US20110114305A1 - Fluid well pumping system and method to produce same - Google Patents

Fluid well pumping system and method to produce same Download PDF

Info

Publication number
US20110114305A1
US20110114305A1 US12/947,380 US94738010A US2011114305A1 US 20110114305 A1 US20110114305 A1 US 20110114305A1 US 94738010 A US94738010 A US 94738010A US 2011114305 A1 US2011114305 A1 US 2011114305A1
Authority
US
United States
Prior art keywords
fluid
gas line
line
gas
product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/947,380
Inventor
Daniel C. Roberts
G Ronald Stoughton
James R. Wetzel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AIRLIFT SERVICES INTERNATIONAL Inc
Original Assignee
AIRLIFT SERVICES INTERNATIONAL Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AIRLIFT SERVICES INTERNATIONAL Inc filed Critical AIRLIFT SERVICES INTERNATIONAL Inc
Priority to US12/947,380 priority Critical patent/US20110114305A1/en
Assigned to AIRLIFT SERVICES INTERNATIONAL INC. reassignment AIRLIFT SERVICES INTERNATIONAL INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ROBERTS, DANIEL C, STOUGHTON, G RONALD, WETZEL, JAMES R
Publication of US20110114305A1 publication Critical patent/US20110114305A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/12Methods or apparatus for controlling the flow of the obtained fluid to or in wells
    • E21B43/121Lifting well fluids
    • E21B43/122Gas lift
    • E21B43/123Gas lift valves

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Jet Pumps And Other Pumps (AREA)

Abstract

An Improved Fluid well pumping system and method to produce the system. According to the system, it relates to ones that provide improved, low cost, efficient and low maintenance pumping systems for obtaining fluid from a source. It is envisioned that the systems will be used for removing oil, water, sludge, gaseous fluids, or leachates from shallow to medium depth wells (0 to 4000 feet depths). However, the invention has application for raising any fluids as needed above ground.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application claims the benefit of Provisional Patent Application Ser. No. 61/261,846 filed Nov. 17, 2009 by Daniel C. Roberts, et al and entitled “Improved Fluid well pumping system and method to produce same”.
  • FIELD OF INVENTION
  • This invention for the Improved Fluid well pumping system is Fluid pumping systems and method to produce the system. According to the present invention, it relates to ones that provide improved, low cost, efficient and low maintenance pumping systems for obtaining fluid from a source. It is envisioned that the systems will be used for removing oil, water, sludge, gaseous fluids, or leachates from shallow to medium dept wells (0 to 4000 feet depths). However, the invention has application for raising any fluids as needed above ground.
  • FEDERALLY SPONSORED RESEARCH
  • None.
  • SEQUENCE LISTING OR PROGRAM
  • None.
  • BACKGROUND Field of Invention and Prior Art
  • A. Introduction of the Problems Addressed
  • Prior devices and methods included metallic and other complex fluid pumping systems. One skilled in the art and familiar with such means well appreciates the simplicity and cost effectiveness of this new device presented here. In the other prior art disclosures shown, complex and expensive alternatives are demonstrated. These are not only costly to manufacture but bulky, and difficult to use in the process of pumping fluids.
  • Conventional systems are known for removing fluid such as water or oil from wells where there is an abundant supply of fluid. However, in shallow locations or locations with a low production volume, these systems may not be cost justified. For example, in oil formations up to 1000 feet deep or more which only produce a few barrels of oil per day, multiple oil wells are often situated close together. Equipment and maintenance costs are often economically prohibitive in shallow wells.
  • Furthermore, due to pressure, chemical conditions, and sand and grit in most oil wells the equipment is subject to high breakdown rates and requires frequent maintenance, repair or replacement. Consequently, particularly for a shallow, low production situations, there is a need for inexpensive, low maintenance pumping systems that can be efficiently installed and/or removed if necessary. Prior approaches to this type of pumping system have involved complex piping and pumping systems, hydraulics, controls, sensors and electronics normally lowered into the well. This results in complex installation and high costs for installation, maintenance and replacement.
  • B. Prior Art
  • One approach to a pumping system is shown in U.S. Pat. No. 4,653,989 issued to Mason. Mason shows a series of pneumatic displacement chambers connected to an air compressor at the surface of the well, by a single air line. Each chamber is connected to the air line through a motorized valve. A float including a disk shaped magnet, rides up and down in each displacement chamber. When fluid fills the chamber, the float approaches the top and the magnet is detected by a sensor which causes the control system to open the motorized valve connecting the chamber to the air line. Once the motorized valve is open, compressed air forces the fluid into the next chamber, or alternatively, into a holding tank on the surface. As the float approaches the bottom of the chamber, the magnet is detected by a sensor which causes the control system to close the motorized valve connecting the chamber to the air line. The Mason patent additionally teaches that the float be provided with flutes between its lower surface and the internal surface of the chamber to avoid the possibility of the float being used as a valve. The design of the Mason patent is costly and complex, requiring a magnetic sensor system located down hole and a motorized valve in connection with each chamber of the well pump, in addition to other shortcomings.
  • Another well pump is shown in U.S. Pat. No. 4,050,854 to Hereford et al. The Hereford patent shows a well pump including chambers that are costly and complex, among other disadvantages.
  • Earlier versions with some similarities to the currently improved pump are the US patents issued to Marvel et al. hey include U.S. Pat. No. 6,435,838 issued in 2002, U.S. Pat. No. 6,558,128 issued in 2003, and U.S. Pat. No. 6,810,961 issued in 2004. All these described considerably heavier assembles and little use of plastic materials. They were also limited to much shallower wells than the present device shown herein.
  • There remains a need for a simple, efficient, low cost, low maintenance pumping system that can be installed, repaired and/or removed efficiently and inexpensively in a well. The present invention addresses these needs, among others. As far as known, there is no other Improved Fluid well pumping system at the present time which fully provide these improvements and functional characteristics as the present device. It is believed that this device is made with fewer parts and with improved configurations and physical features to provide more functionality when compared to other currently utilized devices or methods to provide pump liquids and gases as described herein. The particular combinations of materials and features are unique and novel. They are not anticipated by prior art. Likewise unique is the method to secure and process the various parts of the Improved Fluid well pumping system.
  • SUMMARY OF THE INVENTION
  • A Improved Fluid well pumping system items is comprised of a pump assembly (located in the wellbore) and a control system (located on the surface).
      • A. The pump assembly consists of a series of fluid chambers connected by line assemblies and separated at up to 250 ft apart. Each line assembly consists of three internal lines which include one (1) fluid production line and two (2) gas lines. The internal lines are made of a coiled high density polyethylene, which provides durability up to 200° F. and wellbore pressure of 200 psi. The lines are connected to alternate chambers using a closed design that assures no gas/air is released into the wellbore.
      • B. The control system consists of a compressor (which generates compressed gas to push the fluids up) and a microprocessor controlled valving system (which directs fluids flow through the pump and into the production facility).
  • The preferred embodiment of the device is comprised of a durable yet somewhat flexible and non-corrosive material with features and characteristics that permit easy securement of the components of the device.
  • The pump technology that is being improved consists of
      • NOJAK's artificial lift design technology that deploys a pressure actuated chamber technology to lift hydrocarbons and other fluids (i.e. brines) from the well bore to the surface.
      • The design of the NOJAK pump that was developed around the pressure actuated chamber technology and is the first of its kind to be commercialized.
      • The NOJAK pump that has the capacity to pump approximately 20 to 180 BPD at a depth of 500 to 4,000 ft.
      • Compared to existing artificial lift technologies, the NOJAK pump that differentiates itself by eliminating down hole wear out components/precision parts while requiring minimal maintenance for surface equipment.
      • The Department of Energy (“DOE”) has recognized that the NOJAK pump has a “green” alternative to current artificial lift technologies available in the market and has granted approximately $250,000 to further develop the technology.
    OBJECTS AND ADVANTAGES
  • There are several objects and advantages of the Improved Fluid well pumping system 31. There are currently no known fluid pumping devices of such materials and configuration that are effective at providing the objects of this invention. It is an object of this invention to provide an improved fluid pumping system. It is a further object of this invention to provide a simple, efficient, low-cost, low-maintenance pumping system. It is an object to use new materials that are lighter, less resistive to pumped fluids and less corrosive than those known and used in any similar pump. Such materials and methods to secure are not anticipated by prior art fluid pumping systems or devices. Further objects, features and advantages of the present inventions shall become apparent from the detailed drawings and descriptions provided herein.
  • The invention presented is the Improved Fluid well pumping system 31. This device relates to a growing need for better means to pump fluids and other materials such as oil, water, sludge, gaseous fluids, or leachates from shallow to medium dept wells (0 to 4000 feet depths). This need is derived from a growing number of abandoned or idled oil and gas wells as well as abandoned or closed landfills and other lands that need a solution to pumping various materials.
  • The following TABLE A summarizes various advantages and objects of the Improved Fluid well pumping system 31. This list is exemplary and not limiting to the many advantages offered by this new device.
  • TABLE A
    Various Benefits, Advantages and Objects
    This device:
    ITEM BENEFIT
    1. Provides Maintenance free pumping
    2. Increases depth capability
    3. Increases flow capacities
    4. Reduces environmental risks
    5. Provides efficient continuous operation
    6. Improves overall system efficiency
    7. Simplifies and improves installation
  • Noteworthy is that other advantages and additional features of the Improved Fluid well pumping system 31 will be more apparent from the accompanying drawings and from the full description of the device. For one skilled in the art of fluid pumping systems and devices, it is readily understood that the features shown in the examples with this system is readily adapted for improvement to other types of mechanisms and devices for use with the pumping of fluids and gases.
  • DESCRIPTION OF THE DRAWINGS Figures
  • The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate a preferred and alternative embodiments for the Improved Fluid well pumping system 31. The drawings together with the summary description given above and a detailed description given below serve to explain the principles of the special fluid pumping device. It is understood, however, that the device is not limited to only the precise arrangements and instrumentalities shown.
  • FIGS. 1 A and 1 B are front views of the Improved Fluid well pumping system 31 and the main parts to accomplish the improvements.
  • FIGS. 2 A through C show sketches of the preferred embodiment of the Improved Fluid well pumping system 31 with the sub-assemblies and major components.
  • FIGS. 3 A through 3 E show the existing prior art version with primarily metal parts for the Fluid well pumping system.
  • FIGS. 4 A through 4 D show the existing prior art components with the new, improved components for the Improved Fluid well pumping system 31.
  • FIGS. 5 A through 5 E and Sections show sketches of the transition adaptor for the system 31.
  • FIGS. 6 A through 6 C and Sections show sketches of the bottom manifold for the system 31.
  • FIGS. 7 A through 7 C and Sections show sketches of the Top Manifold for the system 31.
  • FIGS. 8 A through 8 C show sketches of the Filter Screen for the system 31.
  • FIG. 9 show sketches of the Top and End view of the retainer ring for the system 31.
  • FIG. 10 show sketches of the Top and End view of the standoff for the system 31.
  • FIG. 11 show sketches of the various views and sections of the slips adaptor for the system 31.
  • FIG. 12 show sketches of the various views and sections of the mandrel adaptor for the system 31.
  • FIG. 13 shows a sketch of the Improved Fluid well pumping system 31 and a table how the stages operate.
  • FIGS. 14 A through 14 C show a sketch of the Improved Fluid well pumping system 31 table how the components pass fluid during operation.
  • FIGS. 15 A through 15 D show sketches of the installation process for the Improved Fluid well pumping system 31.
  • FIGS. 16 A through 16 C show additional sketches of the installation process for the Improved Fluid well pumping system 31.
  • FIG. 17 shows a comparison table for the prior art system and the new system 31.
  • REFERENCE NUMERALS
  • The following list refers to the drawings:
  • TABLE B
    Reference numbers.
    Ref # Description
    11 Well casing
    20 Group of new component parts for pump system
    25 Group of prior art components (primarily metallic)
    30 General pump system in well and reservoir
    31 Multistage pump system
     31A Multistage pump system with components
    410  Line assemblies
    411  Check valves
    412  Float
    413  Line assembly casing
    415  Gas/air lines (Pex or equal)
    500  Screen filter or equal
    600  Ballast unit
    710  Fluid chamber
    710A Top Fluid chamber
    710B Bottom Fluid chamber
    800  Above ground assembly
    830  Fluid chamber casing
    40 Bottom manifold
    41 Bottom manifold's Apertures or through openings for gas
    lines
    415
    42 Float seat
    43 Check valve (spherical ball) seat
    44 Product Line
    45 Top Manifold
    46 Top manifold's Apertures or through openings for gas
    lines
    415
    47 Recesses for double o-rings
    48 Aperture for Fluid line
    49 Upper float seat
     49A Aperture from chamber to gas line aperture
    50 Transition adaptor
    51 Transition adaptor'sApertures or through openings for
    gas lines 415
    52 Recesses for double o-rings
    53 Fluid line aperture
    54 Check ball flat
    55 Filter screen
    56 Filter screen apertures, slots or equal
    57 Line assembly 415 retainer ring inside line assembly
    casing 413 (functionally similar to FIG. 9 A part 330
    of U.S. Pat. No. 6,810,961)
    58 Fluid chamber standoff (functionally similar to FIG. 8
    A part 228 of U.S. Pat. No. 6,810,961)
    60 Storage tank
    65 Slips adaptor
    66 Mandrel adaptor
    70 Control unit - electrical, pneumatic, hydraulic or
    equal
    77 Fluid entry schematic - Step 1
    78 Fluid movement schematic - Step 2
    79 Fluid exit schematic - Step 3
    80 Ground/earth/rock
    81 Above ground pump system to control panel
    82 Fluid and gas flow above ground manifolds
    83 Gas lines, switch valves and control panel
    84 Solar power source
    85 Aesthetic above ground control system
    86 Pump system being installed with service truck
    87 Connecting chamber to line assembly
    88 Top of ground transition from pump system to well head
    90 Compressor
    91 Older Version all metal Nojak pump
    95 Table of benefits of present Improved Fluid well
    pumping system
    31 over prior art
    100  Oil reservoir
  • DETAILED DESCRIPTION OF PREFERRED EMBODIMENT
  • The present invention presented is the Improved Fluid well pumping system 31. This device relates to pump systems that provide improved, low cost, efficient and low maintenance pumping systems for obtaining fluid from a source.
  • There is shown in FIGS. 1-17 a complete detail and operative embodiment of the Improved Fluid well pumping system 31. In the drawings and illustrations, one notes well that the FIGS. 1 through 12 show detail of the special configuration. FIGS. 13 through 17 describe its use and operation.
  • The advantages for the Improved Fluid well pumping system 31 are listed above in the introduction. Succinctly the benefits for the device are:
      • Provides Maintenance free pumping
      • Increases depth capability
      • Increases flow capacities
      • Reduces environmental risks
      • Provides efficient continuous operation
      • Improves overall system efficiency
      • Simplifies and improves installation
  • The preferred embodiment of the device 31 is comprised of a pump assembly (located in the wellbore) and a control system (located on the surface).
      • A. The pump assembly consists of a series of fluid chambers connected by line assemblies and separated at up to 250 ft apart. Each line assembly consists of three internal lines which include one (1) fluid production line and two (2) gas lines. The internal lines are made of a coiled high density polyethylene, which provides durability up to 200° F. and wellbore pressure of 200 psi. The lines are connected to alternate chambers using a closed design that assures no gas/air is released into the wellbore.
      • B. The control system consists of a compressor (which generates compressed gas to push the fluids up) and a microprocessor controlled valving system (which directs fluids flow through the pump and into the production facility).
  • The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate a preferred embodiment of the Improved Fluid well pumping system 31. The drawings together with the summary description given above and a detailed description given below serve to explain the principles of the Improved Fluid well pumping system 31A. It is understood, however, that the device 31A is not limited to only the precise arrangements and instrumentalities shown.
  • FIGS. 1 A and 1 B are front views of the Improved Fluid well pumping system 31 and the main parts to accomplish the improvements. FIG. 1 A shows the general pump system 30 with the well, casing and the full Improved Fluid well pumping system 31. FIG. 1 B shows the group 20 of new, plastic-like components with the non-corrosive and light-weight properties described below. Here with these new components 20, polyethylene replace all parts; Aaramid rope or equivalent replaces cable; and a water jet cut polyethylene replaces filter screen. The NOJAK pumping system 31A consists of a comprehensive service offering which includes a pump (located in the wellbore) and a control system (located on the surface).
      • i. The pump assembly consists of a series of fluid chambers connected by line assemblies and separated at 250 ft apart.
      • ii. The control system consists of a compressor (which generates compressed gas to push the fluids up) and a microprocessor controlled valving system (which directs fluids flow through the pump and into the production facility).
      • Each line assembly consists of three internal lines which include one (1) fluid production line and two (2) gas lines. The internal lines are made of a coiled high density polyethylene, which provides durability up to 200° F. and wellbore pressure of 200 psi.
      • The lines are connected to alternate chambers using a closed design that assures no gas/air is released into the wellbore.
  • FIGS. 2 A through 2 C show sketches of the preferred embodiment of the Improved Fluid well pumping system 31 and 31A with the sub-assemblies and major components. FIG. 2 A shows the various parts of the general assembly. Included are the storage tank 60, the main controls 70, the compressor 90, the pump assembly 31 inside the well casing 11, and all that immersed into the reservoir 100. He entire assembly and system 31 is placed within the ground/earth/rock 80. FIG. 2 B then shows the multi-staged pump system 31A with components. Here is demonstrated the standard mandrel 65 and adapter 66 on the above ground assembly 800 commonly called the well head. This entire assembly is supported by the ground/earth/rock 80. The multistage fluid pump assembly 31A is comprised of a series of fluid chambers connected by line assemblies and separated at up to 250 ft apart. Each line assembly consists of three internal lines which include one (1) fluid production line and two (2) gas lines. The internal lines are made of a coiled high density polyethylene, which provides durability up to 200° F. and wellbore pressure of 200 psi. FIG. 2 C then shows the cross section of a chamber and the air/gas lines 415 inside the casing 413. The lines are connected to alternate chambers using a closed design that assures no gas/air is released into the wellbore.
  • FIGS. 3 A through 3 E show the existing prior art version with primarily metal parts for the Fluid well pumping system. The illustrations are self-evident. They are described in U.S. Pat. Nos. 6,558,128 (2003) and 6,435,838 (2002) to Marvel et al and these specifications and are incorporated by reference herein.
  • FIGS. 4 A through 4 D show the existing prior art components 25 with the new, improved group 20 of components for the Improved Fluid well pumping system 31. For the retained existing prior art components 25 the chrome plated brass parts are retained as shown in FIG. 4 A. Also for the retained parts 25, the “316” stainless steel fill chambers, the production tubes, the stainless steel support cable and the stainless steel filter screen components are shown in FIG. 4 C. Unique features to the new improved group of components parts 20 in FIGS. 4 B and 4 D and the pump system include that polyethylene replaces most metal parts; aaramid rope replaces the metal cable; and, a water jet cut polyethylene filter replaces the metal filter screen. Further descriptions to the features of the components parts 20 in FIGS. 4 B and 4 D and the pump system 31A are:
  • Item Feature Impact
    1 No transition shell Weight and cost
    2 Gas line connect Weight and cost
    directly into
    chamber
    3 Improved seal Fusion weld standoff in position
    in fluid chamber retains position
    of gas and product tubes
    throughout life
    4 No upper float in Improves crush strength
    bottom two chambers
    5 Fewer manufactured Cost improvements
    parts
    6 All Polyethylene Corrosion improvement and Weight
    design reduction and Cost
    7 Install equipment Cost
    complexity reduced
    8 Sacrificial Ring Allows field removal and
    reassembly
    9 Mandrel and slips Simplifies installation in
    adaptors wide variety of well heads
    10 Plastic poly tubing Eliminate the use of metal tubing
    to the surface
    11 Dual floats Increased capacity and Allows use
    of PEX in chamber
    12 Fusion welded Eliminates fasteners, uses a
    connections Process familiar to Target
    customer base, is Stronger than
    base material And Improves seal
    13 Water Jet Filter Allows use polyethylene for
    screen screen, has Higher corrosion
    Resistance, and Does not attract
    paraffin
    14 Spooled Assembly Allows ease of installation and
    permits the Entire system to be
    placed without field connections
    between the line assemblies and
    chambers
  • FIGS. 5 A through 5 E and Sections show sketches of the transition adaptor for the system 31. The Transition adaptor 50 is comprised of several features including, but not limited to Transition adaptor's Apertures or through openings 51 for gas lines 415, Recesses for double o-rings 52, Fluid line aperture 53, and Check ball flat 54. The whole component 50 is molded from Pex, high strength composite materials or other durable and non corrosive materials.
  • FIGS. 6 A through 6 C and Sections show sketches of the bottom manifold 40 for the system 31.
  • Bottom manifold 40 is comprised of several features including, but not limited to the Bottom manifold's Apertures or through openings 41 for gas lines 415, Float seat 42, and Check valve (spherical ball) seat 43. The whole component 40 is molded from Pex, high strength composite materials or other durable and non corrosive materials.
  • FIGS. 7 A through 7 C and Sections show sketches of the Top Manifold 45 for the system 31. The Top Manifold 45 is comprised of several features including, but not limited to the Top manifold's Apertures or through openings 46 for gas lines 415, the Recesses for double o-rings 47, Aperture for Fluid line 48, the Upper float seat 49, and the Aperture from chamber to gas line aperture 49A. The whole component 45 is molded from Pex, high strength composite materials or other durable and non corrosive materials.
  • FIGS. 8 A through 8 C show sketches of the Filter Screen 55 for the system 31. The Filter screen 55 is comprised of several features including, but not limited to Filter screen apertures, slots or equal 56. These are a series of many rows and columns of the apertures 56 resulting in a screen or mesh. The whole component 55 is molded from Pex, high strength composite materials or other durable and non corrosive materials.
  • FIG. 9 show sketches of the Top and End view of the retainer ring 57 for the system 31. It has many features to retain the Pex gas lines as described and shown in the specifications of U.S. Pat. Nos. 6,558,128 (2003) and 6,435,838 (2002) to Marvel et al. Those specifications are incorporated by reference. The Line assembly 415 retainer ring 57 inside line assembly casing 413 is functionally similar to FIG. 9 A part 330 of U.S. Pat. No. 6,810,961. The whole component 57 is molded from Pex, high strength composite materials or other durable and non corrosive materials.
  • FIG. 10 show sketches of the Top and End view of the standoff for the system 31. It has many features to retain the Pex gas lines as described and shown in U.S. Pat. Nos. 6,558,128 (2003) and 6,435,838 (2002) to Marvel et al, the specifications of which are incorporated herein by reference. The Fluid chamber standoff 58 is functionally similar to FIG. 8 A part 228 of U.S. Pat. No. 6,810,961. The whole component 58 is molded from Pex, high strength composite materials or other durable and non corrosive materials.
  • FIG. 11 show sketches of the various views and sections of the slips adaptor 65 for the system 31. The whole component is molded from Pex, high strength composite materials or other durable and non corrosive materials.
  • FIG. 12 show sketches of the various views and sections of the mandrel adaptor 66 for the system 31. The whole component is molded from Pex, high strength composite materials or other durable and non corrosive materials.
  • FIG. 13 shows a sketch of the Improved Fluid well pumping system 31 and a table how the stages operate. FIGS. 14 A through 14 C show a sketch of the Improved Fluid well pumping system 31 table how the components pass fluid during operation. FIGS. 15 A through 15 D show sketches of the installation process for the Improved Fluid well pumping system 31. FIGS. 16 A through 16 C show additional sketches of the installation process for the Improved Fluid well pumping system 31. And, FIG. 17 shows a comparison table for the prior art system and the new system 31. These are discussed, below.
  • All of the details mentioned here are exemplary and not limiting. Other components specific to describing the new Improved Fluid well pumping system 31A may be added as a person having ordinary skill in the field of fluid pump systems and the like well appreciates.
  • OPERATION OF THE PREFERRED EMBODIMENT
  • The preferred embodiment of the Improved Fluid well pumping system 31A has been described in detail above. The manner of how the device operates is described below. A person having ordinary skill in the field of fluid pump systems will note that the description above and the operation described here must be taken together to fully illustrate the concept of the special device 31. FIG. 13 shows a sketch of the Improved Fluid well pumping system 31 and a table how the stages operate. FIGS. 14 A through 14 C show a sketch of the Improved Fluid well pumping system 31 table how the components pass fluid during operation. FIGS. 15 A through 15 D show sketches of the installation process for the Improved Fluid well pumping system 31. FIGS. 16 A through 16 C show additional sketches of the installation process for the Improved Fluid well pumping system 31. And, FIG. 17 shows a comparison table for the prior art system and the new system 31.
  • FIG. 13 shows a sketch of the Improved Fluid well pumping system 31A and a table how the stages operate.
  • Pressure Actuated Chamber Technology . . . How it Works?
  • Typically, a NOJAK installation in a 1,000-ft well will require compressed air/gas flow rates of about 30 to 50 cfm. When pressure is applied (from the compressor) to the uppermost fluid chamber, the fluid is forced up through the uppermost line assembly into the flow line at the surface to the production facility.
  • Stage 1:
      • The fluid inlet (filter screen) and the bottom fluid chamber of the NOJAK system are set to operate below the pumping fluid level of the well. This stage fills using bottom hole pressure as an internal check valve prevents fluid from draining out of the chamber back into the well bore.
    Stage 2:
      • Via the internal control lines, a gas compressor (at the surface) first applies gas at a pre-set pressure (170 psi) to the odd numbered chambers and vents the pressure from the even-numbered chambers. The gas flows through the gas line within the line assembly and is released at the control panel above ground level to be exhausted or re-circulated.
      • The pressurized gas in the odd chambers displaces the fluid, causing it to flow to the even chambers directly above them, with check valves preventing any downward flow. The control panel directs pressurized gas/air to the top of even-numbered chambers, and simultaneously vents the pressure on odd-numbered chambers, causing fluid to rise from the even chambers to the odd chambers above them.
      • The lowest fluid chamber empties and vents. The combination of gravity and reservoir pressure from the well cause more fluid to flow back into this chamber preparatory to repeat the process. Fluid reaching the surface flows into the production facility.
  • FIGS. 14 A through 14 C show a sketch of the Improved Fluid well pumping system 31 table how the components pass fluid during operation. In the Fluid entry schematic 77
  • Step 1: Fluid Entry Flow Path—Fluids from the bottom chamber flow into the chamber above past the bottom check ball causing the float to rise with the fluid level until it seals at the top manifold.
  • In the Fluid Movement Schematic 78
  • Step 2: Gas Flow Path—Gas pressure from the surface is injected into the chamber causing the fluid to flow out.
  • In the Fluid Exit Schematic 79
  • Step 3: Fluid Exit Flow Path—The bottom check ball seats causing the fluid to flow through the product line then through the line assembly into the next higher chamber. The float seats at the bottom of the chamber to cut off fluid flow.
  • FIGS. 15 A through 15 D show sketches of the installation process for the Improved Fluid well pumping system 31. In the Installation of Surface Equipment the final plumbing of the system uses a standard pumping tee to direct fluid flow and gas flow. The gas lines are attached to a connector at the pumping tee. The gas lines are connected to the switching valves that are located on the control panel stand. The final installation offers an aesthetically pleasing operationally safe footprint and a control panel that can be operated on electric or solar power. The sketches are: Above ground pump system to control panel 81, Fluid and gas flow above ground manifolds 82, Gas lines, switch valves and control panel 83, Solar power source 84, and an Aesthetic above ground control system 85.
  • FIGS. 16 A through 16 C show additional sketches of the installation process for the Improved Fluid well pumping system 31. The installation of the NOJAK pumping system is a two pronged approach: the installation of the pumping chambers and surface equipment. The installation of the NOJAK pumping system is a simple operation that does not require the connection of rods and tubing using a conventional pulling unit.
      • The installation of the NOJAK pumping system is a simple operation that does not require the connection of rods and tubing using a conventional pulling unit.
      • The NOJAK system is installed using a vehicle that has a powered spool and a crane. The line assemblies are loaded onto the spool and the crane is used to raise and lower the chambers.
      • The pumps are installed in the following steps:
      • 1. The lowest chamber is lowered into the well and attached to the line assembly. It is stabilized by an attached ballast weight.
      • 2. A cable grip is attached to connect the support cable to the pump chamber and a chamber is attached at the end of a line assembly.
      • 3. The process is repeated until all of the chambers and line assemblies have been placed in the well.
      • 4. The system is then landed into the well head using standard well head components using either a mandrel or slips type tubing hanger.
  • Virtually all of these attachments are accomplished by means of fusion welding. Normal mechanical fasteners and redundant sealing is avoided. The ends of the Pex and polyethylene are first heated by a hot plate (heated surface) to each of the ends of the components being fuse. The plate(s) are removed and next these ends are brought together and pressure fitted. The seal is permitted to cool. The polyethylene is a crystalline material. As the junction of the two ends cool, the new joint re-crystallizes to a state like the original base materials. The process eliminates fasteners, uses a process familiar to target customer base, is stronger than base material and improves the seal. The installation sketches are: the Pump system being installed with service truck 86, connecting the chamber to line assembly 87, and top of ground transition from pump system to well head 88.
  • FIG. 17 shows a comparison table 95 for the prior art system and the new system 31. This shows a side by side comparison of the new features versus the older/prior art U.S. Pat. Nos. 6,558,128 (2003) and 6,435,838 (2002) to Marvel et al. NOJAK has been making continuous improvements throughout the history of the Company.
  • The Company's initiatives in creating an all plastic pump fit in with its long term strategy of being known as a solutions provider in the oil and gas market. NOJAK has recently developed and tested a next generation pump which replaces all metal components with a high-grade polyethylene—resulting in reduced manufacturing costs of >50% and an improved depth and pumping capacity of >40%.
  • With the above description or the product device and method to produce, it is to be understood that the Improved Fluid well pumping system 31A is not to be limited to only the disclosed embodiment. The described features of the special device 31 are intended to cover various modifications and equivalent arrangements included within the spirit and scope of the description.

Claims (9)

1. A fluid well pumping system, comprising:
(a) a product line assembly adapted for positioning in a well casing as a unit, the product line assembly comprising
(1) a first product tube including a passage for moving fluid therethrough, and a first gas line and a second gas line in the passage; and
(2) a fluid reservoir adapted for positioning in a well casing as a unit, the fluid reservoir including a reservoir housing defining a chamber for storage of fluid and including a float in the chamber, a top manifold at a top end of the reservoir housing and a bottom manifold at a bottom end of the reservoir housing, the fluid reservoir including a third gas line, a fourth gas line and a product line extending between the top and bottom manifolds, the product line assembly engageable to the top manifold of the reservoir housing with the first gas line in fluid communication with the third gas line,
the second gas line in fluid communication with said fourth gas line, and the passage of said product tube in fluid communication with the product line; and
(b) a control system comprising a compressor and a microprocessor controlled valving system
Wherein essentially all the component parts of the product line assembly are fabricated with a composite material and result in a lightweight, higher capacity and non-corrosive pump system when compared to prior art lift systems and the microprocessor directs fluids flow through the pump and into the production facility.
2. The device according to claim 1 wherein the composite material is a PEX polyethylene.
3. The device according to claim 1 wherein the internal lines are made of a coiled high density polyethylene, which provides durability up to 200° F. and wellbore pressure of 200 psi.
4. The device according to claim 1 wherein the lines are connected to alternate chambers using a closed design that assures no gas/air is released into the wellbore.
5. A fluid well pumping system, comprising:
(a) a product line assembly adapted for positioning in a well casing as a unit, the product line assembly comprising
(1) a first product tube including a passage for moving fluid therethrough, and a first gas line and a second gas line in the passage; and
(2) a fluid reservoir adapted for positioning in a well casing as a unit, the fluid reservoir including a reservoir housing defining a chamber for storage of fluid and including a float in the chamber, a top manifold at a top end of the reservoir housing and a bottom manifold at a bottom end of the reservoir housing, the fluid reservoir including a third gas line, a fourth gas line and a product line extending between the top and bottom manifolds, the product line assembly engageable to the top manifold of the reservoir housing with the first gas line in fluid communication with the third gas line, the second gas line in fluid communication with said fourth gas line, and the passage of said product tube in fluid communication with the product line;
(3) an elongated and slotted filter comprised of a composite material; and
(b) a control system comprising a compressor and a microprocessor controlled valving system
Wherein essentially all the component parts of the product line assembly are fabricated with a composite material and result in a lightweight, higher capacity and non-corrosive pump system when compared to prior art lift systems and the microprocessor directs fluids flow through the pump and into the production facility.
6. The device according to claim 5 wherein the composite material is a PEX polyethylene.
7. The device according to claim 5 wherein the internal lines are made of a coiled high density polyethylene, which provides durability up to 200° F. and wellbore pressure of 200 psi.
8. The device according to claim 5 wherein the lines are connected to alternate chambers using a closed design that assures no gas/air is released into the wellbore.
9. The device according to claim 5 wherein the filter is made of a high density polyethylene, which provides durability up to 200° F. and wellbore pressure of 200 psi.
US12/947,380 2009-11-17 2010-11-16 Fluid well pumping system and method to produce same Abandoned US20110114305A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/947,380 US20110114305A1 (en) 2009-11-17 2010-11-16 Fluid well pumping system and method to produce same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US26184609P 2009-11-17 2009-11-17
US12/947,380 US20110114305A1 (en) 2009-11-17 2010-11-16 Fluid well pumping system and method to produce same

Publications (1)

Publication Number Publication Date
US20110114305A1 true US20110114305A1 (en) 2011-05-19

Family

ID=44010422

Family Applications (1)

Application Number Title Priority Date Filing Date
US12/947,380 Abandoned US20110114305A1 (en) 2009-11-17 2010-11-16 Fluid well pumping system and method to produce same

Country Status (1)

Country Link
US (1) US20110114305A1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4050854A (en) * 1976-10-04 1977-09-27 Hereford Judson A Fluid lifting apparatus
US4653989A (en) * 1985-11-18 1987-03-31 Poly Oil Pump, Inc. Oil well pumping mechanism
US5027902A (en) * 1990-05-21 1991-07-02 American Sigma, Inc. Self-cycling pump apparatus and method
US5141404A (en) * 1990-06-25 1992-08-25 Q.E.D. Environmental Systems, Inc. Pump apparatus
US5183391A (en) * 1990-05-11 1993-02-02 Isco, Inc. Valve pump
US6142232A (en) * 1998-07-15 2000-11-07 Layne Christensen Company Method and apparatus for cleaning wells
US6435838B1 (en) * 1998-06-11 2002-08-20 John E. Marvel Fluid well pump
US6453838B1 (en) * 2000-10-20 2002-09-24 Ocean Production Technology, Llc Turret-less floating production ship
US6810961B2 (en) * 2002-01-21 2004-11-02 John E. Marvel Fluid well pumping system
US7819197B2 (en) * 2005-07-20 2010-10-26 University Of Southern California Wellbore collection system

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4050854A (en) * 1976-10-04 1977-09-27 Hereford Judson A Fluid lifting apparatus
US4653989A (en) * 1985-11-18 1987-03-31 Poly Oil Pump, Inc. Oil well pumping mechanism
US5183391A (en) * 1990-05-11 1993-02-02 Isco, Inc. Valve pump
US5027902A (en) * 1990-05-21 1991-07-02 American Sigma, Inc. Self-cycling pump apparatus and method
US5141404A (en) * 1990-06-25 1992-08-25 Q.E.D. Environmental Systems, Inc. Pump apparatus
US6435838B1 (en) * 1998-06-11 2002-08-20 John E. Marvel Fluid well pump
US6558128B2 (en) * 1998-06-11 2003-05-06 John E. Marvel Fluid well pumping system
US6142232A (en) * 1998-07-15 2000-11-07 Layne Christensen Company Method and apparatus for cleaning wells
US6453838B1 (en) * 2000-10-20 2002-09-24 Ocean Production Technology, Llc Turret-less floating production ship
US6810961B2 (en) * 2002-01-21 2004-11-02 John E. Marvel Fluid well pumping system
US7819197B2 (en) * 2005-07-20 2010-10-26 University Of Southern California Wellbore collection system

Similar Documents

Publication Publication Date Title
EP1915510B1 (en) Method and apparatus to pump liquids from well
US6021849A (en) Double acting gas displaced chamber lift system and method
US7232524B2 (en) Methods and apparatus for increasing and extending oil production from underground formations nearly depleted of natural gas drive
US9435163B2 (en) Method and apparatus for removing liquid from a horizontal well
US4050854A (en) Fluid lifting apparatus
US7243721B2 (en) Methods and apparatus for heating oil production reservoirs
US6663361B2 (en) Subsea chemical injection pump
US20110114305A1 (en) Fluid well pumping system and method to produce same
US20050279493A1 (en) Fluid well pumping system
US20060045781A1 (en) Method and pump apparatus for removing liquids from wells
CA2609090A1 (en) Method and apparatus for removing production limiting liquid volumes from natural gas wells
US11408260B2 (en) Hybrid hydraulic gas pump system
US6269884B1 (en) Gas displaced chamber lift system with closed loop/multi-stage vents
US9458706B2 (en) Method of lifting oil from a well
WO2013191586A2 (en) Downhole pump assembly
WO2021069318A1 (en) Arrangement for extracting oil and gas from oil and gas wells
CA2426306C (en) Gas displaced chamber lift system with closed loop/multi-stage vents
WO2011159189A1 (en) Method for extracting stratal non-gasified liquid
EP1328706A1 (en) Gas displaced chamber lift system having gas lift assist
WO2001094748A1 (en) Fluid powered subterranean pump system
WO2001094748A2 (en) Fluid powered subterranean pump system

Legal Events

Date Code Title Description
AS Assignment

Owner name: AIRLIFT SERVICES INTERNATIONAL INC., INDIANA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ROBERTS, DANIEL C;WETZEL, JAMES R;STOUGHTON, G RONALD;REEL/FRAME:025546/0449

Effective date: 20101117

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION