US20110286862A1 - Pump for a lubricating system of a combustion engine - Google Patents

Pump for a lubricating system of a combustion engine Download PDF

Info

Publication number
US20110286862A1
US20110286862A1 US13/100,943 US201113100943A US2011286862A1 US 20110286862 A1 US20110286862 A1 US 20110286862A1 US 201113100943 A US201113100943 A US 201113100943A US 2011286862 A1 US2011286862 A1 US 2011286862A1
Authority
US
United States
Prior art keywords
pump
valve
housing
hollow space
lubricant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/100,943
Inventor
Georg Zwickler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GM Global Technology Operations LLC
Original Assignee
GM Global Technology Operations LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GM Global Technology Operations LLC filed Critical GM Global Technology Operations LLC
Assigned to GM Global Technology Operations LLC reassignment GM Global Technology Operations LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ZWICKLER, GEORG
Publication of US20110286862A1 publication Critical patent/US20110286862A1/en
Assigned to WILMINGTON TRUST COMPANY reassignment WILMINGTON TRUST COMPANY SECURITY AGREEMENT Assignors: GM Global Technology Operations LLC
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/30Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C2/34Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in groups F04C2/08 or F04C2/22 and relative reciprocation between the co-operating members
    • F04C2/344Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in groups F04C2/08 or F04C2/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member
    • F04C2/3441Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in groups F04C2/08 or F04C2/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member the inner and outer member being in contact along one line or continuous surface substantially parallel to the axis of rotation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C14/00Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations
    • F04C14/18Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations characterised by varying the volume of the working chamber
    • F04C14/22Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations characterised by varying the volume of the working chamber by changing the eccentricity between cooperating members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C14/00Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations
    • F04C14/18Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations characterised by varying the volume of the working chamber
    • F04C14/22Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations characterised by varying the volume of the working chamber by changing the eccentricity between cooperating members
    • F04C14/223Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations characterised by varying the volume of the working chamber by changing the eccentricity between cooperating members using a movable cam
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C14/00Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations
    • F04C14/24Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations characterised by using valves controlling pressure or flow rate, e.g. discharge valves or unloading valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C15/00Component parts, details or accessories of machines, pumps or pumping installations, not provided for in groups F04C2/00 - F04C14/00
    • F04C15/06Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet
    • F04C15/064Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet with inlet and outlet valves specially adapted for rotary or oscillating piston machines or pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2270/00Control; Monitoring or safety arrangements
    • F04C2270/58Valve parameters

Definitions

  • the technical field relates to a pump for a lubricating system of a combustion engine, more preferably of a combustion engine of a motor vehicle.
  • US 2007 0224067 A1 discloses a lubricating system for a combustion engine with an oil pump with variable displacement in which a pump outlet pressure is used to preload the position of a slide and by doing so change the eccentricity of the pump and consequently vary the pump displacement.
  • the pump outlet pressure can be controlled on the basis of engine flow requirements.
  • the pressure regulating characteristics of the pump are determined through calibrating a reaction spring, which balances the hydraulic forces acting on the slide.
  • the lubricating system also comprises a valve which is switched dependent on the engine speed. At low engine speeds the valve is opened in order to introduce lubricant in the form of oil into a second chamber of the pump. At higher engine speeds the valve is closed, upon which the second chamber is emptied. Since the valve is electrically actuated there is a certain space requirement for the pump, the valve and the associated cables of the lubricating system.
  • At least one object therefore is stating an optimization of the space requirement and/or a reduction in size of the lubricating system of a combustion engine.
  • a pump for a lubricating system of a combustion engine which comprises a housing and a lid, which together define a pump hollow space in which a pump mechanism for the pumping of lubricant of the lubricating system is arranged.
  • the pump furthermore comprises a regulating valve for regulating a flow of the lubricant in or out of a regulating chamber of the pump, wherein the regulating valve is integrated in the lid or in the housing.
  • the regulating valve is thus neither arranged separately from the pump nor connected to the housing of the pump, for instance with screws, but directly integrated in the lid of the pump.
  • This arrangement has the advantage that the space requirement of the pump and the regulating valve compared with a separate arrangement of the component can be reduced.
  • producing the pump with an arrangement in which the regulating valve is connected to the housing or arranged in the housing is simplified, since on the one hand the lid has a simple plate-like shape and on the other hand the lid can be favorably produced as individual part with a casting method. Consequently, further processing steps for producing bores for the inlet and outlet openings between the valve and the pump hollow space in the housing and/or in the lid are no longer necessary, since these are directly molded in the casting process.
  • the regulating valve can be a switching valve, wherein the switching valve is switched in order to regulate the flow of the lubricant into or out of the regulating chamber.
  • the regulating valve can be a proportional valve, wherein the flow of the lubricant into or out of the regulating chamber can be increased or reduced in order to regulate the flow.
  • the regulating valve is an electromagnetically actuated valve.
  • This type of valve is connected to a power source in order to be able to selectively switch the valve.
  • An electromagnetically actuated valve can also be switched dependent on the operating conditions of the combustion engine since because of the power supply it can be controlled by the engine control unit.
  • the electromagnetically actuated valve comprises a valve housing in which an electromagnetic actuation device is arranged, and a valve body.
  • the valve body is displaceable with the electromagnetic actuation device in order to regulate the flow of the lubricant.
  • the valve body can has a soft magnetic material and the actuation device can comprise a coil that generates a magnetic field when current flows through the coil. The magnetic field generated by the coil results in the displacement of the soft magnetic valve body in order to open or to close the valve and in order to regulate the flow of the lubricant through the pump.
  • the lid is designed so that it comprises a valve hollow space for accommodating the valve body of the regulating valve.
  • the lid can be shaped so that in addition to its function as a lid, it also provides the valve hollow space.
  • the valve hollow space comprises at least one inlet opening through which the lubricant can flow into the valve hollow space and at least one outlet opening through which the lubricant can flow out of the valve hollow space.
  • the valve body is moveable in the hollow space in order to open and to close the inlet opening and/or the outlet opening and in order to regulate the flow of the lubricant in or out of the regulating chamber of the pump.
  • the regulating valve is a three-way valve, so that lubricant can be selectively steered into the regulating chamber or into a second control chamber or lubricant from the regulating chamber or from the second control chamber into the oil pan. Dependent on the engine rotational speed the lubricant can be steered into the second control chamber.
  • the valve hollow space comprises three openings. Lubricant can enter the valve hollow space from the first control chamber through a first opening. A second opening makes possible steering the lubricant from the first control chamber into the second control chamber via the valve hollow space. A third opening makes possible flowing of lubricant from the second control chamber into the oil pan.
  • the lid can comprise a flange to which the valve housing is connected, wherein the valve housing can be connected to the flange via a seal. If the regulating valve is electrically activatable the valve housing can additionally comprise a cable connection so that the regulating valve can be supplied with energy from an external source.
  • the regulating valve is designed so that it is actuated dependent on an engine rotational speed of the combustion engine in order to regulate an outlet pressure of the lubricant from the pump dependent on the engine rotational speed.
  • the regulating valve can be opened at low engine rotational speeds and closed above a predetermined limit value of the engine rotational speed in order to guarantee a variable lubricant pressure in the combustion engine dependent on the engine rotational speed.
  • the pump can comprise any pump mechanism within the housing and the lid with integrated regulating valve.
  • the pump is a vane pump with variable displacement.
  • a pump of this type is disclosed for example in US 2007 0224067 A1. With a vane pump with variable displacement the generated outlet pressure can be regulated particularly accurately.
  • the pump or the vane pump with variable displacement comprises a plurality of pump chambers with variable volume.
  • the pump chambers are defined through sliding vanes carried by a rotor.
  • the rotor is rotatably mounted in the housing in order to pump the lubricant from the inlet opening to the pressurized outlet opening.
  • the rotor can be driven by the combustion engine.
  • the pump can comprise a slide for the displacement control, wherein the slide is rotatably connected to a wall of the housing through a rotary axis.
  • the slide is internally in engagement with the vanes, wherein the volume of the respective pump chamber upon rotating of the slide is variable.
  • the pump or the vane pump with variable displacement can additionally comprise an elastic element such as one or a plurality of springs which preloads the slide in one direction.
  • the lubricant exerts a force in the pump chambers on the slide in a direction that is opposite to the direction in which the elastic element preloads the slide.
  • the lid in which the regulating valve is integrated can consist of a shaped individual part which states the function of a lid for the pump as well as a valve hollow space and if applicable a flange for a valve housing of the regulating valve.
  • the lid can also be in the form of an aluminum casting. Consequently in a further exemplary embodiment a lid of a pump for a lubricating system of a combustion engine is stated, wherein the lid comprises a valve hollow space for accommodating the valve body of a regulating valve.
  • the valve hollow space comprises at least one inlet opening through which lubricant can flow into the valve hollow space and at least one outlet opening, through which the lubricant can flow out of the valve hollow space.
  • the rim of the lid can comprise one or a plurality of bores in which screws can be arranged, so that the lid can be fastened to the housing by means of the screws.
  • the lid additionally comprises a flange to which the valve housing of the regulating valve can be connected.
  • the valve housing can be connected to the flange via a seal, such as an O-ring, so that the valve can be replaced.
  • the flange can also comprise a suitable groove for the seal.
  • FIG. 1 shows a perspective top view of a pump for a lubricating system of a combustion engine with an integrated regulating valve
  • FIG. 2 shows a perspective top view of the lid of the pump of FIG. 1 ;
  • FIG. 3 shows a perspective view of the bottom of the lid of FIG. 2 ;
  • FIG. 4 a shows a perspective top view of the pump of FIG. 1 , in which the lid is not shown;
  • FIG. 4 b shows a top view of the pump of FIG. 4 b
  • FIG. 5 shows a cross section of a lid according to an exemplary embodiment
  • FIG. 6 shows a perspective view of a regulating valve of FIG. 1 ;
  • FIG. 7 shows a perspective view of a comparison pump with the regulating valve is arranged in the housing.
  • FIG. 1 shows a perspective top view of a pump 1 , more preferably an oil pump, for a lubricating system 2 of an only partially shown combustion engine 3 .
  • the pump 1 comprises an integrated regulating valve 4 .
  • FIG. 2 shows a perspective top view of the lid 7 of the pump 1 of FIG. 1 and
  • FIG. 3 shows a perspective view of the bottom of the lid 7 of FIG. 2 . Same parts are shown with the same reference characters.
  • the pump 1 comprises a housing 5 with a housing wall 6 and a lid 7 which is connected to the housing 5 or to the housing wall 6 with a plurality of screws 29 .
  • the inner surfaces of the housing wall 6 and the lid 7 define a pump hollow space 8 in which the pump mechanism 9 is arranged, with which lubricant of the lubricating system 2 is pumped.
  • the lubricant is oil.
  • the regulating valve 4 is also described as a so-called “oil control valve” and in this exemplary embodiment is a switching valve that is actuated electromagnetically.
  • the regulating valve 4 is arranged on the lid 7 of the pump 1 .
  • the regulating valve 4 is a three-way valve.
  • FIG. 6 shows a perspective view of the regulating valve 4
  • FIG. 5 shows a cross section of the lid 7 with a regulating valve 4 integrated in the lid 7 .
  • the regulating valve 4 comprises an electromagnetic actuation device 10 having a coil 11 that is activatable with an external power source that is not shown via a cable 16 .
  • the coil 11 generates a magnetic field when the power source is connected in order to displace a magnetic valve body 12 within a valve hollow space 13 .
  • the valve hollow space 13 comprises a first opening 14 , through which oil from a first control chamber of the pump 1 can enter the valve hollow space.
  • the valve hollow space 13 comprises a second opening 15 through which oil can flow into the second control chamber 27 of the pump 1 .
  • the valve hollow space 13 comprises a third opening 30 through which oil can flow from the second chamber 27 into an oil pan which is not shown.
  • the oil from the lubricating system can thus be selectively steered into the second control chamber 27 of the pump 1 or oil can flow from the second control chamber 27 of the pump 1 into the oil pan in order to empty the second control chamber 27 .
  • the regulating valve 4 is directly arranged on the lid 7 of the pump 1 , so that it is integrated in the lid 7 . More preferably the lid 7 is shaped so that it forms the valve hollow space 13 . Furthermore, the lid is shaped so that the valve hollow space comprises a flange 17 to which a valve housing 18 of the regulating valve 4 is connected, so that the valve body 12 is arranged within the valve hollow space 13 , while the valve housing 18 , in which the electromagnetic actuation device 10 is located, is arranged outside the lid 7 and outside the pump 1 . A seal 28 can be present between the valve housing 18 and the flange 17 in order to seal the electromagnetic actuation device 10 against the oil.
  • the lid 7 can be an individual part that can be produced of aluminum of an aluminum alloy using a casting method.
  • FIG. 4 a shows a perspective top view of the pump 1 of FIG. 1 , wherein the lid 7 has been omitted.
  • FIG. 4 b shows a schematic top view of the pump 1 of FIG. 4 a .
  • the pump mechanism can be seen.
  • FIG. 4 a and FIG. 4 b show that the pump 1 of this exemplary embodiment is a vane pump with variable displacement. This vane pump 1 with variable displacement ensures improved regulation of the pump outlet flow pressure within a narrow range of a desired pressure during different engine operating conditions.
  • the vane pump 1 comprises a rotor 19 with a plurality of sliding vanes 20 which is rotatable in the housing 5 on a fixed axis 21 .
  • the rotor 19 can be driven by a transverse axis hexagon shaft drive of the combustion engine or another suitable drive means driven by the combustion engine.
  • the sliding vanes 20 are internally in engagement with a slide 22 in order to define a plurality of pump chambers 23 within the slide 22 .
  • the slide 22 is rotatably connected to the housing wall 6 through a rotary axis 24 and is rotatable in order to vary the displacement of the pump chambers 23 .
  • the displacement of the pump 1 is proportional to the eccentricity of the slide 22 relative to the axis 21 of the rotor 19 .
  • the slide 22 When the pump 1 is in a state of rest the slide 22 is forced into a position of maximum eccentricity relative to the rotor 19 . When the pump operates and the slide 22 is in that position, the displacement of the pump is at its maximum value. When the slide 22 turns away from a position of maximum eccentricity the displacement of the pump is reduced and the output flow of the pump generally decreases. When the middle of the slide 22 is turned into a position in which it is aligned with the axis of the rotor 19 , the slide 22 is located at an eccentricity of approximately 0% (i.e., approximately 100% of its maximum eccentricity) and the pump 1 operates at a displacement of approximately zero.
  • the pump 1 also has an oil inlet channel which is not shown in the figures, which provides a first intake opening and is formed on an inlet side of the housing 5 .
  • a pressure oil outlet channel which is likewise not shown in the figure provides for a discharge opening and is formed on an opposite outlet side of the housing.
  • the inlet and outlet channels preferentially communicate with the pump chambers 23 on opposite lower and upper sides of the rotor 19 in order to prevent trapping of gases in the pump chambers 23 . Rotation of the rotor 19 at a certain eccentricity level causes the pump chambers 23 to expand.
  • the pump 1 comprise a first control chamber 26 which is located between the outer side of the slide 22 and the housing wall 6 and comprises a second control chamber 27 which likewise forms between the outside of the slide 22 and the housing wall 6 .
  • the second control chamber 27 is arranged next to the first control chamber 26 and can be selectively filled and emptied upon actuation of the regulating valve 4 .
  • Path A steers oil from the first control chamber 26 into the regulating valve through the second opening 15 .
  • Path B steers oil from the first control chamber 26 via the regulating valve 4 into the second control chamber 27 .
  • the third path C steers oil from the second control chamber 27 into the oil pan via the third opening 30 in order to empty the second control chamber.
  • the regulating valve 4 is thus a three-way valve.
  • An elastic element 25 which in this exemplary embodiment is a spring, is arranged between the housing wall 6 and the slide 22 .
  • the elastic element 25 is in engagement with the slide 22 and forces the slide 22 in the direction of the first control chamber 26 .
  • the elastic element 25 counteracts the hydraulic force exerted by the oil in the first control chamber 26 and the adjacent second control chamber 27 on the slide 22 .
  • the regulating valve is actuated dependent on the engine rotational speed of the combustion engine. At low engine rotational speed the regulating valve 4 is energized so that the second control chamber 27 is filled. At higher engine rotational speeds the regulating valve 4 is not energized, it thus remains current less, so that oil from the second control chamber 27 is steered into the oil pan.
  • FIG. 7 shows a comparison pump 1 ′, which likewise comprises a pump mechanism with a vane pump with two control chambers 26 ′, 27 ′, a slide 22 ′ and a three-way regulating valve 4 ′.
  • the regulating valve 4 ′ is integrated in the housing 5 ′ of the pump 1 ′ and more preferably in the housing wall 6 ′.
  • the regulating valve 4 ′ comprises a valve housing 18 ′ with cable 16 ′, in order to supply the coil which is not shown of the actuation device which is not shown with current, and a valve body 12 ′, which is arranged in a valve hollow space 13 ′ in the housing wall 6 ′.
  • FIG. 7 the three flow directions of the oil are shown by the arrows A, B and C. These flow directions are equal to that in the pump 1 of FIG. 1 to FIG. 6 .
  • Arrow A indicates the flow from the first control chamber 26 ′ to the valve hollow space 13 ′.
  • Arrow B indicates the flow from the valve hollow space 13 ′ to the second control chamber 27 ′, wherein the oil is steered from the first control chamber into the second control chamber.
  • Arrow C shows the flow of oil from the second control chamber 27 ′ into the oil pan in order to empty the second control chamber 27 ′.

Abstract

A pump is provided for a lubricating system of a combustion engine that includes, but is not limited to a housing and a lid that together define a pump hollow space in which a pump mechanism for the pumping of lubricant of the lubricating system is arranged. The pump hollow space includes, but is not limited to at least one intake opening and at least one discharge opening. The pump additionally includes, but is not limited to a regulating valve for regulating a flow of the lubricant through the pump, which is integrated in the lid.

Description

    CROSS-REFERENCE TO RELATED APPLICATION
  • This application claims priority to German Patent Application No. 102010022137.6, filed May 20, 2010, which is incorporated herein by reference in its entirety.
  • TECHNICAL FIELD
  • The technical field relates to a pump for a lubricating system of a combustion engine, more preferably of a combustion engine of a motor vehicle.
  • BACKGROUND
  • US 2007 0224067 A1 discloses a lubricating system for a combustion engine with an oil pump with variable displacement in which a pump outlet pressure is used to preload the position of a slide and by doing so change the eccentricity of the pump and consequently vary the pump displacement. By varying the pump displacement relative to the pump outlet pressure, the pump outlet pressure can be controlled on the basis of engine flow requirements. The pressure regulating characteristics of the pump are determined through calibrating a reaction spring, which balances the hydraulic forces acting on the slide. The lubricating system also comprises a valve which is switched dependent on the engine speed. At low engine speeds the valve is opened in order to introduce lubricant in the form of oil into a second chamber of the pump. At higher engine speeds the valve is closed, upon which the second chamber is emptied. Since the valve is electrically actuated there is a certain space requirement for the pump, the valve and the associated cables of the lubricating system.
  • It is desirable to reduce the fuel consumption of combustion engines. This can be achieved at least in part through a weight reduction and/or reduction in size of the component. Consequently it is also desirable to reduce the space requirement of the lubricating system in order to reduce the weight, and/or to optimize the space requirement of the lubricating system in order to be able to install additional components in the same space.
  • At least one object therefore is stating an optimization of the space requirement and/or a reduction in size of the lubricating system of a combustion engine. In addition, other objects, desirable features and characteristics will become apparent from the subsequent summary and detailed description, and the appended claims, taken in conjunction with the accompanying drawings and this background.
  • SUMMARY
  • In an exemplary embodiment of the invention a pump for a lubricating system of a combustion engine is stated, which comprises a housing and a lid, which together define a pump hollow space in which a pump mechanism for the pumping of lubricant of the lubricating system is arranged. The pump furthermore comprises a regulating valve for regulating a flow of the lubricant in or out of a regulating chamber of the pump, wherein the regulating valve is integrated in the lid or in the housing.
  • The regulating valve is thus neither arranged separately from the pump nor connected to the housing of the pump, for instance with screws, but directly integrated in the lid of the pump. This arrangement has the advantage that the space requirement of the pump and the regulating valve compared with a separate arrangement of the component can be reduced. Furthermore, producing the pump with an arrangement in which the regulating valve is connected to the housing or arranged in the housing is simplified, since on the one hand the lid has a simple plate-like shape and on the other hand the lid can be favorably produced as individual part with a casting method. Consequently, further processing steps for producing bores for the inlet and outlet openings between the valve and the pump hollow space in the housing and/or in the lid are no longer necessary, since these are directly molded in the casting process. The regulating valve can be a switching valve, wherein the switching valve is switched in order to regulate the flow of the lubricant into or out of the regulating chamber. The regulating valve can be a proportional valve, wherein the flow of the lubricant into or out of the regulating chamber can be increased or reduced in order to regulate the flow.
  • In an exemplary embodiment the regulating valve is an electromagnetically actuated valve. This type of valve is connected to a power source in order to be able to selectively switch the valve. An electromagnetically actuated valve can also be switched dependent on the operating conditions of the combustion engine since because of the power supply it can be controlled by the engine control unit. In an exemplary embodiment the electromagnetically actuated valve comprises a valve housing in which an electromagnetic actuation device is arranged, and a valve body. The valve body is displaceable with the electromagnetic actuation device in order to regulate the flow of the lubricant. More preferably, the valve body can has a soft magnetic material and the actuation device can comprise a coil that generates a magnetic field when current flows through the coil. The magnetic field generated by the coil results in the displacement of the soft magnetic valve body in order to open or to close the valve and in order to regulate the flow of the lubricant through the pump.
  • In an exemplary embodiment the lid is designed so that it comprises a valve hollow space for accommodating the valve body of the regulating valve. The lid can be shaped so that in addition to its function as a lid, it also provides the valve hollow space. The valve hollow space comprises at least one inlet opening through which the lubricant can flow into the valve hollow space and at least one outlet opening through which the lubricant can flow out of the valve hollow space. The valve body is moveable in the hollow space in order to open and to close the inlet opening and/or the outlet opening and in order to regulate the flow of the lubricant in or out of the regulating chamber of the pump.
  • In an exemplary embodiment the regulating valve is a three-way valve, so that lubricant can be selectively steered into the regulating chamber or into a second control chamber or lubricant from the regulating chamber or from the second control chamber into the oil pan. Dependent on the engine rotational speed the lubricant can be steered into the second control chamber. In this exemplary embodiment the valve hollow space comprises three openings. Lubricant can enter the valve hollow space from the first control chamber through a first opening. A second opening makes possible steering the lubricant from the first control chamber into the second control chamber via the valve hollow space. A third opening makes possible flowing of lubricant from the second control chamber into the oil pan. Furthermore, the lid can comprise a flange to which the valve housing is connected, wherein the valve housing can be connected to the flange via a seal. If the regulating valve is electrically activatable the valve housing can additionally comprise a cable connection so that the regulating valve can be supplied with energy from an external source.
  • In an exemplary embodiment the regulating valve is designed so that it is actuated dependent on an engine rotational speed of the combustion engine in order to regulate an outlet pressure of the lubricant from the pump dependent on the engine rotational speed. For example, the regulating valve can be opened at low engine rotational speeds and closed above a predetermined limit value of the engine rotational speed in order to guarantee a variable lubricant pressure in the combustion engine dependent on the engine rotational speed.
  • In principle, the pump can comprise any pump mechanism within the housing and the lid with integrated regulating valve. In an exemplary embodiment the pump is a vane pump with variable displacement. A pump of this type is disclosed for example in US 2007 0224067 A1. With a vane pump with variable displacement the generated outlet pressure can be regulated particularly accurately.
  • In an exemplary embodiment the pump or the vane pump with variable displacement comprises a plurality of pump chambers with variable volume. The pump chambers are defined through sliding vanes carried by a rotor. The rotor is rotatably mounted in the housing in order to pump the lubricant from the inlet opening to the pressurized outlet opening. The rotor can be driven by the combustion engine. Furthermore, the pump can comprise a slide for the displacement control, wherein the slide is rotatably connected to a wall of the housing through a rotary axis. The slide is internally in engagement with the vanes, wherein the volume of the respective pump chamber upon rotating of the slide is variable.
  • The pump or the vane pump with variable displacement can additionally comprise an elastic element such as one or a plurality of springs which preloads the slide in one direction. The lubricant exerts a force in the pump chambers on the slide in a direction that is opposite to the direction in which the elastic element preloads the slide. In an exemplary embodiment of the invention a lubricating system of a combustion engine of a motor vehicle with a pump according to any one of the previously described exemplary embodiments is stated.
  • As already mentioned above, the lid in which the regulating valve is integrated can consist of a shaped individual part which states the function of a lid for the pump as well as a valve hollow space and if applicable a flange for a valve housing of the regulating valve. The lid can also be in the form of an aluminum casting. Consequently in a further exemplary embodiment a lid of a pump for a lubricating system of a combustion engine is stated, wherein the lid comprises a valve hollow space for accommodating the valve body of a regulating valve. The valve hollow space comprises at least one inlet opening through which lubricant can flow into the valve hollow space and at least one outlet opening, through which the lubricant can flow out of the valve hollow space. The rim of the lid can comprise one or a plurality of bores in which screws can be arranged, so that the lid can be fastened to the housing by means of the screws.
  • In a further exemplary embodiment the lid additionally comprises a flange to which the valve housing of the regulating valve can be connected. For example, the valve housing can be connected to the flange via a seal, such as an O-ring, so that the valve can be replaced. In this case the flange can also comprise a suitable groove for the seal.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The present invention will hereinafter be described in conjunction with the following drawing figures, wherein like numerals denote like elements, and:
  • FIG. 1 shows a perspective top view of a pump for a lubricating system of a combustion engine with an integrated regulating valve;
  • FIG. 2 shows a perspective top view of the lid of the pump of FIG. 1;
  • FIG. 3 shows a perspective view of the bottom of the lid of FIG. 2;
  • FIG. 4 a shows a perspective top view of the pump of FIG. 1, in which the lid is not shown;
  • FIG. 4 b shows a top view of the pump of FIG. 4 b;
  • FIG. 5 shows a cross section of a lid according to an exemplary embodiment;
  • FIG. 6 shows a perspective view of a regulating valve of FIG. 1; and
  • FIG. 7 shows a perspective view of a comparison pump with the regulating valve is arranged in the housing.
  • DETAILED DESCRIPTION
  • The following detailed description is merely exemplary in nature and is not intended to limit application and uses. Furthermore, there is no intention to be bound by any theory presented in the preceding background or summary or the following detailed description.
  • FIG. 1 shows a perspective top view of a pump 1, more preferably an oil pump, for a lubricating system 2 of an only partially shown combustion engine 3. The pump 1 comprises an integrated regulating valve 4. FIG. 2 shows a perspective top view of the lid 7 of the pump 1 of FIG. 1 and FIG. 3 shows a perspective view of the bottom of the lid 7 of FIG. 2. Same parts are shown with the same reference characters.
  • The pump 1 comprises a housing 5 with a housing wall 6 and a lid 7 which is connected to the housing 5 or to the housing wall 6 with a plurality of screws 29. The inner surfaces of the housing wall 6 and the lid 7 define a pump hollow space 8 in which the pump mechanism 9 is arranged, with which lubricant of the lubricating system 2 is pumped. Typically the lubricant is oil.
  • The regulating valve 4 is also described as a so-called “oil control valve” and in this exemplary embodiment is a switching valve that is actuated electromagnetically. The regulating valve 4 is arranged on the lid 7 of the pump 1. The regulating valve 4 is a three-way valve. FIG. 6 shows a perspective view of the regulating valve 4 and FIG. 5 shows a cross section of the lid 7 with a regulating valve 4 integrated in the lid 7. As is shown in the cross section of FIG. 5 the regulating valve 4 comprises an electromagnetic actuation device 10 having a coil 11 that is activatable with an external power source that is not shown via a cable 16. The coil 11 generates a magnetic field when the power source is connected in order to displace a magnetic valve body 12 within a valve hollow space 13.
  • The valve hollow space 13 comprises a first opening 14, through which oil from a first control chamber of the pump 1 can enter the valve hollow space. The valve hollow space 13 comprises a second opening 15 through which oil can flow into the second control chamber 27 of the pump 1. The valve hollow space 13 comprises a third opening 30 through which oil can flow from the second chamber 27 into an oil pan which is not shown. On actuating the regulating valve 4 the oil from the lubricating system can thus be selectively steered into the second control chamber 27 of the pump 1 or oil can flow from the second control chamber 27 of the pump 1 into the oil pan in order to empty the second control chamber 27.
  • The regulating valve 4 is directly arranged on the lid 7 of the pump 1, so that it is integrated in the lid 7. More preferably the lid 7 is shaped so that it forms the valve hollow space 13. Furthermore, the lid is shaped so that the valve hollow space comprises a flange 17 to which a valve housing 18 of the regulating valve 4 is connected, so that the valve body 12 is arranged within the valve hollow space 13, while the valve housing 18, in which the electromagnetic actuation device 10 is located, is arranged outside the lid 7 and outside the pump 1. A seal 28 can be present between the valve housing 18 and the flange 17 in order to seal the electromagnetic actuation device 10 against the oil. The lid 7 can be an individual part that can be produced of aluminum of an aluminum alloy using a casting method.
  • FIG. 4 a shows a perspective top view of the pump 1 of FIG. 1, wherein the lid 7 has been omitted. FIG. 4 b shows a schematic top view of the pump 1 of FIG. 4 a. In the FIG. 4 a and FIG. 4 b the pump mechanism can be seen. FIG. 4 a and FIG. 4 b show that the pump 1 of this exemplary embodiment is a vane pump with variable displacement. This vane pump 1 with variable displacement ensures improved regulation of the pump outlet flow pressure within a narrow range of a desired pressure during different engine operating conditions.
  • The vane pump 1 comprises a rotor 19 with a plurality of sliding vanes 20 which is rotatable in the housing 5 on a fixed axis 21. The rotor 19 can be driven by a transverse axis hexagon shaft drive of the combustion engine or another suitable drive means driven by the combustion engine.
  • The sliding vanes 20 are internally in engagement with a slide 22 in order to define a plurality of pump chambers 23 within the slide 22. The slide 22 is rotatably connected to the housing wall 6 through a rotary axis 24 and is rotatable in order to vary the displacement of the pump chambers 23. The displacement of the pump 1 is proportional to the eccentricity of the slide 22 relative to the axis 21 of the rotor 19.
  • When the pump 1 is in a state of rest the slide 22 is forced into a position of maximum eccentricity relative to the rotor 19. When the pump operates and the slide 22 is in that position, the displacement of the pump is at its maximum value. When the slide 22 turns away from a position of maximum eccentricity the displacement of the pump is reduced and the output flow of the pump generally decreases. When the middle of the slide 22 is turned into a position in which it is aligned with the axis of the rotor 19, the slide 22 is located at an eccentricity of approximately 0% (i.e., approximately 100% of its maximum eccentricity) and the pump 1 operates at a displacement of approximately zero.
  • The pump 1 also has an oil inlet channel which is not shown in the figures, which provides a first intake opening and is formed on an inlet side of the housing 5. A pressure oil outlet channel which is likewise not shown in the figure provides for a discharge opening and is formed on an opposite outlet side of the housing. The inlet and outlet channels preferentially communicate with the pump chambers 23 on opposite lower and upper sides of the rotor 19 in order to prevent trapping of gases in the pump chambers 23. Rotation of the rotor 19 at a certain eccentricity level causes the pump chambers 23 to expand. This change of the chamber volume in turn causes a decompression of the pump chambers, which causes the oil to be sucked through the inlet channel into the pump chambers 23 and then expelled from the pump chambers 23 through the outlet channel when the chambers contract. The pump 1 comprise a first control chamber 26 which is located between the outer side of the slide 22 and the housing wall 6 and comprises a second control chamber 27 which likewise forms between the outside of the slide 22 and the housing wall 6. The second control chamber 27 is arranged next to the first control chamber 26 and can be selectively filled and emptied upon actuation of the regulating valve 4. There are thus three possible oil paths, A, B and C. Path A steers oil from the first control chamber 26 into the regulating valve through the second opening 15. Path B steers oil from the first control chamber 26 via the regulating valve 4 into the second control chamber 27. The third path C steers oil from the second control chamber 27 into the oil pan via the third opening 30 in order to empty the second control chamber. The regulating valve 4 is thus a three-way valve.
  • An elastic element 25 which in this exemplary embodiment is a spring, is arranged between the housing wall 6 and the slide 22. The elastic element 25 is in engagement with the slide 22 and forces the slide 22 in the direction of the first control chamber 26. The elastic element 25 counteracts the hydraulic force exerted by the oil in the first control chamber 26 and the adjacent second control chamber 27 on the slide 22.
  • The regulating valve is actuated dependent on the engine rotational speed of the combustion engine. At low engine rotational speed the regulating valve 4 is energized so that the second control chamber 27 is filled. At higher engine rotational speeds the regulating valve 4 is not energized, it thus remains current less, so that oil from the second control chamber 27 is steered into the oil pan.
  • FIG. 7 shows a comparison pump 1′, which likewise comprises a pump mechanism with a vane pump with two control chambers 26′, 27′, a slide 22′ and a three-way regulating valve 4′. In the comparison pump l′ the regulating valve 4′ is integrated in the housing 5′ of the pump 1′ and more preferably in the housing wall 6′. The regulating valve 4′ comprises a valve housing 18′ with cable 16′, in order to supply the coil which is not shown of the actuation device which is not shown with current, and a valve body 12′, which is arranged in a valve hollow space 13′ in the housing wall 6′.
  • In FIG. 7, the three flow directions of the oil are shown by the arrows A, B and C. These flow directions are equal to that in the pump 1 of FIG. 1 to FIG. 6. Arrow A indicates the flow from the first control chamber 26′ to the valve hollow space 13′. Arrow B indicates the flow from the valve hollow space 13′ to the second control chamber 27′, wherein the oil is steered from the first control chamber into the second control chamber. Arrow C shows the flow of oil from the second control chamber 27′ into the oil pan in order to empty the second control chamber 27′.
  • While at least one exemplary embodiment has been presented in the foregoing summary and detailed description, it should be appreciated that a vast number of variations exist. It should also be appreciated that the exemplary embodiment or exemplary embodiments are only examples, and are not intended to limit the scope, applicability, or configuration in any way. Rather, the foregoing summary and detailed description will provide those skilled in the art with a convenient road map for implementing an exemplary embodiment, it being understood that various changes may be made in the function and arrangement of elements described in an exemplary embodiment without departing from the scope as set forth in the appended claims and their legal equivalents.

Claims (16)

1. A pump for a lubricating system of a combustion engine comprising:
a housing;
a lid that together with the housing define a pump hollow space
a pump mechanism that is arranged in the pump hollow space and configured to pump a lubricant of the lubricating system is arranged; and
a regulating valve integrated with a component of the pump and configured to regulate a flow of the lubricant through the pump.
2. The pump according to claim 1, wherein the component is the lid.
3. The pump according to claim 1, wherein the component is the housing.
4. The pump according to claim 1, wherein the regulating valve is an electromagnetically actuated valve.
5. The pump according to claim 4, wherein the regulating valve comprises a valve housing in which an electromagnetic actuation device is arranged and a valve body that is displaceable with the electromagnetic actuation device in order to regulate the flow of the lubricant.
6. The pump according to claim 5,
wherein the lid comprises a valve hollow space configured to accommodating the valve body of the regulating valve and comprises an input opening through which the lubricant flows into the valve hollow space, and further comprises an output opening through which the lubricant flows out of the valve hollow space, and
wherein the valve body is configured to move in the valve hollow space in order to open the input opening.
7. The pump according to claim 5, wherein the lid comprises a flange connected to the valve housing.
8. The pump according to claim 7, wherein the valve housing is connected to the flange with a seal.
9. The pump according to claim 5, wherein the valve housing comprises a cable connection.
10. The pump according to claim 1, wherein the regulating valve is configured to actuate dependent on an engine rotational speed of the combustion engine in order to regulate an outlet pressure of the lubricant from the pump.
11. The pump according to claim 1, wherein the pump is a vane pump with variable displacement.
12. The pump according to claim 11, wherein the pump comprises a plurality of pump chambers of variable volumes that are defined by a plurality of sliding vanes that are carried by a rotor is rotatably mounted in the housing in order to pump the lubricant from an intake opening to a discharge opening.
13. The pump according to claim 12, further comprising a slide configured for displacement control,
wherein the slide is rotatably connected to a wall of the housing by a rotary axis and internally engaged with the plurality of sliding vanes,
wherein the variable volumes of the plurality of pump chambers are variable upon rotation of the slide.
14. The pump according to claim 13, further comprising an elastic element preloading the slide in a direction,
wherein the lubricant in a chambers exerts a force on the slide in a second direction that is opposite to the direction in which the elastic element preloads the slide.
15. A lid of a pump for a lubricating system of a combustion engine, comprising:
a valve hollow space configured to accommodate a valve body of a regulating valve;
an input opening through which lubricant flows into the valve hollow space; and
an output opening through which the lubricant flows out of the valve hollow space.
16. The lid according to claim 15, further comprising a flange configured to connect to a valve housing of the regulating valve.
US13/100,943 2010-05-20 2011-05-04 Pump for a lubricating system of a combustion engine Abandoned US20110286862A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102010022137A DE102010022137A1 (en) 2010-05-20 2010-05-20 Pump for a lubrication system of an internal combustion engine
DE102010022137.6 2010-05-20

Publications (1)

Publication Number Publication Date
US20110286862A1 true US20110286862A1 (en) 2011-11-24

Family

ID=43127988

Family Applications (1)

Application Number Title Priority Date Filing Date
US13/100,943 Abandoned US20110286862A1 (en) 2010-05-20 2011-05-04 Pump for a lubricating system of a combustion engine

Country Status (5)

Country Link
US (1) US20110286862A1 (en)
CN (1) CN102251825A (en)
DE (1) DE102010022137A1 (en)
GB (1) GB2480507A (en)
RU (1) RU2011120148A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104390783A (en) * 2014-12-02 2015-03-04 中国北方车辆研究所 High-temperature high-flow lubricating oil adjusting device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2768585A (en) * 1952-12-18 1956-10-30 Schwitzer Corp Pump control mechanism
US2823614A (en) * 1952-06-13 1958-02-18 Clark Equipment Co Pump
US2878755A (en) * 1950-05-13 1959-03-24 Houdaille Industries Inc Variable displacement pump and pressure responsive control means therefor
US3724970A (en) * 1971-02-23 1973-04-03 J Kobelt Apparatus for automatic pitch compensation in marine vessels
US20070212243A1 (en) * 2006-03-09 2007-09-13 Hitachi, Ltd. Variable displacement vane pump and method of controlling the same

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3837599A1 (en) * 1988-11-05 1990-05-10 Daimler Benz Ag Gear pump having two pairs of gear wheels arranged next to one another in the pump casing
US4953582A (en) * 1989-07-27 1990-09-04 Detroit Diesel Corporation Combined pressure regulator and relief valve having a single biasing means
US6004111A (en) * 1997-04-28 1999-12-21 Aisin Seiki Kabushiki Kaisha Oil pump apparatus
US6544008B1 (en) * 1997-07-18 2003-04-08 John K. Apostolides Internal vent for reducing seal pressure in prelubrication pump assembly
JP2006348750A (en) * 2003-07-25 2006-12-28 Mikuni Corp Oil pump
US8425204B2 (en) * 2004-06-24 2013-04-23 Luk Automobiltechnik Gmbh & Co. Kg Pump
DE102005048602B4 (en) * 2005-10-06 2011-01-13 Joma-Polytec Kunststofftechnik Gmbh Vane machine, in particular vane pump
US20070224067A1 (en) 2006-03-27 2007-09-27 Manfred Arnold Variable displacement sliding vane pump
JP4687991B2 (en) * 2006-11-07 2011-05-25 アイシン精機株式会社 Engine oil supply device
JP2009197731A (en) * 2008-02-22 2009-09-03 Daikyonishikawa Corp Oil pump device
JP5216470B2 (en) * 2008-08-08 2013-06-19 カヤバ工業株式会社 Variable displacement vane pump

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2878755A (en) * 1950-05-13 1959-03-24 Houdaille Industries Inc Variable displacement pump and pressure responsive control means therefor
US2823614A (en) * 1952-06-13 1958-02-18 Clark Equipment Co Pump
US2768585A (en) * 1952-12-18 1956-10-30 Schwitzer Corp Pump control mechanism
US3724970A (en) * 1971-02-23 1973-04-03 J Kobelt Apparatus for automatic pitch compensation in marine vessels
US20070212243A1 (en) * 2006-03-09 2007-09-13 Hitachi, Ltd. Variable displacement vane pump and method of controlling the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104390783A (en) * 2014-12-02 2015-03-04 中国北方车辆研究所 High-temperature high-flow lubricating oil adjusting device

Also Published As

Publication number Publication date
DE102010022137A1 (en) 2011-11-24
GB201016175D0 (en) 2010-11-10
RU2011120148A (en) 2012-11-27
CN102251825A (en) 2011-11-23
GB2480507A (en) 2011-11-23

Similar Documents

Publication Publication Date Title
US9109596B2 (en) Variable displacement pump
JP6369967B2 (en) Central valve for oscillating actuator
JP6574311B2 (en) Automotive coolant pump
EP2302179A2 (en) Oil supply device for vehicle
US10030656B2 (en) Variable displacement vane pump with integrated fail safe function
US20130312400A1 (en) Variable displacement pump
JP6647540B2 (en) Regulating unit for a mechanically adjustable coolant pump of an internal combustion engine
CN104812996A (en) Hydraulic camshaft adjuster with centre locking and adjustable locking play
US20110286862A1 (en) Pump for a lubricating system of a combustion engine
US10094454B2 (en) Axial through-shaft actuator arrangement
JP6700418B2 (en) Variable displacement pump
JP6305708B2 (en) Vacuum pump mechanism
JP3820273B2 (en) Hydraulic pump flow control valve
EP1659047A1 (en) Power steering unit
JP5466746B2 (en) Variable displacement pump device
US9410454B2 (en) Valve opening/closing timing control device
JP2015073375A (en) Electric vacuum pump
WO2016134201A1 (en) Fluid friction clutch
WO2018051673A1 (en) Variable capacity pump and hydraulic fluid supply system for internal combustion engine
US7249608B2 (en) Flow control for power steering
US10947972B2 (en) Variable displacement-type oil pump
US11268509B2 (en) Variable displacement lubricant vane pump
JP4214952B2 (en) Speed governors such as water turbines and pressure distribution valves
KR20140074558A (en) Vane angle change type electro controlled variable displacement pump
US20170363214A1 (en) Valve device in a motor vehicle

Legal Events

Date Code Title Description
AS Assignment

Owner name: GM GLOBAL TECHNOLOGY OPERATIONS LLC, MICHIGAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ZWICKLER, GEORG;REEL/FRAME:026226/0885

Effective date: 20110503

AS Assignment

Owner name: WILMINGTON TRUST COMPANY, DELAWARE

Free format text: SECURITY AGREEMENT;ASSIGNOR:GM GLOBAL TECHNOLOGY OPERATIONS LLC;REEL/FRAME:028466/0870

Effective date: 20101027

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION