US20110297783A1 - Rolling projectile with extending and retracting canards - Google Patents

Rolling projectile with extending and retracting canards Download PDF

Info

Publication number
US20110297783A1
US20110297783A1 US12/912,252 US91225210A US2011297783A1 US 20110297783 A1 US20110297783 A1 US 20110297783A1 US 91225210 A US91225210 A US 91225210A US 2011297783 A1 US2011297783 A1 US 2011297783A1
Authority
US
United States
Prior art keywords
projectile
canards
extended
retracted
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US12/912,252
Other versions
US8319164B2 (en
Inventor
Marcelo Edgardo Martinez
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nostromo Holdings LLC
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US12/912,252 priority Critical patent/US8319164B2/en
Assigned to KMS CONSULTING LLC reassignment KMS CONSULTING LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MARTINEZ, MARCELO EDGARDO
Priority to AU2011322264A priority patent/AU2011322264A1/en
Priority to EP10858878.1A priority patent/EP2633260A4/en
Priority to PCT/IB2010/003543 priority patent/WO2012056267A1/en
Priority to SG2012029625A priority patent/SG181417A1/en
Priority to JP2013535520A priority patent/JP2014506986A/en
Priority to CA2772584A priority patent/CA2772584A1/en
Priority to KR1020127021831A priority patent/KR20130121671A/en
Priority to BR112012015268A priority patent/BR112012015268A2/en
Publication of US20110297783A1 publication Critical patent/US20110297783A1/en
Assigned to NOSTROMO, LLC reassignment NOSTROMO, LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KMS CONSLTING, LLC
Priority to ZA2012/02457A priority patent/ZA201202457B/en
Publication of US8319164B2 publication Critical patent/US8319164B2/en
Application granted granted Critical
Assigned to NOSTROMO HOLDINGS, LLC reassignment NOSTROMO HOLDINGS, LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: NOSTROMO, LLC
Expired - Fee Related legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B10/00Means for influencing, e.g. improving, the aerodynamic properties of projectiles or missiles; Arrangements on projectiles or missiles for stabilising, steering, range-reducing, range-increasing or fall-retarding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B15/00Self-propelled projectiles or missiles, e.g. rockets; Guided missiles
    • F42B15/01Arrangements thereon for guidance or control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B10/00Means for influencing, e.g. improving, the aerodynamic properties of projectiles or missiles; Arrangements on projectiles or missiles for stabilising, steering, range-reducing, range-increasing or fall-retarding
    • F42B10/02Stabilising arrangements
    • F42B10/14Stabilising arrangements using fins spread or deployed after launch, e.g. after leaving the barrel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B10/00Means for influencing, e.g. improving, the aerodynamic properties of projectiles or missiles; Arrangements on projectiles or missiles for stabilising, steering, range-reducing, range-increasing or fall-retarding
    • F42B10/32Range-reducing or range-increasing arrangements; Fall-retarding means
    • F42B10/38Range-increasing arrangements
    • F42B10/42Streamlined projectiles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B10/00Means for influencing, e.g. improving, the aerodynamic properties of projectiles or missiles; Arrangements on projectiles or missiles for stabilising, steering, range-reducing, range-increasing or fall-retarding
    • F42B10/32Range-reducing or range-increasing arrangements; Fall-retarding means
    • F42B10/38Range-increasing arrangements
    • F42B10/42Streamlined projectiles
    • F42B10/46Streamlined nose cones; Windshields; Radomes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B10/00Means for influencing, e.g. improving, the aerodynamic properties of projectiles or missiles; Arrangements on projectiles or missiles for stabilising, steering, range-reducing, range-increasing or fall-retarding
    • F42B10/60Steering arrangements
    • F42B10/62Steering by movement of flight surfaces
    • F42B10/64Steering by movement of flight surfaces of fins

Definitions

  • This invention is directed to a system for controlling missiles or projectiles, where canards extend and retract at predetermined frequencies.
  • a missile or projectile with a rolling airframe has an airframe that is free to roll or its rolling motion is controlled by a device (such as a rolleron) to keep the roll rate at a certain value. Aerodynamic controlled deflections can then be coordinated with the roll position, which is calculated by roll-resolvers using roll gyros.
  • a typical example is the Sidewinder missile, which uses four steering canards.
  • Another embodiment of the rolling airframe uses only one pair of aerodynamic control surfaces and deflects them in a proper position to satisfy the guidance and control vector demand.
  • Two schemes of control by a single pair of deflecting canards have been used in RAM missiles.
  • the canards generate the lift forces by deflecting the canards by a certain angle by an actuator according to the roll position and the lift required to generate the lateral acceleration to change the trajectory angle.
  • the canards once deployed, vibrate or dither at some frequency in the rolling airframe to create the appropriate lateral force to steer the missile or projectile.
  • Dithering canards are simpler than deflectable canards with specific angles of deflection because it is not necessary to have a complex servomechanism to deflect them.
  • the dithering canard scheme needs to be packed and then deployed after launch, which usually makes the mechanical design complex.
  • RCFC roll controlled fixed canard
  • the RCFC system is an integrated fuze and guidance- and flight-control system that uses global positioning system (GPS) and/or inertial navigational system (INS) navigation and that is installed by replacing current fuze hardware in existing mortars or other projectiles.
  • GPS global positioning system
  • INS inertial navigational system
  • a typical projectile having the RCFC system comprises:
  • Trajectory errors can be corrected in two ways: Assuming an overshoot, a deployable set of brake fins or disks is used to correct the range errors. This assumes that the target is at a range shorter than at which the weapon is aimed, because it only can waste kinetic energy by braking the projectile by the use of aerodynamic brakes.
  • a deflection correction is based on the fact that a very fast spinning projectile will divert (drift) to one side depending of the roll motion direction, and therefore changing the roll rate changes the amount of the lateral drift.
  • the spin correction fins of Pristash do exactly this by extending or retracting spin fins which are at fixed incidence but in opposite directions. The spin rate, and hence the deflection, is controlled. However, the gun or weapon must be aimed in a specific direction prior to shooting so that by changing the spin rate and braking the velocity over the trajectory, the desired target can be hit.
  • the projectile or missile will have a GPS or INS navigational system that will be in operative communication with the canards in the forward section.
  • a cost-effective 2 or 3 DOF steering system when coupled with a GPS or INS navigation system, provides course correction to improve the targeting precision of mortars, bombs, artillery projectiles and missiles.
  • tail fins to produce rotation are provided, which tail fins cause the projectile to slowly roll in flight.
  • a flight control system comprises canards that extend and retract for times and at predetermined frequencies on the forward end of the projectile.
  • the flight control system is attached to or incorporated within the body of the projectile. During projectile flight, the flight control system measures the projectile's position (using GPS or INS technology), and then the flight control system, which includes sensors, initiates flight control actuators that precisely extend and retract the canards.
  • the relative rotational position and canard extension (from the projectile body) varies as an actuator controls the positional extension of the canards.
  • the controlled extension and retraction of the canards varies the lift on the forward, leading edge of the projectile fuze.
  • the resulting variation of lift on the forward point of the fuze provides for variation of the angle of attack on the nose and forward canards. This system provides a low g correction of the projectile's path.
  • the simplicity of the RCFC concept (only one signal to steer the projectile using the brake system) is maintained, but it is coupled with the fixed incidence of extending and retracting canards using only one linear actuator while the complete airframe is rolling by the use of canted tail fins.
  • the rolling motion is required to obtain the lateral force vector in the desired direction due to only one pair of canards being present.
  • Roll motion is not produced to create gyroscopic stability, nor to control the spin rate to use the gyroscopic drift as lateral force producer.
  • a slowly rolling projectile when coupled with a GPS or INS navigational system, provides course correction to improve the precision of mortars, bombs, artillery projectiles, and missiles.
  • the steering system includes tail fins, canards, a GPS and/or INS navigational system, a flight control computer, and an interface to the fuze and projectile or missile body.
  • Tail fins are placed at an angle to the longitudinal axis that induces rotation and creates a slowly rolling projectile in flight.
  • the steering system includes extending and retracting canards.
  • the steering system is fixed to the projectile body.
  • the canards are planar and preferably canted at a fixed angle to the longitudinal axis, and they are at fixed incidence.
  • the GPS and/or INS navigational system measures the projectile's position, and the flight control computer initiates flight control actuators that precisely extend and retract the canards.
  • the controlled extension and retraction of the canards varies the lift on the nose or fuze of the projectile.
  • the resultant variation in lift on the nose or fuze of the projectile provides a trim angle of attack of the entire projectile, which produces a lateral force that steers the projectile into a desired path to correct the errors such as variation of muzzle velocity, mortar laying errors, and meteo.
  • a particularly relevant aspect of the invention herein is that it is a simple way to generate control forces in mortar projectiles, using a device which can be integrated with a fuze, can be armed in a system at low cost, and is compatible with current developments in GPS/INS guidance packages of these types of smart projectiles.
  • Preset aiming is not necessary according to the invention, because in both cases the gun/weapon will be aimed at the intended target and the ballistic computations will determine the errors of the calculated nominal trajectory, which will be compensated by the guidance and control system extending and retracting canards in a rolling airframe.
  • FIG. 1 is a substantially cross-sectional view of a schematic of an embodiment of the invention wherein canards are extended;
  • FIG. 2 is a substantially cross-sectional view of a schematic in FIG. 1 wherein the canards are retracted;
  • FIG. 3 is a block diagram representing the control system according to the invention.
  • FIG. 4 is a representation of the projectile rotation according to the invention, showing the positions at which the canards are extended and retracted;
  • FIG. 5 is a side view of the forward portion of a projectile according to the invention.
  • FIG. 6 is a graph of the path of a projectile from launch to impact, with height in the ordinate and distance in the abscissa;
  • FIG. 7 is a graph of the path of the projectile in FIG. 3 where the calculated correction is shown as a function of distance.
  • FIG. 8 is a schematic representation of the corrected and uncorrected projectile paths.
  • FIGS. 1 to 8 of the drawings The preferred embodiments of the present invention will now be described with reference to FIGS. 1 to 8 of the drawings. Identical elements in the various figures are designated with the same reference numerals.
  • FIGS. 1 and 2 are each a substantially cross-sectional representation of a mortar according to the invention.
  • a mortar 2 has a front, or fuze, section 4 and a rear section 6 .
  • Rear section 6 comprises tail fins 10 , which tail fins 10 are proportional and angled to stabilize mortar 2 in flight as well as to cause a slight roll.
  • Front section 4 comprises canards 12 that extend or retract from housing 14 .
  • Canards 12 are shown extended in FIG. 1 and retracted in FIG. 2 .
  • Canards 12 are engaged by one or more actuators 16 , which are in communication with a flight control system 18 .
  • Flight control section 18 comprises a navigational system such as a GPS or INS and, preferably, a CPU.
  • canards 12 Preferably there are two canards 12 . Optimally there could be from 2 to 8 canards, preferably equidistantly positioned around housing 14 .
  • the size of the canards will depend upon several factors, including the sign of the projectile. For example, for a mortar having a length of from about 0.5 to almost 1.5 m, the canards could each be from about 10 to about 50 cm in width and about 10 to about 50 cm in length, the surface area extending radially from the outer surface of housing 14 .
  • a roll gyro 32 communicates roll information, for example, roll angle and angular velocity, to CPU 30 .
  • CPU 30 processes the location and roll information and then, when appropriate, sends signals to actuator 34 .
  • Actuator 16 or 34 is an electrical or mechanical device that causes one or both canards 12 to extend or retract as desired, preferably for times and/or at frequencies that correspond to the rate of rotation of the projectile.
  • the canards may extend from the housing once per cycle, that is, once per rotation of the projectile, for from one-third to one-half the cycle, the timing dependent upon the rotation and the correction necessary.
  • the canards can extend and retract more than once a cycle, or less than every cycle, or for most or all of a cycle, dependent upon the correction required.
  • the frequency of the extension and retraction of the canards will be from about 2 to about 20 times/sec., more preferably from about 5 to about 10 times/sec.
  • canards 12 may be extended partially or fully and not retracted for a set period of time.
  • the canards will be extended once and retracted once during one rotation of a projectile.
  • the diagram shown in FIG. 4 represents one 360° rotation of a projectile. If the projectile is to be guided to the right, both canards are extended from its surface when the projectile rotates to a position approximately 60° from the top position. The canards remain partially or fully extended as the projectile rotates to an angle of 120°, and are then retracted. If the projectile is to be guided to the left, the canards are extended during the period that it rotates between angles in the range of 240° to 300°, at which time the canards again retract. Retraction is complete as the projectile rotates to 300°. This can be repeated, or varied, for each rotation of the projectile, dependent upon the correction required.
  • a forward section 40 of a projectile has a canard 42 that is radially extended from a housing 44 of forward section 40 .
  • Canard 42 is at an angle 48 to longitudinal axis 50 .
  • Angle 48 can be from about 2° to about 20°, preferably from about 4° to about 10°, more preferably about 5°.
  • a mortar with a mass of 4.40 kg was fired at an initial angle of 45° with a velocity of 300.00 m/sec.
  • the rotational frequency was 8.00 Hz, at the maximum lateral acceleration.
  • the time of the flight was 36.40 sec, the range being 5506.0 m.
  • the maximum height was 1640.30 m, at which point the velocity of the projectile was at a minimum of 147.24 m/sec. This occurred 19.50 sec after launch.
  • the velocity at impact was 194.76 m/sec, at an angle of 54.73°.
  • the maximum lateral correction was calculated at 233.69 m.
  • FIG. 6 is a graph that represents the height of the path of the projectile from launch to impact, without canards extended.
  • FIG. 7 is a graph that represents the amount of lateral correction necessary.
  • FIG. 8 is a 3-dimensional representation that represents the uncorrected path 54 of the projectile as compared to a corrected path 56 with corrections according to the invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Chemical & Material Sciences (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)
  • Prostheses (AREA)

Abstract

A slow rolling projectile comprises a projectile body has a forward section and a rear section and having a longitudinal axis. Two or more canards in the forward section are capable of being extended from and retracted into the projectile body at predetermined frequencies and/or for predetermined times. Two or more tail fins in the rear section are fixed coextensive to or at an angle to the longitudinal axis, and an actuator extends and retracts the canards. The canards are capable of being extended and retracted at a rate based on the rotation of the projectile sufficient to correct for lateral movement. A GPS or INS navigational system activates an actuator to extend and retract the canards.

Description

    CROSS-REFERENCE TO RELATED APPLICATION
  • This application is based upon and claims the priority of co-pending and commonly assigned U.S. Provisional Patent Application Ser. No. 61/254,840, filed Oct. 26, 2009, incorporated herein in its entirety by reference.
  • FIELD OF THE INVENTION
  • This invention is directed to a system for controlling missiles or projectiles, where canards extend and retract at predetermined frequencies.
  • BACKGROUND OF THE INVENTION
  • In the field of guided weapons there are primarily two possible aerodynamically controlled airframes, namely, a rolling airframe and a roll stabilized airframe. These two schemes cover most of the missiles and projectiles with aerodynamic controls.
  • A missile or projectile with a rolling airframe has an airframe that is free to roll or its rolling motion is controlled by a device (such as a rolleron) to keep the roll rate at a certain value. Aerodynamic controlled deflections can then be coordinated with the roll position, which is calculated by roll-resolvers using roll gyros. A typical example is the Sidewinder missile, which uses four steering canards.
  • Another embodiment of the rolling airframe uses only one pair of aerodynamic control surfaces and deflects them in a proper position to satisfy the guidance and control vector demand.
  • General Dynamics pioneered several new design features to create the Redeye missile, which was the first rolling airframe missile (RAM). Unlike conventional roll stabilized missiles which are steered in two axes, pitch and yaw, by two (pitch, yaw) control channels, a RAM uses a single control channel which is “phased” to introduce pitch and yaw commands subject to the missile's instantaneous orientation (roll angle) in roll. In this fashion a single pair of control surfaces can do the work of two pairs of control surfaces, reducing weight and space requirements with some penalty in maneuver performance. General Dynamics applied further new technology to the Redeye missile by designing all of the guidance and control electronics with solid state transistor and integrated circuit technology, a first in tactical missiles. Another major weight saving measure was the use of electrical control actuators to displace bulkier conventional hydraulics. Internal wiring harnesses in the missile were replaced with lighter, flexible, flat printed wiring harnesses.
  • Two schemes of control by a single pair of deflecting canards have been used in RAM missiles. In one of the schemes, the canards generate the lift forces by deflecting the canards by a certain angle by an actuator according to the roll position and the lift required to generate the lateral acceleration to change the trajectory angle. In the other scheme, referred to as “Dithering Canards,” the canards, once deployed, vibrate or dither at some frequency in the rolling airframe to create the appropriate lateral force to steer the missile or projectile.
  • Dithering canards are simpler than deflectable canards with specific angles of deflection because it is not necessary to have a complex servomechanism to deflect them. However, the dithering canard scheme needs to be packed and then deployed after launch, which usually makes the mechanical design complex.
  • Seeking simplicity and low cost solutions to be used in the control of guided mortar projectiles, General Dynamics found a solution with the so-called roll controlled fixed canard (RCFC) system, as set forth in U.S. Pat. No. 7,354,017 to Morris et al. The RCFC system is an integrated fuze and guidance- and flight-control system that uses global positioning system (GPS) and/or inertial navigational system (INS) navigation and that is installed by replacing current fuze hardware in existing mortars or other projectiles. A typical projectile having the RCFC system comprises:
      • (a) a nose section with a guidance package, a set of spinning strakes, and a set of two fixed deflected canards;
      • (b) a brake unit section, with a brake system (friction or magneto rheological fluid), to modulate the spin of the guidance section with the projectile body and stabilizing fins; and
      • (c) a projectile body with multiple canted fins.
        The projectile is designed to couple and decouple the two sections (nose and main) that can rotate in different directions with variable spin rates, or rotate as a single body, dependent upon the braking force. If the rotation rate is close to zero in the reference frame, the fixed deflected canards will trim the projectile and generate lateral normal force, which will steer the projectile in the desired or demand vector requested by the guidance system (for example, GPS or INS). However, this system is quite complex and not practical for many projectiles.
  • Another concept to create trajectory correction to artillery projectiles is disclosed in PCT Published Application No. WO 2008/143707 to Pritash. Trajectory errors can be corrected in two ways: Assuming an overshoot, a deployable set of brake fins or disks is used to correct the range errors. This assumes that the target is at a range shorter than at which the weapon is aimed, because it only can waste kinetic energy by braking the projectile by the use of aerodynamic brakes.
  • A deflection correction is based on the fact that a very fast spinning projectile will divert (drift) to one side depending of the roll motion direction, and therefore changing the roll rate changes the amount of the lateral drift. The spin correction fins of Pristash do exactly this by extending or retracting spin fins which are at fixed incidence but in opposite directions. The spin rate, and hence the deflection, is controlled. However, the gun or weapon must be aimed in a specific direction prior to shooting so that by changing the spin rate and braking the velocity over the trajectory, the desired target can be hit.
  • Similar to the control system discussed above, this system is much more complex than is needed for slow rolling projectiles.
  • SUMMARY OF THE INVENTION
  • It is an object of this invention to provide a novel system for controlling missiles or projectiles, which is simpler and less expensive than the systems described above.
  • It is also an object of this invention to provide a rolling projectile with extending and retracting canards.
  • It is a further object of this invention to provide missiles or projectiles where canards extend and retract for times and at predetermined frequencies corresponding to the rate of rotation of the projectile.
  • It is a yet further object of this invention to provide a projectile comprising:
      • a projectile body having a forward section and a rear section and having a longitudinal axis;
      • two or more canards in the forward section on opposite sides of the projectile that are capable of being extended and retracted for times and at frequencies corresponding to the rate of rotation of the projectile;
      • two or more tail fins in the rear section that are fixed coextensive to or at an angle to the longitudinal axis; and
      • an actuator capable of extending and retracting the canards,
      • wherein after the projectile is fired along a path, the canards are extended from and retracted into the projectile body for times and at frequencies related to rotation of the projectile to correct the path of the projectile.
  • It is a yet further object of the invention that the projectile or missile will have a GPS or INS navigational system that will be in operative communication with the canards in the forward section.
  • These and other objects of the invention will become more apparent from the disclosure herein.
  • According to the invention, a cost-effective 2 or 3 DOF steering system, when coupled with a GPS or INS navigation system, provides course correction to improve the targeting precision of mortars, bombs, artillery projectiles and missiles. In one aspect of the invention, tail fins to produce rotation are provided, which tail fins cause the projectile to slowly roll in flight. A flight control system comprises canards that extend and retract for times and at predetermined frequencies on the forward end of the projectile.
  • The flight control system is attached to or incorporated within the body of the projectile. During projectile flight, the flight control system measures the projectile's position (using GPS or INS technology), and then the flight control system, which includes sensors, initiates flight control actuators that precisely extend and retract the canards.
  • As the projectile rotates, the relative rotational position and canard extension (from the projectile body) varies as an actuator controls the positional extension of the canards. The controlled extension and retraction of the canards varies the lift on the forward, leading edge of the projectile fuze. The resulting variation of lift on the forward point of the fuze provides for variation of the angle of attack on the nose and forward canards. This system provides a low g correction of the projectile's path.
  • According to the invention, the simplicity of the RCFC concept (only one signal to steer the projectile using the brake system) is maintained, but it is coupled with the fixed incidence of extending and retracting canards using only one linear actuator while the complete airframe is rolling by the use of canted tail fins. In both concepts, the rolling motion is required to obtain the lateral force vector in the desired direction due to only one pair of canards being present. Roll motion is not produced to create gyroscopic stability, nor to control the spin rate to use the gyroscopic drift as lateral force producer.
  • Thus, a slowly rolling projectile, when coupled with a GPS or INS navigational system, provides course correction to improve the precision of mortars, bombs, artillery projectiles, and missiles.
  • The steering system according to the invention includes tail fins, canards, a GPS and/or INS navigational system, a flight control computer, and an interface to the fuze and projectile or missile body. Tail fins are placed at an angle to the longitudinal axis that induces rotation and creates a slowly rolling projectile in flight. On the forward end of the projectile the steering system includes extending and retracting canards. The steering system is fixed to the projectile body. The canards are planar and preferably canted at a fixed angle to the longitudinal axis, and they are at fixed incidence.
  • During projectile flight the GPS and/or INS navigational system measures the projectile's position, and the flight control computer initiates flight control actuators that precisely extend and retract the canards. The controlled extension and retraction of the canards varies the lift on the nose or fuze of the projectile. The resultant variation in lift on the nose or fuze of the projectile provides a trim angle of attack of the entire projectile, which produces a lateral force that steers the projectile into a desired path to correct the errors such as variation of muzzle velocity, mortar laying errors, and meteo.
  • The current requirements for precision fires and minimum collateral damage for the actual battlefield requires low cost solutions for control devices to be applied in smart weapons. Mortar projectiles with correction systems based on low cost GPS/INS meet these requirements.
  • The current trend in the case of low cost guided or corrected mortar munitions is characterized by the following requirement matrix:
      • low cost;
      • fire and forget;
      • corrected trajectory to minimizing nominal trajectory errors;
      • GPS/INS navigation compatible with desired weapon CEP and Pk; and capability to engage targets in zone of impact
  • Desired features of the system could be described as follows:
      • 1. Increased effectiveness and efficiency of mortar weapons, where the CEP is drastically reduced, the logistics are reduced, and the OPTEMPO is increased.
      • 2. Large existing mortar projectile stocks/current unguided mortar development can be used. This includes existing bodies/tails and fuzes.
      • 3. The corrector must still be a fuze that is easy to install and program and is hardy enough for field handling.
  • The control and guidance system disclosed and claimed herein has the following advantages:
      • 1. Flip-out fixed incidence planar canards (two canards).
      • 2. One single electromechanical actuator.
      • 3. LATAX demanded by the guidance system tuned with flip-out frequency and/or canard aperture.
      • 4. Rolling driven moment produced by canted tail/nose fins.
      • 5. Static pitch stability that is not strongly affected by forward canards' aero-surfaces, where the static stability is decreased with canard exposure, thus increasing the trim angle, to cause lateral acceleration.
  • A particularly relevant aspect of the invention herein is that it is a simple way to generate control forces in mortar projectiles, using a device which can be integrated with a fuze, can be armed in a system at low cost, and is compatible with current developments in GPS/INS guidance packages of these types of smart projectiles.
  • Preset aiming is not necessary according to the invention, because in both cases the gun/weapon will be aimed at the intended target and the ballistic computations will determine the errors of the calculated nominal trajectory, which will be compensated by the guidance and control system extending and retracting canards in a rolling airframe.
  • For a full understanding of the present invention, reference should now be made to the following detailed description of the preferred embodiments of the invention as illustrated in the accompanying drawings.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a substantially cross-sectional view of a schematic of an embodiment of the invention wherein canards are extended;
  • FIG. 2 is a substantially cross-sectional view of a schematic in FIG. 1 wherein the canards are retracted;
  • FIG. 3 is a block diagram representing the control system according to the invention;
  • FIG. 4 is a representation of the projectile rotation according to the invention, showing the positions at which the canards are extended and retracted;
  • FIG. 5 is a side view of the forward portion of a projectile according to the invention;
  • FIG. 6 is a graph of the path of a projectile from launch to impact, with height in the ordinate and distance in the abscissa;
  • FIG. 7 is a graph of the path of the projectile in FIG. 3 where the calculated correction is shown as a function of distance; and
  • FIG. 8 is a schematic representation of the corrected and uncorrected projectile paths.
  • DETAILED DESCRIPTION OF THE INVENTION
  • The preferred embodiments of the present invention will now be described with reference to FIGS. 1 to 8 of the drawings. Identical elements in the various figures are designated with the same reference numerals.
  • FIGS. 1 and 2 are each a substantially cross-sectional representation of a mortar according to the invention. A mortar 2 has a front, or fuze, section 4 and a rear section 6. Rear section 6 comprises tail fins 10, which tail fins 10 are proportional and angled to stabilize mortar 2 in flight as well as to cause a slight roll.
  • Front section 4 comprises canards 12 that extend or retract from housing 14. Canards 12 are shown extended in FIG. 1 and retracted in FIG. 2. Canards 12 are engaged by one or more actuators 16, which are in communication with a flight control system 18. Flight control section 18 comprises a navigational system such as a GPS or INS and, preferably, a CPU. Preferably there is a battery or other power source 22 to provide power to flight control system 18 and actuator 16.
  • Preferably there are two canards 12. Optimally there could be from 2 to 8 canards, preferably equidistantly positioned around housing 14.
  • The size of the canards will depend upon several factors, including the sign of the projectile. For example, for a mortar having a length of from about 0.5 to almost 1.5 m, the canards could each be from about 10 to about 50 cm in width and about 10 to about 50 cm in length, the surface area extending radially from the outer surface of housing 14.
  • The control system according to the invention is shown in the block diagram set forth in FIG. 3. A GPS 24 and an INS 26, INS 26 being optional, each communicate signals reflecting location information to a CPU 30. A roll gyro 32 communicates roll information, for example, roll angle and angular velocity, to CPU 30. CPU 30 processes the location and roll information and then, when appropriate, sends signals to actuator 34.
  • Actuator 16 or 34 is an electrical or mechanical device that causes one or both canards 12 to extend or retract as desired, preferably for times and/or at frequencies that correspond to the rate of rotation of the projectile. For example, the canards may extend from the housing once per cycle, that is, once per rotation of the projectile, for from one-third to one-half the cycle, the timing dependent upon the rotation and the correction necessary. There may be situations where the canards can extend and retract more than once a cycle, or less than every cycle, or for most or all of a cycle, dependent upon the correction required. There may be one particular frequency at which the actuator operates or, optionally, the frequency may vary according to signals from flight control system 18. It is within the scope of the invention that the frequency of the extension and retraction of the canards will be from about 2 to about 20 times/sec., more preferably from about 5 to about 10 times/sec. Optionally canards 12 may be extended partially or fully and not retracted for a set period of time.
  • Typically the canards will be extended once and retracted once during one rotation of a projectile. The diagram shown in FIG. 4 represents one 360° rotation of a projectile. If the projectile is to be guided to the right, both canards are extended from its surface when the projectile rotates to a position approximately 60° from the top position. The canards remain partially or fully extended as the projectile rotates to an angle of 120°, and are then retracted. If the projectile is to be guided to the left, the canards are extended during the period that it rotates between angles in the range of 240° to 300°, at which time the canards again retract. Retraction is complete as the projectile rotates to 300°. This can be repeated, or varied, for each rotation of the projectile, dependent upon the correction required.
  • In FIG. 5, a forward section 40 of a projectile has a canard 42 that is radially extended from a housing 44 of forward section 40. Canard 42 is at an angle 48 to longitudinal axis 50. Angle 48 can be from about 2° to about 20°, preferably from about 4° to about 10°, more preferably about 5°.
  • Example
  • In a calculated example of an embodiment of the invention, a mortar with a mass of 4.40 kg was fired at an initial angle of 45° with a velocity of 300.00 m/sec. The rotational frequency was 8.00 Hz, at the maximum lateral acceleration.
  • The time of the flight was 36.40 sec, the range being 5506.0 m. The maximum height was 1640.30 m, at which point the velocity of the projectile was at a minimum of 147.24 m/sec. This occurred 19.50 sec after launch. The velocity at impact was 194.76 m/sec, at an angle of 54.73°. The maximum lateral correction was calculated at 233.69 m.
  • FIG. 6 is a graph that represents the height of the path of the projectile from launch to impact, without canards extended. FIG. 7 is a graph that represents the amount of lateral correction necessary. FIG. 8 is a 3-dimensional representation that represents the uncorrected path 54 of the projectile as compared to a corrected path 56 with corrections according to the invention.
  • There has thus been shown and described a novel rolling projectile with extending and retracting canards, particularly one which fulfills all the objects and advantages sought therefore. Many changes, modifications, variations and other uses and applications of the subject invention will, however, become apparent to those skilled in the art after considering this specification and the accompanying drawings which disclose the preferred embodiments thereof. All such changes, modifications, variations and other uses and applications which do not depart from the spirit and scope of the invention are deemed to be covered by the invention, which is to be limited only by the claims which follow.

Claims (9)

1. A projectile comprising:
a projectile body having a forward section and a rear section and having a longitudinal axis;
two or more canards in the forward section on opposite sides of the projectile that are capable of being extended from and retracted into the projectile body for times and at frequencies corresponding to the rate of rotation of the projectile;
two or more tail fins in the rear section that are fixed coextensive to or at an angle to the longitudinal axis, and
an actuator for extending and retracting the canards,
wherein, after the projectile is fired along a path, the canards are extended from and retracted into the projectile body for times and frequencies related to rotation of the projectile to correct the path of the projectile.
2. The projectile of claim 1, wherein the canards are extended and retracted at such frequency, and at such periods during rotation of the projectile, so as to cause lateral movement.
3. The projectile of claim 2, wherein the canards are extended and retracted at a frequency of at least once every rotation of the projectile.
4. The projectile of claim 1 which also comprises a control system that activates the actuator to extend and retract the canards.
5. The projectile of claim 4, wherein the control system includes a GPS navigational system or an INS navigational system, or both, for determining the location in space of the projectile.
6. The projectile of claim 1, wherein the control system includes a roll gyro system for determining the angular position of the projectile.
7. The projectile of claim 1, where the canards are at an angle of from about 2° to about 20° from the horizontal axis.
8. The projectile of claim 7, where the canards are at an angle of from about 4° to about 10° from the horizontal axis.
9. The projectile of claim 8, where the canards are at an angle of from about 5° from the horizontal axis.
US12/912,252 2009-10-26 2010-10-26 Rolling projectile with extending and retracting canards Expired - Fee Related US8319164B2 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
US12/912,252 US8319164B2 (en) 2009-10-26 2010-10-26 Rolling projectile with extending and retracting canards
CA2772584A CA2772584A1 (en) 2010-10-26 2011-06-17 Rolling projectile with extending and retracting canards
BR112012015268A BR112012015268A2 (en) 2010-10-26 2011-06-17 projectile
PCT/IB2010/003543 WO2012056267A1 (en) 2010-10-26 2011-06-17 Rolling projectile with extending and retracting canards
SG2012029625A SG181417A1 (en) 2010-10-26 2011-06-17 Rolling projectile with extending and retracting canards
JP2013535520A JP2014506986A (en) 2010-10-26 2011-06-17 A rotating cannonball with a protruding and retracting tip
AU2011322264A AU2011322264A1 (en) 2010-10-26 2011-06-17 Rolling projectile with extending and retracting canards
KR1020127021831A KR20130121671A (en) 2010-10-26 2011-06-17 Rolling projectile with extending and retracting canards
EP10858878.1A EP2633260A4 (en) 2010-10-26 2011-06-17 Rolling projectile with extending and retracting canards
ZA2012/02457A ZA201202457B (en) 2010-10-26 2012-04-04 Rolling projectile with extending and retracting canards

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US25484009P 2009-10-26 2009-10-26
US12/912,252 US8319164B2 (en) 2009-10-26 2010-10-26 Rolling projectile with extending and retracting canards

Publications (2)

Publication Number Publication Date
US20110297783A1 true US20110297783A1 (en) 2011-12-08
US8319164B2 US8319164B2 (en) 2012-11-27

Family

ID=45063742

Family Applications (1)

Application Number Title Priority Date Filing Date
US12/912,252 Expired - Fee Related US8319164B2 (en) 2009-10-26 2010-10-26 Rolling projectile with extending and retracting canards

Country Status (9)

Country Link
US (1) US8319164B2 (en)
EP (1) EP2633260A4 (en)
JP (1) JP2014506986A (en)
KR (1) KR20130121671A (en)
AU (1) AU2011322264A1 (en)
CA (1) CA2772584A1 (en)
SG (1) SG181417A1 (en)
WO (1) WO2012056267A1 (en)
ZA (1) ZA201202457B (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130334358A1 (en) * 2010-09-01 2013-12-19 United States Government As Represented By The Secretary Of The Army Apparatus and method for trajectory correction
CN103968717A (en) * 2013-01-23 2014-08-06 西蒙兹精密产品公司 Systems and methods for retaining and deploying canards
US9086258B1 (en) 2013-02-18 2015-07-21 Orbital Research Inc. G-hardened flow control systems for extended-range, enhanced-precision gun-fired rounds
CN105115508A (en) * 2015-08-27 2015-12-02 北京航天控制仪器研究所 Post data-based rotary guided projectile quick air alignment method
US20170007809A1 (en) * 2015-07-10 2017-01-12 Coloplast A/S Dilator and method for penile prosthetic implantation
US20170191809A1 (en) * 2015-08-24 2017-07-06 Leigh Aerosystems Corporation Ground-projectile guidance system
US10280786B2 (en) 2015-10-08 2019-05-07 Leigh Aerosystems Corporation Ground-projectile system
US10295320B2 (en) 2011-05-13 2019-05-21 Gordon L. Harris Ground-projectile guidance system
CN112414230A (en) * 2020-10-15 2021-02-26 安徽神剑科技股份有限公司 Throwing bomb for rescue
CN112923805A (en) * 2021-01-20 2021-06-08 西北工业大学 Pneumatic layout of small high-mobility missile
CN113899255A (en) * 2021-08-31 2022-01-07 北京航空航天大学 Accurate control rocket with control cabin section and gliding range-extending cabin section
SE2100079A1 (en) * 2021-05-19 2022-11-20 Bae Systems Bofors Ab Projectile and fire tube with fin
US11624594B1 (en) * 2020-03-31 2023-04-11 Barron Associates, Inc. Device, method and system for extending range and improving tracking precision of mortar rounds
US20230221101A1 (en) * 2022-01-11 2023-07-13 Raytheon Company Effector having morphing airframe and method
WO2024112576A1 (en) * 2022-11-21 2024-05-30 Bae Systems Information And Electronic Systems Integration Inc. Canard movement dynamic range verification via non-contact optical measurement

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL207800B (en) * 2010-08-25 2018-12-31 Bae Systems Rokar Int Ltd Control apparatus for guiding a cannon shell in flight and method of using same
US8552349B1 (en) * 2010-12-22 2013-10-08 Interstate Electronics Corporation Projectile guidance kit
US8939084B2 (en) * 2011-03-15 2015-01-27 Anthony Joseph Cesaroni Surface skimming munition
IL214191A (en) * 2011-07-19 2017-06-29 Elkayam Ami Munition guidance system and method of assembling the same
US9052171B2 (en) 2013-02-10 2015-06-09 Omnitek Partners Llc Methods and devices for providing guidance and control of low and high-spin rounds
US9366514B1 (en) 2014-02-25 2016-06-14 Lockheed Martin Corporation System, method and computer program product for providing for a course vector change of a multiple propulsion rocket propelled grenade
US9464876B2 (en) * 2014-05-30 2016-10-11 General Dynamics Ordnance and Tacital Systems, Inc. Trajectory modification of a spinning projectile by controlling the roll orientation of a decoupled portion of the projectile that has actuated aerodynamic surfaces
WO2015195507A1 (en) 2014-06-18 2015-12-23 Centinel Solutions, Inc. Firearm-mounted camera device with networked control and administration system and method
US11555679B1 (en) 2017-07-07 2023-01-17 Northrop Grumman Systems Corporation Active spin control
US11578956B1 (en) 2017-11-01 2023-02-14 Northrop Grumman Systems Corporation Detecting body spin on a projectile
WO2020117363A2 (en) * 2018-10-04 2020-06-11 Bae Systems Information And Electronic Systems Integration Inc. Low inertia rolling control actuation system
US11349201B1 (en) 2019-01-24 2022-05-31 Northrop Grumman Systems Corporation Compact antenna system for munition
US11581632B1 (en) 2019-11-01 2023-02-14 Northrop Grumman Systems Corporation Flexline wrap antenna for projectile
US11573069B1 (en) 2020-07-02 2023-02-07 Northrop Grumman Systems Corporation Axial flux machine for use with projectiles

Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3154015A (en) * 1962-09-19 1964-10-27 Martin Marietta Corp Missile flight control system
US4037806A (en) * 1964-09-16 1977-07-26 General Dynamics Corporation Control system for rolling missile with target seeker head
US4113204A (en) * 1976-02-26 1978-09-12 Hawker Siddeley Dynamics Limited Auxiliary control of vehicle direction
US4512537A (en) * 1973-08-10 1985-04-23 Sanders Associates, Inc. Canard control assembly for a projectile
US5439188A (en) * 1964-09-04 1995-08-08 Hughes Missile Systems Company Control system
US5829715A (en) * 1996-04-19 1998-11-03 Lockheed Martin Vought Systems Corp. Multi-axis unfolding mechanism with rate controlled synchronized movement
US6502786B2 (en) * 2001-02-01 2003-01-07 United Defense, L.P. 2-D projectile trajectory corrector
US6588700B2 (en) * 2001-10-16 2003-07-08 Raytheon Company Precision guided extended range artillery projectile tactical base
US6748871B2 (en) * 2000-08-15 2004-06-15 Bofors Defence Ab Guided artillery missile with extremely long range
US6883747B2 (en) * 2003-03-28 2005-04-26 Northrop Grumman Corporation Projectile guidance with accelerometers and a GPS receiver
US6886774B2 (en) * 2002-11-08 2005-05-03 Giat Industries Method for piloting a spinning projectile
US7147181B2 (en) * 2000-08-31 2006-12-12 Bae Systems Bofors Ab Canard fin unit
US7163176B1 (en) * 2004-01-15 2007-01-16 Raytheon Company 2-D projectile trajectory correction system and method
US20070241227A1 (en) * 2005-02-07 2007-10-18 Zemany Paul D Ballistic Guidance Control for Munitions
US20080006736A1 (en) * 2006-07-07 2008-01-10 Banks Johnny E Two-axis trajectory control system
US20080029641A1 (en) * 2005-02-07 2008-02-07 Bae Systems Information And Electronic Systems Three Axis Aerodynamic Control of Guided Munitions
US7354017B2 (en) * 2005-09-09 2008-04-08 Morris Joseph P Projectile trajectory control system
US7533849B2 (en) * 2005-02-07 2009-05-19 Bae Systems Information And Electronic Systems Integration Inc. Optically guided munition
US7631833B1 (en) * 2007-08-03 2009-12-15 The United States Of America As Represented By The Secretary Of The Navy Smart counter asymmetric threat micromunition with autonomous target selection and homing
US7718937B1 (en) * 1983-09-07 2010-05-18 Short Brothers Plc Steering of missiles
US20100314489A1 (en) * 2008-02-22 2010-12-16 Qinetiq Limited Control Of Projectiles Or The Like

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5669581A (en) 1994-04-11 1997-09-23 Aerojet-General Corporation Spin-stabilized guided projectile
US5816531A (en) 1997-02-04 1998-10-06 The United States Of America As Represented By The Secretary Of The Army Range correction module for a spin stabilized projectile
US5826821A (en) 1997-08-04 1998-10-27 The United States Of America As Represented By The Secretary Of The Army Drag control module for range correction of a spin stabil
US6685143B1 (en) * 2003-01-03 2004-02-03 Orbital Research Inc. Aircraft and missile forebody flow control device and method of controlling flow
WO2008143707A2 (en) 2006-12-07 2008-11-27 Pemery Corp. Course correcting fuze

Patent Citations (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3154015A (en) * 1962-09-19 1964-10-27 Martin Marietta Corp Missile flight control system
US5439188A (en) * 1964-09-04 1995-08-08 Hughes Missile Systems Company Control system
US4037806A (en) * 1964-09-16 1977-07-26 General Dynamics Corporation Control system for rolling missile with target seeker head
US4512537A (en) * 1973-08-10 1985-04-23 Sanders Associates, Inc. Canard control assembly for a projectile
US4113204A (en) * 1976-02-26 1978-09-12 Hawker Siddeley Dynamics Limited Auxiliary control of vehicle direction
US7718937B1 (en) * 1983-09-07 2010-05-18 Short Brothers Plc Steering of missiles
US5829715A (en) * 1996-04-19 1998-11-03 Lockheed Martin Vought Systems Corp. Multi-axis unfolding mechanism with rate controlled synchronized movement
US6748871B2 (en) * 2000-08-15 2004-06-15 Bofors Defence Ab Guided artillery missile with extremely long range
US7147181B2 (en) * 2000-08-31 2006-12-12 Bae Systems Bofors Ab Canard fin unit
US6502786B2 (en) * 2001-02-01 2003-01-07 United Defense, L.P. 2-D projectile trajectory corrector
US6666402B2 (en) * 2001-02-01 2003-12-23 United Defense, L.P. 2-D projectile trajectory corrector
US20040108412A1 (en) * 2001-10-16 2004-06-10 Moore James L. Precision guided extended range artillery projectile tactical base
US6588700B2 (en) * 2001-10-16 2003-07-08 Raytheon Company Precision guided extended range artillery projectile tactical base
US6886774B2 (en) * 2002-11-08 2005-05-03 Giat Industries Method for piloting a spinning projectile
US6883747B2 (en) * 2003-03-28 2005-04-26 Northrop Grumman Corporation Projectile guidance with accelerometers and a GPS receiver
US7163176B1 (en) * 2004-01-15 2007-01-16 Raytheon Company 2-D projectile trajectory correction system and method
US20070241227A1 (en) * 2005-02-07 2007-10-18 Zemany Paul D Ballistic Guidance Control for Munitions
US20080029641A1 (en) * 2005-02-07 2008-02-07 Bae Systems Information And Electronic Systems Three Axis Aerodynamic Control of Guided Munitions
US7533849B2 (en) * 2005-02-07 2009-05-19 Bae Systems Information And Electronic Systems Integration Inc. Optically guided munition
US7834300B2 (en) * 2005-02-07 2010-11-16 Bae Systems Information And Electronic Systems Integration Inc. Ballistic guidance control for munitions
US7354017B2 (en) * 2005-09-09 2008-04-08 Morris Joseph P Projectile trajectory control system
US20080006736A1 (en) * 2006-07-07 2008-01-10 Banks Johnny E Two-axis trajectory control system
US7631833B1 (en) * 2007-08-03 2009-12-15 The United States Of America As Represented By The Secretary Of The Navy Smart counter asymmetric threat micromunition with autonomous target selection and homing
US20100314489A1 (en) * 2008-02-22 2010-12-16 Qinetiq Limited Control Of Projectiles Or The Like

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8933383B2 (en) * 2010-09-01 2015-01-13 The United States Of America As Represented By The Secretary Of The Army Method and apparatus for correcting the trajectory of a fin-stabilized, ballistic projectile using canards
US20130334358A1 (en) * 2010-09-01 2013-12-19 United States Government As Represented By The Secretary Of The Army Apparatus and method for trajectory correction
US10295320B2 (en) 2011-05-13 2019-05-21 Gordon L. Harris Ground-projectile guidance system
CN103968717A (en) * 2013-01-23 2014-08-06 西蒙兹精密产品公司 Systems and methods for retaining and deploying canards
US9012825B2 (en) 2013-01-23 2015-04-21 Simmonds Precision Products, Inc. Systems and methods for retaining and deploying canards
US9086258B1 (en) 2013-02-18 2015-07-21 Orbital Research Inc. G-hardened flow control systems for extended-range, enhanced-precision gun-fired rounds
US9658040B1 (en) * 2013-02-18 2017-05-23 Orbital Research Inc. Methods for extended-range, enhanced-precision gun-fired rounds using g-hardened flow control systems
US20170007809A1 (en) * 2015-07-10 2017-01-12 Coloplast A/S Dilator and method for penile prosthetic implantation
US9724502B2 (en) * 2015-07-10 2017-08-08 Coloplast A/S Dilator and method for penile prosthetic implantation
US20170191809A1 (en) * 2015-08-24 2017-07-06 Leigh Aerosystems Corporation Ground-projectile guidance system
US11371814B2 (en) * 2015-08-24 2022-06-28 Leigh Aerosystems Corporation Ground-projectile guidance system
CN105115508A (en) * 2015-08-27 2015-12-02 北京航天控制仪器研究所 Post data-based rotary guided projectile quick air alignment method
US10280786B2 (en) 2015-10-08 2019-05-07 Leigh Aerosystems Corporation Ground-projectile system
US11624594B1 (en) * 2020-03-31 2023-04-11 Barron Associates, Inc. Device, method and system for extending range and improving tracking precision of mortar rounds
CN112414230A (en) * 2020-10-15 2021-02-26 安徽神剑科技股份有限公司 Throwing bomb for rescue
CN112923805A (en) * 2021-01-20 2021-06-08 西北工业大学 Pneumatic layout of small high-mobility missile
SE2100079A1 (en) * 2021-05-19 2022-11-20 Bae Systems Bofors Ab Projectile and fire tube with fin
CN113899255A (en) * 2021-08-31 2022-01-07 北京航空航天大学 Accurate control rocket with control cabin section and gliding range-extending cabin section
US20230221101A1 (en) * 2022-01-11 2023-07-13 Raytheon Company Effector having morphing airframe and method
US11796291B2 (en) * 2022-01-11 2023-10-24 Raytheon Company Effector having morphing airframe and method
WO2024112576A1 (en) * 2022-11-21 2024-05-30 Bae Systems Information And Electronic Systems Integration Inc. Canard movement dynamic range verification via non-contact optical measurement

Also Published As

Publication number Publication date
KR20130121671A (en) 2013-11-06
JP2014506986A (en) 2014-03-20
EP2633260A4 (en) 2016-08-31
ZA201202457B (en) 2013-09-25
AU2011322264A1 (en) 2012-06-21
EP2633260A1 (en) 2013-09-04
WO2012056267A1 (en) 2012-05-03
SG181417A1 (en) 2012-07-30
CA2772584A1 (en) 2012-05-03
US8319164B2 (en) 2012-11-27

Similar Documents

Publication Publication Date Title
US8319164B2 (en) Rolling projectile with extending and retracting canards
US8026465B1 (en) Guided fuse with variable incidence panels
US7963442B2 (en) Spin stabilized projectile trajectory control
EP1366339B1 (en) 2-d projectile trajectory corrector
US5467940A (en) Artillery rocket
US5425514A (en) Modular aerodynamic gyrodynamic intelligent controlled projectile and method of operating same
US5379968A (en) Modular aerodynamic gyrodynamic intelligent controlled projectile and method of operating same
US6422507B1 (en) Smart bullet
US9546854B2 (en) Ground-projectile guidance system
EP2499451B1 (en) Guidance device
US11060829B1 (en) Guidance system and method for guiding projectiles
US20080029641A1 (en) Three Axis Aerodynamic Control of Guided Munitions
EP2356398B1 (en) Steerable spin-stabalized projectile and method
US8563910B2 (en) Systems and methods for targeting a projectile payload
EP2812646B1 (en) Brake panel for a detonator or a projectile
US6402087B1 (en) Fixed canards maneuverability enhancement
US10996031B1 (en) Free spinning hub for mortar projectiles
EP2322896A1 (en) Collar for a munition
ZA200305836B (en) 2-D Projectile trajectory corrector.

Legal Events

Date Code Title Description
AS Assignment

Owner name: KMS CONSULTING LLC, MAINE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MARTINEZ, MARCELO EDGARDO;REEL/FRAME:026431/0493

Effective date: 20110612

AS Assignment

Owner name: NOSTROMO, LLC, VIRGINIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:KMS CONSLTING, LLC;REEL/FRAME:027923/0981

Effective date: 20120323

STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

AS Assignment

Owner name: NOSTROMO HOLDINGS, LLC, VIRGINIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:NOSTROMO, LLC;REEL/FRAME:039931/0193

Effective date: 20160915

FEPP Fee payment procedure

Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

LAPS Lapse for failure to pay maintenance fees

Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20201127