US20110140744A1 - Flexible electronic circuits and displays - Google Patents

Flexible electronic circuits and displays Download PDF

Info

Publication number
US20110140744A1
US20110140744A1 US12/987,418 US98741811A US2011140744A1 US 20110140744 A1 US20110140744 A1 US 20110140744A1 US 98741811 A US98741811 A US 98741811A US 2011140744 A1 US2011140744 A1 US 2011140744A1
Authority
US
United States
Prior art keywords
electro
backplane
layer
optic
display
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/987,418
Inventor
Peter T. Kazlas
Joanna F. Au
Yu Chen
Nathan R. Kane
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
E Ink Corp
Original Assignee
E Ink Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US19773100P priority Critical
Priority to US09/836,884 priority patent/US6825068B2/en
Priority to US31973202P priority
Priority to US48139603P priority
Priority to US10/707,184 priority patent/US7893435B2/en
Application filed by E Ink Corp filed Critical E Ink Corp
Priority to US12/987,418 priority patent/US20110140744A1/en
Publication of US20110140744A1 publication Critical patent/US20110140744A1/en
Priority claimed from US15/343,701 external-priority patent/US20170052422A1/en
Application status is Abandoned legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FDEVICES OR ARRANGEMENTS, THE OPTICAL OPERATION OF WHICH IS MODIFIED BY CHANGING THE OPTICAL PROPERTIES OF THE MEDIUM OF THE DEVICES OR ARRANGEMENTS FOR THE CONTROL OF THE INTENSITY, COLOUR, PHASE, POLARISATION OR DIRECTION OF LIGHT, e.g. SWITCHING, GATING, MODULATING OR DEMODULATING; TECHNIQUES OR PROCEDURES FOR THE OPERATION THEREOF; FREQUENCY-CHANGING; NON-LINEAR OPTICS; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating, or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating, or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating, or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133305Flexible substrates, e.g. plastics, organic film
    • GPHYSICS
    • G02OPTICS
    • G02FDEVICES OR ARRANGEMENTS, THE OPTICAL OPERATION OF WHICH IS MODIFIED BY CHANGING THE OPTICAL PROPERTIES OF THE MEDIUM OF THE DEVICES OR ARRANGEMENTS FOR THE CONTROL OF THE INTENSITY, COLOUR, PHASE, POLARISATION OR DIRECTION OF LIGHT, e.g. SWITCHING, GATING, MODULATING OR DEMODULATING; TECHNIQUES OR PROCEDURES FOR THE OPERATION THEREOF; FREQUENCY-CHANGING; NON-LINEAR OPTICS; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating, or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating, or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/165Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating, or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field
    • G02F1/166Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating, or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field characterised by the electro-optical or magneto-optical effect
    • G02F1/167Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating, or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field characterised by the electro-optical or magneto-optical effect by electrophoresis
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66742Thin film unipolar transistors
    • H01L29/6675Amorphous silicon or polysilicon transistors
    • H01L29/66765Lateral single gate single channel transistors with inverted structure, i.e. the channel layer is formed after the gate
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78603Thin film transistors, i.e. transistors with a channel being at least partly a thin film characterised by the insulating substrate or support
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/10Methods of surface bonding and/or assembly therefor

Abstract

A backplane for use in an electro-optic display comprises a patterned metal foil having a plurality of apertures extending therethrough, coated on at least side with an insulating polymeric material and having a plurality of thin film electronic devices provided on the insulating polymeric material.

Description

    REFERENCE TO RELATED APPLICATIONS
  • This application is a division of application Ser. No. 10/707,184, filed Nov. 25, 2003 (Publication No 2004/0180476), which is a continuation-in-part of application Ser. No. 09/836,884, filed Apr. 17, 2001 (now U.S. Pat. No. 6,825,068), which claims benefit of Application Ser. No. 60/197,731, filed Apr. 18, 2000. The aforementioned application Ser. No. 10/707,184 also claims benefit of Application Ser. No. 60/319,732, filed Nov. 26, 2002 and Application Ser. No. 60/481,396, filed Sep. 18, 2003. The entire contents of all these applications are herein incorporated by reference. The entire contents of all U.S. patents and applications mentioned below are also herein incorporated by reference.
  • BACKGROUND OF INVENTION
  • This invention relates to flexible electronic circuits and displays. More specifically, this invention relates to such circuits and displays using electro-optic media. This invention also relates to production of electro-optic displays on curved surfaces; these surfaces may be curved in one or both dimensions. This invention is especially but not exclusively concerned with electro-optic displays using encapsulated electrophoretic media.
  • The term “electro-optic” as applied to a material or a display, is used herein in its conventional meaning in the imaging art to refer to a material having first and second display states differing in at least one optical property, the material being changed from its first to its second display state by application of an electric field to the material. Although the optical property is typically color perceptible to the human eye, it may be another optical property, such as optical transmission, reflectance, luminescence or, in the case of displays intended for machine reading, pseudo-color in the sense of a change in reflectance of electromagnetic wavelengths outside the visible range.
  • The terms “bistable” and “bistability” are used herein in their conventional meaning in the art to refer to displays comprising display elements having first and second display states differing in at least one optical property, and such that after any given element has been driven, by means of an addressing pulse of finite duration, to assume either its first or second display state, after the addressing pulse has terminated, that state will persist for at least several times, for example at least four times, the minimum duration of the addressing pulse required to change the state of the display element. It is shown in published US Patent Application No. 2002/0180687 (see also the corresponding International Application Publication No. WO 02/079869) that some particle-based electrophoretic displays capable of gray scale are stable not only in their extreme black and white states but also in their intermediate gray states, and the same is true of some other types of electro-optic displays. This type of display is properly called “multi-stable” rather than bistable, although for convenience the term “bistable” may be used herein to cover both bistable and multi-stable displays.
  • Several types of electro-optic displays are known. One type of electro-optic display is a rotating bichromal member type as described, for example, in U.S. Pat. Nos. 5,808,783; 5,777,782; 5,760,761; 6,054,071 6,055,091; 6,097,531; 6,128,124; 6,137,467; and 6,147,791 (although this type of display is often referred to as a “rotating bichromal ball” display, the term “rotating bichromal member” is preferred as more accurate since in some of the patents mentioned above the rotating members are not spherical). Such a display uses a large number of small bodies (typically spherical or cylindrical) which have two or more sections with differing optical characteristics, and an internal dipole. These bodies are suspended within liquid-filled vacuoles within a matrix, the vacuoles being filled with liquid so that the bodies are free to rotate. The appearance of the display is changed to applying an electric field thereto, thus rotating the bodies to various positions and varying which of the sections of the bodies is seen through a viewing surface.
  • Another type of electro-optic medium is an organic light emitting diode (OLED) medium is which light generation is effected by passing current through a plurality of diodes formed from an organic material.
  • Another type of electro-optic medium uses an electrochromic medium, for example an electrochromic medium in the form of a nanochromic film comprising an electrode formed at least in part from a semi-conducting metal oxide and a plurality of dye molecules capable of reversible color change attached to the electrode; see, for example O'Regan, B., et al., Nature 1991, 353, 737; and Wood, D., Information Display, 18(3), 24 (March 2002). See also Bach, U., let al., Adv. Mater., 2002, 14(11), 845. Nanochromic films of this type are also described, for example, in U.S. Pat. No. 6,301,038, International Application Publication No. WO 01/27690, and in copending application Ser. No. 10/249,128, filed Mar. 18, 2003 (Publication No. 2003/0214695).
  • Another type of electro-optic display, which has been the subject of intense research and development for a number of years, is the particle-based electrophoretic display, in which a plurality of charged particles move through a suspending fluid under the influence of an electric field. Electrophoretic displays can have attributes of good brightness and contrast, wide viewing angles, state bistability, and low power consumption when compared with liquid crystal displays. Nevertheless, problems with the long-term image quality of these displays have prevented their widespread usage. For example, particles that make up electrophoretic displays tend to settle, resulting in inadequate service-life for these displays.
  • Numerous patents and applications assigned to or in the names of the Massachusetts Institute of Technology (MIT) and E Ink Corporation have recently been published describing encapsulated electrophoretic media. Such encapsulated media comprise numerous small capsules, each of which itself comprises an internal phase containing electrophoretically-mobile particles suspended in a liquid suspension medium, and a capsule wall surrounding the internal phase. Typically, the capsules are themselves held within a polymeric binder to form a coherent layer positioned between two electrodes. Encapsulated media of this type are described, for example, in U.S. Pat. Nos. 5,930,026; 5,961,804; 6,017,584; 6,067,185; 6,118,426; 6,120,588; 6,120,839; 6,124,851; 6,130,773; 6,130,774; 6,172,798; 6,177,921; 6,232,950; 6,249,271; 6,252,564; 6,262,706; 6,262,833; 6,300,932; 6,312,304; 6,312,971; 6,323,989; 6,327,072; 6,376,828; 6,377,387; 6,392,785; 6,392,786; 6,413,790; 6,422,687; 6,445,374; 6,445,489; 6,459,418; 6,473,072; 6,480,182; 6,498,114; 6,504,524; 6,506,438; 6,512,354; 6,515,649; 6,518,949; 6,521,489; 6,531,997; 6,535,197; 6,538,801; 6,545,291; 6,580,545; and 6,639,578; and U.S. Patent Applications Publication Nos. 2002/0019081; 2002/0021270; 2002/0053900; 2002/0060321; 2002/0063661; 2002/0063677; 2002/0090980; 2002/0106847; 2002/0113770; 2002/0130832; 2002/0131147; 2002/0145792; 2002/0171910; 2002/0180687; 2002/0180688; 2002/0185378; 2003/0011560; 2003/0011867; 2003/0011868; 2003/0020844; 2003/0025855; 2003/0034949; 2003/0038755; 2003/0053189; 2003/0076573; 2003/0096113; 2003/0102858; 2003/0132908; 2003/0137521; 2003/0137717; and 2003/0151702; and International Applications Publication Nos. WO 99/67678; WO 00/05704; WO 00/38000; WO 00/38001; WO 00/36560; WO 00/67110; WO 00/67327; WO 01/07961; and WO 01/08241.
  • Many of the aforementioned patents and applications recognize that the walls surrounding the discrete microcapsules in an encapsulated electrophoretic medium could be replaced by a continuous phase, thus producing a so-called polymer-dispersed electrophoretic display in which the electrophoretic medium comprises a plurality of discrete droplets of an electrophoretic fluid and a continuous phase of a polymeric material, and that the discrete droplets of electrophoretic fluid within such a polymer-dispersed electrophoretic display may be regarded as capsules or microcapsules even though no discrete capsule membrane is associated with each individual droplet; see for example, the aforementioned 2002/0131147. Accordingly, for purposes of the present application, such polymer-dispersed electrophoretic media are regarded as sub-species of encapsulated electrophoretic media.
  • An encapsulated electrophoretic display typically does not suffer from the clustering and settling failure mode of traditional electrophoretic devices and provides further advantages, such as the ability to print or coat the display on a wide variety of flexible and rigid substrates. (Use of the word “printing” is intended to include all forms of printing and coating, including, but without limitation: pre-metered coatings such as patch die coating, slot or extrusion coating, slide or cascade coating, curtain coating; roll coating such as knife over roll coating, forward and reverse roll coating; gravure coating; dip coating; spray coating; meniscus coating; spin coating; brush coating; air knife coating; silk screen printing processes; electrostatic printing processes; thermal printing processes; ink jet printing processes; and other similar techniques.) Thus, the resulting display can be flexible. Further, because the display medium can be printed (using a variety of methods), the display itself can be made inexpensively.
  • A related type of electrophoretic display is a so-called “microcell electrophoretic display”. In a microcell electrophoretic display, the charged particles and the suspending fluid are not encapsulated within microcapsules but instead are retained within a plurality of cavities formed within a carrier medium, typically a polymeric film. See, for example, International Applications Publication No. WO 02/01281, and published US Application No. 2002/0075556, both assigned to Sipix Imaging, Inc.
  • As already mentioned, one major advantage of many of the electro-optic media discussed above is their ability to be printed or coated on to a wide variety of flexible and rigid substrates. The aforementioned US 2002/0019081 describes flexible encapsulated electrophoretic displays formed by coating a stainless steel (or similar metal) foil with a polymeric layer, forming thin film transistor on the polymer and then coating the transistors with the encapsulated electrophoretic medium to form an active matrix display. Other publications relating to similar displays include:
  • Chen, Y., et al., SID Intl. Symp. Digest Tech. Papers, San Jose 2001 (Society of Information Display, San Jose), p. 157;
  • Kazlas, P., et al., 22nd Intl. Display Research Conference Nice 2002 (Society of Information Display, San Jose); and
  • Au, J., et al., 9th Intl. Display Workshops Hiroshima 2002 (Society of Information Display, San Jose).
  • The preferred flexible displays described in these publications use a thin (75-250 μm) continuous stainless steel foil as the substrate. Steel was chosen as the transistor substrate material because of its overall performance from initial transistor processing through final operating display. High-quality, low-cost steel foils are available in high-volume, and the high-temperature and excellent dimensional stability properties of steel allow formation of thin film transistors (TFT's) without any pre-processing (for example, bake-out or thin-film capping) using conventional TFT manufacturing technologies. Through front and back-end processing, steel foil substrates exhibit excellent handling properties owing to the material's strength, flatness and conductivity (which avoids problems due to electrostatic charge accumulation on the substrate during processing).
  • However, stainless steel and similar metal foils do have the disadvantage that they are substantially denser than other potential substrate materials such as plastics. As a result, flexible displays using such metal substrates of the type described in the aforementioned publications will weigh more than displays formed on plastic substrates of the same thickness.
  • In one aspect, the present invention seeks to provide a backplane for use in an electro-optic display, this backplane using a metal substrate but being lighter in weight than the metal-based substrates described above.
  • In another aspect, the present invention relates to assembly of electro-optic displays, and especially encapsulated electrophoretic displays, on to surfaces which are curved in one or both dimensions. Such curved surfaces are found, for example, in watches, electric shavers, cellular telephones and various other consumer electronics products. It has been found that, if one attempts to form an encapsulated electrophoretic display on a curved surface by coating a layer of electrophoretic medium on a flat surface (as most traditional printing and similar coating processes require) and then deforming the layer of electrophoretic medium to the desired curved configuration, substantial damage to the electrophoretic medium may occur, depending upon the exact curved configuration required. Such damage may include creep, which results in non-uniform switching of the electrophoretic medium, and/or rupture of some capsules, with resultant poor electro-optic performance, including reduction in contrast ratio and operating lifetime. Similar problems may be experienced with other types of electro-optic media.
  • The present invention provides processes which permit the assembly of electro-optic displays on curved substrates while reducing or eliminating the aforementioned problems.
  • SUMMARY OF INVENTION
  • Accordingly, in one aspect this invention provides a backplane for use in an electro-optic display, the backplane comprising a patterned metal foil having a plurality of apertures extending therethrough, coated on at least side with an insulating polymeric material and having a plurality of thin film electronic devices provided on the insulating polymeric material. This aspect of the invention may hereinafter be called the “patterned metal foil backplane”.
  • In this backplane, the apertures may be arranged on a rectangular grid, and may occupy at least about 30 percent, and preferably at least about 60 percent, of the area of the patterned metal foil. Typically, the patterned metal foil is coated on both sides with an insulating polymeric material; it may be coated on both sides with the same insulating polymeric material, or may be coated on its two sides with different insulating polymeric materials.
  • In some embodiments of the invention, each of the thin film electronic devices lies entirely within the area of one aperture in the metal foil. In other embodiments, each of the thin film electronic devices extends across a plurality of apertures in the metal foil.
  • This invention extends to an electro-optic display comprising a backplane of the present invention, especially such an electro-optic display comprising an encapsulated electrophoretic electro-optic medium.
  • In another aspect, this invention provides a backplane for use in an electro-optic display, the backplane comprising a metal foil coated on at least one side with an insulating polymeric material and having a plurality of thin film electronic devices provided on the insulating polymeric material, the backplane further comprising at least one conductive via extending through the polymeric material and electrically connecting at least one of the thin film electronic devices to the metal foil. This aspect of the invention may hereinafter be called the “conductive via backplane”.
  • In the conductive via backplane, the metal foil serves as at least one of an antenna, an inductor loop, a power plane, a capacitor, a capacitor contact, a pixel electrode, and electromagnetic induction shielding.
  • This invention extends to an electro-optic display comprising a conductive via backplane of the present invention. Such an electro-optic display may be in the form of a smart card having an electro-optic display thereon, the metal foil serving to communication between the card and a card reading apparatus.
  • In another aspect, this invention provides a process for driving a backplane comprising a conductive layer, an insulating layer and at least one transistor disposed on the opposed side of the insulating layer from the conductive layer, the process comprising varying the voltage applied to the gate of the transistor and thereby switching the transistor between on and off states, the process further comprising maintaining the conductive layer at a voltage different from ground and within the range of voltages applied to the source of the transistor during driving of the backplane. This aspect of the invention may hereinafter be called the “controlled voltage conductive layer”.
  • Typically, in this process, the voltage applied to the conductive layer satisfies the relation:

  • (3*Vmax+Vmin)/4>Vc>(Vmax+3*Vmin)/4
  • where Vmax and Vmin are respectively the maximum and minimum voltages applied to the source during driving, and Vc is the voltage applied to the conductive layer. Preferably, the voltage satisfies the relation:

  • (3*Vmax)+2*Vmin)/5>Vc>(2*Vmax+3*Vmin)/5
  • and most desirably the voltage substantially satisfies the relation:

  • Vc=(Vmax+Vmin)/2.
  • In another aspect, this invention provides a process for forming a plurality of electronic components on a polymeric material coating a metal substrate, the process comprising forming a plurality of discrete areas of polymeric material on the metal substrate and thereafter forming the plurality of electronic components on the discrete areas of polymeric material. For reasons discussed below, this aspect of the invention may hereinafter be called the “mesa process”.
  • In this mesa process, a continuous layer of the polymeric material may be formed on the metal substrate and thereafter this continuous layer may be divided to form the discrete areas of polymeric material. Desirably, at least some of the edges of the discrete areas of polymeric material are undercut; such undercutting of the edges of the discrete areas of polymeric material may be effected by an etching step.
  • In another aspect, this invention provides an electro-optic display having a metal substrate, the display having a central portion comprising an electro-optic material and means for writing an image on the electro-optic material, and a peripheral portion extending around at least part of the periphery of the central portion, the peripheral portion having a plurality of apertures extending through the metal substrate, by means of which apertures the electro-optic display may be stitched to a flexible medium. This aspect of the invention may hereinafter be called the “stitchable display”.
  • In such a stitchable display, the peripheral portion of the display is desirably free from the electro-optic material. The peripheral portion of the display may extend completely around the central portion so that the entire periphery of the electro-optic display can be stitched into the fabric or other flexible material.
  • In another aspect, this invention provides a process for forming an electro-optic display on a substrate curved in one dimension, the process comprising:
  • providing a backplane having at least one pixel electrode, the backplane being curved in one dimension;
  • applying to the backplane a laminate comprising a layer of electro-optic medium and a light-transmissive electrically-conductive layer, the laminate being applied so that the electro-optic medium lies between the backplane and the electrically-conductive layer; and
  • bonding the laminate to the backplane under heat and/or pressure.
  • This aspect of the invention may hereinafter be called the “first 1D-curved process”. In this process, the laminate may further comprise a layer of lamination adhesive overlying the layer of electro-optic medium, and the layer of lamination adhesive is contacted with the backplane.
  • In another aspect, this invention provides a process for forming an electro-optic display on a substrate curved in one dimension, the process comprising:
  • providing a backplane having at least one pixel electrode, the backplane being curved in one dimension;
  • providing a double release film comprising a layer of a solid electro-optic medium having first and second adhesive layers on opposed sides thereof, at least one of the adhesive layer being covered by a release sheet;
  • exposing one of the first and second adhesive layers and laminating the double release sheet to the backplane; and
  • exposing the other of the first and second adhesive layers and laminating the exposed adhesive layer to an electrically-conductive layer. This aspect of the invention may hereinafter be called the “second 1D-curved process”.
  • Finally, this invention provides a process for forming an electro-optic display on a curved backplane having at least one pixel electrode, the process comprising:
  • applying a coatable electro-optic medium on to the surface of the backplane to form a coherent layer of the electro-optic medium thereon;
  • applying a transparent electrically-conductive layer on to the surface of the electro-optic medium on the backplane to form a coherent layer of the electrically-conductive layer thereon; and
  • applying a transparent encapsulant on to the surface of the electrically-conductive layer to form a coherent layer of the encapsulant thereon.
  • This aspect of the invention may hereinafter be called the “2D-curved process”. This process may further comprise applying an edge sealant around at least part of the edge of the display.
  • BRIEF DESCRIPTION OF DRAWINGS
  • FIG. 1 is a schematic cross-section through a first patterned metal foil backplane of the present invention.
  • FIG. 2 is a schematic cross-section through a second patterned metal foil backplane of the present invention.
  • FIGS. 3 and 4 are schematic top plane views of third and fourth patterned metla foil backplanes of the present invention.
  • FIGS. 5A-5D are schematic cross-sections showing different stages in the formation of a conductive via backplane of the present invention.
  • FIG. 6 is a schematic cross-section through a one transistor of a controlled voltage conductive layer backplane of the present invention.
  • FIG. 7 is a schematic cross-section through part of a backplane prepared by a mesa process of the present invention.
  • FIGS. 8A and 8B are schematic cross-sections showing different stages in a second mesa process of the present invention, in which the edges of the mesas are undercut.
  • FIG. 9 is a schematic top plan view of a stitchable display of the present invention.
  • FIG. 10 is a schematic cross-section through the stitchable display shown in FIG. 9.
  • FIGS. 11 to 13 are schematic cross-sections showing different stages in a first 1D-curved process of the present invention.
  • FIG. 14 is a schematic three quarter view of a 2D-curved process of the present invention.
  • DETAILED DESCRIPTION
  • As indicated above, the present invention has several different aspects providing improvements in backplanes for electro-optic displays, and processes for the formation of such backplanes and displays. For ease of comprehension, the various different aspects of the invention will hereinafter be described separately, but it should be understood that a single backplane or display may make use of more than one aspect of the invention; for example, the 1D-curved processes of the invention may be carried out using a patterned metal foil backplane of the invention.
  • Patterned Metal Foil Backplane
  • As already mentioned, in one aspect this invention provides a backplane for use in an electro-optic display, this backplane comprising a patterned metal foil coated on one or both sides with an insulating polymeric material and having a plurality of thin film electronic devices provided on the insulating polymeric material. The resulting backplane is light in weight but substantially maintains the dimensional stability of a continuous metal foil.
  • FIG. 1 of the accompanying drawings is a schematic cross-section through a preferred patterned metal foil backplane (generally designated 100) of the present invention. This backplane 100 comprises a patterned metal foil 102, which is preferably patterned in the form of a rectangular or square grid, coated on both sides with a polymeric material 104, and having an electronic layer 106, containing TFT's and/or other electronic components, on one exposed surface of the polymeric material 104. The foil 102 is preferred comprised of a steel foil, desirably a stainless steel foil, while the polymeric material 104 is desirably a high temperature polyimide, for example HD Microsystems 5878G. The foil 102 can be patterned in a number of ways including cold rolling molten steel onto a patterned roller, stamping, laser patterning or photo-etching. Alternatively, patterned metal foils can be manufactured by fabricating thin metal fibers and weaving them into various patterns. Any wet coating or printing method may be used to apply the polymeric material 104 to the patterned foil 102. Alternatively, the polymeric material, for example Upilex VT, can be laminated to the metal foil. The polymeric material can be polymerized by traditional thermal or UV-polymerization methods. In some applications, it may be sufficient to only coat one side of the metal foil with the polymeric material.
  • FIG. 2 of the accompanying drawings is a schematic cross-section through a second backplane (generally designated 200) of the present invention in which two different materials are used to encapsulate the metal foil 102. A first material 204 is used between the foil 102 and the electronic layer 106, while a second material 208 is used on the opposed side of the foil 102. The materials 204 and 208 can be selected from a wide variety of polymeric and inorganic materials. The use of two different materials 204 and 208 in this manner allows the backplane to achieve overall properties which may be difficult if not impossible to achieve using on the single polymeric material shown in FIG. 1. For example, the material 208 could be chosen for excellent barrier properties to gases and moisture, while the material 204 could be chosen for optimal planarization properties. In this second embodiment, the foil 102 again provides critical dimensional stability and mechanical strength.
  • The patterning of the metal foil used in the backplane of the present invention can vary widely depending upon the type of display into which the backplane is to be incorporated. FIGS. 3 and 4 of the accompanying drawings illustrate two differing arrangements of backplanes and patterned metal foils useful in the present invention. FIG. 3 illustrates a sheet 300 comprising multiple backplanes 302 arranged to that the electronic component area of each backplane 302 lies entirely within one cell of the metal foil grid; in the illustrated embodiment, the electronic component area lies within a single aperture in the grid. In this embodiment, the metal foil mesh effectively frames each individual backplane throughout the process used to form the electronic components, and as a result the dimensional instability of the polymeric material which supports the electronic components is restricted to the area within one aperture of the mesh. After the electronic components have been formed (and optionally after the electro-optic medium has been coated over the components), the metal foil framing the individual backplanes could be removed, for example by shearing, to leave the electronic components supported only by the polymeric material. Alternatively, the multiple backplane sheet 300 could be divided along the center lines of the metal foil grid, thus leaving each backplane with a metal frame; the presence of such a metal frame may be useful for mounting the final display in an electronic device in which it is to be used.
  • In contrast, FIG. 4 illustrates a sheet 400 comprising a single backplane 402 which is substantially larger in both dimensions than one cell of the metal foil grid so that the backplane 402 extends across several cells in each dimension. In this embodiment, the dimensional stability of the backplane will be essentially the same as that of a comparable backplane formed on a continuous metal foil, but the backplane of FIG. 4 will be of substantially lower weight.
  • Which of the embodiments of FIGS. 3 and 4 is preferred in any specific application will vary with a number of factors, including the size of the display and the amount of mechanical handling and/or abuse to which it will be subjected. For example, the aforementioned US 2002/0090980 describes a cellular telephone having a small internal display of conventional dimensions and a larger flexible external display which can be moved between a rolled-up stored position, in which it lies within the housing of the telephone, and an extended position in which it lies flat alongside the telephone, thus providing a larger screen useful for, inter alia, reading lengthy E-mail messages. In such a telephone, the internal screen, which is protected by the telephone housing and fixed in position, could use the embodiment of FIG. 3, while the external display, which is not so protected when in its extended position, and is subject to repeated handling, could use the embodiment of FIG. 4.
  • The patterned metal foil backplane of the present invention allows for substantial weight reduction in the backplane of an electro-optic display while maintaining the dimensional stability and structural integrity of such a backplane based on a steel or other strong metal foil. The backplane of the present invention can be manufactured inexpensively, since steel can be rolled into a pattern and polymeric materials or inorganic slurries can be wet coated or laminated in a continuous fashion. The present invention also provides manufacturing flexibility and allows use of conventional materials.
  • Conductive Via Backplane
  • The benefits of using a metal foil as a substrate in the backplane of an electro-optic display are not, however, confined to mechanical support. In additional to providing mechanical support and dimensional stability during formation of electronic components, such a metal foil can be used as part of the electronic circuitry of the backplane.
  • Accordingly, as already mentioned, this invention provides a conductive via backplane for use in an electro-optic display, this backplane comprising a metal foil coated on one or both sides with an insulating polymeric material and having a plurality of thin film electronic devices provided on the insulating polymeric material, the backplane further comprising at least one conductive via extending through the polymeric material and electrically connecting at least one of the thin film electronic devices to the metal foil. In such a backplane, the metal foil may or may not be patterned beyond any apertures required for formation of the via(s).
  • A preferred process forming a conductive via backplane of the present invention is illustrated in FIGS. 5A-5D of the accompanying drawings, which show schematic sections through the backplane at successive stages of the process. The process begin with a metal foil substrate 502, which may be formed from No. 304 stainless steel or beryllium copper. This foil 502 is coated on one surface with an insulating polymeric material 504, for example the aforementioned HD Microsystems 5878G, and the polymeric material is cured to form the structure shown in FIG. 5A. (Alternatively, a polymeric material may be laminated to the foil 502.) Electronic components 506, such as transistors and diodes, are then fabricated on the exposed surface of the polymeric material 504 using conventional semiconductor fabrication techniques to form the structure shown in FIG. 5B. Next, the foil 502 is patterned using, for example, photolithography or laser scribing to produce a patterned metal layer 502A, as shown in FIG. 5C; in this step, the remaining portions of the foil 502 and/or the exposed areas of the polymeric material 504 may if desired be thinned to a desired thickness or weight. Also, at this point additional conductive, semiconductive or insulating materials can be deposited and patterned to create passive or active components on the exposed surface of the polymeric material 504, as indicated schematically at 508.
  • The last step of the process is the formation of via apertures through the polymeric material 504 and the filling of these via apertures with conductive material to form vias 510 interconnecting electronic components 506 and the patterned metal layer 502A, and optionally any additional components 508 to produce the structure shown in FIG. 5D. The via apertures may be, for example, etched, punched or laser-drilled through the polymeric material 504 so as to expose areas of the previously hidden surfaces of the electronic components 506. The via apertures may then be filled using a variety of materials and techniques including printing (for example, ink-jet, screen, or offset printing) application of conductive resins, shadow-mask evaporation or conventional photolithographic methods. Simple electrical connections can also be made along the edge of the substrate using thick film conductors.
  • During the last two steps of this process (i.e., the patterning of the foil and the formation and filling of the via apertures), it may be necessary or desirable to protect or passivate the exposed electronic components 506 in order to prevent damage thereto. Those skilled in semiconductor fabrication technology will be aware of conventional techniques for such protection and/or passivation, for example covering the electronic components 506 with a sacrificial protective or passivating layer, which can later be etched away without damage to the components themselves. It may also be necessary or desirable to attach the structure shown in FIG. 5B to a separate rigid carrier or substrate during these last two steps of the process, especially if the patterned metal layer 502A, and/or the exposed areas of the polymeric material 504 are to be thinned.
  • An alternative process for producing the structure shown in FIG. 5D starts from a thick polymeric foil, for example a 25-50 μm polyimide foil (with no attached metal layer). In the first step of this alternative process, electronic components are fabricated on one surface of the polymeric foil. Metal conductors and any desired additional electronic components are then formed on the opposed surface of the foil, followed by the formation of via apertures by the techniques previously described, and finally the via apertures are filled to form vias. Although this alternative process resembles certain prior art processes for the production of double-sided flexible circuit boards, it differs therefrom in that the electronic components are fabricated directly on the polymeric foil, as opposed to being placed thereon in the case of a flexible circuit board. In this alternative process, the polymeric foil acts only as an insulator between the electronic components 506 and the circuitry on the opposed side of the polymeric foil; however, if desired, the polymeric foil could serve as the dielectric layer of a capacitor formed between two overlapping conducting layers on the top and bottom surfaces of the polymeric foil, as discussed in more detail below.
  • The patterned metal layer 502A and associated circuitry may serve a wide variety of functions, for example antennae, inductor loops, power planes, capacitors, capacitor contacts, pixel electrodes, and electromagnetic induction shielding.
  • The conductive via backplane of the present invention is especially, but not exclusively, intended for use in so-called “smart cards”. In such a smart card, the electronic components on the front surface of the card (corresponding to the top surface in FIG. 5D) can serve to drive an electro-optic display, while the patterned metal layer and associated circuitry on the reverse side of the card can serve as antenna loops, signal lines and other components for communicating between the card and a card reading/writing apparatus.
  • The conductive via backplane of the present invention provides the advantages of improved electronic component integration and reduced cost by using the reverse side of a substrate, thus providing more compact (thinner) packaging. Such improved integration is especially useful in smart and credit cards, and in electronic label applications.
  • Controlled Voltage Conductive Layer
  • As already indicated, a third aspect of the invention relates to controlling the voltage applied to a backplane containing a conductive layer, an insulating layer and at least one transistor disposed on the opposed side of the insulating layer from the conductive layer, the backplane further being provided with means for varying the voltage applied to the gate of the transistor and thereby switching the transistor between on (conductive) and off (non-conductive) states. According to this aspect of the present invention, the conductive layer is maintained at a voltage different from ground and within the range of voltages applied to the source of the transistor during scanning of the display. If the maximum and minimum voltages applied to the source during scanning are Vmax and Vmin respectively, and the voltage applied to the conductive layer is Vc, then desirably these voltages should satisfy the relation:

  • (3*Vmax+Vmin)/4>Vc>(Vmax+3*Vmin)/4,
  • most desirably should satisfy the relation:

  • (3*Vmax)+2*Vmin)/5>Vc>(2*Vmax+3*Vmin)/5,
  • and optimally should substantially satisfy the relation:

  • Vc=(Vmax+Vmin)/2.
  • The major proportion of the power consumption of most electro-optic displays is accounted by a series of capacitative switching terms of the form:

  • P=0.5CV2f
  • where C is the relevant capacitance, V is the voltage difference across the capacitative load and f is the driving frequency. Separate terms of this type occur for source line capacitance, gate line capacitance and pixel capacitance. However, typically the source line capacitance (column electrode capacitance, assuming the conventional allocation of gate lines to rows, source lines to columns and drain lines to pixel electrodes) dominates the power consumption of the display. As an example, for a SVGA (800×600) active matrix display scanned at a frame rate of 60 Hz, the source line is modulated at 28.8 MHz, the gate line at 36 kHz, and the pixel at 60 Hz, or to put it another way, in such a display every time a new line of the display is to be written, only one row electrode has to switched from high to low and one from low to high, whereas all 800 column electrodes have to be switched between random values depending upon the value of each pixel in the image being written.
  • FIG. 6 of the accompanying drawings is a schematic cross-section through a section (generally designated 600) of a backplane of the present invention, the section 600 containing only a single transistor. The backplane comprises a metal foil 602 and a polymeric material insulating layer 604. The transistor, which is of the thin film type and is formed directly on the exposed surface of the polymeric material 604 comprises a gate electrode 606, a gate dielectric layer 608 formed of silicon nitride, an amorphous silicon semiconductor layer 610 and source and drain electrodes 612 and 614 respectively, layers of n+ amorphous silicon 612′ and 614′ being provided between the source and drain electrodes respectively and the semiconductor layer 610 in the conventional manner. The semiconductor layer 610 extends continuously between adjacent transistors as described in the aforementioned WO 00/67327.
  • The transistor shown in FIG. 6 is connected to row and column drivers in the conventional manner, with the source electrode 612 connected to a data signal on a column electrode (not shown), the drain electrode 614 connected to a pixel electrode (also not shown) and the gate to a select signal on a row electrode (also not shown). In the final electro-optic display, the pixel electrode lies adjacent the layer of electro-optic medium, and a transparent front electrode, which extends across all the pixels of the display, lies on the opposed side of the electro-optic medium and forms a viewing surface through which an observer views the display.
  • The gate voltage is typically 5 V in the off state of the transistor and 30 V in the on state, while the source voltage typically varies between 0 V and 20 V with the transparent common electrode set to approximately 10 V.
  • From what has been said above, it will be apparent that one major factor affecting the power consumption of the display is the energy loss due to the capacitance between the source electrode 612 and the metal foil 602; if, as is commonly the case, the thickness of the polymeric material 604 is less than or of the same order as the widths of the row and column electrodes and/or the pixel electrodes, the power consumption caused by this capacitative loss can be substantial. Since, as already mentioned, this energy loss is proportional to the square of the difference in voltage between the source line voltage and the voltage of the metal foil 602, and since the source line voltages can reasonably be assumed to be randomly distributed within the operating range, if the metal foil is simply allowed to float at or near ground potential, the average difference in voltage will be substantial and so will be the energy loss. To minimize the energy loss, the metal foil 602 should be maintained at or close to the middle of the range of source line voltages, which in this case is 10V. This may conveniently be done by tying the metal foil 602 to the voltage of the common front electrode.
  • If the metal foil 602 is made of a metal (for example, some stainless steel) which does not have high conductivity, a thin layer of a more conductive metal, for example, aluminum may be formed on the foil 602 before the polymeric material 604 is deposited thereon. The more conductive layer serves to improve the voltage uniformity across the metal foil during operation of the display.
  • From the foregoing, it will be seen that the controlled voltage conductive layer of the present invention can substantially reduce power consumption in active matrix electro-optic displays. In addition, the controlled voltage conductive layer of the invention may be useful in removing or reducing noise and certain display artifacts which have been observed and which are believed (although the invention is in no way limited by this belief) to be related to voltages induced in metal foils used in backplanes when the voltage on the metal foil is allowed to float.
  • Mesa Process
  • The mesa process of the present invention provides a method for reducing thin film strain and this film cracking during the formation of arrays of electronic components (especially, but not exclusively, backplanes for electro-optic displays) when such arrays are being formed on polymer-coated metal substrates. In modern fabs, display substrates can be as large as 1 meter square, and it is important that thin film strain be minimized across this large area.
  • As already indicated, in accordance with the mesa process of the present invention, instead of forming a continuous layer of polymeric material on the metal substrate, a plurality of discrete areas (hereinafter referred to as “mesas”) of polymeric material are formed on the metal substrate, and a separate array of electronic components, preferably comprising a backplane for an electro-optic display, are formed on each of the discrete areas. In a preferred form of the mesa process, a continuous layer of polymeric material is formed over part of all of one surface of the metal substrate, and this continuous layer is divided to form the discrete mesas.
  • FIG. 7 below depicts a preferred mesa process of the present invention. The structure (generally designated 700) shown in FIG. 7 comprises a metal foil substrate 702 of substantial area, typically 1 meter square. On this foil 702 are disposed two mesas 704 (FIG. 7 is simplified for ease of illustration; in practice more mesas would normally be present, and, to enable fabrication of the maximum numbers of products on each substrate, the gaps between the mesas would normally be substantially smaller than shown in FIG. 7) on each of which is formed a backplane 706 for an electro-optic display. The structure 700 is formed by first coating the entire foil 702 with a thick (6-8 μm) polyimide or other polymeric layer, patterning this polymeric layer to forms the discrete mesas 704 and then fabricating the backplanes 706 in the conventional manner. The patterning can be effected in a number of ways, including photolithography using wet or dry etch techniques or laser patterning. The mesas 704 isolate the individual backplanes 706 from one another during fabrication of the backplanes, so that thin film strain becomes a function of the smaller mesa area rather than that of the entire substrate 702. The metal substrate 702 still ensures that dimensional stability is preserved.
  • Those skilled in semiconductor fabrication technology will appreciate that many of the thin film deposition techniques used in such fabrication will, when applied to the structure of FIG. 7, deposit films over the whole area of the substrate 702, including the areas between the discrete mesas 704. The presence of such films extending between adjacent mesas is undesirable since it tends to increase thin film strain on the components being formed on the mesas. To prevent such “bridging” of the non-mesa areas of the substrate by the deposited films, it is preferred to undercut the mesas by over-etching during at least one etching step of the process used, typically after photoresist patterning, for fabrication of the backplanes 706.
  • FIGS. 8A and 8B illustrate such an “over-etching” process. FIG. 8A shows a structure 800 generally similar to that of FIG. 7, but at an intermediate state of fabrication of the backplanes 706, in which a thin film 802 has been deposited on the substrate 702 carrying the mesas 704. As shown in FIG. 8A, the thin film 802 extends not only across the tops of the mesas 704 but also between adjacent mesas, thus bridging the mesas and increasing thin film strain (it will be appreciate that the thin film 802 will be present not only between the two mesas 704 but also on the other exposed portions of the substrate 702 adjacent the edges thereof; however, this portion of thin film 802 is omitted from FIGS. 8A and 8B for ease of comprehension). FIG. 8B shows the results of over-etching the structure of FIG. 8A, thus undercutting the mesas 704 and breaking the physical connections between the mesas and the intervening portion of thin film 802. It will be seen from FIG. 8B that the over-etching breaks the contact between the mesas 704 and the intervening portion of thin film 802, thus mechanically isolating the mesas 704 from one another and avoiding excess thin film strain during later fabrication steps.
  • A typical mesa process of the present invention would be as follows:
  • (a) Clean metal foil substrate;
  • (b) Coat metal foil substrate with 6-8 μm of polyimide (for example, the aforementioned HD Microsystems 5878G);
  • Bake polyimide at 100° C. to drive off solvents;
  • (d) Apply, pre-bake, pattern (to form desired mesa pattern), develop, and post-bake photoresist;
  • (e) Wet-etch polyimide mesas with or without undercutting of the mesas;
  • (f) Cure polyimide layer at 300° C.; and
  • (g) Proceed with remaining steps of TFT fabrication process.
  • As already indicated, the mesa process of the present invention reduces thin film strain for large substrates by making the circuit strain a function of the mesa area (essentially the area of each individual backplane or other electronic array) instead of the area of the entire substrate, and enables economical mass production of flexible microelectronics for displays and other applications.
  • Stitchable Displays
  • As already indicated, a further aspect of the present invention relates to methods for the integration of flexible electro-optic displays into fabrics, other woven materials, and other flexible materials (for example, leather and polymeric films used in clothing) having similar characteristics. The most practicable way of attaching such flexible electro-optic displays into fabrics and similar materials is by stitching; however, flexible electro-optic displays cannot readily be stitched. Piercing polymeric or metal layers may result in harmful kinks in such layers or may introduce cracks into brittle thin film circuits forming part of the displays.
  • It has now been realized that the use of metal foils provided with apertures provides a solution to the problem of attaching flexible electro-optic displays into fabrics and similar materials.
  • Accordingly, the present invention provides an electro-optic display having a metal substrate, the display having a central portion comprising an electro-optic material and means for writing an image on the electro-optic material, and a peripheral portion extending around at least part of the periphery of the central portion, the peripheral portion having a plurality of apertures extending through the metal substrate, by means of which apertures the electro-optic display may be stitched to a flexible medium. Very desirably, the peripheral portion of such a display is free from the electro-optic material. In a preferred form of the invention, the peripheral portion extends completely around the central portion so that the entire periphery of the electro-optic display can be stitched into the fabric or other flexible material.
  • A preferred stitchable display of the invention is illustrated in FIGS. 9 and 10, which are respectively a top plan view and a section thorough the stitchable electro-optic display.
  • FIG. 9 shows an electro-optic display (generally designated 900) having a central portion 902 comprising an electro-optic material on which an image is displayed. The central portion 902 is completely surrounded by a peripheral portion 904, which is free from the electro-optic material but which is provided with a plurality of apertures 906 by means of which the electro-optic display can be stitched to a fabric or other flexible material.
  • The construction of the display 900 is shown in more detail in FIG. 10; for ease of illustration, the thickness of the display is greatly exaggerated in FIG. 10 and FIGS. 9 and 10 are not strictly to the same scale in order to show certain details of construction in FIG. 10. From this Figure it well be seen that the display 900 comprises a metal foil substrate 908 through the peripheral portion of which pass the apertures 906. The upper surface (in FIG. 10) of the substrate 908 is covered with a layer of polymeric material 910, on the upper surface of which is formed a TFT array 912 which forms the backplane of the display 900. A layer of electro-optic material 914 is disposed on the TFT array 912, and a front protective layer 916 bearing on its lower surface a single continuous electrode (not shown) is disposed on the electro-optic material 914. The upper surface of the protective layer 916 forms the viewing surface of the display. An edge seal 918 extends around the periphery of the electro-optic material 914 and prevents the ingress of moisture to the electro-optic material 914; several types of electro-optic media are sensitive to humidity. Bonded integrated circuits 920 are shown disposed on the electro-optic material 914 outside the edge seal 918. These circuits 920, which are omitted from FIG. 9, may be, for example, circuits used to convey data to the TFT array 912.
  • As already mentioned, the electro-optic material 914 does not cover the peripheral portion 904 of the display 900, i.e., the edge seal 918 lies wholly within the rectangle defined by the apertures 906. The polymeric material 910 does, however, extend over the entire upper surface of the metal foil 908. In FIG. 10, the apertures 906 are shown as extending through both metal foil 908 and the polymeric material 910. However, this is not essential; the apertures need only extend through the metal foil 908, since the polymeric material 910 can be pierced during stitching of the display 900 without risk of damage to the central portion 902 of the display. The apertures 906 may be formed by, for example, laser ablation, stamping or photo-etching. Alternatively, the electro-optic display may use a patterned metal foil backplane of the present invention, in which case simply leaving an additional peripheral area of the metal foil extending beyond the edges of the electro-optic material will provide the apertures needed for stitching.
  • The stitchable displays of the present invention are useful not only for electro-optic displays intended for application to clothing, but may also be useful in the construction of large area flexible displays formed from multiple “tiles” (smaller displays).
  • From the foregoing it will be seen that the stitchable displays of the present invention allows ready and simple attachment of flexible displays using metal foils to fabrics and similar flexible materials without the use of adhesives, which are undesirable for many applications of flexible displays.
  • 1D-Curved Processes
  • As already mentioned, this invention provides a (first) process for forming an electro-optic display on a substrate curved in one dimension. This process begins with a backplane containing at least one pixel electrode, this backplane being curved in one dimension. The backplane may be pre-formed in this curved configuration, formed flat and flexed into the curved configuration, or bonded, preferably permanently, to a surface curved in one dimension. There is then applied to the curved backplane a laminate comprising a layer of electro-optic medium and a light-transmissive electrically-conductive layer, the laminate being applied so that the electro-optic medium ends up between the backplane and the electrically-conductive layer. The laminate may, and typically does, also comprise a layer of lamination adhesive overlying the layer of electro-optic medium, and the process is carried out so that this layer of lamination adhesive is in immediate contact with the backplane. The laminate is then bonded to the backplane under heat and/or pressure, for example using a bladder press or a heated roll laminator, so that the electro-optic medium bonds to the backplane with minimal stress on the electro-optic medium; any internal stress in the electro-optic medium may be relaxed during the bonding process as the material is allowed to flow. Consequently after the process has been completed, subsequent material creep in the finished display is minimized. Finally, the edges of the laminate and the backplane can be cut and/or sealed using an appropriate sealant.
  • The laminate used in this process may be prepared by removing the release sheet from a “front plane laminate” as described in copending application Ser. No. 10/249,957, filed May 22, 2003 (Publication No. 2004/0027327, now U.S. Pat. No. 6,982,178). Alternatively, in accordance with the second 1D-curved process of the present invention, this process may be modified to use a “double release film” as described in application Ser. No. 10/605,024, filed Sep. 2, 2003 (Publication No. 2004/0155857, now U.S. Pat. No. 7,561,324). Such a double release film comprises a layer of a solid electro-optic medium (“solid” in the sense of having solid external surfaces, although it may contain liquid or gas-filled internal cavities) with adhesive layers on both sides; either or both of these adhesive layers may be covered by a release sheet. To use such a double release film in the process, one adhesive layer is exposed and the double release sheet is laminated to the backplane in the manner already described. The second adhesive layer is then exposed, and an electrically-conductive layer (typically covered by a protective and/or filter layer) is laminated over the layer of electro-optic medium in a second lamination step.
  • FIGS. 11 to 13 of the accompanying drawings illustrate a preferred variant of the first 1D-curved process of the present invention. As already described, this process begins with a backplane 1000 (FIG. 11) which is curved in one dimension; the backplane 1000 illustrated has substantially the form of a hollow hemicylinder, but obviously other forms curved in one dimension could be used, for example a small arc of a large diameter cylinder, parts of an elliptical cylinder etc. The backplane 1000 may be pre-formed, formed flat and then flexed, or permanently bonded to a surface curved in one dimension. Also, the backplane may be of the direct drive type with a plurality of pixel electrodes and circuitry for varying the voltage applied to each pixel electrode independently, or may be of the active matrix type.
  • In the first step of the process, as shown in FIG. 12, a laminate comprising an adhesive layer 1002 (this layer may be omitted in the electro-optic medium used is of a type which can adhere to the backplane 1000 without use of an “external” adhesive layer), an electro-optic layer 1004 (illustrated as an encapsulated electrophoretic layer comprising a plurality of capsules in a binder, but other types of electro-optic medium may of course be used) and a light-transmissive electrically-conductive layer 1006, is laminated under pressure (as indicated by the arrows in FIG. 12) and at an elevated temperature, to the surface of the backplane 1000. Typically, the light-transmissive electrically-conductive layer 1006 will be much thinner relative to the other layers than illustrated in FIG. 12, but will be provided upon a transparent substrate (not shown). For example, the electrically-conductive layer 1006 could have the form of a layer of indium tin oxide (ITO) or a conductive polymer formed on a polymeric film; ITO-coated polymeric films are available commercially and may be used as the electrically-conductive layer 1006 and the transparent substrate. The transparent substrate provides mechanical support and protection for the relatively thin and fragile electrically-conductive layer 1006.
  • The lamination process shown in FIG. 12 is conveniently effected using a bladder press or a heated roll laminator. By performing the lamination with the backplane in the curved configuration, the electro-optic medium is bonded to the backplane with minimal strain. Typically, the lamination of the electro-optic medium to the backplane is effected at a curing temperature for the lamination adhesive layer 1002 which is higher than the glass transition temperature of a binder present in the electro-optic medium, so that internal stress within the electro-optic layer is relaxed during the lamination procedure as the electro-optic medium is allowed to flow. Consequently, creep within the electro-optic medium after the lamination shown in FIG. 12 is minimized, and the problems associated with such creep are also minimized.
  • After the lamination step shown in FIG. 12, the edges of the electro-optic medium layer and the backplane may be cut and sealed using an appropriate encapsulant, shown as 1008 in FIG. 13.
  • 2D-Curved process
  • Finally, as already indicated, this invention provides a process for forming an electro-optic display on a curved surface; this surface may be curved in one or both dimensions. The process begins with a curved backplane. A coatable electro-optic medium, such as an encapsulated electrophoretic medium, is sprayed or printed on to the surface of the backplane, and if necessary dried, cured or otherwise treated to form a coherent layer. A transparent electrically-conductive layer is sprayed or printed on to the surface of the electro-optic medium, and if necessary dried, cured or otherwise treated to form a coherent layer. A transparent encapsulant is sprayed or printed on to the surface of the electrically-conductive layer, and if necessary dried, cured or otherwise treated to form a coherent layer. Optionally, in a final step of the process, an edge sealant is applied by spraying or printing around the edge of the display to protect the electro-optic medium and possibly other components of the display from the environment, for example to prevent exchange of water and/or oxygen between the display and the surrounding environment.
  • Although this process can be applied to a surface which is curved in one or two dimensions, the process is primarily intended for use on surfaces curved in two dimensions. The basic structure of the display formed by this process is illustrated in FIG. 14; the display consists of:
  • (a) a backplane 1200, which may be of an active matrix transistor, passive or direct drive type, and will typically be formed on a polymeric film, metal foil or a combination thereof (see the aforementioned US 2002/0019081 for backplanes formed on stainless steel foils covered with a polyphenylene polyimide);
  • (b) an electro-optic medium layer 1202, typically an encapsulated electro-optic medium layer, which can be of an electrophoretic, liquid crystal, or emissive type;
  • (c) a light transmissive (preferably transparent) electrically-conductive layer 1204, which may be formed from organic or inorganic materials; and
  • (d) a light transmissive (preferably transparent) encapsulant or protective layer 1206, which may be formed from organic or inorganic materials.
  • The backplane 1200 may be a pre-formed backplane, or an originally flat backplane flexed into the configuration shown. The backplane may also be bonded to a curved surface. The backplane can be printed on to a pre-formed flexible substrate, for example a substrate formed by casting material in a die.
  • To form the preferred display shown in FIG. 14, an encapsulated electro-optic material is sprayed or printed on to the surface of the backplane 1200; in most cases, the resultant electro-optic medium layer 1202 will need to be dried or cured to from a coherent layer. The encapsulated electro-optic material may be sprayed or printed in wet or dry form, for example in the form of a slurry or an aerosol. Single or multiple layers of electro-optic material may be applied to the backplane 1200 before the final layer is dried or cured. Additional low stress under-fill resins or other polymeric binders can be applied before or after drying or curing to fill voids in the coating or to locally planarize the coating surface.
  • After formation of the electro-optic medium layer 1202 is complete, the light-transmissive electrically-conductive layer 1204 is superposed thereon by spraying or printing an appropriate material, which may be sprayed or printed in wet or dry form, for example in the form of a slurry or an aerosol; in some cases, drying or curing of the material may be required to form a coherent layer. Similarly, after formation of the electrically-conductive layer 1204 is complete, the light-transmissive encapsulant layer 1206 is superposed thereon by spraying or printing an appropriate material, which may be sprayed or printed in wet or dry form, for example in the form of a slurry or an aerosol; in some cases, drying or curing of the material may be required to form a coherent layer. Finally, a low-stress edge seal encapsulant (not shown) may be sprayed or printed on to the edges of the display to protect the display material from moisture or gas intake or to environmentally stabilize the display.
  • The preferred 2D-curved process of the present invention described above has the advantages that by coating each layer of the display directly on to a pre-formed curved backplane, material stress, creep and therefore display non-uniformity are minimized during subsequent operation and storage. The method is also suitable for use on flat substrates to enable manufacture of ultra-thin electro-optic displays. All the steps of the process can be implemented in a continuous fashion for manufacture, and the method provides a low-cost assembly process for conformal displays due to large material savings and the use of simple web-based or sheet-based manufacturing apparatus, such as spray coaters and infra-red lamps for curing.
  • Those skilled in the display art will appreciate that numerous changes, improvements and modifications can be made in the preferred embodiments of the invention already described without departing from the scope of the invention. For example, although the invention has been primarily described with reference to the use of encapsulated electrophoretic media, any of the other types of electro-optic media previously described may alternatively be used. Accordingly, the whole of the foregoing description is intended to be construed in an illustrative and not in a limitative sense.

Claims (17)

1. A process for forming a plurality of electronic components on a polymeric material coating a metal substrate, the process comprising forming a plurality of discrete areas of polymeric material on the metal substrate and thereafter forming the plurality of electronic components on the discrete areas of polymeric material.
2. A process according to claim 1 wherein a continuous layer of the polymeric material is formed on the metal substrate and thereafter this continuous layer is divided to form the discrete areas of polymeric material.
3. A process according to claim 1 wherein at least some of the edges of the discrete areas of polymeric material are undercut.
4. A process according to claim 3 wherein the undercutting of the edges of the discrete areas of polymeric material is effected by an etching step.
5. An electro-optic display having a metal substrate, the display having a central portion comprising an electro-optic material and means for writing an image on the electro-optic material, and a peripheral portion extending around at least part of the periphery of the central portion, the peripheral portion having a plurality of apertures extending through the metal substrate, by means of which apertures the electro-optic display may be stitched to a flexible medium.
6. An electro-optic display according to claim 5 wherein the peripheral portion of such a display is free from the electro-optic material.
7. An electro-optic display according to claim 5 wherein the peripheral portion extends completely around the central portion so that the entire periphery of the electro-optic display can be stitched into the fabric or other flexible material.
8. A process for forming an electro-optic display on a substrate curved in one dimension, the process comprising:
providing a backplane having at least one pixel electrode, the backplane being curved in one dimension;
applying to the backplane a laminate comprising a layer of electro-optic medium and a light-transmissive electrically-conductive layer, the laminate being applied so that the electro-optic medium lies between the backplane and the electrically-conductive layer; and
bonding the laminate to the backplane under heat and/or pressure.
9. A process according to claim 8 wherein the laminate further comprises a layer of lamination adhesive overlying the layer of electro-optic medium, and the layer of lamination adhesive is contacted with the backplane.
10. A process for forming an electro-optic display on a substrate curved in one dimension, the process comprising:
providing a backplane having at least one pixel electrode, the backplane being curved in one dimension;
providing a double release film comprising a layer of a solid electro-optic medium having first and second adhesive layers on opposed sides thereof, at least one of the adhesive layer being covered by a release sheet;
exposing one of the first and second adhesive layers and laminating the double release sheet to the backplane; and
exposing the other of the first and second adhesive layers and laminating the exposed adhesive layer to an electrically-conductive layer.
11. A process for forming an electro-optic display on a curved backplane having at least one pixel electrode, the process comprising:
applying a coatable electro-optic medium on to the surface of the backplane to form a coherent layer of the electro-optic medium thereon;
applying a transparent electrically-conductive layer on to the surface of the electro-optic medium on the backplane to form a coherent layer of the electrically-conductive layer thereon; and
applying a transparent encapsulant on to the surface of the electrically-conductive layer to form a coherent layer of the encapsulant thereon.
12. A process according to claim 11 further comprising applying an edge sealant around at least part of the edge of the display.
13. A process for driving a backplane comprising a conductive layer, an insulating layer and at least one transistor disposed on the opposed side of the insulating layer from the conductive layer, the process comprising varying the voltage applied to the gate of the transistor and thereby switching the transistor between on and off states, the process further comprising maintaining the conductive layer at a voltage different from ground and within the range of voltages applied to the source of the transistor during driving of the backplane.
14. A process according to claim 13 wherein the voltage applied to the conductive layer satisfies the relation:

(3*Vmax+Vmin)/4>Vc>(Vmax+3*Vmin)/4
where Vmax and Vmin are respectively the maximum and minimum voltages applied to the source during driving, and Vc is the voltage applied to the conductive layer.
15. A process according to claim 14 wherein the voltage applied to the conductive layer satisfies the relation:

(3*Vmax)+2*Vmin)/5>Vc>(2*Vmax+3*Vmin)/5.
16. A process according to claim 18 wherein the voltage applied to the conductive layer substantially satisfies the relation:

Vc=(Vmax+Vmin)/2.
17. A backplane for use in an electro-optic display, the backplane comprising a metal foil coated on at least one side with an insulating polymeric material and having a plurality of thin film electronic devices provided on the insulating polymeric material, the backplane further comprising at least one conductive via extending through the polymeric material and electrically connecting at least one of the thin film electronic devices to the metal foil.
US12/987,418 2000-04-18 2011-01-10 Flexible electronic circuits and displays Abandoned US20110140744A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US19773100P true 2000-04-18 2000-04-18
US09/836,884 US6825068B2 (en) 2000-04-18 2001-04-17 Process for fabricating thin film transistors
US31973202P true 2002-11-26 2002-11-26
US48139603P true 2003-09-18 2003-09-18
US10/707,184 US7893435B2 (en) 2000-04-18 2003-11-25 Flexible electronic circuits and displays including a backplane comprising a patterned metal foil having a plurality of apertures extending therethrough
US12/987,418 US20110140744A1 (en) 2000-04-18 2011-01-10 Flexible electronic circuits and displays

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12/987,418 US20110140744A1 (en) 2000-04-18 2011-01-10 Flexible electronic circuits and displays
US15/343,701 US20170052422A1 (en) 2002-11-26 2016-11-04 Flexible electronic circuits and displays

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/707,184 Division US7893435B2 (en) 2000-04-18 2003-11-25 Flexible electronic circuits and displays including a backplane comprising a patterned metal foil having a plurality of apertures extending therethrough

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/343,701 Division US20170052422A1 (en) 2000-04-18 2016-11-04 Flexible electronic circuits and displays

Publications (1)

Publication Number Publication Date
US20110140744A1 true US20110140744A1 (en) 2011-06-16

Family

ID=46300412

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/707,184 Active US7893435B2 (en) 2000-04-18 2003-11-25 Flexible electronic circuits and displays including a backplane comprising a patterned metal foil having a plurality of apertures extending therethrough
US12/987,418 Abandoned US20110140744A1 (en) 2000-04-18 2011-01-10 Flexible electronic circuits and displays

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US10/707,184 Active US7893435B2 (en) 2000-04-18 2003-11-25 Flexible electronic circuits and displays including a backplane comprising a patterned metal foil having a plurality of apertures extending therethrough

Country Status (1)

Country Link
US (2) US7893435B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090050352A1 (en) * 2007-08-20 2009-02-26 Industrial Technology Research Institute Substrate structures for flexible electronic devices and fabrication methods thereof
US8446664B2 (en) 2010-04-02 2013-05-21 E Ink Corporation Electrophoretic media, and materials for use therein
US20130188324A1 (en) * 2010-09-29 2013-07-25 Posco Method for Manufacturing a Flexible Electronic Device Using a Roll-Shaped Motherboard, Flexible Electronic Device, and Flexible Substrate
WO2014018745A1 (en) * 2012-07-27 2014-01-30 E Ink Corporation Processes for the production of electro-optic displays
US9122968B2 (en) 2012-04-03 2015-09-01 X-Card Holdings, Llc Information carrying card comprising a cross-linked polymer composition, and method of making the same
US9293511B2 (en) 1998-07-08 2016-03-22 E Ink Corporation Methods for achieving improved color in microencapsulated electrophoretic devices
US9439334B2 (en) 2012-04-03 2016-09-06 X-Card Holdings, Llc Information carrying card comprising crosslinked polymer composition, and method of making the same
WO2016191673A1 (en) 2015-05-27 2016-12-01 E Ink Corporation Methods and circuitry for driving display devices
US9671635B2 (en) 2014-02-07 2017-06-06 E Ink Corporation Electro-optic display backplane structures with drive components and pixel electrodes on opposed surfaces
US9715155B1 (en) 2013-01-10 2017-07-25 E Ink Corporation Electrode structures for electro-optic displays
US9726957B2 (en) 2013-01-10 2017-08-08 E Ink Corporation Electro-optic display with controlled electrochemical reactions
US9835925B1 (en) 2015-01-08 2017-12-05 E Ink Corporation Electro-optic displays, and processes for the production thereof
US10175550B2 (en) 2014-11-07 2019-01-08 E Ink Corporation Applications of electro-optic displays
US10190743B2 (en) 2012-04-20 2019-01-29 E Ink Corporation Illumination systems for reflective displays
US10254621B2 (en) 2017-11-03 2019-04-09 E Ink Corporation Electro-optic displays, and processes for the production thereof

Families Citing this family (110)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7583251B2 (en) 1995-07-20 2009-09-01 E Ink Corporation Dielectrophoretic displays
US20080136774A1 (en) 2004-07-27 2008-06-12 E Ink Corporation Methods for driving electrophoretic displays using dielectrophoretic forces
US7411719B2 (en) 1995-07-20 2008-08-12 E Ink Corporation Electrophoretic medium and process for the production thereof
US7848006B2 (en) 1995-07-20 2010-12-07 E Ink Corporation Electrophoretic displays with controlled amounts of pigment
US8139050B2 (en) 1995-07-20 2012-03-20 E Ink Corporation Addressing schemes for electronic displays
US20130063333A1 (en) 2002-10-16 2013-03-14 E Ink Corporation Electrophoretic displays
US7999787B2 (en) 1995-07-20 2011-08-16 E Ink Corporation Methods for driving electrophoretic displays using dielectrophoretic forces
US8040594B2 (en) 1997-08-28 2011-10-18 E Ink Corporation Multi-color electrophoretic displays
US8390918B2 (en) 2001-04-02 2013-03-05 E Ink Corporation Electrophoretic displays with controlled amounts of pigment
US7679814B2 (en) 2001-04-02 2010-03-16 E Ink Corporation Materials for use in electrophoretic displays
US7952557B2 (en) 2001-11-20 2011-05-31 E Ink Corporation Methods and apparatus for driving electro-optic displays
US8593396B2 (en) 2001-11-20 2013-11-26 E Ink Corporation Methods and apparatus for driving electro-optic displays
US8558783B2 (en) 2001-11-20 2013-10-15 E Ink Corporation Electro-optic displays with reduced remnant voltage
US8125501B2 (en) 2001-11-20 2012-02-28 E Ink Corporation Voltage modulated driver circuits for electro-optic displays
US7119772B2 (en) 1999-04-30 2006-10-10 E Ink Corporation Methods for driving bistable electro-optic displays, and apparatus for use therein
US9530363B2 (en) 2001-11-20 2016-12-27 E Ink Corporation Methods and apparatus for driving electro-optic displays
US9412314B2 (en) 2001-11-20 2016-08-09 E Ink Corporation Methods for driving electro-optic displays
US20080024482A1 (en) 2002-06-13 2008-01-31 E Ink Corporation Methods for driving electro-optic displays
US8115729B2 (en) 1999-05-03 2012-02-14 E Ink Corporation Electrophoretic display element with filler particles
US8009348B2 (en) 1999-05-03 2011-08-30 E Ink Corporation Machine-readable displays
US7893435B2 (en) 2000-04-18 2011-02-22 E Ink Corporation Flexible electronic circuits and displays including a backplane comprising a patterned metal foil having a plurality of apertures extending therethrough
JP4198999B2 (en) * 2001-03-13 2008-12-17 イー インク コーポレイション Apparatus for displaying the drawings
US20090009852A1 (en) * 2001-05-15 2009-01-08 E Ink Corporation Electrophoretic particles and processes for the production thereof
US7110163B2 (en) * 2001-07-09 2006-09-19 E Ink Corporation Electro-optic display and lamination adhesive for use therein
US7535624B2 (en) 2001-07-09 2009-05-19 E Ink Corporation Electro-optic display and materials for use therein
US8174490B2 (en) 2003-06-30 2012-05-08 E Ink Corporation Methods for driving electrophoretic displays
US20040110326A1 (en) * 2002-11-20 2004-06-10 Charles Forbes Active matrix thin film transistor array backplane
US7190008B2 (en) 2002-04-24 2007-03-13 E Ink Corporation Electro-optic displays, and components for use therein
EP1497867A2 (en) * 2002-04-24 2005-01-19 E Ink Corporation Electronic displays
US8363299B2 (en) 2002-06-10 2013-01-29 E Ink Corporation Electro-optic displays, and processes for the production thereof
US7649674B2 (en) 2002-06-10 2010-01-19 E Ink Corporation Electro-optic display with edge seal
US7110164B2 (en) 2002-06-10 2006-09-19 E Ink Corporation Electro-optic displays, and processes for the production thereof
US9470950B2 (en) 2002-06-10 2016-10-18 E Ink Corporation Electro-optic displays, and processes for the production thereof
US8049947B2 (en) * 2002-06-10 2011-11-01 E Ink Corporation Components and methods for use in electro-optic displays
US7843621B2 (en) 2002-06-10 2010-11-30 E Ink Corporation Components and testing methods for use in the production of electro-optic displays
US7839564B2 (en) 2002-09-03 2010-11-23 E Ink Corporation Components and methods for use in electro-optic displays
US20080043318A1 (en) 2005-10-18 2008-02-21 E Ink Corporation Color electro-optic displays, and processes for the production thereof
EP1573389B1 (en) 2002-12-16 2018-05-30 E Ink Corporation Backplanes for electro-optic displays
US6987603B2 (en) * 2003-01-31 2006-01-17 E Ink Corporation Construction of electrophoretic displays
US8902153B2 (en) 2007-08-03 2014-12-02 E Ink Corporation Electro-optic displays, and processes for their production
US7910175B2 (en) 2003-03-25 2011-03-22 E Ink Corporation Processes for the production of electrophoretic displays
WO2005010598A2 (en) 2003-07-24 2005-02-03 E Ink Corporation Electro-optic displays
US8319759B2 (en) 2003-10-08 2012-11-27 E Ink Corporation Electrowetting displays
CN101142510B (en) * 2003-11-05 2010-04-14 伊英克公司 Electro-optic displays
US20110164301A1 (en) 2003-11-05 2011-07-07 E Ink Corporation Electro-optic displays, and materials for use therein
US7672040B2 (en) 2003-11-05 2010-03-02 E Ink Corporation Electro-optic displays, and materials for use therein
US8177942B2 (en) 2003-11-05 2012-05-15 E Ink Corporation Electro-optic displays, and materials for use therein
US8928562B2 (en) 2003-11-25 2015-01-06 E Ink Corporation Electro-optic displays, and methods for driving same
US20050156340A1 (en) 2004-01-20 2005-07-21 E Ink Corporation Preparation of capsules
US20060055691A1 (en) * 2004-09-11 2006-03-16 Bursett Jeffrey M Attachable informational appliance
WO2007002452A2 (en) 2005-06-23 2007-01-04 E Ink Corporation Edge seals and processes for electro-optic displays
KR101269304B1 (en) 2005-10-18 2013-05-29 이 잉크 코포레이션 Electro-optical display component
US7733554B2 (en) 2006-03-08 2010-06-08 E Ink Corporation Electro-optic displays, and materials and methods for production thereof
US8390301B2 (en) 2006-03-08 2013-03-05 E Ink Corporation Electro-optic displays, and materials and methods for production thereof
US7843624B2 (en) 2006-03-08 2010-11-30 E Ink Corporation Electro-optic displays, and materials and methods for production thereof
US8610988B2 (en) * 2006-03-09 2013-12-17 E Ink Corporation Electro-optic display with edge seal
US7952790B2 (en) 2006-03-22 2011-05-31 E Ink Corporation Electro-optic media produced using ink jet printing
US8062120B2 (en) * 2006-04-21 2011-11-22 Charles Zapata Dynamic card system and method
US7903319B2 (en) 2006-07-11 2011-03-08 E Ink Corporation Electrophoretic medium and display with improved image stability
US8018640B2 (en) 2006-07-13 2011-09-13 E Ink Corporation Particles for use in electrophoretic displays
US20080024429A1 (en) * 2006-07-25 2008-01-31 E Ink Corporation Electrophoretic displays using gaseous fluids
US7986450B2 (en) 2006-09-22 2011-07-26 E Ink Corporation Electro-optic display and materials for use therein
US7477444B2 (en) 2006-09-22 2009-01-13 E Ink Corporation & Air Products And Chemical, Inc. Electro-optic display and materials for use therein
US7649666B2 (en) 2006-12-07 2010-01-19 E Ink Corporation Components and methods for use in electro-optic displays
WO2008091850A2 (en) 2007-01-22 2008-07-31 E Ink Corporation Multi-layer sheet for use in electro-optic displays
US7688497B2 (en) 2007-01-22 2010-03-30 E Ink Corporation Multi-layer sheet for use in electro-optic displays
JP4963419B2 (en) * 2007-01-31 2012-06-27 キヤノン株式会社 Flexible display device
US7826129B2 (en) 2007-03-06 2010-11-02 E Ink Corporation Materials for use in electrophoretic displays
EP2150881A4 (en) * 2007-05-21 2010-09-22 E Ink Corp Methods for driving video electro-optic displays
WO2009006248A1 (en) 2007-06-29 2009-01-08 E Ink Corporation Electro-optic displays, and materials and methods for production thereof
US20090122389A1 (en) 2007-11-14 2009-05-14 E Ink Corporation Electro-optic assemblies, and adhesives and binders for use therein
JP2011517490A (en) 2008-03-21 2011-06-09 イー インク コーポレイション Electro-optical display and a color filter
WO2009126957A1 (en) * 2008-04-11 2009-10-15 E Ink Corporation Methods for driving electro-optic displays
TWI484273B (en) * 2009-02-09 2015-05-11 E Ink Corp Electrophoretic particles
US8098418B2 (en) 2009-03-03 2012-01-17 E. Ink Corporation Electro-optic displays, and color filters for use therein
JP2011049316A (en) * 2009-08-26 2011-03-10 Nitto Denko Corp Printed circuit board and method of manufacturing the same
US8754859B2 (en) 2009-10-28 2014-06-17 E Ink Corporation Electro-optic displays with touch sensors and/or tactile feedback
TWI591604B (en) 2010-04-09 2017-07-11 E Ink Corp Methods for driving electro-optic displays
US8629053B2 (en) * 2010-06-18 2014-01-14 Taiwan Semiconductor Manufacturing Company, Ltd. Plasma treatment for semiconductor devices
US8889485B2 (en) 2011-06-08 2014-11-18 Semprius, Inc. Methods for surface attachment of flipped active componenets
US20130125910A1 (en) 2011-11-18 2013-05-23 Avon Products, Inc. Use of Electrophoretic Microcapsules in a Cosmetic Composition
WO2013082377A1 (en) 2011-12-01 2013-06-06 Avery Dennison Corporation Backplane for electrophoretic display
US9093745B2 (en) * 2012-05-10 2015-07-28 Apple Inc. Antenna and proximity sensor structures having printed circuit and dielectric carrier layers
US9059427B2 (en) * 2012-09-11 2015-06-16 Apple Inc. Device and method for top emitting AMOLED
US20140227969A1 (en) * 2013-02-11 2014-08-14 Lsi Corporation Indium tin oxide loop antenna for near field communication
US9257647B2 (en) * 2013-03-14 2016-02-09 Northrop Grumman Systems Corporation Phase change material switch and method of making the same
US9494792B2 (en) * 2013-07-30 2016-11-15 Global Oled Technology Llc Local seal for encapsulation of electro-optical element on a flexible substrate
US9287522B2 (en) 2013-07-30 2016-03-15 Global Oled Technology Llc Local seal for encapsulation of electro-optical element on a flexible substrate
US9385342B2 (en) 2013-07-30 2016-07-05 Global Oled Technology Llc Local seal for encapsulation of electro-optical element on a flexible substrate
CN105917265B (en) 2014-01-17 2019-01-15 伊英克公司 Electro-optic displays with two-phase electrode layer
US9799719B2 (en) 2014-09-25 2017-10-24 X-Celeprint Limited Active-matrix touchscreen
TW201611235A (en) 2014-06-18 2016-03-16 Celeprint Ltd X Micro assembled LED displays and lighting elements
US9799261B2 (en) 2014-09-25 2017-10-24 X-Celeprint Limited Self-compensating circuit for faulty display pixels
US10133426B2 (en) 2015-06-18 2018-11-20 X-Celeprint Limited Display with micro-LED front light
TWI647833B (en) 2014-08-26 2019-01-11 愛爾蘭商艾克斯瑟樂普林特有限公司 Micro-composite composition and the light emitting element display device
US9991163B2 (en) * 2014-09-25 2018-06-05 X-Celeprint Limited Small-aperture-ratio display with electrical component
US10185200B1 (en) 2015-02-03 2019-01-22 Amazon Technologies, Inc. Thin border displays
US9818725B2 (en) 2015-06-01 2017-11-14 X-Celeprint Limited Inorganic-light-emitter display with integrated black matrix
US9871345B2 (en) 2015-06-09 2018-01-16 X-Celeprint Limited Crystalline color-conversion device
US10230048B2 (en) 2015-09-29 2019-03-12 X-Celeprint Limited OLEDs for micro transfer printing
US10066819B2 (en) 2015-12-09 2018-09-04 X-Celeprint Limited Micro-light-emitting diode backlight system
TW201740505A (en) 2016-02-25 2017-11-16 X-Celeprint Ltd Efficiently micro-transfer printing micro-scale devices onto large-format substrates
US10193025B2 (en) 2016-02-29 2019-01-29 X-Celeprint Limited Inorganic LED pixel structure
US10153256B2 (en) 2016-03-03 2018-12-11 X-Celeprint Limited Micro-transfer printable electronic component
US10153257B2 (en) 2016-03-03 2018-12-11 X-Celeprint Limited Micro-printed display
US10008483B2 (en) 2016-04-05 2018-06-26 X-Celeprint Limited Micro-transfer printed LED and color filter structure
US10199546B2 (en) 2016-04-05 2019-02-05 X-Celeprint Limited Color-filter device
US9997501B2 (en) 2016-06-01 2018-06-12 X-Celeprint Limited Micro-transfer-printed light-emitting diode device
US9980341B2 (en) 2016-09-22 2018-05-22 X-Celeprint Limited Multi-LED components
WO2018091459A1 (en) 2016-11-15 2018-05-24 X-Celeprint Limited Micro-transfer-printable flip-chip structures and methods

Citations (100)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3792308A (en) * 1970-06-08 1974-02-12 Matsushita Electric Ind Co Ltd Electrophoretic display device of the luminescent type
US3806893A (en) * 1971-07-29 1974-04-23 Matsushita Electric Ind Co Ltd Method of electrically detecting colloidal memory
US3870517A (en) * 1969-10-18 1975-03-11 Matsushita Electric Ind Co Ltd Color image reproduction sheet employed in photoelectrophoretic imaging
US4001140A (en) * 1974-07-10 1977-01-04 Ncr Corporation Capsule manufacture
US4068927A (en) * 1976-09-01 1978-01-17 North American Philips Corporation Electrophoresis display with buried lead lines
US4071430A (en) * 1976-12-06 1978-01-31 North American Philips Corporation Electrophoretic image display having an improved switching time
US4149149A (en) * 1976-02-20 1979-04-10 Hitachi, Ltd. Circuit for actuating a display with an improved comparator
US4261653A (en) * 1978-05-26 1981-04-14 The Bendix Corporation Light valve including dipolar particle construction and method of manufacture
US4311361A (en) * 1980-03-13 1982-01-19 Burroughs Corporation Electrophoretic display using a non-Newtonian fluid as a threshold device
US4324456A (en) * 1979-08-02 1982-04-13 U.S. Philips Corporation Electrophoretic projection display systems
US4430648A (en) * 1980-01-22 1984-02-07 Citizen Watch Company Limited Combination matrix array display and memory system
US4439507A (en) * 1982-09-21 1984-03-27 Xerox Corporation Layered photoresponsive imaging device with photogenerating pigments dispersed in a polyhydroxy ether composition
US4502934A (en) * 1982-06-01 1985-03-05 Thomson-Csf Electrode comprising an electrochrome polymer film and a display device using such an electrode
US4643528A (en) * 1985-03-18 1987-02-17 Manchester R & D Partnership Encapsulated liquid crystal and filler material
US4648956A (en) * 1984-12-31 1987-03-10 North American Philips Corporation Electrode configurations for an electrophoretic display device
US4655897A (en) * 1984-11-13 1987-04-07 Copytele, Inc. Electrophoretic display panels and associated methods
US4892607A (en) * 1986-12-04 1990-01-09 Copytele, Inc. Chip mounting techniques for display apparatus
US5008590A (en) * 1988-09-30 1991-04-16 U.S. Philips Corp. Display arrangement having pin diode switching elements
US5009490A (en) * 1988-11-11 1991-04-23 Pioneer Electronic Corp. Photo-conductive liquid crystal light valve
US5105185A (en) * 1989-07-12 1992-04-14 Alps Electric Co., Ltd. Display method, device for realizing same and displaying medium used therefor
US5187609A (en) * 1991-03-27 1993-02-16 Disanto Frank J Electrophoretic display panel with semiconductor coated elements
US5194852A (en) * 1986-12-01 1993-03-16 More Edward S Electro-optic slate for direct entry and display and/or storage of hand-entered textual and graphic information
US5206749A (en) * 1990-12-31 1993-04-27 Kopin Corporation Liquid crystal display having essentially single crystal transistors pixels and driving circuits
US5276438A (en) * 1991-08-29 1994-01-04 Copytele, Inc. Electrophoretic display panel with internal mesh background screen
US5279694A (en) * 1986-12-04 1994-01-18 Copytele, Inc. Chip mounting techniques for display apparatus
US5288541A (en) * 1991-10-17 1994-02-22 International Business Machines Corporation Method for metallizing through holes in thin film substrates, and resulting devices
US5289300A (en) * 1991-02-04 1994-02-22 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing electro-optical devices wherein the electrode is patterned on the modulation layer
US5293528A (en) * 1992-02-25 1994-03-08 Copytele, Inc. Electrophoretic display panel and associated methods providing single pixel erase capability
US5296974A (en) * 1991-07-16 1994-03-22 Nippon Sheet Glass Co., Ltd. Light controlling device and process for controlling light transmission
US5302235A (en) * 1989-05-01 1994-04-12 Copytele, Inc. Dual anode flat panel electrophoretic display apparatus
US5303073A (en) * 1991-06-24 1994-04-12 Kabushiki Kaisha Toshiba Dispersion-type liquid crystal display element with oriented dichroic dye in the support media
US5304439A (en) * 1991-08-19 1994-04-19 Copytele, Inc. Method of making an electrophoretic display panel with interleaved local anode
US5383008A (en) * 1993-12-29 1995-01-17 Xerox Corporation Liquid ink electrostatic image development system
US5389945A (en) * 1989-11-08 1995-02-14 Xerox Corporation Writing system including paper-like digitally addressed media and addressing device therefor
US5402145A (en) * 1993-02-17 1995-03-28 Copytele, Inc. Electrophoretic display panel with arc driven individual pixels
US5403772A (en) * 1992-12-04 1995-04-04 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US5500537A (en) * 1989-08-17 1996-03-19 Mitsubishi Denki Kabushiki Kaisha Field-effect transistor with at least two different semiconductive organic channel compounds
US5614340A (en) * 1991-08-16 1997-03-25 Eastman Kodak Company Migration imaging, optionally with dyes or pigments to effect bleaching
US5701055A (en) * 1994-03-13 1997-12-23 Pioneer Electronic Corporation Organic electoluminescent display panel and method for manufacturing the same
US5705425A (en) * 1992-05-28 1998-01-06 Fujitsu Limited Process for manufacturing semiconductor devices separated by an air-bridge
US5707738A (en) * 1992-06-22 1998-01-13 Copytele, Inc. Black electrophoretic particles and method of manufacture
US5709976A (en) * 1996-06-03 1998-01-20 Xerox Corporation Coated papers
US5717514A (en) * 1995-12-15 1998-02-10 Xerox Corporation Polychromal segmented balls for a twisting ball display
US5718996A (en) * 1989-03-16 1998-02-17 Dai Nippon Printing Co., Ltd. Electrostatic information recording medium and electrostatic information recording and reproducing method
US5725935A (en) * 1994-11-07 1998-03-10 Minnesota Mining And Manufacturing Company Signage articles and methods of making same
US5858518A (en) * 1996-02-13 1999-01-12 Nitto Denko Corporation Circuit substrate, circuit-formed suspension substrate, and production method thereof
US5872552A (en) * 1994-12-28 1999-02-16 International Business Machines Corporation Electrophoretic display
US5889325A (en) * 1996-07-25 1999-03-30 Nec Corporation Semiconductor device and method of manufacturing the same
US6013335A (en) * 1993-07-30 2000-01-11 Sharp Kabushiki Kaisha Liquid crystal display apparatus and method for processing the same
US6017584A (en) * 1995-07-20 2000-01-25 E Ink Corporation Multi-color electrophoretic displays and materials for making the same
US6027958A (en) * 1996-07-11 2000-02-22 Kopin Corporation Transferred flexible integrated circuit
US6033742A (en) * 1997-03-31 2000-03-07 Kabushiki Kaisha Toshiba Liquid crystal display device
US6127725A (en) * 1998-08-03 2000-10-03 Harris; Ellis D. Thin film electronics on insulator on metal
US6172878B1 (en) * 1997-12-27 2001-01-09 Canon Kabushiki Kaisha Multi-element module and production process thereof
US6172798B1 (en) * 1998-04-27 2001-01-09 E Ink Corporation Shutter mode microencapsulated electrophoretic display
US6177921B1 (en) * 1997-08-28 2001-01-23 E Ink Corporation Printable electrode structures for displays
US6184856B1 (en) * 1998-09-16 2001-02-06 International Business Machines Corporation Transmissive electrophoretic display with laterally adjacent color cells
US6300612B1 (en) * 1998-02-02 2001-10-09 Uniax Corporation Image sensors made from organic semiconductors
US6343164B1 (en) * 1998-03-06 2002-01-29 Telefonaktiebolaget Lm Ericsson (Publ) Optoelectric multichip module
US6355125B1 (en) * 1999-03-26 2002-03-12 Agfa-Gevaert Method for making an electric or electronic module comprising a glass laminate
US6356332B1 (en) * 1997-10-24 2002-03-12 Canon Kabushiki Kaisha Matrix substrate and liquid crystal display device using the same in which the distance between the upper surface of the pixels being less than the distance between the lower surface of the pixels in contact with the substrate
US6359605B1 (en) * 1998-06-12 2002-03-19 U.S. Philips Corporation Active matrix electroluminescent display devices
US6504524B1 (en) * 2000-03-08 2003-01-07 E Ink Corporation Addressing methods for displays having zero time-average field
US6506438B2 (en) * 1998-12-15 2003-01-14 E Ink Corporation Method for printing of transistor arrays on plastic substrates
US20030011560A1 (en) * 1998-08-27 2003-01-16 E Ink Corporation Electrophoretic display comprising optical biasing element
US6512354B2 (en) * 1998-07-08 2003-01-28 E Ink Corporation Method and apparatus for sensing the state of an electrophoretic display
US20030020844A1 (en) * 2001-07-27 2003-01-30 Albert Jonathan D. Microencapsulated electrophoretic display with integrated driver
US6515649B1 (en) * 1995-07-20 2003-02-04 E Ink Corporation Suspended particle displays and materials for making the same
US6518513B1 (en) * 1997-06-06 2003-02-11 Ibiden Co. Ltd. Single-sided circuit board and method for manufacturing the same
US6518949B2 (en) * 1998-04-10 2003-02-11 E Ink Corporation Electronic displays using organic-based field effect transistors
US6521489B2 (en) * 1999-07-21 2003-02-18 E Ink Corporation Preferred methods for producing electrical circuit elements used to control an electronic display
US6531997B1 (en) * 1999-04-30 2003-03-11 E Ink Corporation Methods for addressing electrophoretic displays
US6538801B2 (en) * 1996-07-19 2003-03-25 E Ink Corporation Electrophoretic displays using nanoparticles
US6672921B1 (en) * 2000-03-03 2004-01-06 Sipix Imaging, Inc. Manufacturing process for electrophoretic display
USD485294S1 (en) * 1998-07-22 2004-01-13 E Ink Corporation Electrode structure for an electronic display
US6680725B1 (en) * 1995-07-20 2004-01-20 E Ink Corporation Methods of manufacturing electronically addressable displays
US20040014265A1 (en) * 2002-04-24 2004-01-22 E Ink Corporation Processes for forming backplanes for electro-optic displays
US20040012839A1 (en) * 2002-05-23 2004-01-22 E Ink Corporation Capsules, materials for use therein and electrophoretic media and displays containing such capsules
US6683333B2 (en) * 2000-07-14 2004-01-27 E Ink Corporation Fabrication of electronic circuit elements using unpatterned semiconductor layers
US20040027327A1 (en) * 2002-06-10 2004-02-12 E Ink Corporation Components and methods for use in electro-optic displays
US6693620B1 (en) * 1999-05-03 2004-02-17 E Ink Corporation Threshold addressing of electrophoretic displays
US6704133B2 (en) * 1998-03-18 2004-03-09 E-Ink Corporation Electro-optic display overlays and systems for addressing such displays
US6710540B1 (en) * 1995-07-20 2004-03-23 E Ink Corporation Electrostatically-addressable electrophoretic display
US6839158B2 (en) * 1997-08-28 2005-01-04 E Ink Corporation Encapsulated electrophoretic displays having a monolayer of capsules and materials and methods for making the same
US20050000813A1 (en) * 1997-08-28 2005-01-06 E Ink Corporation Electrophoretic particles, and processes for the production thereof
US20050001812A1 (en) * 1999-04-30 2005-01-06 E Ink Corporation Methods for driving bistable electro-optic displays, and apparatus for use therein
US6842167B2 (en) * 1997-08-28 2005-01-11 E Ink Corporation Rear electrode structures for displays
US6842279B2 (en) * 2002-06-27 2005-01-11 E Ink Corporation Illumination system for nonemissive electronic displays
US20050007336A1 (en) * 1997-08-28 2005-01-13 E Ink Corporation Adhesive backed displays
US20050007653A1 (en) * 2003-03-27 2005-01-13 E Ink Corporation Electro-optic assemblies, and materials for use therein
US20050012980A1 (en) * 2003-05-02 2005-01-20 E Ink Corporation Electrophoretic displays with controlled amounts of pigment
US20050017944A1 (en) * 2000-08-17 2005-01-27 E Ink Corporation Bistable electro-optic display, and method for addressing same
US20050018273A1 (en) * 2001-05-15 2005-01-27 E Ink Corporation Electrophoretic particles and processes for the production thereof
US20050024353A1 (en) * 2001-11-20 2005-02-03 E Ink Corporation Methods for driving electro-optic displays
US20050035941A1 (en) * 1995-07-20 2005-02-17 Albert Jonathan D. Retroreflective electrophoretic displaya and materials for making the same
US20050041004A1 (en) * 2003-08-19 2005-02-24 E Ink Corporation Method for controlling electro-optic display
US6870661B2 (en) * 2001-05-15 2005-03-22 E Ink Corporation Electrophoretic displays containing magnetic particles
US6870657B1 (en) * 1999-10-11 2005-03-22 University College Dublin Electrochromic device
US20050062714A1 (en) * 2003-09-19 2005-03-24 E Ink Corporation Methods for reducing edge effects in electro-optic displays
US20050067656A1 (en) * 2000-04-18 2005-03-31 E Ink Corporation Process for fabricating thin film transistors

Family Cites Families (229)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3036388A (en) 1961-10-27 1962-05-29 Clarence R Tate Magnetic writing materials set
US3384565A (en) 1964-07-23 1968-05-21 Xerox Corp Process of photoelectrophoretic color imaging
US4273672A (en) 1971-08-23 1981-06-16 Champion International Corporation Microencapsulation process
JPS4915377B1 (en) 1968-10-04 1974-04-15
US3892568A (en) 1969-04-23 1975-07-01 Matsushita Electric Ind Co Ltd Electrophoretic image reproduction process
US3612758A (en) 1969-10-03 1971-10-12 Xerox Corp Color display device
US3668106A (en) 1970-04-09 1972-06-06 Matsushita Electric Ind Co Ltd Electrophoretic display device
US3767392A (en) 1970-04-15 1973-10-23 Matsushita Electric Ind Co Ltd Electrophoretic light image reproduction process
US3670323A (en) 1970-12-14 1972-06-13 Zenith Radio Corp Image-display devices comprising particle light modulators with storage
JPS4917079B1 (en) 1970-12-21 1974-04-26
US3850627A (en) 1971-01-06 1974-11-26 Xerox Corp Electrophoretic imaging method
GB1458045A (en) 1973-08-15 1976-12-08 Secr Defence Display systems
US4045327A (en) 1974-08-28 1977-08-30 Matsushita Electric Industrial Co., Ltd. Electrophoretic matrix panel
US4041481A (en) 1974-10-05 1977-08-09 Matsushita Electric Industrial Co., Ltd. Scanning apparatus for an electrophoretic matrix display panel
JPS5625964B2 (en) * 1975-11-22 1981-06-16
FR2351191B1 (en) 1976-05-11 1980-02-08 Thomson Csf
US4088395A (en) 1976-05-27 1978-05-09 American Cyanamid Company Paper counter-electrode for electrochromic devices
US4203106A (en) 1977-11-23 1980-05-13 North American Philips Corporation X-Y addressable electrophoretic display device with control electrode
US4218302A (en) 1979-08-02 1980-08-19 U.S. Philips Corporation Electrophoretic display devices
US4305807A (en) 1980-03-13 1981-12-15 Burroughs Corporation Electrophoretic display device using a liquid crystal as a threshold device
JPH0315340B2 (en) 1981-04-30 1991-02-28 Hitachi Seisakusho Kk
JPS628035B2 (en) 1981-05-18 1987-02-20 Hitachi Seisakusho Kk
US4418346A (en) 1981-05-20 1983-11-29 Batchelder J Samuel Method and apparatus for providing a dielectrophoretic display of visual information
US4390403A (en) 1981-07-24 1983-06-28 Batchelder J Samuel Method and apparatus for dielectrophoretic manipulation of chemical species
US4450440A (en) 1981-12-24 1984-05-22 U.S. Philips Corporation Construction of an epid bar graph
US4522472A (en) 1982-02-19 1985-06-11 North American Philips Corporation Electrophoretic image display with reduced drives and leads
FR2527844B1 (en) 1982-06-01 1986-01-24 Thomson Csf An electrochromic device can be used in energy storage and electrochromic display system
GB8328750D0 (en) 1983-10-27 1983-11-30 Philp R Contact-less electronic connectors
JPS614020A (en) 1984-06-18 1986-01-09 Nissha Printing Co Ltd Multicolor liquid crystal display device
JPH0616506B2 (en) 1984-12-26 1994-03-02 株式会社半導体エネルギー研究所 The method for selectively forming a film on the side periphery of the stacked body
US4741604A (en) 1985-02-01 1988-05-03 Kornfeld Cary D Electrode arrays for cellular displays
US4598960A (en) 1985-04-29 1986-07-08 Copytele, Inc. Methods and apparatus for connecting closely spaced large conductor arrays employing multi-conductor carrier boards
US4686524A (en) 1985-11-04 1987-08-11 North American Philips Corporation Photosensitive electrophoretic displays
US4742345A (en) 1985-11-19 1988-05-03 Copytele, Inc. Electrophoretic display panel apparatus and methods therefor
US4746917A (en) 1986-07-14 1988-05-24 Copytele, Inc. Method and apparatus for operating an electrophoretic display between a display and a non-display mode
US4850919A (en) 1986-09-11 1989-07-25 Copytele, Inc. Monolithic flat panel display apparatus and methods for fabrication thereof
US4833464A (en) 1987-09-14 1989-05-23 Copytele, Inc. Electrophoretic information display (EPID) apparatus employing grey scale capability
JPH01207324A (en) 1988-02-15 1989-08-21 Hitachi Chem Co Ltd Solvent-soluble polyimide
US4883561A (en) 1988-03-29 1989-11-28 Bell Communications Research, Inc. Lift-off and subsequent bonding of epitaxial films
US5070326A (en) 1988-04-13 1991-12-03 Ube Industries Ltd. Liquid crystal display device
US4947159A (en) 1988-04-18 1990-08-07 501 Copytele, Inc. Power supply apparatus capable of multi-mode operation for an electrophoretic display panel
US5731116A (en) 1989-05-17 1998-03-24 Dai Nippon Printing Co., Ltd. Electrostatic information recording medium and electrostatic information recording and reproducing method
JPH0731326B2 (en) 1988-06-01 1995-04-10 シャープ株式会社 The liquid crystal display device
US5502889A (en) 1988-06-10 1996-04-02 Sheldahl, Inc. Method for electrically and mechanically connecting at least two conductive layers
US4931019A (en) 1988-09-01 1990-06-05 Pennwalt Corporation Electrostatic image display apparatus
US5119218A (en) 1988-09-28 1992-06-02 Ube Industries, Ltd. Liquid crystal display device having varistor elements
US4947157A (en) 1988-10-03 1990-08-07 501 Copytele, Inc. Apparatus and methods for pulsing the electrodes of an electrophoretic display for achieving faster display operation
US5892244A (en) 1989-01-10 1999-04-06 Mitsubishi Denki Kabushiki Kaisha Field effect transistor including πconjugate polymer and liquid crystal display including the field effect transistor
US5041824A (en) 1989-03-02 1991-08-20 Copytele, Inc. Semitransparent electrophoretic information displays (EPID) employing mesh like electrodes
US5053763A (en) 1989-05-01 1991-10-01 Copytele, Inc. Dual anode flat panel electrophoretic display apparatus
JPH03109526A (en) 1989-06-20 1991-05-09 Japan Synthetic Rubber Co Ltd Active matrix substrate for liquid crystal display device
US5220316A (en) 1989-07-03 1993-06-15 Benjamin Kazan Nonlinear resistor control circuit and use in liquid crystal displays
US5066946A (en) 1989-07-03 1991-11-19 Copytele, Inc. Electrophoretic display panel with selective line erasure
US5028841A (en) 1989-07-18 1991-07-02 Copytele, Inc. Chip mounting techniques for display apparatus
US5128785A (en) 1989-08-08 1992-07-07 Ube Industries, Ltd. Liquid crystal display device substantially free from cross-talk having varistor layers coupled to signal lines and picture electrodes
US5254981A (en) 1989-09-15 1993-10-19 Copytele, Inc. Electrophoretic display employing gray scale capability utilizing area modulation
JP2712046B2 (en) 1989-10-18 1998-02-10 宇部興産株式会社 The liquid crystal display device
US5128226A (en) 1989-11-13 1992-07-07 Eastman Kodak Company Electrophotographic element containing barrier layer
US5077157A (en) 1989-11-24 1991-12-31 Copytele, Inc. Methods of fabricating dual anode, flat panel electrophoretic displays
EP0443571A3 (en) 1990-02-23 1992-04-15 Ube Industries, Ltd. Liquid crystal display panel
JPH049916A (en) 1990-04-27 1992-01-14 Victor Co Of Japan Ltd Recording device and recording head
JP2554769B2 (en) 1990-05-16 1996-11-13 東芝マイクロエレクトロニクス株式会社 The liquid crystal display device
GB2244860A (en) 1990-06-04 1991-12-11 Philips Electronic Associated Fabricating mim type device array and display devices incorporating such arrays
US5175047A (en) 1990-08-09 1992-12-29 Teledyne Industries, Inc. Rigid-flex printed circuit
US5250938A (en) 1990-12-19 1993-10-05 Copytele, Inc. Electrophoretic display panel having enhanced operation
US5362671A (en) 1990-12-31 1994-11-08 Kopin Corporation Method of fabricating single crystal silicon arrayed devices for display panels
US5705424A (en) 1992-09-11 1998-01-06 Kopin Corporation Process of fabricating active matrix pixel electrodes
US5223823A (en) 1991-03-11 1993-06-29 Copytele, Inc. Electrophoretic display panel with plural electrically independent anode elements
DE4113791A1 (en) 1991-04-26 1992-10-29 Solvay Deutschland A process for depositing a boron and nitrogen containing layer
US5315312A (en) 1991-05-06 1994-05-24 Copytele, Inc. Electrophoretic display panel with tapered grid insulators and associated methods
US5223115A (en) 1991-05-13 1993-06-29 Copytele, Inc. Electrophoretic display with single character erasure
US5375044A (en) 1991-05-13 1994-12-20 Guritz; Steven P. W. Multipurpose optical display for articulating surfaces
US5689282A (en) 1991-07-09 1997-11-18 U.S. Philips Corporation Display device with compensation for stray capacitance
GB9115402D0 (en) 1991-07-17 1991-09-04 Philips Electronic Associated Matrix display device and its method of operation
US5153986A (en) * 1991-07-17 1992-10-13 International Business Machines Method for fabricating metal core layers for a multi-layer circuit board
US5463491A (en) 1991-11-01 1995-10-31 Research Frontiers Incorporated Light valve employing a film comprising an encapsulated liquid suspension, and method of making such film
US5463492A (en) 1991-11-01 1995-10-31 Research Frontiers Incorporated Light modulating film of improved clarity for a light valve
US5247290A (en) 1991-11-21 1993-09-21 Copytele, Inc. Method of operation for reducing power, increasing life and improving performance of epids
US5266937A (en) 1991-11-25 1993-11-30 Copytele, Inc. Method for writing data to an electrophoretic display panel
US5174882A (en) 1991-11-25 1992-12-29 Copytele, Inc. Electrode structure for an electrophoretic display apparatus
CA2124804A1 (en) 1991-12-13 1993-06-24 Takatoshi Takemoto Electronic notebook
JP3203736B2 (en) 1992-02-13 2001-08-27 株式会社日立製作所 Tape for liquid crystal driver carrier package and a liquid crystal display device
US5412398A (en) 1992-02-25 1995-05-02 Copytele, Inc. Electrophoretic display panel and associated methods for blinking displayed characters
US5583675A (en) 1993-04-27 1996-12-10 Sharp Kabushiki Kaisha Liquid crystal display device and a method for producing the same
US5270843A (en) 1992-08-31 1993-12-14 Jiansheng Wang Directly formed polymer dispersed liquid crystal light shutter displays
US5345251A (en) 1993-01-11 1994-09-06 Copytele, Inc. Electrophoretic display panel with interleaved cathode and anode
TW241377B (en) 1993-03-12 1995-02-21 Semiconductor Energy Res Co Ltd
US5411656A (en) 1993-08-12 1995-05-02 Copytele, Inc. Gas absorption additives for electrophoretic suspensions
US5477073A (en) 1993-08-20 1995-12-19 Casio Computer Co., Ltd. Thin film semiconductor device including a driver and a matrix circuit
WO1995007527A1 (en) 1993-09-09 1995-03-16 Copytele, Inc. Electrophoretic display panel with selective character addressability
EP0721638A4 (en) 1993-10-01 1997-04-09 Copytele Inc Electrophoretic display panel with selective character addressability
US5904545A (en) 1993-12-17 1999-05-18 The Regents Of The University Of California Apparatus for fabricating self-assembling microstructures
US5545291A (en) 1993-12-17 1996-08-13 The Regents Of The University Of California Method for fabricating self-assembling microstructures
US5508720A (en) 1994-02-02 1996-04-16 Copytele, Inc. Portable telecommunication device with removable electrophoretic display
DE69514451D1 (en) 1994-03-18 2000-02-17 Koninkl Philips Electronics Nv Display device of active matrix control method thereof, and
US5744283A (en) 1994-04-12 1998-04-28 U.S. Philips Corporation Method of photolithographically metallizing at least the inside of holes arranged in accordance with a pattern in a plate of an electrically insulating material
JPH08512171A (en) 1994-04-28 1996-12-17 フィリップス エレクトロニクス ネムローゼ フェンノートシャップ Methods for making copper pattern photolithographically on a plate of electrically insulating material
US5543589A (en) 1994-05-23 1996-08-06 International Business Machines Corporation Touchpad with dual sensor that simplifies scanning
US5623585A (en) 1994-07-15 1997-04-22 Eastman Kodak Company Method and apparatus for parallel processing of a document image
GB2292119B (en) 1994-08-10 1998-12-30 Chemitech Inc A process for producing a magnetic display sheet using microcapsules
EP0709713A3 (en) 1994-10-31 1997-03-26 Fujikura Ltd Electrically controlled color display device and method
US5650872A (en) 1994-12-08 1997-07-22 Research Frontiers Incorporated Light valve containing ultrafine particles
US5571311A (en) 1994-12-15 1996-11-05 Cabot Corporation Ink jet ink formulations containing carbon black products
US6137467A (en) 1995-01-03 2000-10-24 Xerox Corporation Optically sensitive electric paper
NO303098B1 (en) 1995-06-23 1998-05-25 Opticom As Optical data storage medium with diffractive optical elements and fremgangsmÕte to writing and reading of data in this
NO952545D0 (en) 1995-06-23 1995-06-23 Opticon As A method of writing data in an optical memory
NO301506B1 (en) 1995-06-23 1997-11-03 Opticom As A method for optical data storage and data carrying medium
NO302987B1 (en) 1995-07-18 1998-05-11 Opticom As Optical logic element and methods for respectively its preparation and optical addressing, as well as their use in an optical logic device
US7259744B2 (en) 1995-07-20 2007-08-21 E Ink Corporation Dielectrophoretic displays
US6262706B1 (en) 1995-07-20 2001-07-17 E Ink Corporation Retroreflective electrophoretic displays and materials for making the same
US6664944B1 (en) 1995-07-20 2003-12-16 E-Ink Corporation Rear electrode structures for electrophoretic displays
US6120839A (en) 1995-07-20 2000-09-19 E Ink Corporation Electro-osmotic displays and materials for making the same
US6639578B1 (en) 1995-07-20 2003-10-28 E Ink Corporation Flexible displays
US6459418B1 (en) 1995-07-20 2002-10-01 E Ink Corporation Displays combining active and non-active inks
US6727881B1 (en) 1995-07-20 2004-04-27 E Ink Corporation Encapsulated electrophoretic displays and methods and materials for making the same
US7106296B1 (en) 1995-07-20 2006-09-12 E Ink Corporation Electronic book with multiple page displays
US6118426A (en) 1995-07-20 2000-09-12 E Ink Corporation Transducers and indicators having printed displays
GB2306229B (en) 1995-10-13 1999-04-07 Ibm Diffusely reflective display cell
US5650199A (en) 1995-11-22 1997-07-22 Aem, Inc. Method of making a multilayer electronic component with inter-layer conductor connection utilizing a conductive via forming ink
US5760761A (en) 1995-12-15 1998-06-02 Xerox Corporation Highlight color twisting ball display
US5737115A (en) 1995-12-15 1998-04-07 Xerox Corporation Additive color tristate light valve twisting ball display
WO1997024907A1 (en) 1995-12-30 1997-07-10 Casio Computer Co., Ltd. Display device for performing display operation in accordance with signal light and driving method therefor
US5625199A (en) 1996-01-16 1997-04-29 Lucent Technologies Inc. Article comprising complementary circuit with inorganic n-channel and organic p-channel thin film transistors
US5786875A (en) 1996-03-15 1998-07-28 Brader; Lawrence Allen Thermal liquid crystal display using thermoelectric link
EP0832479A1 (en) 1996-03-18 1998-04-01 Philips Electronics N.V. Display device
DE69700977D1 (en) 1996-06-07 2000-01-27 Unitika Ltd Polyimide precursor solution, process for their preparation, and methods for producing a coating or a film therefrom
US6005791A (en) 1996-06-12 1999-12-21 Gudesen; Hans Gude Optical logic element and optical logic device
GB9613065D0 (en) 1996-06-21 1996-08-28 Philips Electronics Nv Electronic device manufacture
US5894367A (en) 1996-09-13 1999-04-13 Xerox Corporation Twisting cylinder display using multiple chromatic values
US6055091A (en) 1996-06-27 2000-04-25 Xerox Corporation Twisting-cylinder display
US5808783A (en) 1996-06-27 1998-09-15 Xerox Corporation High reflectance gyricon display
US6721083B2 (en) 1996-07-19 2004-04-13 E Ink Corporation Electrophoretic displays using nanoparticles
US6323989B1 (en) * 1996-07-19 2001-11-27 E Ink Corporation Electrophoretic displays using nanoparticles
US6120588A (en) 1996-07-19 2000-09-19 E Ink Corporation Electronically addressable microencapsulated ink and display thereof
US5969376A (en) 1996-08-23 1999-10-19 Lucent Technologies Inc. Organic thin film transistor having a phthalocyanine semiconductor layer
JP3082679B2 (en) 1996-08-29 2000-08-28 日本電気株式会社 Thin film transistor and a manufacturing method thereof
US5930026A (en) 1996-10-25 1999-07-27 Massachusetts Institute Of Technology Nonemissive displays and piezoelectric power supplies therefor
US5777782A (en) 1996-12-24 1998-07-07 Xerox Corporation Auxiliary optics for a twisting ball display
EP0958526B1 (en) 1997-02-06 2005-06-15 University College Dublin Electrochromic system
US5961804A (en) 1997-03-18 1999-10-05 Massachusetts Institute Of Technology Microencapsulated electrophoretic display
US6980196B1 (en) 1997-03-18 2005-12-27 Massachusetts Institute Of Technology Printable electronic display
US5866284A (en) 1997-05-28 1999-02-02 Hewlett-Packard Company Print method and apparatus for re-writable medium
NO972803D0 (en) 1997-06-17 1997-06-17 Opticom As Electrically addressable logic device, method for electrical addressing of the same and using the device and method
US6067185A (en) 1997-08-28 2000-05-23 E Ink Corporation Process for creating an encapsulated electrophoretic display
US6300932B1 (en) 1997-08-28 2001-10-09 E Ink Corporation Electrophoretic displays with luminescent particles and materials for making the same
US6866760B2 (en) 1998-08-27 2005-03-15 E Ink Corporation Electrophoretic medium and process for the production thereof
US6252564B1 (en) 1997-08-28 2001-06-26 E Ink Corporation Tiled displays
US5936259A (en) 1997-10-16 1999-08-10 Lucent Technologies Inc. Thin film transistor and organic semiconductor material thereof
GB9726094D0 (en) 1997-12-10 1998-02-11 Philips Electronics Nv Thin film transistors and electronic devices comprising such
EP0924551A1 (en) 1997-12-18 1999-06-23 The Technology Partnership Public Limited Company Method and apparatus for matrix addressing of an electrophoretic display device
JP2004506309A (en) 1997-12-31 2004-02-26 エルパック(ユーエスエー)、インコーポレイテッド Molded electronic package, fabrication method and shielding methods
CN1187793C (en) 1998-01-28 2005-02-02 薄膜电子有限公司 Method for generation of electrical conducting or semiconducting structures in three dimensions and methods for erasure of the same structures
US6054071A (en) 1998-01-28 2000-04-25 Xerox Corporation Poled electrets for gyricon-based electric-paper displays
US6753999B2 (en) 1998-03-18 2004-06-22 E Ink Corporation Electrophoretic displays in portable devices and systems for addressing such displays
DE69917441T2 (en) 1998-03-18 2004-09-23 E-Ink Corp., Cambridge electrophoretic display
US7075502B1 (en) 1998-04-10 2006-07-11 E Ink Corporation Full color reflective display with multichromatic sub-pixels
US6498114B1 (en) 1999-04-09 2002-12-24 E Ink Corporation Method for forming a patterned semiconductor film
US6842657B1 (en) 1999-04-09 2005-01-11 E Ink Corporation Reactive formation of dielectric layers and protection of organic layers in organic semiconductor device fabrication
US6312304B1 (en) 1998-12-15 2001-11-06 E Ink Corporation Assembly of microencapsulated electronic displays
WO1999059101A2 (en) 1998-05-12 1999-11-18 E-Ink Corporation Microencapsulated electrophoretic electrostatically-addressed media for drawing device applications
US6241921B1 (en) 1998-05-15 2001-06-05 Massachusetts Institute Of Technology Heterogeneous display elements and methods for their fabrication
US6239896B1 (en) 1998-06-01 2001-05-29 Canon Kabushiki Kaisha Electrophotographic display device and driving method therefor
GB9812742D0 (en) 1998-06-12 1998-08-12 Philips Electronics Nv Active matrix electroluminescent display devices
WO1999067678A2 (en) 1998-06-22 1999-12-29 E-Ink Corporation Means of addressing microencapsulated display media
US20020113770A1 (en) 1998-07-08 2002-08-22 Joseph M. Jacobson Methods for achieving improved color in microencapsulated electrophoretic devices
US20030102858A1 (en) 1998-07-08 2003-06-05 E Ink Corporation Method and apparatus for determining properties of an electrophoretic display
US7079305B2 (en) 2001-03-19 2006-07-18 E Ink Corporation Electrophoretic medium and process for the production thereof
US6225971B1 (en) 1998-09-16 2001-05-01 International Business Machines Corporation Reflective electrophoretic display with laterally adjacent color cells using an absorbing panel
US6271823B1 (en) 1998-09-16 2001-08-07 International Business Machines Corporation Reflective electrophoretic display with laterally adjacent color cells using a reflective panel
US6144361A (en) 1998-09-16 2000-11-07 International Business Machines Corporation Transmissive electrophoretic display with vertical electrodes
EP1169121B1 (en) 1999-04-06 2012-10-31 E Ink Corporation Methods for producing droplets for use in capsule-based electrophoretic displays
US6262833B1 (en) 1998-10-07 2001-07-17 E Ink Corporation Capsules for electrophoretic displays and methods for making the same
DE69905266T2 (en) 1998-10-07 2003-07-10 E Ink Corp Lighting system for non-emitierende electronic display devices
US6128124A (en) 1998-10-16 2000-10-03 Xerox Corporation Additive color electric paper without registration or alignment of individual elements
WO2000026761A1 (en) 1998-11-02 2000-05-11 E Ink Corporation Broadcast system for display devices made of electronic ink
TW424171B (en) * 1998-11-03 2001-03-01 Ind Tech Res Inst Device of compensation-type tape and method for making the same
US6147791A (en) 1998-11-25 2000-11-14 Xerox Corporation Gyricon displays utilizing rotating elements and magnetic latching
US6097531A (en) 1998-11-25 2000-08-01 Xerox Corporation Method of making uniformly magnetized elements for a gyricon display
US6724519B1 (en) 1998-12-21 2004-04-20 E-Ink Corporation Protective electrodes for electrophoretic displays
DE69931334T2 (en) * 1998-12-22 2007-02-01 Matsushita Electric Industrial Co., Ltd., Kadoma The flexible thin film capacitor and methods of manufacture
EP1737054B1 (en) 1999-01-29 2012-04-11 Seiko Epson Corporation Piezoelectric transducer
EP1157421A1 (en) * 1999-02-05 2001-11-28 Alien Technology Corporation Apparatuses and methods for forming assemblies
US6281038B1 (en) 1999-02-05 2001-08-28 Alien Technology Corporation Methods for forming assemblies
AU2575700A (en) 1999-02-19 2000-09-04 Nok Corporation Method for producing display panel and display panel
WO2000060410A1 (en) 1999-04-06 2000-10-12 E Ink Corporation Microcell electrophoretic displays
US7012600B2 (en) 1999-04-30 2006-03-14 E Ink Corporation Methods for driving bistable electro-optic displays, and apparatus for use therein
US7119759B2 (en) 1999-05-03 2006-10-10 E Ink Corporation Machine-readable displays
US7038655B2 (en) 1999-05-03 2006-05-02 E Ink Corporation Electrophoretic ink composed of particles with field dependent mobilities
AT502320T (en) 1999-07-01 2011-04-15 E Ink Corp An electrophoretic medium provided with spacers
WO2001007961A1 (en) 1999-07-21 2001-02-01 E Ink Corporation Use of a storage capacitor to enhance the performance of an active matrix driven electronic display
US6323034B1 (en) 1999-08-12 2001-11-27 Industrial Technology Research Institute Amorphous TFT process
US6545291B1 (en) 1999-08-31 2003-04-08 E Ink Corporation Transistor design for use in the construction of an electronically driven display
WO2001017040A1 (en) 1999-08-31 2001-03-08 E Ink Corporation A solvent annealing process for forming a thin semiconductor film with advantageous properties
US6788449B2 (en) 2000-03-03 2004-09-07 Sipix Imaging, Inc. Electrophoretic display and novel process for its manufacture
US7893435B2 (en) 2000-04-18 2011-02-22 E Ink Corporation Flexible electronic circuits and displays including a backplane comprising a patterned metal foil having a plurality of apertures extending therethrough
WO2002045061A2 (en) 2000-11-29 2002-06-06 E Ink Corporation Addressing circuitry for large electronic displays
US6844957B2 (en) * 2000-11-29 2005-01-18 International Business Machines Corporation Three level stacked reflective display
AU3061002A (en) 2000-12-05 2002-06-18 E Ink Corp Displays for portable electronic apparatus
JP4198999B2 (en) 2001-03-13 2008-12-17 イー インク コーポレイション Apparatus for displaying the drawings
AT324615T (en) 2001-04-02 2006-05-15 E Ink Corp Elektrophoräsemedium with improved image stability
US6580545B2 (en) 2001-04-19 2003-06-17 E Ink Corporation Electrochromic-nanoparticle displays
JP2004535599A (en) 2001-07-09 2004-11-25 イー−インク コーポレイション Electro-optical display and the adhesive composition
AU2002354672A1 (en) 2001-07-09 2003-01-29 E Ink Corporation Electro-optical display having a lamination adhesive layer
US7110163B2 (en) 2001-07-09 2006-09-19 E Ink Corporation Electro-optic display and lamination adhesive for use therein
JP3696131B2 (en) * 2001-07-10 2005-09-14 株式会社東芝 The active matrix substrate and a manufacturing method thereof
US6819471B2 (en) 2001-08-16 2004-11-16 E Ink Corporation Light modulation by frustration of total internal reflection
KR20030017748A (en) 2001-08-22 2003-03-04 한국전자통신연구원 Organic electroluminescene having organic field effect transistor and organic light-emitting diode and method for fabricating the same
US6825970B2 (en) 2001-09-14 2004-11-30 E Ink Corporation Methods for addressing electro-optic materials
US20040110326A1 (en) * 2002-11-20 2004-06-10 Charles Forbes Active matrix thin film transistor array backplane
US6865010B2 (en) 2001-12-13 2005-03-08 E Ink Corporation Electrophoretic electronic displays with low-index films
AU2003205104A1 (en) * 2002-01-11 2003-07-30 The Pennsylvania State University Method of forming a removable support with a sacrificial layers and of transferring devices
US6900851B2 (en) 2002-02-08 2005-05-31 E Ink Corporation Electro-optic displays and optical systems for addressing such displays
US6950220B2 (en) 2002-03-18 2005-09-27 E Ink Corporation Electro-optic displays, and methods for driving same
EP1497867A2 (en) 2002-04-24 2005-01-19 E Ink Corporation Electronic displays
US7190008B2 (en) 2002-04-24 2007-03-13 E Ink Corporation Electro-optic displays, and components for use therein
US7110164B2 (en) 2002-06-10 2006-09-19 E Ink Corporation Electro-optic displays, and processes for the production thereof
US7202847B2 (en) 2002-06-28 2007-04-10 E Ink Corporation Voltage modulated driver circuits for electro-optic displays
US20040105036A1 (en) 2002-08-06 2004-06-03 E Ink Corporation Protection of electro-optic displays against thermal effects
US7312916B2 (en) 2002-08-07 2007-12-25 E Ink Corporation Electrophoretic media containing specularly reflective particles
EP1552337B1 (en) 2002-09-03 2016-04-27 E Ink Corporation Electro-optic displays
WO2004023202A1 (en) 2002-09-03 2004-03-18 E Ink Corporation Electrophoretic medium with gaseous suspending fluid
EP1573389B1 (en) 2002-12-16 2018-05-30 E Ink Corporation Backplanes for electro-optic displays
US6922276B2 (en) 2002-12-23 2005-07-26 E Ink Corporation Flexible electro-optic displays
US6987603B2 (en) 2003-01-31 2006-01-17 E Ink Corporation Construction of electrophoretic displays
US7339715B2 (en) 2003-03-25 2008-03-04 E Ink Corporation Processes for the production of electrophoretic displays
WO2005010598A2 (en) 2003-07-24 2005-02-03 E Ink Corporation Electro-optic displays
US20050122306A1 (en) 2003-10-29 2005-06-09 E Ink Corporation Electro-optic displays with single edge addressing and removable driver circuitry
CN101142510B (en) 2003-11-05 2010-04-14 伊英克公司 Electro-optic displays
US8928562B2 (en) 2003-11-25 2015-01-06 E Ink Corporation Electro-optic displays, and methods for driving same

Patent Citations (102)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3870517A (en) * 1969-10-18 1975-03-11 Matsushita Electric Ind Co Ltd Color image reproduction sheet employed in photoelectrophoretic imaging
US3792308A (en) * 1970-06-08 1974-02-12 Matsushita Electric Ind Co Ltd Electrophoretic display device of the luminescent type
US3806893A (en) * 1971-07-29 1974-04-23 Matsushita Electric Ind Co Ltd Method of electrically detecting colloidal memory
US4001140A (en) * 1974-07-10 1977-01-04 Ncr Corporation Capsule manufacture
US4149149A (en) * 1976-02-20 1979-04-10 Hitachi, Ltd. Circuit for actuating a display with an improved comparator
US4068927A (en) * 1976-09-01 1978-01-17 North American Philips Corporation Electrophoresis display with buried lead lines
US4071430A (en) * 1976-12-06 1978-01-31 North American Philips Corporation Electrophoretic image display having an improved switching time
US4261653A (en) * 1978-05-26 1981-04-14 The Bendix Corporation Light valve including dipolar particle construction and method of manufacture
US4324456A (en) * 1979-08-02 1982-04-13 U.S. Philips Corporation Electrophoretic projection display systems
US4430648A (en) * 1980-01-22 1984-02-07 Citizen Watch Company Limited Combination matrix array display and memory system
US4311361A (en) * 1980-03-13 1982-01-19 Burroughs Corporation Electrophoretic display using a non-Newtonian fluid as a threshold device
US4502934A (en) * 1982-06-01 1985-03-05 Thomson-Csf Electrode comprising an electrochrome polymer film and a display device using such an electrode
US4439507A (en) * 1982-09-21 1984-03-27 Xerox Corporation Layered photoresponsive imaging device with photogenerating pigments dispersed in a polyhydroxy ether composition
US4655897A (en) * 1984-11-13 1987-04-07 Copytele, Inc. Electrophoretic display panels and associated methods
US4648956A (en) * 1984-12-31 1987-03-10 North American Philips Corporation Electrode configurations for an electrophoretic display device
US4643528A (en) * 1985-03-18 1987-02-17 Manchester R & D Partnership Encapsulated liquid crystal and filler material
US5194852A (en) * 1986-12-01 1993-03-16 More Edward S Electro-optic slate for direct entry and display and/or storage of hand-entered textual and graphic information
US4892607A (en) * 1986-12-04 1990-01-09 Copytele, Inc. Chip mounting techniques for display apparatus
US5279694A (en) * 1986-12-04 1994-01-18 Copytele, Inc. Chip mounting techniques for display apparatus
US5008590A (en) * 1988-09-30 1991-04-16 U.S. Philips Corp. Display arrangement having pin diode switching elements
US5009490A (en) * 1988-11-11 1991-04-23 Pioneer Electronic Corp. Photo-conductive liquid crystal light valve
US5718996A (en) * 1989-03-16 1998-02-17 Dai Nippon Printing Co., Ltd. Electrostatic information recording medium and electrostatic information recording and reproducing method
US5302235A (en) * 1989-05-01 1994-04-12 Copytele, Inc. Dual anode flat panel electrophoretic display apparatus
US5105185A (en) * 1989-07-12 1992-04-14 Alps Electric Co., Ltd. Display method, device for realizing same and displaying medium used therefor
US5500537A (en) * 1989-08-17 1996-03-19 Mitsubishi Denki Kabushiki Kaisha Field-effect transistor with at least two different semiconductive organic channel compounds
US5389945A (en) * 1989-11-08 1995-02-14 Xerox Corporation Writing system including paper-like digitally addressed media and addressing device therefor
US5206749A (en) * 1990-12-31 1993-04-27 Kopin Corporation Liquid crystal display having essentially single crystal transistors pixels and driving circuits
US5289300A (en) * 1991-02-04 1994-02-22 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing electro-optical devices wherein the electrode is patterned on the modulation layer
US5187609A (en) * 1991-03-27 1993-02-16 Disanto Frank J Electrophoretic display panel with semiconductor coated elements
US5303073A (en) * 1991-06-24 1994-04-12 Kabushiki Kaisha Toshiba Dispersion-type liquid crystal display element with oriented dichroic dye in the support media
US5296974A (en) * 1991-07-16 1994-03-22 Nippon Sheet Glass Co., Ltd. Light controlling device and process for controlling light transmission
US5614340A (en) * 1991-08-16 1997-03-25 Eastman Kodak Company Migration imaging, optionally with dyes or pigments to effect bleaching
US5304439A (en) * 1991-08-19 1994-04-19 Copytele, Inc. Method of making an electrophoretic display panel with interleaved local anode
US5276438A (en) * 1991-08-29 1994-01-04 Copytele, Inc. Electrophoretic display panel with internal mesh background screen
US5288541A (en) * 1991-10-17 1994-02-22 International Business Machines Corporation Method for metallizing through holes in thin film substrates, and resulting devices
US5293528A (en) * 1992-02-25 1994-03-08 Copytele, Inc. Electrophoretic display panel and associated methods providing single pixel erase capability
US5705425A (en) * 1992-05-28 1998-01-06 Fujitsu Limited Process for manufacturing semiconductor devices separated by an air-bridge
US5707738A (en) * 1992-06-22 1998-01-13 Copytele, Inc. Black electrophoretic particles and method of manufacture
US5403772A (en) * 1992-12-04 1995-04-04 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US5402145A (en) * 1993-02-17 1995-03-28 Copytele, Inc. Electrophoretic display panel with arc driven individual pixels
US6013335A (en) * 1993-07-30 2000-01-11 Sharp Kabushiki Kaisha Liquid crystal display apparatus and method for processing the same
US5383008A (en) * 1993-12-29 1995-01-17 Xerox Corporation Liquid ink electrostatic image development system
US5701055A (en) * 1994-03-13 1997-12-23 Pioneer Electronic Corporation Organic electoluminescent display panel and method for manufacturing the same
US5725935A (en) * 1994-11-07 1998-03-10 Minnesota Mining And Manufacturing Company Signage articles and methods of making same
US5872552A (en) * 1994-12-28 1999-02-16 International Business Machines Corporation Electrophoretic display
US20050035941A1 (en) * 1995-07-20 2005-02-17 Albert Jonathan D. Retroreflective electrophoretic displaya and materials for making the same
US6515649B1 (en) * 1995-07-20 2003-02-04 E Ink Corporation Suspended particle displays and materials for making the same
US6710540B1 (en) * 1995-07-20 2004-03-23 E Ink Corporation Electrostatically-addressable electrophoretic display
US6680725B1 (en) * 1995-07-20 2004-01-20 E Ink Corporation Methods of manufacturing electronically addressable displays
US6017584A (en) * 1995-07-20 2000-01-25 E Ink Corporation Multi-color electrophoretic displays and materials for making the same
US5717514A (en) * 1995-12-15 1998-02-10 Xerox Corporation Polychromal segmented balls for a twisting ball display
US5858518A (en) * 1996-02-13 1999-01-12 Nitto Denko Corporation Circuit substrate, circuit-formed suspension substrate, and production method thereof
US5709976A (en) * 1996-06-03 1998-01-20 Xerox Corporation Coated papers
US6027958A (en) * 1996-07-11 2000-02-22 Kopin Corporation Transferred flexible integrated circuit
US6538801B2 (en) * 1996-07-19 2003-03-25 E Ink Corporation Electrophoretic displays using nanoparticles
US5889325A (en) * 1996-07-25 1999-03-30 Nec Corporation Semiconductor device and method of manufacturing the same
US6033742A (en) * 1997-03-31 2000-03-07 Kabushiki Kaisha Toshiba Liquid crystal display device
US6518513B1 (en) * 1997-06-06 2003-02-11 Ibiden Co. Ltd. Single-sided circuit board and method for manufacturing the same
US6842167B2 (en) * 1997-08-28 2005-01-11 E Ink Corporation Rear electrode structures for displays
US20050007336A1 (en) * 1997-08-28 2005-01-13 E Ink Corporation Adhesive backed displays
US6839158B2 (en) * 1997-08-28 2005-01-04 E Ink Corporation Encapsulated electrophoretic displays having a monolayer of capsules and materials and methods for making the same
US6177921B1 (en) * 1997-08-28 2001-01-23 E Ink Corporation Printable electrode structures for displays
US6535197B1 (en) * 1997-08-28 2003-03-18 E Ink Corporation Printable electrode structures for displays
US20050000813A1 (en) * 1997-08-28 2005-01-06 E Ink Corporation Electrophoretic particles, and processes for the production thereof
US6356332B1 (en) * 1997-10-24 2002-03-12 Canon Kabushiki Kaisha Matrix substrate and liquid crystal display device using the same in which the distance between the upper surface of the pixels being less than the distance between the lower surface of the pixels in contact with the substrate
US6172878B1 (en) * 1997-12-27 2001-01-09 Canon Kabushiki Kaisha Multi-element module and production process thereof
US6300612B1 (en) * 1998-02-02 2001-10-09 Uniax Corporation Image sensors made from organic semiconductors
US6343164B1 (en) * 1998-03-06 2002-01-29 Telefonaktiebolaget Lm Ericsson (Publ) Optoelectric multichip module
US6704133B2 (en) * 1998-03-18 2004-03-09 E-Ink Corporation Electro-optic display overlays and systems for addressing such displays
US6518949B2 (en) * 1998-04-10 2003-02-11 E Ink Corporation Electronic displays using organic-based field effect transistors
US6172798B1 (en) * 1998-04-27 2001-01-09 E Ink Corporation Shutter mode microencapsulated electrophoretic display
US6359605B1 (en) * 1998-06-12 2002-03-19 U.S. Philips Corporation Active matrix electroluminescent display devices
US6512354B2 (en) * 1998-07-08 2003-01-28 E Ink Corporation Method and apparatus for sensing the state of an electrophoretic display
USD485294S1 (en) * 1998-07-22 2004-01-13 E Ink Corporation Electrode structure for an electronic display
US6127725A (en) * 1998-08-03 2000-10-03 Harris; Ellis D. Thin film electronics on insulator on metal
US20030011560A1 (en) * 1998-08-27 2003-01-16 E Ink Corporation Electrophoretic display comprising optical biasing element
US6184856B1 (en) * 1998-09-16 2001-02-06 International Business Machines Corporation Transmissive electrophoretic display with laterally adjacent color cells
US6506438B2 (en) * 1998-12-15 2003-01-14 E Ink Corporation Method for printing of transistor arrays on plastic substrates
US6355125B1 (en) * 1999-03-26 2002-03-12 Agfa-Gevaert Method for making an electric or electronic module comprising a glass laminate
US6531997B1 (en) * 1999-04-30 2003-03-11 E Ink Corporation Methods for addressing electrophoretic displays
US20050001812A1 (en) * 1999-04-30 2005-01-06 E Ink Corporation Methods for driving bistable electro-optic displays, and apparatus for use therein
US6693620B1 (en) * 1999-05-03 2004-02-17 E Ink Corporation Threshold addressing of electrophoretic displays
US6521489B2 (en) * 1999-07-21 2003-02-18 E Ink Corporation Preferred methods for producing electrical circuit elements used to control an electronic display
US6870657B1 (en) * 1999-10-11 2005-03-22 University College Dublin Electrochromic device
US6672921B1 (en) * 2000-03-03 2004-01-06 Sipix Imaging, Inc. Manufacturing process for electrophoretic display
US6504524B1 (en) * 2000-03-08 2003-01-07 E Ink Corporation Addressing methods for displays having zero time-average field
US20050067656A1 (en) * 2000-04-18 2005-03-31 E Ink Corporation Process for fabricating thin film transistors
US6683333B2 (en) * 2000-07-14 2004-01-27 E Ink Corporation Fabrication of electronic circuit elements using unpatterned semiconductor layers
US20050017944A1 (en) * 2000-08-17 2005-01-27 E Ink Corporation Bistable electro-optic display, and method for addressing same
US6870661B2 (en) * 2001-05-15 2005-03-22 E Ink Corporation Electrophoretic displays containing magnetic particles
US20050018273A1 (en) * 2001-05-15 2005-01-27 E Ink Corporation Electrophoretic particles and processes for the production thereof
US20030020844A1 (en) * 2001-07-27 2003-01-30 Albert Jonathan D. Microencapsulated electrophoretic display with integrated driver
US20050024353A1 (en) * 2001-11-20 2005-02-03 E Ink Corporation Methods for driving electro-optic displays
US20040014265A1 (en) * 2002-04-24 2004-01-22 E Ink Corporation Processes for forming backplanes for electro-optic displays
US20040012839A1 (en) * 2002-05-23 2004-01-22 E Ink Corporation Capsules, materials for use therein and electrophoretic media and displays containing such capsules
US6982178B2 (en) * 2002-06-10 2006-01-03 E Ink Corporation Components and methods for use in electro-optic displays
US20040027327A1 (en) * 2002-06-10 2004-02-12 E Ink Corporation Components and methods for use in electro-optic displays
US6842279B2 (en) * 2002-06-27 2005-01-11 E Ink Corporation Illumination system for nonemissive electronic displays
US20050007653A1 (en) * 2003-03-27 2005-01-13 E Ink Corporation Electro-optic assemblies, and materials for use therein
US20050012980A1 (en) * 2003-05-02 2005-01-20 E Ink Corporation Electrophoretic displays with controlled amounts of pigment
US20050041004A1 (en) * 2003-08-19 2005-02-24 E Ink Corporation Method for controlling electro-optic display
US20050062714A1 (en) * 2003-09-19 2005-03-24 E Ink Corporation Methods for reducing edge effects in electro-optic displays

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9293511B2 (en) 1998-07-08 2016-03-22 E Ink Corporation Methods for achieving improved color in microencapsulated electrophoretic devices
US20090050352A1 (en) * 2007-08-20 2009-02-26 Industrial Technology Research Institute Substrate structures for flexible electronic devices and fabrication methods thereof
US8446664B2 (en) 2010-04-02 2013-05-21 E Ink Corporation Electrophoretic media, and materials for use therein
US20130188324A1 (en) * 2010-09-29 2013-07-25 Posco Method for Manufacturing a Flexible Electronic Device Using a Roll-Shaped Motherboard, Flexible Electronic Device, and Flexible Substrate
US9688850B2 (en) 2012-04-03 2017-06-27 X-Card Holdings, Llc Information carrying card comprising a cross-linked polymer composition, and method of making the same
US9122968B2 (en) 2012-04-03 2015-09-01 X-Card Holdings, Llc Information carrying card comprising a cross-linked polymer composition, and method of making the same
US9183486B2 (en) 2012-04-03 2015-11-10 X-Card Holdings, Llc Information carrying card comprising a cross-linked polymer composition, and method of making the same
US9594999B2 (en) 2012-04-03 2017-03-14 X-Card Holdings, Llc Information carrying card comprising crosslinked polymer composition, and method of making the same
US9275321B2 (en) 2012-04-03 2016-03-01 X-Card Holdings, Llc Information carrying card comprising a cross-linked polymer composition, and method of making the same
US10127489B2 (en) 2012-04-03 2018-11-13 X-Card Holdings, Llc Information carrying card comprising crosslinked polymer composition, and method of making the same
US9439334B2 (en) 2012-04-03 2016-09-06 X-Card Holdings, Llc Information carrying card comprising crosslinked polymer composition, and method of making the same
US10190743B2 (en) 2012-04-20 2019-01-29 E Ink Corporation Illumination systems for reflective displays
US9238340B2 (en) 2012-07-27 2016-01-19 E Ink Corporation Processes for the production of electro-optic displays
CN104583853A (en) * 2012-07-27 2015-04-29 伊英克公司 Processes for the production of electro-optic displays
WO2014018745A1 (en) * 2012-07-27 2014-01-30 E Ink Corporation Processes for the production of electro-optic displays
US9715155B1 (en) 2013-01-10 2017-07-25 E Ink Corporation Electrode structures for electro-optic displays
US9726957B2 (en) 2013-01-10 2017-08-08 E Ink Corporation Electro-optic display with controlled electrochemical reactions
US9671635B2 (en) 2014-02-07 2017-06-06 E Ink Corporation Electro-optic display backplane structures with drive components and pixel electrodes on opposed surfaces
US10175550B2 (en) 2014-11-07 2019-01-08 E Ink Corporation Applications of electro-optic displays
US9835925B1 (en) 2015-01-08 2017-12-05 E Ink Corporation Electro-optic displays, and processes for the production thereof
WO2016191673A1 (en) 2015-05-27 2016-12-01 E Ink Corporation Methods and circuitry for driving display devices
US10255539B2 (en) 2016-08-03 2019-04-09 X-Card Holdings, Llc Information carrying card comprising crosslinked polymer composition, and method of making the same
US10254621B2 (en) 2017-11-03 2019-04-09 E Ink Corporation Electro-optic displays, and processes for the production thereof

Also Published As

Publication number Publication date
US7893435B2 (en) 2011-02-22
US20040180476A1 (en) 2004-09-16

Similar Documents

Publication Publication Date Title
US9429807B2 (en) Semiconductor device and manufacturing method thereof
US6652075B2 (en) Electronically addressable microencapsulated ink and display thereof
US6839158B2 (en) Encapsulated electrophoretic displays having a monolayer of capsules and materials and methods for making the same
US6590346B1 (en) Double-metal background driven displays
US6693384B1 (en) Interconnect structure for electronic devices
US6665044B1 (en) Apparatuses and methods for forming electronic assemblies
US7378791B2 (en) Display device comprising contrast medium
US9726959B2 (en) Color electro-optic displays, and processes for the production thereof
US6312304B1 (en) Assembly of microencapsulated electronic displays
US7030552B2 (en) Dual-screen organic electroluminescent display
US6816380B2 (en) Electronic devices with small functional elements supported on a carrier
KR101120003B1 (en) Thin-film assembly and method for producing said assembly
EP2104876B2 (en) Electro-optic display with edge seal
US7113250B2 (en) Apparatuses and methods for forming assemblies
US20070057908A1 (en) Electronically addressable microencapsulated ink and display thereof
US20170075168A1 (en) Process for the production of electro-optic displays, and color filters for use therein
US6091194A (en) Active matrix display
US7956841B2 (en) Stylus-based addressing structures for displays
US7256766B2 (en) Electrophoretic display comprising optical biasing element
US20020005928A1 (en) Liquid crystal device, method for making the same, and electronic apparatus
US6747800B1 (en) Optical interference type panel and the manufacturing method thereof
KR100976102B1 (en) Components and methods for forming and testing electro-optic displays
US8610988B2 (en) Electro-optic display with edge seal
US20080297453A1 (en) Method of Manufacturing Addressable and Static Electronic Displays
US6177921B1 (en) Printable electrode structures for displays