US20110318763A1 - Detection of cancer by elevated levels of bcl-2 - Google Patents
Detection of cancer by elevated levels of bcl-2 Download PDFInfo
- Publication number
- US20110318763A1 US20110318763A1 US13/205,095 US201113205095A US2011318763A1 US 20110318763 A1 US20110318763 A1 US 20110318763A1 US 201113205095 A US201113205095 A US 201113205095A US 2011318763 A1 US2011318763 A1 US 2011318763A1
- Authority
- US
- United States
- Prior art keywords
- bcl
- cancer
- sample
- antibody
- urine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 101000971171 Homo sapiens Apoptosis regulator Bcl-2 Proteins 0.000 title claims abstract description 362
- 102100021569 Apoptosis regulator Bcl-2 Human genes 0.000 title claims abstract description 355
- 238000001514 detection method Methods 0.000 title claims abstract description 97
- 206010028980 Neoplasm Diseases 0.000 title abstract description 212
- 201000011510 cancer Diseases 0.000 title abstract description 150
- 238000000034 method Methods 0.000 claims abstract description 103
- 210000002700 urine Anatomy 0.000 claims abstract description 81
- 239000011230 binding agent Substances 0.000 claims description 52
- 238000002372 labelling Methods 0.000 claims description 11
- 230000000717 retained effect Effects 0.000 claims description 10
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 5
- 206010061535 Ovarian neoplasm Diseases 0.000 abstract description 136
- 206010033128 Ovarian cancer Diseases 0.000 abstract description 120
- 239000000523 sample Substances 0.000 abstract description 102
- 239000012472 biological sample Substances 0.000 abstract description 52
- 150000007523 nucleic acids Chemical class 0.000 abstract description 44
- 102000039446 nucleic acids Human genes 0.000 abstract description 37
- 108020004707 nucleic acids Proteins 0.000 abstract description 37
- 210000004369 blood Anatomy 0.000 abstract description 32
- 239000008280 blood Substances 0.000 abstract description 32
- 239000003795 chemical substances by application Substances 0.000 abstract description 22
- 108010090931 Proto-Oncogene Proteins c-bcl-2 Proteins 0.000 abstract description 16
- 102000013535 Proto-Oncogene Proteins c-bcl-2 Human genes 0.000 abstract description 16
- 210000001124 body fluid Anatomy 0.000 abstract description 16
- 238000012544 monitoring process Methods 0.000 abstract description 14
- 238000003745 diagnosis Methods 0.000 abstract description 13
- 238000004393 prognosis Methods 0.000 abstract description 8
- 230000002485 urinary effect Effects 0.000 description 88
- 210000004027 cell Anatomy 0.000 description 54
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 45
- 102000004190 Enzymes Human genes 0.000 description 42
- 108090000790 Enzymes Proteins 0.000 description 42
- 238000012360 testing method Methods 0.000 description 40
- 201000010099 disease Diseases 0.000 description 36
- 238000003556 assay Methods 0.000 description 31
- 239000000427 antigen Substances 0.000 description 29
- 108091007433 antigens Proteins 0.000 description 27
- 102000036639 antigens Human genes 0.000 description 27
- 239000007787 solid Substances 0.000 description 27
- 101000623901 Homo sapiens Mucin-16 Proteins 0.000 description 26
- 102100023123 Mucin-16 Human genes 0.000 description 26
- 239000000758 substrate Substances 0.000 description 26
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 25
- 238000002965 ELISA Methods 0.000 description 25
- 239000012528 membrane Substances 0.000 description 25
- 230000027455 binding Effects 0.000 description 24
- 210000004379 membrane Anatomy 0.000 description 24
- 108091034117 Oligonucleotide Proteins 0.000 description 21
- 239000000126 substance Substances 0.000 description 21
- 239000000463 material Substances 0.000 description 20
- 125000003729 nucleotide group Chemical group 0.000 description 20
- 238000004458 analytical method Methods 0.000 description 16
- 230000002611 ovarian Effects 0.000 description 16
- 108020004414 DNA Proteins 0.000 description 15
- 239000002773 nucleotide Substances 0.000 description 15
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 14
- 239000004005 microsphere Substances 0.000 description 14
- 206010039491 Sarcoma Diseases 0.000 description 13
- 239000012530 fluid Substances 0.000 description 13
- 239000012634 fragment Substances 0.000 description 13
- 238000001356 surgical procedure Methods 0.000 description 13
- -1 urine Substances 0.000 description 13
- 208000017604 Hodgkin disease Diseases 0.000 description 12
- 210000001519 tissue Anatomy 0.000 description 12
- 208000003174 Brain Neoplasms Diseases 0.000 description 11
- 206010006187 Breast cancer Diseases 0.000 description 11
- 208000026310 Breast neoplasm Diseases 0.000 description 11
- 208000000236 Prostatic Neoplasms Diseases 0.000 description 11
- 239000013060 biological fluid Substances 0.000 description 11
- 238000003018 immunoassay Methods 0.000 description 11
- 208000020816 lung neoplasm Diseases 0.000 description 11
- 239000000203 mixture Substances 0.000 description 11
- 239000002245 particle Substances 0.000 description 11
- 210000002381 plasma Anatomy 0.000 description 11
- 108090000765 processed proteins & peptides Proteins 0.000 description 11
- 108090000623 proteins and genes Proteins 0.000 description 11
- 206010025323 Lymphomas Diseases 0.000 description 10
- 206010061902 Pancreatic neoplasm Diseases 0.000 description 10
- 206010060862 Prostate cancer Diseases 0.000 description 10
- 239000000090 biomarker Substances 0.000 description 10
- 230000002496 gastric effect Effects 0.000 description 10
- 208000032839 leukemia Diseases 0.000 description 10
- 108091026890 Coding region Proteins 0.000 description 9
- 206010018338 Glioma Diseases 0.000 description 9
- 206010035226 Plasma cell myeloma Diseases 0.000 description 9
- 238000011334 debulking surgery Methods 0.000 description 9
- 238000005516 engineering process Methods 0.000 description 9
- 239000003446 ligand Substances 0.000 description 9
- 201000001441 melanoma Diseases 0.000 description 9
- 229910052751 metal Inorganic materials 0.000 description 9
- 239000002184 metal Substances 0.000 description 9
- 229920001184 polypeptide Polymers 0.000 description 9
- 102000004196 processed proteins & peptides Human genes 0.000 description 9
- 235000018102 proteins Nutrition 0.000 description 9
- 102000004169 proteins and genes Human genes 0.000 description 9
- 210000002966 serum Anatomy 0.000 description 9
- 208000016908 Female Genital disease Diseases 0.000 description 8
- 208000008839 Kidney Neoplasms Diseases 0.000 description 8
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 8
- 239000011324 bead Substances 0.000 description 8
- 238000002512 chemotherapy Methods 0.000 description 8
- 239000003636 conditioned culture medium Substances 0.000 description 8
- 230000006870 function Effects 0.000 description 8
- 208000014018 liver neoplasm Diseases 0.000 description 8
- 230000035935 pregnancy Effects 0.000 description 8
- 239000000047 product Substances 0.000 description 8
- 230000000306 recurrent effect Effects 0.000 description 8
- 208000024891 symptom Diseases 0.000 description 8
- 206010003445 Ascites Diseases 0.000 description 7
- 206010003571 Astrocytoma Diseases 0.000 description 7
- 206010008342 Cervix carcinoma Diseases 0.000 description 7
- 208000001333 Colorectal Neoplasms Diseases 0.000 description 7
- 208000032612 Glial tumor Diseases 0.000 description 7
- 208000006105 Uterine Cervical Neoplasms Diseases 0.000 description 7
- 230000036765 blood level Effects 0.000 description 7
- 201000010881 cervical cancer Diseases 0.000 description 7
- 238000006243 chemical reaction Methods 0.000 description 7
- 239000002299 complementary DNA Substances 0.000 description 7
- 230000002596 correlated effect Effects 0.000 description 7
- 208000035475 disorder Diseases 0.000 description 7
- 210000003734 kidney Anatomy 0.000 description 7
- 210000004185 liver Anatomy 0.000 description 7
- 210000004072 lung Anatomy 0.000 description 7
- 210000001672 ovary Anatomy 0.000 description 7
- 108091033319 polynucleotide Proteins 0.000 description 7
- 102000040430 polynucleotide Human genes 0.000 description 7
- 239000002157 polynucleotide Substances 0.000 description 7
- 210000002307 prostate Anatomy 0.000 description 7
- 241000894007 species Species 0.000 description 7
- 208000010747 Hodgkins lymphoma Diseases 0.000 description 6
- 206010058467 Lung neoplasm malignant Diseases 0.000 description 6
- 208000034578 Multiple myelomas Diseases 0.000 description 6
- 239000004793 Polystyrene Substances 0.000 description 6
- 208000026149 Primary peritoneal carcinoma Diseases 0.000 description 6
- 108010072866 Prostate-Specific Antigen Proteins 0.000 description 6
- 102100038358 Prostate-specific antigen Human genes 0.000 description 6
- 208000002495 Uterine Neoplasms Diseases 0.000 description 6
- 230000001154 acute effect Effects 0.000 description 6
- 239000003153 chemical reaction reagent Substances 0.000 description 6
- 230000000875 corresponding effect Effects 0.000 description 6
- 230000003247 decreasing effect Effects 0.000 description 6
- 239000000975 dye Substances 0.000 description 6
- 229910052747 lanthanoid Inorganic materials 0.000 description 6
- 239000007788 liquid Substances 0.000 description 6
- 201000005202 lung cancer Diseases 0.000 description 6
- 230000003211 malignant effect Effects 0.000 description 6
- 201000009612 pediatric lymphoma Diseases 0.000 description 6
- 239000000137 peptide hydrolase inhibitor Substances 0.000 description 6
- 229920000642 polymer Polymers 0.000 description 6
- 229920002223 polystyrene Polymers 0.000 description 6
- 238000012216 screening Methods 0.000 description 6
- 239000007790 solid phase Substances 0.000 description 6
- 230000009870 specific binding Effects 0.000 description 6
- 230000001225 therapeutic effect Effects 0.000 description 6
- 206010009944 Colon cancer Diseases 0.000 description 5
- 208000021519 Hodgkin lymphoma Diseases 0.000 description 5
- 241000124008 Mammalia Species 0.000 description 5
- 239000000020 Nitrocellulose Substances 0.000 description 5
- 208000015914 Non-Hodgkin lymphomas Diseases 0.000 description 5
- 206010038389 Renal cancer Diseases 0.000 description 5
- 208000005718 Stomach Neoplasms Diseases 0.000 description 5
- 208000024313 Testicular Neoplasms Diseases 0.000 description 5
- 208000024770 Thyroid neoplasm Diseases 0.000 description 5
- 230000000890 antigenic effect Effects 0.000 description 5
- 230000008901 benefit Effects 0.000 description 5
- 210000000481 breast Anatomy 0.000 description 5
- 230000002490 cerebral effect Effects 0.000 description 5
- 239000007795 chemical reaction product Substances 0.000 description 5
- 238000011161 development Methods 0.000 description 5
- 238000009826 distribution Methods 0.000 description 5
- 210000003128 head Anatomy 0.000 description 5
- 210000004408 hybridoma Anatomy 0.000 description 5
- 238000001727 in vivo Methods 0.000 description 5
- 201000010982 kidney cancer Diseases 0.000 description 5
- 150000002602 lanthanoids Chemical class 0.000 description 5
- 208000015486 malignant pancreatic neoplasm Diseases 0.000 description 5
- 201000005962 mycosis fungoides Diseases 0.000 description 5
- 229920001220 nitrocellulos Polymers 0.000 description 5
- 201000002528 pancreatic cancer Diseases 0.000 description 5
- 208000008443 pancreatic carcinoma Diseases 0.000 description 5
- 239000012071 phase Substances 0.000 description 5
- 125000002652 ribonucleotide group Chemical group 0.000 description 5
- 201000000849 skin cancer Diseases 0.000 description 5
- 210000002784 stomach Anatomy 0.000 description 5
- 201000002510 thyroid cancer Diseases 0.000 description 5
- WRGQSWVCFNIUNZ-GDCKJWNLSA-N 1-oleoyl-sn-glycerol 3-phosphate Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OC[C@@H](O)COP(O)(O)=O WRGQSWVCFNIUNZ-GDCKJWNLSA-N 0.000 description 4
- 201000009030 Carcinoma Diseases 0.000 description 4
- 102000011022 Chorionic Gonadotropin Human genes 0.000 description 4
- 108010062540 Chorionic Gonadotropin Proteins 0.000 description 4
- 102000053602 DNA Human genes 0.000 description 4
- 238000008157 ELISA kit Methods 0.000 description 4
- 208000021309 Germ cell tumor Diseases 0.000 description 4
- 241001465754 Metazoa Species 0.000 description 4
- 208000034176 Neoplasms, Germ Cell and Embryonal Diseases 0.000 description 4
- 206010029260 Neuroblastoma Diseases 0.000 description 4
- 108091028043 Nucleic acid sequence Proteins 0.000 description 4
- 108020004511 Recombinant DNA Proteins 0.000 description 4
- 108091028664 Ribonucleotide Proteins 0.000 description 4
- 208000000453 Skin Neoplasms Diseases 0.000 description 4
- 208000007097 Urinary Bladder Neoplasms Diseases 0.000 description 4
- AWUCVROLDVIAJX-UHFFFAOYSA-N alpha-glycerophosphate Natural products OCC(O)COP(O)(O)=O AWUCVROLDVIAJX-UHFFFAOYSA-N 0.000 description 4
- 235000001014 amino acid Nutrition 0.000 description 4
- 239000012491 analyte Substances 0.000 description 4
- 239000000074 antisense oligonucleotide Substances 0.000 description 4
- 238000012230 antisense oligonucleotides Methods 0.000 description 4
- 230000006907 apoptotic process Effects 0.000 description 4
- 210000003567 ascitic fluid Anatomy 0.000 description 4
- 108010005774 beta-Galactosidase Proteins 0.000 description 4
- 238000004113 cell culture Methods 0.000 description 4
- 229920002678 cellulose Polymers 0.000 description 4
- 239000001913 cellulose Substances 0.000 description 4
- 230000001684 chronic effect Effects 0.000 description 4
- 230000002860 competitive effect Effects 0.000 description 4
- 230000000295 complement effect Effects 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 239000013068 control sample Substances 0.000 description 4
- 239000005547 deoxyribonucleotide Substances 0.000 description 4
- 125000002637 deoxyribonucleotide group Chemical group 0.000 description 4
- 229940042399 direct acting antivirals protease inhibitors Drugs 0.000 description 4
- 201000010536 head and neck cancer Diseases 0.000 description 4
- 208000014829 head and neck neoplasm Diseases 0.000 description 4
- 229940084986 human chorionic gonadotropin Drugs 0.000 description 4
- 230000002267 hypothalamic effect Effects 0.000 description 4
- 230000001965 increasing effect Effects 0.000 description 4
- 206010023841 laryngeal neoplasm Diseases 0.000 description 4
- 239000004816 latex Substances 0.000 description 4
- 229920000126 latex Polymers 0.000 description 4
- 201000010260 leiomyoma Diseases 0.000 description 4
- 230000000670 limiting effect Effects 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 108020004999 messenger RNA Proteins 0.000 description 4
- 239000002777 nucleoside Substances 0.000 description 4
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 4
- 239000004810 polytetrafluoroethylene Substances 0.000 description 4
- 238000011002 quantification Methods 0.000 description 4
- 230000002285 radioactive effect Effects 0.000 description 4
- 230000001850 reproductive effect Effects 0.000 description 4
- 230000002441 reversible effect Effects 0.000 description 4
- 238000012552 review Methods 0.000 description 4
- 239000002336 ribonucleotide Substances 0.000 description 4
- 208000004548 serous cystadenocarcinoma Diseases 0.000 description 4
- 239000000377 silicon dioxide Substances 0.000 description 4
- 238000003860 storage Methods 0.000 description 4
- JWPRICQKUNODPZ-UHFFFAOYSA-N 5-fluoro-2-hydroxybenzoic acid Chemical compound OC(=O)C1=CC(F)=CC=C1O JWPRICQKUNODPZ-UHFFFAOYSA-N 0.000 description 3
- 208000024893 Acute lymphoblastic leukemia Diseases 0.000 description 3
- 208000014697 Acute lymphocytic leukaemia Diseases 0.000 description 3
- 208000031261 Acute myeloid leukaemia Diseases 0.000 description 3
- 108020000948 Antisense Oligonucleotides Proteins 0.000 description 3
- 102000051485 Bcl-2 family Human genes 0.000 description 3
- 108700038897 Bcl-2 family Proteins 0.000 description 3
- 206010005003 Bladder cancer Diseases 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 108090000994 Catalytic RNA Proteins 0.000 description 3
- 102000053642 Catalytic RNA Human genes 0.000 description 3
- 206010014733 Endometrial cancer Diseases 0.000 description 3
- 206010014759 Endometrial neoplasm Diseases 0.000 description 3
- 208000000461 Esophageal Neoplasms Diseases 0.000 description 3
- 229910052693 Europium Inorganic materials 0.000 description 3
- 241000725303 Human immunodeficiency virus Species 0.000 description 3
- 108060003951 Immunoglobulin Proteins 0.000 description 3
- 206010023825 Laryngeal cancer Diseases 0.000 description 3
- 206010027476 Metastases Diseases 0.000 description 3
- 238000000636 Northern blotting Methods 0.000 description 3
- 206010030155 Oesophageal carcinoma Diseases 0.000 description 3
- 229910019142 PO4 Inorganic materials 0.000 description 3
- 108090000608 Phosphoric Monoester Hydrolases Proteins 0.000 description 3
- 102000004160 Phosphoric Monoester Hydrolases Human genes 0.000 description 3
- 208000006664 Precursor Cell Lymphoblastic Leukemia-Lymphoma Diseases 0.000 description 3
- 208000007660 Residual Neoplasm Diseases 0.000 description 3
- 201000000582 Retinoblastoma Diseases 0.000 description 3
- 229920005654 Sephadex Polymers 0.000 description 3
- 239000012507 Sephadex™ Substances 0.000 description 3
- 238000000692 Student's t-test Methods 0.000 description 3
- 229910052771 Terbium Inorganic materials 0.000 description 3
- 206010057644 Testis cancer Diseases 0.000 description 3
- 208000008383 Wilms tumor Diseases 0.000 description 3
- 239000002250 absorbent Substances 0.000 description 3
- 230000002745 absorbent Effects 0.000 description 3
- 201000004471 adenofibroma Diseases 0.000 description 3
- 125000003275 alpha amino acid group Chemical group 0.000 description 3
- 230000000692 anti-sense effect Effects 0.000 description 3
- 230000001640 apoptogenic effect Effects 0.000 description 3
- 108700041737 bcl-2 Genes Proteins 0.000 description 3
- 238000000225 bioluminescence resonance energy transfer Methods 0.000 description 3
- 229960002685 biotin Drugs 0.000 description 3
- 239000011616 biotin Substances 0.000 description 3
- 210000000988 bone and bone Anatomy 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 208000002458 carcinoid tumor Diseases 0.000 description 3
- 238000004587 chromatography analysis Methods 0.000 description 3
- 208000029742 colonic neoplasm Diseases 0.000 description 3
- 239000005289 controlled pore glass Substances 0.000 description 3
- 229920001577 copolymer Polymers 0.000 description 3
- 208000031513 cyst Diseases 0.000 description 3
- 230000002357 endometrial effect Effects 0.000 description 3
- 230000002255 enzymatic effect Effects 0.000 description 3
- 201000004101 esophageal cancer Diseases 0.000 description 3
- OGPBJKLSAFTDLK-UHFFFAOYSA-N europium atom Chemical compound [Eu] OGPBJKLSAFTDLK-UHFFFAOYSA-N 0.000 description 3
- 239000000284 extract Substances 0.000 description 3
- 208000024519 eye neoplasm Diseases 0.000 description 3
- 239000007850 fluorescent dye Substances 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 208000005017 glioblastoma Diseases 0.000 description 3
- 150000004676 glycans Chemical class 0.000 description 3
- 102000051711 human BCL2 Human genes 0.000 description 3
- 238000009396 hybridization Methods 0.000 description 3
- 230000002209 hydrophobic effect Effects 0.000 description 3
- 238000003384 imaging method Methods 0.000 description 3
- 102000018358 immunoglobulin Human genes 0.000 description 3
- 239000002198 insoluble material Substances 0.000 description 3
- 230000003993 interaction Effects 0.000 description 3
- 238000012125 lateral flow test Methods 0.000 description 3
- 125000005647 linker group Chemical group 0.000 description 3
- 208000012987 lip and oral cavity carcinoma Diseases 0.000 description 3
- 239000002502 liposome Substances 0.000 description 3
- 201000007270 liver cancer Diseases 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 230000009401 metastasis Effects 0.000 description 3
- 210000001700 mitochondrial membrane Anatomy 0.000 description 3
- 238000010369 molecular cloning Methods 0.000 description 3
- 208000030427 mucinous ovarian cancer Diseases 0.000 description 3
- 208000025113 myeloid leukemia Diseases 0.000 description 3
- 201000000050 myeloid neoplasm Diseases 0.000 description 3
- 230000036963 noncompetitive effect Effects 0.000 description 3
- 201000008106 ocular cancer Diseases 0.000 description 3
- 239000000123 paper Substances 0.000 description 3
- 201000002628 peritoneum cancer Diseases 0.000 description 3
- 210000003800 pharynx Anatomy 0.000 description 3
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 3
- 239000010452 phosphate Substances 0.000 description 3
- 239000004033 plastic Substances 0.000 description 3
- 229920003023 plastic Polymers 0.000 description 3
- 201000010065 polycystic ovary syndrome Diseases 0.000 description 3
- 229920001282 polysaccharide Polymers 0.000 description 3
- 239000005017 polysaccharide Substances 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 108020003175 receptors Proteins 0.000 description 3
- 102000005962 receptors Human genes 0.000 description 3
- 230000002829 reductive effect Effects 0.000 description 3
- 230000004044 response Effects 0.000 description 3
- 108091092562 ribozyme Proteins 0.000 description 3
- 230000028327 secretion Effects 0.000 description 3
- 230000035945 sensitivity Effects 0.000 description 3
- 208000019694 serous adenocarcinoma Diseases 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 238000010561 standard procedure Methods 0.000 description 3
- 230000004083 survival effect Effects 0.000 description 3
- GZCRRIHWUXGPOV-UHFFFAOYSA-N terbium atom Chemical compound [Tb] GZCRRIHWUXGPOV-UHFFFAOYSA-N 0.000 description 3
- 201000003120 testicular cancer Diseases 0.000 description 3
- 208000008732 thymoma Diseases 0.000 description 3
- 238000013518 transcription Methods 0.000 description 3
- 230000035897 transcription Effects 0.000 description 3
- 238000013519 translation Methods 0.000 description 3
- 238000002604 ultrasonography Methods 0.000 description 3
- 210000000626 ureter Anatomy 0.000 description 3
- 201000005112 urinary bladder cancer Diseases 0.000 description 3
- 210000000239 visual pathway Anatomy 0.000 description 3
- 230000004400 visual pathway Effects 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 2
- XVSWBEIQRFTJKH-UHFFFAOYSA-N (5-fluoro-2-hydroxyphenyl)methyl dihydrogen phosphate Chemical group OC1=CC=C(F)C=C1COP(O)(O)=O XVSWBEIQRFTJKH-UHFFFAOYSA-N 0.000 description 2
- 102000040650 (ribonucleotides)n+m Human genes 0.000 description 2
- XMTQQYYKAHVGBJ-UHFFFAOYSA-N 3-(3,4-DICHLOROPHENYL)-1,1-DIMETHYLUREA Chemical compound CN(C)C(=O)NC1=CC=C(Cl)C(Cl)=C1 XMTQQYYKAHVGBJ-UHFFFAOYSA-N 0.000 description 2
- INZOTETZQBPBCE-NYLDSJSYSA-N 3-sialyl lewis Chemical compound O[C@H]1[C@H](O)[C@H](O)[C@H](C)O[C@H]1O[C@H]([C@H](O)CO)[C@@H]([C@@H](NC(C)=O)C=O)O[C@H]1[C@H](O)[C@@H](O[C@]2(O[C@H]([C@H](NC(C)=O)[C@@H](O)C2)[C@H](O)[C@H](O)CO)C(O)=O)[C@@H](O)[C@@H](CO)O1 INZOTETZQBPBCE-NYLDSJSYSA-N 0.000 description 2
- 208000030507 AIDS Diseases 0.000 description 2
- 102000007469 Actins Human genes 0.000 description 2
- 108010085238 Actins Proteins 0.000 description 2
- 102000002260 Alkaline Phosphatase Human genes 0.000 description 2
- 108020004774 Alkaline Phosphatase Proteins 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- 102000010565 Apoptosis Regulatory Proteins Human genes 0.000 description 2
- 108010063104 Apoptosis Regulatory Proteins Proteins 0.000 description 2
- 108090001008 Avidin Proteins 0.000 description 2
- 208000010839 B-cell chronic lymphocytic leukemia Diseases 0.000 description 2
- 208000032791 BCR-ABL1 positive chronic myelogenous leukemia Diseases 0.000 description 2
- 206010004146 Basal cell carcinoma Diseases 0.000 description 2
- 206010004593 Bile duct cancer Diseases 0.000 description 2
- 206010005949 Bone cancer Diseases 0.000 description 2
- 208000018084 Bone neoplasm Diseases 0.000 description 2
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 2
- 206010006143 Brain stem glioma Diseases 0.000 description 2
- 208000011691 Burkitt lymphomas Diseases 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 206010007275 Carcinoid tumour Diseases 0.000 description 2
- 108091006146 Channels Proteins 0.000 description 2
- 208000010833 Chronic myeloid leukaemia Diseases 0.000 description 2
- 108091033380 Coding strand Proteins 0.000 description 2
- 206010010774 Constipation Diseases 0.000 description 2
- 206010011732 Cyst Diseases 0.000 description 2
- 102100030497 Cytochrome c Human genes 0.000 description 2
- 108010075031 Cytochromes c Proteins 0.000 description 2
- 230000004543 DNA replication Effects 0.000 description 2
- 208000001154 Dermoid Cyst Diseases 0.000 description 2
- 206010061818 Disease progression Diseases 0.000 description 2
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 2
- 206010014967 Ependymoma Diseases 0.000 description 2
- 208000012468 Ewing sarcoma/peripheral primitive neuroectodermal tumor Diseases 0.000 description 2
- 206010053717 Fibrous histiocytoma Diseases 0.000 description 2
- ZHNUHDYFZUAESO-UHFFFAOYSA-N Formamide Chemical compound NC=O ZHNUHDYFZUAESO-UHFFFAOYSA-N 0.000 description 2
- NYHBQMYGNKIUIF-UUOKFMHZSA-N Guanosine Chemical compound C1=NC=2C(=O)NC(N)=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O NYHBQMYGNKIUIF-UUOKFMHZSA-N 0.000 description 2
- 101000800133 Homo sapiens Thyroglobulin Proteins 0.000 description 2
- 108010001336 Horseradish Peroxidase Proteins 0.000 description 2
- 102000000588 Interleukin-2 Human genes 0.000 description 2
- 108010002350 Interleukin-2 Proteins 0.000 description 2
- 102000004889 Interleukin-6 Human genes 0.000 description 2
- 108090001005 Interleukin-6 Proteins 0.000 description 2
- 206010061252 Intraocular melanoma Diseases 0.000 description 2
- 208000007766 Kaposi sarcoma Diseases 0.000 description 2
- 238000012313 Kruskal-Wallis test Methods 0.000 description 2
- GDBQQVLCIARPGH-UHFFFAOYSA-N Leupeptin Natural products CC(C)CC(NC(C)=O)C(=O)NC(CC(C)C)C(=O)NC(C=O)CCCN=C(N)N GDBQQVLCIARPGH-UHFFFAOYSA-N 0.000 description 2
- 102000009151 Luteinizing Hormone Human genes 0.000 description 2
- 108010073521 Luteinizing Hormone Proteins 0.000 description 2
- 208000031422 Lymphocytic Chronic B-Cell Leukemia Diseases 0.000 description 2
- 238000000585 Mann–Whitney U test Methods 0.000 description 2
- 208000000172 Medulloblastoma Diseases 0.000 description 2
- 206010027406 Mesothelioma Diseases 0.000 description 2
- 208000003445 Mouth Neoplasms Diseases 0.000 description 2
- 208000033761 Myelogenous Chronic BCR-ABL Positive Leukemia Diseases 0.000 description 2
- 208000033776 Myeloid Acute Leukemia Diseases 0.000 description 2
- 208000001894 Nasopharyngeal Neoplasms Diseases 0.000 description 2
- 206010061306 Nasopharyngeal cancer Diseases 0.000 description 2
- 208000009277 Neuroectodermal Tumors Diseases 0.000 description 2
- 239000004677 Nylon Substances 0.000 description 2
- 241000283973 Oryctolagus cuniculus Species 0.000 description 2
- 208000007571 Ovarian Epithelial Carcinoma Diseases 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- 108010033276 Peptide Fragments Proteins 0.000 description 2
- 102000007079 Peptide Fragments Human genes 0.000 description 2
- 102000045595 Phosphoprotein Phosphatases Human genes 0.000 description 2
- 108700019535 Phosphoprotein Phosphatases Proteins 0.000 description 2
- 102000012288 Phosphopyruvate Hydratase Human genes 0.000 description 2
- 108010022181 Phosphopyruvate Hydratase Proteins 0.000 description 2
- 241000276498 Pollachius virens Species 0.000 description 2
- 102100035703 Prostatic acid phosphatase Human genes 0.000 description 2
- 229940124158 Protease/peptidase inhibitor Drugs 0.000 description 2
- 108010029485 Protein Isoforms Proteins 0.000 description 2
- 102000001708 Protein Isoforms Human genes 0.000 description 2
- 208000015634 Rectal Neoplasms Diseases 0.000 description 2
- 208000004337 Salivary Gland Neoplasms Diseases 0.000 description 2
- 206010061934 Salivary gland cancer Diseases 0.000 description 2
- 229920002684 Sepharose Polymers 0.000 description 2
- 208000009359 Sezary Syndrome Diseases 0.000 description 2
- 206010041067 Small cell lung cancer Diseases 0.000 description 2
- 108020004459 Small interfering RNA Proteins 0.000 description 2
- 208000021712 Soft tissue sarcoma Diseases 0.000 description 2
- 238000002105 Southern blotting Methods 0.000 description 2
- 108010090804 Streptavidin Proteins 0.000 description 2
- 239000004809 Teflon Substances 0.000 description 2
- 229920006362 Teflon® Polymers 0.000 description 2
- 206010043276 Teratoma Diseases 0.000 description 2
- IQFYYKKMVGJFEH-XLPZGREQSA-N Thymidine Chemical compound O=C1NC(=O)C(C)=CN1[C@@H]1O[C@H](CO)[C@@H](O)C1 IQFYYKKMVGJFEH-XLPZGREQSA-N 0.000 description 2
- 239000004699 Ultra-high molecular weight polyethylene Substances 0.000 description 2
- ISAKRJDGNUQOIC-UHFFFAOYSA-N Uracil Chemical compound O=C1C=CNC(=O)N1 ISAKRJDGNUQOIC-UHFFFAOYSA-N 0.000 description 2
- DRTQHJPVMGBUCF-XVFCMESISA-N Uridine Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)C=C1 DRTQHJPVMGBUCF-XVFCMESISA-N 0.000 description 2
- 201000005969 Uveal melanoma Diseases 0.000 description 2
- 208000033559 Waldenström macroglobulinemia Diseases 0.000 description 2
- 230000005856 abnormality Effects 0.000 description 2
- OIRDTQYFTABQOQ-KQYNXXCUSA-N adenosine Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O OIRDTQYFTABQOQ-KQYNXXCUSA-N 0.000 description 2
- 208000020990 adrenal cortex carcinoma Diseases 0.000 description 2
- 208000007128 adrenocortical carcinoma Diseases 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- MGSKVZWGBWPBTF-UHFFFAOYSA-N aebsf Chemical compound NCCC1=CC=C(S(F)(=O)=O)C=C1 MGSKVZWGBWPBTF-UHFFFAOYSA-N 0.000 description 2
- 108010001122 alpha(2)-microglobulin Proteins 0.000 description 2
- 108010026331 alpha-Fetoproteins Proteins 0.000 description 2
- 102000013529 alpha-Fetoproteins Human genes 0.000 description 2
- 150000001413 amino acids Chemical class 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 102000015736 beta 2-Microglobulin Human genes 0.000 description 2
- 108010081355 beta 2-Microglobulin Proteins 0.000 description 2
- WQZGKKKJIJFFOK-FPRJBGLDSA-N beta-D-galactose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@H]1O WQZGKKKJIJFFOK-FPRJBGLDSA-N 0.000 description 2
- 102000005936 beta-Galactosidase Human genes 0.000 description 2
- 208000026900 bile duct neoplasm Diseases 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 229940098773 bovine serum albumin Drugs 0.000 description 2
- 210000004556 brain Anatomy 0.000 description 2
- 210000004899 c-terminal region Anatomy 0.000 description 2
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 2
- 230000001413 cellular effect Effects 0.000 description 2
- 210000003169 central nervous system Anatomy 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 201000002797 childhood leukemia Diseases 0.000 description 2
- 208000011654 childhood malignant neoplasm Diseases 0.000 description 2
- 208000032852 chronic lymphocytic leukemia Diseases 0.000 description 2
- 210000001072 colon Anatomy 0.000 description 2
- 230000001268 conjugating effect Effects 0.000 description 2
- DDRJAANPRJIHGJ-UHFFFAOYSA-N creatinine Chemical compound CN1CC(=O)NC1=N DDRJAANPRJIHGJ-UHFFFAOYSA-N 0.000 description 2
- 125000000151 cysteine group Chemical group N[C@@H](CS)C(=O)* 0.000 description 2
- OPTASPLRGRRNAP-UHFFFAOYSA-N cytosine Chemical compound NC=1C=CNC(=O)N=1 OPTASPLRGRRNAP-UHFFFAOYSA-N 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000005750 disease progression Effects 0.000 description 2
- 238000001378 electrochemiluminescence detection Methods 0.000 description 2
- 210000003608 fece Anatomy 0.000 description 2
- 238000002866 fluorescence resonance energy transfer Methods 0.000 description 2
- 206010017758 gastric cancer Diseases 0.000 description 2
- 239000000499 gel Substances 0.000 description 2
- 238000001502 gel electrophoresis Methods 0.000 description 2
- 230000012010 growth Effects 0.000 description 2
- UYTPUPDQBNUYGX-UHFFFAOYSA-N guanine Chemical compound O=C1NC(N)=NC2=C1N=CN2 UYTPUPDQBNUYGX-UHFFFAOYSA-N 0.000 description 2
- 208000029824 high grade glioma Diseases 0.000 description 2
- 201000000284 histiocytoma Diseases 0.000 description 2
- 229940088597 hormone Drugs 0.000 description 2
- 239000005556 hormone Substances 0.000 description 2
- 102000047688 human TG Human genes 0.000 description 2
- 230000003100 immobilizing effect Effects 0.000 description 2
- 229940127121 immunoconjugate Drugs 0.000 description 2
- 238000000338 in vitro Methods 0.000 description 2
- 239000003112 inhibitor Substances 0.000 description 2
- 229940100601 interleukin-6 Drugs 0.000 description 2
- 238000011835 investigation Methods 0.000 description 2
- 210000004153 islets of langerhan Anatomy 0.000 description 2
- 210000000244 kidney pelvis Anatomy 0.000 description 2
- GDBQQVLCIARPGH-ULQDDVLXSA-N leupeptin Chemical compound CC(C)C[C@H](NC(C)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@H](C=O)CCCN=C(N)N GDBQQVLCIARPGH-ULQDDVLXSA-N 0.000 description 2
- 108010052968 leupeptin Proteins 0.000 description 2
- 230000033001 locomotion Effects 0.000 description 2
- 229940040129 luteinizing hormone Drugs 0.000 description 2
- 108010026228 mRNA guanylyltransferase Proteins 0.000 description 2
- 201000011614 malignant glioma Diseases 0.000 description 2
- 239000003550 marker Substances 0.000 description 2
- 239000002609 medium Substances 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 230000001394 metastastic effect Effects 0.000 description 2
- 206010061289 metastatic neoplasm Diseases 0.000 description 2
- 230000005012 migration Effects 0.000 description 2
- 238000013508 migration Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000003147 molecular marker Substances 0.000 description 2
- 208000004707 mucinous cystadenoma Diseases 0.000 description 2
- UPSFMJHZUCSEHU-JYGUBCOQSA-N n-[(2s,3r,4r,5s,6r)-2-[(2r,3s,4r,5r,6s)-5-acetamido-4-hydroxy-2-(hydroxymethyl)-6-(4-methyl-2-oxochromen-7-yl)oxyoxan-3-yl]oxy-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl]acetamide Chemical compound CC(=O)N[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@H]1O[C@H]1[C@H](O)[C@@H](NC(C)=O)[C@H](OC=2C=C3OC(=O)C=C(C)C3=CC=2)O[C@@H]1CO UPSFMJHZUCSEHU-JYGUBCOQSA-N 0.000 description 2
- 208000018795 nasal cavity and paranasal sinus carcinoma Diseases 0.000 description 2
- 208000002154 non-small cell lung carcinoma Diseases 0.000 description 2
- 150000003833 nucleoside derivatives Chemical class 0.000 description 2
- 229920001778 nylon Polymers 0.000 description 2
- 201000002575 ocular melanoma Diseases 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 201000005443 oral cavity cancer Diseases 0.000 description 2
- 201000008968 osteosarcoma Diseases 0.000 description 2
- 201000008785 pediatric osteosarcoma Diseases 0.000 description 2
- 229950000964 pepstatin Drugs 0.000 description 2
- 108010091212 pepstatin Proteins 0.000 description 2
- FAXGPCHRFPCXOO-LXTPJMTPSA-N pepstatin A Chemical compound OC(=O)C[C@H](O)[C@H](CC(C)C)NC(=O)[C@H](C)NC(=O)C[C@H](O)[C@H](CC(C)C)NC(=O)[C@H](C(C)C)NC(=O)[C@H](C(C)C)NC(=O)CC(C)C FAXGPCHRFPCXOO-LXTPJMTPSA-N 0.000 description 2
- 210000003200 peritoneal cavity Anatomy 0.000 description 2
- 230000002085 persistent effect Effects 0.000 description 2
- 150000004713 phosphodiesters Chemical class 0.000 description 2
- 208000010626 plasma cell neoplasm Diseases 0.000 description 2
- 230000036470 plasma concentration Effects 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 238000003752 polymerase chain reaction Methods 0.000 description 2
- 238000009597 pregnancy test Methods 0.000 description 2
- 230000002062 proliferating effect Effects 0.000 description 2
- 108010043671 prostatic acid phosphatase Proteins 0.000 description 2
- 238000002331 protein detection Methods 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 238000003127 radioimmunoassay Methods 0.000 description 2
- 206010038038 rectal cancer Diseases 0.000 description 2
- 201000001275 rectum cancer Diseases 0.000 description 2
- 125000006853 reporter group Chemical group 0.000 description 2
- 238000003757 reverse transcription PCR Methods 0.000 description 2
- 201000009410 rhabdomyosarcoma Diseases 0.000 description 2
- PYWVYCXTNDRMGF-UHFFFAOYSA-N rhodamine B Chemical compound [Cl-].C=12C=CC(=[N+](CC)CC)C=C2OC2=CC(N(CC)CC)=CC=C2C=1C1=CC=CC=C1C(O)=O PYWVYCXTNDRMGF-UHFFFAOYSA-N 0.000 description 2
- 229920002477 rna polymer Polymers 0.000 description 2
- 208000005893 serous cystadenoma Diseases 0.000 description 2
- 210000003491 skin Anatomy 0.000 description 2
- 239000004055 small Interfering RNA Substances 0.000 description 2
- 208000000587 small cell lung carcinoma Diseases 0.000 description 2
- 210000004872 soft tissue Anatomy 0.000 description 2
- 210000000952 spleen Anatomy 0.000 description 2
- 206010041823 squamous cell carcinoma Diseases 0.000 description 2
- 201000011549 stomach cancer Diseases 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- 208000011580 syndromic disease Diseases 0.000 description 2
- 230000002381 testicular Effects 0.000 description 2
- RWQNBRDOKXIBIV-UHFFFAOYSA-N thymine Chemical compound CC1=CNC(=O)NC1=O RWQNBRDOKXIBIV-UHFFFAOYSA-N 0.000 description 2
- 238000001685 time-resolved fluorescence spectroscopy Methods 0.000 description 2
- 210000002105 tongue Anatomy 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 239000000107 tumor biomarker Substances 0.000 description 2
- 210000004881 tumor cell Anatomy 0.000 description 2
- 239000000439 tumor marker Substances 0.000 description 2
- 208000029729 tumor suppressor gene on chromosome 11 Diseases 0.000 description 2
- 229920000785 ultra high molecular weight polyethylene Polymers 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- 206010046766 uterine cancer Diseases 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 description 1
- WKKCYLSCLQVWFD-UHFFFAOYSA-N 1,2-dihydropyrimidin-4-amine Chemical compound N=C1NCNC=C1 WKKCYLSCLQVWFD-UHFFFAOYSA-N 0.000 description 1
- UHDGCWIWMRVCDJ-UHFFFAOYSA-N 1-beta-D-Xylofuranosyl-NH-Cytosine Natural products O=C1N=C(N)C=CN1C1C(O)C(O)C(CO)O1 UHDGCWIWMRVCDJ-UHFFFAOYSA-N 0.000 description 1
- ASJSAQIRZKANQN-CRCLSJGQSA-N 2-deoxy-D-ribose Chemical compound OC[C@@H](O)[C@@H](O)CC=O ASJSAQIRZKANQN-CRCLSJGQSA-N 0.000 description 1
- 108020005345 3' Untranslated Regions Proteins 0.000 description 1
- HUDPLKWXRLNSPC-UHFFFAOYSA-N 4-aminophthalhydrazide Chemical compound O=C1NNC(=O)C=2C1=CC(N)=CC=2 HUDPLKWXRLNSPC-UHFFFAOYSA-N 0.000 description 1
- PGSPUKDWUHBDKJ-UHFFFAOYSA-N 6,7-dihydro-3h-purin-2-amine Chemical compound C1NC(N)=NC2=C1NC=N2 PGSPUKDWUHBDKJ-UHFFFAOYSA-N 0.000 description 1
- 102100031126 6-phosphogluconolactonase Human genes 0.000 description 1
- 108010029731 6-phosphogluconolactonase Proteins 0.000 description 1
- 208000002008 AIDS-Related Lymphoma Diseases 0.000 description 1
- 206010000060 Abdominal distension Diseases 0.000 description 1
- 206010000159 Abnormal loss of weight Diseases 0.000 description 1
- 229930024421 Adenine Natural products 0.000 description 1
- GFFGJBXGBJISGV-UHFFFAOYSA-N Adenine Chemical compound NC1=NC=NC2=C1N=CN2 GFFGJBXGBJISGV-UHFFFAOYSA-N 0.000 description 1
- 208000003200 Adenoma Diseases 0.000 description 1
- 206010001233 Adenoma benign Diseases 0.000 description 1
- 229920000936 Agarose Polymers 0.000 description 1
- 206010061424 Anal cancer Diseases 0.000 description 1
- 108010032595 Antibody Binding Sites Proteins 0.000 description 1
- 208000007860 Anus Neoplasms Diseases 0.000 description 1
- 108091023037 Aptamer Proteins 0.000 description 1
- 206010060971 Astrocytoma malignant Diseases 0.000 description 1
- 238000012935 Averaging Methods 0.000 description 1
- 208000003950 B-cell lymphoma Diseases 0.000 description 1
- 208000008035 Back Pain Diseases 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- DWRXFEITVBNRMK-UHFFFAOYSA-N Beta-D-1-Arabinofuranosylthymine Natural products O=C1NC(=O)C(C)=CN1C1C(O)C(O)C(CO)O1 DWRXFEITVBNRMK-UHFFFAOYSA-N 0.000 description 1
- 206010006223 Breast discharge Diseases 0.000 description 1
- 239000002126 C01EB10 - Adenosine Substances 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 241000283707 Capra Species 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- 208000005623 Carcinogenesis Diseases 0.000 description 1
- 206010007279 Carcinoid tumour of the gastrointestinal tract Diseases 0.000 description 1
- 208000009458 Carcinoma in Situ Diseases 0.000 description 1
- 102000014914 Carrier Proteins Human genes 0.000 description 1
- 102000011727 Caspases Human genes 0.000 description 1
- 108010076667 Caspases Proteins 0.000 description 1
- 206010007953 Central nervous system lymphoma Diseases 0.000 description 1
- 241000606161 Chlamydia Species 0.000 description 1
- 208000006332 Choriocarcinoma Diseases 0.000 description 1
- 108020004705 Codon Proteins 0.000 description 1
- 108020004635 Complementary DNA Proteins 0.000 description 1
- 108020004394 Complementary RNA Proteins 0.000 description 1
- MIKUYHXYGGJMLM-GIMIYPNGSA-N Crotonoside Natural products C1=NC2=C(N)NC(=O)N=C2N1[C@H]1O[C@@H](CO)[C@H](O)[C@@H]1O MIKUYHXYGGJMLM-GIMIYPNGSA-N 0.000 description 1
- 229920000858 Cyclodextrin Polymers 0.000 description 1
- 201000005171 Cystadenoma Diseases 0.000 description 1
- UHDGCWIWMRVCDJ-PSQAKQOGSA-N Cytidine Natural products O=C1N=C(N)C=CN1[C@@H]1[C@@H](O)[C@@H](O)[C@H](CO)O1 UHDGCWIWMRVCDJ-PSQAKQOGSA-N 0.000 description 1
- NYHBQMYGNKIUIF-UHFFFAOYSA-N D-guanosine Natural products C1=2NC(N)=NC(=O)C=2N=CN1C1OC(CO)C(O)C1O NYHBQMYGNKIUIF-UHFFFAOYSA-N 0.000 description 1
- HMFHBZSHGGEWLO-SOOFDHNKSA-N D-ribofuranose Chemical compound OC[C@H]1OC(O)[C@H](O)[C@@H]1O HMFHBZSHGGEWLO-SOOFDHNKSA-N 0.000 description 1
- 102000009058 Death Domain Receptors Human genes 0.000 description 1
- 108010049207 Death Domain Receptors Proteins 0.000 description 1
- 229920002307 Dextran Polymers 0.000 description 1
- 238000009007 Diagnostic Kit Methods 0.000 description 1
- 206010012735 Diarrhoea Diseases 0.000 description 1
- 229910052692 Dysprosium Inorganic materials 0.000 description 1
- 208000006168 Ewing Sarcoma Diseases 0.000 description 1
- 208000017259 Extragonadal germ cell tumor Diseases 0.000 description 1
- 102000008857 Ferritin Human genes 0.000 description 1
- 108050000784 Ferritin Proteins 0.000 description 1
- 238000008416 Ferritin Methods 0.000 description 1
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 1
- BDAGIHXWWSANSR-UHFFFAOYSA-N Formic acid Chemical compound OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 1
- 206010017533 Fungal infection Diseases 0.000 description 1
- 208000022072 Gallbladder Neoplasms Diseases 0.000 description 1
- 206010017993 Gastrointestinal neoplasms Diseases 0.000 description 1
- 108010018962 Glucosephosphate Dehydrogenase Proteins 0.000 description 1
- 206010053240 Glycogen storage disease type VI Diseases 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- 206010021042 Hypopharyngeal cancer Diseases 0.000 description 1
- 206010056305 Hypopharyngeal neoplasm Diseases 0.000 description 1
- 206010062767 Hypophysitis Diseases 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 108010058683 Immobilized Proteins Proteins 0.000 description 1
- 108010054477 Immunoglobulin Fab Fragments Proteins 0.000 description 1
- 102000001706 Immunoglobulin Fab Fragments Human genes 0.000 description 1
- 108010021625 Immunoglobulin Fragments Proteins 0.000 description 1
- 102000008394 Immunoglobulin Fragments Human genes 0.000 description 1
- 108090000862 Ion Channels Proteins 0.000 description 1
- 102000004310 Ion Channels Human genes 0.000 description 1
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 description 1
- 101710128836 Large T antigen Proteins 0.000 description 1
- 108091026898 Leader sequence (mRNA) Proteins 0.000 description 1
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 description 1
- 206010062038 Lip neoplasm Diseases 0.000 description 1
- 108060001084 Luciferase Proteins 0.000 description 1
- 239000005089 Luciferase Substances 0.000 description 1
- 206010025312 Lymphoma AIDS related Diseases 0.000 description 1
- 208000006644 Malignant Fibrous Histiocytoma Diseases 0.000 description 1
- 208000030070 Malignant epithelial tumor of ovary Diseases 0.000 description 1
- 206010073059 Malignant neoplasm of unknown primary site Diseases 0.000 description 1
- 208000032271 Malignant tumor of penis Diseases 0.000 description 1
- 208000002030 Merkel cell carcinoma Diseases 0.000 description 1
- 102000006404 Mitochondrial Proteins Human genes 0.000 description 1
- 108010058682 Mitochondrial Proteins Proteins 0.000 description 1
- 241001529936 Murinae Species 0.000 description 1
- 208000014767 Myeloproliferative disease Diseases 0.000 description 1
- 201000007224 Myeloproliferative neoplasm Diseases 0.000 description 1
- 206010029266 Neuroendocrine carcinoma of the skin Diseases 0.000 description 1
- WSDRAZIPGVLSNP-UHFFFAOYSA-N O.P(=O)(O)(O)O.O.O.P(=O)(O)(O)O Chemical compound O.P(=O)(O)(O)O.O.O.P(=O)(O)(O)O WSDRAZIPGVLSNP-UHFFFAOYSA-N 0.000 description 1
- 206010031096 Oropharyngeal cancer Diseases 0.000 description 1
- 206010057444 Oropharyngeal neoplasm Diseases 0.000 description 1
- 208000010191 Osteitis Deformans Diseases 0.000 description 1
- 206010061328 Ovarian epithelial cancer Diseases 0.000 description 1
- 206010033268 Ovarian low malignant potential tumour Diseases 0.000 description 1
- 208000027868 Paget disease Diseases 0.000 description 1
- 208000002193 Pain Diseases 0.000 description 1
- 208000000821 Parathyroid Neoplasms Diseases 0.000 description 1
- 208000000450 Pelvic Pain Diseases 0.000 description 1
- 208000002471 Penile Neoplasms Diseases 0.000 description 1
- 206010034299 Penile cancer Diseases 0.000 description 1
- 206010072369 Pharyngeal exudate Diseases 0.000 description 1
- 108010053210 Phycocyanin Proteins 0.000 description 1
- 108010004729 Phycoerythrin Proteins 0.000 description 1
- 206010050487 Pinealoblastoma Diseases 0.000 description 1
- 208000007641 Pinealoma Diseases 0.000 description 1
- 208000007913 Pituitary Neoplasms Diseases 0.000 description 1
- 201000008199 Pleuropulmonary blastoma Diseases 0.000 description 1
- 206010035664 Pneumonia Diseases 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 206010036049 Polycystic ovaries Diseases 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 206010036790 Productive cough Diseases 0.000 description 1
- KDCGOANMDULRCW-UHFFFAOYSA-N Purine Natural products N1=CNC2=NC=NC2=C1 KDCGOANMDULRCW-UHFFFAOYSA-N 0.000 description 1
- CZPWVGJYEJSRLH-UHFFFAOYSA-N Pyrimidine Chemical group C1=CN=CN=C1 CZPWVGJYEJSRLH-UHFFFAOYSA-N 0.000 description 1
- PYMYPHUHKUWMLA-LMVFSUKVSA-N Ribose Natural products OC[C@@H](O)[C@@H](O)[C@@H](O)C=O PYMYPHUHKUWMLA-LMVFSUKVSA-N 0.000 description 1
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 1
- 229910052772 Samarium Inorganic materials 0.000 description 1
- 208000021388 Sezary disease Diseases 0.000 description 1
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 1
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 1
- 208000032383 Soft tissue cancer Diseases 0.000 description 1
- 108091081024 Start codon Proteins 0.000 description 1
- 208000037065 Subacute sclerosing leukoencephalitis Diseases 0.000 description 1
- 206010042297 Subacute sclerosing panencephalitis Diseases 0.000 description 1
- 208000031673 T-Cell Cutaneous Lymphoma Diseases 0.000 description 1
- 206010042971 T-cell lymphoma Diseases 0.000 description 1
- 208000027585 T-cell non-Hodgkin lymphoma Diseases 0.000 description 1
- 210000001744 T-lymphocyte Anatomy 0.000 description 1
- 108091036066 Three prime untranslated region Proteins 0.000 description 1
- 201000009365 Thymic carcinoma Diseases 0.000 description 1
- 208000015778 Undifferentiated pleomorphic sarcoma Diseases 0.000 description 1
- 206010046431 Urethral cancer Diseases 0.000 description 1
- 206010046458 Urethral neoplasms Diseases 0.000 description 1
- 238000005411 Van der Waals force Methods 0.000 description 1
- 241000700605 Viruses Species 0.000 description 1
- 206010047741 Vulval cancer Diseases 0.000 description 1
- 208000004354 Vulvar Neoplasms Diseases 0.000 description 1
- 206010000059 abdominal discomfort Diseases 0.000 description 1
- 208000020560 abdominal swelling Diseases 0.000 description 1
- 208000024776 abnormal vaginal bleeding Diseases 0.000 description 1
- 238000002835 absorbance Methods 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 229960000643 adenine Drugs 0.000 description 1
- 208000009956 adenocarcinoma Diseases 0.000 description 1
- 229960005305 adenosine Drugs 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 230000001919 adrenal effect Effects 0.000 description 1
- 230000004520 agglutination Effects 0.000 description 1
- 108010004469 allophycocyanin Proteins 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- HMFHBZSHGGEWLO-UHFFFAOYSA-N alpha-D-Furanose-Ribose Natural products OCC1OC(O)C(O)C1O HMFHBZSHGGEWLO-UHFFFAOYSA-N 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 125000000539 amino acid group Chemical group 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 1
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 1
- 235000011130 ammonium sulphate Nutrition 0.000 description 1
- 210000004381 amniotic fluid Anatomy 0.000 description 1
- 239000012805 animal sample Substances 0.000 description 1
- 230000002424 anti-apoptotic effect Effects 0.000 description 1
- 210000000628 antibody-producing cell Anatomy 0.000 description 1
- 230000008350 antigen-specific antibody response Effects 0.000 description 1
- 201000011165 anus cancer Diseases 0.000 description 1
- 239000012736 aqueous medium Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000003305 autocrine Effects 0.000 description 1
- 210000000270 basal cell Anatomy 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- IQFYYKKMVGJFEH-UHFFFAOYSA-N beta-L-thymidine Natural products O=C1NC(=O)C(C)=CN1C1OC(CO)C(O)C1 IQFYYKKMVGJFEH-UHFFFAOYSA-N 0.000 description 1
- DRTQHJPVMGBUCF-PSQAKQOGSA-N beta-L-uridine Natural products O[C@H]1[C@@H](O)[C@H](CO)O[C@@H]1N1C(=O)NC(=O)C=C1 DRTQHJPVMGBUCF-PSQAKQOGSA-N 0.000 description 1
- 210000000013 bile duct Anatomy 0.000 description 1
- 201000009036 biliary tract cancer Diseases 0.000 description 1
- 208000020790 biliary tract neoplasm Diseases 0.000 description 1
- 108091008324 binding proteins Proteins 0.000 description 1
- 239000000560 biocompatible material Substances 0.000 description 1
- 230000031018 biological processes and functions Effects 0.000 description 1
- 238000001574 biopsy Methods 0.000 description 1
- 235000020958 biotin Nutrition 0.000 description 1
- 125000004057 biotinyl group Chemical group [H]N1C(=O)N([H])[C@]2([H])[C@@]([H])(SC([H])([H])[C@]12[H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C(*)=O 0.000 description 1
- 201000000053 blastoma Diseases 0.000 description 1
- 239000010839 body fluid Substances 0.000 description 1
- 206010006007 bone sarcoma Diseases 0.000 description 1
- 208000012172 borderline epithelial tumor of ovary Diseases 0.000 description 1
- 210000000133 brain stem Anatomy 0.000 description 1
- 201000002143 bronchus adenoma Diseases 0.000 description 1
- 238000010804 cDNA synthesis Methods 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 230000036952 cancer formation Effects 0.000 description 1
- 230000005907 cancer growth Effects 0.000 description 1
- 230000000711 cancerogenic effect Effects 0.000 description 1
- 150000001718 carbodiimides Chemical class 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 235000014633 carbohydrates Nutrition 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 231100000504 carcinogenesis Toxicity 0.000 description 1
- 231100000315 carcinogenic Toxicity 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 230000010261 cell growth Effects 0.000 description 1
- 239000013592 cell lysate Substances 0.000 description 1
- 230000004663 cell proliferation Effects 0.000 description 1
- 239000006285 cell suspension Substances 0.000 description 1
- 201000007455 central nervous system cancer Diseases 0.000 description 1
- 201000007335 cerebellar astrocytoma Diseases 0.000 description 1
- 208000030239 cerebral astrocytoma Diseases 0.000 description 1
- 210000001175 cerebrospinal fluid Anatomy 0.000 description 1
- 208000016252 change in skin color Diseases 0.000 description 1
- 201000002687 childhood acute myeloid leukemia Diseases 0.000 description 1
- 208000023973 childhood bladder carcinoma Diseases 0.000 description 1
- 208000019574 childhood myelodysplastic syndrome Diseases 0.000 description 1
- 208000006990 cholangiocarcinoma Diseases 0.000 description 1
- 239000013611 chromosomal DNA Substances 0.000 description 1
- 239000003541 chymotrypsin inhibitor Substances 0.000 description 1
- 238000003759 clinical diagnosis Methods 0.000 description 1
- 238000010367 cloning Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000005515 coenzyme Substances 0.000 description 1
- 230000006957 competitive inhibition Effects 0.000 description 1
- 239000003184 complementary RNA Substances 0.000 description 1
- 230000021615 conjugation Effects 0.000 description 1
- 201000010918 connective tissue cancer Diseases 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 229940109239 creatinine Drugs 0.000 description 1
- 201000007241 cutaneous T cell lymphoma Diseases 0.000 description 1
- 208000017763 cutaneous neuroendocrine carcinoma Diseases 0.000 description 1
- ATDGTVJJHBUTRL-UHFFFAOYSA-N cyanogen bromide Chemical compound BrC#N ATDGTVJJHBUTRL-UHFFFAOYSA-N 0.000 description 1
- 229940097362 cyclodextrins Drugs 0.000 description 1
- UHDGCWIWMRVCDJ-ZAKLUEHWSA-N cytidine Chemical compound O=C1N=C(N)C=CN1[C@H]1[C@H](O)[C@@H](O)[C@H](CO)O1 UHDGCWIWMRVCDJ-ZAKLUEHWSA-N 0.000 description 1
- 229940104302 cytosine Drugs 0.000 description 1
- 210000004292 cytoskeleton Anatomy 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000034994 death Effects 0.000 description 1
- 231100000517 death Toxicity 0.000 description 1
- 230000007123 defense Effects 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000002059 diagnostic imaging Methods 0.000 description 1
- 238000000502 dialysis Methods 0.000 description 1
- 230000001079 digestive effect Effects 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 239000001177 diphosphate Substances 0.000 description 1
- XPPKVPWEQAFLFU-UHFFFAOYSA-J diphosphate(4-) Chemical class [O-]P([O-])(=O)OP([O-])([O-])=O XPPKVPWEQAFLFU-UHFFFAOYSA-J 0.000 description 1
- 235000011180 diphosphates Nutrition 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- KBQHZAAAGSGFKK-UHFFFAOYSA-N dysprosium atom Chemical compound [Dy] KBQHZAAAGSGFKK-UHFFFAOYSA-N 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000001962 electrophoresis Methods 0.000 description 1
- 238000002001 electrophysiology Methods 0.000 description 1
- 230000007831 electrophysiology Effects 0.000 description 1
- 201000008184 embryoma Diseases 0.000 description 1
- 201000003914 endometrial carcinoma Diseases 0.000 description 1
- 238000006911 enzymatic reaction Methods 0.000 description 1
- 229940088598 enzyme Drugs 0.000 description 1
- 210000002919 epithelial cell Anatomy 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 210000003722 extracellular fluid Anatomy 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 201000008819 extrahepatic bile duct carcinoma Diseases 0.000 description 1
- 210000000416 exudates and transudate Anatomy 0.000 description 1
- 206010016629 fibroma Diseases 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- ZFKJVJIDPQDDFY-UHFFFAOYSA-N fluorescamine Chemical compound C12=CC=CC=C2C(=O)OC1(C1=O)OC=C1C1=CC=CC=C1 ZFKJVJIDPQDDFY-UHFFFAOYSA-N 0.000 description 1
- GNBHRKFJIUUOQI-UHFFFAOYSA-N fluorescein Chemical compound O1C(=O)C2=CC=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 GNBHRKFJIUUOQI-UHFFFAOYSA-N 0.000 description 1
- MHMNJMPURVTYEJ-UHFFFAOYSA-N fluorescein-5-isothiocyanate Chemical compound O1C(=O)C2=CC(N=C=S)=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 MHMNJMPURVTYEJ-UHFFFAOYSA-N 0.000 description 1
- 208000024386 fungal infectious disease Diseases 0.000 description 1
- 210000000232 gallbladder Anatomy 0.000 description 1
- 201000010175 gallbladder cancer Diseases 0.000 description 1
- 108010074605 gamma-Globulins Proteins 0.000 description 1
- 238000002523 gelfiltration Methods 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 201000007116 gestational trophoblastic neoplasm Diseases 0.000 description 1
- 230000000762 glandular Effects 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229940029575 guanosine Drugs 0.000 description 1
- 230000035931 haemagglutination Effects 0.000 description 1
- 201000009277 hairy cell leukemia Diseases 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 201000005787 hematologic cancer Diseases 0.000 description 1
- 230000002489 hematologic effect Effects 0.000 description 1
- 208000024200 hematopoietic and lymphoid system neoplasm Diseases 0.000 description 1
- 230000002440 hepatic effect Effects 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- 230000001744 histochemical effect Effects 0.000 description 1
- 230000002962 histologic effect Effects 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 201000006866 hypopharynx cancer Diseases 0.000 description 1
- 230000001900 immune effect Effects 0.000 description 1
- 210000000987 immune system Anatomy 0.000 description 1
- 208000026278 immune system disease Diseases 0.000 description 1
- 238000010166 immunofluorescence Methods 0.000 description 1
- 230000002163 immunogen Effects 0.000 description 1
- 229940072221 immunoglobulins Drugs 0.000 description 1
- 238000013198 immunometric assay Methods 0.000 description 1
- 238000007901 in situ hybridization Methods 0.000 description 1
- 230000002779 inactivation Effects 0.000 description 1
- 238000011534 incubation Methods 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 239000012678 infectious agent Substances 0.000 description 1
- 230000002757 inflammatory effect Effects 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 239000000543 intermediate Substances 0.000 description 1
- 230000000968 intestinal effect Effects 0.000 description 1
- 208000020082 intraepithelial neoplasia Diseases 0.000 description 1
- 238000004255 ion exchange chromatography Methods 0.000 description 1
- 239000003456 ion exchange resin Substances 0.000 description 1
- 229920003303 ion-exchange polymer Polymers 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 108010045069 keyhole-limpet hemocyanin Proteins 0.000 description 1
- 238000009533 lab test Methods 0.000 description 1
- 201000004962 larynx cancer Diseases 0.000 description 1
- 230000003902 lesion Effects 0.000 description 1
- 210000000088 lip Anatomy 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 230000004807 localization Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- HWYHZTIRURJOHG-UHFFFAOYSA-N luminol Chemical compound O=C1NNC(=O)C2=C1C(N)=CC=C2 HWYHZTIRURJOHG-UHFFFAOYSA-N 0.000 description 1
- 210000004880 lymph fluid Anatomy 0.000 description 1
- 210000001165 lymph node Anatomy 0.000 description 1
- 210000004698 lymphocyte Anatomy 0.000 description 1
- 230000000527 lymphocytic effect Effects 0.000 description 1
- 201000000564 macroglobulinemia Diseases 0.000 description 1
- 239000006249 magnetic particle Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 208000030883 malignant astrocytoma Diseases 0.000 description 1
- 208000006178 malignant mesothelioma Diseases 0.000 description 1
- 208000026045 malignant tumor of parathyroid gland Diseases 0.000 description 1
- 210000004962 mammalian cell Anatomy 0.000 description 1
- 208000027202 mammary Paget disease Diseases 0.000 description 1
- 238000009607 mammography Methods 0.000 description 1
- 230000001404 mediated effect Effects 0.000 description 1
- 210000000716 merkel cell Anatomy 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 208000037970 metastatic squamous neck cancer Diseases 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 239000000693 micelle Substances 0.000 description 1
- 238000002493 microarray Methods 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 210000004088 microvessel Anatomy 0.000 description 1
- 230000002438 mitochondrial effect Effects 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 230000009456 molecular mechanism Effects 0.000 description 1
- 210000000214 mouth Anatomy 0.000 description 1
- 206010051747 multiple endocrine neoplasia Diseases 0.000 description 1
- 230000002071 myeloproliferative effect Effects 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 239000002070 nanowire Substances 0.000 description 1
- 210000003928 nasal cavity Anatomy 0.000 description 1
- 230000009826 neoplastic cell growth Effects 0.000 description 1
- 208000015122 neurodegenerative disease Diseases 0.000 description 1
- 230000000926 neurological effect Effects 0.000 description 1
- 229910052755 nonmetal Inorganic materials 0.000 description 1
- 238000012633 nuclear imaging Methods 0.000 description 1
- 238000007899 nucleic acid hybridization Methods 0.000 description 1
- 125000003835 nucleoside group Chemical group 0.000 description 1
- 229940124276 oligodeoxyribonucleotide Drugs 0.000 description 1
- 238000002515 oligonucleotide synthesis Methods 0.000 description 1
- 208000022982 optic pathway glioma Diseases 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 201000006958 oropharynx cancer Diseases 0.000 description 1
- 208000025661 ovarian cyst Diseases 0.000 description 1
- 208000021284 ovarian germ cell tumor Diseases 0.000 description 1
- 201000010302 ovarian serous cystadenocarcinoma Diseases 0.000 description 1
- 210000003101 oviduct Anatomy 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 210000002741 palatine tonsil Anatomy 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 238000002559 palpation Methods 0.000 description 1
- 210000000496 pancreas Anatomy 0.000 description 1
- 201000002530 pancreatic endocrine carcinoma Diseases 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 230000001575 pathological effect Effects 0.000 description 1
- 239000013610 patient sample Substances 0.000 description 1
- 210000004197 pelvis Anatomy 0.000 description 1
- 238000010647 peptide synthesis reaction Methods 0.000 description 1
- 208000028591 pheochromocytoma Diseases 0.000 description 1
- 125000002467 phosphate group Chemical group [H]OP(=O)(O[H])O[*] 0.000 description 1
- ZWLUXSQADUDCSB-UHFFFAOYSA-N phthalaldehyde Chemical compound O=CC1=CC=CC=C1C=O ZWLUXSQADUDCSB-UHFFFAOYSA-N 0.000 description 1
- 238000000053 physical method Methods 0.000 description 1
- 230000004962 physiological condition Effects 0.000 description 1
- 201000003113 pineoblastoma Diseases 0.000 description 1
- 210000003635 pituitary gland Anatomy 0.000 description 1
- 208000010916 pituitary tumor Diseases 0.000 description 1
- 239000002985 plastic film Substances 0.000 description 1
- 229920006255 plastic film Polymers 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 238000012123 point-of-care testing Methods 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 238000010837 poor prognosis Methods 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000013641 positive control Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 208000016800 primary central nervous system lymphoma Diseases 0.000 description 1
- 208000025638 primary cutaneous T-cell non-Hodgkin lymphoma Diseases 0.000 description 1
- 208000029340 primitive neuroectodermal tumor Diseases 0.000 description 1
- 230000000135 prohibitive effect Effects 0.000 description 1
- 238000000159 protein binding assay Methods 0.000 description 1
- 238000001742 protein purification Methods 0.000 description 1
- IGFXRKMLLMBKSA-UHFFFAOYSA-N purine Chemical group N1=C[N]C2=NC=NC2=C1 IGFXRKMLLMBKSA-UHFFFAOYSA-N 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 238000001959 radiotherapy Methods 0.000 description 1
- 238000013102 re-test Methods 0.000 description 1
- 230000008085 renal dysfunction Effects 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 230000000241 respiratory effect Effects 0.000 description 1
- 210000002345 respiratory system Anatomy 0.000 description 1
- 238000010839 reverse transcription Methods 0.000 description 1
- 229960002477 riboflavin Drugs 0.000 description 1
- 239000002151 riboflavin Substances 0.000 description 1
- 125000000548 ribosyl group Chemical group C1([C@H](O)[C@H](O)[C@H](O1)CO)* 0.000 description 1
- 210000003296 saliva Anatomy 0.000 description 1
- 210000003079 salivary gland Anatomy 0.000 description 1
- KZUNJOHGWZRPMI-UHFFFAOYSA-N samarium atom Chemical compound [Sm] KZUNJOHGWZRPMI-UHFFFAOYSA-N 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 201000004409 schistosomiasis Diseases 0.000 description 1
- 210000000582 semen Anatomy 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000002603 single-photon emission computed tomography Methods 0.000 description 1
- 201000008261 skin carcinoma Diseases 0.000 description 1
- 201000002314 small intestine cancer Diseases 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 229910052938 sodium sulfate Inorganic materials 0.000 description 1
- 235000011152 sodium sulphate Nutrition 0.000 description 1
- 239000011343 solid material Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 210000000278 spinal cord Anatomy 0.000 description 1
- 210000003802 sputum Anatomy 0.000 description 1
- 208000024794 sputum Diseases 0.000 description 1
- 208000017572 squamous cell neoplasm Diseases 0.000 description 1
- 208000037969 squamous neck cancer Diseases 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 238000007619 statistical method Methods 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 125000004434 sulfur atom Chemical group 0.000 description 1
- 238000002198 surface plasmon resonance spectroscopy Methods 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 210000001138 tear Anatomy 0.000 description 1
- BFKJFAAPBSQJPD-UHFFFAOYSA-N tetrafluoroethene Chemical compound FC(F)=C(F)F BFKJFAAPBSQJPD-UHFFFAOYSA-N 0.000 description 1
- 150000003573 thiols Chemical group 0.000 description 1
- 229940104230 thymidine Drugs 0.000 description 1
- 229940113082 thymine Drugs 0.000 description 1
- 210000001685 thyroid gland Anatomy 0.000 description 1
- 230000030968 tissue homeostasis Effects 0.000 description 1
- 208000037816 tissue injury Diseases 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 206010044412 transitional cell carcinoma Diseases 0.000 description 1
- 230000032258 transport Effects 0.000 description 1
- 239000001226 triphosphate Substances 0.000 description 1
- 235000011178 triphosphate Nutrition 0.000 description 1
- 125000002264 triphosphate group Chemical class [H]OP(=O)(O[H])OP(=O)(O[H])OP(=O)(O[H])O* 0.000 description 1
- 208000029387 trophoblastic neoplasm Diseases 0.000 description 1
- 229940035893 uracil Drugs 0.000 description 1
- DRTQHJPVMGBUCF-UHFFFAOYSA-N uracil arabinoside Natural products OC1C(O)C(CO)OC1N1C(=O)NC(=O)C=C1 DRTQHJPVMGBUCF-UHFFFAOYSA-N 0.000 description 1
- 208000024470 urgency of urination Diseases 0.000 description 1
- 229940045145 uridine Drugs 0.000 description 1
- 208000037965 uterine sarcoma Diseases 0.000 description 1
- 206010046885 vaginal cancer Diseases 0.000 description 1
- 208000013139 vaginal neoplasm Diseases 0.000 description 1
- 239000013598 vector Substances 0.000 description 1
- 210000003905 vulva Anatomy 0.000 description 1
- 201000005102 vulva cancer Diseases 0.000 description 1
- 239000011534 wash buffer Substances 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
- 238000007693 zone electrophoresis Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/574—Immunoassay; Biospecific binding assay; Materials therefor for cancer
- G01N33/57407—Specifically defined cancers
- G01N33/57449—Specifically defined cancers of ovaries
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/574—Immunoassay; Biospecific binding assay; Materials therefor for cancer
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6876—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
- C12Q1/6883—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/574—Immunoassay; Biospecific binding assay; Materials therefor for cancer
- G01N33/57484—Immunoassay; Biospecific binding assay; Materials therefor for cancer involving compounds serving as markers for tumor, cancer, neoplasia, e.g. cellular determinants, receptors, heat shock/stress proteins, A-protein, oligosaccharides, metabolites
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2600/00—Oligonucleotides characterized by their use
- C12Q2600/112—Disease subtyping, staging or classification
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2600/00—Oligonucleotides characterized by their use
- C12Q2600/158—Expression markers
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2333/00—Assays involving biological materials from specific organisms or of a specific nature
- G01N2333/435—Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
- G01N2333/46—Assays involving biological materials from specific organisms or of a specific nature from animals; from humans from vertebrates
- G01N2333/47—Assays involving proteins of known structure or function as defined in the subgroups
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T436/00—Chemistry: analytical and immunological testing
- Y10T436/14—Heterocyclic carbon compound [i.e., O, S, N, Se, Te, as only ring hetero atom]
- Y10T436/142222—Hetero-O [e.g., ascorbic acid, etc.]
- Y10T436/143333—Saccharide [e.g., DNA, etc.]
Definitions
- Ovarian cancer has the highest mortality among gynecological cancers.
- the lack of early symptoms and the absence of a reliable screening test to detect ovarian cancer result in over 70% of women being diagnosed after the disease has spread beyond the ovary so that the prognosis is poor with approximately 12,000 deaths due to ovarian cancer annually (5-year survival is no better than 37%).
- physical pelvic examination by a physician, ultrasound or measuring blood levels for CA125 are the only standard methods available for detection of ovarian cancer.
- none of these methods provides a reliably consistent and accurate method to detect ovarian cancer. For example, while over 80% of women with ovarian cancer will have elevated blood levels of CA125, blood levels of CA125 are only about 50% accurate for detecting early stage disease.
- An accurate, safe, simple, and reliable test to diagnosis ovarian cancer would benefit all women, in the United States and worldwide, including medically underserved geographical areas and especially women at high risk for developing ovarian cancer.
- a biomarker of ovarian cancer that is detectable in both early and late stages of disease would not only confirm the diagnosis of ovarian cancer, but could also potentially detect thousands of previously undiagnosed ovarian cancers. This is especially important for detection of ovarian cancer in early stages where the disease is confined to the ovary, but currently accounts for less than 10% of diagnosed ovarian cancers.
- apoptosis is an essential biological process for normal development and maintenance of tissue homeostasis, it is also involved in a number of pathologic conditions including tissue injury, degenerative diseases, immunological diseases and cancer (Lowe, S. W. and Lin, A. W. Carcinogenesis, 2000, 21:485-495). Whether activated by membrane bound death receptors (Ashkenazi, A. et al. J. Clin. Invest., 1999, 104:155-162; Walczak, H. Krammer, P. H. Exp. Cell Res, 2000, 256:58-66) or by stress-induced mitochondrial perturbation with subsequent cytochrome c release (Loeffler, M. and Kroemer, G. Exp.
- the bcl-2 protein family consists of both pro- and anti-apoptotic protein family members that act at different levels of the apoptotic cascade to regulate apoptosis.
- the bcl-2 family members contain at least one Bcl-2-homology (BH) domain (Farrow, S. N. and Brown, R. Curr. Opin. Gen. Dev., 1996, 6:45-49).
- Bcl-2 the archetypal bcl-2 family member
- channels are cation (Ca ++ ) selective and, owing to its exclusive ER and mitochondrial membrane localization (Thomenius, M. J. and Distelhorst, C. W. J.
- Bcl-2 is overexpressed in many tumor types including ovarian cancer (Sharma, H. et al. Head Neck, 2004, 26:733-740; Hanaoka, T. et al. Intl. J. Clin. Oncol., 2002, 7:152-158; Trisciuoglio, D. et al. J. Cell Physiol., 2005, 205:414-421; Khalifeh, I. et al. Int. J. Gynecol.
- Bcl-2 constitutes a biomarker for prognosis, diagnosis, and monitoring of cancer, such as reproductive cancer.
- Bcl-2 may be used to diagnose and monitor early stage and late stage ovarian cancer.
- Bcl-2 may be used as a biomarker for cancer before surgery and after relapse.
- Bcl-2, and agents that bind Bcl-2 polynucleotides or polypeptides may be used to detect and monitor ovarian cancer, and other reproductive or non-reproductive cancers.
- this invention relates to the detection of cancer by screening for elevated levels of Bcl-2 in biological samples, such as urine, blood (e.g., whole blood, serum, or plasma), and ascites fluid.
- biological samples such as urine, blood (e.g., whole blood, serum, or plasma), and ascites fluid.
- the cancer is ovarian cancer.
- the cancer is a type selected from the group consisting of breast, endometrial, cervical, lung, colon, prostate, melanoma, glioblastoma, sarcoma, bladder, and head and neck.
- the method further comprises verifying that the subject is suffering from the cancer detected (e.g., by assessing for the presence of one or more cancer symptoms, detecting additional cancer markers, detecting the presence of the cancer through an imaging modality such as X-ray, CT, nuclear imaging (PET and SPECT), ultrasound, MRI) and/or treating the subject for the cancer detected (e.g., by surgery, chemotherapy, and/or radiation).
- an imaging modality such as X-ray, CT, nuclear imaging (PET and SPECT), ultrasound, MRI
- treating the subject for the cancer detected e.g., by surgery, chemotherapy, and/or radiation.
- the present invention relates to a device for the rapid detection of Bcl-2 in a bodily fluid such as blood or urine.
- the device is a lateral flow device.
- the device comprises an application zone for receiving a sample of bodily fluid such as blood or urine; a labeling zone containing a binding agent that binds to Bcl-2 in the sample; and a detection zone where Bcl-2-bound binding agent is retained to give a signal, wherein the signal given for a sample from a subject with a Bcl-2 level lower than a threshold concentration is different from the signal given for a sample from a patient with a Bcl-2 level equal to or greater than a threshold concentration.
- the invention relates to a simple, rapid, reliable, accurate and cost effective test for Bcl-2 in a bodily fluid such as blood or urine, similar to currently available in-home pregnancy tests that could be used by subjects at home, in a physicians' office, or at a patient's bedside.
- the test is a method for measuring Bcl-2 in a bodily fluid, comprising: (a) obtaining a sample of bodily fluid, such as blood or urine, from a subject; (b) contacting the sample with a binding agent that hinds to any Bcl-2 in the sample; (c) separating Bcl-2-bound binding agent; (d) detecting a signal associated with the separated binding agent from (c); and (e) comparing the signal detected in step (d) with a reference signal which corresponds to the signal given by a sample from a subject with a Bcl-2 level equal to a threshold concentration.
- the bodily fluid is urine
- the threshold concentration is between 0 ng/ml and 2.0 ng/ml.
- the bodily fluid is urine, and the threshold concentration is 1.8 ng/ml.
- urinary Bcl-2 associated with ovarian cancer was almost 100% while blood levels of CA125>35 U/ml only identified 68% of ovarian cancer patients. Comparison of clinical parameters indicated that urinary levels of Bcl-2 correlated well with tumor stage and grade. However, urinary levels of Bcl-2 were not related to patient age or tumor size. Therefore, quantification of urinary Bcl-2 by ELISA-based assays provides a safe, sensitive, specific and economical method to detect ovarian cancer, to monitor ovarian cancer throughout the course of disease and to predict therapeutic and prognostic outcome.
- FIG. 1 is a histogram depicting urinary levels of Bcl-2.
- Urinary levels of Bcl-2 are higher in patients with ovarian cancer compared with normal healthy volunteers.
- Urine was collected from normal healthy volunteers and from patients with ovarian cancer (including histological subtypes serous, mucinous) and peritoneal cancer.
- Serous ovarian cancers were further subdivided into stage 1 (the first three bars on the left in the serous grouping), stage 2 (the next eight bars in the serous grouping (i.e., bars 4-11 from the left of the serous grouping)) and stage 3 (the eleven bars in the right-hand section of the serous grouping (i.e. bars 12-22 from the left of the serous grouping).
- the urine was tested in triplicate for Bcl-2 by ELISA (ELISA kits from Bender MedSystems, catalog #BMS244/3) and the results expressed as the average ng/ml Bcl-2 ⁇ S.E.
- the data indicate consistently elevated levels of Bcl-2 in the urine of patients with cancer. Student t-test analysis revealed a statistical difference between normal and cancer specimens at p ⁇ 0.00001.
- FIG. 2 is a histogram depicting urinary levels of Bcl-2 in normal and cancer patients. Additional urine specimens were collected from normal healthy volunteers and from patients with ovarian cancer (including histological subtypes endometroid, serous and mucinous) and peritoneal cancer. Serous ovarian cancers were further subdivided into stage 1 (7 left-most bars in serous grouping), stage 2 (bars 8-17 from the left in the serous grouping) and stage 3 (12 right-most bars in serous grouping). The urine was tested in triplicate for Bcl-2 by ELISA (ELISA kits from Bender MedSystems), the results expressed as the average ng/ml Bcl-2 and represent all the normal and the pre-surgical cancer urine specimens tested to date. In agreement with FIG. 1 , the data indicate consistently elevated levels of Bcl-2 in the urine of patients with cancer. Student t-test analysis reveal a statistical difference between normal and cancer specimens at p ⁇ 0.00001.
- FIGS. 3A and 3B are histograms demonstrating that urinary Bcl-2 is related to tumor stage and grade, respectively.
- Levels of urinary Bcl-2 were plotted against tumor stage from all available histological ovarian cancer subtypes (serous, endometriod, mucinous). Stages I, II, III and V are represented by Roman numerals with groupings underneath.
- FIGS. 4A and 4B are a pair of histograms depicting the ability of urinary Bcl-2 ( FIG. 4A ) relative to the measurements of plasma levels of CA125 ( FIG. 4B ) in detecting ovarian cancer.
- levels of urinary Bcl-2 as previously shown in FIGS. 1-3 were compared with plasma levels of CA125 from the same normal healthy volunteers and cancer patients.
- the latter group included patients with mucinous ovarian cancer (Muc), primary peritoneal cancer (PP) and serous ovarian cancer (Serous).
- CA125 levels were determined by ELISA (kits from Bio-Quant, San Diego, Calif., Catalog #BQ1013T) in triplicate.
- the data are expressed as the average ng/ml Bcl-2 (A) and average U/ml CA125 ( FIG. 4B ).
- the sensitivity and specificity to detect ovarian cancer by elevated levels of urinary Bcl-2 was almost 100%.
- FIG. 5 is a histogram showing that urinary Bcl-2 does not correlate with patient age.
- urinary Bcl-2 levels remained reduced in patients undergoing chemotherapy and who had no apparent or minimal residual disease (#41, 43, 54).
- elevated urinary Bcl-2 levels correlated with the presence of recurrent disease (#5b, 27B) and decreased with subsequent disease debulking (#27c).
- FIG. 9 is a histogram showing that Bcl-2 can be secreted into cell culture conditioned medium.
- Conditioned medium CM was collected from established cancer cell lines representing ovarian (OV2008, SKOV3, PA1), cervical (Hela), prostate (LNCap, DU145, PC-3), head and neck (HN5a) and lymphoma (Raji) cancers and examined by ELISA for presence of Bcl-2. Data are expressed as the mean of triplicate samples. The presence of Bcl-2 in the CM of ovarian, cervical and prostate cancer cell cultures suggests that these cancer cells produce and secrete Bcl-2.
- Indirect methods may also be employed in which the primary antigen-antibody reaction is amplified by the introduction of a second antibody, having specificity for the antibody reactive against Bcl-2.
- a second antibody having specificity for the antibody reactive against Bcl-2.
- the antibody having specificity against Bcl-2 is a rabbit IgG antibody
- the second antibody may be goat anti-rabbit gamma-globulin labeled with a detectable substance as described herein.
- the substrate employed in the method may be 4-methylumbeliferyl phosphate, or 5-fluorpsalicyl phosphate.
- the fluorescence intensity of the complexes is typically measured using a time-resolved fluorometer, e.g., a CyberFluor 615 Immoanalyzer (Nordion International, Kanata Ontario).
- the capture antibody is selected so that it provides a mode for being separated from the remainder of the test mixture. Accordingly, the capture antibody can be introduced to the assay in an already immobilized or insoluble form, or can be in an immobilizable form, that is, a form which enables immobilization to be accomplished subsequent to introduction of the capture antibody to the assay.
- An immobilized capture antibody can comprise an antibody covalently or noncovalently attached to a solid phase such as a magnetic particle, a latex particle, a microtiter multi-well plate, a bead, a cuvette, or other reaction vessel.
- High-sensitivity miniaturized immunoassays may also be utilized for detection of Bcl-2 (Cesaro-Tadic et al., Lab Chip, 2004, 4(6):563-569; Zimmerman et al., Biomed, Microdevices, 2005, 7(2):99-110, which are incorporated herein by reference).
- oligonucleotides may be natural oligomers composed of the biologically significant nucleotides, i.e., A (adenine), dA (deoxyadenine), G (guanine), dG (deoxyguanine), C (cytosine), dC (deoxycytosine), T (thymine) and U (uracil), or modified oligonucleotide species, substituting, for example, a methyl group or a sulfur atom for a phosphate oxygen in the inter-nucleotide phosohodiester linkage.
- these nucleotides themselves, and/or the ribose moieties may be modified.
- the methods of detecting Bcl-2 nucleic acid in biological fluids of gynecological cancer patients or those at risk thereof, preferably urine of ovarian cancer patients or those at risk thereof include Northern blot analysis, dot blotting, Southern blot analysis, FISH, and PCR.
- the methods of the invention can be carried out on a solid support.
- the solid supports used may be those which are conventional for the purpose of assaying an analyte in a biological sample, and are typically constructed of materials such as cellulose, polysaccharide such as Sephadex, and the like, and may be partially surrounded by a housing for protection and/or handling of the solid support.
- the solid support can be rigid, semi-rigid, flexible, elastic (having shape-memory), etc., depending upon the desired application. Bcl-2 can be detected in a sample in vivo or in vitro (ex vivo).
- the devices of the invention comprise a solid support (such as a strip or dipstick), with a surface that functions as a lateral flow matrix defining a flow path for a biological sample such as urine, whole blood, serum, plasma, peritoneal fluid, or ascites.
- a biological sample such as urine, whole blood, serum, plasma, peritoneal fluid, or ascites.
- Immunochromatographic assays also known as lateral flow test strips or simply strip tests, for detecting various analytes of interest, have been known for some time, and may be used for detection of Bcl-2.
- the benefits of lateral flow tests include a user-friendly format, rapid results, long-term stability over a wide range of climates, and relatively low cost to manufacture. These features make lateral flow tests ideal for applications involving home testing, rapid point of care testing, and testing in the field for various analytes.
- the principle behind the test is straightforward. Essentially, any ligand that can be bound to a visually detectable solid support, such as dyed microspheres, can be tested for, qualitatively, and in many cases even semi-quantitatively.
- a one-step lateral flow immunostrip for the detection of free and total prostate specific antigen in serum is described in Fernandez-Sanchez et al. ( J. Immuno. Methods, 2005, 307(1-2):1-12, which is incorporated herein by reference) and may be adapted for detection of Bcl-2 in a biological sample such as blood or urine.
- a nitrocellulose membrane card has also been used to diagnose schistosomiasis by detecting the movement and binding of nanoparticles of carbon (van Dam, G. J. et al. J Clin Microbiol, 2004, 42:5458-5461).
- This control line uses species-specific anti-immunoglobulin antibodies, specific for the conjugate antibodies on the microspheres.
- Free antigen if present, is introduced onto the device by adding sample (urine, serum, etc.) onto a sample addition pad. Free antigen then binds to antibody-microsphere complexes.
- Antibody 1, specific for epitope 1 of sample antigen is coupled to dye microspheres and dried onto the device. When sample is added, microsphere-antibody complex is rehydrated and carried to a capture zone and control lines by liquid.
- Antibody 2 specific for a second antigenic site (epitope 2) of sample antigen, is dried onto a membrane at the capture line.
- Antibody 3 a species-specific, anti-immunoglobulin antibody that will react with antibody 1, is dried onto the membrane at the control line. If antigen is present in the sample (i.e., a positive test), it will bind by its two antigenic sites, to both antibody 1 (conjugated to microspheres) and antibody 2 (dried onto membrane at the capture line). Antibody 1-coated microspheres are bound by antibody 3 at the control line, whether antigen is present or not. If antigen is not present in the sample (a negative test), microspheres pass the capture line without being trapped, but are caught by the control line.
- samples corresponding to individual or pooled members of a sample library can be arranged in a series of numbered rows and columns, e.g., on a multi-well plate.
- binding agents can be plated or otherwise deposited in microtitered, e.g., 96-well, 384-well, or -1536 well, plates (or trays).
- Bcl-2-specific binding agents may be immobilized on the solid support.
- the diagnostic device of the invention can utilize lateral flow strip (LFS) technology, which has been applied to a number of other rapid strip assay systems, such as over-the-counter early pregnancy test strips based on antibodies to human chorionic gonadotropin (hCG).
- LFS lateral flow strip
- hCG human chorionic gonadotropin
- the device utilizes a binding agent to bind the target molecule (Bcl-2).
- Bcl-2 target molecule
- the device has an application zone for receiving a biological sample such as blood or urine, a labeling zone containing label which binds to Bcl-2 in the sample, and a detection zone where Bcl-2 label is retained.
- the detection zone is downstream of the application zone, with the labelling zone typically located between the two.
- a sample will thus migrate from the application zone into the labeling zone, where any in the sample binds to the label.
- Bcl-2-binding agent complexes continue to migrate into the detection zone together with excess binding agent.
- the Bcl-2-binding agent complex encounters the capture reagent, the complex is retained whilst the sample and excess binding agent continue to migrate.
- the amount of binding agent (in the form of Bcl-2-binding agent complex) retained in the detection zone increases proportionally.
- the device of the invention has the ability to distinguish between samples according to the threshold concentration. This can be achieved in various ways.
- One type of device includes a reference zone that includes a signal of fixed intensity against which the amount of binding agent retained in the detection zone can be compared—when the signal in the detection zone equals the signal in the reference zone, the sample is a threshold sample; when the signal in the detection zone is less intense than the reference zone, the sample contains less Bcl-2 than a threshold sample; when the signal in the detection zone is more intense than the reference zone, the sample contains more Bcl-2 than a threshold sample.
- a suitable reference zone can be prepared and calibrated without difficulty.
- the binding agent will generally be present in excess to Bcl-2 in the sample, and the reference zone may be upstream or, preferably, downstream of the detection zone.
- the signal in the reference zone will be of the same type as the signal in the detection zone, i.e., they will typically both be visible to the naked eye, e.g., they will use the same tag.
- a preferred reference zone in a device of this type comprises immobilized protein (e.g., bovine serum albumin) which is tagged with colloidal gold.
- the reference zone is downstream of the detection zone and includes a reagent which captures binding agent (e.g., an immobilised anti-binding agent antibody).
- binding agent e.g., an immobilised anti-binding agent antibody.
- Binding agent that flows through the device is not present in excess, but is at a concentration such that 50% of it is bound by a sample having Bcl-2 at the threshold concentration. In a threshold sample, therefore, 50% of the binding agent will be retained in the detection zone and 50% in the reference zone.
- the Bcl-2 level in the sample is greater than in a threshold sample, less than 50% of the binding agent will reach the reference zone and the detection zone will give a more intense signal than the reference zone; conversely, if the Bcl-2 level in the sample is less than in a threshold sample, less than 50% of the binding agent will be retained in the detection zone and the reference zone will give a more intense signal than the detection zone.
- a fifth type of device no reference zone is needed, but an external reference is used which corresponds to the threshold concentration.
- This can take various forms, e.g., a printed card against which the signal in the detection zone can be compared, or a machine reader which compares an absolute value measured in the detection zone (e.g., a calorimetric signal) against a reference value stored in the machine.
- the device includes a control zone downstream of the detection zone. This will generally be used to capture excess binding agent that passes through the detection and/or reference zones (e.g., using immobilized anti-binding agent antibody). When binding agent is retained at the control zone, this confirms that mobilization of the binding agent and migration through the device have both occurred. It will be appreciated that this function may be achieved by the reference zone.
- the detection, reference and control zones are preferably formed on a nitrocellulose support.
- Migration from the application zone to the detection zone will generally be assisted by a wick downstream of the detection zone to aid capillary movement.
- This wick is typically formed from absorbent material such as blotting or chromatography paper.
- the device of the invention can be produced simply and cheaply, conveniently in the form of a dipstick. Furthermore, it can be used very easily, for instance by the home user.
- the invention thus provides a device which can be used at home as a screen for cancer, such as ovarian cancer.
- kits comprising the required elements for diagnosing or monitoring cancer.
- the kits comprise a container for collecting biological fluid from a patient and an agent for detecting the presence of Bcl-2 or its encoding nucleic acid in the fluid.
- the components of the kits can be packaged either in aqueous medium or in lyophilized form.
- kits for qualitatively or quantitatively detecting Bcl-2 in a sample such as blood or urine can contain binding agents (e.g., antibodies) specific for Bcl-2, antibodies against the antibodies labeled with an enzyme; and a substrate for the enzyme.
- the kit can also contain a solid support such as microtiter multi-well plates, standards, assay diluent, wash buffer, adhesive plate covers, and/or instructions for carrying out a method of the invention using the kit.
- the kit includes one or protease inhibitors (e.g., a protease inhibitor cocktail) to be applied to the biological sample to be assayed (such as blood or urine).
- Kits for diagnosing or monitoring gynecological cancer containing one or more agents that detect the Bcl-2 protein can be prepared.
- the agent(s) can be packaged with a container for collecting the biological fluid from a patient.
- the antibodies or binding partner are used in the kits in the form of conjugates in which a label is attached, such as a radioactive metal ion or a moiety, the components of such conjugates can be supplied either in fully conjugated form, in the form of intermediates or as separate moieties to be conjugated by the user of the kit.
- Kits containing one or more agents that detect Bcl-2 nucleic acid can also be prepared.
- the agent(s) can be packaged with a container for collecting biological samples from a patient.
- the nucleic acid can be in the labeled form or to be labeled form.
- kits may include but are not limited to, means for collecting biological samples, means for labeling the detecting agent (binding agent), membranes for immobilizing the Bcl-2 protein or Bcl-2 nucleic acid in the biological sample, means for applying the biological sample to a membrane, means for binding the agent to Bcl-2 in the biological sample of a subject, a second antibody, a means for isolating total RNA from a biological fluid of a subject, means for performing gel electrophoresis, means for generating cDNA from isolated total RNA, means for performing hybridization assays, and means for performing PCR, etc.
- ELISA includes an enzyme-linked immunoabsorbent assay that employs an antibody or antigen bound to a solid phase and an enzyme-antigen or enzyme-antibody conjugate to detect and quantify the amount of an antigen (e.g., Bcl-2) or antibody present in a sample.
- an antigen e.g., Bcl-2
- a description of the ELISA technique is found in Chapter 22 of the 4 th Edition of Basic and Clinical Immunology by D. P. Sites et al., 1982, published by Lange Medical Publications of Los Altos, Calif. and in U.S. Pat. Nos. 3,654,090; 3,850,752; and 4,016,043, the disclosures of which are herein incorporated by reference.
- ELISA is an assay that can be used to quantitate the amount of antigen, proteins, or other molecules of interest in a sample.
- ELISA can be carried out by attaching on a solid support (e.g., polyvinylchloride) an antibody specific for an antigen or protein of interest.
- a solid support e.g., polyvinylchloride
- Cell extract or other sample of interest such as urine can be added for formation of an antibody-antigen complex, and the extra, unbound sample is washed away.
- An enzyme-linked antibody, specific for a different site on the antigen is added.
- the support is washed to remove the unbound enzyme-linked second antibody.
- the enzyme-linked antibody can include, but is not limited to, alkaline phosphatase.
- the enzyme on the second antibody can convert an added colorless substrate into a colored product or can convert a non-fluorescent substrate into a fluorescent product.
- the ELISA-based assay method provided herein can be conducted in a single chamber or on an array of chambers and can be adapted for automated processes.
- the antibodies can be labeled with pairs of FRET dyes, bioluminescence resonance energy transfer (BRET) protein, fluorescent dye-quencher dye combinations, beta gal complementation assays protein fragments.
- the antibodies may participate in FRET, BRET, fluorescence quenching or beta-gal complementation to generate fluorescence, colorimetric or enhanced chemiluminescence (ECL) signals, for example.
- cancer and “cancerous” refer to or describe the physiological condition in mammals that is typically characterized by unregulated cell growth, i.e., proliferative disorders.
- proliferative disorders include cancers such as carcinoma, lymphoma, blastoma, sarcoma, and leukemia, as well as other cancers disclosed herein.
- cancers include breast cancer, prostate cancer, colon cancer, squamous cell cancer, small-cell lung cancer, non-small cell lung cancer, gastrointestinal cancer, pancreatic cancer, cervical cancer, ovarian cancer, peritoneal cancer, liver cancer, e.g., hepatic carcinoma, bladder cancer, colorectal cancer, endometrial carcinoma, kidney cancer, and thyroid cancer.
- Acute Lymphoblastic Leukemia Hairy Cell Leukemia Adult Head and Neck Cancer Acute Lymphoblastic Leukemia, Hepatocellular (Liver) Cancer, Adult Childhood (Primary) Acute Myeloid Leukemia, Adult Hepatocellular (Liver) Cancer, Childhood Acute Myeloid Leukemia, Childhood (Primary) Adrenocortical Carcinoma Hodgkin's Lymphoma, Adult Adrenocortical Carcinoma, Hodgkin's Lymphoma, Childhood Childhood Hodgkin's Lymphoma During Pregnancy AIDS-Related Cancers Hypopharyngeal Cancer AIDS-Related Lymphoma Hypothalamic and Visual Pathway Glioma, Anal Cancer Childhood Astrocytoma, Childhood Cerebellar Intraocular Melanoma Astrocytoma, Childhood Cerebral Islet Cell Carcinoma (Endocrine Pancreas) Basal Cell Carcinoma Kaposi's Sar
- tumor refers to all neoplastic cell growth and proliferation, whether malignant or benign, and all pre-cancerous and cancerous cells and tissues.
- a particular cancer may be characterized by a solid mass tumor.
- the solid tumor mass if present, may be a primary tumor mass.
- a primary tumor mass refers to a growth of cancer cells in a tissue resulting from the transformation of a normal cell of that tissue. In most cases, the primary tumor mass is identified by the presence of a cyst, which can be found through visual or palpation methods, or by irregularity in shape, texture or weight of the tissue.
- sample can be any composition of matter of interest from a human or non-human subject, in any physical state (e.g., solid, liquid, semi-solid, vapor) and of any complexity.
- the sample can be any composition reasonably suspecting of containing Bcl-2 that can be analyzed by the methods, devices, and kits of the invention.
- the sample is a fluid (biological fluid).
- Samples can include human or animal samples.
- the sample may be contained within a test tube, culture vessel, multi-well plate, or any other container or supporting substrate.
- the sample can be, for example, a cell culture, human or animal tissue. Fluid homogenates of cellular tissues are biological fluids that may contain Bcl-2 for detection by the invention.
- the “complexity” of a sample refers to the relative number of different molecular species that are present in the sample.
- body fluid and “bodily fluid”, as used herein, refer to a composition obtained from a human or animal subject.
- Bodily fluids include, but are not limited to, urine, whole blood, blood plasma, serum, tears, semen, saliva, sputum, exhaled breath, nasal secretions, pharyngeal exudates, bronchoalveolar lavage, tracheal aspirations, interstitial fluid, lymph fluid, meningal fluid, amniotic fluid, glandular fluid, feces, perspiration, mucous, vaginal or urethral secretion, cerebrospinal fluid, and transdermal exudate.
- Bodily fluid also includes experimentally separated fractions of all of the preceding solutions or mixtures containing homogenized solid material, such as feces, tissues, and biopsy samples.
- ex vivo refers to an environment outside of a subject. Accordingly, a sample of bodily fluid collected from a subject is an ex vivo sample of bodily fluid as contemplated by the subject invention. In-dwelling embodiments of the method and device of the invention obtain samples in vivo.
- conjugate refers to a compound comprising two or more molecules bound together, optionally through a linking group, to form a single structure.
- the binding can be made by a direct connection (e.g., a chemical bond) between the molecules or by use of a linking group.
- the terms solid “support”, “substrate”, and “surface” refer to a solid phase which is a porous or non-porous water insoluble material that can have any of a number of shapes, such as strip, rod, particle, beads, or multi-welled plate.
- the support has a fixed organizational support matrix that preferably functions as an organization matrix, such as a microtiter tray.
- Solid support materials include, but are not limited to, cellulose, polysaccharide such as Sephadex, glass, polyacryloylmorpholide, silica, controlled pore glass (CPG), polystyrene, polystyrene/latex, polyethylene such as ultra high molecular weight polyethylene (UPE), polyamide, polyvinylidine fluoride (PVDF), polytetrafluoroethylene (PTFE; TEFLON), carboxyl modified teflon, nylon, nitrocellulose, and metals and alloys such as gold, platinum and palladium.
- polysaccharide such as Sephadex
- glass polyacryloylmorpholide
- silica controlled pore glass
- CPG controlled pore glass
- PVDF polystyrene
- polystyrene/latex polyethylene
- polyethylene such as ultra high molecular weight polyethylene (UPE)
- UPE ultra high molecular weight polyethylene
- PVDF polyamide
- PVDF polyvinyl
- the solid support can be biological, non-biological, organic, inorganic, or a combination of any of these, existing as particles, strands, precipitates, gels, sheets, pads, cards, strips, dipsticks, test strips, tubing, spheres, containers, capillaries, pads, slices, films, plates, slides, etc., depending upon the particular application.
- the solid support is planar in shape, to facilitate contact with a biological sample such as urine, whole blood, plasma, serum, peritoneal fluid, or ascites fluid.
- a biological sample such as urine, whole blood, plasma, serum, peritoneal fluid, or ascites fluid.
- the solid support can be a membrane, with or without a backing (e.g., polystyrene or polyester card backing), such as those available from Millipore Corp.
- label and “tag” refer to substances that may confer a detectable signal, and include, but are not limited to, enzymes such as alkaline phosphatase, glucose-6-phosphate dehydrogenase, and horseradish peroxidase, ribozyme, a substrate for a replicase such as QB replicase, promoters, dyes, fluorescers, such as fluorescein, isothiocynate, rhodamine compounds, phycoerythrin, phycocyanin, allophycocyanin, o-phthaldehyde, and fluorescamine, chemiluminescers such as isoluminol, sensitizers, coenzymes, enzyme substrates, radiolabels, particles such as latex or carbon particles, liposomes, cells, etc., which may be further labeled with a dye, catalyst or other detectable group.
- enzymes such as alkaline phosphatase, glucose-6-phosphate dehydrogenas
- receptor and “receptor protein” are used herein to indicate a biologically active proteinaceous molecule that specifically binds to (or with) other molecules such as Bcl-2.
- ligand refers to a molecule that contains a structural portion that is bound by specific interaction with a particular receptor protein.
- antibody refers to immunoglobulin molecules and immunologically active portions (fragments) of immunoglobulin molecules, i.e., molecules that contain an antibody combining site or paratope.
- the term is inclusive of monoclonal antibodies and polyclonal antibodies.
- the terms “monoclonal antibody” or “monoclonal antibody composition” refer to an antibody molecule that contains only one species of antibody combining site capable of immunoreacting with a particular antigen.
- a monoclonal antibody composition thus typically displays a single binding affinity for any antigen with which it immunoreacts.
- a monoclonal antibody composition is typically composed of antibodies produced by clones of a single cell called a hybridoma that secretes (produces) only one type of antibody molecule.
- the hybridoma cell is formed by fusing an antibody-producing cell and a myeloma or other self-perpetuating cell line.
- bind refers to any physical attachment or close association, which may be permanent or temporary.
- the binding can result from hydrogen bonding, hydrophobic forces, van der Waals forces, covalent, or ionic bonding, for example.
- nucleoside refers to a molecule having a purine or pyrimidine base covalently linked to a ribose or deoxyribose sugar.
- exemplary nucleosides include adenosine, guanosine, cytidine, uridine and thymidine.
- nucleotide refers to a nucleoside having one or more phosphate groups joined in ester linkages to the sugar moiety.
- exemplary nucleotides include nucleoside monophosphates, diphosphates and triphosphates.
- polynucleotide refers to a polymer of nucleotides joined together by a phosphodiester linkage between 5′ and 3′ carbon atoms.
- Polynucleotides can encode a polypeptide such as Bcl-2 polypeptide (whether expressed or non-expressed), or may be short interfering RNA (siRNA), antisense nucleic acids (antisense oligonucleotides), aptamers, ribozymes (catalytic RNA), or triplex-forming oligonucleotides (i.e., antigene), for example.
- siRNA short interfering RNA
- antisense nucleic acids antisense oligonucleotides
- aptamers aptamers
- ribozymes catalytic RNA
- triplex-forming oligonucleotides i.e., antigene
- RNA or “RNA molecule” or “ribonucleic acid molecule” refers generally to a polymer of ribonucleotides.
- DNA or “DNA molecule” or deoxyribonucleic acid molecule” refers generally to a polymer of deoxyribonucleotides.
- DNA and RNA molecules can be synthesized naturally (e.g., by DNA replication or transcription of DNA, respectively). RNA molecules can be post-transcriptionally modified. DNA and RNA molecules can also be chemically synthesized.
- DNA and RNA molecules can be single-stranded (i.e., ssRNA and ssDNA, respectively) or multi-stranded (e.g., double stranded, i.e., dsRNA and dsDNA, respectively).
- RNA or “RNA molecule” or “ribonucleic acid molecule” can also refer to a polymer comprising primarily (i.e., greater than 80% or, preferably greater than 90%) ribonucleotides but optionally including at least one non-ribonucleotide molecule, for example, at least one deoxyribonucleotide and/or at least one nucleotide analog.
- nucleotide analog or “nucleic acid analog”, also referred to herein as an altered nucleotide/nucleic acid or modified nucleotide/nucleic acid refers to a non-standard nucleotide, including non-naturally occurring ribonucleotides or deoxyribonucleotides.
- Preferred nucleotide analogs are modified at any position so as to alter certain chemical properties of the nucleotide yet retain the ability of the nucleotide analog to perform its intended function.
- locked nucleic acids LNA are a class of nucleotide analogs possessing very high affinity and excellent specificity toward complementary DNA and RNA. LNA oligonucleotides have been applied as antisense molecules both in vitro and in vivo (Jepsen J. S. et al., Oligonucleotides, 2004, 14(2):130-146).
- RNA analog refers to a polynucleotide (e.g., a chemically synthesized polynucleotide) having at least one altered or modified nucleotide as compared to a corresponding unaltered or unmodified RNA but retaining the same or similar nature or function as the corresponding unaltered or unmodified RNA.
- the oligonucleotides may be linked with linkages which result in a lower rate of hydrolysis of the RNA analog as compared to an RNA molecule with phosphodiester linkages.
- Exemplary RNA analogues include sugar- and/or backbone-modified ribonucleotides and/or deoxyribonucleotides. Such alterations or modifications can further include addition of non-nucleotide material, such as to the end(s) of the RNA or internally (at one or more nucleotides of the RNA).
- isolated or “biologically pure” refer to material that is substantially or essentially free from components which normally accompany the material as it is found in its native state.
- Urine samples were collected from patients, anonymized and coded to protect patient identity, and released from the H. Lee Moffitt Cancer Center for this research protocol. All samples were kept in ice. Urine samples were treated with a standard protease inhibitor cocktail (80 ⁇ g/ml 4-(2aminoethyl)-benzene sulfonyl fluoride, 200 ⁇ g/ml EDTA, 0.2 ⁇ g/ml leupeptin, 0.2 ⁇ g/ml pepstatin, Sigma Scientific, St. Louis, Mich.) and centrifuged at 3000 ⁇ g. Urinary supernates and plasma samples were then aliquoted and stored at ⁇ 20° C.
- protease inhibitor cocktail 80 ⁇ g/ml 4-(2aminoethyl)-benzene sulfonyl fluoride, 200 ⁇ g/ml EDTA, 0.2 ⁇ g/ml leupeptin, 0.2 ⁇ g/ml pepstatin, Sigma
- this cohort comprises a small pilot study, it is representative of a typical clinical practice with regards to histology, grade and stage distribution.
- Urinary Bcl-2 does not Correlate with Patient Age or Tumor Size
- urinary Bcl-2 levels did not relate with patient age (see FIG. 5 ). Though the age range and average age of normal controls (29-81 yr, average 48.5 ⁇ S.D. 12.7 yr) and women with benign gynecologic disease (28-84 yr, average 55.9 ⁇ S.D. 13.9 yr) was somewhat lower that that of women with ovarian cancer (26-92 yr, average 62.2 ⁇ S.D. 13.8 yr), the differences were not statistically significant in this study. Similarly, urinary Bcl-2 levels did not correlate with tumor size measured at debulking surgery ( FIG. 6 ), ranging from microscopic to >10 cm and may reflect biologic variation between individuals or variation of tumor composition.
- Urinary Bcl-2 Detects Ovarian Cancer More Accurately than CA125 in Blood
- urinary Bcl-2 was compared with CA 125 levels in 12 normal controls and 23 patients with ovarian cancer ( FIGS. 4A and 4B ). Of the patients examined, elevated urinary Bcl-2 associated with ovarian cancer detection was almost 100%. Elevated urinary Bcl-2 (>1.8 ng/ml) identified 17/17 patients with serous adenocarcinoma, 4/4 patients with mucinous ovarian cancer and 1/2 patients with primary peritoneal cancer as ovarian cancer positive ( FIG. 4A ).
- urinary Bcl-2 detection of ovarian cancer in both early and late stages of disease would not only confirm the diagnosis of ovarian cancer, but could also potentially detect thousands of previously undiagnosed ovarian cancers. This is especially important for detection of ovarian cancer in early stages that account for less than 10% of diagnosed ovarian cancers, but where surgical debulking of the diseased ovary increases patient survival to over 90% and would be expected to reduce life long medical costs.
- urinary levels of Bcl-2 can be used to monitor the presence of ovarian cancer throughout the course of disease which may impact therapeutic and prognostic outcome.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Immunology (AREA)
- Molecular Biology (AREA)
- Hematology (AREA)
- Urology & Nephrology (AREA)
- Biomedical Technology (AREA)
- Analytical Chemistry (AREA)
- Physics & Mathematics (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Pathology (AREA)
- Biotechnology (AREA)
- Microbiology (AREA)
- Cell Biology (AREA)
- Food Science & Technology (AREA)
- General Physics & Mathematics (AREA)
- Medicinal Chemistry (AREA)
- Organic Chemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Hospice & Palliative Care (AREA)
- Oncology (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Genetics & Genomics (AREA)
- Biophysics (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Investigating Or Analysing Biological Materials (AREA)
- Polysaccharides And Polysaccharide Derivatives (AREA)
Abstract
The present invention relates to a method for the diagnosis, prognosis, and monitoring of cancer, such as early or late stage ovarian cancer, in a subject by detecting Bcl-2 in a biological sample from the subject, preferably a urine or blood sample. Bcl-2 may be measured using an agent that detects or binds to Bcl-2 protein or an agent that detects or binds to encoding nucleic acids, such as antibodies specifically reactive with Bcl-2 protein or a portion thereof. The invention further relates to kits for carrying out the methods of the invention. The invention further relates to a device for the rapid detection of Bcl-2 in a bodily fluid and methods for rapidly measuring Bcl-2 in a bodily fluid.
Description
- The present application is a divisional of U.S. application Ser. No. 11/704,408, Feb. 9, 2007, which claims the benefit of U.S. Provisional Application Ser. No. 60/771,677, filed Feb. 9, 2006, which is hereby incorporated by reference herein in its entirety, including any figures, tables, nucleic acid sequences, amino acid sequences, and drawings.
- This invention was made with government support under the Defense New Idea Award #W81XWH-07-1-0276 (PAK), awarded by the US Army Department. The government has certain rights in the invention.
- Cancer markers are substances that can be found in the body (usually in the blood or urine) when cancer is present. They can be products of the cancer cells themselves, or of the body in response to cancer or other conditions. For several reasons, cancer markers themselves are usually not enough to diagnose (or rule out) a specific type of cancer. Most cancer markers can be produced by normal cells as well as by cancer cells, even if in smaller amounts. Sometimes, non-cancerous diseases can also cause levels of certain cancer markers to be higher than normal. Further, not every person with cancer may have higher levels of a cancer marker. For these reasons, only a small amount of cancer markers are commonly used by most doctors. When a doctor does look at the level of a certain cancer marker, he or she will typically consider it along with the results of the patient's history and physical exam, and other lab tests or imaging tests.
- Screening refers to looking for cancer in individuals who have no symptoms of the disease, while early detection is finding cancer at an early stage of the disease, when it is less likely to have spread (and is more likely to be treated effectively). Although cancer markers were originally investigated and developed to test for cancer in people without symptoms, very few markers have been shown to be helpful in this way.
- Ovarian cancer has the highest mortality among gynecological cancers. The lack of early symptoms and the absence of a reliable screening test to detect ovarian cancer result in over 70% of women being diagnosed after the disease has spread beyond the ovary so that the prognosis is poor with approximately 12,000 deaths due to ovarian cancer annually (5-year survival is no better than 37%). Currently, physical pelvic examination by a physician, ultrasound or measuring blood levels for CA125 are the only standard methods available for detection of ovarian cancer. However, none of these methods provides a reliably consistent and accurate method to detect ovarian cancer. For example, while over 80% of women with ovarian cancer will have elevated blood levels of CA125, blood levels of CA125 are only about 50% accurate for detecting early stage disease. The development of an alternate and new test to reliably and accurately detect all ovarian cancers is imperative. Thus, what is needed is a technology that overcomes the current lack of a reliable, accurate, safe and cost-effective test for ovarian cancer. Furthermore, what is needed is a technology that accurately detects all ovarian cancers, many of which now go undetected, as well as monitor disease burden throughout the course of ovarian cancer.
- An accurate, safe, simple, and reliable test to diagnosis ovarian cancer would benefit all women, in the United States and worldwide, including medically underserved geographical areas and especially women at high risk for developing ovarian cancer. Given that approximately 25,000 women are diagnosed with ovarian cancer annually in the U.S., a biomarker of ovarian cancer that is detectable in both early and late stages of disease would not only confirm the diagnosis of ovarian cancer, but could also potentially detect thousands of previously undiagnosed ovarian cancers. This is especially important for detection of ovarian cancer in early stages where the disease is confined to the ovary, but currently accounts for less than 10% of diagnosed ovarian cancers. In these situations, surgical debulking of the diseased ovary increases patient survival to over 90% and would be expected to reduce medical costs. The ability to accurately detect and monitor ovarian cancer in each patient through the course of her disease, would not only serve for initial ovarian cancer diagnosis, but would also indicate therapeutic efficacy and/or recurrent disease. The development of a commercially available, FDA-approved ELISA-based test, for example, could become the gold standard for clinical diagnosis of ovarian cancer.
- While apoptosis is an essential biological process for normal development and maintenance of tissue homeostasis, it is also involved in a number of pathologic conditions including tissue injury, degenerative diseases, immunological diseases and cancer (Lowe, S. W. and Lin, A. W. Carcinogenesis, 2000, 21:485-495). Whether activated by membrane bound death receptors (Ashkenazi, A. et al. J. Clin. Invest., 1999, 104:155-162; Walczak, H. Krammer, P. H. Exp. Cell Res, 2000, 256:58-66) or by stress-induced mitochondrial perturbation with subsequent cytochrome c release (Loeffler, M. and Kroemer, G. Exp. Cell Res., 2000, 256:19-26; Wernig, F. and Xu, Q. Prog. Biophys. Mol. Biol., 2002, 78:105-137; Takano, T. et al. Antiox. Redox. Signal, 2002, 4:533-541), activation of downstream caspases leads to stepwise cellular destruction by disrupting the cytoskeleton, shutting down DNA replication and repair, degrading chromosomal DNA, and, finally, disintegrating the cell into apoptotic bodies (Nagata, S. Exp. Cell Res., 2000, 256:12-18). The key regulators of apoptosis include members of the bcl-2 protein family (Farrow, S. N. and Brown, R. Curr. Opin. Gen. Dev., 1996, 6:45-49).
- The bcl-2 protein family consists of both pro- and anti-apoptotic protein family members that act at different levels of the apoptotic cascade to regulate apoptosis. The bcl-2 family members contain at least one Bcl-2-homology (BH) domain (Farrow, S. N. and Brown, R. Curr. Opin. Gen. Dev., 1996, 6:45-49). Though all bcl-2 family members demonstrate membrane channel forming activity, Bcl-2 (the archetypal bcl-2 family member) channels are cation (Ca++) selective and, owing to its exclusive ER and mitochondrial membrane localization (Thomenius, M. J. and Distelhorst, C. W. J. Cell Sci., 2003, 116:4493-4499), the anti-apoptotic function of Bcl-2 is at least partly mediated by its ability to prevent calcium release from the ER and subsequent mitochondrial membrane perturbation and cytochrome c release. Since Bcl-2 is overexpressed in many tumor types including ovarian cancer (Sharma, H. et al. Head Neck, 2004, 26:733-740; Hanaoka, T. et al. Intl. J. Clin. Oncol., 2002, 7:152-158; Trisciuoglio, D. et al. J. Cell Physiol., 2005, 205:414-421; Khalifeh, I. et al. Int. J. Gynecol. Pathol., 2004, 23:162-169; O'Neill, C. J. et al. Am. J. Surg. Pathol., 2005, 29:1034-1041), it contributes to chemoresistance by stabilizing the mitochondrial membrane against apoptotic insults. Currently, preclinical studies focus on the development of agents to inhibit Bcl-2, including antisense oligonucleotides such as G3,139 (Ackermann, E. J. et al. J. Biol. Chem., 1999, 274:11245-11252), and small molecular inhibitors of Bcl-2 (Lickliter, J. D. et al. Leukemia, 2003, 17:2074-2080). Though such studies target Bcl-2 for therapeutic intervention, quantification of urinary Bcl-2 has not previously been reported in the literature.
- It would be advantageous to have available assays that provide safe, sensitive, specific, and economical methods for the detection of cancers such as ovarian cancer, which would benefit society worldwide.
- The present invention relates to cancer screening. Bcl-2 constitutes a biomarker for prognosis, diagnosis, and monitoring of cancer, such as reproductive cancer. For example, Bcl-2 may be used to diagnose and monitor early stage and late stage ovarian cancer. Bcl-2 may be used as a biomarker for cancer before surgery and after relapse. Bcl-2, and agents that bind Bcl-2 polynucleotides or polypeptides may be used to detect and monitor ovarian cancer, and other reproductive or non-reproductive cancers.
- Thus, more particularly, this invention relates to the detection of cancer by screening for elevated levels of Bcl-2 in biological samples, such as urine, blood (e.g., whole blood, serum, or plasma), and ascites fluid. In one embodiment, the cancer is ovarian cancer. In another embodiment, the cancer is a type selected from the group consisting of breast, endometrial, cervical, lung, colon, prostate, melanoma, glioblastoma, sarcoma, bladder, and head and neck. Optionally, the method further comprises verifying that the subject is suffering from the cancer detected (e.g., by assessing for the presence of one or more cancer symptoms, detecting additional cancer markers, detecting the presence of the cancer through an imaging modality such as X-ray, CT, nuclear imaging (PET and SPECT), ultrasound, MRI) and/or treating the subject for the cancer detected (e.g., by surgery, chemotherapy, and/or radiation).
- The invention also relates to kits for carrying out the methods of the invention.
- In another aspect, the present invention relates to a device for the rapid detection of Bcl-2 in a bodily fluid such as blood or urine. Preferably, the device is a lateral flow device. In one embodiment, the device comprises an application zone for receiving a sample of bodily fluid such as blood or urine; a labeling zone containing a binding agent that binds to Bcl-2 in the sample; and a detection zone where Bcl-2-bound binding agent is retained to give a signal, wherein the signal given for a sample from a subject with a Bcl-2 level lower than a threshold concentration is different from the signal given for a sample from a patient with a Bcl-2 level equal to or greater than a threshold concentration.
- In another aspect, the invention relates to a simple, rapid, reliable, accurate and cost effective test for Bcl-2 in a bodily fluid such as blood or urine, similar to currently available in-home pregnancy tests that could be used by subjects at home, in a physicians' office, or at a patient's bedside.
- In one embodiment, the test is a method for measuring Bcl-2 in a bodily fluid, comprising: (a) obtaining a sample of bodily fluid, such as blood or urine, from a subject; (b) contacting the sample with a binding agent that hinds to any Bcl-2 in the sample; (c) separating Bcl-2-bound binding agent; (d) detecting a signal associated with the separated binding agent from (c); and (e) comparing the signal detected in step (d) with a reference signal which corresponds to the signal given by a sample from a subject with a Bcl-2 level equal to a threshold concentration. In one embodiment, the bodily fluid is urine, and the threshold concentration is between 0 ng/ml and 2.0 ng/ml. In another embodiment, the bodily fluid is urine, and the threshold concentration is 1.8 ng/ml.
- To assess whether urinary levels of Bcl-2 could be used to detect ovarian cancer, urine was collected from normal healthy volunteers, from patients with ovarian cancer and measured for Bcl-2 by ELISA. The average amount of Bcl-2 in the urine of cancer patients was generally at least 10× greater than healthy controls. In addition, none of the urine samples collected from 35 women with benign gynecologic disease (including teratomas, ovarian cysts, leiomyomas, polycystic ovarian disease, adenofibromas or cystadenomas) had Bcl-2 levels above that found in normal, healthy volunteers. Urinary levels of Bcl-2 decreased up to 100% in ovarian cancer patients following debulking surgery. The sensitivity and specificity for elevated urinary Bcl-2 associated with ovarian cancer was almost 100% while blood levels of CA125>35 U/ml only identified 68% of ovarian cancer patients. Comparison of clinical parameters indicated that urinary levels of Bcl-2 correlated well with tumor stage and grade. However, urinary levels of Bcl-2 were not related to patient age or tumor size. Therefore, quantification of urinary Bcl-2 by ELISA-based assays provides a safe, sensitive, specific and economical method to detect ovarian cancer, to monitor ovarian cancer throughout the course of disease and to predict therapeutic and prognostic outcome.
-
FIG. 1 is a histogram depicting urinary levels of Bcl-2. Urinary levels of Bcl-2 are higher in patients with ovarian cancer compared with normal healthy volunteers. Urine was collected from normal healthy volunteers and from patients with ovarian cancer (including histological subtypes serous, mucinous) and peritoneal cancer. Serous ovarian cancers were further subdivided into stage 1 (the first three bars on the left in the serous grouping), stage 2 (the next eight bars in the serous grouping (i.e., bars 4-11 from the left of the serous grouping)) and stage 3 (the eleven bars in the right-hand section of the serous grouping (i.e. bars 12-22 from the left of the serous grouping). The urine was tested in triplicate for Bcl-2 by ELISA (ELISA kits from Bender MedSystems, catalog #BMS244/3) and the results expressed as the average ng/ml Bcl-2±S.E. The data indicate consistently elevated levels of Bcl-2 in the urine of patients with cancer. Student t-test analysis revealed a statistical difference between normal and cancer specimens at p<0.00001. -
FIG. 2 is a histogram depicting urinary levels of Bcl-2 in normal and cancer patients. Additional urine specimens were collected from normal healthy volunteers and from patients with ovarian cancer (including histological subtypes endometroid, serous and mucinous) and peritoneal cancer. Serous ovarian cancers were further subdivided into stage 1 (7 left-most bars in serous grouping), stage 2 (bars 8-17 from the left in the serous grouping) and stage 3 (12 right-most bars in serous grouping). The urine was tested in triplicate for Bcl-2 by ELISA (ELISA kits from Bender MedSystems), the results expressed as the average ng/ml Bcl-2 and represent all the normal and the pre-surgical cancer urine specimens tested to date. In agreement withFIG. 1 , the data indicate consistently elevated levels of Bcl-2 in the urine of patients with cancer. Student t-test analysis reveal a statistical difference between normal and cancer specimens at p<0.00001. -
FIGS. 3A and 3B are histograms demonstrating that urinary Bcl-2 is related to tumor stage and grade, respectively. Levels of urinary Bcl-2 were plotted against tumor stage from all available histological ovarian cancer subtypes (serous, endometriod, mucinous). Stages I, II, III and V are represented by Roman numerals with groupings underneath. Though still considerably higher than normal controls,FIG. 3A illustrates that urinary levels of Bcl-2 were lowest in stage I and II tumors (average ng/ml Bcl-2=2.2) where the disease is localized within the ovary and peritoneal cavity, respectively. Urinary levels of Bcl-2 were greatest among stage III and V (average ng/ml Bcl-2=4.22) when the disease has spread well beyond the ovary or is recurrent disease, respectively. -
FIGS. 4A and 4B are a pair of histograms depicting the ability of urinary Bcl-2 (FIG. 4A ) relative to the measurements of plasma levels of CA125 (FIG. 4B ) in detecting ovarian cancer. Wherever possible, levels of urinary Bcl-2 as previously shown inFIGS. 1-3 were compared with plasma levels of CA125 from the same normal healthy volunteers and cancer patients. The latter group included patients with mucinous ovarian cancer (Muc), primary peritoneal cancer (PP) and serous ovarian cancer (Serous). CA125 levels were determined by ELISA (kits from Bio-Quant, San Diego, Calif., Catalog #BQ1013T) in triplicate. The data are expressed as the average ng/ml Bcl-2 (A) and average U/ml CA125 (FIG. 4B ). The sensitivity and specificity to detect ovarian cancer by elevated levels of urinary Bcl-2 was almost 100%. In contrast, CA125 blood levels >35 U/ml, the current standard for ovarian cancer detection, only correctly identified 68% of ovarian cancer patients. -
FIG. 5 is a histogram showing that urinary Bcl-2 does not correlate with patient age. To examine whether elevated urinary levels of Bcl-2 in cancer patients correlated with patient age, levels of urinary Bcl-2 (as determined previously inFIGS. 1-3 and 4A-4B) were compared against patient age in years. Though the average age of normal healthy volunteers in this study was somewhat lower (54.8 years) than cancer patients (66.2 years), there was no statistical difference in age between the groups due to the wide range in age (see insert inFIG. 5 ). In addition, the average age of cancer patients is in agreement with the literature and clinical data indicating that ovarian cancer generally targets peri- and post-menopausal women. However, there did not appear to be a correlation between urinary levels of Bcl-2 with patient age. -
FIG. 6 is a histogram showing that urinary Bcl-2 does not correlate with ovarian tumor size. To examine whether elevated urinary levels of Bcl-2 in cancer patients correlated with tumor size, levels of urinary Bcl-2 (as determined previously inFIGS. 1-3 and 4A-4B) were compared against tumor size. Tumors were grouped as: 1=microscopic in size; 3=tumors less than 3 cm; 6=tumors between 3 and 6 cm; 10=tumors greater than 6 cm and up to 10 cm; 11=tumors greater than 10 cm. The data indicate that there did not appear to be a correlation between urinary levels of Bcl-2 with tumor size. -
FIGS. 7A and 7B are a pair of histograms showing that urinary Bcl-2 decreases after ovarian cancer debulking surgery. To further test the accuracy of urinary Bcl-2 to detect ovarian cancer, levels of urinary Bcl-2 were compared in those available ovarian cancer patients immediately prior to (black bars) and within 2 weeks following (grey bars) initial debulking surgery (removal of all visible tumor) (FIG. 7A ). For those 7 patients where urine samples were collected before and after initial surgery, Bcl-2 levels decreased up to 100% following surgical removal of tumor. These data, then, suggest that the tumor is the source of Bcl-2 found elevated in the urine of patients with ovarian cancer and that levels of urinary Bcl-2 parallel the presence of ovarian cancer. In addition, urine samples were collected from 5 of the 7 patients inFIG. 7A on subsequent follow up clinical visits ranging from 7 to 11 months following initial surgery and measured for Bcl-2 (blue bars) (FIG. 7B ). Urinary Bcl-2 levels remained low in 3 follow-up patients (#41, 43, 54) and became elevated in 2 patients (#5, 27). Preliminary chart review indicated that patients #41, 43, 54 were undergoing chemotherapy at the time of follow-up visits and that their ovarian cancer disease was under control. In contrast, chart review suggests that 5, 27 had recurrent disease (5B, 27B) and thatpatients # patient # 27b underwent additional tumor debulking surgery. In agreement with the clinical information, urinary Bcl-2 levels remained reduced in patients undergoing chemotherapy and who had no apparent or minimal residual disease (#41, 43, 54). Likewise, elevated urinary Bcl-2 levels correlated with the presence of recurrent disease (#5b, 27B) and decreased with subsequent disease debulking (#27c). -
FIGS. 8A and 8B show results of Bcl-2 testing in patients with benign gynecologic disease. Urinary samples were examined by ELISA for Bcl-2 in patients with benign gynecologic disease. Samples were examined in triplicate and the data expressed as the average ng/ml of Bcl-2±S.E (FIG. 8A ). Benign gynecologic disease samples were subdivided by type (benign cystic teratoma, simple cyst, leiomyoma, polycystic ovary, adenofibroma, mucinous and serous cystadenoma) with ovarian cancer patient sample #41 (white bar) serving as an internal positive control. Average urinary Bcl-2 ng/ml±S.E. among benign disease are indicted below their respective heading. Samples fromFIG. 2 andFIG. 3A were re-plotted to show distribution of Bcl-2 expression for this study group (n=92), shown inFIG. 8B . Bcl-2 levels in benign, cancer and normal individuals ranged from 0.115-1.016 ng/ml, 1.12-9.8 ng/ml and 0-1.26 ng/ml and averaged 0.614 ng/ml, 3.4 ng/ml and 0.21 ng/ml, respectively. -
FIG. 9 is a histogram showing that Bcl-2 can be secreted into cell culture conditioned medium. Conditioned medium (CM) was collected from established cancer cell lines representing ovarian (OV2008, SKOV3, PA1), cervical (Hela), prostate (LNCap, DU145, PC-3), head and neck (HN5a) and lymphoma (Raji) cancers and examined by ELISA for presence of Bcl-2. Data are expressed as the mean of triplicate samples. The presence of Bcl-2 in the CM of ovarian, cervical and prostate cancer cell cultures suggests that these cancer cells produce and secrete Bcl-2. -
FIG. 10 shows that Bcl-2 is over-expressed in some cancers cells. Cell lysates from established cancer cell lines representing ovarian (SW626, C13), head and neck (HN5a), cervical (Hela) and prostate (DU145) cancers were western immunoblotted for Bcl-2. Actin served as a loading control and FHIOSE118 cells (SV-40 large T antigen transfected human ovarian surface epithelial cells) served as a normal, non-malignant ovarian surface epithelial control cells. Following densitometric analyses, the level of Bcl-2 was normalized to actin, noted below the blots. Normal cells contained negligible amounts of bcl-2 while ovarian and cervical cancer cells contained the greatest amount of Bcl-2. -
FIG. 11 shows Bcl-2 protein concentrations following storage. Urine samples from normal healthy individuals (#506, 508) and patients with ovarian cancer (#77, 97) were originally tested for Bcl-2 as part of this study (control) and following storage for 4 days at either room temperature (25° C.), in a fridge (4° C.), in a −20° C. freezer (−20° C.) or in a −80° C. freezer (−80° C.). All samples were tested in duplicate for urinary levels of Bcl-2 using an ELISA kit (BenderMed Systems). -
FIG. 12 shows Bcl-2 protein concentrations in conditioned medium (CM) of cancer cell lines following treatment with lysophosphatidic acid (LPA), including DU145, a prostate cancer cell line. The figure shows that treatment with LPA, which often feeds back into cancer cells in the manner of an autocrine loop, stimulates secretion of Bcl-2 into the CM of some cancer cell types. As these cancer cell lines secrete Bcl-2 into their CM, as do ovarian cancer cell lines, the in vivo tumor counterparts of such cell lines potentially secrete Bcl-2 into biological fluids such as urine and/or blood and may be detected using the present invention. - SEQ ID NO:1 is human Bcl-2 DNA (GenBank accession no. M14745); coding region (CDS): bases 32-751.
- SEQ ID NO:2 is human Bcl-2 protein (GenBank accession no. AAA35591).
- SEQ ID NO:3 is human Bcl-2 DNA, transcript variant alpha (GenBank accession no. NM—000633); CDS: bases 494-1213.
- SEQ ID NO:4 is human Bcl-2 protein, transcript variant alpha (GenBank accession no. NP—000624).
- SEQ ID NO:5 is human Bcl-2 DNA, transcript variant beta (GenBank accession no. NM—000657); CDS: bases 494-1111.
- SEQ ID NO:6 is human Bcl-2 protein, transcript variant beta (GenBank accession no. NP—000648).
- Bcl-2 is an effective molecular marker for cancer such as ovarian cancer. Cancer markers (also called tumor markers) are molecules such as hormones, enzymes, and immunoglobulins found in the body that are associated with cancer and whose measurement or identification is useful in patient diagnosis or clinical management. They can be products of the cancer cells themselves, or of the body in response to cancer or other conditions. Most cancer markers are proteins. Some cancer markers are seen only in a single type of cancer, while others can be detected in several types of cancer. As with other cancer markers, Bcl-2 can be used for a variety of purposes, such as: screening a healthy population or a high risk population for the presence of cancer; making a diagnosis of cancer or of a specific type of cancer, such as ovarian cancer; determining the prognosis of a subject; and monitoring the course in a subject in remission or while receiving surgery, radiation, chemotherapy, or other cancer treatment.
- To assess whether urinary levels of Bcl-2 could be used to detect ovarian cancer, urine was collected from normal healthy volunteers (N=21) and from patients with ovarian (N=34) and primary peritoneal (N=2) cancer and measured in triplicate for Bcl-2 using commercially available ELISA kits (BenderMedSystems, catalog #BMS244/3) according to the manufacturer's instructions. The results were expressed as the average ng/ml Bcl-2±S.E. The average amount of Bcl-2 in the urine of healthy volunteers was 0.204 ng/ml while that from pre-surgical patients with cancer averaged 3.12 ng/ml, generally at least 10× greater than that found in normal controls. Student t-test analysis revealed a statistical difference between normal and cancer specimens at p<0.00001. Comparison of clinical parameters indicated that urinary levels of Bcl-2 correlated well with tumor stage and grade (
FIGS. 3A and 3B ). - Plasma samples from some of these same individuals above were examined in triplicate for CA125 levels by a commercially available ELISA (Bio-Quant, catalog #BQ1013T) according to the manufacturer's instructions. The sensitivity and specificity for elevated urinary Bcl-2 associated with ovarian cancer detection was almost 100% while blood levels of CA125>35 U/ml, the current standard for ovarian cancer detection, only correctly identified 68% of ovarian cancer patients.
- To further test the accuracy for levels of urinary Bcl-2 to detect ovarian cancer, levels of urinary Bcl-2 were compared in those available ovarian cancer patients immediately prior to and within 2 weeks following initial debulking surgery (removal of all visible tumor). For those 7 patients where urine samples were collected before and after initial surgery, Bcl-2 levels decreased up to 100% following surgical removal of tumor. These data, then, suggest that the tumor is the source of Bcl-2 found elevated in the urine of patients with ovarian cancer. In addition, urine samples were collected from 5 of these 7 patients on subsequent follow up clinical visits ranging from 7 to 11 months following initial surgery and measured for Bcl-2. Urinary Bcl-2 levels remained low in 3 follow-up patients (#41, 43, 54) and became elevated in 2 patients (#5, 27). Preliminary chart review indicated that patients #41, 43, and 54 were undergoing chemotherapy at the time of follow-up visits and that their ovarian cancer disease was under control. In contrast, chart review suggests that
5, 27 had recurrent disease and thatpatients # patient # 27 underwent additional tumor debulking surgery. In agreement with the clinical information, urinary Bcl-2 levels remained reduced in patients undergoing chemotherapy and who had no apparent or minimal residual disease (#41, 43, 54). Likewise, elevated urinary Bcl-2 levels correlated with the presence of recurrent disease (#5, 27) and decreased with subsequent disease debulking (#27c). - Taken together, these data indicate that quantification of urinary Bcl-2 by ELISA-based assays appears to provide a novel, safe, sensitive, specific and economical method for the detection of ovarian cancer. Further, urinary levels of Bcl-2 can be used to monitor the presence of ovarian cancer throughout the course of disease and may predict therapeutic and prognostic outcome.
- In one aspect, the invention includes a method for detecting cancer in a subject, comprising detecting the presence of Bcl-2 in a biological sample from the subject, such as urine, blood, peritoneal fluid, or ascites fluid, and wherein a level of Bcl-2 above a pre-determined threshold is indicative of cancer in the subject. Preferably, the detecting is not carried out by a qualitative slot-blot assay (such as that commercially available from BioRad).
- The cancer detecting and/or monitoring using the methods, devices, and kits of the invention include, but are not limited to, breast cancer (e.g., infiltrating (invasive), pre-invasive, inflammatory, Paget's Disease, metastatic, or recurrent); gastrointestinal/digestive cancer (e.g., appendix, bile duct, colon, esophageal, gallbladder, gastric, intestinal, liver, pancreatic, rectal, and stomach); genitourinary/urinal cancer (e.g., adrenal, bladder, kidney, penile, prostate, testicular, and urinary); gynecological cancer (e.g., cervical, endometrial, fallopian tube, ovarian, uterine, vaginal, and vulvar); head and neck cancer (e.g., eye, head and neck, jaw, laryngeal, nasal cavity, oral cancer, pharyngeal, salivary gland, sinus, throat, thyroid, tongue, and tonsil); hematological/blood cancer (e.g., Hodgkin's disease, leukemia (acute lymphocytic leukemia, acute granulocytic leukemia, acute myelogenous leukemia, chronic lymphocytic leukemia, chronic myelogenous leukemia), multiple myeloma, lymphoma, and lymph node); musculoskeletal/soft tissue cancer (e.g., bone, osteosarcoma, melanoma, skin (basal cell, squamous cell), sarcoma (Ewing's sarcoma, Kaposis sarcoma)); neurological cancer (e.g., brain (astrocytoma, glioblastoma, glioma), pituitary gland, spinal cord)); and respiratory/lung cancer (e.g., lung, (adenocarcinoma, oat cell, non-small cell, small cell, squamous cell) and mesothelioma). In one embodiment, the cancer is ovarian cancer. In another embodiment, the cancer is a type selected from the group consisting of breast cancer, endometrial cancer, cervical cancer, lung cancer, colon cancer, prostate cancer, melanoma, glioblastoma, sarcoma, bladder cancer, and head and neck cancer.
- In one embodiment of the method of the invention, the detecting comprises: (a) contacting the biological sample with a binding agent that binds Bcl-2 protein to form a complex; and (b) detecting the complex; and correlating the detected complex to the amount of Bcl-2 protein in the sample, wherein the presence of elevated Bcl-2 protein is indicative of cancer. In a specific embodiment, the detecting of (b) further comprises linking or incorporating a label onto the agent, or using ELISA-based immunoenzymatic detection.
- Optionally, the methods of the invention further comprise detecting a biomarker of cancer in the same biological sample or a different biological sample obtained from the subject, before, during, or after said detecting of Bcl-2. In one embodiment, the biomarker of cancer is a biomarker of reproductive cancer, such as gynecological cancer. In another embodiment, the biomarker is CA125 or OVXI. The subject may have elevated CA125 level in the blood at the time the detecting of Bcl-2 is carried out, or the subject may not have an elevated CA125 level in the blood at the time the detecting of Bcl-2 is carried out.
- In some embodiments, the subject is suffering from cancer, such as ovarian cancer, and the detecting is performed at several time points at intervals, as part of a monitoring of the subject before, during, or after the treatment of the cancer.
- Optionally, the methods of the invention further comprise comparing the level of Bcl-2 in the biological sample with the level of Bcl-2 present in a normal control sample, wherein a higher level of Bcl-2 in the biological sample as compared to the level in the normal control sample is indicative of cancer such as ovarian cancer.
- In some embodiments, the subject exhibits no symptoms of cancer at the time the detecting of Bcl-2 is carried out. In other embodiments, the subject exhibits one or more symptoms of cancer at the time the detecting of Bcl-2 is carried out. For example, with respect to gynecological cancer (e.g., ovarian cancer), the one or more symptoms of gynecological cancer include those selected from the group consisting of pelvic pain, abnormal vaginal bleeding, abdominal swelling or bloating, persistent back pain, persistent stomach upset, change in bowel or bladder pattern (such as constipation, diarrhea, blood in the stools, gas, thinner stools, frequency or urgency of urination, constipation), pain during intercourse, unintentional weight loss of ten or more pounds, vulva or vaginal abnormality (such as blister, change in skin color, or discharge), change in the breast (such as a lump, soreness, nipple discharge, dimpling, redness, or swelling), and fatigue.
- In another embodiment, the invention includes a method for prognostic evaluation of a subject having, or suspected of having, cancer, comprising: a) determining the level of Bcl-2 in a biological sample obtained from the subject, such as urine, blood, or ascites fluid; h) comparing the level determined in step (a) to a range of Bcl-2 known to be present in a biological sample obtained from a normal subject that does not have cancer; and c) determining the prognosis of the subject based on the comparison of step (b), wherein a high level of Bcl-2 in step (a) indicates an aggressive form of cancer and, therefore, a poor prognosis.
- The terms “detecting” or “detect” include assaying or otherwise establishing the presence or absence of the target Bcl-2 (Bcl-2 encoding nucleic acid sequence or Bcl-2 gene product (polypeptide)), subunits thereof, or combinations of agent bound targets, and the like, or assaying for, interrogating, ascertaining, establishing, or otherwise determining one or more factual characteristics of gynecological cancer, metastasis, stage, or similar conditions. The term encompasses diagnostic, prognostic, and monitoring applications for Bcl-2 and other cancer biomarkers. The term encompasses quantitative, semi-quantitative, and qualitative detection methodologies. In embodiments of the invention involving detection of Bcl-2 protein (as opposed to nucleic acid molecules encoding Bcl-2 protein), the detection method is preferably an ELISA-based method. Preferably, in the various embodiments of the invention, the detection method provides an output (i.e., readout or signal) with information concerning the presence, absence, or amount of Bcl-2 in a sample from a subject. For example, the output may be qualitative (e.g., “positive” or “negative”), or quantitative (e.g., a concentration such as nanograms per milliliter).
- In an embodiment, the invention relates to a method for detecting cancer in a subject by quantitating Bcl-2 protein or encoding nucleic acids (DNA or RNA) in a biological sample such as urine from the subject, comprising (a) contacting (reacting) the biological sample with an antibody specific for Bcl-2 which is directly or indirectly labeled with a detectable substance; and (b) detecting the detectable substance.
- In an embodiment, the invention relates to a method for diagnosing and/or monitoring cancer in a subject by quantitating Bcl-2 in a biological sample, such as urine or blood, from the subject, comprising (a) reacting the biological sample with an antibody specific for Bcl-2 which is directly or indirectly labeled with a delectable substance; and (b) detecting the detectable substance.
- Embodiments of the methods of the invention involve (a) contacting a biological sample from a subject with an antibody specific for Bcl-2 which is directly or indirectly labeled with an enzyme; (b) adding a substrate for the enzyme wherein the substrate is selected so that the substrate, or a reaction product of the enzyme and substrate, forms fluorescent complexes; (c) quantitating Bcl-2 in the sample by measuring fluorescence of the fluorescent complexes; and (d) comparing the quantitated levels to that of a standard.
- A preferred embodiment of the invention comprises the following steps:
- (a) incubating a biological sample with a first antibody specific for Bcl-2 which is directly or indirectly labeled with a detectable substance, and a second antibody specific for Bcl-2 which is immobilized;
- (b) separating the first antibody from the second antibody to provide a first antibody phase and a second antibody phase;
- (c) detecting the detectable substance in the first or second antibody phase thereby quantitating Bcl-2 in the biological sample; and
- (d) comparing the quantitated Bcl-2 with a standard.
- A standard used in a method of the invention may correspond to Bcl-2 levels obtained for samples from healthy control subjects, from subjects with benign disease (e.g., benign gynecological disease), subjects with early stage gynecological cancer, or from other samples of the subject. Increased levels of Bcl-2 as compared to the standard may be indicative of cancer, such as early or late stage ovarian cancer.
- The invention also contemplates using the methods, devices, and kits described herein in conjunction with one or more additional markers (“biomarkers”) for cancer. Therefore, the invention contemplates a method for analyzing a biological sample for the presence of Bcl-2 and analyzing the same sample, or another biological sample from the same subject, for other markers that are specific indicators of a cancer. The one or more additional markers may be detected before, during, and/or after detection of Bcl-2 is carried out. Examples of markers include CA125, LPA, and OVXI. In a preferred embodiment, the markers are Bcl-2 and CA125. The methods, devices, and kits described herein may be modified by including agents to detect the additional markers, or nucleic acids encoding the markers.
- Cancer markers that may be used in conjunction with the invention include, but are not limited to: alpha fetoprotein (AFP), e.g., for pancreatic, kidney, ovarian, cervical, and testicular cancers; carcinogenic embryonic antigen (CEA), e.g., for lung, pancreatic, kidney, breast, uterine, liver, gastric, and colorectal cancers; carbohydrate antigen 15-3 (CA15-3), e.g., for lung, pancreatic, breast, ovarian, and liver cancers; carbohydrate antigen 19-9 (CA19-9), e.g., for lung, ovarian, uterine, liver, gastric, colorectal, and bile duct cancers; cancer antigen 125 (CA125), e.g., for lung, pancreas, breast, ovarian, cervical, uterine, liver, gastric, and colorectal cancers; free prostate specific antigen and prostate specific antigen-alpha(1) (PSA), for prostate cancer; free prostate specific antigen (PSAF), for prostate and colorectal cancers; prostate specific antigen-alpha(1)antichymotrypsin complex (PSAC), for prostate cancer; prostatic acid phosphatase (PAP), for prostate cancer; human thyroglobulin (hTG), for thyroid cancer or Wilm's tumor; human chorionic gonadaotropin beta (hCGb), e.g., for lung, pancreatic, kidney, ovarian, uterine, testicular, liver, colorectal, bladder, and brain cancers; ferritin (Ferr), e.g., for lung cancer, testicular cancer, cancer of the larynx, Burkitt's lymphoma, neuroblastoma, and leukemia; neuron specific enolase (NSE), for lung cancer, thyroid cancer, Wilm's tumor, and neuroblastoma; interleukin 2 (IL-2), for kidney cancer and multiple myeloma; interleukin 6 (IL-6), for kidney cancer, breast cancer, ovarian cancer, and multiple myeloma; beta 2 microglobulin (B2M), for kidney cancer, ovarian cancer, prostate cancer, leukemia, multiple myeloma, and lymphoma; and alpha 2 microglobulin (A2M), for prostate cancer. The selection of biological sample (such as blood or urine) in which the aforementioned cancer markers are diagnostic and/or prognostic can be readily determined by those skilled in the art.
- As indicated above, the present invention provides a method for monitoring, diagnosing, or for the prognosis of cancer, such as ovarian cancer, in a subject by detecting Bcl-2 in a biological sample from the subject. In an embodiment, the method comprises contacting the sample with an antibody specific for Bcl-2 which is directly or indirectly labeled with a detectable substance, and detecting the detectable substance.
- The methods of the invention may be used for the detection of either an over- or an under-abundance of Bcl-2 relative to a non-disorder state or the presence of a modified (e.g., less than full length) Bcl-2 which correlates with a disorder state (e.g., ovarian cancer), or a progression toward a disorder state. The methods described herein may be used to evaluate the probability of the presence of malignant or pre-malignant cells. Such methods can be used to detect tumors, quantitate their growth, and assistg in the diagnosis and prognosis of gynecological cancer. The methods can be used to detect the presence of cancer metastasis, as well as confirm the absence or removal of all tumor tissue following surgery, cancer chemotherapy, and/or radiation therapy. They can further be used to monitor cancer chemotherapy and tumor reappearance.
- The methods of the invention are particularly useful in the diagnosis of early stage ovarian cancer (e.g., when the subject is asymptomatic) and for the prognosis of ovarian cancer disease progression and mortality. As illustrated herein, increased levels of Bcl-2 detected in a sample (e.g., urine, serum, plasma, whole blood, ascites) compared to a standard (e.g., levels for normal or benign disorders) are indicative of advanced disease stage, serous histological type, suboptimal debulking, large residual tumor, and/or increased risk of disease progression and mortality.
- The terms “sample”, “biological sample”, and the like refer to a type of material known to or suspected of expressing or containing Bcl-2, such as urine. The test sample can be used directly as obtained from the source or following a pretreatment to modify the character of the sample. The sample can be derived from any biological source, such as tissues or extracts, including cells (e.g., tumor cells) and physiological fluids, such as, for example, whole blood, plasma, serum, peritoneal fluid, ascites, and the like. The sample can be obtained from animals, preferably mammals, most preferably humans. The sample can be pretreated by any method and/or can be prepared in any convenient medium that does not interfere with the assay. The sample can be treated prior to use, such as preparing plasma from blood, diluting viscous fluids, applying one or more protease inhibitors to samples such as urine (e.g., 4-(2 aminoethyl)-benzene sulfonyl fluoride, EDTA, leupeptin, and/or pepstatin), and the like. Sample treatment can involve filtration, distillation, extraction, concentration, inactivation of interfering components, the addition of reagents, and the like.
- The presence of bcl-2 may be detected in a variety of biological samples, including tissues or extracts thereof. Preferably, Bcl-2 is detected in human urine.
- In embodiments of the invention, the method described herein is adapted for diagnosing and monitoring gynecological cancer by quantitating Bcl-2 in biological samples from a subject. Preferably, the amount of Bcl-2 quantitated in a sample from a subject being tested is compared to levels quantitated for another sample or an earlier sample from the subject, or levels quantitated for a control sample. Levels for control samples from healthy subjects may be established by prospective and/or retrospective statistical studies. Healthy subjects who have no clinically evident disease or abnormalities may be selected for statistical studies. Diagnosis may be made by a finding of statistically different levels of Bcl-2 compared to a control sample or previous levels quantitated for the same subject.
- The term “Bcl-2” refers to human B-cell lymphoma protein 2 (also known as B-cell CLL/lymphoma 2), an integral outer mitochondrial protein that blocks the apoptotic death of some cells such as lymphocytes (Cleary M. L. et al., Cell, 1986, 47(1):19-28; Tsujimoto Y. and Croce C. M., Proc. Natl. Acad. Sci. USA, 1986, 83:5214-5218, which are incorporated herein by reference in their entirety). The term “Bcl-2” includes nucleic acid sequences (e.g., GenBank Accession No. M14745; SEQ ID NO:1) encoding the Bcl-2 gene product (polypeptide), as well as the Bcl-2 polypeptide (e.g., GenBank Accession No. AAA35591; SEQ ID NO:2). The term includes all homologs, naturally occurring allelic variants, isoforms and precursors of human Bcl-2 of GenBank Accession Nos. M14745 and AAA35591. In general, naturally occurring allelic variants of human Bcl-2 will share significant sequence homology (70-90%) to the sequences shown in GenBank Accession Nos. M14745 and AAA35591. Allelic variants may contain conservative amino acid substitutions from the Bcl-2 sequence or will contain a substitution of an amino acid from a corresponding position in a Bcl-2 homologue. Two transcript variants, alpha and beta, produced by alternative splicing, differ in their C-terminal ends. The alpha variant (GenBank Accession. No. NP—000624 (SEQ ID NO:4); and GenBank Accession No. NM—000633 (SEQ ID NO:3)) represents the longer transcript and encodes the longer isoform (alpha), and beta being the shorter (GenBank Accession No. NM—000648 (SEQ ID NO:6); GenBank Accession No. NP—000657 (SEQ ID NO:5). The beta variant differs in the 3′ UTR and coding region compared to the alpha variant, as well as the C-terminal end. In a particular embodiment, the methods, devices, and kits of the invention are specific for Bcl-2 (e.g., SEQ ID NOs: 1, 2, 3, 4, 5, and/or 6), but not nucleic acid molecules or polypeptides known in the art as “Bcl-2-like” molecules (e.g., employing binding agents specific for (e.g., immunoreactive with) Bcl-2, but not reactive with Bcl-2 like molecules), such as those described in Ruben et al., U.S. Patent Application Publication 2002/0106731 A1, published Aug. 8, 2002, which is incorporated herein by reference in its entirety.
- The terms “subject” and “patient” are used interchangeably herein to refer to a warm-blooded animal, such as a mammal, which may be afflicted with cancer. In some cancers, the subject is human or non-human mammalian female. In other cancers, the subject is a human or non-human mammalian male.
- Agents that are capable of detecting Bcl-2 in the biological samples of subjects are those that interact or bind with the Bcl-2 polypeptide or the nucleic acid molecule encoding Bcl-2. Examples of such agents (also referred to herein as binding agents) include, but are not limited to, Bcl-2 antibodies or fragments thereof that bind Bcl-2, Bcl-2 binding partners, and nucleic acid molecules that hybridize to the nucleic acid molecules encoding Bcl-2 polypeptides. Preferably, the binding agent is labeled with a detectable substance (e.g., a detectable moiety). The binding agent may itself function as a label.
- Antibodies specific for Bcl-2 that are used in the methods of the invention may be obtained from scientific or commercial sources. Alternatively, isolated native Bcl-2 or recombinant Bcl-2 may be utilized to prepare antibodies, monoclonal or polyclonal antibodies, and immunologically active fragments (e.g., a Fab or (Fab)2 fragment), an antibody heavy chain, an antibody light chain, humanized antibodies, a genetically engineered single chain Fv molecule (Ladne et al., U.S. Pat. No. 4,946,778), or a chimeric antibody, for example, an antibody which contains the binding specificity of a murine antibody, but in which the remaining portions are of human origin. Antibodies including monoclonal and polyclonal antibodies, fragments and chimeras, may be prepared using methods known to those skilled in the art. Preferably, antibodies used in the methods of the invention are reactive against Bcl-2 if they bind with a Ka of greater than or equal to 107 M. In a sandwich immunoassay of the invention, mouse polyclonal antibodies and rabbit polyclonal antibodies are utilized.
- In order to produce monoclonal antibodies, a host mammal is inoculated with a Bcl-2 protein or peptide and then boosted. Spleens are collected from inoculated mammals a few days after the final boost. Cell suspensions from the spleens are fused with a tumor cell in accordance with the general method described by Kohler and Milstein (Nature, 1975, 256:495-497). In order to be useful, a peptide fragment must contain sufficient amino acid residues to define the epitope of the Bcl-2 molecule being detected.
- If the fragment is too short to be immunogenic, it may be conjugated to a carrier molecule. Some suitable carrier molecules include keyhole limpet hemocyanin and bovine serum albumin. Conjugation may be carried out by methods known in the art. One such method is to combine a cysteine residue of the fragment with a cysteine residue on the carrier molecule. The peptide fragments may be synthesized by methods known in the art. Some suitable methods are described by Stuart and Young in “Solid Phase Peptide Synthesis,” Second Edition, Pierce Chemical Company (1984).
- Purification of the antibodies or fragments can be accomplished by a variety of methods known to those of skill including, precipitation by ammonium sulfate or sodium sulfate followed by dialysis against saline, ion exchange chromatography, affinity or immunoaffinity chromatography as well as gel filtration, zone electrophoresis, etc. (Coding in, Monoclonal Antibodies: Principles and Practice, 2d ed., pp. 104-126, Orlando, Fla., Academic Press). It is preferable to use purified antibodies or purified fragments of the antibodies having at least a portion of a Bcl-2 binding region, including such as Fv, F(ab′)2, Fab fragments (Harlow and Lane, 1988, Antibody Cold Spring Harbor) for the detection of Bcl-2 in the fluids of gynecological cancer patients or those at risk, preferably in the urine or blood of ovarian cancer patients.
- For use in detection and/or monitoring of cancer, the purified antibodies can be covalently attached, either directly or via linker, to a compound which serves as a reporter group to permit detection of the presence of Bcl-2. A variety of different types of substances can serve as the reporter group, including but not limited to enzymes, dyes, radioactive metal and non-metal isotopes, fluorogenic compounds, fluorescent compounds, etc. Methods for preparation of antibody conjugates of the antibodies (or fragments thereof) of the invention useful for detection, monitoring are described in U.S. Pat. Nos. 4,671,958; 4,741,900 and 4,867,973.
- In one aspect of the invention, preferred binding epitopes may be identified from a known Bcl-2 gene sequence and its encoded amino acid sequence and used to generate Bcl-2 antibodies with high binding affinity. Also, identification of binding epitopes on Bcl-2 can be used in the design and construction of preferred antibodies. For example, a DNA encoding a preferred epitope on Bcl-2 may be recombinantly expressed and used to select an antibody which binds selectively to that epitope. The selected antibodies then are exposed to the sample under conditions sufficient to allow specific binding of the antibody to the specific binding epitope on Bcl-2 and the amount of complex formed then detected. Specific antibody methodologies are well understood and described in the literature. A more detailed description of their preparation can be found, for example, in Practical Immunology, Butt, W. R., ed., Marcel Dekker, New York, 1984.
- The present invention also contemplates the detection of Bcl-2 antibodies. Bcl-2 is a gynecological cancer-specific marker. Thus, detection of Bcl-2 antibodies in biological fluids of a subject may enable the diagnosis of gynecological cancer.
- Antibodies specifically reactive with Bcl-2, or derivatives, such as enzyme conjugates or labeled derivatives, may be used to detect Bcl-2 in various biological samples, for example they may be used in any known immunoassays which rely on the binding interaction between an antigenic determinant of a protein and the antibodies. Examples of such assays are radioimmunoassays, enzyme immunoassay (e.g., ELISA), immunofluorescence, immnunoprecipitation, latex agglutination, hemagglutination, and histochemical tests.
- An antibody specific for Bcl-2 can be labeled with a detectable substance and localized in biological samples based upon the presence of the detectable substance. Examples of detectable substances include, but are not limited to, the following radioisotopes (e.g., 3H, 14C, 35S, 125I, 131I), fluorescent labels (e.g., FITC, rhodamine, lanthanide phosphors), luminescent labels such as luminol; enzymatic labels (e.g., horseradish peroxidase, beta-galactosidase, luciferase, alkalline phosphatase, acetylcholinestease), biotinyl groups (which can be detected by marked avidin, e.g., streptavidin containing a fluorescent marker or enzymatic activity that can be detected by optical or calorimetric methods), predetermined polypeptide epitopes recognized by a secondary reporter (e.g., leucine zipper pair sequences, binding sites for secondary antibodies, metal binding domains, epitope tags). Indirect methods may also be employed in which the primary antigen-antibody reaction is amplified by the introduction of a second antibody, having specificity for the antibody reactive against Bcl-2. By way of example, if the antibody having specificity against Bcl-2 is a rabbit IgG antibody, the second antibody may be goat anti-rabbit gamma-globulin labeled with a detectable substance as described herein.
- Methods for conjugating or labeling the antibodies discussed above may be readily accomplished by one of ordinary skill in the art. (See, for example, human, Methods In Enzymology, Vol. 34, Affinity Techniques, Enzyme Purification: Part B, Jakoby and Wichek (eds.), Academic Press, New York, p. 30, 1974; and Wilchek and Bayer, “The Avidin-Biotin Complex in Bioanalytical Applications,” Anal. Biochem. 171:1-32, 1988, regarding methods for conjugating or labeling the antibodies with an enzyme or ligand binding partner).
- Time-resolved fluorometry may be used to detect a signal. For example, the method described in Christopoulos T. K. and Diamandis E. P., Anal. Chem., 1992:64:342-346 may be used with a conventional time-resolved fluorometer.
- Therefore, in accordance with an embodiment of the invention, a method is provided wherein a Bcl-2 antibody is labeled with an enzyme, a substrate for the enzyme is added wherein the substrate is selected so that the substrate, or a reaction product of the enzyme and substrate, forms fluorescent complexes with a lanthanide metal. A lanthanide metal is added and Bcl-2 is quantitated in the sample by measuring fluorescence of the fluorescent complexes. The antibodies specific for Bcl-2 may be directly or indirectly labeled with an enzyme. Enzymes are selected based on the ability of a substrate of the enzyme, or a reaction product of the enzyme and substrate, to complex with lanthanide metals such as europium and terbium. Examples of suitable enzymes include alkalline phosphatase and beta-galactosidase. Preferably, the enzyme is akline phosphatase. The Bcl-2 antibodies may also be indirectly labeled with an enzyme. For example, the antibodies may be conjugated to one partner of a ligand binding pair, and the enzyme may be coupled to the other partner of the ligand binding pair. Representative examples include avidin-biotin, and riboflavin-riboflavin binding protein. Preferably the antibodies are biotinylated, and the enzyme is coupled to streptavidin.
- In an embodiment of the method, antibody bound to Bcl-2 in a sample is detected by adding a substrate for the enzyme. The substrate is selected so that in the presence of a lanthanide metal (e.g., europium, terbium, samarium, and dysprosium, preferably europium and terbium), the substrate or a reaction product of the enzyme and substrate, forms a fluorescent complex with the lanthanide metal. Examples of enzymes and substrates for enzymes that provide such fluorescent complexes are described in U.S. Pat. No. 5,3112,922 to Diamandis. By way of example, when the antibody is directly or indirectly labeled with alkalline phosphatase, the substrate employed in the method may be 4-methylumbeliferyl phosphate, or 5-fluorpsalicyl phosphate. The fluorescence intensity of the complexes is typically measured using a time-resolved fluorometer, e.g., a CyberFluor 615 Immoanalyzer (Nordion International, Kanata Ontario).
- The sample, antibody specific for Bcl-2, or Bcl-2, may be immobilized on a carrier. Examples of suitable carriers are agarose, cellulose, dextran, Sephadex, Sepharose, liposomes, carboxymethyl cellulose polystyrene, filter paper, ion-exchange resin, plastic film, plastic tube, glass beads, polyamine-methyl vinyl ether-maleic acid copolymer, amino acid copolymer, ethylene-maleic acid copolymer, nylon, silk, etc. The carrier may be in the shape of, for example, a tube, test plate, well, beads, disc, sphere, etc. The immobilized antibody may be prepared by reacting the material with a suitable insoluble carrier using known chemical or physical methods, for example, cyanogen bromide coupling.
- In accordance with an embodiment, the present invention provides a mode for determining Bcl-2 in an appropriate sample such as urine by measuring Bcl-2 by immunoassay. It will be evident to a skilled artisan that a variety of immunoassay methods can be used to measure Bcl-2. In general, a Bcl-2 immunoassay method may be competitive or noncompetitive. Competitive methods typically employ an immobilized or immobilizable antibody to Bcl-2 (anti-Bcl-2) and a labeled form of Bcl-2. Sample Bcl-2 and labeled Bcl-2 compete for binding to anti-Bcl-2. After separation of the resulting labeled Bcl-2 that has become bound to anti-Bcl-2 (bound fraction) from that which has remained unbound (unbound fraction), the amount of the label in either bound or unbound fraction is measured and may be correlated with the amount of Bcl-2 in the biological sample in any conventional manner, e.g., by comparison to a standard curve.
- Preferably, a noncompetitive method is used for the determination of Bcl-2, with the most common method being the “sandwich” method. In this assay, two anti-Bcl-2 antibodies are employed. One of the anti-Bcl-2 antibodies is directly or indirectly labeled (also referred to as the “detection antibody”) and the other is immobilized or immobilizable (also referred to as the “capture antibody”). The capture and detection antibodies can be contacted simultaneously or sequentially with the biological sample. Sequential methods can be accomplished by incubating the capture antibody with the sample, and adding the detection antibody at a predetermined time thereafter (sometimes referred to as the “forward” method); or the detection antibody can be incubated with the sample first and then the capture antibody added (sometimes referred to as the “reverse” method). After the necessary incubation(s) have occurred, to complete the assay, the capture antibody is separated from the liquid test mixture, and the label is measured in at least a portion of the separated capture antibody phase or the remainder of the liquid test mixture. Generally, it is measured in the capture antibody phase since it comprises Bcl-2 bound by (“sandwiched” between) the capture and detection antibodies.
- In a typical two-site immunometric assay for Bcl-2, one or both of the capture and detection antibodies are polyclonal antibodies. The label used in the detection antibody can be selected from any of those known conventionally in the art. As with other embodiments of the protein detection assay, the label can be an enzyme or a chemiluminescent moiety, for example, or a radioactive isotope, a fluorophore, a detectable ligand (e.g., detectable by a secondary binding by a labeled binding partner for the ligand), and the like. Preferably, the antibody is labeled with an enzyme that is detected by adding a substrate that is selected so that a reaction product of the enzyme and substrate forms fluorescent complexes. The capture antibody is selected so that it provides a mode for being separated from the remainder of the test mixture. Accordingly, the capture antibody can be introduced to the assay in an already immobilized or insoluble form, or can be in an immobilizable form, that is, a form which enables immobilization to be accomplished subsequent to introduction of the capture antibody to the assay. An immobilized capture antibody can comprise an antibody covalently or noncovalently attached to a solid phase such as a magnetic particle, a latex particle, a microtiter multi-well plate, a bead, a cuvette, or other reaction vessel. An example of an immobilizable capture antibody is an antibody that has been chemically modified with a ligand moiety, e.g., a hapten, biotin, or the like, and that can be subsequently immobilized by contact with an immobilized form of a binding partner for the ligand, e.g., an antibody, avidin, or the like. In an embodiment, the capture antibody can be immobilized using a species specific antibody for the capture antibody that is bound to the solid phase.
- A particular sandwich immunoassay method of the invention employs two antibodies reactive against Bcl-2, a second antibody having specificity against an antibody reactive against Bcl-2 labeled with an enzymatic label, and a fluorogenic substrate for the enzyme. In an embodiment, the enzyme is alkalline phosphatase (ALP) and the substrate is 5-fluorosalicyl phosphate. ALP cleaves phosphate out of the fluorogenic substrate, 5-fluorosalicyl phosphate, to produce 5-fluorosalicylic acid (FSA). 5-Fluorosalicylic acid can then form a highly fluorescent ternary complex of the form FSA-Tb(3+)-EDTA, which can be quantified by measuring the Tb3+ fluorescence in a time-resolved mode. Fluorescence intensity is typically measured using a time-resolved fluorometry as described herein.
- The above-described immunoassay methods and formats are intended to be exemplary and are not limiting since, in general, it will be understood that any immunoassay method or format can be used in the present invention.
- The protein detection methods, devices, and kits of the invention can utilize nanowire sensor technology (Zhen et al., Nature Biotechnology, 2005, 23(10):1294-1301; Lieber et al., Anal. Chem., 2006, 78(13):4260-4269, which are incorporated herein by reference) or microcantilever technology (Lee et al., Biosens. Bioelectron, 2005, 20(10):2157-2162; Wee et al., Biosens. Bioelectron., 2005, 20(10):1932-1938; Campbell and Mutharasan, Biosens. Bioelectron., 2005, 21(3):462-473; Campbell and Mutharasan, Biosens. Bioelectron., 2005, 21(4):597-607; Hwang et al., Lab Chip, 2004, 4(6):547-552; Mukhopadhyay et al., Nano. Lett., 2005, 5(12):2835-2388, which are incorporated herein by reference) for detection of Bcl-2 in samples. In addition, Huang et al. describe a prostate specific antigen immunoassay on a commercially available surface plasmon resonance biosensor (Biosens. Bioelectron., 2005, 21(3):483-490, which is incorporated herein by reference) which may be adapted for detection of Bcl-2. High-sensitivity miniaturized immunoassays may also be utilized for detection of Bcl-2 (Cesaro-Tadic et al., Lab Chip, 2004, 4(6):563-569; Zimmerman et al., Biomed, Microdevices, 2005, 7(2):99-110, which are incorporated herein by reference).
- Nucleic acids including naturally occurring nucleic acids, oligonucleotides, antisense oligonucleotides, and synthetic oligonucleotides that hybridize to the nucleic acid encoding Bcl-2, are useful as agents to detect the presence of Bcl-2 in the biological samples of gynecological cancer patients or those at risk of gynecological cancer, preferably in the urine of ovarian cancer patients or those at risk of ovarian cancer. The present invention contemplates the use of nucleic acid sequences corresponding to the coding sequence of Bcl-2 and to the complementary sequence thereof, as well as sequences complementary to the Bcl-2 transcript sequences occurring further upstream or downstream from the coding sequence (e.g., sequences contained in, or extending into, the 5′ and 3′ untranslated regions) for use as agents for detecting the expression of Bcl-2 in biological samples of gynecological cancer patients, or those at risk of gynecological cancer, preferably in the urine of ovarian cancer patients or those at risk of ovarian cancer.
- The preferred oligonucleotides for detecting the presence of Bcl-2 in biological samples are those that are complementary to at least part of the cDNA sequence encoding Bcl-2. These complementary sequences are also known in the art as “antisense” sequences. These oligonucleotides may be oligoribonueleotides or oligodeoxyribonucleotides. In addition, oligonucleotides may be natural oligomers composed of the biologically significant nucleotides, i.e., A (adenine), dA (deoxyadenine), G (guanine), dG (deoxyguanine), C (cytosine), dC (deoxycytosine), T (thymine) and U (uracil), or modified oligonucleotide species, substituting, for example, a methyl group or a sulfur atom for a phosphate oxygen in the inter-nucleotide phosohodiester linkage. Additionally, these nucleotides themselves, and/or the ribose moieties may be modified.
- The oligonucleotides may be synthesized chemically, using any of the known chemical oligonucleotide synthesis methods well described in the art. For example, the oligonucleotides can be prepared by using any of the commercially available, automated nucleic acid synthesizers. Alternatively, the oligonucleotides may be created by standard recombinant DNA techniques, for example, inducing transcription of the noncoding strand. The DNA sequence encoding Bcl-2 may be inverted in a recombinant DNA system, e.g., inserted in reverse orientation downstream of a suitable promoter, such that the noncoding strand now is transcribed.
- Although any length oligonucleotide may be utilized to hybridize to a nucleic acid encoding Bcl-2, oligonucleotides typically within the range of 8-100 nucleotides are preferred. Most preferable oligonucleotides for use in detecting Bcl-2 in urine samples are those within the range of 15-50 nucleotides.
- The oligonucleotide selected for hybridizing to the Bcl-2 nucleic acid molecule, whether synthesized chemically or by recombinant DNA technology, is then isolated and purified using standard techniques and then preferably labeled (e.g., with 35S or 32P) using standard labeling protocols.
- The present invention also contemplates the use of oligonucleotide pairs in polymerize chain reactions (PCR) to detect the expression of Bcl-2 in biological samples. The oligonucleotide pairs include a forward Bcl-2 primer and a reverse Bcl-2 primer.
- The presence of Bcl-2 in a sample from a patient may be determined by nucleic acid hybridization, such as but not limited to Northern blot analysis, dot blotting, Southern blot analysis, fluorescence in situ hybridization (FISH), and PCR. Chromatography, preferably HPLC, and other known assays may also be used to determine messenger RNA levels of Bcl-2 in a sample.
- The Bcl-2 encoding nucleic acid molecules conceivably may be found in the biological fluids inside a Bcl-positive cancer cell that is being shed or released in the fluid under investigation.
- In one aspect, the present invention contemplates the use of nucleic acids as agents for detecting Bcl-2 in biological samples of patients, wherein the nucleic acids are labeled. The nucleic agents may be labeled with a radioactive label, a fluorescent label, an enzyme, a chemiluminescent tag, a colorimetric tag or other labels or tags that are discussed above or that are known in the art.
- In another aspect, the present invention contemplates the use of Northern blot analysis to detect the presence of Bcl-2 mRNA in a sample of bodily fluid. The first step of the analysis involves separating a sample containing Bcl-2 nucleic acid by gel electrophoresis. The dispersed nucleic acids are then transferred to a nitrocellulose filter or another filter. Subsequently, the labeled oligonucleotide is exposed to the filter under suitable hybridizing conditions, e.g., 50% formamide, 5×SSPE, 2×Denhardt's solution, 0.1% SDS at 42° C., as described in Molecular Cloning: A Laboratory Manual, Maniatis et al. (1982, CSH Laboratory). Other useful procedures known in the art include solution hybridization, dot and slot RNA hybridization, and probe based microarrays. Measuring the radioactivity of hybridized fragments, using standard procedures known in the art quantitates the amount of Bcl-2 nucleic acid present in the biological fluid of a patient.
- Dot blotting involves applying samples containing the nucleic acid of interest to a membrane. The nucleic acid can be denatured before or after application to the membrane. The membrane is incubated with a labeled probe. Dot blot procedures are well known to the skilled artisan and are described more fully in U.S. Pat. Nos. 4,582,789 and 4,617,261, the disclosures of which are incorporated herein by reference.
- Polymerase chain reaction (PCR) is a process for amplifying one or more specific nucleic acid sequences present in a nucleic acid sample using primers and agents for polymerization and then detecting the amplified sequence. The extension product of one primer when hybridized to the other becomes a template for the production of the desired specific nucleic acid sequence, and vice versa, and the process is repeated as often as is necessary to produce the desired amount of the sequence. The skilled artisan to detect the presence of desired sequence (U.S. Pat. No. 4,683,195) routinely uses polymerase chain reaction.
- A specific example of PCR that is routinely performed by the skilled artisan to detect desired sequences is reverse transcript PCR (RT-PCR; Saiki of al., Science, 1985, 230:1350; Scharf et al., Science, 1986, 233:1076). RT-PCR involves isolating total RNA from biological fluid, denaturing the RNA in the presence of primers that recognize the desired nucleic acid sequence, using the primers to generate a cDNA copy of the RNA by reverse transcription, amplifying the cDNA by PCR using specific primers, and detecting the amplified cDNA by electrophoresis or other methods known to the skilled artisan.
- In a preferred embodiment, the methods of detecting Bcl-2 nucleic acid in biological fluids of gynecological cancer patients or those at risk thereof, preferably urine of ovarian cancer patients or those at risk thereof, include Northern blot analysis, dot blotting, Southern blot analysis, FISH, and PCR.
- The methods of the invention can be carried out on a solid support. The solid supports used may be those which are conventional for the purpose of assaying an analyte in a biological sample, and are typically constructed of materials such as cellulose, polysaccharide such as Sephadex, and the like, and may be partially surrounded by a housing for protection and/or handling of the solid support. The solid support can be rigid, semi-rigid, flexible, elastic (having shape-memory), etc., depending upon the desired application. Bcl-2 can be detected in a sample in vivo or in vitro (ex vivo). When, according to an embodiment of the invention, the amount of Bcl-2 in a sample is to be determined without removing the sample from the body (i.e., in vivo), the support should be one which is harmless to the subject and may be in any form convenient for insertion into an appropriate part of the body. For example, the support may be a probe made of polytetrafluoroethylene, polystyrene or other rigid non-harmful plastic material and having a size and shape to enable it to be introduced into a subject. The selection of an appropriate inert support is within the competence of those skilled in the art, as are its dimensions for the intended purpose.
- A contacting step in the assay (method) of the invention can involve contacting, combining, or mixing the biological sample and the solid support, such as a reaction vessel, microvessel, tube, microtube, well, multi-well plate, or other solid support. In an embodiment of the invention, the solid support to be contacted with the biological sample (e.g., urine) has an absorbent pad or membrane for lateral flow of the liquid medium to be assayed, such as those available from Millipore Corp. (Bedford, Mass.), including but not limited to Hi-Flow Plus™ membranes and membrane cards, and SureWick™ pad materials.
- The diagnostic device useful in carrying out the methods of the invention can be constructed in any form adapted for the intended use. Thus, in one embodiment, the device of the invention can be constructed as a disposable or reusable test strip or stick to be contacted with a biological sample such as urine or blood for which Bcl-2 level is to be determined. In another embodiment, the device can be constructed using art recognized micro-scale manufacturing techniques to produce needle-like embodiments capable of being implanted or injected into an anatomical site, such as the peritoneal cavity, for indwelling diagnostic applications. In other embodiments, devices intended for repeated laboratory use can be constructed in the form of an elongated probe.
- In preferred embodiments, the devices of the invention comprise a solid support (such as a strip or dipstick), with a surface that functions as a lateral flow matrix defining a flow path for a biological sample such as urine, whole blood, serum, plasma, peritoneal fluid, or ascites.
- Immunochromatographic assays, also known as lateral flow test strips or simply strip tests, for detecting various analytes of interest, have been known for some time, and may be used for detection of Bcl-2. The benefits of lateral flow tests include a user-friendly format, rapid results, long-term stability over a wide range of climates, and relatively low cost to manufacture. These features make lateral flow tests ideal for applications involving home testing, rapid point of care testing, and testing in the field for various analytes. The principle behind the test is straightforward. Essentially, any ligand that can be bound to a visually detectable solid support, such as dyed microspheres, can be tested for, qualitatively, and in many cases even semi-quantitatively. For example, a one-step lateral flow immunostrip for the detection of free and total prostate specific antigen in serum is described in Fernandez-Sanchez et al. (J. Immuno. Methods, 2005, 307(1-2):1-12, which is incorporated herein by reference) and may be adapted for detection of Bcl-2 in a biological sample such as blood or urine.
- Some of the more common immunochromatographic assays currently on the market are tests for pregnancy (as an over-the-counter (OTC) test kit), Strep throat, and Chlamydia. Many new tests for well-known antigens have been recently developed using the immunochromatographic assay method. For instance, the antigen for the most common cause of community acquired pneumonia has been known since 1917, but a simple assay was developed only recently, and this was done using this simple test strip method (Murdoch, D. R. et al. J Clin Microbiol, 2001, 39:3495-3498). Human immunodeficiency virus (HIV) has been detected rapidly in pooled blood using a similar assay (Soroka, S. D. et al. J Clin Virol, 2003, 27:90-96). A nitrocellulose membrane card has also been used to diagnose schistosomiasis by detecting the movement and binding of nanoparticles of carbon (van Dam, G. J. et al. J Clin Microbiol, 2004, 42:5458-5461).
- The two common approaches to the immunochromatographic assay are the non-competitive (or direct) and competitive (or competitive inhibition) reaction schemes (TechNote #303, Rev. #001, 1999, Bangs Laboratories, Inc., Fishers, Ind.). The direct (double antibody sandwich) format is typically used when testing for larger analytes with multiple antigenic sites such as luteinizing hormone (LH), human chorionic gonadotropin (hCG), and HIV. In this instance, less than an excess of sample analyte is desired, so that some of the microspheres will not be captured at the capture line, and will continue to flow toward the second line of immobilized antibodies, the control zone. This control line uses species-specific anti-immunoglobulin antibodies, specific for the conjugate antibodies on the microspheres. Free antigen, if present, is introduced onto the device by adding sample (urine, serum, etc.) onto a sample addition pad. Free antigen then binds to antibody-microsphere complexes.
Antibody 1, specific forepitope 1 of sample antigen, is coupled to dye microspheres and dried onto the device. When sample is added, microsphere-antibody complex is rehydrated and carried to a capture zone and control lines by liquid.Antibody 2, specific for a second antigenic site (epitope 2) of sample antigen, is dried onto a membrane at the capture line.Antibody 3, a species-specific, anti-immunoglobulin antibody that will react withantibody 1, is dried onto the membrane at the control line. If antigen is present in the sample (i.e., a positive test), it will bind by its two antigenic sites, to both antibody 1 (conjugated to microspheres) and antibody 2 (dried onto membrane at the capture line). Antibody 1-coated microspheres are bound byantibody 3 at the control line, whether antigen is present or not. If antigen is not present in the sample (a negative test), microspheres pass the capture line without being trapped, but are caught by the control line. - The competitive reaction scheme is typically used when testing for small molecules with single antigenic determinants, which cannot bond to two antibodies simultaneously. As with double antibody sandwich assay, free antigen, if present is introduced onto the device by adding sample onto a sample pad. Free antigen present in the sample binds to an antibody-microsphere complex.
Antibody 1 is specific for sample antigen and couple to dyed microspheres. An antigen-carrier molecule (typically BSA) conjugate is dried onto a membrane at the capture line. Antibody 2 (Ab2) is dried onto the membrane at the control line, and is a species-specific anti-immunoglobulin that will capture the reagent particles and confirm that the test is complete. If antigen is present in the sample (a positive test), antibody on microspheres (Ab1) is already saturated with antigen from sample and, therefore, antigen conjugate bound at the capture line does not bind to it. Any microspheres not caught by the antigen carrier molecule can be caught by Ab2 on the control line. If antigen is not present in the sample (a negative test), antibody-coated dyed microspheres are allowed to be captured by antigen conjugate bound at the capture line. - Normally, the membranes used to hold the antibodies in place on these devices are made of primary hydrophobic materials, such as nitrocellulose. Both the microspheres used as the solid phase supports and the conjugate antibodies are hydrophobic, and their interaction with the membrane allows them to be effectively dried onto the membrane.
- Samples and/or Bcl-2-specific binding agents may be arrayed on the solid support, or multiple supports can be utilized, for multiplex detection or analysis. “Arraying” refers to the act of organizing or arranging members of a library (e.g., an array of different samples or an array of devices that target the same target molecules or different target molecules), or other collection, into a logical or physical array. Thus, an “array” refers to a physical or logical arrangement of, e.g., biological samples. A physical array can be any “spatial format” or physically gridded format” in which physical manifestations of corresponding library members are arranged in an ordered manner, lending itself to combinatorial screening. For example, samples corresponding to individual or pooled members of a sample library can be arranged in a series of numbered rows and columns, e.g., on a multi-well plate. Similarly, binding agents can be plated or otherwise deposited in microtitered, e.g., 96-well, 384-well, or -1536 well, plates (or trays). Optionally, Bcl-2-specific binding agents may be immobilized on the solid support.
- Detection of Bcl-2 and cancer biomarkers, and other assays that are to be carried out on samples, can be carried out simultaneously or sequentially with the detection of other target molecules, and may be carried out in an automated fashion, in a high-throughput format.
- The Bcl-2-specific binding agents can be deposited but “free” (non-immobilized) in the conjugate zone, and be immobilized in the capture zone of a solid support. The Bcl-2-specific binding agents may be immobilized by non-specific adsorption onto the support or by covalent bonding to the support, for example. Techniques for immobilizing binding agents on supports are known in the art and are described for example in U.S. Pat. Nos. 4,399,217, 4,381,291, 4,357,311, 4,343,312 and 4,260,678, which are incorporated herein by reference. Such techniques can be used to immobilize the binding agents in the invention. When the solid support is polytetrafluoroethylene, it is possible to couple hormone antibodies onto the support by activating the support using sodium and ammonia to aminate it and covalently bonding the antibody to the activated support by means of a carbodiimide reaction (yon Klitzing, Schultek, Strasburger, Fricke and Wood in “Radioimmunoassay and Related Procedures in Medicine 1982”, International Atomic Energy Agency, Vienna (1982), pages 57-62.).
- The diagnostic device of the invention can utilize lateral flow strip (LFS) technology, which has been applied to a number of other rapid strip assay systems, such as over-the-counter early pregnancy test strips based on antibodies to human chorionic gonadotropin (hCG). As with many other diagnostic devices, the device utilizes a binding agent to bind the target molecule (Bcl-2). The device has an application zone for receiving a biological sample such as blood or urine, a labeling zone containing label which binds to Bcl-2 in the sample, and a detection zone where Bcl-2 label is retained.
- Binding agent retained in the detection zone gives a signal, and the signal differs depending on whether Bcl-2 levels in the biological sample are lower than, equal to, or greater than a given threshold concentration. For example, in the case of urinary Bcl-2 for the detection of ovarian cancer, the threshold concentration may be between 0 ng/ml and 2.0 ng/ml. In another embodiment, in the case of urinary Bcl-2 for the detection of ovarian cancer, the threshold concentration is 1.8 ng/ml. A sample from a subject having a Bcl-2 level equal to or greater than the given reference Bcl-2 concentration can be referred to as a “threshold level”, “threshold amount”, or “threshold sample”. The application zone in the device is suitable for receiving the biological sample to be assayed. It is typically formed from absorbent material such as blotting paper. The labeling zone contains binding agent that binds to any Bcl-2 in the sample. In one embodiment, the binding agent is an antibody (e.g., monoclonal antibody, polyclonal antibody, antibody fragment). For ease of detection, the binding agent is preferably in association with a label that provides a signal that is visible to the naked eye, e.g., it is tagged with a fluorescent tag or a colored tag such as conjugated colloidal gold, which is visible as a pink color.
- The detection zone retains Bcl-2 to which the binding agent has bound. This will typically be achieved using an immobilized binding agent such as an immobilized antibody. Where the binding agent in the labeling zone and the detection zone are both antibodies, they will typically recognize different epitopes on the target molecule (Bcl-2 protein). This allows the formation of a “sandwich” comprising antibody-Bcl-2-antibody.
- The detection zone is downstream of the application zone, with the labelling zone typically located between the two. A sample will thus migrate from the application zone into the labeling zone, where any in the sample binds to the label. Bcl-2-binding agent complexes continue to migrate into the detection zone together with excess binding agent. When the Bcl-2-binding agent complex encounters the capture reagent, the complex is retained whilst the sample and excess binding agent continue to migrate. As Bcl-2 levels in the sample increase, the amount of binding agent (in the form of Bcl-2-binding agent complex) retained in the detection zone increases proportionally.
- In preferred embodiments, the device of the invention has the ability to distinguish between samples according to the threshold concentration. This can be achieved in various ways.
- One type of device includes a reference zone that includes a signal of fixed intensity against which the amount of binding agent retained in the detection zone can be compared—when the signal in the detection zone equals the signal in the reference zone, the sample is a threshold sample; when the signal in the detection zone is less intense than the reference zone, the sample contains less Bcl-2 than a threshold sample; when the signal in the detection zone is more intense than the reference zone, the sample contains more Bcl-2 than a threshold sample.
- A suitable reference zone can be prepared and calibrated without difficulty. For this type of device, the binding agent will generally be present in excess to Bcl-2 in the sample, and the reference zone may be upstream or, preferably, downstream of the detection zone. The signal in the reference zone will be of the same type as the signal in the detection zone, i.e., they will typically both be visible to the naked eye, e.g., they will use the same tag. A preferred reference zone in a device of this type comprises immobilized protein (e.g., bovine serum albumin) which is tagged with colloidal gold.
- In another device of the invention, the reference zone is downstream of the detection zone and includes a reagent which captures binding agent (e.g., an immobilised anti-binding agent antibody). Binding agent that flows through the device is not present in excess, but is at a concentration such that 50% of it is bound by a sample having Bcl-2 at the threshold concentration. In a threshold sample, therefore, 50% of the binding agent will be retained in the detection zone and 50% in the reference zone. If the Bcl-2 level in the sample is greater than in a threshold sample, less than 50% of the binding agent will reach the reference zone and the detection zone will give a more intense signal than the reference zone; conversely, if the Bcl-2 level in the sample is less than in a threshold sample, less than 50% of the binding agent will be retained in the detection zone and the reference zone will give a more intense signal than the detection zone.
- In another device of the invention which operates according to similar principles, the reference zone is downstream of the detection zone and includes a limiting amount of a reagent which captures binding agent (e.g., an immobilised anti-binding agent antibody). The reagent is present at a level such that it retains the same amount of label which would bind to the detection zone for a threshold sample, with excess label continuing to migrate beyond the reference zone.
- In these three types of device, therefore, a comparison between the detection zone and the reference zone is used to compare the sample with the threshold concentration. The detection:reference binding ratio can preferably be determined by eye. Close juxtaposition of the detection and reference zones is preferred in order to facilitate visual comparison of the signal intensities in the two zones.
- In a fourth type of device, no reference zone is needed, but the detection zone is configured such that it gives an essentially on/off response, e.g., no signal is given below the threshold concentration but, at or above the threshold, signal is given.
- In a fifth type of device, no reference zone is needed, but an external reference is used which corresponds to the threshold concentration. This can take various forms, e.g., a printed card against which the signal in the detection zone can be compared, or a machine reader which compares an absolute value measured in the detection zone (e.g., a calorimetric signal) against a reference value stored in the machine.
- In some embodiments of the invention, the device includes a control zone downstream of the detection zone. This will generally be used to capture excess binding agent that passes through the detection and/or reference zones (e.g., using immobilized anti-binding agent antibody). When binding agent is retained at the control zone, this confirms that mobilization of the binding agent and migration through the device have both occurred. It will be appreciated that this function may be achieved by the reference zone.
- In a preferred embodiment, the detection, reference and control zones are preferably formed on a nitrocellulose support.
- Migration from the application zone to the detection zone will generally be assisted by a wick downstream of the detection zone to aid capillary movement. This wick is typically thrilled from absorbent material such as blotting or chromatography paper.
- The device of the invention can be produced simply and cheaply, conveniently in the form of a dipstick. Furthermore, it can be used very easily, for instance by the home user. The invention thus provides a device which can be used at home as a screen for cancer, such as ovarian cancer.
- In one aspect, the present invention includes kits comprising the required elements for diagnosing or monitoring cancer. Preferably, the kits comprise a container for collecting biological fluid from a patient and an agent for detecting the presence of Bcl-2 or its encoding nucleic acid in the fluid. The components of the kits can be packaged either in aqueous medium or in lyophilized form.
- The methods of the invention can be carried out using a diagnostic kit for qualitatively or quantitatively detecting Bcl-2 in a sample such as blood or urine. By way of example, the kit can contain binding agents (e.g., antibodies) specific for Bcl-2, antibodies against the antibodies labeled with an enzyme; and a substrate for the enzyme. The kit can also contain a solid support such as microtiter multi-well plates, standards, assay diluent, wash buffer, adhesive plate covers, and/or instructions for carrying out a method of the invention using the kit. In one embodiment, the kit includes one or protease inhibitors (e.g., a protease inhibitor cocktail) to be applied to the biological sample to be assayed (such as blood or urine).
- Kits for diagnosing or monitoring gynecological cancer containing one or more agents that detect the Bcl-2 protein, such as but not limited to Bcl-2 antibodies, fragments thereof, or Bcl-2 binding partners, can be prepared. The agent(s) can be packaged with a container for collecting the biological fluid from a patient. When the antibodies or binding partner are used in the kits in the form of conjugates in which a label is attached, such as a radioactive metal ion or a moiety, the components of such conjugates can be supplied either in fully conjugated form, in the form of intermediates or as separate moieties to be conjugated by the user of the kit.
- Kits containing one or more agents that detect Bcl-2 nucleic acid, such as but not limited to the full length Bcl-2 nucleic acid, Bcl-2 oligonucleotides, and pairs of Bcl-2 primers can also be prepared. The agent(s) can be packaged with a container for collecting biological samples from a patient. The nucleic acid can be in the labeled form or to be labeled form.
- Other components of the kit may include but are not limited to, means for collecting biological samples, means for labeling the detecting agent (binding agent), membranes for immobilizing the Bcl-2 protein or Bcl-2 nucleic acid in the biological sample, means for applying the biological sample to a membrane, means for binding the agent to Bcl-2 in the biological sample of a subject, a second antibody, a means for isolating total RNA from a biological fluid of a subject, means for performing gel electrophoresis, means for generating cDNA from isolated total RNA, means for performing hybridization assays, and means for performing PCR, etc.
- As used herein, the term “ELISA” includes an enzyme-linked immunoabsorbent assay that employs an antibody or antigen bound to a solid phase and an enzyme-antigen or enzyme-antibody conjugate to detect and quantify the amount of an antigen (e.g., Bcl-2) or antibody present in a sample. A description of the ELISA technique is found in
Chapter 22 of the 4th Edition of Basic and Clinical Immunology by D. P. Sites et al., 1982, published by Lange Medical Publications of Los Altos, Calif. and in U.S. Pat. Nos. 3,654,090; 3,850,752; and 4,016,043, the disclosures of which are herein incorporated by reference. ELISA is an assay that can be used to quantitate the amount of antigen, proteins, or other molecules of interest in a sample. In particular, ELISA can be carried out by attaching on a solid support (e.g., polyvinylchloride) an antibody specific for an antigen or protein of interest. Cell extract or other sample of interest such as urine can be added for formation of an antibody-antigen complex, and the extra, unbound sample is washed away. An enzyme-linked antibody, specific for a different site on the antigen is added. The support is washed to remove the unbound enzyme-linked second antibody. The enzyme-linked antibody can include, but is not limited to, alkaline phosphatase. The enzyme on the second antibody can convert an added colorless substrate into a colored product or can convert a non-fluorescent substrate into a fluorescent product. The ELISA-based assay method provided herein can be conducted in a single chamber or on an array of chambers and can be adapted for automated processes. - In these exemplary embodiments, the antibodies can be labeled with pairs of FRET dyes, bioluminescence resonance energy transfer (BRET) protein, fluorescent dye-quencher dye combinations, beta gal complementation assays protein fragments. The antibodies may participate in FRET, BRET, fluorescence quenching or beta-gal complementation to generate fluorescence, colorimetric or enhanced chemiluminescence (ECL) signals, for example.
- These methods are routinely employed in the detection of antigen-specific antibody responses, and are well described in general immunology text books such as Immunology by Ivan Roitt, Jonathan Brostoff and David Male (London: Mosby, c 1998. 5th ed. and Immunobiology: Immune System in Health and Disease/Charles A. Janeway and Paul Travers. Oxford: Blackwell Sci. Pub., 1994), the contents of which are herein incorporated by reference.
- As used herein, the terms “cancer” and “cancerous” refer to or describe the physiological condition in mammals that is typically characterized by unregulated cell growth, i.e., proliferative disorders. Examples of such proliferative disorders include cancers such as carcinoma, lymphoma, blastoma, sarcoma, and leukemia, as well as other cancers disclosed herein. More particular examples of such cancers include breast cancer, prostate cancer, colon cancer, squamous cell cancer, small-cell lung cancer, non-small cell lung cancer, gastrointestinal cancer, pancreatic cancer, cervical cancer, ovarian cancer, peritoneal cancer, liver cancer, e.g., hepatic carcinoma, bladder cancer, colorectal cancer, endometrial carcinoma, kidney cancer, and thyroid cancer.
- Other non-limiting examples of cancers are basal cell carcinoma, biliary tract cancer; bone cancer; brain and CNS cancer; choriocarcinoma; connective tissue cancer; esophageal cancer; eye cancer; cancer of the head and neck; gastric cancer; intra-epithelial neoplasm; larynx cancer; lymphoma including Hodgkin's and Non-Hodgkin's lymphoma; melanoma; myeloma; neuroblastoma; oral cavity cancer (e.g., lip, tongue, mouth, and pharynx); pancreatic cancer; retinoblastoma; rhabdomyosarcoma; rectal cancer; cancer of the respiratory system; sarcoma; skin cancer; stomach cancer; testicular cancer; uterine cancer; cancer of the urinary system, as well as other carcinomas and sarcomas. Examples of cancer types are listed in Table 1.
-
TABLE 1 Examples of Cancer Types Acute Lymphoblastic Leukemia, Hairy Cell Leukemia Adult Head and Neck Cancer Acute Lymphoblastic Leukemia, Hepatocellular (Liver) Cancer, Adult Childhood (Primary) Acute Myeloid Leukemia, Adult Hepatocellular (Liver) Cancer, Childhood Acute Myeloid Leukemia, Childhood (Primary) Adrenocortical Carcinoma Hodgkin's Lymphoma, Adult Adrenocortical Carcinoma, Hodgkin's Lymphoma, Childhood Childhood Hodgkin's Lymphoma During Pregnancy AIDS-Related Cancers Hypopharyngeal Cancer AIDS-Related Lymphoma Hypothalamic and Visual Pathway Glioma, Anal Cancer Childhood Astrocytoma, Childhood Cerebellar Intraocular Melanoma Astrocytoma, Childhood Cerebral Islet Cell Carcinoma (Endocrine Pancreas) Basal Cell Carcinoma Kaposi's Sarcoma Bile Duct Cancer, Extrahepatic Kidney (Renal Cell) Cancer Bladder Cancer Kidney Cancer, Childhood Bladder Cancer, Childhood Laryngeal Cancer Bone Cancer, Laryngeal Cancer, Childhood Osteosarcoma/Malignant Fibrous Leukemia, Acute Lymphoblastic, Adult Histiocytoma Leukemia, Acute Lymphoblastic, Brain Stem Glioma, Childhood Childhood Brain Tumor, Adult Leukemia, Acute Myeloid, Adult Brain Tumor, Brain Stem Glioma, Leukemia, Acute Myeloid, Childhood Childhood Leukemia, Chronic Lymphocytic Brain Tumor, Cerebellar Leukemia, Chronic Myelogenous Astrocytoma, Childhood Leukemia, Hairy Cell Brain Tumor, Cerebral Lip and Oral Cavity Cancer Astrocytoma/Malignant Glioma, Liver Cancer, Adult (Primary) Childhood Liver Cancer, Childhood (Primary) Brain Tumor, Ependymoma, Lung Cancer, Non-Small Cell Childhood Lung Cancer, Small Cell Brain Tumor, Medulloblastoma, Lymphoma, AIDS-Related Childhood Lymphoma, Burkitt's Brain Tumor, Supratentorial Lymphoma, Cutaneous T-Cell, see Mycosis Primitive Neuroectodermal Tumors, Fungoides and Sézary Syndrome Childhood Lymphoma, Hodgkin's, Adult Brain Tumor, Visual Pathway and Lymphoma, Hodgkin's, Childhood Hypothalamic Glioma, Childhood Lymphoma, Hodgkin's During Pregnancy Brain Tumor, Childhood Lymphoma, Non-Hodgkin's, Adult Breast Cancer Lymphoma, Non-Hodgkin's, Childhood Breast Cancer, Childhood Lymphoma, Non-Hodgkin's During Breast Cancer, Male Pregnancy Bronchial Adenomas/Carcinoids, Childhood Lymphoma, Primary Central Nervous System Burkitt's Lymphoma Macroglobulinemia, Waldenstrom's Carcinoid Tumor, Childhood Malignant Fibrous Histiocytoma of Carcinoid Tumor, Gastrointestinal Bone/Osteosarcoma Carcinoma of Unknown Primary Medulloblastoma, Childhood Central Nervous System Lymphoma, Melanoma Primary Melanoma, Intraocular (Eye) Cerebellar Astrocytoma, Childhood Merkel Cell Carcinoma Cerebral Astrocytoma/Malignant Mesothelioma, Adult Malignant Glioma, Childhood Mesothelioma, Childhood Cervical Cancer Metastatic Squamous Neck Cancer with Childhood Cancers Occult Primary Chronic Lymphocytic Leukemia Multiple Endocrine Neoplasia Syndrome, Chronic Myelogenous Leukemia Childhood Chronic Myeloproliferative Disorders Multiple Myeloma/Plasma Cell Neoplasm Colon Cancer Mycosis Fungoides Colorectal Cancer, Childhood Myelodysplastic Syndromes Cutaneous T-Cell Lymphoma, see Myelodysplastic/Myeloproliferative Mycosis Fungoides and Sézary Diseases Syndrome Myelogenous Leukemia, Chronic Endometrial Cancer Myeloid Leukemia, Adult Acute Ependymoma, Childhood Myeloid Leukemia, Childhood Acute Esophageal Cancer Myeloma, Multiple Esophageal Cancer, Childhood Myeloproliferative Disorders, Chronic Ewing's Family of Tumors Nasal Cavity and Paranasal Sinus Cancer Extracranial Germ Cell Tumor, Nasopharyngeal Cancer Childhood Nasopharyngeal Cancer, Childhood Extragonadal Germ Cell Tumor Neuroblastoma Extrahepatic Bile Duct Cancer Non-Hodgkin's Lymphoma, Adult Eye Cancer, Intraocular Melanoma Non-Hodgkin's Lymphoma, Childhood Eye Cancer, Retinoblastoma Non-Hodgkin's Lymphoma During Gallbladder Cancer Pregnancy Gastric (Stomach) Cancer Non-Small Cell Lung Cancer Gastric (Stomach) Cancer, Childhood Oral Cancer, Childhood Gastrointestinal Carcinoid Tumor Oral Cavity Cancer, Lip and Germ Cell Tumor, Extracranial, Oropharyngeal Cancer Childhood Osteosarcoma/Malignant Fibrous Germ Cell Tumor, Extragonadal Histiocytoma of Bone Germ Cell Tumor, Ovarian Ovarian Cancer, Childhood Gestational Trophoblastic Tumor Ovarian Epithelial Cancer Glioma, Adult Ovarian Germ Cell Tumor Glioma, Childhood Brain Stem Ovarian Low Malignant Potential Tumor Glioma, Childhood Cerebral Pancreatic Cancer Astrocytoma Pancreatic Cancer, Childhood Glioma, Childhood Visual Pathway and Pancreatic Cancer, Islet Cell Hypothalamic Paranasal Sinus and Nasal Cavity Cancer Skin Cancer (Melanoma) Parathyroid Cancer Skin Carcinoma, Merkel Cell Penile Cancer Small Cell Lung Cancer Pheochromocytoma Small Intestine Cancer Pineoblastoma and Supratentorial Primitive Soft Tissue Sarcoma, Adult Neuroectodermal Tumors, Childhood Soft Tissue Sarcoma, Childhood Pituitary Tumor Squamous Cell Carcinoma, see Skin Plasma Cell Neoplasm/Multiple Myeloma Cancer (non-Melanoma) Pleuropulmonary Blastoma Squamous Neck Cancer with Occult Pregnancy and Breast Cancer Primary, Metastatic Pregnancy and Hodgkin's Lymphoma Stomach (Gastric) Cancer Pregnancy and Non-Hodgkin's Lymphoma Stomach (Gastric) Cancer, Childhood Primary Central Nervous System Supratentorial Primitive Lymphoma Neuroectodermal Tumors, Childhood Prostate Cancer T-Cell Lymphoma, Cutaneous, see Rectal Cancer Mycosis Fungoides and Sézary Renal Cell (Kidney) Cancer Syndrome Renal Cell (Kidney) Cancer, Childhood Testicular Cancer Renal Pelvis and Ureter, Transitional Cell Thymoma, Childhood Cancer Thymoma and Thymic Carcinoma Retinoblastoma Thyroid Cancer Rhabdomyosarcoma, Childhood Thyroid Cancer, Childhood Salivary Gland Cancer Transitional Cell Cancer of the Renal Salivary Gland Cancer, Childhood Pelvis and Ureter Sarcoma, Ewing's Family of Tumors Trophoblastic Tumor, Gestational Sarcoma, Kaposi's Unknown Primary Site, Carcinoma Sarcoma, Soft Tissue, Adult of, Adult Sarcoma, Soft Tissue, Childhood Unknown Primary Site, Cancer of, Sarcoma, Uterine Childhood Sezary Syndrome Unusual Cancers of Childhood Skin Cancer (non-Melanoma) Ureter and Renal Pelvis, Transitional Skin Cancer, Childhood Cell Cancer Urethral Cancer Uterine Cancer, Endometrial Uterine Sarcoma Vaginal Cancer Visual Pathway and Hypothalamic Glioma, Childhood Vulvar Cancer Waldenström's Macroglobulinemia Wilms' Tumor - As used herein, the term “tumor” refers to all neoplastic cell growth and proliferation, whether malignant or benign, and all pre-cancerous and cancerous cells and tissues. For example, a particular cancer may be characterized by a solid mass tumor. The solid tumor mass, if present, may be a primary tumor mass. A primary tumor mass refers to a growth of cancer cells in a tissue resulting from the transformation of a normal cell of that tissue. In most cases, the primary tumor mass is identified by the presence of a cyst, which can be found through visual or palpation methods, or by irregularity in shape, texture or weight of the tissue. However, some primary tumors are not palpable and can be detected only through medical imaging techniques such as X-rays (e.g., mammography), ultrasound, CT, and MRI, or by needle aspirations. The use of these latter techniques is more common in early detection. Molecular and phenotypic analysis of cancer cells within a tissue will usually confirm if the cancer is endogenous to the tissue or if the lesion is due to metastasis from another site.
- A “sample” (biological sample) can be any composition of matter of interest from a human or non-human subject, in any physical state (e.g., solid, liquid, semi-solid, vapor) and of any complexity. The sample can be any composition reasonably suspecting of containing Bcl-2 that can be analyzed by the methods, devices, and kits of the invention. Preferably, the sample is a fluid (biological fluid). Samples can include human or animal samples. The sample may be contained within a test tube, culture vessel, multi-well plate, or any other container or supporting substrate. The sample can be, for example, a cell culture, human or animal tissue. Fluid homogenates of cellular tissues are biological fluids that may contain Bcl-2 for detection by the invention.
- The “complexity” of a sample refers to the relative number of different molecular species that are present in the sample.
- The terms “body fluid” and “bodily fluid”, as used herein, refer to a composition obtained from a human or animal subject. Bodily fluids include, but are not limited to, urine, whole blood, blood plasma, serum, tears, semen, saliva, sputum, exhaled breath, nasal secretions, pharyngeal exudates, bronchoalveolar lavage, tracheal aspirations, interstitial fluid, lymph fluid, meningal fluid, amniotic fluid, glandular fluid, feces, perspiration, mucous, vaginal or urethral secretion, cerebrospinal fluid, and transdermal exudate. Bodily fluid also includes experimentally separated fractions of all of the preceding solutions or mixtures containing homogenized solid material, such as feces, tissues, and biopsy samples.
- The term “ex vivo,” as used herein, refers to an environment outside of a subject. Accordingly, a sample of bodily fluid collected from a subject is an ex vivo sample of bodily fluid as contemplated by the subject invention. In-dwelling embodiments of the method and device of the invention obtain samples in vivo.
- As used herein, the term “conjugate” refers to a compound comprising two or more molecules bound together, optionally through a linking group, to form a single structure. The binding can be made by a direct connection (e.g., a chemical bond) between the molecules or by use of a linking group.
- As used herein, the terms solid “support”, “substrate”, and “surface” refer to a solid phase which is a porous or non-porous water insoluble material that can have any of a number of shapes, such as strip, rod, particle, beads, or multi-welled plate. In some embodiments, the support has a fixed organizational support matrix that preferably functions as an organization matrix, such as a microtiter tray. Solid support materials include, but are not limited to, cellulose, polysaccharide such as Sephadex, glass, polyacryloylmorpholide, silica, controlled pore glass (CPG), polystyrene, polystyrene/latex, polyethylene such as ultra high molecular weight polyethylene (UPE), polyamide, polyvinylidine fluoride (PVDF), polytetrafluoroethylene (PTFE; TEFLON), carboxyl modified teflon, nylon, nitrocellulose, and metals and alloys such as gold, platinum and palladium. The solid support can be biological, non-biological, organic, inorganic, or a combination of any of these, existing as particles, strands, precipitates, gels, sheets, pads, cards, strips, dipsticks, test strips, tubing, spheres, containers, capillaries, pads, slices, films, plates, slides, etc., depending upon the particular application. Preferably, the solid support is planar in shape, to facilitate contact with a biological sample such as urine, whole blood, plasma, serum, peritoneal fluid, or ascites fluid. Other suitable solid support materials will be readily apparent to those of skill in the art. The solid support can be a membrane, with or without a backing (e.g., polystyrene or polyester card backing), such as those available from Millipore Corp. (Bedford, Mass.), e.g., Hi-Flow™ Plus membrane cards. The surface of the solid support may contain reactive groups, such as carboxyl, amino, hydroxyl, thiol, or the like for the attachment of nucleic acids, proteins, etc. Surfaces on the solid support will sometimes, though not always, be composed of the same material as the support. Thus, the surface can be composed of any of a wide variety of materials, such as polymers, plastics, resins, polysaccharides, silica or silica-based materials, carbon, metals, inorganic glasses, membranes, or any of the aforementioned support materials (e.g., as a layer or coating).
- As used herein, the terms “label” and “tag” refer to substances that may confer a detectable signal, and include, but are not limited to, enzymes such as alkaline phosphatase, glucose-6-phosphate dehydrogenase, and horseradish peroxidase, ribozyme, a substrate for a replicase such as QB replicase, promoters, dyes, fluorescers, such as fluorescein, isothiocynate, rhodamine compounds, phycoerythrin, phycocyanin, allophycocyanin, o-phthaldehyde, and fluorescamine, chemiluminescers such as isoluminol, sensitizers, coenzymes, enzyme substrates, radiolabels, particles such as latex or carbon particles, liposomes, cells, etc., which may be further labeled with a dye, catalyst or other detectable group.
- As used herein, the term “receptor” and “receptor protein” are used herein to indicate a biologically active proteinaceous molecule that specifically binds to (or with) other molecules such as Bcl-2.
- As used herein, the term “ligand” refers to a molecule that contains a structural portion that is bound by specific interaction with a particular receptor protein.
- As used herein, the term “antibody” refers to immunoglobulin molecules and immunologically active portions (fragments) of immunoglobulin molecules, i.e., molecules that contain an antibody combining site or paratope. The term is inclusive of monoclonal antibodies and polyclonal antibodies.
- As used here, the terms “monoclonal antibody” or “monoclonal antibody composition” refer to an antibody molecule that contains only one species of antibody combining site capable of immunoreacting with a particular antigen. A monoclonal antibody composition thus typically displays a single binding affinity for any antigen with which it immunoreacts. A monoclonal antibody composition is typically composed of antibodies produced by clones of a single cell called a hybridoma that secretes (produces) only one type of antibody molecule. The hybridoma cell is formed by fusing an antibody-producing cell and a myeloma or other self-perpetuating cell line. Such antibodies were first described by Kohler and Milstein, Nature, 1975, 256:495-497, the disclosure of which is herein incorporated by reference. An exemplary hybridoma technology is described by Niman et al., Proc. Natl. Acad. Sci. U.S.A., 1983, 80:4949-4953. Other methods of producing monoclonal antibodies, a hybridoma cell, or a hybridoma cell culture are also well known. See e.g., Antibodies: A Laboratory Manual, Harlow et al., Cold Spring Harbor Laboratory, 1988; or the method of isolating monoclonal antibodies from an immunological repertoise as described by Sasatry, et al., Proc. Natl. Acad. Sci. USA, 1989, 86:5728-5732; and Huse et al., Science, 1981, 246:1275-1281. The references cited are hereby incorporated herein by reference.
- As used herein, a semi-permeable membrane refers to a bio-compatible material which is impermeable to liquids and capable of allowing the transfer of gases through it. Such gases include, but are not limited to, oxygen, water vapor, and carbon dioxide. Semi-permeable membranes are an example of a material that can be used to form a least a portion of an enclosure defining a flow chamber cavity. The semi-permeable membrane may be capable of excluding microbial contamination (e.g., the pore size is characteristically small enough to exclude the passage of microbes that can contaminate the analyte, such as cells). In a particular aspect, a semi-permeable membrane can have an optical transparency and clarity sufficient for permitting observation of an analyte, such as cells, for color, growth, size, morphology, imaging, and other purposes well known in the art.
- As used herein, the term “bind” refers to any physical attachment or close association, which may be permanent or temporary. The binding can result from hydrogen bonding, hydrophobic forces, van der Waals forces, covalent, or ionic bonding, for example.
- As used herein, the term “particle” includes insoluble materials of any configuration, including, but not limited to, spherical, thread-like, brush-like, and irregular shapes. Particles can be porous with regular or random channels inside. Particles can be magnetic. Examples of particles include, but are not limited to, silica, cellulose, Sepharose beads, polystyrene (solid, porous, derivatized) beads, controlled-pore glass, gel beads, magnetic beads, sols, biological cells, subcellular particles, microorganisms (protozoans, bacteria, yeast, viruses, and other infectious agents), micelles, liposomes, cyclodextrins, and other insoluble materials.
- A “coding sequence” or “coding region” is a polynucleotide sequence that is transcribed into mRNA and/or translated into a polypeptide. For example, a coding sequence may encode a polypeptide of interest. The boundaries of the coding sequence are determined by a translation start codon at the 5′-terminus and a translation stop codon at the 3′-terminus. A coding sequence can include, but is not limited to, mRNA, cDNA, and recombinant polynucleotide sequences.
- As used herein, the term “polypeptide” refers to any polymer comprising any number of two or more amino acids, and is used interchangeably herein with the terms “protein”, “gene product”, and “peptide”.
- As used herein, the term “nucleoside” refers to a molecule having a purine or pyrimidine base covalently linked to a ribose or deoxyribose sugar. Exemplary nucleosides include adenosine, guanosine, cytidine, uridine and thymidine.
- The term “nucleotide” refers to a nucleoside having one or more phosphate groups joined in ester linkages to the sugar moiety. Exemplary nucleotides include nucleoside monophosphates, diphosphates and triphosphates.
- The terms “polynucleotide”, “nucleic acid molecule”, and “nucleotide molecule” are used interchangeably herein and refer to a polymer of nucleotides joined together by a phosphodiester linkage between 5′ and 3′ carbon atoms. Polynucleotides can encode a polypeptide such as Bcl-2 polypeptide (whether expressed or non-expressed), or may be short interfering RNA (siRNA), antisense nucleic acids (antisense oligonucleotides), aptamers, ribozymes (catalytic RNA), or triplex-forming oligonucleotides (i.e., antigene), for example.
- As used herein, the term “RNA” or “RNA molecule” or “ribonucleic acid molecule” refers generally to a polymer of ribonucleotides. The term “DNA” or “DNA molecule” or deoxyribonucleic acid molecule” refers generally to a polymer of deoxyribonucleotides. DNA and RNA molecules can be synthesized naturally (e.g., by DNA replication or transcription of DNA, respectively). RNA molecules can be post-transcriptionally modified. DNA and RNA molecules can also be chemically synthesized. DNA and RNA molecules can be single-stranded (i.e., ssRNA and ssDNA, respectively) or multi-stranded (e.g., double stranded, i.e., dsRNA and dsDNA, respectively). Based on the nature of the invention, however, the term “RNA” or “RNA molecule” or “ribonucleic acid molecule” can also refer to a polymer comprising primarily (i.e., greater than 80% or, preferably greater than 90%) ribonucleotides but optionally including at least one non-ribonucleotide molecule, for example, at least one deoxyribonucleotide and/or at least one nucleotide analog.
- As used herein, the term “nucleotide analog” or “nucleic acid analog”, also referred to herein as an altered nucleotide/nucleic acid or modified nucleotide/nucleic acid refers to a non-standard nucleotide, including non-naturally occurring ribonucleotides or deoxyribonucleotides. Preferred nucleotide analogs are modified at any position so as to alter certain chemical properties of the nucleotide yet retain the ability of the nucleotide analog to perform its intended function. For example, locked nucleic acids (LNA) are a class of nucleotide analogs possessing very high affinity and excellent specificity toward complementary DNA and RNA. LNA oligonucleotides have been applied as antisense molecules both in vitro and in vivo (Jepsen J. S. et al., Oligonucleotides, 2004, 14(2):130-146).
- As used herein, the term “RNA analog” refers to a polynucleotide (e.g., a chemically synthesized polynucleotide) having at least one altered or modified nucleotide as compared to a corresponding unaltered or unmodified RNA but retaining the same or similar nature or function as the corresponding unaltered or unmodified RNA. As discussed above, the oligonucleotides may be linked with linkages which result in a lower rate of hydrolysis of the RNA analog as compared to an RNA molecule with phosphodiester linkages. Exemplary RNA analogues include sugar- and/or backbone-modified ribonucleotides and/or deoxyribonucleotides. Such alterations or modifications can further include addition of non-nucleotide material, such as to the end(s) of the RNA or internally (at one or more nucleotides of the RNA).
- The terms “comprising”, “consisting of” and “consisting essentially of” are defined according to their standard meaning. The terms may be substituted for one another throughout the instant application in order to attach the specific meaning associated with each term.
- The terms “isolated” or “biologically pure” refer to material that is substantially or essentially free from components which normally accompany the material as it is found in its native state.
- As used in this specification, the singular forms “a”, “an”, and “the” include plural reference unless the context clearly dictates otherwise. Thus, for example, a reference to “an antibody” includes more than one such antibody. A reference to “a molecule” includes more than one such molecule, and so forth.
- The practice of the present invention can employ, unless otherwise indicated, conventional techniques of molecular biology, microbiology, recombinant DNA technology, electrophysiology, and pharmacology that are within the skill of the art. Such techniques are explained fully in the literature (see, e.g., Sambrook, Fritsch & Maniatis, Molecular Cloning: A Laboratory Manual, Second Edition (1989); DNA Cloning, Vols. I and II (D. N. Glover Ed. 1985); Perbal, B., A Practical Guide to Molecular Cloning (1984); the series, Methods In Enzymology (S. Colowick and N. Kaplan Eds., Academic Press, Inc.); Transcription and Translation (Hames et al. Eds. 1984); Gene Transfer Vectors For Mammalian Cells (J. H. Miller et al. Eds. (1987) Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.); Scopes, Protein Purification: Principles and Practice (2nd ed., Springer-Verlag); and PCR: A Practical Approach (McPherson et al. Eds. (1991) IRL Press)), each of which are incorporated herein by reference in their entirety.
- Following are examples that illustrate materials, methods, and procedures for practicing the invention. The examples are illustrative and should not be construed as limiting.
- Patient cohort. With prior institutional approval, urine and blood samples were collected from normal healthy control volunteers (N=21), women with benign gynecologic disorders (N=35) and patients with ovarian cancer (N=34) at the H. Lee Moffitt Cancer Center. All except 8 specimens were collected prior to initial surgical debulking, while the latter 8 specimens presented with recurrent disease at the time of enrollment in the study. Paraffin blocks were identified, where possible, and the slides reviewed to confirm the histologic diagnosis according to FIGO scores. The medical records of these women were also reviewed and information regarding patient age, tumor type, stage, grade, size and surgical treatment abstracted where available.
- Sample preparation. With patient informed consent, urine and plasma samples were collected from patients, anonymized and coded to protect patient identity, and released from the H. Lee Moffitt Cancer Center for this research protocol. All samples were kept in ice. Urine samples were treated with a standard protease inhibitor cocktail (80 μg/ml 4-(2aminoethyl)-benzene sulfonyl fluoride, 200 μg/ml EDTA, 0.2 μg/ml leupeptin, 0.2 μg/ml pepstatin, Sigma Scientific, St. Louis, Mich.) and centrifuged at 3000×g. Urinary supernates and plasma samples were then aliquoted and stored at −20° C.
- Enzyme-linked immunosorbant assay. To measure Bcl-2 levels in patients' urine, samples were assayed using the quantitative sandwich enzyme-linked immunosorbant assay (ELISA; R&D Systems, Minneapolis, Minn.) according to the manufacturer's instructions. To measure CA125 levels in subjects' plasma, samples were assayed by ELISA (Bio-Quant, San Diego, Calif.) according to the manufacturer's instructions. The enzymatic reactions were detected at 450 nm using a Dynex MRX plate reader (Dynex Technologies, Chantilly, Va.) and Bcl-2 results expressed as the mean absorbance of triplicate samples±S.E while CA125 results were expressed as the mean of duplicate samples.
- Statistical analysis. Samples for Bcl-2 ELISA were run in triplicate and the data subjected to the Kruskal-Wallis test for normal distribution. Data were then analyzed by the Mann-Whitney U-test to determine statistical significance between samples from normal controls, patients with benign disease and ovarian cancer patients. Likewise, discrimination analyses using the SAS system were employed to determine appropriate membership in each group (normal vs. benign vs. cancer).
- Urine and blood were collected from 90 individuals with samples collected from normal controls (N=21), women with benign disease (N=35) and women with ovarian cancer (N=34). The latter category consisted of women diagnosed with endometriod (N=1), mucinous (N=7) as well as serous ovarian cancer (N=24) and primary peritoneal cancer, which is often related to ovarian cancer, (N=2). The samples collected from women with benign gynecologic disease consisted of women with benign cystic teratomas (N=2), simple cysts (N=10), leiomyomas (N=8), polycystic ovarian disease (N=1), ovarian adenofibromas (N=4), mucinous cystadenomas (N=2) and serous cystadenomas (N=8). Though this cohort comprises a small pilot study, it is representative of a typical clinical practice with regards to histology, grade and stage distribution.
- To determine the potential suitability of urinary Bcl-2 levels as a new molecular marker for ovarian cancer, urine samples from the normal controls, women with benign gynecologic disease and patients with ovarian cancer specimens were screened by ELISA analyses (
FIG. 1 ). The amount of urinary Bcl-2 was generally negligible (average 0.21 ng/ml) in normal control samples. In contrast, urinary Bcl-2 associated with ovarian and primary peritoneal cancer, was generally >10× (3.4 ng/ml) that found in normal control samples (FIG. 1A ). No normal urine sample contained Bcl-2>1.8 ng/ml, while only 2 of the cancer samples exhibited Bcl-2 less than 1.8 ng/ml (1.12 ng/ml and 1.78 ng/ml). Since serous carcinoma represents the majority of epithelial ovarian cancers, urinary Bcl-2 levels in patients with serous adenocarcinoma were examined by disease grade (FIG. 1A ) and stage (FIG. 1B ). Though there was a tendency for elevated Bcl-2 levels with increasing tumor grade and stage, the difference in Bcl-2 levels between tumor grade and stage was not statistically significant. Likewise, serum creatinine was measured at time of urine collection and indicated that urinary Bcl-2 levels were not related to renal dysfunction (data not shown). Of note, a single patient (#77) demonstrated extremely elevated urinary Bcl-2 levels (>9 ng/ml) in the absence of other notable clinical symptoms. - Table 2 summarizes the results presented in
FIGS. 1 and 2 for average Bcl-2 levels in urine specimens. Numbers in parentheses indicate the number of samples in each respective group. Additionally, the data are grouped to show average Bcl-2 levels (ng/ml) between normal individuals and ovarian cancer histological subtypes, tumor grade and tumor stage. The data show that while the average level of Bcl-2 in the urine of healthy volunteers is 0.204 ng/ml, that from all cancer patients is generally 10× greater (3.12 ng/ml). In addition, urinary Bcl-2 levels appear strongly related to tumor stage and moderately related to tumor grade among serous ovarian cancers (the most frequently occurring type of ovarian cancer). -
TABLE 2 Urinary Bcl-2 levels in Normal and Ovarian Cancer Sample Bcl-2 (ng/ml) Normal (21) 0.204 Endometriod (1) 3.168 Mucinous (4) 2.35 Peritoneal (2) 1.78 Serous (29) Grade 1 (7) 2.76 Grade 2 (10) 3.98 Grade 3 (12) 3.94 Stage 1 (3) 1.92 Stage 2 (4) 3.23 Stage 3 (14) 4.07 Stage 5 (8) 4.04 - ELISA measurement of urinary Bcl-2 from 35 women with benign gynecologic disease (urine collected just prior to patient's treatment) indicated Bcl-2 levels averaging 0.02 ng/ml with no samples >1.8 ng/ml Bcl-2, as shown in
FIG. 8A . These benign diseases included benign teratomas, simple cists, leiomyomas, polystronic ovary, fibromas, and adenomas. These values were similar to normal controls, but significantly less than ovarian cancer samples suggesting that elevated urinary Bcl-2 levels greater than 1.8 ng/ml was associated with ovarian cancer. - The Kruskal-Wallis test was used to test the normal distribution of the data. Since the ‘normal’ group failed to meet normal distribution, likely due to small sampling number, the differences between groups were analyzed by the Mann-Whitney U-test. The results indicated no significant difference between normal and benign (p<0.5), but p<0.001 between normal and cancer or benign and cancer groups. A summary of urinary Bcl-2 level for this study group is presented in
FIG. 8B . Likewise discrimination analyses using the SAS system revealed that the probability of appropriate membership in normal/benign or cancer group was >90%. - Comparison of clinical parameters suggested that urinary Bcl-2 levels did not relate with patient age (see
FIG. 5 ). Though the age range and average age of normal controls (29-81 yr, average 48.5±S.D. 12.7 yr) and women with benign gynecologic disease (28-84 yr, average 55.9±S.D. 13.9 yr) was somewhat lower that that of women with ovarian cancer (26-92 yr, average 62.2±S.D. 13.8 yr), the differences were not statistically significant in this study. Similarly, urinary Bcl-2 levels did not correlate with tumor size measured at debulking surgery (FIG. 6 ), ranging from microscopic to >10 cm and may reflect biologic variation between individuals or variation of tumor composition. - To address whether elevated urinary Bcl-2 is a better diagnostic indicator for ovarian cancer than cancer antigen 125 (CA125), urinary Bcl-2 was compared with CA 125 levels in 12 normal controls and 23 patients with ovarian cancer (
FIGS. 4A and 4B ). Of the patients examined, elevated urinary Bcl-2 associated with ovarian cancer detection was almost 100%. Elevated urinary Bcl-2 (>1.8 ng/ml) identified 17/17 patients with serous adenocarcinoma, 4/4 patients with mucinous ovarian cancer and 1/2 patients with primary peritoneal cancer as ovarian cancer positive (FIG. 4A ). None of the normal controls had urinary Bcl-2 levels >1.8 ng/ml and were, then, correctly classified as cancer-negative. In contrast, blood levels of CA125>35 U/ml, the current standard for ovarian cancer detection, identified 13/17 or 76% of patients with serous adenocarcinoma (FIG. 4B ). Likewise, CA125 analyses identified ¾ or 75% of patients with mucinous ovarian cancer, though CA 125 levels in these patients ranged between 41-43 U/ml, and ½ or 50% of patients with primary peritoneal cancer as cancer positive. Elevated CA125 levels also incorrectly identified 2/12 or 16% of healthy individuals as cancer-positive suggesting that elevated urinary Bcl-2 appears to detect ovarian cancer more accurately than CA 125. - To further test the accuracy for high levels of urinary Bcl-2 to detect ovarian cancer, levels of urinary Bcl-2 were compared in 7 ovarian cancer patients immediately prior to (
FIGS. 7A and 7B , black bars) and within 2 weeks following initial debulking surgery for removal of all visible tumor (white bars). For those patients where urine samples were collected before and after initial surgery, Bcl-2 levels decreased up to 100% following surgical removal of tumor suggesting that presence of tumor correlates well with elevated urinary Bcl-2 in ovarian cancer patients. - Currently, preclinical studies focus on the development of agents to inhibit Bcl-2, including antisense oligonucleotides and small molecular inhibitors of Bcl-2. Though such studies target Bcl-2 for therapeutic intervention, the present data indicate that quantification of urinary Bcl-2 by ELISA-based assays may provide a novel, safe, sensitive, specific and economical method for the detection of ovarian cancer that would benefit all women not only in the US, but worldwide including medically underserved geographical areas and especially women at high risk for developing ovarian cancer. Further, given that approximately 25,000 women are diagnosed with ovarian cancer annually in the US, urinary Bcl-2 detection of ovarian cancer in both early and late stages of disease would not only confirm the diagnosis of ovarian cancer, but could also potentially detect thousands of previously undiagnosed ovarian cancers. This is especially important for detection of ovarian cancer in early stages that account for less than 10% of diagnosed ovarian cancers, but where surgical debulking of the diseased ovary increases patient survival to over 90% and would be expected to reduce life long medical costs. Lastly, in addition to serving a novel diagnostic function, urinary levels of Bcl-2 can be used to monitor the presence of ovarian cancer throughout the course of disease which may impact therapeutic and prognostic outcome. Clearly, larger population studies are warranted to verify the potential for urinary levels of Bcl-2 to serve as a biomarker for ovarian cancer as well as investigations into the molecular mechanism(s) responsible for elevated urinary Bcl-2 in ovarian cancer. However, since there are no reports that employ either urinary detection or Bcl-2 as a biomarker for ovarian cancer, this pilot study suggests that measurement of urinary Bcl-2 by ELISA may provide an innovative, simple method to detect all ovarian cancers and, possibly, reduce the mortality of an insidious disease that kills thousands of women annually.
- Studies examining the storage stability of urinary bcl-2 indicate that when samples are prepared with the addition of a cocktail of protease inhibitors these urine samples may be stored for over 1 year at −20° C. without loss of bcl-2 detection (see ‘Control’ & ‘−20° C.’ in
FIG. 11 ). This would be beneficial for individuals where it might be desirable to re-test previous samples with current ones. Alternately, these samples can also be stored at 4° C. for up to 4 days without adversely affecting detection of urinary Bcl-2. These are important results as they indicate that the time possibly required to transport patient urine samples (from potentially distant geographical areas) to a laboratory for Bcl-2 testing would not adversely affect the outcome of urinary bcl-2 detection if protease inhibitors are added to the urine samples and the urine samples are kept cold. However, reduced Bcl-2 was measured in samples stored at room temperature for 4 days and Bcl-2 could not be detected in urine samples stored at −80° C.; therefore, it appears prohibitive to store urinary samples for Bcl-2 detection at either room temperature or at −80° C. - All patents, patent applications, provisional applications, and publications referred to or cited herein, supra or infra, are incorporated by reference in their entirety, including all figures and tables, to the extent they are not inconsistent with the explicit teachings of this specification.
- It should be understood that the examples and embodiments described herein are for illustrative purposes only and that various modifications or changes in light thereof will be suggested to persons skilled in the art and are to be included within the spirit and purview of this application.
Claims (14)
1. A device for the rapid detection of Bcl-2 in a sample of urine, comprising an application zone for receiving a urine sample; a labeling zone containing a binding agent that binds to Bcl-2 in the sample; and a detection zone where Bcl-2-bound binding agent is retained to give a signal, wherein the signal given for a sample from a subject with a Bcl-2 level lower than a threshold concentration is different from the signal given for a sample from a subject with a Bcl-2 level greater than a threshold concentration.
2. The device of claim 1 , wherein said threshold concentration is between 0 ng/ml and 2.0 ng/ml.
3. The device of claim 1 , wherein said threshold concentration is 1.8 ng/ml.
4. The device of claim 1 , wherein the device has a reference zone which gives a signal which has the same intensity as the signal given in the detection zone for a sample from a subject having a Bcl-2 level equal to the threshold concentration.
5. The device of claim 1 , wherein the binding agent is a tagged antibody.
6. The device of claim 5 , wherein the antibody is tagged with colloidal gold.
7. The device of claim 1 , wherein the detection zone comprises an immobilized anti-Bcl-2 antibody.
8. The device of claim 1 , wherein the device has a control zone downstream of the detection zone which retains binding agent which passes through the detection zone.
9. The device of claim 1 , wherein the control zone and the reference zone are the same zone.
10. The device of claim 1 , wherein the binding agent is a tagged monoclonal antibody.
11. A method for measuring Bcl-2 in urine, comprising: (a) obtaining urine from a subject; (b) contacting the urine with a device according to claim 1 ; and (c) detecting a signal from the detection zone of the device, whereby the signal conveys information about Bcl-2 concentration in the urine.
12. The method of claim 11 , wherein said threshold concentration is between 0 ng/ml and 2.0 ng/ml.
13. The method of claim 11 , wherein said threshold concentration is between 1.8 ng/ml.
14. A kit for detection of Bcl-2 in urine, comprising a device according to claim 1 , and printed instructions for using the device to detect Bcl-2 in urine.
Priority Applications (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US13/205,095 US20110318763A1 (en) | 2006-02-09 | 2011-08-08 | Detection of cancer by elevated levels of bcl-2 |
| US15/160,649 US20160258960A1 (en) | 2006-02-09 | 2016-05-20 | Detection of cancer by elevated levels of bcl-2 |
| US16/190,475 US11156613B2 (en) | 2006-02-09 | 2018-11-14 | Detection of cancer by elevated levels of bcl-2 |
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US77167706P | 2006-02-09 | 2006-02-09 | |
| US11/704,408 US8034549B2 (en) | 2006-02-09 | 2007-02-09 | Detection of cancer by elevated levels of BCL-2 |
| US13/205,095 US20110318763A1 (en) | 2006-02-09 | 2011-08-08 | Detection of cancer by elevated levels of bcl-2 |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US11/704,408 Division US8034549B2 (en) | 2006-02-09 | 2007-02-09 | Detection of cancer by elevated levels of BCL-2 |
Related Child Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US15/160,649 Continuation US20160258960A1 (en) | 2006-02-09 | 2016-05-20 | Detection of cancer by elevated levels of bcl-2 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20110318763A1 true US20110318763A1 (en) | 2011-12-29 |
Family
ID=38345845
Family Applications (4)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US11/704,408 Active US8034549B2 (en) | 2006-02-09 | 2007-02-09 | Detection of cancer by elevated levels of BCL-2 |
| US13/205,095 Abandoned US20110318763A1 (en) | 2006-02-09 | 2011-08-08 | Detection of cancer by elevated levels of bcl-2 |
| US15/160,649 Abandoned US20160258960A1 (en) | 2006-02-09 | 2016-05-20 | Detection of cancer by elevated levels of bcl-2 |
| US16/190,475 Active 2027-06-25 US11156613B2 (en) | 2006-02-09 | 2018-11-14 | Detection of cancer by elevated levels of bcl-2 |
Family Applications Before (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US11/704,408 Active US8034549B2 (en) | 2006-02-09 | 2007-02-09 | Detection of cancer by elevated levels of BCL-2 |
Family Applications After (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US15/160,649 Abandoned US20160258960A1 (en) | 2006-02-09 | 2016-05-20 | Detection of cancer by elevated levels of bcl-2 |
| US16/190,475 Active 2027-06-25 US11156613B2 (en) | 2006-02-09 | 2018-11-14 | Detection of cancer by elevated levels of bcl-2 |
Country Status (16)
| Country | Link |
|---|---|
| US (4) | US8034549B2 (en) |
| EP (1) | EP1996940B1 (en) |
| JP (1) | JP4896994B2 (en) |
| KR (1) | KR20080114689A (en) |
| CN (1) | CN101384903A (en) |
| AT (1) | ATE538386T1 (en) |
| AU (1) | AU2007212278A1 (en) |
| BR (1) | BRPI0707645B8 (en) |
| CA (1) | CA2642051C (en) |
| IL (1) | IL192866A (en) |
| NO (1) | NO20083820L (en) |
| NZ (1) | NZ570008A (en) |
| RU (1) | RU2436098C2 (en) |
| SG (1) | SG169395A1 (en) |
| WO (1) | WO2007092627A2 (en) |
| ZA (1) | ZA200805787B (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2016053689A1 (en) * | 2014-09-30 | 2016-04-07 | Ge Healthcare Uk Limited | Methods and devices relating to the detection of oral cancer biomarkers |
Families Citing this family (62)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20100022414A1 (en) | 2008-07-18 | 2010-01-28 | Raindance Technologies, Inc. | Droplet Libraries |
| GB0307428D0 (en) * | 2003-03-31 | 2003-05-07 | Medical Res Council | Compartmentalised combinatorial chemistry |
| GB0307403D0 (en) * | 2003-03-31 | 2003-05-07 | Medical Res Council | Selection by compartmentalised screening |
| US20060078893A1 (en) | 2004-10-12 | 2006-04-13 | Medical Research Council | Compartmentalised combinatorial chemistry by microfluidic control |
| US20050221339A1 (en) * | 2004-03-31 | 2005-10-06 | Medical Research Council Harvard University | Compartmentalised screening by microfluidic control |
| US7968287B2 (en) | 2004-10-08 | 2011-06-28 | Medical Research Council Harvard University | In vitro evolution in microfluidic systems |
| US20100137163A1 (en) | 2006-01-11 | 2010-06-03 | Link Darren R | Microfluidic Devices and Methods of Use in The Formation and Control of Nanoreactors |
| RU2436098C2 (en) | 2006-02-09 | 2011-12-10 | Юниверсити Оф Саут Флорида | Cancer detection by high bcl-2 levels |
| US9562837B2 (en) | 2006-05-11 | 2017-02-07 | Raindance Technologies, Inc. | Systems for handling microfludic droplets |
| ATE540750T1 (en) | 2006-05-11 | 2012-01-15 | Raindance Technologies Inc | MICROFLUIDIC DEVICE AND METHOD |
| US8768629B2 (en) * | 2009-02-11 | 2014-07-01 | Caris Mpi, Inc. | Molecular profiling of tumors |
| JP2009537154A (en) * | 2006-05-18 | 2009-10-29 | モレキュラー プロファイリング インスティテュート, インコーポレイテッド | System and method for determining personalized medical intervention for disease states |
| EP3536396B1 (en) | 2006-08-07 | 2022-03-30 | The President and Fellows of Harvard College | Fluorocarbon emulsion stabilizing surfactants |
| WO2008097559A2 (en) | 2007-02-06 | 2008-08-14 | Brandeis University | Manipulation of fluids and reactions in microfluidic systems |
| WO2008130623A1 (en) | 2007-04-19 | 2008-10-30 | Brandeis University | Manipulation of fluids, fluid components and reactions in microfluidic systems |
| WO2009055813A1 (en) * | 2007-10-25 | 2009-04-30 | The Research Foundation Of State University Of New York | Apparatus and method of detection and localized treatment of abnormal conditions |
| US12038438B2 (en) | 2008-07-18 | 2024-07-16 | Bio-Rad Laboratories, Inc. | Enzyme quantification |
| WO2010042225A2 (en) * | 2008-10-10 | 2010-04-15 | Dana Farber Cancer Institute | Chemical modulators of pro-apoptotic bax and bcl-2 polypeptides |
| EP3415235A1 (en) | 2009-03-23 | 2018-12-19 | Raindance Technologies Inc. | Manipulation of microfluidic droplets |
| WO2010115196A1 (en) * | 2009-04-03 | 2010-10-07 | Candela Corporation | Skin resurfacing at 1930 nm |
| PT2456889E (en) * | 2009-07-24 | 2014-11-21 | Geadic Biotec Aie | Markers for endometrial cancer |
| WO2011042564A1 (en) | 2009-10-09 | 2011-04-14 | Universite De Strasbourg | Labelled silica-based nanomaterial with enhanced properties and uses thereof |
| AU2010315400B2 (en) * | 2009-10-27 | 2016-07-21 | Caris Mpi, Inc. | Molecular profiling for personalized medicine |
| EP2517025B1 (en) | 2009-12-23 | 2019-11-27 | Bio-Rad Laboratories, Inc. | Methods for reducing the exchange of molecules between droplets |
| US9399797B2 (en) | 2010-02-12 | 2016-07-26 | Raindance Technologies, Inc. | Digital analyte analysis |
| US10351905B2 (en) | 2010-02-12 | 2019-07-16 | Bio-Rad Laboratories, Inc. | Digital analyte analysis |
| CA2789425C (en) | 2010-02-12 | 2020-04-28 | Raindance Technologies, Inc. | Digital analyte analysis with polymerase error correction |
| US9366632B2 (en) | 2010-02-12 | 2016-06-14 | Raindance Technologies, Inc. | Digital analyte analysis |
| EP2622103B2 (en) | 2010-09-30 | 2022-11-16 | Bio-Rad Laboratories, Inc. | Sandwich assays in droplets |
| MX343607B (en) * | 2010-11-05 | 2016-11-11 | Morphotek Inc | Folate receptor alpha as a diagnostic and prognostic marker for folate receptor alpha-expressing cancers. |
| WO2012109600A2 (en) | 2011-02-11 | 2012-08-16 | Raindance Technologies, Inc. | Methods for forming mixed droplets |
| EP2675819B1 (en) | 2011-02-18 | 2020-04-08 | Bio-Rad Laboratories, Inc. | Compositions and methods for molecular labeling |
| CN103688174A (en) * | 2011-02-23 | 2014-03-26 | 麦多索有限公司 | Compositions and methods for personal tumor profiling treatment |
| US8841071B2 (en) | 2011-06-02 | 2014-09-23 | Raindance Technologies, Inc. | Sample multiplexing |
| EP2714970B1 (en) | 2011-06-02 | 2017-04-19 | Raindance Technologies, Inc. | Enzyme quantification |
| EP2729486B1 (en) * | 2011-07-09 | 2017-12-13 | The Regents of The University of California | Leukemia stem cell targeting ligands and methods of use |
| US8658430B2 (en) | 2011-07-20 | 2014-02-25 | Raindance Technologies, Inc. | Manipulating droplet size |
| EP2742358A4 (en) * | 2011-09-08 | 2015-08-12 | Univ Ben Gurion | CANCER DIAGNOSTIC METHODS |
| CN107389936A (en) * | 2011-09-22 | 2017-11-24 | 斯隆-凯特林纪念癌症中心 | Detect oophoroma |
| CA2853103C (en) * | 2011-10-21 | 2020-01-07 | Decimadx, Llc | Point-of-care immunoassay for quantitative small analyte detection |
| EP2823303A4 (en) | 2012-02-10 | 2015-09-30 | Raindance Technologies Inc | MOLECULAR DIAGNOSTIC SCREEN TYPE ASSAY |
| EP2844768B1 (en) | 2012-04-30 | 2019-03-13 | Raindance Technologies, Inc. | Digital analyte analysis |
| WO2014172288A2 (en) | 2013-04-19 | 2014-10-23 | Raindance Technologies, Inc. | Digital analyte analysis |
| CN110468205A (en) | 2013-08-19 | 2019-11-19 | 拜恩科技诊断有限责任公司 | Method and kit for tumor cells subtype typing |
| US11901041B2 (en) | 2013-10-04 | 2024-02-13 | Bio-Rad Laboratories, Inc. | Digital analysis of nucleic acid modification |
| US9944977B2 (en) | 2013-12-12 | 2018-04-17 | Raindance Technologies, Inc. | Distinguishing rare variations in a nucleic acid sequence from a sample |
| EP3090063B1 (en) | 2013-12-31 | 2019-11-06 | Bio-Rad Laboratories, Inc. | Method for detection of latent retrovirus |
| WO2015195949A2 (en) | 2014-06-18 | 2015-12-23 | Clear Gene, Inc. | Methods, compositions, and devices for rapid analysis of biological markers |
| HK1243454A1 (en) | 2014-09-17 | 2018-07-13 | Hologic, Inc. | Method of partial lysis and assay |
| JP5995117B2 (en) * | 2015-01-26 | 2016-09-21 | 国立大学法人 筑波大学 | Method for detecting cancer using soluble CD155 protein |
| US10647981B1 (en) | 2015-09-08 | 2020-05-12 | Bio-Rad Laboratories, Inc. | Nucleic acid library generation methods and compositions |
| US11401558B2 (en) | 2015-12-18 | 2022-08-02 | Clear Gene, Inc. | Methods, compositions, kits and devices for rapid analysis of biological markers |
| US12275994B2 (en) | 2017-06-22 | 2025-04-15 | Clear Gene, Inc. | Methods and compositions for the analysis of cancer biomarkers |
| US10998178B2 (en) | 2017-08-28 | 2021-05-04 | Purdue Research Foundation | Systems and methods for sample analysis using swabs |
| EP3817756A4 (en) * | 2018-07-05 | 2022-03-30 | Ovation Diagnostics LLC | Bcl-2 antibodies and immunoassay for diagnosis of cancer |
| CN109374897B (en) * | 2018-11-22 | 2021-11-02 | 大连大学 | A kit for liver cancer detection |
| CA3164047A1 (en) * | 2019-12-06 | 2021-06-10 | Proteina Co., Ltd. | Method for predicting reactivity to drug targeting bcl2 family protein |
| EP4138845A4 (en) * | 2020-04-21 | 2024-10-09 | Carlo M. Croce | METHODS FOR DETECTION AND TREATMENT OF CANCERS CHARACTERIZED BY LOSS OF MIR15 AND MIR16 EXPRESSION |
| WO2021231296A1 (en) * | 2020-05-12 | 2021-11-18 | Lonza Houston, Inc. | Methods and kits for detecting adeno-associated viruses |
| CN111679076A (en) * | 2020-06-15 | 2020-09-18 | 吉林医药学院 | A detection kit for detecting cyclinD1 and BCL-2 antibodies |
| EP4511513A1 (en) * | 2022-06-01 | 2025-02-26 | Northeastern University | Enhanced specificity mass tag dna adductomics |
| WO2025075824A1 (en) * | 2023-10-02 | 2025-04-10 | Siemens Healthcare Diagnostics Inc. | Urine sediment interface with probabilistic classification binning and methods of producing and using same |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5611995A (en) * | 1993-03-17 | 1997-03-18 | Akzo Nobel N.V. | Apparatus for the detection of a specifically reacting substance |
| US20020098512A1 (en) * | 2001-01-23 | 2002-07-25 | Goodell Raegan E. | Lateral flow testing device with on-board chemical reactant |
| US20040002168A1 (en) * | 2002-06-13 | 2004-01-01 | Neuropro Technologies, Inc. | Apparatus and methods for detecting cerebrospinal fluid |
| US20060078986A1 (en) * | 2004-09-30 | 2006-04-13 | Quidel Corporation | Analytical devices with primary and secondary flow paths |
Family Cites Families (35)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3654090A (en) | 1968-09-24 | 1972-04-04 | Organon | Method for the determination of antigens and antibodies |
| NL154598B (en) | 1970-11-10 | 1977-09-15 | Organon Nv | PROCEDURE FOR DETERMINING AND DETERMINING LOW MOLECULAR COMPOUNDS AND PROTEINS THAT CAN SPECIFICALLY BIND THESE COMPOUNDS AND TEST PACKAGING. |
| US4016043A (en) | 1975-09-04 | 1977-04-05 | Akzona Incorporated | Enzymatic immunological method for the determination of antigens and antibodies |
| US4381291A (en) | 1979-02-23 | 1983-04-26 | Ab Fortia | Measurement of free ligands |
| US4260678A (en) | 1979-02-23 | 1981-04-07 | Corning Glass Works | Determining creatine kinase isoenzmes via immobilized antibody-isoenzyme complexes |
| US4343312A (en) | 1979-04-16 | 1982-08-10 | Vitafin N.V. | Pacemaker output circuit |
| FR2455743A1 (en) | 1979-05-02 | 1980-11-28 | Goella Laboratoires | METHOD AND DEVICE FOR DETERMINING SERUM LIPOPROTEINS |
| US4357311A (en) | 1980-10-03 | 1982-11-02 | Warner-Lambert Company | Substrate for immunoassay and means of preparing same |
| US4671958A (en) | 1982-03-09 | 1987-06-09 | Cytogen Corporation | Antibody conjugates for the delivery of compounds to target sites |
| US4867973A (en) | 1984-08-31 | 1989-09-19 | Cytogen Corporation | Antibody-therapeutic agent conjugates |
| US4741900A (en) | 1982-11-16 | 1988-05-03 | Cytogen Corporation | Antibody-metal ion complexes |
| JPS59500735A (en) | 1983-04-18 | 1984-04-26 | エス・ア−ル・アイ・インタ−ナシヨナル | Methods and test kits for human cancer diagnosis |
| US4617261A (en) | 1984-03-21 | 1986-10-14 | Cetus Corporation | Process for labeling nucleic acids and hybridization probes |
| US4582789A (en) | 1984-03-21 | 1986-04-15 | Cetus Corporation | Process for labeling nucleic acids using psoralen derivatives |
| US4683195A (en) | 1986-01-30 | 1987-07-28 | Cetus Corporation | Process for amplifying, detecting, and/or-cloning nucleic acid sequences |
| US5015568A (en) * | 1986-07-09 | 1991-05-14 | The Wistar Institute | Diagnostic methods for detecting lymphomas in humans |
| US4946778A (en) | 1987-09-21 | 1990-08-07 | Genex Corporation | Single polypeptide chain binding molecules |
| US5356817A (en) | 1988-06-09 | 1994-10-18 | Yale University | Methods for detecting the onset, progression and regression of gynecologic cancers |
| US5312922A (en) | 1992-04-06 | 1994-05-17 | Nordion International Inc. | Europium and terbium chelators for time-resolved fluorometric assays |
| US5539094A (en) * | 1993-11-12 | 1996-07-23 | La Jolla Cancer Research Foundation | DNA encoding Bcl-2-associated proteins |
| US5695944A (en) * | 1995-05-05 | 1997-12-09 | Thomas Jefferson University | Modulation of bcl-2 phosphorylation |
| US6811995B1 (en) | 1996-04-26 | 2004-11-02 | Children's Medical Center Corporation | Non-invasive enzyme screen for cancer |
| US5821082A (en) * | 1996-05-23 | 1998-10-13 | St. Louis University Health Sciences Center | Anti-proliferation domain of a human Bcl-2 and DNA encoding the same |
| DE19936618A1 (en) * | 1999-08-04 | 2001-03-15 | Monotec Gmbh | Diagnostic kit and its use |
| CA2398255A1 (en) * | 2000-02-01 | 2001-08-09 | Human Genome Sciences, Inc. | Bcl-2-like polynucleotides, polypeptides, and antibodies |
| KR100414637B1 (en) | 2000-02-08 | 2004-01-13 | (주)에스제이바이오메드 | Anti-human mitochondrial adenylate kinase isozyme antibody, diagnostic formulation and diagnositc kit for cardiac disease |
| WO2001075177A2 (en) | 2000-04-03 | 2001-10-11 | The Government Of The United States Of America, As Represented By The Secretary, Department Of Health And Human Services | Tumor markers in ovarian cancer |
| CA2446825A1 (en) * | 2001-05-07 | 2002-11-14 | The Burnham Institute | Methods for determining the prognosis for cancer patients using tucan |
| WO2002090931A2 (en) | 2001-05-07 | 2002-11-14 | The Burnham Institute | Methods for determining the prognosis for cancer patients using tucan |
| CA2992643C (en) | 2002-03-13 | 2019-06-18 | Genomic Health, Inc. | Gene expression profiling in biopsied tumor tissues |
| KR20030092378A (en) * | 2002-05-29 | 2003-12-06 | 박영미 | Method and kit for diagnosis of progress stage of solid cancer |
| CN1402004A (en) * | 2002-09-27 | 2003-03-12 | 江西中德生物工程有限公司 | Method for immunochromatography one-step detecting beta-adrenin agonist, medicine,and preparation of test paper therefor |
| US20040137538A1 (en) * | 2003-01-10 | 2004-07-15 | Bradford Sherry A. | Cancer comprehensive assay kit for identifying cancer protein patterns |
| US7288383B2 (en) | 2003-01-15 | 2007-10-30 | The Brigham And Women's Hospital, Inc. | Eosinophil-derived neurotoxin as a marker for ovarian cancer |
| RU2436098C2 (en) | 2006-02-09 | 2011-12-10 | Юниверсити Оф Саут Флорида | Cancer detection by high bcl-2 levels |
-
2007
- 2007-02-09 RU RU2008136193/15A patent/RU2436098C2/en not_active IP Right Cessation
- 2007-02-09 AT AT07763533T patent/ATE538386T1/en active
- 2007-02-09 KR KR1020087019574A patent/KR20080114689A/en not_active Withdrawn
- 2007-02-09 AU AU2007212278A patent/AU2007212278A1/en not_active Abandoned
- 2007-02-09 NZ NZ570008A patent/NZ570008A/en unknown
- 2007-02-09 US US11/704,408 patent/US8034549B2/en active Active
- 2007-02-09 EP EP07763533A patent/EP1996940B1/en active Active
- 2007-02-09 WO PCT/US2007/003608 patent/WO2007092627A2/en active Application Filing
- 2007-02-09 JP JP2008554404A patent/JP4896994B2/en not_active Expired - Fee Related
- 2007-02-09 CA CA2642051A patent/CA2642051C/en active Active
- 2007-02-09 CN CNA2007800049603A patent/CN101384903A/en active Pending
- 2007-02-09 SG SG201100891-9A patent/SG169395A1/en unknown
- 2007-02-09 BR BRPI0707645A patent/BRPI0707645B8/en active IP Right Grant
-
2008
- 2008-07-02 ZA ZA200805787A patent/ZA200805787B/en unknown
- 2008-07-17 IL IL192866A patent/IL192866A/en not_active IP Right Cessation
- 2008-09-08 NO NO20083820A patent/NO20083820L/en not_active Application Discontinuation
-
2011
- 2011-08-08 US US13/205,095 patent/US20110318763A1/en not_active Abandoned
-
2016
- 2016-05-20 US US15/160,649 patent/US20160258960A1/en not_active Abandoned
-
2018
- 2018-11-14 US US16/190,475 patent/US11156613B2/en active Active
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5611995A (en) * | 1993-03-17 | 1997-03-18 | Akzo Nobel N.V. | Apparatus for the detection of a specifically reacting substance |
| US20020098512A1 (en) * | 2001-01-23 | 2002-07-25 | Goodell Raegan E. | Lateral flow testing device with on-board chemical reactant |
| US20040002168A1 (en) * | 2002-06-13 | 2004-01-01 | Neuropro Technologies, Inc. | Apparatus and methods for detecting cerebrospinal fluid |
| US20060078986A1 (en) * | 2004-09-30 | 2006-04-13 | Quidel Corporation | Analytical devices with primary and secondary flow paths |
Non-Patent Citations (4)
| Title |
|---|
| Johnson et al AACR, abs#1339, 2004 * |
| MedSystems Bcl-2 ELISA kit, March 2005 * |
| USF online publication, Tech ID #05B108, 2005 * |
| Zymed Bcl-2 ELISA kit, 2005 * |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2016053689A1 (en) * | 2014-09-30 | 2016-04-07 | Ge Healthcare Uk Limited | Methods and devices relating to the detection of oral cancer biomarkers |
| CN107075438A (en) * | 2014-09-30 | 2017-08-18 | 通用电气医疗集团英国有限公司 | It is related to the method and apparatus of detection carcinoma of mouth biomarker |
Also Published As
| Publication number | Publication date |
|---|---|
| EP1996940A4 (en) | 2009-10-21 |
| US11156613B2 (en) | 2021-10-26 |
| WO2007092627A3 (en) | 2008-11-13 |
| IL192866A (en) | 2013-04-30 |
| NZ570008A (en) | 2011-10-28 |
| BRPI0707645B8 (en) | 2021-07-27 |
| NO20083820L (en) | 2008-11-07 |
| CA2642051C (en) | 2017-01-24 |
| JP2009526234A (en) | 2009-07-16 |
| US20080009005A1 (en) | 2008-01-10 |
| EP1996940B1 (en) | 2011-12-21 |
| RU2008136193A (en) | 2010-03-20 |
| SG169395A1 (en) | 2011-03-30 |
| AU2007212278A1 (en) | 2007-08-16 |
| CA2642051A1 (en) | 2007-08-16 |
| WO2007092627A2 (en) | 2007-08-16 |
| US20190072556A1 (en) | 2019-03-07 |
| BRPI0707645B1 (en) | 2019-04-09 |
| CN101384903A (en) | 2009-03-11 |
| EP1996940A2 (en) | 2008-12-03 |
| RU2436098C2 (en) | 2011-12-10 |
| BRPI0707645A2 (en) | 2011-05-10 |
| ZA200805787B (en) | 2009-05-27 |
| JP4896994B2 (en) | 2012-03-14 |
| KR20080114689A (en) | 2008-12-31 |
| US8034549B2 (en) | 2011-10-11 |
| ATE538386T1 (en) | 2012-01-15 |
| WO2007092627A9 (en) | 2007-10-18 |
| US20160258960A1 (en) | 2016-09-08 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US11156613B2 (en) | Detection of cancer by elevated levels of bcl-2 | |
| US20100184049A1 (en) | Glycoprotein Profiling of Bladder Cancer | |
| CN103140760B (en) | Colorectal Cancer Diagnosis | |
| KR101051435B1 (en) | Colorectal cancer diagnostic kit using colorectal cancer-related markers and colorectal cancer diagnostic method using the same | |
| US20180238890A1 (en) | Methods and materials for detection, diagnosis and management of ovarian cancer | |
| WO2011127056A2 (en) | Biomarkers for assessing exposure to ionizing radiation and absorbed dose | |
| CN104136630A (en) | Markers for diagnosis and prediction of breast cancer | |
| JP2018136122A (en) | Plasma biomarker panel for diagnosing pancreatic cancer | |
| KR20130046457A (en) | Newly identified colorectal cancer marker genes, proteins translated from the genes and a diagnostic kit using the same | |
| KR20190102978A (en) | Composition for diagnosing cancer | |
| US20130217015A1 (en) | Hmga2 as a biomarker for diagnosis and prognosis of ovarian cancer | |
| EP4332242A1 (en) | Method for predicting prognosis of gastric cancer | |
| KR102136747B1 (en) | Diagnostic Biomarker For Prognosis of Intestinal Type Gastric Cancer | |
| CN113817829A (en) | Use of biomarkers for the preparation of a product for predicting the sensitivity of colorectal cancer to treatment with oxaliplatin | |
| CN113846165A (en) | Application of biomarker in prediction of sensitivity of colorectal cancer to oxaliplatin treatment | |
| US20150093768A1 (en) | Detection of prostate and bladder cancer | |
| Kruk | Detection ofcancer by elevated levels of BCL-2 | |
| KR101901457B1 (en) | Novel Biomarkers for Liver Cancer Based on Liver Cancer Stem Cell Characteristics and Uses thereof | |
| MX2008010297A (en) | Detection of cancer by elevated levels of bcl-2 | |
| TWI757285B (en) | Method for detection of a cancer | |
| CN119162323A (en) | Application of LRTOR in early warning of osimertinib resistance and metastasis in NSCLC, guiding osimertinib clinical use and disease prognosis |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- AFTER EXAMINER'S ANSWER OR BOARD OF APPEALS DECISION |