG. 9B is a plan view of the embodiment shown in FIG. 9A.
  • DETAILED DESCRIPTION OF THE INVENTION
  • A preferred embodiment of the invention is now described in detail. Referring to the drawings, like numbers indicate like parts throughout the views. Unless otherwise specifically indicated in the disclosure that follows, the drawings are not necessarily drawn to scale. As used in the description herein and throughout the claims, the following terms take the meanings explicitly associated herein, unless the context clearly dictates otherwise: the meaning of “a,” “an,” and “the” includes plural reference, the meaning of “in” includes “in” and “on.”
  • As shown in FIGS. 1 and 2, one embodiment of a containment boom system 100 includes an elongated rod 122 that is coupled at a proximal end to a shore-base support system 130 and that is coupled at a distal end to a boom support buoy 124 and a containment boom 110, both of which are disposed in a body of water 10. Typically, the containment boom 110 is used to restrict movement of an oil slick 12, or other such contaminant. The boom support buoy 124 is selected to have sufficient buoyancy to support the elongated rod 122.
  • In one embodiment, the elongated rod 122 can include a metal conduit (e.g., steel conduit or aluminum conduit). In a smaller embodiment, the elongated rod 122 could include other materials, such as PVC pipe. In other embodiments, the rod 122 can include wood, plastics, polymers, fiberglass, composites, or any other material from which rods can be made. In one embodiment, the support buoy could be made of a steel drum, such as a 55 gallon steel drum.
  • The shore-base support system 130 includes a base support structure 132 that is secured to the ground 14. In some embodiments, the support structure 132 is held in place on a ground surface 14 with an anchoring system that may include a plurality of anchoring rods 136 or is secured to a concrete pad 135, or both. Alternately, the support structure 132 may be affixed to a stationary object, such as a pier. A hinge 134 is used to secure the proximal end of the elongated rod 122 to the support structure 132. The hinge 134 allows vertical movement of the distal end of the elongated rod 122, but restricts lateral movement of the distal end of the elongated rod 122.
  • In one embodiment, the elongated rod 122 is hollow to transport oil from the oil slick 12, recovered with a remediation system, to a shore-based tank (not shown). In another embodiment, the elongated rod 122 supports a separate hose (not shown) for transporting oil.
  • As shown in FIGS. 3 and 4, the boom system can be attached to a vessel such as a ship 30, a barge, an oil drilling platform or the like, for containing local spills. Such a system includes a mounting structure 210 for coupling the elongated rod 122 to the hull of the ship 30 (which typically includes a ferrous vertical wall). In one embodiment, the mounting structure 210 can be affixed to the ship 30 with a magnet disposed in the mounting structure 210. In another embodiment, the mounting structure can be welded to the ship.
  • As shown in FIGS. 5 and 6, the boom system can be used with an active reclamation system. In this embodiment, a second boom 510 is spaced apart from the primary boom 110 and is supported by the rods 122. The inner boom 110 extends to the shore, where it is anchored with a pair of securing anchor members 530. A reclamation loop 540, which in one embodiment could include a line with oleophilic and hydrophobic bristles extending radially therefrom, is placed in the water 10 so that an inner portion of the loop 540 is between the inner boom 110 and the outer boom 510 and so that an outer portion of the loop 540 is placed outside of the outer boom 510 into the spill 12. The loop 510 rotates over a plurality of pulley wheels 544 (which could include a pair of concave wheels that are arranged so as to trap the reclamation loop 540 therebetween) in the direction of the arrows into reclamation stations 542, where oil is reclaimed. One type of remediation system that can be employed in this embodiment is disclosed in U.S. Pat. No. 6,659,176, which is incorporated herein by reference. As shown in FIG. 5, a single reclamation station 542 can be employed or, as shown in FIG. 6, two reclamation stations 542 disposed at opposite ends of the reclamation loop 540 can be used.
  • One embodiment includes two important elements—a stationary containment boom and active oil recovery along the boom. Fixing the boom position is accomplished with surface anchors and rigid connectors that render the boom geostationary. Active oil recovery can then be initiated within the boom using an hydrophobic fabric that is positioned along the boom or other methods. A multi-tiered boom consisting of two sets of stationary booms equipped with hydrophobic fabric can be utilized to increase the containment and recovery efficiency.
  • One example of a hinge 134 for coupling the elongated rod 122 to a support or mounting structure 132 is shown in FIGS. 7A and 7B. Two parallel plates 612 extend upwardly from a base plate 610 and each define a hole 614 passing therethrough. The two plates 612 are spaced apart at a distance sufficient to allow the elongated rod 122 to fit therebetween. The elongated rod 122 defines an opening 630 passing therethrough that is in alignment with the holes 614. A hinge pin 620 passes through the holes 614 and the opening 630 so as to hold the proximal end of the rod 122 is a vertically pivotal relationship with the vertical plates 612. A cotter pin 622 may be used to hold the hinge pin 620 in place.
  • As shown in FIG. 8, a mounting structure 210 for securing the hinge 134 to a vessel 30 with a ferrous hull wall includes a hinge mounting plate 810 to which the hinge 134 is secured and a magnet 820 that is coupled to the hinge mounting plate 810. The magnet 820 can be a permanent magnet or it can be an electromagnet powered, for example, from the vessel. In situations where the vessel 30 has a non-ferrous hull wall, the hinge mounting plate 810 can be secured to the hull wall with an adhesive or a suction unit (e.g., a suction cup that is continually evacuated with a vacuum pump).
  • The system disclosed herein can be configured either to prevent oil spills from reaching shoreline and water intakes or to contain oil seeps from entering surface waters.
  • As shown in FIGS. 9A and 9B, one embodiment can be used to hold a containment boom 110 at a predetermined distance from a water inlet 90, such as an inlet to a water system from a river, a lake or a reservoir. While FIG. 9B shows four elongated rods 122 being used, more may be necessary if the boom 110 is subjected to a substantial amount of hydrodynamic pressure form, such as would be expected in a river. Also, a second containment boom (not shown) that is outside of and substantially concentric with the first containment boom 110 could be employed when using a remediation loop so that the return path of the remediation loop does not contaminate water flowing into the intake 90.
  • The above described embodiments, while including the preferred embodiment and the best mode of the invention known to the inventor at the time of filing, are given as illustrative examples only. It will be readily appreciated that many deviations may be made from the specific embodiments disclosed in this specification without departing from the spirit and scope of the invention. Accordingly, the scope of the invention is to be determined by the claims below rather than being limited to the specifically described embodiments above.

Claims (20)

1. A containment boom system for use in a liquid body, comprising:
(a) a base support structure;
(b) an elongated rod, having a proximal end and a spaced apart distal end, the proximal end hingedly attached to the base support structure and extending laterally therefrom;
(c) a containment boom; and
(d) a buoy coupled to the containment boom and coupled to the distal end of the elongated rod, the buoy having sufficient buoyancy so as to remain floating on the liquid body while supporting the elongated rod.
2. The containment boom system of claim 1, configured to be used to maintain the containment boom at a distance from a fixed location, wherein the base support structure comprises:
(a) a support platform;
(b) a support structure, having a top, extending upwardly from the support platform; and
(c) a hinge affixed to the top of the support structure and coupled to the proximal end of the elongated rod.
3. The containment boom system of claim 2, wherein the fixed location includes a ground surface and further comprising at least one anchoring rod driven into the ground surface so as to secure the support platform to the ground surface.
4. The containment boom system of claim 2, wherein the distal proximal end of the elongated rod defines a opening passing therethrough and wherein the hinge comprises:
(a) two vertical parallel plates extending upwardly from the top of the support structure, each parallel plate defining a hole passing therethrough, the two vertical parallel plates spaced apart at a distance sufficient to allow the proximal end of the elongated rod to be placed therebetween; and
(b) a pin configured to pass through the holes defined by the vertical plates and the opening defined by the proximal end of the elongated rod so as to hold the proximal end of the elongated rod in a vertically pivotal relationship with the support structure.
5. The containment boom system of claim 1, configured to maintain the containment boom at a distance from a ferrous metal structure, wherein the base support structure comprises:
(a) a support platform having a first side and an opposite second side;
(b) a magnet affixed to the first side of the support platform and configured to hold the support platform against the ferrous metal structure; and
(c) a hinge affixed to the support platform configured to be coupled to the proximal end of the elongated rod.
6. The containment boom system of claim 1, configured to separate a floating liquid from a water surface and further comprising a reclamation loop disposed on a side of the containment boom so that a portion of the reclamation loop is in contact with the floating liquid.
7. The containment boom system of claim 6, wherein the reclamation loop includes a hydrophobic material configured to adsorb the floating liquid and configured not to absorb water.
8. A reclamation system for use on a body of water on which is disposed an oil spill, comprising:
(a) at least one elongated rod, having a proximal end and a spaced apart distal end, the proximal end hingedly attached to a base support structure and extending laterally therefrom, the distal end supported by a buoy;
(b) a first containment boom having a first end secured to a first location and an second end secured to a spaced apart second location, the first containment boom laterally supported by the at least one elongated rod so that the first containment boom separates a portion of the body of water from the oil spill;
(c) a reclamation loop disposed on a selected side of the first containment boom so that a portion of the reclamation loop is in contact with the oil spill, the reclamation loop including a material that absorbs oil and that does not absorb water, the reclamation loop mounted on at least one wheel that allows lateral movement of the reclamation loop;
(d) a loop driver configured to cause the reclamation loop to move laterally in a continuous loop; and
(e) a reclamation station coupled to the reclamation loop and configured to extract oil from the reclamation loop as the loop passes therethrough, thereby reclaiming oil therefrom.
9. The reclamation system of claim 8, further comprising a second containment boom laterally supported by the at least one elongated rod so as to be spaced apart from the first containment boom.
10. The reclamation system of claim 8, wherein the buoy has sufficient buoyancy so as to remain floating on the water while supporting the elongated rod.
11. The reclamation system of claim 8, configured to be used to maintain the containment boom at a distance from a fixed location, wherein the base support structure comprises:
(a) a support platform;
(b) a support structure, having a top, extending upwardly from the support platform; and
(c) a hinge affixed to the top of the support structure and coupled to the proximal end of the elongated rod.
12. The reclamation system of claim 11, wherein the fixed location includes a ground surface further comprising at least one anchoring rod driven into the ground surface so as to secure the support platform to the ground surface.
13. The containment boom system of claim 11, wherein the distal proximal end of the elongated rod defines a opening passing therethrough and wherein the hinge comprises:
(a) two vertical parallel plates extending upwardly from the top of the support structure, each parallel plate defining a hole passing therethrough, the two vertical parallel plates spaced apart at a distance sufficient to allow the proximal end of the elongated rod to be placed therebetween; and
(b) a pin configured to pass through the holes defined by the vertical plates and the opening defined by the proximal end of the elongated rod so as to hold the proximal end of the elongated rod in a vertically pivotal relationship with the support structure.
14. The reclamation system of claim 8, configured to maintain the containment boom at a distance from a ferrous metal structure, wherein the base support structure comprises:
(a) a support platform having a first side and an opposite second side;
(b) a magnet affixed to the first side of the support platform and configured to hold the support platform against the ferrous metal structure; and
(c) a hinge affixed to the support platform configured to be coupled to the proximal end of the elongated rod.
15. A method of providing lateral support to a containment boom, comprising the steps of:
(a) coupling the containment boom to a buoy;
(b) hingedly attaching a proximal end of an elongated rod to a base support structure;
(c) hingedly attaching a distal end of the elongated rod to the buoy; and
(d) coupling the base support structure to a predetermined location.
16. The method of claim 15, wherein the predetermined location comprises a ground location on a shoreline.
17. The method of claim 15, wherein the predetermined location comprises a sidewall of a floating vessel and wherein the step of hingedly attaching a proximal end of an elongated rod to a base support structure comprise the step of applying a magnet to the base support structure and to the sidewall of the vessel so as to hold the base support structure to the sidewall of the vessel.
18. The method of claim 15, wherein the step of attaching the proximal end of the elongated rod to the base comprises the steps of:
(a) attaching a hinge to the proximal end of the rod, the hinge configured to allow vertical movement of the rod but not allow lateral movement of the rod; and
(b) attaching a portion of the hinge to the base.
19. The method of claim 15, wherein the containment boom separates an oil spill from a portion of a body of water and further comprising the step of removing oil from the oil spill by:
(a) attaching a reclamation loop to a portion of the elongated rod so that a portion of the reclamation loop is configured to move through a portion of the oil spill, wherein the reclamation loop includes a material that absorbs oil but that does not absorb water; and
(b) continuously passing the reclamation loop through a reclamation station that removes oil from the reclamation loop.
20. The method of claim 15, further comprising the steps of:
(a) disposing the containment boom about an inlet; and
(b) separating the containment boom from the inlet by coupling the distal ends of a plurality of elongated rods to a corresponding plurality of buoys affixed to the containment boom and coupling the proximal ends of the plurality of elongated rods to a corresponding plurality of base support structures spaced apart and affixed to the inlet.
US13/188,150 2010-07-23 2011-07-21 Stationary Boom Support System Abandoned US20120020733A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/188,150 US20120020733A1 (en) 2010-07-23 2011-07-21 Stationary Boom Support System
US14/132,997 US9133593B2 (en) 2010-07-23 2013-12-18 Stationary boom support system
US14/850,121 US10138612B2 (en) 2010-07-23 2015-09-10 Stationary boom support system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US36724510P 2010-07-23 2010-07-23
US13/188,150 US20120020733A1 (en) 2010-07-23 2011-07-21 Stationary Boom Support System

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/132,997 Continuation-In-Part US9133593B2 (en) 2010-07-23 2013-12-18 Stationary boom support system

Publications (1)

Publication Number Publication Date
US20120020733A1 true US20120020733A1 (en) 2012-01-26

Family

ID=45493740

Family Applications (1)

Application Number Title Priority Date Filing Date
US13/188,150 Abandoned US20120020733A1 (en) 2010-07-23 2011-07-21 Stationary Boom Support System

Country Status (1)

Country Link
US (1) US20120020733A1 (en)

Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3146192A (en) * 1962-01-24 1964-08-25 Exxon Research Engineering Co Selective separation of oil from water
US3476246A (en) * 1967-12-22 1969-11-04 Mobil Oil Corp Apparatus and process for confining floating liquid products
US3539013A (en) * 1968-06-24 1970-11-10 Millard F Smith Oil collection boom
US3599434A (en) * 1969-06-03 1971-08-17 Louis Missud Device for confining oil released by leakage during offshore oil drilling operations
US3650406A (en) * 1970-10-12 1972-03-21 Ocean Systems Oil collection retrieval system
US3668118A (en) * 1970-07-06 1972-06-06 Oil Mop Intern Inc Oil mop and method of using same
US3679058A (en) * 1970-01-27 1972-07-25 Millard F Smith Oil collection boom
US3739913A (en) * 1970-07-16 1973-06-19 Johns Manville Device for fencing and absorbing contaminating oil spills on water
US3744638A (en) * 1970-07-06 1973-07-10 H Rhodes Oil mop and method of using same
US3986959A (en) * 1975-05-21 1976-10-19 Bagot Harold E Oil spill apparatus
US3990975A (en) * 1975-08-04 1976-11-09 Oil Mop Inc. Rigging system for an endless oil mop
US4052313A (en) * 1975-04-14 1977-10-04 John Rolls Material recovery systems
US4124981A (en) * 1977-09-29 1978-11-14 Paul Preus Flotation means for barrier for water carried pollutants and method of making same
US4356089A (en) * 1979-11-06 1982-10-26 Oil Mop (U.K.) Limited Recovery of oil
US4377352A (en) * 1981-01-02 1983-03-22 Goodstein Charles B Self-actuating water containment barrier
US4960347A (en) * 1989-07-31 1990-10-02 Strange Booth B Ship-borne emergency oil containment system and method
US5071545A (en) * 1989-12-08 1991-12-10 Ashtary Parviz N Ship-mounted oil spill recovery apparatus
US5299886A (en) * 1993-03-10 1994-04-05 Chem Serv Environmental Spill containment system
US5403478A (en) * 1991-05-15 1995-04-04 Brinkley; Herman E. Oil-based fluid absorbent article
US5667338A (en) * 1994-08-25 1997-09-16 Logan; Ronald Spill containment system
US20050117972A1 (en) * 2003-11-21 2005-06-02 Dreyer Harold B. Boom support arm and use thereof
US20090123233A1 (en) * 2007-11-09 2009-05-14 Herzogenrath Keith W Magnetic connector for spill boom

Patent Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3146192A (en) * 1962-01-24 1964-08-25 Exxon Research Engineering Co Selective separation of oil from water
US3476246A (en) * 1967-12-22 1969-11-04 Mobil Oil Corp Apparatus and process for confining floating liquid products
US3539013A (en) * 1968-06-24 1970-11-10 Millard F Smith Oil collection boom
US3599434A (en) * 1969-06-03 1971-08-17 Louis Missud Device for confining oil released by leakage during offshore oil drilling operations
US3679058A (en) * 1970-01-27 1972-07-25 Millard F Smith Oil collection boom
US3668118A (en) * 1970-07-06 1972-06-06 Oil Mop Intern Inc Oil mop and method of using same
US3744638A (en) * 1970-07-06 1973-07-10 H Rhodes Oil mop and method of using same
US3739913A (en) * 1970-07-16 1973-06-19 Johns Manville Device for fencing and absorbing contaminating oil spills on water
US3650406A (en) * 1970-10-12 1972-03-21 Ocean Systems Oil collection retrieval system
US4052313A (en) * 1975-04-14 1977-10-04 John Rolls Material recovery systems
US3986959A (en) * 1975-05-21 1976-10-19 Bagot Harold E Oil spill apparatus
US3990975A (en) * 1975-08-04 1976-11-09 Oil Mop Inc. Rigging system for an endless oil mop
US4124981A (en) * 1977-09-29 1978-11-14 Paul Preus Flotation means for barrier for water carried pollutants and method of making same
US4356089A (en) * 1979-11-06 1982-10-26 Oil Mop (U.K.) Limited Recovery of oil
US4377352A (en) * 1981-01-02 1983-03-22 Goodstein Charles B Self-actuating water containment barrier
US4960347A (en) * 1989-07-31 1990-10-02 Strange Booth B Ship-borne emergency oil containment system and method
US5071545A (en) * 1989-12-08 1991-12-10 Ashtary Parviz N Ship-mounted oil spill recovery apparatus
US5403478A (en) * 1991-05-15 1995-04-04 Brinkley; Herman E. Oil-based fluid absorbent article
US5299886A (en) * 1993-03-10 1994-04-05 Chem Serv Environmental Spill containment system
US5667338A (en) * 1994-08-25 1997-09-16 Logan; Ronald Spill containment system
US20050117972A1 (en) * 2003-11-21 2005-06-02 Dreyer Harold B. Boom support arm and use thereof
US20090123233A1 (en) * 2007-11-09 2009-05-14 Herzogenrath Keith W Magnetic connector for spill boom

Similar Documents

Publication Publication Date Title
US10138612B2 (en) Stationary boom support system
US4960347A (en) Ship-borne emergency oil containment system and method
US5071545A (en) Ship-mounted oil spill recovery apparatus
US20090314725A1 (en) Apparatus and method for collecting a target fluid submerged in a higher density carrier fluid
KR101114746B1 (en) Surface oil and suspended solids removal device
US20170233966A1 (en) Integrated marine barrier
US3666098A (en) Method and appratus for confining and collecting an oil slick
US4133765A (en) Device for retrieving floating pollutants on surface water
US9103086B2 (en) Open water oil skimmer
Fingas Physical spill countermeasures
US10081923B2 (en) Spill removal method and system
CA2874381C (en) A method of containing a spill in an aqueous environment and/or a spill containment apparatus
JPS59500676A (en) floating boom
GB2480858A (en) An oil spill recovery system
US20120020733A1 (en) Stationary Boom Support System
FI119115B (en) Method for collecting oil from water
KR20090081844A (en) A reclaimer crude oil
KR101066118B1 (en) Anchor and silt protector having the same
US20090214288A1 (en) Oil Boom QUick Release/Install Apparatus
US20130193040A1 (en) Systems for automated capture and recovery of oil from oil-contaminated water and solids
WO2007065203A1 (en) Floating containment boom
US8066872B1 (en) Dual weir vortex skimmer
RU2766357C1 (en) Method of collecting oil spilled in open sea and complex of devices for implementation thereof
WO2003042028A2 (en) Vessel for collecting oil from water surface
KR101551841B1 (en) Floating structure on the sea for heavy equipment work

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION