US20110320162A1 - Method and device for communicating electrical positioning information of a final control element - Google Patents

Method and device for communicating electrical positioning information of a final control element Download PDF

Info

Publication number
US20110320162A1
US20110320162A1 US12/017,374 US1737408A US2011320162A1 US 20110320162 A1 US20110320162 A1 US 20110320162A1 US 1737408 A US1737408 A US 1737408A US 2011320162 A1 US2011320162 A1 US 2011320162A1
Authority
US
United States
Prior art keywords
signal
positioning
positioning information
control element
binary signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US12/017,374
Other versions
US8096313B1 (en
Inventor
Harald Kah
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samson AG
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Assigned to SAMSON AKTIENGESELLSCHAFT reassignment SAMSON AKTIENGESELLSCHAFT ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KAH, HARALD
Publication of US20110320162A1 publication Critical patent/US20110320162A1/en
Application granted granted Critical
Publication of US8096313B1 publication Critical patent/US8096313B1/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C21/00Systems for transmitting the position of an object with respect to a predetermined reference system, e.g. tele-autographic system
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/0318Processes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/8158With indicator, register, recorder, alarm or inspection means
    • Y10T137/8225Position or extent of motion indicator
    • Y10T137/8242Electrical

Definitions

  • the preferred embodiment relates to a method and device for communicating electrical positioning information of an actuator-positioned final control element such as a valve element.
  • the positioning information is usually continually sensed with the aid of an analog sensor for implementing display and/or closed loop control of the position.
  • alarm units such as the so-called namur contact as per the EN 60947-5-6 directive which is usually configured as an inductive proximity switch that transmits a binary signal to a display, by means of which the system can “see” whether the valve element has assumed the alarm position, i.e. the desired emergency position, or not.
  • An object is to overcome the drawbacks of prior art in designing particularly a method and device for transmitting electrical positioning information of an actuator-positioned final control element such as a valve element at minimum expense and complications in keeping with the advantages of continual position sensing while satisfying the requirement for a low energy consumption.
  • a method for communicating electrical positioning information of an actuator-positioned final control element the positioning information resulting from continually sensing a position of the final control element, a binary signal is formed or received having the signal condition 0 when the final control element has attained a predefined position or position range, and a signal condition 1 when the final control element has not attained a predetermined position or the position range.
  • the signal condition of the binary signal and the continuously sensed positioning information are combined such that the signal conditions of the binary signal, the positioning information, or both can be optionally invoked from the positioning signal.
  • FIG. 1 is a block diagram of the structure of a field device actuated by a pneumatic actuator featuring a device in accordance with the preferred embodiment
  • FIG. 2 is a graph plotting an analog positioning information in Ma as a function of time.
  • continually sensed positioning information is now provided both for the method and for the device, on the basis of which the binary signal is to be formed or received signalling the condition 0 when the final control element has attained a predefined position, such as an emergency position or a predefined position range, and signalling the condition 1 when the final control element has not attained the predefined position or the predefined position range.
  • the alarm function particularly emergency watchdogging, is now achieved with the aid of continually sensed positioning information without the need of such hardware as contact makers or inductive proximity switches for signalling the alarm.
  • the continually sensed positioning information and the binary signal developed therefrom are now combined such that a positioning signal is formed from which optionally the corresponding signal condition of the binary signal or the positioning information or both can be invoked.
  • a positioning signal is now produced which provides information both as to the continually sensed position and as to the alarm, i.e. depending on the energy available the corresponding information can be invoked as a function of the operating situation.
  • the binary signal having a condition 0 (zero) shall be considered as a “living” zero point, i.e. it represents in its condition, as in the condition 1 (one), as a certain physical value, for example an electrical current of below 1.5 mA and above 1.8 mA, respectively, or an electrical voltage.
  • the binary signal can be produced by a so-called Namur-contact which is a limit switch.
  • positioning information other types of information can be combined with the binary signal, such as diagnostic data, device characterizing data, calibration data, etc.
  • the positioning signal generated by combining the binary signal to which the analog signal is modulated can be transferred bidirectional particularly between a limit switch generating the binary signal, and a control system.
  • the positioning signal produced by this combination can now transmit not just binary information and continually sensed positioning information simultaneously via a single signal line, but also additional information data, for example, in the form of a data packet relating to the profile, such as the distance/time profile of the positioning motion of the actuator in the position as currently sensed.
  • the positioning signal may include diagnostic information. Should, for example, attaining the current position as indicated by the distance/time profile be slower than wanted, the positioning signal can include “too slow” diagnostic information in combination.
  • the continually sensed positioning information is modulated on the binary signal, i.e. use being made of the binary signal as an electrical signal carrier.
  • the continually sensed positioning information when comprising analog information is digitized before being combined with the binary signal.
  • the continually sensed positioning information is frequency modulated for combination with the binary signal in making use of a data communication protocol such as the HART protocol.
  • communication may be made also opposite to the direction in which the positioning signal is transmitted, i.e. in the direction of the device in accordance with the preferred embodiment in which the binary signal is combined with the continually sensed positioning information signal.
  • a setpoint value such as a position alarm for generating the binary signal may be set by the communication in the opposite direction when desired, in that the desired setpoint value is communicated to the device in accordance with the preferred embodiment via the signal communication line for the combined positioning signal.
  • the method in accordance with the preferred embodiment can be designed to reduce the positioning signal to the corresponding signal condition of the binary signal so that only the positioning signal reduced to the corresponding signal condition is output, as may be particularly of advantage when the energy of the operating condition of the actuator is low or insufficient for the continually sensed positioning information prompting a relatively high energy requirement.
  • the positioning signal can be likewise reduced, namely exclusively to the continually sensed positioning information without the corresponding signal condition of the binary signal, the corresponding reduced signal then being forwarded.
  • a non-volatile memory for the positioning signal is provided so that it can only be cached for a certain period of time, on timeout of which the non-volatile memory can be overwritten with the new positioning signals in thus ensuring that in an emergency situation in which the corresponding final control element is deactivated it is always the last positioning signal data that is cached non-volatile.
  • an electronic component particularly a microchip which generates the binary signal on the basis of the continually sensed positioning information.
  • an electronic module particularly a microchip may be provided which processes the corresponding signal condition and the positioning information associated therewith to form the positioning signal.
  • the electronic module may comprise a microcomputer which modulizes the positioning information on the binary signal, particularly in making use of a HART protocol.
  • the electronic component and the electronic module are achieved as a module, such as a microcomputer, the microcomputer thus being able to undertake both modulation and generation of the binary signal.
  • an analog to digital converter for digitizing the positioning information is inserted immediately downstream of the input of the device and preferably upstream of the electronic module and electronic component.
  • the device in accordance with the preferred embodiment may comprise a filter for reducing the positioning signal to just the binary signal or just to the positioning information.
  • the output of the device is connected to a two-wire line for forwarding the positioning signal.
  • the preferred embodiment relates to a sensor, particularly a Hall sensor or a magneto-resistive sensor particularly intended for analog detection of the position of a final control element, such as a valve element, positioned by an actuator, the sensor being provided with a device in accordance with the preferred embodiment.
  • FIG. 1 there is illustrated a field device in accordance with the preferred embodiment, such as a final control valve assembly identified in general by the reference numeral 1 .
  • the field device 1 comprises a pneumatic actuator 3 actuating a final control valve 5 via a valve stem 7 .
  • a magneto-resistive sensor 9 disposed adjoining the positioning stem 7 senses the position of the stem 7 in detecting the position of a valve element (not shown) of the final control valve 5 .
  • the sensor 9 is connected to a positioner 11 which from a comparison of the setpoint value and actual value outputs a control signal to the pneumatic actuator 3 via a control line 13 and features a position display (not shown).
  • a device in accordance with the preferred embodiment for communicating a positioning signal S is identified in general in FIG. 1 by the reference numeral 15 .
  • the communicating device 15 comprises an input 17 connecting an analog to digital converter 19 .
  • the analog to digital converter 19 digitizes the analog positioning information a sensed by the sensor 9 and passes it on to a microcomputer 21 .
  • the microcomputer 21 generates from the positioning information A a binary signal designed like a normal Namur contact and comprising a signalled condition 1 when the final control valve 5 is in a closed position (not shown). If the final control valve 5 permits a flow the binary signal comprises a signalled condition 0
  • the two functions combined in the microcomputer 21 can be split into two components.
  • the analog to digital converter 19 could be directly followed by a binary signal generator (not shown) which with the aid of a comparator (likewise not shown) compares the continually sensed positioning information to a positioning alarm and outputs the corresponding binary signal (0/1) to the microcomputer 21 by which then the analog positioning information is modulated on the generated binary signal.
  • the microcomputer 21 comprises a modulation component (not shown) which modulates the continually sensed, digitized positioning information in accordance with the HART protocol such that the digital positioning information is superimposed in accordance with its frequency on the associated binary signal.
  • the positioning signal S output at the output 23 of the communication device 15 to a two-wire line 25 contains both each signal condition of the binary signal as well as the continually sensed positioning information for retrieval at the positioner 11 and/or is displayed.
  • information data and data packets such as the diagnostic results can be included by being modulated on the positioning signal.
  • This additional information data may relate to an adequate travel response of the final control element into the desired position, for instance. But also the distance/time profile of the positioning motion of the final control element can be coupled to the positioning signal with the continually sensed positioning information and the binary signal.
  • a reverse communication can take place, namely in the direction of the communication device 15 to permit, for example, resetting the alarm for the binary signal generator (not shown).
  • the microcomputer 21 may be designed to reduce the positioning signal S to the continually sensed positioning information A or to the corresponding signal condition of the binary signal. In an emergency situation, for instance, at which only a very low energy supply is available, the microcomputer 21 can reduce the positioning signal just to the binary signal having a low energy requirement, whereas in normal operating in which adequate energy is available, the microcomputer 21 can either leave the positioning signal S unchanged or make the reduction to at least the continually sensed positioning information.
  • FIG. 2 there is illustrated a time profile of the positioning signal S AB .
  • the stepped basic profile of the positioning signal S AB is induced by the binary signal B whilst the continually sensed digital positioning information A is generated by frequency modulation in superimposing it on the binary signal B in making use of the HART protocol.

Abstract

In a method for communicating electrical positioning information of an actuator-positioned final control element such as a valve element, the positioning information resulting from continually sensing the position of the final control element, a binary signal is formed or received signalling a condition 0 (zero) when the final control element has attained a predefined position and a condition 1 (one) when the final control element has not attained the predefined position or the predefined position range. For forming a positioning signal, the corresponding signal condition of the binary signal and the associated continually sensed positioning information are combined such that the corresponding signal condition of the binary signal or the positioning information or both can be optionally invoked from the positioning signal.

Description

    BACKGROUND
  • The preferred embodiment relates to a method and device for communicating electrical positioning information of an actuator-positioned final control element such as a valve element. The positioning information is usually continually sensed with the aid of an analog sensor for implementing display and/or closed loop control of the position.
  • It is particularly in the field of process engineering and nuclear technology that final control valves are used in flow lines which, due to stringent safety requirements, are actuated by pneumatic actuators. These so-called field devices are usually also designed to automatically position in an emergency, for example, to close the valve element.
  • “Seeing” that this position really has been attained in an emergency is vital to safe operation. Known are alarm units such as the so-called namur contact as per the EN 60947-5-6 directive which is usually configured as an inductive proximity switch that transmits a binary signal to a display, by means of which the system can “see” whether the valve element has assumed the alarm position, i.e. the desired emergency position, or not.
  • Continually sensing the position for example by means of a Hall sensor has the known advantage over a simple alarm that closed loop control of positioning in accordance with the desired flow in the conduits and watchdogging the precise travel of the valve element in an emergency are possible. On the other hand, however, the simple alarm approach has the advantage of a low electrical energy requirement and safe functioning which is most welcome especially in an explosive hazard environment. To satisfy all safety aspects involved it would be a good thing to make available both a continual sensing of the position and an alarm for the field device concerned. Unfortunately this involves an expensive and complicated design.
  • SUMMARY
  • An object is to overcome the drawbacks of prior art in designing particularly a method and device for transmitting electrical positioning information of an actuator-positioned final control element such as a valve element at minimum expense and complications in keeping with the advantages of continual position sensing while satisfying the requirement for a low energy consumption.
  • In a method for communicating electrical positioning information of an actuator-positioned final control element, the positioning information resulting from continually sensing a position of the final control element, a binary signal is formed or received having the signal condition 0 when the final control element has attained a predefined position or position range, and a signal condition 1 when the final control element has not attained a predetermined position or the position range. For forming a positioning signal, the signal condition of the binary signal and the continuously sensed positioning information are combined such that the signal conditions of the binary signal, the positioning information, or both can be optionally invoked from the positioning signal.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a block diagram of the structure of a field device actuated by a pneumatic actuator featuring a device in accordance with the preferred embodiment; and
  • FIG. 2 is a graph plotting an analog positioning information in Ma as a function of time.
  • DESCRIPTION OF THE PREFERRED EMBODIMENT
  • For the purposes of promoting an understanding of the principles of the invention, reference will now be made to the preferred embodiment/best mode illustrated in the drawings and specific language will be used to describe the same. It will nevertheless be understood that no limitation of the scope of the invention is thereby intended, and such alterations and further modifications in the illustrated device and such further applications of the principles of the invention as illustrated as would normally occur to one skilled in the art to which the invention relates are included.
  • In accordance with the preferred embodiment, continually sensed positioning information is now provided both for the method and for the device, on the basis of which the binary signal is to be formed or received signalling the condition 0 when the final control element has attained a predefined position, such as an emergency position or a predefined position range, and signalling the condition 1 when the final control element has not attained the predefined position or the predefined position range. In accordance with the preferred embodiment the alarm function, particularly emergency watchdogging, is now achieved with the aid of continually sensed positioning information without the need of such hardware as contact makers or inductive proximity switches for signalling the alarm. In accordance with the preferred embodiment the continually sensed positioning information and the binary signal developed therefrom are now combined such that a positioning signal is formed from which optionally the corresponding signal condition of the binary signal or the positioning information or both can be invoked. In other words, in accordance with the preferred embodiment just one positioning signal is now produced which provides information both as to the continually sensed position and as to the alarm, i.e. depending on the energy available the corresponding information can be invoked as a function of the operating situation.
  • The binary signal having a condition 0 (zero) shall be considered as a “living” zero point, i.e. it represents in its condition, as in the condition 1 (one), as a certain physical value, for example an electrical current of below 1.5 mA and above 1.8 mA, respectively, or an electrical voltage. The binary signal can be produced by a so-called Namur-contact which is a limit switch.
  • Additionally, it shall be clear that instead of the positioning information other types of information can be combined with the binary signal, such as diagnostic data, device characterizing data, calibration data, etc.
  • Further, it shall be clear that the positioning signal generated by combining the binary signal to which the analog signal is modulated, can be transferred bidirectional particularly between a limit switch generating the binary signal, and a control system.
  • It will be appreciated that the positioning signal produced by this combination can now transmit not just binary information and continually sensed positioning information simultaneously via a single signal line, but also additional information data, for example, in the form of a data packet relating to the profile, such as the distance/time profile of the positioning motion of the actuator in the position as currently sensed. In addition, the positioning signal may include diagnostic information. Should, for example, attaining the current position as indicated by the distance/time profile be slower than wanted, the positioning signal can include “too slow” diagnostic information in combination.
  • In a preferred aspect, to form the positioning signal the continually sensed positioning information is modulated on the binary signal, i.e. use being made of the binary signal as an electrical signal carrier.
  • Preferably the continually sensed positioning information when comprising analog information is digitized before being combined with the binary signal.
  • To achieve an optimally simple combination of each signal condition and the corresponding positioning information the continually sensed positioning information is frequency modulated for combination with the binary signal in making use of a data communication protocol such as the HART protocol.
  • In another preferred aspect communication may be made also opposite to the direction in which the positioning signal is transmitted, i.e. in the direction of the device in accordance with the preferred embodiment in which the binary signal is combined with the continually sensed positioning information signal. For example, a setpoint value such as a position alarm for generating the binary signal may be set by the communication in the opposite direction when desired, in that the desired setpoint value is communicated to the device in accordance with the preferred embodiment via the signal communication line for the combined positioning signal.
  • To save even more energy and to permit reacting to corresponding operating situations for providing high or low levels of energy, the method in accordance with the preferred embodiment can be designed to reduce the positioning signal to the corresponding signal condition of the binary signal so that only the positioning signal reduced to the corresponding signal condition is output, as may be particularly of advantage when the energy of the operating condition of the actuator is low or insufficient for the continually sensed positioning information prompting a relatively high energy requirement.
  • In an operating condition during which a change, particularly suddenly or closed loop control of the positioning motion of the final control element is desired, the positioning signal can be likewise reduced, namely exclusively to the continually sensed positioning information without the corresponding signal condition of the binary signal, the corresponding reduced signal then being forwarded.
  • In another preferred aspect in particular a non-volatile memory for the positioning signal is provided so that it can only be cached for a certain period of time, on timeout of which the non-volatile memory can be overwritten with the new positioning signals in thus ensuring that in an emergency situation in which the corresponding final control element is deactivated it is always the last positioning signal data that is cached non-volatile.
  • In still another preferred aspect of the device in accordance with the preferred embodiment an electronic component, particularly a microchip is provided which generates the binary signal on the basis of the continually sensed positioning information. In addition, an electronic module, particularly a microchip may be provided which processes the corresponding signal condition and the positioning information associated therewith to form the positioning signal. The electronic module may comprise a microcomputer which modulizes the positioning information on the binary signal, particularly in making use of a HART protocol.
  • In yet another preferred aspect of the preferred embodiment the electronic component and the electronic module are achieved as a module, such as a microcomputer, the microcomputer thus being able to undertake both modulation and generation of the binary signal.
  • Preferably an analog to digital converter for digitizing the positioning information is inserted immediately downstream of the input of the device and preferably upstream of the electronic module and electronic component.
  • In addition, the device in accordance with the preferred embodiment may comprise a filter for reducing the positioning signal to just the binary signal or just to the positioning information.
  • Preferably the output of the device is connected to a two-wire line for forwarding the positioning signal.
  • In addition, the preferred embodiment relates to a sensor, particularly a Hall sensor or a magneto-resistive sensor particularly intended for analog detection of the position of a final control element, such as a valve element, positioned by an actuator, the sensor being provided with a device in accordance with the preferred embodiment.
  • Referring now to FIG. 1 there is illustrated a field device in accordance with the preferred embodiment, such as a final control valve assembly identified in general by the reference numeral 1. The field device 1 comprises a pneumatic actuator 3 actuating a final control valve 5 via a valve stem 7. A magneto-resistive sensor 9 disposed adjoining the positioning stem 7 senses the position of the stem 7 in detecting the position of a valve element (not shown) of the final control valve 5.
  • The sensor 9 is connected to a positioner 11 which from a comparison of the setpoint value and actual value outputs a control signal to the pneumatic actuator 3 via a control line 13 and features a position display (not shown).
  • A device in accordance with the preferred embodiment for communicating a positioning signal S is identified in general in FIG. 1 by the reference numeral 15.
  • The communicating device 15 comprises an input 17 connecting an analog to digital converter 19. The analog to digital converter 19 digitizes the analog positioning information a sensed by the sensor 9 and passes it on to a microcomputer 21. The microcomputer 21 generates from the positioning information A a binary signal designed like a normal Namur contact and comprising a signalled condition 1 when the final control valve 5 is in a closed position (not shown). If the final control valve 5 permits a flow the binary signal comprises a signalled condition 0
  • As an alternative, the two functions combined in the microcomputer 21—generating the binary signal and modulating the continually sensed positioning information on the binary signal—can be split into two components. For example, the analog to digital converter 19 could be directly followed by a binary signal generator (not shown) which with the aid of a comparator (likewise not shown) compares the continually sensed positioning information to a positioning alarm and outputs the corresponding binary signal (0/1) to the microcomputer 21 by which then the analog positioning information is modulated on the generated binary signal.
  • The microcomputer 21 comprises a modulation component (not shown) which modulates the continually sensed, digitized positioning information in accordance with the HART protocol such that the digital positioning information is superimposed in accordance with its frequency on the associated binary signal. The positioning signal S output at the output 23 of the communication device 15 to a two-wire line 25 contains both each signal condition of the binary signal as well as the continually sensed positioning information for retrieval at the positioner 11 and/or is displayed. It will be appreciated that in addition to the binary signal and the continually sensed positioning information other information data and data packets such as the diagnostic results can be included by being modulated on the positioning signal. This additional information data may relate to an adequate travel response of the final control element into the desired position, for instance. But also the distance/time profile of the positioning motion of the final control element can be coupled to the positioning signal with the continually sensed positioning information and the binary signal.
  • Via the two-wire line 25 a reverse communication can take place, namely in the direction of the communication device 15 to permit, for example, resetting the alarm for the binary signal generator (not shown).
  • The microcomputer 21 may be designed to reduce the positioning signal S to the continually sensed positioning information A or to the corresponding signal condition of the binary signal. In an emergency situation, for instance, at which only a very low energy supply is available, the microcomputer 21 can reduce the positioning signal just to the binary signal having a low energy requirement, whereas in normal operating in which adequate energy is available, the microcomputer 21 can either leave the positioning signal S unchanged or make the reduction to at least the continually sensed positioning information.
  • Referring now to FIG. 2 there is illustrated a time profile of the positioning signal SAB. The stepped basic profile of the positioning signal SAB is induced by the binary signal B whilst the continually sensed digital positioning information A is generated by frequency modulation in superimposing it on the binary signal B in making use of the HART protocol.
  • While a preferred embodiment has been illustrated and described in detail in the drawings and foregoing description, the same is to be considered as illustrative and not restrictive in character, it being understood that only the preferred embodiment has been shown and described and that all changes and modifications that come within the spirit of the invention both now or in the future are desired to be protected.

Claims (28)

1. A method for communicating electrical positioning information of an actuator-positioned final control element, said positioning information resulting from continually sensing a position of the final control element, comprising the steps of:
forming or receiving a binary signal having a signal condition 0 when the final control element has attained a predefined position or position range, and a signal condition 1 when the final control element has not attained the predefined position or the position range; and
for forming a positioning signal combining the signal conditions of the binary signal and the continually sensed positioning information such that the signal conditions of the binary signal, the positioning information, or both can be optionally invoked from said positioning signal.
2. A method of claim 1 wherein to form the positioning signal the continually sensed positioning information is modulated onto the binary signal.
3. A method of claim 1 wherein the continually sensed positioning information is digitized before being combined with the binary signal.
4. A method of claim 1 wherein the continually sensed positioning information is frequency modulated for combination with the binary signal.
5. A method of claim 1 wherein the positioning signal is communicated via a single output terminal.
6. A method of claim 1 wherein a method parameter for setting or configuring the method is received for generating the binary signal from the positioning information via a signal line used to communicate the positioning signal.
7. A method of claim 1 wherein in a certain operating mode of the actuator the positioning signal is reduced to the signal conditions of the binary signal and the positioning signal reduced to the signal conditions is output.
8. A method of claim 1 wherein in a certain operating mode the positioning signal is, where necessary, reduced to the continually sensed positioning information and the reduced positioning signal is sent.
9. A method of claim 1 wherein the binary signal indicates MAX or MIN violation of an adjustable position alarm.
10. A method of claim 1 wherein the position is cached for a predetermined period of time of actuator operation.
11. A method of claim 1 wherein in addition to at least one of the binary signal and the associated continually sensed positioning information additional information is attached to the positioning signal assigned to the continually sensed positioning information.
12. A method of claim 1 wherein the predefined position comprises an emergency position.
13. A method of claim 1 wherein the final control element comprises a valve element.
14. A system for transmitting electrical positioning information of an actuator-positioned final control element, comprising:
a communication device having an input for receiving continually sensed positioning information from a sensor and an output for forwarding a positioning signal;
said communication device generating or receiving by way of the positioning information a binary signal signalling a condition 0 when the final control element has attained a predefined position or a predefined position range, and signalling a condition 1 when the final control element has not attained the predefined position or the predefined position range; and
said communication device combining the signal conditions of the binary signal and the continually sensed positioning information for forming said positioning signal such that the signal conditions of the binary signal, the positioning information, or both can be optionally invoked from said positioning signal.
15. A system of claim 14 wherein the output is formed by a sole terminal for communicating the positioning signal.
16. A system of claim 14 wherein the communication device is designed to receive a setting for generating the binary signal via a signal line connected to the output.
17. A system of claim 14 wherein the communication device has an electronic module for processing the positioning information for generating the binary signal.
18. A system of claim 14 wherein the communication device has an electronic module which processes the signal conditions and the positioning information for forming the positioning signal.
19. A system of claim 18 wherein the electronic module has a modulation component which modulates the positioning information on the binary signal.
20. A system of claim 18 wherein the electronic module comprises a microcomputer.
21. A system of claim 14 wherein the communication device comprises an analog to digital converter for digitizing the positioning information.
22. A system of claim 14 wherein the communication device comprises a filter for reducing the positioning signal to only the binary signal or the positioning information.
23. A system of claim 14 wherein the output is connected to a two-wire line for forwarding the positioning signal.
24. A system of claim 14 wherein the sensor comprises a Hall sensor or a magneto-resistive sensor for sensing the position of the final control element.
25. A system of claim 14 wherein the control element comprises a valve element.
26. A system of claim 14 wherein the predefined position comprises an emergency position.
27. A system for transmitting electrical positioning information of an actuator-positioned final control element comprising a valve element, comprising:
a communication device having an input for receiving continually sensed positioning information from a sensor positioned to sense a position of said valve element and an output for forwarding a positioning signal;
said communication device generating or receiving by way of the positioning information a binary signal signalling a first condition when the valve element has attained a predetermined position or a predefined position range, and signalling a second condition when the valve element has not attained the predefined position or the predefined position range; and
said communication device combining the signal conditions of the binary signal and the continually sensed positioning information for forming said positioning signal such that the signal conditions of the binary signal, the positioning information, or both can be optionally invoked from said positioning signal.
28. A method for communicating electrical positioning information of an actuator-positioned final control element, said positioning information resulting from continually sensing a position of the final control element, comprising the steps of:
forming or receiving a binary signal having a first signal condition when the final control element has attained a predefined position or position range, and a second signal condition when the final control element has not attained the predefined position or the position range; and
for forming a positioning signal combining the signal conditions of the binary signal and the continually sensed positioning information such that the signal conditions of the binary signal, the positioning information, or both can be optionally invoked from said positioning signal.
US12/017,374 2007-01-30 2008-01-22 Method and device for communicating electrical positioning information of a final control element Active 2031-07-27 US8096313B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE200710004595 DE102007004595A1 (en) 2007-01-30 2007-01-30 Method for transferring electrical position information of e.g. valve unit, involves combining binary signal status and position information to form position signal so that status and information is selectively called from position signal
DE102007004595 2007-01-30
DE102007004595.8 2007-01-30

Publications (2)

Publication Number Publication Date
US20110320162A1 true US20110320162A1 (en) 2011-12-29
US8096313B1 US8096313B1 (en) 2012-01-17

Family

ID=39587119

Family Applications (1)

Application Number Title Priority Date Filing Date
US12/017,374 Active 2031-07-27 US8096313B1 (en) 2007-01-30 2008-01-22 Method and device for communicating electrical positioning information of a final control element

Country Status (2)

Country Link
US (1) US8096313B1 (en)
DE (1) DE102007004595A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140366952A1 (en) * 2009-10-15 2014-12-18 Pivotal Systems Corporation Method and apparatus for gas flow control
US9400004B2 (en) 2010-11-29 2016-07-26 Pivotal Systems Corporation Transient measurements of mass flow controllers
US10401202B2 (en) 2015-07-10 2019-09-03 Pivotal Systems Corporation Method and apparatus for gas flow control

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009011242B4 (en) * 2009-03-02 2013-05-29 Samson Aktiengesellschaft Limit switch and method for operating a limit switch
DE102009020064A1 (en) 2009-05-06 2010-11-11 Dürr Systems GmbH Fluid valve, in particular recirculation valve for a paint shop
CN203906949U (en) * 2012-11-29 2014-10-29 费希尔控制国际公司 Positioning converter and valve controller used in process control system
WO2015109108A1 (en) 2014-01-17 2015-07-23 Pentair Valves & Controls US LP Visual valve position indicator with wireless transmitter

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4321946A (en) * 1980-03-31 1982-03-30 Paulos Louis B Armature position monitoring and control device
US5193568A (en) * 1991-06-20 1993-03-16 Martin Marietta Energy Systems, Inc. Noninvasive valve monitor using alternating electromagnetic field
US5236011A (en) * 1991-06-20 1993-08-17 Martin Marietta Energy Systems, Inc. Noninvasive valve monitor using constant magnetic and/or DC electromagnetic field
DE4243779A1 (en) * 1992-12-23 1994-06-30 Bosch Gmbh Robert Digital angle sensor for ic engine choke flap
US5826616A (en) * 1996-11-19 1998-10-27 Isi Norgren, Inc. Valve spool position detector apparatus
US6137403A (en) * 1998-12-10 2000-10-24 Phoenix Controls Corporation Sash sensor and method of sensing a sash using an array of multiplexed elements
JP3212981B1 (en) * 2000-05-01 2001-09-25 正則 茂木 Valve position output device
JP2004003404A (en) * 2002-06-03 2004-01-08 Hitachi Ltd Electronically controlled throttle valve device, non-contact rotation angle sensitive device used therefor, and signal processing device of hall element
DE10235188B3 (en) * 2002-07-26 2004-04-01 Hydac Electronic Gmbh Method for determining the position of an actuating element of an electrically drivable actuator, associated circuit arrangement and device
AT412309B (en) * 2002-11-29 2004-12-27 Schindler Volker Dr TRANSMISSION ARRANGEMENT FOR TRANSMITTING SIGNALS AND D / A CONVERTERS THEREFOR
US6992478B2 (en) * 2003-12-22 2006-01-31 Cts Corporation Combination hall effect position sensor and switch

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140366952A1 (en) * 2009-10-15 2014-12-18 Pivotal Systems Corporation Method and apparatus for gas flow control
US20140367596A1 (en) * 2009-10-15 2014-12-18 Pivotal Systems Corporation Method and apparatus for gas flow control
US9523435B2 (en) * 2009-10-15 2016-12-20 Pivotal Systems Corporation Method and apparatus for gas flow control
US9904297B2 (en) * 2009-10-15 2018-02-27 Pivotal Systems Corporation Method and apparatus for gas flow control
US9983595B2 (en) 2009-10-15 2018-05-29 Pivotal Systems Corporation Method and apparatus for gas flow control
US9400004B2 (en) 2010-11-29 2016-07-26 Pivotal Systems Corporation Transient measurements of mass flow controllers
US10401202B2 (en) 2015-07-10 2019-09-03 Pivotal Systems Corporation Method and apparatus for gas flow control

Also Published As

Publication number Publication date
US8096313B1 (en) 2012-01-17
DE102007004595A1 (en) 2008-08-07

Similar Documents

Publication Publication Date Title
US8096313B1 (en) Method and device for communicating electrical positioning information of a final control element
JP4990755B2 (en) Field-mounted process equipment with programmable digital / analog interface
US7228186B2 (en) Field-mounted process device with programmable digital/analog interface
EP2150861B1 (en) Industrial field device with reduced power consumption
US8762745B2 (en) Method for operation of a field device in a matched-power mode
US7835125B2 (en) Circuit for safe forwarding of an analog signal value
US5754596A (en) Field transmitter for storing information
US8281174B2 (en) Energy saving operation of a hardwired communication interface and a function unit provided for the communication interface of a field device
JP5255698B2 (en) Wireless adapter for field devices with variable voltage drop
US9537692B2 (en) Automation device operable to convert between data byte streams and frequency modulated line signals
CA2444790A1 (en) Intelligent regulator with input/output capabilities
US8310088B2 (en) Field device for a processing plant and method for supplying the field device
US8089386B2 (en) Isolation unit for a conventional 2-conductor communication connection including a sensor, a measurement transmitter and a control unit
JP2006522412A (en) Transmitter with two protocol interfaces
CN103777531A (en) Methods and apparatus to limit a change of a drive value in an electro-pneumatic controller
US7737838B2 (en) Method and apparatus for transmission of wireless signals in a mobile platform
US7826388B2 (en) Sensor interface for selectively providing analog and digital output
US20100034243A1 (en) Circuit Configuration for a Serial Communication With Wake Up Function
JP2558481Y2 (en) Manifold solenoid valve system
US8135512B2 (en) Auxiliary control system and method to a motor vehicle's built-in anti-theft system
US20220159073A1 (en) Signaling between master and one or more slave components to share absolute and incremental data
JPH0650555B2 (en) 4-wire field instrument device and its communication method
US10892925B2 (en) Communication receiver interface for current loop circuit
KR101511874B1 (en) Engine control unit and method for operating the same
JPH07123031A (en) Communications system for field equipment and its device

Legal Events

Date Code Title Description
AS Assignment

Owner name: SAMSON AKTIENGESELLSCHAFT, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:KAH, HARALD;REEL/FRAME:020394/0428

Effective date: 20080114

STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 8

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1553); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 12