US20110185710A1 - Exhaust gas purifying device for internal combustion engine, and swirl generating device - Google Patents

Exhaust gas purifying device for internal combustion engine, and swirl generating device Download PDF

Info

Publication number
US20110185710A1
US20110185710A1 US13/063,039 US200913063039A US2011185710A1 US 20110185710 A1 US20110185710 A1 US 20110185710A1 US 200913063039 A US200913063039 A US 200913063039A US 2011185710 A1 US2011185710 A1 US 2011185710A1
Authority
US
United States
Prior art keywords
blades
exhaust gas
generating means
swirl
swirl generating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/063,039
Inventor
Masaki Shimizu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Roki Co Ltd
Original Assignee
Tokyo Roki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Roki Co Ltd filed Critical Tokyo Roki Co Ltd
Assigned to TOKYO ROKI CO., LTD. reassignment TOKYO ROKI CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SHIMIZU, MASAKI
Publication of US20110185710A1 publication Critical patent/US20110185710A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2892Exhaust flow directors or the like, e.g. upstream of catalytic device
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/21Mixing gases with liquids by introducing liquids into gaseous media
    • B01F23/213Mixing gases with liquids by introducing liquids into gaseous media by spraying or atomising of the liquids
    • B01F23/2132Mixing gases with liquids by introducing liquids into gaseous media by spraying or atomising of the liquids using nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/30Injector mixers
    • B01F25/31Injector mixers in conduits or tubes through which the main component flows
    • B01F25/314Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced at the circumference of the conduit
    • B01F25/3141Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced at the circumference of the conduit with additional mixing means other than injector mixers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/43Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
    • B01F25/431Straight mixing tubes with baffles or obstructions that do not cause substantial pressure drop; Baffles therefor
    • B01F25/4315Straight mixing tubes with baffles or obstructions that do not cause substantial pressure drop; Baffles therefor the baffles being deformed flat pieces of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/43Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
    • B01F25/431Straight mixing tubes with baffles or obstructions that do not cause substantial pressure drop; Baffles therefor
    • B01F25/4316Straight mixing tubes with baffles or obstructions that do not cause substantial pressure drop; Baffles therefor the baffles being flat pieces of material, e.g. intermeshing, fixed to the wall or fixed on a central rod
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/43Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
    • B01F25/431Straight mixing tubes with baffles or obstructions that do not cause substantial pressure drop; Baffles therefor
    • B01F25/4316Straight mixing tubes with baffles or obstructions that do not cause substantial pressure drop; Baffles therefor the baffles being flat pieces of material, e.g. intermeshing, fixed to the wall or fixed on a central rod
    • B01F25/43162Assembled flat elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N1/00Silencing apparatus characterised by method of silencing
    • F01N1/08Silencing apparatus characterised by method of silencing by reducing exhaust energy by throttling or whirling
    • F01N1/086Silencing apparatus characterised by method of silencing by reducing exhaust energy by throttling or whirling having means to impart whirling motion to the gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/43Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
    • B01F25/431Straight mixing tubes with baffles or obstructions that do not cause substantial pressure drop; Baffles therefor
    • B01F25/43197Straight mixing tubes with baffles or obstructions that do not cause substantial pressure drop; Baffles therefor characterised by the mounting of the baffles or obstructions
    • B01F25/431974Support members, e.g. tubular collars, with projecting baffles fitted inside the mixing tube or adjacent to the inner wall
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04CAPPARATUS USING FREE VORTEX FLOW, e.g. CYCLONES
    • B04C3/00Apparatus in which the axial direction of the vortex flow following a screw-thread type line remains unchanged ; Devices in which one of the two discharge ducts returns centrally through the vortex chamber, a reverse-flow vortex being prevented by bulkheads in the central discharge duct
    • B04C2003/006Construction of elements by which the vortex flow is generated or degenerated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/20Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being a flow director or deflector

Definitions

  • the present invention relates to an exhaust gas purifying device for an internal combustion engine and a swirl generating device.
  • An exhaust gas purifying device for an internal combustion engine is a device for purifying exhaust gas exhausted from the internal combustion engine.
  • a known device of this type includes an exhaust pipe through which exhaust gas exhausted from the internal combustion engine flows, a reduction catalyst provided in the exhaust pipe and reducing and purifying oxynitride contained in the exhaust gas, reducing agent supply means for supplying a reducing agent by injecting it into the exhaust gas flowing upstream of the reduction catalyst, and swirl generating means provided upstream of the reduction catalyst in the exhaust pipe and generating a swirl in the exhaust gas (see Japanese Patent Laid-Open No. 2006-29233, for example).
  • FIG. 8 shows an exemplary exhaust gas purifying device for an internal combustion engine according to the related art.
  • FIG. 8( a ) is a schematic view of the exhaust gas purifying device
  • FIG. 8( b ) is an enlarged perspective view of a key portion V shown in FIG. 8( a ).
  • an exhaust gas purifying device 10 for an internal combustion engine includes an exhaust pipe 1 , a reduction catalyst 2 , a reducing agent injection nozzle 3 that supplies a reducing agent (such as urea solution) by injecting it into exhaust gas flowing upstream of the reduction catalyst 2 , and swirl generating means 4 for generating a swirl in the exhaust gas and provided upstream of the reduction catalyst 2 in the exhaust pipe 1 (specifically, upstream of a location where the reducing agent is sprayed into the exhaust gas through the reducing agent injection nozzle 3 (see “reducing agent sprayed portion” in FIG. 8( a )).
  • the swirl generating means 4 is a finned structure including columns 41 and blades 42 and generating turbulence or swirl in the exhaust gas to facilitate diffusion of the reducing agent in the exhaust gas.
  • the swirl generating means 4 generates turbulence or swirl in the exhaust gas to facilitate diffusion of the reducing agent in the exhaust gas.
  • the reducing agent can be uniformly supplied to the reduction catalyst 2 , whereby exhaust gas purifying performance can be ensured at a certain level or higher.
  • a swirl force created by the swirl generating means 4 can be increased, the reducing agent can be more uniformly supplied to the reduction catalyst, whereby the exhaust gas purifying performance can be improved.
  • the swirl force created by the swirl generating means 4 is therefore desirably improved.
  • the swirl generating means 4 therefore needs to have a certain magnitude of strength. If the resistance produced by the swirl generating means 4 can be reduced, not only can the strength required for the swirl generating means 4 be reduced, but also the fuel consumption of the internal combustion engine can be improved. The resistance produced by the swirl generating means 4 is therefore desirably reduced.
  • the present invention provides an exhaust gas purifying device for an internal combustion engine including an exhaust pipe through which exhaust gas exhausted from the internal combustion engine flows, a reduction catalyst provided in the exhaust pipe and reducing and purifying an oxynitride contained in the exhaust gas, reducing agent supply means for supplying a reducing agent by injecting the reducing agent into the exhaust gas flowing upstream of the reduction catalyst, and swirl generating means provided upstream of the reduction catalyst in the exhaust pipe and generating a swirl in the exhaust gas.
  • the swirl generating means has two blades formed by halving a substantially elliptic plate along the direction of a major axis thereof.
  • the two blades are so integrated together that the blades are rotated relative to each other about a minor axis of the plate so as to cross each other.
  • Let ⁇ be a crossing angle between the two blades integrated as described above, and an angle expressed by 90- ⁇ 1/2 is called a fin angle.
  • the two blades are so mounted that the direction of the major axis is parallel to the direction in which the exhaust gas flows.
  • the present invention further provides swirl generating means provided in an exhaust pipe having two blades formed by halving a substantially elliptic plate along the direction of a major axis thereof.
  • the two blades are so integrated together that the blades are rotated relative to each other about a minor axis of the plate so as to cross each other, and the two blades are so mounted that the direction of the major axis is parallel to the direction in which the exhaust gas flows.
  • At least one of the two blades described above is desirably so configured that an arcuate portion of an outer edge of the blade is in contact with an inner wall of the exhaust pipe.
  • both the two blades are more desirably so configured that the arcuate portions of the outer edges of the blades are in contact with the inner wall of the exhaust pipe.
  • At least one of the two blades is desirably so configured that both ends thereof in the direction of the major axis are cut in the direction parallel to the minor axis.
  • both the two blades are desirably so configured that both ends thereof in the direction of the major axis are cut in the direction parallel to the minor axis.
  • the two blades are so configured that both ends thereof in the direction of the major axis are integrated together by connecting portions, and that one of the connecting portions, the connecting portion disposed on the upstream side in the exhaust pipe, is configured to connect upstream ends of the two blades with each other.
  • FIG. 1 shows a key portion of an exhaust gas purifying device for an internal combustion engine according to an embodiment of the present invention.
  • FIG. 2 shows swirl generating means viewed from several directions (A to D) shown in FIG. 1 .
  • FIG. 3 is a table showing comparison between the swirl generating means of the present invention and swirl generating means of related art in terms of the magnitudes of swirl force and resistance for fin specifications (I to III).
  • FIG. 4 shows a flow analysis result (flow line) for the fin specifications.
  • FIG. 5 shows a flow analysis result (swirl force) for the fin specifications.
  • FIG. 6 shows a flow analysis result (resistance) for the fin specifications.
  • FIG. 7 shows a flow analysis result (flow speed) for the fin specifications.
  • FIG. 8 shows an exemplary exhaust gas purifying device for internal combustion engine according to related art.
  • FIGS. 9( a ) and 9 ( b ) show swirl generating means 50 disposed in an exhaust pipe 1 and viewed from various angles.
  • FIGS. 10( a ) to 10 ( c ) show the swirl generating means 50 viewed from directions E to G shown in FIG. 9 .
  • FIG. 11 shows exhaust gas flowing through the exhaust pipe 1 in which the swirl generating means 50 is disposed, the exhaust gas monitored with “EFD V5”.
  • FIGS. 12( a ) and 12 ( b ) show swirl generating means 60 disposed in the exhaust pipe 1 and viewed from various angles.
  • FIGS. 13( a ) to 13 ( c ) show the swirl generating means 60 viewed from directions H to J shown in FIG. 12 .
  • FIG. 14 shows exhaust gas flowing through the exhaust pipe 1 in which the swirl generating means 60 is disposed, the exhaust gas monitored with “EFD V5”.
  • FIG. 15 shows the relationship between a fin angle and a swirl force.
  • FIG. 16 shows the relationship between the fin angle and pressure loss.
  • FIG. 1 shows a key portion of an exhaust gas purifying device for an internal combustion engine according to an embodiment of the present invention.
  • FIG. 2 shows swirl generating means 40 viewed from several directions (A to D) shown in FIG. 1 .
  • FIGS. 2(A) to 2(D) correspond to those of the swirl generating means 40 viewed from the directions A to D shown in FIG. 1 , respectively.
  • the same portions as those in FIG. 8 have the same reference characters.
  • an exhaust gas purifying device 100 for an internal combustion engine includes the swirl generating means 40 in an exhaust pipe 1 .
  • the swirl generating means 40 has two blades 410 and 420 formed by halving a substantially elliptic plate along the direction of the major axis thereof.
  • the two blades 410 and 420 are so integrated together via connecting portions 431 and 432 that the two blades are rotated relative to each other about the minor axis (hereinafter also referred to as a central axis) of the plate so as to cross each other, and the two blades 410 and 420 are so mounted that the direction of the major axis is parallel to the direction in which the exhaust gas flows.
  • the blades 410 and 420 are so configured that arcuate portions 410 a and 420 a of outer edges of the blades are in contact with the inner wall of the exhaust pipe 1 .
  • the two blades 410 and 420 which form the swirl generating means 40 , produce a double spiral swirl in the exhaust gas flowing through the exhaust pipe 1 .
  • the exhaust gas purifying device 100 for an internal combustion engine can create a strong swirl force.
  • the blades 410 and 420 have a structure to which the exhaust gas applies less resistance, the double spiral swirl flows smoothly along the wall surfaces of the blades 410 and 420 . As a result, the resistance produced in the exhaust gas purifying device 100 for an internal combustion engine decreases.
  • the swirl generating means 40 is disposed upstream of a reducing agent sprayed portion (see FIG. 8 ).
  • the present invention is, however, not limited to the embodiment shown in FIG. 1 , and the swirl generating means 40 may be disposed downstream of the reducing agent sprayed portion as long as being disposed upstream of the reduction catalyst 2 .
  • FIG. 3 is a table showing comparison between the swirl generating means of the present invention (see “inventive proposal” in FIG. 3 ) and the swirl generating means of the related art (see “related art structures 1 and 2 ” in FIG. 3 ) in terms of the magnitudes of the swirl force and the resistance for fin specifications (I to III).
  • FIGS. 4 to 7 show flow analysis results for the fin specifications shown in FIG. 3 .
  • FIG. 4 shows flow lines.
  • FIG. 5 shows the swirl force.
  • FIG. 6 shows the resistance.
  • FIG. 7 shows the flow speed. It is noted that FIG. 6 shows flow analysis results (resistance) only for the fin specifications I and II out of the fin specifications I to III shown in FIG. 3 but does not shows a flow analysis result (resistance) for the fin specification III.
  • the inventive proposal shows a large swirl force of 2.2 revolutions and a low resistance of 3.2 kPa.
  • the related art structure 1 shows a large swirl force of 2.1 revolutions, which is similar to the magnitude of the swirl force provided in the inventive proposal, but a significantly high resistance of 65.1 kPa.
  • the related art structure 2 shows a low resistance of 3.2 kPa, which is the same as the magnitude of the resistance provided in the inventive proposal, but a significantly small swirl force of 0.5 revolutions.
  • the flow analysis results shown in FIGS. 4 to 7 indicate that the inventive proposal achieves a large swirl force and low resistance at the same time unlike the related art structures 1 and 2 .
  • the exhaust gas purifying device 100 for an internal combustion engine advantageously provides a stronger swirl force and lower resistance than the exhaust gas purifying device 10 for an internal combustion engine of the related art (see FIG. 8 ).
  • swirl generating means 40 as the swirl generating means, but instead of or in addition to the swirl generating means 40 , swirl generating means 50 shown in FIGS. 9 to 11 or swirl generating means 60 shown in FIGS. 12 to 14 may be used.
  • the swirl generating means 50 and the swirl generating means 60 will be described below.
  • FIG. 11 shows the exhaust gas flowing through the exhaust pipe 1 in which the swirl generating means 50 is disposed, the exhaust gas monitored with “EFD V5” (manufactured by “KOZO KEIKAKU ENGINEERING Inc.”).
  • the swirl generating means 50 has two blades 510 and 520 formed by halving a substantially elliptic plate along the direction of the major axis thereof.
  • the two blades 510 and 520 are so integrated together that they are rotated relative to each other about the minor axis (hereinafter also referred to as a central axis) of the plate so as to cross each other, and the two blades 510 and 520 are so mounted in the exhaust pipe 1 that the direction of the major axis is parallel to the direction in which the exhaust gas flows.
  • the blades 510 and 520 are so configured that arcuate portions 510 a and 520 a of outer edges of the blades are in contact with the inner wall of the exhaust pipe 1 .
  • the two blades 510 and 520 are also so configured that both ends thereof in the direction of the major axis (specifically, an upstream end 510 b of the blade 510 , a downstream end 510 c of the blade 510 , an upstream end 520 b of the blade 520 , and a downstream end 520 c of the blade 520 ) are cut in the direction parallel to the minor axis.
  • the two blades 510 and 520 are so integrated together on both sides thereof in the direction of the major axis by connecting portions 531 and 532 .
  • One of the connecting portions 531 and 532 is configured to connect downstream portions of the two blades 510 and 520 . More specifically, the connecting portion 531 is configured to connect downstream portions of the two blades 510 and 520 with each other in a region upstream of the downstream ends 510 c and 520 c of the two blades 510 and 520 (that is, a region between the downstream ends 510 c, 520 c and the central axis described above).
  • the connecting portion 532 disposed on the upstream side in the exhaust pipe 1 is configured to connect upstream portions of the two blades 510 and 520 .
  • the connecting portion 532 is configured to connect the upstream ends 510 b and 520 b of the two blades 510 and 520 with each other.
  • the connecting portion 532 has a larger width in the direction in which the exhaust gas flows than that of the connecting portion 531 .
  • the swirl generating means 50 when the swirl generating means 50 is disposed in the exhaust pipe 1 , the swirl force of the exhaust gas becomes strong.
  • the flow rate of the exhaust gas was 1200 kg/h; the temperature of the exhaust gas was 520° C.; and the fin angle was 52.5°.
  • the pressure loss under these conditions was 12.998 kPa.
  • the resistance applied to the exhaust gas also decreases.
  • FIG. 14 shows the exhaust gas flowing through the exhaust pipe 1 in which the swirl generating means 60 is disposed, the exhaust gas monitored with “EFD V5” (manufactured by “KOZO KEIKAKU ENGINEERING Inc.”).
  • the swirl generating means 60 has substantially the same configuration as that of the swirl generating means 50 .
  • the swirl generating means 60 has two blades 610 and 620 formed by halving a substantially elliptic plate along the direction of the major axis thereof.
  • the two blades 610 and 620 are so integrated together that the they are rotated relative to each other about the minor axis (hereinafter also referred to as a central axis) of the plate so as to cross each other, and the two blades are so mounted in the exhaust pipe 1 that the direction of the major axis is parallel to the direction in which the exhaust gas flows.
  • the two blades 610 and 620 are so configured that arcuate portions 610 a and 620 a of outer edges of the blades are in contact with the inner wall of the exhaust pipe 1 , as in the case of the two blades 510 and 520 .
  • the swirl generating means 60 is, as in substantially the same manner as the swirl generating means 50 , further so configured that both ends thereof in the direction of the major axis (specifically, an upstream end 610 b of the blade 610 , a downstream end 610 c of the blade 610 , an upstream end 620 b of the blade 620 , and a downstream end 620 c of the blade 620 ) are cut in the direction parallel to the minor axis.
  • the two blades 610 and 620 are so integrated together on both sides thereof in the direction of the major axis by connecting portions 631 and 632 .
  • the swirl generating means 60 has a configuration different from that of the swirl generating means 50 . Specifically, both ends of the swirl generating means 60 are cut by a greater amount than the amount by which both ends of the swirl generating means 50 are cut.
  • the swirl generating means 60 when the swirl generating means 60 is disposed in the exhaust pipe 1 , the swirl force of the exhaust gas becomes strong, as in the case where the swirl generating means 50 is disposed in the exhaust pipe 1 .
  • the flow rate of the exhaust gas was 1200 kg/h; the temperature of the exhaust gas was 520° C.; and the fin angle was 52.5°.
  • the pressure loss under these conditions was, however, 10.209 kPa.
  • the resistance applied to the exhaust gas decreases as well.
  • both ends of the swirl generating means 60 are cut by a greater amount than the amount by which both ends of the swirl generating means 50 are cut. Therefore, when the swirl generating means 60 is disposed in the exhaust pipe 1 , the gap (that is, exhaust gas flow path) formed between the inner wall of the exhaust pipe 1 and both ends of the swirl generating means 60 is larger than that in the case where the swirl generating means 50 is disposed in the exhaust pipe 1 . As a result, the resistance applied to the exhaust gas decreases. Since the swirl generating means 60 is smaller than the swirl generating means 50 , the structure in which the swirl generating means 60 is disposed in the exhaust pipe 1 can be lighter and more compact than the structure in which the swirl generating means 50 is disposed in the exhaust pipe 1 .
  • the following confirmation test was conducted. That is, the relationship between the fin angle and the swirl force (see the flow line diagram of FIG. 15 ) and the relationship between the fin angle and the pressure loss (see the graph in FIG. 16 ) were studied in the confirmation test by using two types of fin shown in FIG. 15 , specifically, a new fin (an example of the swirl generating means of the present invention) and a conventional fin (an example of the swirl generating means of the related art).
  • the swirl force created when the fin angle of the new fin is 65° is substantially equal to or as strong as the swirl force created when the fin angle of the conventional fin is 45°.
  • the pressure loss was approximately 27 kPa when the fin angle of the new fin is 65°, whereas the pressure loss was approximately 44 kPa when the fin angle of the conventional fin is 45°.
  • the present invention can provide an exhaust gas purifying device for an internal combustion engine including swirl generating means that creates a strong swirl force and applies reduced resistance.
  • the present invention can further provide a swirl generating device that creates a strong swirl force and applies reduced resistance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Dispersion Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

An exhaust gas purifying device for an internal combustion engine, provided with a swirl generating means for generating a swirl which has a strong swirl force and applying reduced resistance to the swirl. A swirl generating device for generating a swirl which has a strong swirl force and applying reduced resistance to the swirl is also provided. An exhaust gas purifying device (100) for an internal combustion engine is provided with an exhaust pipe (1), a reduction catalyst (2), a reducing agent supply means (3), and a swirl generating means (40). The swirl generating means (40) has two blades (410, 420) formed by dividing a substantially elliptic plate into two in the direction of the major axis thereof. The two blades (410, 420) are integrated together such that the two blades are rotated relative to each other about the minor axis of the plate so as to cross each other, and the two blades are mounted such that the direction of the major axis is parallel to the direction of flow of exhaust gas.

Description

    TECHNICAL FIELD
  • The present invention relates to an exhaust gas purifying device for an internal combustion engine and a swirl generating device.
  • BACKGROUND ART
  • An exhaust gas purifying device for an internal combustion engine is a device for purifying exhaust gas exhausted from the internal combustion engine. A known device of this type includes an exhaust pipe through which exhaust gas exhausted from the internal combustion engine flows, a reduction catalyst provided in the exhaust pipe and reducing and purifying oxynitride contained in the exhaust gas, reducing agent supply means for supplying a reducing agent by injecting it into the exhaust gas flowing upstream of the reduction catalyst, and swirl generating means provided upstream of the reduction catalyst in the exhaust pipe and generating a swirl in the exhaust gas (see Japanese Patent Laid-Open No. 2006-29233, for example).
  • FIG. 8 shows an exemplary exhaust gas purifying device for an internal combustion engine according to the related art. FIG. 8( a) is a schematic view of the exhaust gas purifying device, and FIG. 8( b) is an enlarged perspective view of a key portion V shown in FIG. 8( a).
  • As shown in FIG. 8( a), an exhaust gas purifying device 10 for an internal combustion engine includes an exhaust pipe 1, a reduction catalyst 2, a reducing agent injection nozzle 3 that supplies a reducing agent (such as urea solution) by injecting it into exhaust gas flowing upstream of the reduction catalyst 2, and swirl generating means 4 for generating a swirl in the exhaust gas and provided upstream of the reduction catalyst 2 in the exhaust pipe 1 (specifically, upstream of a location where the reducing agent is sprayed into the exhaust gas through the reducing agent injection nozzle 3 (see “reducing agent sprayed portion” in FIG. 8( a)). As shown in FIG. 8( b), the swirl generating means 4 is a finned structure including columns 41 and blades 42 and generating turbulence or swirl in the exhaust gas to facilitate diffusion of the reducing agent in the exhaust gas.
  • In the thus configured exhaust gas purifying device 10 for an internal combustion engine, the swirl generating means 4 generates turbulence or swirl in the exhaust gas to facilitate diffusion of the reducing agent in the exhaust gas. As a result, the reducing agent can be uniformly supplied to the reduction catalyst 2, whereby exhaust gas purifying performance can be ensured at a certain level or higher.
  • SUMMARY OF INVENTION Technical Problem
  • If a swirl force created by the swirl generating means 4 can be increased, the reducing agent can be more uniformly supplied to the reduction catalyst, whereby the exhaust gas purifying performance can be improved. The swirl force created by the swirl generating means 4 is therefore desirably improved.
  • On the other hand, when the exhaust gas passes through the swirl generating means 4, it produces large resistance. The swirl generating means 4 therefore needs to have a certain magnitude of strength. If the resistance produced by the swirl generating means 4 can be reduced, not only can the strength required for the swirl generating means 4 be reduced, but also the fuel consumption of the internal combustion engine can be improved. The resistance produced by the swirl generating means 4 is therefore desirably reduced.
  • If the swirl force created by the swirl generating means 4 is attempted to be increased, however, the resistance produced by the swirl generating means 4 tends to increase, whereas if the resistance produced by the swirl generating means 4 is attempted to be reduced, the swirl force created by the swirl generating means 4 tends to decrease. This is a reason why in related art increase in the swirl force created by the swirl generating means 4 and reduction in the resistance produced by the swirl generating means 4 cannot be simultaneously achieved.
  • It has therefore been desired to develop an exhaust gas purifying device for an internal combustion engine including swirl generating means that creates a strong swirl force and applies reduced resistance. In addition to the development of such an exhaust gas purifying device for an internal combustion engine, it has also been desired to develop swirl generating means itself that can be disposed in a typical exhaust pipe, produce a strong swirl force, and apply reduced resistance.
  • An object of the present invention is to provide an exhaust gas purifying device for an internal combustion engine including swirl generating means that creates a strong swirl force and applies reduced resistance. Another object of the present invention is to provide swirl generating means that creates a strong swirl force and applies reduced resistance.
  • SOLUTION TO PROBLEM
  • To achieve the objects described above, the present invention provides an exhaust gas purifying device for an internal combustion engine including an exhaust pipe through which exhaust gas exhausted from the internal combustion engine flows, a reduction catalyst provided in the exhaust pipe and reducing and purifying an oxynitride contained in the exhaust gas, reducing agent supply means for supplying a reducing agent by injecting the reducing agent into the exhaust gas flowing upstream of the reduction catalyst, and swirl generating means provided upstream of the reduction catalyst in the exhaust pipe and generating a swirl in the exhaust gas. The swirl generating means has two blades formed by halving a substantially elliptic plate along the direction of a major axis thereof. The two blades are so integrated together that the blades are rotated relative to each other about a minor axis of the plate so as to cross each other. (Let θ be a crossing angle between the two blades integrated as described above, and an angle expressed by 90-θ×1/2 is called a fin angle.) The two blades are so mounted that the direction of the major axis is parallel to the direction in which the exhaust gas flows.
  • The present invention further provides swirl generating means provided in an exhaust pipe having two blades formed by halving a substantially elliptic plate along the direction of a major axis thereof. The two blades are so integrated together that the blades are rotated relative to each other about a minor axis of the plate so as to cross each other, and the two blades are so mounted that the direction of the major axis is parallel to the direction in which the exhaust gas flows.
  • At least one of the two blades described above is desirably so configured that an arcuate portion of an outer edge of the blade is in contact with an inner wall of the exhaust pipe. In particular, both the two blades are more desirably so configured that the arcuate portions of the outer edges of the blades are in contact with the inner wall of the exhaust pipe.
  • At least one of the two blades is desirably so configured that both ends thereof in the direction of the major axis are cut in the direction parallel to the minor axis. In particular, both the two blades are desirably so configured that both ends thereof in the direction of the major axis are cut in the direction parallel to the minor axis.
  • It is desirable that the two blades are so configured that both ends thereof in the direction of the major axis are integrated together by connecting portions, and that one of the connecting portions, the connecting portion disposed on the upstream side in the exhaust pipe, is configured to connect upstream ends of the two blades with each other.
  • CROSS REFERENCE TO RELATED DOCUMENTS
  • The present application claims the priority of Japanese Patent Application No. 2008-241382 filed on Sep. 19, 2008, and the disclosure of which is incorporated herein by reference.
  • BRIEF DESCRIPTION OF DRAWINGS
  • [FIG. 1] FIG. 1 shows a key portion of an exhaust gas purifying device for an internal combustion engine according to an embodiment of the present invention.
  • [FIG. 2] FIG. 2 shows swirl generating means viewed from several directions (A to D) shown in FIG. 1.
  • [FIG. 3] FIG. 3 is a table showing comparison between the swirl generating means of the present invention and swirl generating means of related art in terms of the magnitudes of swirl force and resistance for fin specifications (I to III).
  • [FIG. 4] FIG. 4 shows a flow analysis result (flow line) for the fin specifications.
  • [FIG. 5] FIG. 5 shows a flow analysis result (swirl force) for the fin specifications.
  • [FIG. 6] FIG. 6 shows a flow analysis result (resistance) for the fin specifications.
  • [FIG. 7] FIG. 7 shows a flow analysis result (flow speed) for the fin specifications.
  • [FIG. 8] FIG. 8 shows an exemplary exhaust gas purifying device for internal combustion engine according to related art.
  • [FIG. 9] FIGS. 9( a) and 9(b) show swirl generating means 50 disposed in an exhaust pipe 1 and viewed from various angles.
  • [FIG. 10] FIGS. 10( a) to 10(c) show the swirl generating means 50 viewed from directions E to G shown in FIG. 9.
  • [FIG. 11] FIG. 11 shows exhaust gas flowing through the exhaust pipe 1 in which the swirl generating means 50 is disposed, the exhaust gas monitored with “EFD V5”.
  • [FIG. 12] FIGS. 12( a) and 12(b) show swirl generating means 60 disposed in the exhaust pipe 1 and viewed from various angles.
  • [FIG. 13] FIGS. 13( a) to 13(c) show the swirl generating means 60 viewed from directions H to J shown in FIG. 12.
  • [FIG. 14] FIG. 14 shows exhaust gas flowing through the exhaust pipe 1 in which the swirl generating means 60 is disposed, the exhaust gas monitored with “EFD V5”.
  • [FIG. 15] FIG. 15 shows the relationship between a fin angle and a swirl force.
  • [FIG. 16] FIG. 16 shows the relationship between the fin angle and pressure loss.
  • DESCRIPTION OF EMBODIMENTS
  • The best mode for carrying out the present invention will be described below.
  • FIG. 1 shows a key portion of an exhaust gas purifying device for an internal combustion engine according to an embodiment of the present invention. FIG. 2 shows swirl generating means 40 viewed from several directions (A to D) shown in FIG. 1. FIGS. 2(A) to 2(D) correspond to those of the swirl generating means 40 viewed from the directions A to D shown in FIG. 1, respectively. In FIGS. 1 and 2, the same portions as those in FIG. 8 have the same reference characters.
  • As shown in FIG. 1, an exhaust gas purifying device 100 for an internal combustion engine includes the swirl generating means 40 in an exhaust pipe 1. As shown in FIG. 2, the swirl generating means 40 has two blades 410 and 420 formed by halving a substantially elliptic plate along the direction of the major axis thereof. The two blades 410 and 420 are so integrated together via connecting portions 431 and 432 that the two blades are rotated relative to each other about the minor axis (hereinafter also referred to as a central axis) of the plate so as to cross each other, and the two blades 410 and 420 are so mounted that the direction of the major axis is parallel to the direction in which the exhaust gas flows. The blades 410 and 420 are so configured that arcuate portions 410 a and 420 a of outer edges of the blades are in contact with the inner wall of the exhaust pipe 1.
  • In the thus configured exhaust gas purifying device 100 for an internal combustion engine, the two blades 410 and 420, which form the swirl generating means 40, produce a double spiral swirl in the exhaust gas flowing through the exhaust pipe 1. As a result, the exhaust gas purifying device 100 for an internal combustion engine can create a strong swirl force. Further, since the blades 410 and 420 have a structure to which the exhaust gas applies less resistance, the double spiral swirl flows smoothly along the wall surfaces of the blades 410 and 420. As a result, the resistance produced in the exhaust gas purifying device 100 for an internal combustion engine decreases.
  • In FIG. 1, the swirl generating means 40 is disposed upstream of a reducing agent sprayed portion (see FIG. 8). The present invention is, however, not limited to the embodiment shown in FIG. 1, and the swirl generating means 40 may be disposed downstream of the reducing agent sprayed portion as long as being disposed upstream of the reduction catalyst 2.
  • Differences between the swirl generating means of the present invention and the swirl generating means of the related art will next be described with reference to FIGS. 3 to 7.
  • FIG. 3 is a table showing comparison between the swirl generating means of the present invention (see “inventive proposal” in FIG. 3) and the swirl generating means of the related art (see “ related art structures 1 and 2” in FIG. 3) in terms of the magnitudes of the swirl force and the resistance for fin specifications (I to III). FIGS. 4 to 7 show flow analysis results for the fin specifications shown in FIG. 3. FIG. 4 shows flow lines. FIG. 5 shows the swirl force. FIG. 6 shows the resistance. FIG. 7 shows the flow speed. It is noted that FIG. 6 shows flow analysis results (resistance) only for the fin specifications I and II out of the fin specifications I to III shown in FIG. 3 but does not shows a flow analysis result (resistance) for the fin specification III.
  • First, as shown in FIG. 3, the inventive proposal shows a large swirl force of 2.2 revolutions and a low resistance of 3.2 kPa. In contrast, the related art structure 1 shows a large swirl force of 2.1 revolutions, which is similar to the magnitude of the swirl force provided in the inventive proposal, but a significantly high resistance of 65.1 kPa. On the other hand, the related art structure 2 shows a low resistance of 3.2 kPa, which is the same as the magnitude of the resistance provided in the inventive proposal, but a significantly small swirl force of 0.5 revolutions. Further, the flow analysis results shown in FIGS. 4 to 7 indicate that the inventive proposal achieves a large swirl force and low resistance at the same time unlike the related art structures 1 and 2.
  • As described above, the exhaust gas purifying device 100 for an internal combustion engine according to the embodiment of the present invention (see FIG. 1) advantageously provides a stronger swirl force and lower resistance than the exhaust gas purifying device 10 for an internal combustion engine of the related art (see FIG. 8).
  • Other Embodiments
  • The above description is provided by way of example for easier understanding of the present invention but does not intend to limit the present invention. The present invention can, of course, be changed or improved without departing from the substance and purpose thereof and encompasses equivalents thereof.
  • For example, the above description has been made with reference to the swirl generating means 40 as the swirl generating means, but instead of or in addition to the swirl generating means 40, swirl generating means 50 shown in FIGS. 9 to 11 or swirl generating means 60 shown in FIGS. 12 to 14 may be used.
  • The swirl generating means 50 and the swirl generating means 60 will be described below.
  • <Swirl generating means 50>
  • The swirl generating means 50 will first be described in detail with reference to FIGS. 9 to 11. FIG. 11 shows the exhaust gas flowing through the exhaust pipe 1 in which the swirl generating means 50 is disposed, the exhaust gas monitored with “EFD V5” (manufactured by “KOZO KEIKAKU ENGINEERING Inc.”).
  • As shown in FIGS. 9 and 10, the swirl generating means 50 has two blades 510 and 520 formed by halving a substantially elliptic plate along the direction of the major axis thereof. The two blades 510 and 520 are so integrated together that they are rotated relative to each other about the minor axis (hereinafter also referred to as a central axis) of the plate so as to cross each other, and the two blades 510 and 520 are so mounted in the exhaust pipe 1 that the direction of the major axis is parallel to the direction in which the exhaust gas flows.
  • The blades 510 and 520 are so configured that arcuate portions 510 a and 520 a of outer edges of the blades are in contact with the inner wall of the exhaust pipe 1. The two blades 510 and 520 are also so configured that both ends thereof in the direction of the major axis (specifically, an upstream end 510 b of the blade 510, a downstream end 510 c of the blade 510, an upstream end 520 b of the blade 520, and a downstream end 520 c of the blade 520) are cut in the direction parallel to the minor axis. The two blades 510 and 520 are so integrated together on both sides thereof in the direction of the major axis by connecting portions 531 and 532.
  • One of the connecting portions 531 and 532, the connecting portion 531 disposed on the downstream side in the exhaust pipe 1, is configured to connect downstream portions of the two blades 510 and 520. More specifically, the connecting portion 531 is configured to connect downstream portions of the two blades 510 and 520 with each other in a region upstream of the downstream ends 510 c and 520 c of the two blades 510 and 520 (that is, a region between the downstream ends 510 c, 520 c and the central axis described above). On the other hand, the connecting portion 532 disposed on the upstream side in the exhaust pipe 1 is configured to connect upstream portions of the two blades 510 and 520. More specifically, the connecting portion 532 is configured to connect the upstream ends 510 b and 520 b of the two blades 510 and 520 with each other. The connecting portion 532 has a larger width in the direction in which the exhaust gas flows than that of the connecting portion 531.
  • As shown in FIG. 11, when the swirl generating means 50 is disposed in the exhaust pipe 1, the swirl force of the exhaust gas becomes strong. In FIG. 11, the flow rate of the exhaust gas was 1200 kg/h; the temperature of the exhaust gas was 520° C.; and the fin angle was 52.5°. The pressure loss under these conditions was 12.998 kPa. As described above, when the swirl generating means 50 is disposed in the exhaust pipe 1, the resistance applied to the exhaust gas also decreases.
  • <Swirl generating means 60>
  • The swirl generating means 60 will next be described in detail with reference to FIGS. 12 to 14. FIG. 14 shows the exhaust gas flowing through the exhaust pipe 1 in which the swirl generating means 60 is disposed, the exhaust gas monitored with “EFD V5” (manufactured by “KOZO KEIKAKU ENGINEERING Inc.”).
  • As shown in FIGS. 12 and 13, the swirl generating means 60 has substantially the same configuration as that of the swirl generating means 50. Specifically, the swirl generating means 60 has two blades 610 and 620 formed by halving a substantially elliptic plate along the direction of the major axis thereof. The two blades 610 and 620 are so integrated together that the they are rotated relative to each other about the minor axis (hereinafter also referred to as a central axis) of the plate so as to cross each other, and the two blades are so mounted in the exhaust pipe 1 that the direction of the major axis is parallel to the direction in which the exhaust gas flows. The two blades 610 and 620 are so configured that arcuate portions 610 a and 620 a of outer edges of the blades are in contact with the inner wall of the exhaust pipe 1, as in the case of the two blades 510 and 520. The swirl generating means 60 is, as in substantially the same manner as the swirl generating means 50, further so configured that both ends thereof in the direction of the major axis (specifically, an upstream end 610 b of the blade 610, a downstream end 610 c of the blade 610, an upstream end 620 b of the blade 620, and a downstream end 620 c of the blade 620) are cut in the direction parallel to the minor axis. The two blades 610 and 620 are so integrated together on both sides thereof in the direction of the major axis by connecting portions 631 and 632.
  • The swirl generating means 60, however, has a configuration different from that of the swirl generating means 50. Specifically, both ends of the swirl generating means 60 are cut by a greater amount than the amount by which both ends of the swirl generating means 50 are cut.
  • As shown in FIG. 14, when the swirl generating means 60 is disposed in the exhaust pipe 1, the swirl force of the exhaust gas becomes strong, as in the case where the swirl generating means 50 is disposed in the exhaust pipe 1. In FIG. 14 as well, the flow rate of the exhaust gas was 1200 kg/h; the temperature of the exhaust gas was 520° C.; and the fin angle was 52.5°. The pressure loss under these conditions was, however, 10.209 kPa. As described above, when the swirl generating means 60 is disposed in the exhaust pipe 1, the resistance applied to the exhaust gas decreases as well.
  • In particular, both ends of the swirl generating means 60 are cut by a greater amount than the amount by which both ends of the swirl generating means 50 are cut. Therefore, when the swirl generating means 60 is disposed in the exhaust pipe 1, the gap (that is, exhaust gas flow path) formed between the inner wall of the exhaust pipe 1 and both ends of the swirl generating means 60 is larger than that in the case where the swirl generating means 50 is disposed in the exhaust pipe 1. As a result, the resistance applied to the exhaust gas decreases. Since the swirl generating means 60 is smaller than the swirl generating means 50, the structure in which the swirl generating means 60 is disposed in the exhaust pipe 1 can be lighter and more compact than the structure in which the swirl generating means 50 is disposed in the exhaust pipe 1.
  • ===Confirmation Test===
  • To confirm the advantageous effect of the present invention (that is, the advantageous effect of a stronger swirl force of the exhaust gas and lower resistance applied thereto provided when any of the swirl generating means of the present invention is used), the following confirmation test was conducted. That is, the relationship between the fin angle and the swirl force (see the flow line diagram of FIG. 15) and the relationship between the fin angle and the pressure loss (see the graph in FIG. 16) were studied in the confirmation test by using two types of fin shown in FIG. 15, specifically, a new fin (an example of the swirl generating means of the present invention) and a conventional fin (an example of the swirl generating means of the related art).
  • As shown in FIG. 15, the swirl force created when the fin angle of the new fin is 65° is substantially equal to or as strong as the swirl force created when the fin angle of the conventional fin is 45°. On the other hand, as shown in FIG. 16, the pressure loss was approximately 27 kPa when the fin angle of the new fin is 65°, whereas the pressure loss was approximately 44 kPa when the fin angle of the conventional fin is 45°.
  • The findings described above indicate that using the new fin and adjusting the fin angle as appropriate not only allow substantially the same magnitude of swirl force as that created when the conventional fin is used to be obtained but also allow the resistance applied to the exhaust gas to be reduced and hence the pressure loss to be lowered as compared to the case where the conventional fin is used.
  • INDUSTRIAL APPLICABILITY
  • The present invention can provide an exhaust gas purifying device for an internal combustion engine including swirl generating means that creates a strong swirl force and applies reduced resistance. The present invention can further provide a swirl generating device that creates a strong swirl force and applies reduced resistance.
  • REFERENCE SIGNS LIST
    • 1 exhaust pipe
    • 2 reduction catalyst
    • 3 reducing agent injection nozzle
    • 40, 50, 60 swirl generating means
    • 410, 420, 510, 520, 610, 620 blade
    • 410 a, 420 a, 510 a, 520 a, 610 a, 620 a arcuate portion
    • 510 b, 520 b, 610 b, 620 b upstream end
    • 510 c, 520 c, 610 c, 620 c downstream end
    • 431, 432, 531, 532, 631, 632 connecting portion

Claims (14)

1. An exhaust gas purifying device for an internal combustion engine, the exhaust gas purifying device comprising:
an exhaust pipe through which exhaust gas exhausted from the internal combustion engine flows;
a reduction catalyst provided in the exhaust pipe and reducing and purifying an oxynitride contained in the exhaust gas;
reducing agent supply means for supplying a reducing agent by injecting the reducing agent into the exhaust gas flowing upstream of the reduction catalyst; and
swirl generating means provided upstream of the reduction catalyst in the exhaust pipe and generating a swirl in the exhaust gas,
wherein the swirl generating means has two blades formed by halving a substantially elliptic plate along the direction of a major axis thereof, the two blades so integrated together that the blades are rotated relative to each other about a minor axis of the plate so as to cross each other, the two blades so mounted that the direction of the major axis is parallel to the direction in which the exhaust gas flows.
2. The exhaust gas purifying device for an internal combustion engine according to claim 1,
wherein the two blades are so configured that arcuate portions of outer edges of the blades are in contact with an inner wall of the exhaust pipe.
3. The exhaust gas purifying device for an internal combustion engine according to claim 1,
wherein the two blades are so configured that both ends thereof in the direction of the major axis are cut in the direction parallel to the minor axis.
4. The exhaust gas purifying device for an internal combustion engine according to claim 1,
wherein the two blades are so configured that both ends thereof in the direction of the major axis are integrated together by connecting portions, and
one of the connecting portions, the connecting portion disposed on the upstream side in the exhaust pipe, is configured to connect upstream ends of the two blades with each other.
5. Swirl generating means provided in an exhaust pipe, the swirl generating means comprising:
two blades formed by halving a substantially elliptic plate along the direction of a major axis thereof, the two blades so integrated together that the blades are rotated relative to each other about a minor axis of the plate so as to cross each other, the two blades so mounted that the direction of the major axis is parallel to the direction in which the exhaust gas flows.
6. The swirl generating means according to claim 5,
wherein the two blades are so configured that arcuate portions of outer edges of the blades are in contact with an inner wall of the exhaust pipe.
7. The swirl generating means according to claim 5,
wherein the two blades are so configured that both ends thereof in the direction of the major axis are cut in the direction parallel to the minor axis.
8. The swirl generating means according to claim 5,
wherein the two blades are so configured that both ends thereof in the direction of the major axis are integrated together by connecting portions, and
one of the connecting portions, the connecting portion disposed on the upstream side in the exhaust pipe, is configured to connect upstream ends of the two blades with each other.
9. The exhaust gas purifying device for an internal combustion engine according to claim 2,
wherein the two blades are so configured that both ends thereof in the direction of the major axis are cut in the direction parallel to the minor axis.
10. The exhaust gas purifying device for an internal combustion engine according to claim 2,
wherein the two blades are so configured that both ends thereof in the direction of the major axis are integrated together by connecting portions, and
one of the connecting portions, the connecting portion disposed on the upstream side in the exhaust pipe, is configured to connect upstream ends of the two blades with each other.
11. The exhaust gas purifying device for an internal combustion engine according to claim 3,
wherein the two blades are so configured that both ends thereof in the direction of the major axis are integrated together by connecting portions, and
one of the connecting portions, the connecting portion disposed on the upstream side in the exhaust pipe, is configured to connect upstream ends of the two blades with each other.
12. The swirl generating means according to claim 6,
wherein the two blades are so configured that both ends thereof in the direction of the major axis are cut in the direction parallel to the minor axis.
13. The swirl generating means according to claim 6,
wherein the two blades are so configured that both ends thereof in the direction of the major axis are integrated together by connecting portions, and
one of the connecting portions, the connecting portion disposed on the upstream side in the exhaust pipe, is configured to connect upstream ends of the two blades with each other.
14. The swirl generating means according to claim 7,
wherein the two blades are so configured that both ends thereof in the direction of the major axis are integrated together by connecting portions, and
one of the connecting portions, the connecting portion disposed on the upstream side in the exhaust pipe, is configured to connect upstream ends of the two blades with each other.
US13/063,039 2008-09-19 2009-08-31 Exhaust gas purifying device for internal combustion engine, and swirl generating device Abandoned US20110185710A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008-241382 2008-09-19
JP2008241382A JP2010071240A (en) 2008-09-19 2008-09-19 Exhaust gas purifying device for internal combustion engine, and swirl flow generating device
PCT/JP2009/065168 WO2010032604A1 (en) 2008-09-19 2009-08-31 Exhaust gas purifying device for internal combustion engine, and swirl generating device

Publications (1)

Publication Number Publication Date
US20110185710A1 true US20110185710A1 (en) 2011-08-04

Family

ID=42039438

Family Applications (1)

Application Number Title Priority Date Filing Date
US13/063,039 Abandoned US20110185710A1 (en) 2008-09-19 2009-08-31 Exhaust gas purifying device for internal combustion engine, and swirl generating device

Country Status (5)

Country Link
US (1) US20110185710A1 (en)
EP (1) EP2325451A4 (en)
JP (1) JP2010071240A (en)
CN (1) CN102137991A (en)
WO (1) WO2010032604A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220203314A1 (en) * 2020-12-25 2022-06-30 Kubota Corporation Exhaust gas diffusing device
CN115217591A (en) * 2022-07-27 2022-10-21 无锡威孚力达催化净化器有限责任公司 Urea mixing device with multiple crushing and controllable rotational flow
US11624305B2 (en) * 2020-03-02 2023-04-11 Cummins Emission Solutions Inc. Vortex generators and virtual mixers for aftertreatment systems

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITBO20110533A1 (en) * 2011-09-16 2013-03-17 Magneti Marelli Spa DISCHARGE SYSTEM OF AN INTERNAL COMBUSTION ENGINE PROVIDED WITH AN ADDITIVE INJECTION DEVICE
CN102927443B (en) * 2012-11-12 2014-03-05 常州大学 Circular cone type spiral flow generator
JP6076841B2 (en) * 2013-06-05 2017-02-08 本田技研工業株式会社 Exhaust gas purification device for internal combustion engine
CN105642145B (en) * 2016-01-06 2018-12-28 广州市八通混合器有限公司 A kind of large size static mixer
JP6846155B2 (en) * 2016-10-12 2021-03-24 東京濾器株式会社 Swirling flow generator
JP7382595B2 (en) * 2019-11-12 2023-11-17 日立造船株式会社 Rectifier, hydrolysis equipment, and denitrification equipment
CN112973485B (en) * 2021-03-18 2021-12-07 同济大学 Quick tubular static mixer
WO2023228495A1 (en) * 2022-05-26 2023-11-30 三菱重工業株式会社 Denitration device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3643927A (en) * 1970-10-15 1972-02-22 Phillips Petroleum Co Stationary mixture and method for mixing material
US3751009A (en) * 1972-03-02 1973-08-07 Mc Hugh J Motionless mixing device
US20090266064A1 (en) * 2008-04-25 2009-10-29 Tenneco Automotive Operating Company Inc. Exhaust gas additive/treatment system and mixer for use therein

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5195070U (en) * 1975-01-29 1976-07-30
JPS54105972U (en) * 1978-01-11 1979-07-26
JPS57204305A (en) * 1981-06-10 1982-12-15 Toshiba Corp Water flow swirling valve
JPS62269733A (en) * 1986-05-15 1987-11-24 Sanko Seisakusho:Kk Mixing element and mixer containing said element
JP2004267868A (en) * 2003-03-06 2004-09-30 Kosuke Chiba System for dissolving/storing/supplying gas with line atomizer
JP3892452B2 (en) * 2004-07-16 2007-03-14 日産ディーゼル工業株式会社 Engine exhaust purification system
JP2008144644A (en) * 2006-12-08 2008-06-26 Mitsubishi Fuso Truck & Bus Corp Exhaust emission control device for internal combustion engine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3643927A (en) * 1970-10-15 1972-02-22 Phillips Petroleum Co Stationary mixture and method for mixing material
US3751009A (en) * 1972-03-02 1973-08-07 Mc Hugh J Motionless mixing device
US20090266064A1 (en) * 2008-04-25 2009-10-29 Tenneco Automotive Operating Company Inc. Exhaust gas additive/treatment system and mixer for use therein

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11624305B2 (en) * 2020-03-02 2023-04-11 Cummins Emission Solutions Inc. Vortex generators and virtual mixers for aftertreatment systems
US20220203314A1 (en) * 2020-12-25 2022-06-30 Kubota Corporation Exhaust gas diffusing device
CN115217591A (en) * 2022-07-27 2022-10-21 无锡威孚力达催化净化器有限责任公司 Urea mixing device with multiple crushing and controllable rotational flow

Also Published As

Publication number Publication date
CN102137991A (en) 2011-07-27
WO2010032604A1 (en) 2010-03-25
JP2010071240A (en) 2010-04-02
EP2325451A1 (en) 2011-05-25
EP2325451A4 (en) 2013-02-20

Similar Documents

Publication Publication Date Title
US20110185710A1 (en) Exhaust gas purifying device for internal combustion engine, and swirl generating device
US9616396B2 (en) Mixing assembly for reducing exhaust reductant deposits
JP4044896B2 (en) Mixing device for exhaust gas purification device
US5816210A (en) Structure of an exhaust port in an internal combustion engine
US20110036082A1 (en) Exhaust element comprising a static means for mixing an additive into the exhaust gases
US8033714B2 (en) Fluid mixing apparatus
US20110113764A1 (en) Exhaust Gas Additive/Treatment System and Mixer for Use Therein
EP2182189A1 (en) Exhaust system for internal combustion engine
US20170107882A1 (en) Mounting plate for mounting injectors and directing reductant flow in exhaust conduits
US20150290585A1 (en) Exhaust gas purification device
US20120124983A1 (en) Exhaust system having reductant nozzle flow diverter
WO2012008570A1 (en) Exhaust gas purification device
US8997466B2 (en) Mixing and/or evaporating device
US9162198B2 (en) Method and device for mixing compressed air and reducing agent and motor vehicle having the device
EP2960456A1 (en) Angled and compact exhaust gas aftertreatment device
US9441516B2 (en) Method for NOx reduction
JP5791489B2 (en) Exhaust gas purification device for internal combustion engine
KR102012609B1 (en) Exhaust filter
CN104066498B (en) Mixing arrangement for reducing agent preparation
JP5760799B2 (en) Exhaust gas purification device for internal combustion engine
KR20160094850A (en) Flow unit, exhaust gas purification system and method for an exhaust gas purification system
JP2012524213A (en) Fluid mixing system
JP6105230B2 (en) Exhaust stirrer
JP6894385B2 (en) Mixer
US10428710B2 (en) Injector having a reinforced spray disc

Legal Events

Date Code Title Description
AS Assignment

Owner name: TOKYO ROKI CO., LTD., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SHIMIZU, MASAKI;REEL/FRAME:026134/0433

Effective date: 20110228

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION