US20120012062A1 - Method and apparatus for pet water drinking device - Google Patents

Method and apparatus for pet water drinking device Download PDF

Info

Publication number
US20120012062A1
US20120012062A1 US13/195,426 US201113195426A US2012012062A1 US 20120012062 A1 US20120012062 A1 US 20120012062A1 US 201113195426 A US201113195426 A US 201113195426A US 2012012062 A1 US2012012062 A1 US 2012012062A1
Authority
US
United States
Prior art keywords
faucet
reservoir
conduit
drinking device
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/195,426
Inventor
Misty Johnson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US12/012,131 external-priority patent/US20090194031A1/en
Application filed by Individual filed Critical Individual
Priority to US13/195,426 priority Critical patent/US20120012062A1/en
Publication of US20120012062A1 publication Critical patent/US20120012062A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K7/00Watering equipment for stock or game

Definitions

  • the present invention relates to a method and device for assisting animals to drink directly from a faucet.
  • pets Due to numerous statutes, code provisions, restrictions, and liability issues, pets are typically confined to the homes of their owners and are not allowed to roam free in yards, neighborhoods and streets. Due to these restrictions, it is necessary for the pets to have access to fresh water source that is both safe and accessible.
  • Another method for supplying water to the pets is through the use of self-contained systems that have a water containment device, such as a bottle, and a pump to allow the water to circulate from the bottle to the bowl.
  • a water containment device such as a bottle
  • a pump to allow the water to circulate from the bottle to the bowl.
  • the present invention attaches to the faucet in the home and redirects the water flow to a direction that allows the pet to drink fresh water without becoming wet themselves and without the water becoming contaminated. It further allows for differing flow patterns for the water which allows the individual pets to choose which flow pattern they enjoy most.
  • the present invention addresses the need for supplying fresh flowing water to a pet to drink from a faucet that prevents the pet from becoming wet in the process.
  • an embodiment of the present invention provides an elbow connection, one end connected to a faucet and the other end connected to a second elbow.
  • the second elbow is connected to a reservoir.
  • the reservoir has a faceplate from the surface of which the animal drinks the water.
  • the elbows and reservoir are connected together through threadings.
  • first and second elbows are manufactured as a single piece and the reservoir is connected through a locking means.
  • the elbows and reservoir are connected through a locking means between the pieces.
  • the pieces are separated by o-ring seals to prevent leaking
  • the embodiment is held in place against the faucet spout through the use of a strap that fits over the faucet and is locked in place.
  • the strap is positioned by being placed in an indention on the bottom of an elbow.
  • the elastic strap is located at an angle relative to the vertical axis of the faucet.
  • a telescopic extension is located between the two elbows and allows the user the change the distance between the reservoir and the faucet. This accommodates the differences in size for different pets because some pets can comfortably reach farther into the sink than other pets.
  • a vertical extension is located between the faucet and the first elbow.
  • the vertical extension may be provided in different lengths and allows for the invention to be located at different distances from the faucet. This accommodates different heights of faucets and pets.
  • the second elbow can be bent to a desired position and angle and maintain that position until the pet's owner decides to change the angle or position of the reservoir connected to the elbow.
  • different number and arrangements of holes can be arranged on faceplate to allow for differing water patterns.
  • the faceplate has slots, in differing arrangements, located on the walls of the reservoir to allow the water to flow horizontally from the spout.
  • one end of a “T” connection is attached to the second elbow and the remaining two ends of the “T” connection are attached to a third elbow.
  • Attached to each of the elbows are reservoirs and respective faceplates. This allows for more than one reservoir to be connected to a single faucet and allows more than one pet to drink at the same time. It also allows for a multi-pet household to have different reservoirs with different faceplates for each of the pets according to the particular pet's preference.
  • a reservoir can be connected to a faucet to allow the pet to drink.
  • the reservoir is removable from the faucet when not in use and can be disassembled for cleaning
  • FIG. 1 is an exploded view of a preferred embodiment of the present invention.
  • FIG. 2 is an exploded view of another preferred embodiment of the present invention.
  • FIG. 3 a is a cross-sectional view of connections in a preferred embodiment of the present invention.
  • FIG. 3 b is a cross-sectional view of connections in a preferred embodiment of the present invention.
  • FIG. 3 c is a plan view of button on strap in a preferred embodiment of the present invention.
  • FIG. 4 a is an exploded view of extender in another preferred embodiment of the present invention.
  • FIG. 4 b is a plan view of an elbow in another preferred embodiment of the present invention.
  • FIG. 4 c is an exploded view of another preferred embodiment of the present invention.
  • FIG. 5 a is an isometric view of a reservoir in a preferred embodiment of the present invention.
  • FIG. 5 b is an isometric view of a reservoir in a preferred embodiment of the present invention.
  • FIG. 5 c is an elevation of a reservoir in a preferred embodiment of the present invention.
  • FIG. 5 d is an isometric view of a reservoir in a preferred embodiment of the present invention.
  • FIG. 5 e is an isometric view of a reservoir in a preferred embodiment of the present invention.
  • FIG. 5 f is an isometric view of a reservoir in a preferred embodiment of the present invention.
  • FIG. 5 g is an isometric view of a reservoir in a preferred embodiment of the present invention.
  • FIG. 5 h is an isometric view of a reservoir in a preferred embodiment of the present invention.
  • FIG. 6 is a plan view of a reservoir in a preferred embodiment of the present invention.
  • FIG. 7 is an exploded view of a preferred embodiment of the present invention.
  • FIG. 8 is a plan view of a bowl in a preferred embodiment of the present invention.
  • FIG. 9 is a plan view of a bowl in a preferred embodiment of the present invention.
  • faucet 100 is a typical water faucet located in a home with either a bathroom or kitchen sink.
  • Faucet 100 has channel 125 .
  • Channel 125 traverses the length of faucet 100 .
  • Channel 125 bends with the curves of faucet 100 .
  • Faucet 100 has spout 110 .
  • the exterior of spout 110 has threads 120 .
  • Channel 125 extends through spout 110 .
  • Elbow 130 has channel 140 which traverses the length of elbow 130 .
  • Elbow 130 has a bend that is approximately 90°.
  • Channel 140 has two ends, entrance 145 and exit 165 .
  • Channel 140 has threads 150 and threads 160 .
  • Threads 150 have similar set spacing as threads 120 .
  • Threads 150 are located in the wall of channel 140 beginning at entrance 145 and extending inward along the vertical axis of channel 140 for a distance of approximately 0.2 cm to 2 cm.
  • Threads 160 are located in the wall of channel 140 and begin at exit 165 . Threads 160 extend inward along the horizontal axis of channel 140 for a distance of approximately 0.2 cm to 2 cm.
  • Elbow 130 is connected to faucet 100 by advancing threads 150 into threads 120 .
  • Connector 170 has channel 210 which traverses its length.
  • Connector 170 has threaded end 180 and threaded end 190 .
  • Threaded end 180 has threads 195 along its outside walls.
  • Threaded end 190 has threads 200 along its outside walls.
  • Connector 170 is connected to elbow 130 by advancing threads 195 into threads 160 .
  • Elbow 220 has channel 230 which traverses its length. Elbow 220 has a bend of approximately 90°.
  • Channel 230 has entrance 235 and exit 255 . Entrance 235 and exit 255 are at the two ends of channel 230 .
  • Channel 230 has threads 240 and 250 . Threads 240 begin at entrance 235 and extend inwardly for a distance of approximately 0.2 cm to 2 cm. Threads 250 begin at exit 255 and extend inwardly for a distance of approximately 0.2 cm to 2 cm.
  • Elbow 220 is connected to connector 170 by advancing threads 240 onto threads 200 .
  • the vertical axis of elbow 220 will be generally parallel with the vertical axis of elbow 130 .
  • elbow 220 can be rotated approximately 45° to either the right or left of the vertical axis of elbow 130 .
  • Elbow 220 is connected to spout 260 .
  • Spout 260 has end 280 and reservoir 275 .
  • End 280 has threads 270 .
  • Set spacing of threads 270 is approximately the same as threads 250 in channel 230 of elbow 220 .
  • Spout 260 is connected to elbow 220 by advancing threads 270 into threads 250 .
  • Spout 260 has channel 285 which traverses the length of spout 260 .
  • Cross-section of channel 285 increases respectively with increased cross-section of spout 260 as the cross-section changes from end 280 through reservoir 275 .
  • Spout 260 has faceplate 290 which covers the top of reservoir 275 .
  • faceplate 290 has openings through which the water flows and which allows the pet to drink. Further details regarding different designs for reservoir 275 are discussed later in this specification.
  • Elbow 130 , connector 170 , elbow 220 , and reservoir 275 can be made from common plumbing materials, including but not limited to acrylonitrile-butadiene-styrene (ABS), poly-vinyl-chloride (PVC), galvanized or cast iron, copper, or brass.
  • ABS acrylonitrile-butadiene-styrene
  • PVC poly-vinyl-chloride
  • elbow 130 , connector 170 , elbow 220 , reservoir 275 will be made from PVC.
  • elbow 130 The longitudinal cross-section of elbow 130 , channel 140 , connector 170 , threaded end 180 and 190 , channel 210 , elbow 220 , channel 230 , and end 280 is circular.
  • a valve (not shown) is opened and the water flows through channel 125 , through channel 140 , through channel 210 , through channel 230 , through channel 285 and through openings of faceplate 290 .
  • faceplate 290 As the water flows through faceplate 290 , the water is forced upward and out of the faceplate.
  • Plumber's tape or other commercially available plumbing materials can be used between threads 120 , 150 , 160 , 195 , 200 , 240 , 250 , and 270 to prevent leaking between the individual components as is known in the art.
  • FIG. 2 illustrates another preferred embodiment of the present invention.
  • Faucet 300 has channel 325 that traverses the length of faucet 300 and bends similarly to faucet 300 .
  • Faucet 300 has spout 320 .
  • Spout 320 has a smaller cross-section than faucet 300 and typically has circular cross-section.
  • Channel 325 extends through spout 320 .
  • O-ring 310 fits over spout 320 .
  • the inside circumference of o-ring 310 is larger than the cross-section of spout 320 but smaller than the cross-section of faucet 300 .
  • Elbow 330 has channel 340 which traverses the length of elbow 330 .
  • Channel 340 bends similarly to the bends in elbow 330 .
  • Elbow 330 has a bend of approximately 90°.
  • Elbow 330 has indention 350 which extends semi-circumferentially around elbow 330 .
  • Indention 350 is between 1 cm and 3 cm wide. Indention 350 does not intersect with channel 340 .
  • the longitudinal axis of indention 350 is at an angle of between 5° and 25° to the vertical axis of faucet 300 .
  • Channel 340 has entrance 345 and exit 365 .
  • annular recess 360 is along the wall of channel 340 .
  • Annular recess 360 is between 0.1 cm and 0.5 cm in depth and covers the entire circumference of the wall of channel 340
  • Annular recess 360 is located between approximately 0.1 cm and 1 cm from exit 365 .
  • Elbow 420 has channel 430 which extends along the entire length of elbow 420 .
  • Elbow 420 has a bend of approximately 90°.
  • Channel 430 has exit 455 and entrance 435 .
  • Telescopic extension 370 fits within channel 430 beginning at entrance 435 and extending inward.
  • the outside diameter of telescopic extension 370 should be approximately 0.1 mm to 1 mm less than inside diameter of channel 430 .
  • the length of telescopic extension 370 is between 1 cm and 15 cm.
  • Telescopic extension 370 has channel 410 and end 390 .
  • Channel 410 transverses the length of telescopic extension 370 .
  • End 390 has o-ring 400 and extension 380 .
  • O-ring 400 fits in annular groove 402 .
  • Diameter of end 390 is between 0.1 mm and 1 mm less than diameter of channel 340 of elbow 330 .
  • Telescopic extension 370 also has terminal end 422 which is located inside channel 430 of elbow 420 .
  • Telescopic extension 370 has recess 425 in its outside wall and is located approximately 0.1 cm to 0.5 cm from terminal end 422 .
  • Inside recess 425 is o-ring 415 .
  • O-ring 415 creates a seal between telescopic extension 370 and wall of channel 430 .
  • telescopic extension 370 is extended from or retracted into elbow 420 by user until elbow 420 is at the desired distance from faucet 300 .
  • Extension 380 extends around the outside wall of end 390 and fits within annular recess 360 of elbow 330 .
  • Extension 380 and o-ring 400 are positioned such that when end 390 is pushed within channel 340 , extension 380 locks into annular recess 360 and o-ring 400 creates a seal between elbow 330 and rest of telescope extension 370 .
  • Channel 430 has recess 450 in its wall.
  • Recess 450 is cut around the entire circumference of the wall of channel 430 .
  • Recess 450 is located between 0.1 cm and 1 cm from exit 455 . Depth of recess 450 is such that it does not intersect with exterior walls of elbow 420 and should be between approximately 0.1 cm and 0.5 cm.
  • Spout 460 has end 480 and reservoir 475 .
  • Reservoir 475 has faceplate 490 .
  • spout 460 has channel 485 which extends through reservoir 475 and end 480 .
  • the cross-section of channel 485 increases and/or decreases consistent with and in relation to changes in the cross-section of end 480 and reservoir 475 .
  • End 480 has o-ring 465 and extension 470 .
  • O-ring 465 fits in annular groove 467 .
  • Diameter of end 480 is between 0.01 mm and 1 mm less than diameter of channel 430 of elbow 420 .
  • O-ring 465 has interior diameter which fits snugly around outside diameter of end 480 . Outside diameter of o-ring 465 is no larger than the outside diameter of elbow 420 but no smaller than the diameter of channel 430 .
  • Extension 470 extends outward from end 480 .
  • the length of extension 470 from end 480 is such that it fits within recess 450 .
  • the location of recess 450 on elbow 420 is such that when extension 470 is in recess 450 , o-ring 465 creates a seal between reservoir 475 and elbow 420 .
  • Reservoir 475 is positioned adjacent end 480 .
  • the cross-section of reservoir 475 is generally equal to or larger than cross-section of elbow 420 .
  • Faceplate 490 is positioned adjacent reservoir 475 .
  • Channel 485 does not extend through faceplate 490 .
  • Faceplate 490 covers the surface of reservoir 475 .
  • end 480 of spout 460 is pushed into channel 430 of elbow 420 until extension 470 is lodged into recess 450 .
  • O-ring 465 creates a seal between reservoir 475 and elbow 420 .
  • Elbow 330 , telescopic extension 370 , elbow 420 , and reservoir 475 can be made from acrylonitrile-butadiene-styrene (ABS), poly-vinyl-chloride (PVC), galvanized or cast iron, copper, or brass.
  • ABS acrylonitrile-butadiene-styrene
  • PVC poly-vinyl-chloride
  • elbow 330 , telescopic extension 370 , elbow 420 , and reservoir 475 will be made from PVC.
  • elbow 330 The longitudinal cross-section of elbow 330 , channel 340 , telescopic extension 370 , end 390 , channel 410 , channel 430 , elbow 420 , and end 480 is circular.
  • Strap 305 is a flexible runner strip used to secure the invention to the faucet. Strap 305 has end 385 and end 175 . Strap 305 has even spaced holes 335 . Holes 335 are generally centered along the latitudinal axis on the face of strap 305 . The diameter of holes 335 is between 1 mm and 10 mm. Holes 335 are separated at a distance between 1 mm and 10 mm.
  • Strap 305 includes button 355 .
  • FIG. 3 c shows illustration of button in one preferred embodiment.
  • Button 355 is a rigid cylindrical stanchion anchored in the surface of strap 305 . It extends approximately 0.5 mm to 10 mm from the surface of strap 305 .
  • Button 355 includes a reduced diameter neck 354 and head 352 .
  • the diameter of head 352 is 0.1 mm to 3 mm larger than the diameter of holes 335 .
  • the diameter of neck 354 is approximately 0.1 mm to 2 mm less than the diameter of holes 335 .
  • end 480 is secured in channel 430 of elbow 420 until extension 470 is located in recess 450 and seal is created by o-ring 465 between elbow 420 and reservoir 475 .
  • End 390 is secured in channel 340 until extension 380 is secured in annular recess 360 and o-ring 400 creates a seal between telescopic extension 370 and elbow 330 .
  • the o-ring is placed over spout 320 and spout 320 is placed within channel 340 of elbow 330 through entrance 345 .
  • Elbow 330 is advanced until a seal is created by o-ring 310 between elbow 330 and faucet 300 .
  • strap 305 is placed within indention 350 and wrapped around faucet 300 . Once desired pressure is being exerted by strap 305 , button 355 is pushed into one of holes 335 to maintain the location of strap 305 on faucet 300 .
  • Telescopic extension 370 is then extended until spout 460 is at the desired distance from faucet 300 .
  • Elbow 420 can be rotated approximately 45° to either the right or left of the vertical axis of elbow 330 as the user prefers.
  • the faucet valve is opened and allows water to flow through channel 325 , channel 340 , channel 410 , channel 430 , channel 485 and faceplate 490 .
  • a pet then can drink water flowing through faceplate 490 .
  • FIGS. 3 a and 3 b illustrate two different forms of the means provided for connection between annular latch 384 on telescopic extension 390 and annular groove 364 of elbow 330 .
  • FIG. 3 a includes an annular latch 384 fit within annular receiving groove 364 .
  • the dimensions of annular receiving groove 364 are generally between 0.1 mm to 0.2 mm larger than annular latch 384 .
  • the combination of the annular latch and groove allow telescopic extension 390 to be “snapped” into elbow 330 in a manner that prevents removal, but allows rotation of the two pieces with respect to each other.
  • FIG. 3 b a cross-section of elbow 330 and telescopic extension 390 is shown.
  • Annular groove 362 is provided in elbow 330
  • Annular receiving extension 382 is provided on telescopic extension 390 .
  • the combination of the annular extension and annular receiving groove allows for detachable connection of the pieces and rotation while connected.
  • connection between extension 470 and recess 450 can take the same form as described in FIGS. 3 a and 3 b.
  • extender 312 is inserted between faucet 300 and elbow 338 .
  • Elbow 338 serves same function as elbow 330 in FIG. 2 .
  • Elbow 338 has channel 326 , entrance 319 , and recess 324 .
  • Entrance 319 is the beginning of channel 326 .
  • Recess 324 extends around the entire circumference of wall of channel 326 and is located between 1 mm to 100 mm from entrance 319 . Depth of recess 324 is less than the width of the wall of elbow 338 .
  • Extender 312 has channel 314 and end 318 .
  • Channel 314 traverses the length of extender 312 .
  • Diameter of end 318 is between 0.1 mm and 0.5 mm less than diameter of channel 326 .
  • End 318 has o-ring 316 and extension 322 .
  • O-ring 316 fits in annular groove 313 .
  • Internal diameter of o-ring 316 is 0.1 mm to 0.5 mm more than the diameter of end 318 .
  • Outside diameter of o-ring 316 is no less than the diameter of channel 326 .
  • Recess 324 is located such that when end 318 is inserted into channel 326 and extension 322 is inserted into recess 324 , a seal is created between elbow 338 and extender 312 by use of o-ring 316 .
  • Design of recess 324 and extension 322 can be similar to those described in FIGS. 3 a and 3 b.
  • elbow 502 serves a similar function as elbow 220 (of FIG. 1 ) and elbow 420 (of FIG. 2 ).
  • Elbow 502 is constructed from material known in the art to allow elbow 502 to be bent into different positions and angles and hold the desired position after being bent.
  • Elbow 502 has channel 504 . Inside channel 504 is annular groove 514 . Annular groove 514 will connect to reservoir 475 (of FIG. 2 ).
  • Elbow 502 has end 506 on which is located extension 508 and annular groove 516 . Inside annular groove is o-ring 512 . Extension 508 is inserted into recess 360 (of FIG. 2 ).
  • FIG. 4 c illustrates another preferred embodiment of the present invention.
  • Faucet 452 has channel 456 that traverses the length of faucet 452 and bends similarly with faucet 452 .
  • Faucet 452 has spout 458 , which has a smaller cross-section than faucet 452 .
  • Cross-section of spout 458 is typically circular.
  • Channel 456 extends through spout 458 .
  • Elbow 466 has bends 474 and 478 . Bends 474 and 478 have an angle of approximately 90° and give elbow 466 a “U” shape.
  • Elbow 466 has channel 464 which traverses the length of elbow 466 and bends similarly to bends 474 and 478 .
  • Channel 464 has entrance 462 and exit 484 .
  • Cross-section of channel 464 is larger than the cross-section of spout 458 but smaller than cross-section of faucet 452 .
  • Channel 464 has annular recess 482 which is between 0.1 cm and 0.5 cm in depth and covers the entire circumference of the wall of channel 464 Annular recess 482 is located between approximately 0.1 cm and 1 cm from exit 484 .
  • Elbow 466 has indention 468 which extends semi-circumferentially around elbow 466 .
  • Indention 468 does not intersect with channel 464 and is between 1 cm and 3 cm in width.
  • the longitudinal axis of indention 468 is at an angle of between 5° and 25° to the vertical axis of faucet 452 .
  • Spout 496 has end 488 and reservoir 494 .
  • Cross-section of end 488 is between 0.01 mm and 1 mm less than cross-section of channel 464 .
  • End 488 has annular extension 492 which extends outward from circumference of end 488 . Length of annular extension 492 is such that it fits within annular recess 482 .
  • Reservoir 494 is positioned adjacent to end 488 .
  • the cross-section of reservoir 494 is generally equal to or greater than the cross-section of elbow 466 .
  • Faceplate 498 is adjacent to reservoir 494 .
  • Spout 496 has channel 483 which traverses end 488 and reservoir 494 .
  • the cross-section of channel 483 increases and/or decreases consistent with and in relation to the changes in the cross-section of end 488 and reservoir 494 .
  • end 488 is pushed into channel 464 until annular extension 492 fits into annular recess 482 .
  • Strap 305 as illustrated in FIGS. 2 and 3 c is also used with this embodiment.
  • spout 458 is inserted into channel 464 .
  • Strap 305 is inserted into indention 468 .
  • Ends 385 and 175 are pulled over faucet 452 until the desired pressure is being asserted by elbow 466 against faucet 452 .
  • Button 355 is inserted through appropriate hole 335 to maintain the pressure.
  • Owner will open valve (not shown) and allow water to flow through channel 456 , through channel 464 , through channel 483 , and then out faceplate 498 allowing the pet to drink.
  • FIGS. 5 a through 5 h illustrate alternate designs of reservoirs and their respective faceplates.
  • FIG. 5 a illustrates reservoir 520 with faceplate 530 .
  • Faceplate 530 has numerous holes 525 . Holes 525 can be arranged in a random pattern or in a pre-determined pattern. Number of holes 525 can range from approximately 2 to 50. The diameter of holes 525 can range between approximately 1 mm to 1 cm. Holes 525 provide an exit path for water and provide an interesting “bubbling” characteristic. The remainder of faceplate 530 allows the water to collect before flowing off of faceplate 530 creating a water “layer” on top of faceplate 530 during use.
  • reservoir 500 has faceplate 510 .
  • Faceplate 510 has single hole 505 .
  • Hole 505 allows water to flow through faceplate 510 in a single stream, similar to a fountain.
  • Diameter of hole 505 can range between approximately 1 cm to 6 cm.
  • the remainder of faceplate 510 has a layer of water that forms from the water exiting hole 505 before flowing off faceplate 510 .
  • the arrangement of one hole 505 will create a single stream of water.
  • reservoir 540 has faceplate 550 and wall 560 .
  • Wall 560 has holes 570 which allow water to flow from the side of reservoir 540 .
  • the number of holes 570 can range between approximately 2 to 25 holes and can either be arranged in a predetermine pattern or in random pattern. This arrangement allows for the water to flow out the side of reservoir 540 in horizontal fashion. As one skilled in the art will realize, the greater the number of holes 570 the lower the pressure of the stream of water from each hole 570 for any given flow rate.
  • reservoir 580 has faceplate 590 .
  • Faceplate 590 has holes 600 .
  • Holes 600 can be arranged in a random pattern or in a predetermined pattern.
  • Number of holes 600 can range from approximately 2 to 10.
  • the diameter of holes 600 can range between approximately 2 mm to 4 cm.
  • the holes are of different diameter.
  • the holes are bored at different angles allowing for a predetermined direction of water flow. Number of holes 600 of between 2 and 4 will allow the water flowing from holes 600 to have a “fountain like” characteristic.
  • the remainder of faceplate 590 allows the water to collect before flowing off of faceplate 590 creating a water layer on top of faceplate 590 from which the pet can drink.
  • reservoir 610 has faceplate 630 and wall 620 .
  • Wall 620 has a single hole 640 which allows water to flow from reservoir 610 . This arrangement allows for the water to stream out the side of reservoir in horizontal motion from the side of reservoir 610 .
  • reservoir 650 has faceplate 660 and wall 680 .
  • Wall 680 has slots 670 which allow water to flow from the side of reservoir 650 .
  • Slots 670 are approximately rectangular is shape with a height of between 2 mm to 4 mm and a width of between 1 mm and 10 mm.
  • the number of slots 670 can range between approximately 1 to 20 slots and can either be arranged in a pre-determine pattern or in random pattern. This arrangement allows for the water to flow from the side of the reservoir in a “waterfall” effect. The more slots 670 the less strength of the stream of water from each slot 670 .
  • reservoir 690 has floor 725 , wall 740 , and hole 720 .
  • Wall 740 extends generally perpendicularly from perimeter of floor 725 for approximately 1 cm to 7 cm. Wall 740 then extends frustoconically toward the center of reservoir 690 at an angle of between about 25° and about 65° ending in hole 720 . Thickness of wall 740 is between 0.5 mm and 10 mm.
  • Channel 730 is provided within reservoir 690 . Within channel 730 is ball 710 . Diameter of ball 710 will be greater than both hole 720 and hole 700 such that ball 710 will not fall out of reservoir 690 .
  • ball 710 In practice, when water enters reservoir 690 through hole 700 , ball 710 will be forced upward toward hole 720 . The pet will be able to push ball 710 down into channel 730 allowing water to flow and pet to drink. By including ball 710 , the pet not only is able to drink fresh water, but also have a toy with which it can play.
  • the ball is constructed of a phosphorescent plastic, providing a source of light to locate the invention in the dark.
  • reservoir 750 has walls 770 .
  • Walls 770 extend frustoconically upward at an angle of about 100° and about 134° from the base of reservoir 750 forming channel 760 .
  • Walls 770 have a thickness of between 0.5 mm and 10 mm. This creates a bowl shape from which the pets can drink. As the water flows, it will overflow walls 770 and flow into the sink below.
  • reservoir 800 allows for two animals to drink at the same time.
  • Reservoir 800 has end 810 with o-ring 820 and extension 830 .
  • O-ring 820 fits in annular groove 822 .
  • End 810 functions similarly to end 480 as described in FIG. 2 .
  • Reservoir 800 has leg 805 which is connected to end 810 .
  • Leg 805 extends upward and then branches into two 90° angles toward opposite directions, creating leg 815 and leg 825 .
  • Leg 815 then bends at an approximate 90° angle, and creates leg 875 .
  • Leg 815 and leg 875 form elbow 880 .
  • Leg 825 bends at an approximate 90° angle and creates leg 885 .
  • Leg 825 and leg 885 form elbow 870 .
  • Leg 875 and leg 885 are parallel to leg 805 .
  • Channel 840 traverses the length of leg 805 , 815 , 825 , 875 , and 885 and bends consistent with the bends of these legs.
  • Channel 840 has exit 950 at end of elbow 880 and exit 960 at end of elbow 870 .
  • Affixed to end of elbow 880 is reservoir 860 and affixed to end of elbow 870 is reservoir 850 .
  • Reservoir 860 has end 890 .
  • End 890 has extension 940 and o-ring 862 .
  • O-ring 862 fits in annular groove 864 .
  • Channel 840 has recess 930 in wall of channel 840 between approximately 1 mm and 10 mm from exit 950 .
  • Extension 940 fits within recess 930 .
  • Recess 930 does not extend past walls of elbow 880 .
  • O-ring 862 is situated so as to create a seal between reservoir 860 and elbow 880 when end 890 is placed inside channel 840 and extension 940 is within recess 930 .
  • Reservoir 850 has end 900 .
  • End 900 has extension 920 and o-ring 852 .
  • O-ring 852 fits in annular groove 854 .
  • Channel 840 has recess 910 in wall of channel 840 between approximately 1 mm and 10 mm from exit 960 .
  • Extension 920 fits within recess 910 .
  • Recess 910 does not extend past walls of elbow 870 .
  • O-ring 852 is situated so as to create a seal between reservoir 850 and elbow 870 when end 900 is placed inside channel 840 and extension 920 is within recess 910 .
  • Extensions 940 and 920 and recesses 930 and 910 can be designed similar to those described in FIGS. 3 a and 3 b.
  • Reservoirs 860 and 850 can have any of the designs described in FIGS. 5 a through 5 h. Further, reservoir 860 and 850 can have different designs depending on the choice of owner and preference of the pet.
  • Spout 1000 includes connector 1060 and reservoirs 1070 .
  • Connector 1060 includes channel 1010 which traverses the length of connector 1060 .
  • the channel 1010 includes entrance 1040 and exit 1050 .
  • Embedded in the inside wall of channel 1010 is annular recess 1020 .
  • annular recess 1020 is between 0.1 cm and 0.5 cm in depth and annular recess 1020 is located between approximately 0.1 cm and 1 cm from entrance 1040 .
  • O-ring 1120 is fitted in annular recess 1020 .
  • the dimensions of o-ring 1120 are sufficient to create a press fit between o-ring 1120 and the outside diameter of faucet 1061 .
  • Connector 1060 includes extension 1110 extending circumferentially from the exterior surface of the connector 1060 .
  • extension 1110 has an outside radius of between 3 mm and 10 mm greater than the connecter and has a height between 1 mm and 10 mm and has a height of between 1 mm and 10 mm.
  • Extension 1110 has annular indention 1030 located on its top surface.
  • Reservoir 1070 includes bowl 1080 and wall 1090 .
  • Wall 1090 is generally shaped as a half-cylinder and includes semi-circular hook 1100 .
  • wall 1090 has a height of between 0.5 cm and 4 cm.
  • Semi-circular hook 1100 extends from wall 1090 and forms a mating connector with annular indention 1030 . The fit between semi-circular hook 1100 and extension 1110 should be snug but allow for removability.
  • Bowl 1080 in the preferred embodiment is of general oval shape. However, bowl 1080 can have other decorative shapes, such as but not limited to outlines of animals, flora, fauna, or food.
  • the interior of bowl 1080 has a depth of between 0.5 cm and 5 cm while the outside depth of bowl 1080 is between 0.5 cm and 7 cm.
  • the interior of bowl 1080 in the preferred embodiment is smooth; however, it can be imprinted with decorative designs, such as but not limited to facial imprints of cat, scale imprints of fish, or flower petals. Additionally, bowl 1080 can be a variety of colors depending on the decorative design desired.
  • connector 1060 and reservoir 1070 can be manufactured as a single integral unit such that reservoir 1070 is not removable from connector 1060 .
  • bowl 1081 can have two chambers, 1082 and 1083 segregated by a wall 1084 .
  • Chamber 1083 can dispense other consumable items to be dispensed such as food or medicines.
  • Bowl 1081 can also include drain 1085 located on the wall of chamber 1082 .
  • Drain 1085 has a generally semi-circular shape removed from the wall of chamber 1082 and directs the flow of water from chamber 1082 such that the consumable items in chamber 1083 do not become wet.
  • the radius of drain 1085 is no more than half the height of the wall of chamber 1082 .
  • bowl 1091 has two chambers, 1092 and 1093 segregated by wall 1094 .
  • Chamber 1093 can dispense other consumable items to be dispensed.
  • hole 1097 is removed from the bottom of chamber 1092 .
  • the size of hole 1097 can range from between 0.5 mm to 3 mm.
  • connector 1060 is attached to reservoir 1070 by sliding semi-circular hook 1100 into annular indention 1030 and positioning bowl 1080 in front of faucet 1061 .
  • Connector 1060 is attached to faucet 1061 by placing entrance 1040 over the faucet and applying a vertical axial pressure to connector 1060 until o-ring 1120 seats on faucet 1061 .
  • a spigot (not shown) is opened and water is allowed to flow through channel 1010 and out exit 1050 into reservoir 1070 . As the water flows, reservoir 1070 will fill and overflow bowl 1080 into the sink below.
  • reservoir 1070 can be rotated around connector 1060 to place bowl 1080 into different preferred locations from which the pet can drink.
  • the invention has the advantage that the water flow through spout 1000 can be very slow and can be left flowing for long periods of time. This allows the pet to drink at any time it so chooses. Further, if the embodiment that includes a chamber for food, the pet can be fed with one chamber and have fresh water available at a single location for several days.
  • the invention also provides the advantage of disassembly between connector 1060 and reservoir 1070 to allow for cleaning and storage of the separate components.
  • the device can be made from easily available plastic materials, including but not limited to acrylonitrile-butadiene-styrene (ABS), poly-vinyl-chloride (PVC), polypropylene.
  • Reservoir 1070 can be made from PVC, polypropylene or other plastics or metals, such as stainless steel or cast aluminum.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Animal Husbandry (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Feeding And Watering For Cattle Raising And Animal Husbandry (AREA)

Abstract

A device capable of diverting, redirecting, and collecting fresh water from a faucet to a pet for drinking The device includes a plurality of elbows and a reservoir with a faceplate or a reservoir connected to the faucet by use of a connection piece. The device includes extensions which allow the user to position the reservoir at a desired height and distance from the faucet. The device further includes a plurality of designs for the reservoir and faceplate that allow for different water flows from which the pet can drink. The chosen reservoir and faceplate can be changed by the user. A method for having multiple reservoirs and faceplates connected to a single faucet allowing multiple pets to drink at a time is also disclosed.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • This application is a continuation of U.S. patent application Ser. No. 12/322,249, filed Jan. 30, 2009, now U.S. Pat. No. 7,987,817, which is a continuation-in-part of U.S. patent application Ser. No. 12/012,131, filed Jan. 31, 2008, now abandoned, the disclosures of which are hereby expressly incorporated by reference herein in their entirety.
  • FIELD OF THE INVENTION
  • The present invention relates to a method and device for assisting animals to drink directly from a faucet.
  • BACKGROUND OF THE INVENTION
  • Due to numerous statutes, code provisions, restrictions, and liability issues, pets are typically confined to the homes of their owners and are not allowed to roam free in yards, neighborhoods and streets. Due to these restrictions, it is necessary for the pets to have access to fresh water source that is both safe and accessible.
  • Most often fresh water is available through the faucets. However, the downward flow of a common faucet does not facilitate pets drinking
  • The most common means of supplying water for the pets to drink is through bowls or cups which are filled by the pet's owners and left to sit. This method leaves the water stagnant and accessible to debris causing the water to become contaminated.
  • Another method for supplying water to the pets is through the use of self-contained systems that have a water containment device, such as a bottle, and a pump to allow the water to circulate from the bottle to the bowl. This method allows for the movement of water but is also accompanied by pump noise and the water can also become contaminated.
  • Furthermore, the inventor has observed that pets prefer drinking from moving water compared to water that is still. The prior art does not provide a source of moving water easily available inside the home.
  • The present invention attaches to the faucet in the home and redirects the water flow to a direction that allows the pet to drink fresh water without becoming wet themselves and without the water becoming contaminated. It further allows for differing flow patterns for the water which allows the individual pets to choose which flow pattern they enjoy most.
  • In U.S. Pat. No. 1,372,213 by Williams, entitled “Drinking Fountain Attachment for Bibbs or Faucets,” the invention disclosed has an attachment to a faucet which requires constant application of force by the user to redirect water upward through the device in order to drink. While this works for humans, it does not function for pets because they lack the dexterity necessary to apply the constant force necessary.
  • In U.S. Pat. No. 1,524,484 by Lutz, entitled “Combined Faucet and Drinking Fountain,” the invention disclosed has an attachment to a faucet that redirects water upward for drinking However, in order for the water to flow upward, pressure must be applied to the invention to open the valve and allow the water to flow. If the force on the device is removed, the water ceases to flow. A pet would not be able to operate this device due to the dexterity required.
  • SUMMARY OF THE INVENTION
  • The present invention addresses the need for supplying fresh flowing water to a pet to drink from a faucet that prevents the pet from becoming wet in the process.
  • Accordingly, an embodiment of the present invention provides an elbow connection, one end connected to a faucet and the other end connected to a second elbow. The second elbow is connected to a reservoir. The reservoir has a faceplate from the surface of which the animal drinks the water.
  • In one embodiment, the elbows and reservoir are connected together through threadings.
  • In another embodiment, the first and second elbows are manufactured as a single piece and the reservoir is connected through a locking means.
  • In another embodiment, the elbows and reservoir are connected through a locking means between the pieces. The pieces are separated by o-ring seals to prevent leaking The embodiment is held in place against the faucet spout through the use of a strap that fits over the faucet and is locked in place. The strap is positioned by being placed in an indention on the bottom of an elbow. The elastic strap is located at an angle relative to the vertical axis of the faucet.
  • In another embodiment, a telescopic extension is located between the two elbows and allows the user the change the distance between the reservoir and the faucet. This accommodates the differences in size for different pets because some pets can comfortably reach farther into the sink than other pets.
  • In another embodiment, a vertical extension is located between the faucet and the first elbow. The vertical extension may be provided in different lengths and allows for the invention to be located at different distances from the faucet. This accommodates different heights of faucets and pets.
  • In another embodiment, the second elbow can be bent to a desired position and angle and maintain that position until the pet's owner decides to change the angle or position of the reservoir connected to the elbow.
  • In use, when the water flows from the faucet through the elbows, through the reservoir, and out the faceplate, it reaches the edge of the faceplate and drips into the sink below the faucet. The dripping water allows the pet to drink from a natural position.
  • In another embodiment of the present invention, different number and arrangements of holes can be arranged on faceplate to allow for differing water patterns.
  • In another embodiment, the faceplate has slots, in differing arrangements, located on the walls of the reservoir to allow the water to flow horizontally from the spout.
  • In another alternative embodiment, one end of a “T” connection is attached to the second elbow and the remaining two ends of the “T” connection are attached to a third elbow. Attached to each of the elbows are reservoirs and respective faceplates. This allows for more than one reservoir to be connected to a single faucet and allows more than one pet to drink at the same time. It also allows for a multi-pet household to have different reservoirs with different faceplates for each of the pets according to the particular pet's preference.
  • In another embodiment, a reservoir can be connected to a faucet to allow the pet to drink. The reservoir is removable from the faucet when not in use and can be disassembled for cleaning
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is an exploded view of a preferred embodiment of the present invention.
  • FIG. 2 is an exploded view of another preferred embodiment of the present invention.
  • FIG. 3 a is a cross-sectional view of connections in a preferred embodiment of the present invention.
  • FIG. 3 b is a cross-sectional view of connections in a preferred embodiment of the present invention.
  • FIG. 3 c is a plan view of button on strap in a preferred embodiment of the present invention.
  • FIG. 4 a is an exploded view of extender in another preferred embodiment of the present invention.
  • FIG. 4 b is a plan view of an elbow in another preferred embodiment of the present invention.
  • FIG. 4 c is an exploded view of another preferred embodiment of the present invention.
  • FIG. 5 a is an isometric view of a reservoir in a preferred embodiment of the present invention.
  • FIG. 5 b is an isometric view of a reservoir in a preferred embodiment of the present invention.
  • FIG. 5 c is an elevation of a reservoir in a preferred embodiment of the present invention.
  • FIG. 5 d is an isometric view of a reservoir in a preferred embodiment of the present invention.
  • FIG. 5 e is an isometric view of a reservoir in a preferred embodiment of the present invention.
  • FIG. 5 f is an isometric view of a reservoir in a preferred embodiment of the present invention.
  • FIG. 5 g is an isometric view of a reservoir in a preferred embodiment of the present invention.
  • FIG. 5 h is an isometric view of a reservoir in a preferred embodiment of the present invention.
  • FIG. 6 is a plan view of a reservoir in a preferred embodiment of the present invention.
  • FIG. 7 is an exploded view of a preferred embodiment of the present invention.
  • FIG. 8 is a plan view of a bowl in a preferred embodiment of the present invention.
  • FIG. 9 is a plan view of a bowl in a preferred embodiment of the present invention.
  • DETAILED DESCRIPTION
  • In the descriptions that follow, like parts are marked throughout the specification and drawings with the same numerals. The drawing figures are not necessarily drawn to scale and certain figures may be shown in exaggerated or generalized form in the interest of clarity and conciseness.
  • Referring to FIG. 1, faucet 100 is a typical water faucet located in a home with either a bathroom or kitchen sink. Faucet 100 has channel 125. Channel 125 traverses the length of faucet 100. Channel 125 bends with the curves of faucet 100. Faucet 100 has spout 110. The exterior of spout 110 has threads 120. Channel 125 extends through spout 110.
  • Elbow 130 has channel 140 which traverses the length of elbow 130. Elbow 130 has a bend that is approximately 90°.
  • Channel 140 has two ends, entrance 145 and exit 165. Channel 140 has threads 150 and threads 160. Threads 150 have similar set spacing as threads 120. Threads 150 are located in the wall of channel 140 beginning at entrance 145 and extending inward along the vertical axis of channel 140 for a distance of approximately 0.2 cm to 2 cm. Threads 160 are located in the wall of channel 140 and begin at exit 165. Threads 160 extend inward along the horizontal axis of channel 140 for a distance of approximately 0.2 cm to 2 cm.
  • Elbow 130 is connected to faucet 100 by advancing threads 150 into threads 120.
  • Connector 170 has channel 210 which traverses its length. Connector 170 has threaded end 180 and threaded end 190. Threaded end 180 has threads 195 along its outside walls. Threaded end 190 has threads 200 along its outside walls. Connector 170 is connected to elbow 130 by advancing threads 195 into threads 160.
  • Elbow 220 has channel 230 which traverses its length. Elbow 220 has a bend of approximately 90°. Channel 230 has entrance 235 and exit 255. Entrance 235 and exit 255 are at the two ends of channel 230. Channel 230 has threads 240 and 250. Threads 240 begin at entrance 235 and extend inwardly for a distance of approximately 0.2 cm to 2 cm. Threads 250 begin at exit 255 and extend inwardly for a distance of approximately 0.2 cm to 2 cm.
  • Elbow 220 is connected to connector 170 by advancing threads 240 onto threads 200. When in place in one embodiment, the vertical axis of elbow 220 will be generally parallel with the vertical axis of elbow 130. In another embodiment, elbow 220 can be rotated approximately 45° to either the right or left of the vertical axis of elbow 130.
  • Elbow 220 is connected to spout 260. Spout 260 has end 280 and reservoir 275. End 280 has threads 270. Set spacing of threads 270 is approximately the same as threads 250 in channel 230 of elbow 220. Spout 260 is connected to elbow 220 by advancing threads 270 into threads 250.
  • Spout 260 has channel 285 which traverses the length of spout 260. Cross-section of channel 285 increases respectively with increased cross-section of spout 260 as the cross-section changes from end 280 through reservoir 275.
  • Spout 260 has faceplate 290 which covers the top of reservoir 275. In one preferred embodiment, faceplate 290 has openings through which the water flows and which allows the pet to drink. Further details regarding different designs for reservoir 275 are discussed later in this specification.
  • Elbow 130, connector 170, elbow 220, and reservoir 275 can be made from common plumbing materials, including but not limited to acrylonitrile-butadiene-styrene (ABS), poly-vinyl-chloride (PVC), galvanized or cast iron, copper, or brass. In the preferred embodiment, elbow 130, connector 170, elbow 220, reservoir 275 will be made from PVC.
  • The longitudinal cross-section of elbow 130, channel 140, connector 170, threaded end 180 and 190, channel 210, elbow 220, channel 230, and end 280 is circular.
  • In practice, to begin the flow of water to faucet 100 a valve (not shown) is opened and the water flows through channel 125, through channel 140, through channel 210, through channel 230, through channel 285 and through openings of faceplate 290. As the water flows through faceplate 290, the water is forced upward and out of the faceplate. Plumber's tape or other commercially available plumbing materials can be used between threads 120, 150, 160, 195, 200, 240, 250, and 270 to prevent leaking between the individual components as is known in the art.
  • FIG. 2 illustrates another preferred embodiment of the present invention. Faucet 300 has channel 325 that traverses the length of faucet 300 and bends similarly to faucet 300. Faucet 300 has spout 320. Spout 320 has a smaller cross-section than faucet 300 and typically has circular cross-section. Channel 325 extends through spout 320.
  • O-ring 310 fits over spout 320. The inside circumference of o-ring 310 is larger than the cross-section of spout 320 but smaller than the cross-section of faucet 300.
  • Elbow 330 has channel 340 which traverses the length of elbow 330. Channel 340 bends similarly to the bends in elbow 330. Elbow 330 has a bend of approximately 90°.
  • Elbow 330 has indention 350 which extends semi-circumferentially around elbow 330. Indention 350 is between 1 cm and 3 cm wide. Indention 350 does not intersect with channel 340. The longitudinal axis of indention 350 is at an angle of between 5° and 25° to the vertical axis of faucet 300.
  • Channel 340 has entrance 345 and exit 365. Along the wall of channel 340 is annular recess 360. Annular recess 360 is between 0.1 cm and 0.5 cm in depth and covers the entire circumference of the wall of channel 340 Annular recess 360 is located between approximately 0.1 cm and 1 cm from exit 365.
  • Elbow 420 has channel 430 which extends along the entire length of elbow 420. Elbow 420 has a bend of approximately 90°. Channel 430 has exit 455 and entrance 435.
  • Within channel 430 is telescopic extension 370. Telescopic extension 370 fits within channel 430 beginning at entrance 435 and extending inward. The outside diameter of telescopic extension 370 should be approximately 0.1 mm to 1 mm less than inside diameter of channel 430. The length of telescopic extension 370 is between 1 cm and 15 cm.
  • Telescopic extension 370 has channel 410 and end 390. Channel 410 transverses the length of telescopic extension 370. End 390 has o-ring 400 and extension 380. O-ring 400 fits in annular groove 402. Diameter of end 390 is between 0.1 mm and 1 mm less than diameter of channel 340 of elbow 330.
  • Telescopic extension 370 also has terminal end 422 which is located inside channel 430 of elbow 420. Telescopic extension 370 has recess 425 in its outside wall and is located approximately 0.1 cm to 0.5 cm from terminal end 422. Inside recess 425 is o-ring 415. O-ring 415 creates a seal between telescopic extension 370 and wall of channel 430.
  • In practice, telescopic extension 370 is extended from or retracted into elbow 420 by user until elbow 420 is at the desired distance from faucet 300.
  • Extension 380 extends around the outside wall of end 390 and fits within annular recess 360 of elbow 330. Extension 380 and o-ring 400 are positioned such that when end 390 is pushed within channel 340, extension 380 locks into annular recess 360 and o-ring 400 creates a seal between elbow 330 and rest of telescope extension 370.
  • Channel 430 has recess 450 in its wall. Recess 450 is cut around the entire circumference of the wall of channel 430. Recess 450 is located between 0.1 cm and 1 cm from exit 455. Depth of recess 450 is such that it does not intersect with exterior walls of elbow 420 and should be between approximately 0.1 cm and 0.5 cm.
  • Spout 460 has end 480 and reservoir 475. Reservoir 475 has faceplate 490. Further, spout 460 has channel 485 which extends through reservoir 475 and end 480. The cross-section of channel 485 increases and/or decreases consistent with and in relation to changes in the cross-section of end 480 and reservoir 475.
  • End 480 has o-ring 465 and extension 470. O-ring 465 fits in annular groove 467. Diameter of end 480 is between 0.01 mm and 1 mm less than diameter of channel 430 of elbow 420. O-ring 465 has interior diameter which fits snugly around outside diameter of end 480. Outside diameter of o-ring 465 is no larger than the outside diameter of elbow 420 but no smaller than the diameter of channel 430.
  • Extension 470 extends outward from end 480. The length of extension 470 from end 480 is such that it fits within recess 450. The location of recess 450 on elbow 420 is such that when extension 470 is in recess 450, o-ring 465 creates a seal between reservoir 475 and elbow 420.
  • Reservoir 475 is positioned adjacent end 480. The cross-section of reservoir 475 is generally equal to or larger than cross-section of elbow 420. Faceplate 490 is positioned adjacent reservoir 475. Channel 485 does not extend through faceplate 490. Faceplate 490 covers the surface of reservoir 475.
  • In practice, end 480 of spout 460 is pushed into channel 430 of elbow 420 until extension 470 is lodged into recess 450. O-ring 465 creates a seal between reservoir 475 and elbow 420.
  • Elbow 330, telescopic extension 370, elbow 420, and reservoir 475 can be made from acrylonitrile-butadiene-styrene (ABS), poly-vinyl-chloride (PVC), galvanized or cast iron, copper, or brass. In the preferred embodiment, elbow 330, telescopic extension 370, elbow 420, and reservoir 475 will be made from PVC.
  • The longitudinal cross-section of elbow 330, channel 340, telescopic extension 370, end 390, channel 410, channel 430, elbow 420, and end 480 is circular.
  • Strap 305 is a flexible runner strip used to secure the invention to the faucet. Strap 305 has end 385 and end 175. Strap 305 has even spaced holes 335. Holes 335 are generally centered along the latitudinal axis on the face of strap 305. The diameter of holes 335 is between 1 mm and 10 mm. Holes 335 are separated at a distance between 1 mm and 10 mm.
  • Strap 305 includes button 355. FIG. 3 c shows illustration of button in one preferred embodiment. Button 355 is a rigid cylindrical stanchion anchored in the surface of strap 305. It extends approximately 0.5 mm to 10 mm from the surface of strap 305. Button 355 includes a reduced diameter neck 354 and head 352. The diameter of head 352 is 0.1 mm to 3 mm larger than the diameter of holes 335. The diameter of neck 354 is approximately 0.1 mm to 2 mm less than the diameter of holes 335.
  • Referring back to FIG. 2, in practice, end 480 is secured in channel 430 of elbow 420 until extension 470 is located in recess 450 and seal is created by o-ring 465 between elbow 420 and reservoir 475. End 390 is secured in channel 340 until extension 380 is secured in annular recess 360 and o-ring 400 creates a seal between telescopic extension 370 and elbow 330. The o-ring is placed over spout 320 and spout 320 is placed within channel 340 of elbow 330 through entrance 345. Elbow 330 is advanced until a seal is created by o-ring 310 between elbow 330 and faucet 300. To maintain the position of the invention, strap 305 is placed within indention 350 and wrapped around faucet 300. Once desired pressure is being exerted by strap 305, button 355 is pushed into one of holes 335 to maintain the location of strap 305 on faucet 300.
  • Telescopic extension 370 is then extended until spout 460 is at the desired distance from faucet 300. Elbow 420 can be rotated approximately 45° to either the right or left of the vertical axis of elbow 330 as the user prefers. The faucet valve is opened and allows water to flow through channel 325, channel 340, channel 410, channel 430, channel 485 and faceplate 490. A pet then can drink water flowing through faceplate 490.
  • FIGS. 3 a and 3 b illustrate two different forms of the means provided for connection between annular latch 384 on telescopic extension 390 and annular groove 364 of elbow 330. FIG. 3 a includes an annular latch 384 fit within annular receiving groove 364. The dimensions of annular receiving groove 364 are generally between 0.1 mm to 0.2 mm larger than annular latch 384. In use, during maintenance, the combination of the annular latch and groove allow telescopic extension 390 to be “snapped” into elbow 330 in a manner that prevents removal, but allows rotation of the two pieces with respect to each other.
  • In FIG. 3 b, a cross-section of elbow 330 and telescopic extension 390 is shown. Annular groove 362 is provided in elbow 330 Annular receiving extension 382 is provided on telescopic extension 390. The combination of the annular extension and annular receiving groove allows for detachable connection of the pieces and rotation while connected.
  • Referring back to FIG. 2; the connection between extension 470 and recess 450 can take the same form as described in FIGS. 3 a and 3 b.
  • Referring to FIG. 4 a, in another embodiment, it is desirable to lower the invention from the faucet. In that situation, extender 312 is inserted between faucet 300 and elbow 338. Elbow 338 serves same function as elbow 330 in FIG. 2.
  • Elbow 338 has channel 326, entrance 319, and recess 324. Entrance 319 is the beginning of channel 326. Recess 324 extends around the entire circumference of wall of channel 326 and is located between 1 mm to 100 mm from entrance 319. Depth of recess 324 is less than the width of the wall of elbow 338.
  • Extender 312 has channel 314 and end 318. Channel 314 traverses the length of extender 312.
  • Diameter of end 318 is between 0.1 mm and 0.5 mm less than diameter of channel 326. End 318 has o-ring 316 and extension 322. O-ring 316 fits in annular groove 313. Internal diameter of o-ring 316 is 0.1 mm to 0.5 mm more than the diameter of end 318. Outside diameter of o-ring 316 is no less than the diameter of channel 326.
  • Recess 324 is located such that when end 318 is inserted into channel 326 and extension 322 is inserted into recess 324, a seal is created between elbow 338 and extender 312 by use of o-ring 316.
  • Design of recess 324 and extension 322 can be similar to those described in FIGS. 3 a and 3 b.
  • Referring to FIG. 4 b, in another embodiment, elbow 502 serves a similar function as elbow 220 (of FIG. 1) and elbow 420 (of FIG. 2). Elbow 502 is constructed from material known in the art to allow elbow 502 to be bent into different positions and angles and hold the desired position after being bent.
  • Elbow 502 has channel 504. Inside channel 504 is annular groove 514. Annular groove 514 will connect to reservoir 475 (of FIG. 2).
  • Elbow 502 has end 506 on which is located extension 508 and annular groove 516. Inside annular groove is o-ring 512. Extension 508 is inserted into recess 360 (of FIG. 2).
  • FIG. 4 c illustrates another preferred embodiment of the present invention. Faucet 452 has channel 456 that traverses the length of faucet 452 and bends similarly with faucet 452. Faucet 452 has spout 458, which has a smaller cross-section than faucet 452. Cross-section of spout 458 is typically circular. Channel 456 extends through spout 458.
  • Elbow 466 has bends 474 and 478. Bends 474 and 478 have an angle of approximately 90° and give elbow 466 a “U” shape.
  • Elbow 466 has channel 464 which traverses the length of elbow 466 and bends similarly to bends 474 and 478. Channel 464 has entrance 462 and exit 484. Cross-section of channel 464 is larger than the cross-section of spout 458 but smaller than cross-section of faucet 452.
  • Channel 464 has annular recess 482 which is between 0.1 cm and 0.5 cm in depth and covers the entire circumference of the wall of channel 464 Annular recess 482 is located between approximately 0.1 cm and 1 cm from exit 484.
  • Elbow 466 has indention 468 which extends semi-circumferentially around elbow 466. Indention 468 does not intersect with channel 464 and is between 1 cm and 3 cm in width. The longitudinal axis of indention 468 is at an angle of between 5° and 25° to the vertical axis of faucet 452.
  • Spout 496 has end 488 and reservoir 494. Cross-section of end 488 is between 0.01 mm and 1 mm less than cross-section of channel 464. End 488 has annular extension 492 which extends outward from circumference of end 488. Length of annular extension 492 is such that it fits within annular recess 482.
  • Reservoir 494 is positioned adjacent to end 488. The cross-section of reservoir 494 is generally equal to or greater than the cross-section of elbow 466. Faceplate 498 is adjacent to reservoir 494.
  • Spout 496 has channel 483 which traverses end 488 and reservoir 494. The cross-section of channel 483 increases and/or decreases consistent with and in relation to the changes in the cross-section of end 488 and reservoir 494.
  • In practice, end 488 is pushed into channel 464 until annular extension 492 fits into annular recess 482.
  • Strap 305 as illustrated in FIGS. 2 and 3 c is also used with this embodiment.
  • In use, spout 458 is inserted into channel 464. Strap 305 is inserted into indention 468. Ends 385 and 175 are pulled over faucet 452 until the desired pressure is being asserted by elbow 466 against faucet 452. Button 355 is inserted through appropriate hole 335 to maintain the pressure.
  • Owner will open valve (not shown) and allow water to flow through channel 456, through channel 464, through channel 483, and then out faceplate 498 allowing the pet to drink.
  • Different designs of faceplate 490 and reservoir 475 (of FIG. 2), faceplate 290 and reservoir 275 (of FIG. 1), and faceplate 498 and reservoir 494 (of FIG. 4 c) allow for different water flows from which the pet can drink. FIGS. 5 a through 5 h illustrate alternate designs of reservoirs and their respective faceplates.
  • FIG. 5 a illustrates reservoir 520 with faceplate 530. Faceplate 530 has numerous holes 525. Holes 525 can be arranged in a random pattern or in a pre-determined pattern. Number of holes 525 can range from approximately 2 to 50. The diameter of holes 525 can range between approximately 1 mm to 1 cm. Holes 525 provide an exit path for water and provide an interesting “bubbling” characteristic. The remainder of faceplate 530 allows the water to collect before flowing off of faceplate 530 creating a water “layer” on top of faceplate 530 during use.
  • Referring to FIG. 5 b, reservoir 500 has faceplate 510. Faceplate 510 has single hole 505. Hole 505 allows water to flow through faceplate 510 in a single stream, similar to a fountain. Diameter of hole 505 can range between approximately 1 cm to 6 cm. The remainder of faceplate 510 has a layer of water that forms from the water exiting hole 505 before flowing off faceplate 510. The arrangement of one hole 505 will create a single stream of water.
  • Referring to FIG. 5 c, in this alternative preferred embodiment, reservoir 540 has faceplate 550 and wall 560. Wall 560 has holes 570 which allow water to flow from the side of reservoir 540. The number of holes 570 can range between approximately 2 to 25 holes and can either be arranged in a predetermine pattern or in random pattern. This arrangement allows for the water to flow out the side of reservoir 540 in horizontal fashion. As one skilled in the art will realize, the greater the number of holes 570 the lower the pressure of the stream of water from each hole 570 for any given flow rate.
  • Referring to FIG. 5 d, in this preferred embodiment, reservoir 580 has faceplate 590. Faceplate 590 has holes 600. Holes 600 can be arranged in a random pattern or in a predetermined pattern. Number of holes 600 can range from approximately 2 to 10. The diameter of holes 600 can range between approximately 2 mm to 4 cm. Notably, in this embodiment, the holes are of different diameter. Also notably, the holes are bored at different angles allowing for a predetermined direction of water flow. Number of holes 600 of between 2 and 4 will allow the water flowing from holes 600 to have a “fountain like” characteristic. The remainder of faceplate 590 allows the water to collect before flowing off of faceplate 590 creating a water layer on top of faceplate 590 from which the pet can drink.
  • Referring to FIG. 5 e, in this alternative preferred embodiment, reservoir 610 has faceplate 630 and wall 620. Wall 620 has a single hole 640 which allows water to flow from reservoir 610. This arrangement allows for the water to stream out the side of reservoir in horizontal motion from the side of reservoir 610.
  • Referring to FIG. 5 f, in this alternative preferred embodiment, reservoir 650 has faceplate 660 and wall 680. Wall 680 has slots 670 which allow water to flow from the side of reservoir 650. Slots 670 are approximately rectangular is shape with a height of between 2 mm to 4 mm and a width of between 1 mm and 10 mm. The number of slots 670 can range between approximately 1 to 20 slots and can either be arranged in a pre-determine pattern or in random pattern. This arrangement allows for the water to flow from the side of the reservoir in a “waterfall” effect. The more slots 670 the less strength of the stream of water from each slot 670.
  • Referring to FIG. 5 g, in the alternative preferred embodiment, reservoir 690 has floor 725, wall 740, and hole 720. Wall 740 extends generally perpendicularly from perimeter of floor 725 for approximately 1 cm to 7 cm. Wall 740 then extends frustoconically toward the center of reservoir 690 at an angle of between about 25° and about 65° ending in hole 720. Thickness of wall 740 is between 0.5 mm and 10 mm. Channel 730 is provided within reservoir 690. Within channel 730 is ball 710. Diameter of ball 710 will be greater than both hole 720 and hole 700 such that ball 710 will not fall out of reservoir 690.
  • In practice, when water enters reservoir 690 through hole 700, ball 710 will be forced upward toward hole 720. The pet will be able to push ball 710 down into channel 730 allowing water to flow and pet to drink. By including ball 710, the pet not only is able to drink fresh water, but also have a toy with which it can play. In a further preferred embodiment, the ball is constructed of a phosphorescent plastic, providing a source of light to locate the invention in the dark.
  • Referring to FIG. 5 h, reservoir 750 has walls 770. Walls 770 extend frustoconically upward at an angle of about 100° and about 134° from the base of reservoir 750 forming channel 760. Walls 770 have a thickness of between 0.5 mm and 10 mm. This creates a bowl shape from which the pets can drink. As the water flows, it will overflow walls 770 and flow into the sink below.
  • Referring then to FIG. 6, in another preferred embodiment, reservoir 800 allows for two animals to drink at the same time. Reservoir 800 has end 810 with o-ring 820 and extension 830. O-ring 820 fits in annular groove 822. End 810 functions similarly to end 480 as described in FIG. 2.
  • Reservoir 800 has leg 805 which is connected to end 810. Leg 805 extends upward and then branches into two 90° angles toward opposite directions, creating leg 815 and leg 825. Leg 815 then bends at an approximate 90° angle, and creates leg 875. Leg 815 and leg 875 form elbow 880. Leg 825 bends at an approximate 90° angle and creates leg 885. Leg 825 and leg 885 form elbow 870. Leg 875 and leg 885 are parallel to leg 805.
  • Channel 840 traverses the length of leg 805, 815, 825, 875, and 885 and bends consistent with the bends of these legs. Channel 840 has exit 950 at end of elbow 880 and exit 960 at end of elbow 870. Affixed to end of elbow 880 is reservoir 860 and affixed to end of elbow 870 is reservoir 850.
  • Reservoir 860 has end 890. End 890 has extension 940 and o-ring 862. O-ring 862 fits in annular groove 864. Channel 840 has recess 930 in wall of channel 840 between approximately 1 mm and 10 mm from exit 950. Extension 940 fits within recess 930. Recess 930 does not extend past walls of elbow 880. O-ring 862 is situated so as to create a seal between reservoir 860 and elbow 880 when end 890 is placed inside channel 840 and extension 940 is within recess 930.
  • Reservoir 850 has end 900. End 900 has extension 920 and o-ring 852. O-ring 852 fits in annular groove 854. Channel 840 has recess 910 in wall of channel 840 between approximately 1 mm and 10 mm from exit 960. Extension 920 fits within recess 910. Recess 910 does not extend past walls of elbow 870. O-ring 852 is situated so as to create a seal between reservoir 850 and elbow 870 when end 900 is placed inside channel 840 and extension 920 is within recess 910.
  • Extensions 940 and 920 and recesses 930 and 910 can be designed similar to those described in FIGS. 3 a and 3 b.
  • Reservoirs 860 and 850 can have any of the designs described in FIGS. 5 a through 5 h. Further, reservoir 860 and 850 can have different designs depending on the choice of owner and preference of the pet.
  • Referring to FIG. 7, an alternate embodiment is described. Spout 1000 includes connector 1060 and reservoirs 1070. Connector 1060 includes channel 1010 which traverses the length of connector 1060. The channel 1010 includes entrance 1040 and exit 1050. Embedded in the inside wall of channel 1010 is annular recess 1020. In one preferred embodiment annular recess 1020 is between 0.1 cm and 0.5 cm in depth and annular recess 1020 is located between approximately 0.1 cm and 1 cm from entrance 1040.
  • O-ring 1120 is fitted in annular recess 1020. The dimensions of o-ring 1120 are sufficient to create a press fit between o-ring 1120 and the outside diameter of faucet 1061.
  • Connector 1060 includes extension 1110 extending circumferentially from the exterior surface of the connector 1060. In one preferred embodiment, extension 1110 has an outside radius of between 3 mm and 10 mm greater than the connecter and has a height between 1 mm and 10 mm and has a height of between 1 mm and 10 mm. Extension 1110 has annular indention 1030 located on its top surface.
  • Reservoir 1070 includes bowl 1080 and wall 1090. Wall 1090 is generally shaped as a half-cylinder and includes semi-circular hook 1100. In one preferred embodiment, wall 1090 has a height of between 0.5 cm and 4 cm. Semi-circular hook 1100 extends from wall 1090 and forms a mating connector with annular indention 1030. The fit between semi-circular hook 1100 and extension 1110 should be snug but allow for removability.
  • Wall 1090 is connected to bowl 1080. Bowl 1080 in the preferred embodiment is of general oval shape. However, bowl 1080 can have other decorative shapes, such as but not limited to outlines of animals, flora, fauna, or food.
  • In one preferred embodiment, the interior of bowl 1080 has a depth of between 0.5 cm and 5 cm while the outside depth of bowl 1080 is between 0.5 cm and 7 cm. The interior of bowl 1080 in the preferred embodiment is smooth; however, it can be imprinted with decorative designs, such as but not limited to facial imprints of cat, scale imprints of fish, or flower petals. Additionally, bowl 1080 can be a variety of colors depending on the decorative design desired.
  • In another preferred embodiment, connector 1060 and reservoir 1070 can be manufactured as a single integral unit such that reservoir 1070 is not removable from connector 1060.
  • In another embodiment shown in FIG. 8, bowl 1081 can have two chambers, 1082 and 1083 segregated by a wall 1084. Chamber 1083 can dispense other consumable items to be dispensed such as food or medicines. Bowl 1081 can also include drain 1085 located on the wall of chamber 1082. Drain 1085 has a generally semi-circular shape removed from the wall of chamber 1082 and directs the flow of water from chamber 1082 such that the consumable items in chamber 1083 do not become wet. The radius of drain 1085 is no more than half the height of the wall of chamber 1082.
  • Referring to FIG. 9, in another embodiment of the preferred invention, bowl 1091 has two chambers, 1092 and 1093 segregated by wall 1094. Chamber 1093 can dispense other consumable items to be dispensed. To prevent water from crossing wall 1094 and wetting chamber 1093, hole 1097 is removed from the bottom of chamber 1092. The size of hole 1097 can range from between 0.5 mm to 3 mm.
  • Returning to FIG. 7, in practice, connector 1060 is attached to reservoir 1070 by sliding semi-circular hook 1100 into annular indention 1030 and positioning bowl 1080 in front of faucet 1061. Connector 1060 is attached to faucet 1061 by placing entrance 1040 over the faucet and applying a vertical axial pressure to connector 1060 until o-ring 1120 seats on faucet 1061.
  • After attachment of connector 1060 to the faucet, a spigot (not shown) is opened and water is allowed to flow through channel 1010 and out exit 1050 into reservoir 1070. As the water flows, reservoir 1070 will fill and overflow bowl 1080 into the sink below.
  • In a preferred embodiment, reservoir 1070 can be rotated around connector 1060 to place bowl 1080 into different preferred locations from which the pet can drink.
  • As will be apparent to one of skill in the art, the invention has the advantage that the water flow through spout 1000 can be very slow and can be left flowing for long periods of time. This allows the pet to drink at any time it so chooses. Further, if the embodiment that includes a chamber for food, the pet can be fed with one chamber and have fresh water available at a single location for several days.
  • The invention also provides the advantage of disassembly between connector 1060 and reservoir 1070 to allow for cleaning and storage of the separate components.
  • Further advantages include that the device can be made from easily available plastic materials, including but not limited to acrylonitrile-butadiene-styrene (ABS), poly-vinyl-chloride (PVC), polypropylene. Reservoir 1070 can be made from PVC, polypropylene or other plastics or metals, such as stainless steel or cast aluminum.
  • It will be appreciated by those skilled in the art that changes could be made to the embodiments described above without departing from the broad inventive concept. It is understood, therefore, that this invention is not limited to the particular embodiments disclosed, but it is intended to cover modifications within the spirit and scope of the present invention as defined by the appended claims.

Claims (20)

1. A pet drinking device for attachment to a faucet, the faucet having a delivery end with a delivery opening for delivering water, the pet drinking device comprising:
a conduit removably coupled to the delivery end of the faucet to receive water from the delivery opening of the faucet; and
a reservoir fluidly coupled to the conduit to receive and collect water from the conduit, the reservoir having a drink opening that allows a pet to drink water from the reservoir, the drink opening of the reservoir being located beneath the delivery end of the faucet when the conduit is coupled to the faucet.
2. The pet drinking device of claim 1, wherein the conduit is sized to frictionally receive the delivery end of the faucet.
3. The pet drinking device of claim 1, wherein the conduit defines an annular recess that receives an o-ring, the o-ring creating a seal around the delivery end of the faucet.
4. The pet drinking device of claim 1, wherein a vertical axis extending downward from the delivery end of the faucet intersects the reservoir such that the reservoir is located directly beneath the delivery end of the faucet.
5. The pet drinking device of claim 4, wherein the vertical axis extends through the conduit before intersecting the reservoir such that the conduit is located directly beneath the delivery end of the faucet and the reservoir is located directly beneath the conduit.
6. The pet drinking device of claim 1, wherein the reservoir includes a base and a wall that extends upward from the base to hold water.
7. The pet drinking device of claim 6, wherein the base of the reservoir includes a first portion located directly beneath the delivery end of the faucet and a second portion located forward and beneath the delivery end of the faucet.
8. The pet drinking device of claim 7, wherein the second portion of the base is larger than the first portion of the base.
9. The pet drinking device of claim 1, wherein the reservoir is one of:
integrally coupled to the conduit as a one-piece unit; and
removably coupled to the conduit as a multi-piece assembly.
10. The pet drinking device of claim 1, wherein the delivery opening of the faucet faces downward and the drink opening of the reservoir faces upward.
11. The pet drinking device of claim 1, wherein the conduit is constructed of plastic.
12. A pet drinking device for attachment to a faucet, the faucet having a delivery end with a longitudinal axis and a delivery opening for delivering water, the pet drinking device comprising:
a conduit frictionally retained on the delivery end of the faucet to receive water from the delivery opening of the faucet, the conduit being separable from the delivery end of the faucet by sliding the conduit away from the delivery end of the faucet along the longitudinal axis; and
a reservoir fluidly coupled to the conduit to receive and collect water from the conduit, the reservoir having a drink opening that allows a pet to drink water from the reservoir.
13. The pet drinking device of claim 12, wherein the delivery opening of the faucet faces downward and the drink opening of the reservoir faces upward.
14. The pet drinking device of claim 12, wherein the conduit defines an annular recess that receives an o-ring, the o-ring creating a seal between the conduit and the delivery end of the faucet.
15. The pet drinking device of claim 12, wherein the conduit is attachable to the delivery end of the faucet by sliding the conduit toward the delivery end of the faucet along the longitudinal axis.
16. The pet drinking device of claim 12, wherein the conduit is circular in cross section.
17. A pet drinking device for attachment to a faucet, the faucet having a delivery end with a downward-facing delivery opening for delivering water, the pet drinking device comprising:
a conduit coupled to the delivery end of the faucet to receive water from the downward-facing delivery opening of the faucet; and
a reservoir coupled to the conduit to receive and collect water from the conduit, the reservoir having a drink opening that allows a pet to drink water from the reservoir, the reservoir being supported by the faucet when the conduit is coupled to the faucet.
18. The pet drinking device of claim 17, wherein the reservoir extends forward from the faucet.
19. The pet drinking device of claim 17, wherein the drink opening of the reservoir faces upward.
20. The pet drinking device of claim 17, wherein the conduit and the reservoir are frictionally supported by the faucet.
US13/195,426 2008-01-31 2011-08-01 Method and apparatus for pet water drinking device Abandoned US20120012062A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/195,426 US20120012062A1 (en) 2008-01-31 2011-08-01 Method and apparatus for pet water drinking device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US12/012,131 US20090194031A1 (en) 2008-01-31 2008-01-31 Method and apparatus for pet water drinking device
US12/322,249 US7987817B2 (en) 2008-01-31 2009-01-30 Method and apparatus for pet water drinking device
US13/195,426 US20120012062A1 (en) 2008-01-31 2011-08-01 Method and apparatus for pet water drinking device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US12/322,249 Continuation US7987817B2 (en) 2008-01-31 2009-01-30 Method and apparatus for pet water drinking device

Publications (1)

Publication Number Publication Date
US20120012062A1 true US20120012062A1 (en) 2012-01-19

Family

ID=40930415

Family Applications (2)

Application Number Title Priority Date Filing Date
US12/322,249 Expired - Fee Related US7987817B2 (en) 2008-01-31 2009-01-30 Method and apparatus for pet water drinking device
US13/195,426 Abandoned US20120012062A1 (en) 2008-01-31 2011-08-01 Method and apparatus for pet water drinking device

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US12/322,249 Expired - Fee Related US7987817B2 (en) 2008-01-31 2009-01-30 Method and apparatus for pet water drinking device

Country Status (2)

Country Link
US (2) US7987817B2 (en)
WO (1) WO2009099560A2 (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100252585A1 (en) * 2009-04-01 2010-10-07 Yui George M Water probe for bottom loading water cooler
US8448603B2 (en) * 2010-04-07 2013-05-28 Doskocil Manufacturing Company, Inc. Animal bowl with spill-resistant rim
US8770147B2 (en) 2011-02-25 2014-07-08 Radio Systems Corporation Animal watering device
USD677018S1 (en) * 2011-04-15 2013-02-26 Felinicity Inc. Pet water fountain
US9265231B2 (en) * 2012-04-10 2016-02-23 ChickenWaterer.com, LLC Portable nipple based poultry waterer
USD681286S1 (en) * 2012-06-16 2013-04-30 Kong Namvong Pet food and water dish
USD708402S1 (en) * 2012-06-27 2014-07-01 Ctb, Inc. Breather cap for use in connection with a watering assembly
US20140102374A1 (en) * 2012-10-16 2014-04-17 Pioneer Pet Products, Llc Pump Anchored Fountain Cover And Pet Fountain Assembly
USD689245S1 (en) 2013-03-14 2013-09-03 Radio Systems Corp. Pet water fountain
USD694477S1 (en) 2013-03-14 2013-11-26 Radio Systems Corp. Pet water fountain
US10631520B2 (en) 2013-06-19 2020-04-28 Radio Systems Corporation Automatic animal feeding system
US10743517B2 (en) 2013-06-19 2020-08-18 Radio Systems Corporation Networked automatic animal feeding system
US9924701B1 (en) 2016-05-14 2018-03-27 Steven Chalmers Cat operated water fountain
US10787370B2 (en) 2016-06-20 2020-09-29 Radio Systems Corporation Filtration system for pet water fountain
CN110831434B (en) 2017-05-23 2023-01-10 无线电系统公司 Flow controlled fountain type device for pet water supply
US11825822B2 (en) 2018-09-05 2023-11-28 Radio Systems Corporation Centrifugal pump pet water fountain
WO2020051306A1 (en) 2018-09-05 2020-03-12 Radio Systems Corporation Centrifugal pump pet water fountain
US20200154681A1 (en) * 2018-11-20 2020-05-21 Poultry EcoServices, LLC Apparatus and method to reduce exposure to water borne pathogens in a poultry growing facility

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1175137A (en) * 1915-08-07 1916-03-14 Combination Drinking Fountain Company Drinking-fountain attachment for faucets.
US2578933A (en) * 1947-12-02 1951-12-18 Hunter Coupling
US2626630A (en) * 1950-08-03 1953-01-27 Francis B Hotton Hydraulic control valve
US2700370A (en) * 1953-08-10 1955-01-25 United Screw Products & Mfg Co Water tube extension for poultry fountains
US3414001A (en) * 1965-03-25 1968-12-03 Joseph C. Woodford Anti-siphon outlets
US3539205A (en) * 1968-10-09 1970-11-10 Gifford Hill Western Irrigation pipe system and pipe units therefor
US3809520A (en) * 1972-02-22 1974-05-07 R Wilk Fluid heated scoop
US4746149A (en) * 1987-07-07 1988-05-24 Thompson Albert L Coupler for water line
US5373811A (en) * 1994-01-21 1994-12-20 Wastell; Terry Nipple waterer substitute compression element
US5427058A (en) * 1994-07-06 1995-06-27 Chung; Hwei-An Watering valve for use in water feeders for small animals
US5775587A (en) * 1995-06-15 1998-07-07 Davis; Russell A. Portable handheld drinking water fountain
US6367707B1 (en) * 2001-02-20 2002-04-09 Tae C. Kang Bi-directional flow spout attachment
US6726256B2 (en) * 2001-10-17 2004-04-27 Franz Viegener Ii Gmbh & Co. Kg Fitting or mounting part for establishing a pressed connection with an inserted tube end
US20060076776A1 (en) * 2004-10-13 2006-04-13 Beeren Joseph M Spray bar assembly conduit
US20070246938A1 (en) * 2006-04-19 2007-10-25 Ibp Conex Limited Press fitting arrangement with a pre-press leak indicator sealing ring

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US445920A (en) * 1891-02-03 Device for watering stock
US1231073A (en) * 1917-06-26 Stock-wzaiterer
US1184773A (en) * 1915-12-29 1916-05-30 C A Libbey Company Stock-waterer.
US1337636A (en) * 1918-01-08 1920-04-20 Frank H Bogda Stock-watering bowl
US1372213A (en) 1920-11-12 1921-03-22 Albert Beauvais Drinking-fountain attachment for bibbs or faucets
US1524484A (en) * 1921-08-20 1925-01-27 William F J Lutz Combined faucet and drinking fountain
US1652046A (en) * 1925-03-07 1927-12-06 Rassmann Mfg Company F Water-bowl structure
US1738300A (en) * 1926-09-13 1929-12-03 August F Klinzing Animal drinking fountain
US2220421A (en) * 1939-09-12 1940-11-05 Howard C Munson Drinking fountain
US2749882A (en) 1954-12-23 1956-06-12 William M Robbins Adjustable height stock-watering apparatus
US2848013A (en) * 1957-06-10 1958-08-19 Reed S Kofford Poultry watering cup
US3495280A (en) * 1966-03-02 1970-02-17 Giuseppe Galbiati Telescopic pipe-fitting structure
US3952706A (en) * 1973-03-19 1976-04-27 H. W. Hart Mfg. Co. Poultry watering device
US3831558A (en) 1973-08-16 1974-08-27 North 40 Mfg Inc Water fountain for animals
US3983844A (en) * 1974-03-28 1976-10-05 H. W. Hart Mfg. Co. Poultry watering device
US4205402A (en) 1978-11-15 1980-06-03 Miller Daniel C Bidet adaptor for toilet
US4221188A (en) * 1979-04-30 1980-09-09 Ziggity Systems, Inc. Watering cup for poultry and animals
US4476812A (en) * 1982-07-23 1984-10-16 H. W. Hart Mfg. Co. Watering cup
US4662656A (en) * 1983-09-09 1987-05-05 Foster-Miller, Inc. Pipeline coupling
US4656970A (en) * 1985-01-24 1987-04-14 Ziggity Systems, Inc. Poultry drinker device
US4630569A (en) 1985-05-02 1986-12-23 Dieleman Lawrence A Self-cleaning birdbath apparatus
US4771736A (en) * 1986-08-01 1988-09-20 Carmien Joseph A Poultry watering cup valve and seal therefor
US5005565A (en) * 1988-06-07 1991-04-09 Fratesi Gary R Thigh and knee protective device
US4924812A (en) 1989-02-01 1990-05-15 Bernays Jr Robert L Water bowl fountain
US5934221A (en) * 1997-09-18 1999-08-10 Kirschner; Jonathan Device and method for watering a pet
US6202594B1 (en) 1997-09-18 2001-03-20 Jonathan Kirschner Device and method for watering a pet
JP3382568B2 (en) 1999-09-24 2003-03-04 健治 大塚 Vertical and horizontal adjustable faucet
US6119628A (en) * 1999-10-21 2000-09-19 Lorenzana; Moises B. Animal water dispensing apparatus
US6279508B1 (en) 1999-10-28 2001-08-28 Jack Marchant Pet watering fountain
US6332428B1 (en) * 2000-06-02 2001-12-25 Fu-Yuan Li Part-replaceable water dispenser for domestic animals
US6526916B1 (en) 2002-01-23 2003-03-04 Leon Perlsweig Pet fountain
US6718912B2 (en) * 2002-06-24 2004-04-13 Nicholas J. Pappas Pet drinking aid device
US7089881B2 (en) 2004-01-14 2006-08-15 Rolf C. Hagen, Inc. Pet drinking fountain
US20070095297A1 (en) 2005-11-02 2007-05-03 Radio Systems Corporation Proximity activated pet fountain

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1175137A (en) * 1915-08-07 1916-03-14 Combination Drinking Fountain Company Drinking-fountain attachment for faucets.
US2578933A (en) * 1947-12-02 1951-12-18 Hunter Coupling
US2626630A (en) * 1950-08-03 1953-01-27 Francis B Hotton Hydraulic control valve
US2700370A (en) * 1953-08-10 1955-01-25 United Screw Products & Mfg Co Water tube extension for poultry fountains
US3414001A (en) * 1965-03-25 1968-12-03 Joseph C. Woodford Anti-siphon outlets
US3539205A (en) * 1968-10-09 1970-11-10 Gifford Hill Western Irrigation pipe system and pipe units therefor
US3809520A (en) * 1972-02-22 1974-05-07 R Wilk Fluid heated scoop
US4746149A (en) * 1987-07-07 1988-05-24 Thompson Albert L Coupler for water line
US5373811A (en) * 1994-01-21 1994-12-20 Wastell; Terry Nipple waterer substitute compression element
US5427058A (en) * 1994-07-06 1995-06-27 Chung; Hwei-An Watering valve for use in water feeders for small animals
US5775587A (en) * 1995-06-15 1998-07-07 Davis; Russell A. Portable handheld drinking water fountain
US6367707B1 (en) * 2001-02-20 2002-04-09 Tae C. Kang Bi-directional flow spout attachment
US6726256B2 (en) * 2001-10-17 2004-04-27 Franz Viegener Ii Gmbh & Co. Kg Fitting or mounting part for establishing a pressed connection with an inserted tube end
US20060076776A1 (en) * 2004-10-13 2006-04-13 Beeren Joseph M Spray bar assembly conduit
US20070246938A1 (en) * 2006-04-19 2007-10-25 Ibp Conex Limited Press fitting arrangement with a pre-press leak indicator sealing ring

Also Published As

Publication number Publication date
WO2009099560A2 (en) 2009-08-13
US20090194032A1 (en) 2009-08-06
WO2009099560A3 (en) 2009-12-30
US7987817B2 (en) 2011-08-02

Similar Documents

Publication Publication Date Title
US7987817B2 (en) Method and apparatus for pet water drinking device
US9474249B2 (en) Recirculating pet fountain
US5842437A (en) Animal waterer
US2790632A (en) Spout with adjustable discharge head
US9402375B2 (en) Recirculating pet fountain
US5799609A (en) Animal waterer
US20140251223A1 (en) Animal Watering Fountain Offering Multi-Dimensional Fluid Circulation
US4432105A (en) Shower device
US8061304B1 (en) Small pet washing apparatus
US20130213308A1 (en) Pet Bowl For Keeping Water Fresh
US7389942B2 (en) Pop-up bubbler assembly for dispensing fluid
CN110831434B (en) Flow controlled fountain type device for pet water supply
US5632231A (en) Pet shower device
CN110856833B (en) Shower nozzle
US20160263595A1 (en) Micro fogging device and method
US20100242166A1 (en) Exposed Shower System
US20090113619A1 (en) Dual spout-type faucet with controllable conventional-flow and mister-flow rates
US20080110512A1 (en) Decorative faucet assembly formed of plastic molded onto metal parts
US20060021127A1 (en) Waterfall waterjet with debris removing outlet
US20190145086A1 (en) Toilet tank washbasin
US20160165836A1 (en) Recirculating Pet Fountain with Pet Food Holder
CN211796085U (en) Shower column with shoulder and neck water unit
US20090218411A1 (en) Water sheet showerhead
US6463598B2 (en) Accessory for distributing fresh water from a faucet to bathers
CN110840306A (en) Shower column with shoulder and neck water unit

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION