US20110077675A1 - Pain management bio-medical unit - Google Patents

Pain management bio-medical unit Download PDF

Info

Publication number
US20110077675A1
US20110077675A1 US12/848,830 US84883010A US2011077675A1 US 20110077675 A1 US20110077675 A1 US 20110077675A1 US 84883010 A US84883010 A US 84883010A US 2011077675 A1 US2011077675 A1 US 2011077675A1
Authority
US
United States
Prior art keywords
signal
module
bio
operable
medical unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/848,830
Inventor
Ahmadreza (Reza) Rofougaran
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Avago Technologies International Sales Pte Ltd
Original Assignee
Broadcom Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Broadcom Corp filed Critical Broadcom Corp
Priority to US12/848,830 priority Critical patent/US20110077675A1/en
Priority to US13/030,016 priority patent/US20110144573A1/en
Priority to US13/029,435 priority patent/US8515533B2/en
Priority to US13/029,969 priority patent/US8515548B2/en
Publication of US20110077675A1 publication Critical patent/US20110077675A1/en
Assigned to BROADCOM CORPORATION reassignment BROADCOM CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: Rofougaran, Ahmadreza (Reza)
Priority to US13/931,445 priority patent/US20130289382A1/en
Assigned to BANK OF AMERICA, N.A., AS COLLATERAL AGENT reassignment BANK OF AMERICA, N.A., AS COLLATERAL AGENT PATENT SECURITY AGREEMENT Assignors: BROADCOM CORPORATION
Assigned to AVAGO TECHNOLOGIES GENERAL IP (SINGAPORE) PTE. LTD. reassignment AVAGO TECHNOLOGIES GENERAL IP (SINGAPORE) PTE. LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BROADCOM CORPORATION
Assigned to BROADCOM CORPORATION reassignment BROADCOM CORPORATION TERMINATION AND RELEASE OF SECURITY INTEREST IN PATENTS Assignors: BANK OF AMERICA, N.A., AS COLLATERAL AGENT
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H40/00ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices
    • G16H40/60ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices
    • G16H40/67ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices for remote operation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/055Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves  involving electronic [EMR] or nuclear [NMR] magnetic resonance, e.g. magnetic resonance imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0002Galenical forms characterised by the drug release technique; Application systems commanded by energy
    • A61K9/0009Galenical forms characterised by the drug release technique; Application systems commanded by energy involving or responsive to electricity, magnetism or acoustic waves; Galenical aspects of sonophoresis, iontophoresis, electroporation or electroosmosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M31/00Devices for introducing or retaining media, e.g. remedies, in cavities of the body
    • A61M31/002Devices for releasing a drug at a continuous and controlled rate for a prolonged period of time
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M37/00Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/325Applying electric currents by contact electrodes alternating or intermittent currents for iontophoresis, i.e. transfer of media in ionic state by an electromotoric force into the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N2/00Magnetotherapy
    • A61N2/002Magnetotherapy in combination with another treatment
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H10/00ICT specially adapted for the handling or processing of patient-related medical or healthcare data
    • G16H10/60ICT specially adapted for the handling or processing of patient-related medical or healthcare data for patient-specific data, e.g. for electronic patient records
    • G16H10/65ICT specially adapted for the handling or processing of patient-related medical or healthcare data for patient-specific data, e.g. for electronic patient records stored on portable record carriers, e.g. on smartcards, RFID tags or CD
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H20/00ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance
    • G16H20/10ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to drugs or medications, e.g. for ensuring correct administration to patients
    • G16H20/13ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to drugs or medications, e.g. for ensuring correct administration to patients delivered from dispensers
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H20/00ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance
    • G16H20/10ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to drugs or medications, e.g. for ensuring correct administration to patients
    • G16H20/17ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to drugs or medications, e.g. for ensuring correct administration to patients delivered via infusion or injection
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H40/00ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices
    • G16H40/60ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices
    • G16H40/63ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices for local operation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/02Details
    • H04L12/10Current supply arrangements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M37/00Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin
    • A61M2037/0007Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin having means for enhancing the permeation of substances through the epidermis, e.g. using suction or depression, electric or magnetic fields, sound waves or chemical agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/35Communication
    • A61M2205/3507Communication with implanted devices, e.g. external control
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/35Communication
    • A61M2205/3507Communication with implanted devices, e.g. external control
    • A61M2205/3523Communication with implanted devices, e.g. external control using telemetric means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/35Communication
    • A61M2205/3576Communication with non implanted data transmission devices, e.g. using external transmitter or receiver
    • A61M2205/3592Communication with non implanted data transmission devices, e.g. using external transmitter or receiver using telemetric means, e.g. radio or optical transmission
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/50Reducing energy consumption in communication networks in wire-line communication networks, e.g. low power modes or reduced link rate

Definitions

  • This invention relates generally to medical equipment and more particularly to wireless medical equipment.
  • MRI magnetic resonance imaging
  • RFID radio frequency identification
  • robotics etc.
  • RFID technology has been used for in vitro use to store patient information for easy access. While such in vitro applications have begun, the technical advancement in this area is in its infancy.
  • FIG. 1 is a diagram of an embodiment of a system in accordance with the present invention.
  • FIG. 2 is a diagram of another embodiment of a system in accordance with the present invention.
  • FIG. 3 is a diagram of an embodiment of an artificial body part including one or more bio-medical units in accordance with the present invention
  • FIG. 4 is a schematic block diagram of an embodiment of an artificial body part in accordance with the present invention.
  • FIG. 5 is a diagram of another embodiment of a system in accordance with the present invention.
  • FIG. 6 is a diagram of another embodiment of a system in accordance with the present invention.
  • FIG. 7 is a diagram of another embodiment of a system in accordance with the present invention.
  • FIG. 8 is a schematic block diagram of an embodiment of a bio-medical unit in accordance with the present invention.
  • FIG. 9 is a schematic block diagram of an embodiment of a power harvesting module in accordance with the present invention.
  • FIG. 10 is a schematic block diagram of another embodiment of a power harvesting module in accordance with the present invention.
  • FIG. 11 is a schematic block diagram of another embodiment of a power harvesting module in accordance with the present invention.
  • FIG. 12 is a schematic block diagram of another embodiment of a power harvesting module in accordance with the present invention.
  • FIG. 13 is a schematic block diagram of an embodiment of a power boost module in accordance with the present invention.
  • FIG. 14 is a schematic block diagram of an embodiment of an electromagnetic (EM)) power harvesting module in accordance with the present invention.
  • EM electromagnetic
  • FIG. 15 is a schematic block diagram of another embodiment of an electromagnetic (EM)) power harvesting module in accordance with the present invention.
  • EM electromagnetic
  • FIG. 16 is a schematic block diagram of another embodiment of a bio-medical unit in accordance with the present invention.
  • FIG. 17 is a diagram of another embodiment of a system in accordance with the present invention.
  • FIG. 18 is a diagram of an example of a communication protocol within a system in accordance with the present invention.
  • FIG. 19 is a diagram of another embodiment of a system in accordance with the present invention.
  • FIG. 20 is a diagram of another example of a communication protocol within a system in accordance with the present invention.
  • FIG. 21 is a diagram of an embodiment of a network of bio-medical units that include MEMS robotics in accordance with the present invention.
  • FIG. 22 is a diagram of another embodiment of a network of bio-medical units that include MEMS robotics in accordance with the present invention.
  • FIG. 23 is a diagram of an embodiment of a network of bio-medical units for facilitating electrical stimulus treatment in accordance with the present invention.
  • FIG. 24 is a diagram of an embodiment of power conversion modules in a bio-medical unit of FIG. 23 in accordance with the present invention.
  • FIG. 25 is a diagram of an embodiment of a bio-medical unit facilitating pain blocking in accordance with the present invention.
  • FIG. 26 is a diagram of an embodiment of a bio-medical unit including sampling modules in accordance with the present invention.
  • FIG. 27 is a diagram of another embodiment of a bio-medical unit facilitating pain blocking in accordance with the present invention.
  • FIG. 28 is a diagram of another embodiment of a bio-medical unit facilitating pain blocking in accordance with the present invention.
  • FIG. 1 is a diagram of an embodiment of a system that includes a plurality of bio-medical units 10 embedded within a body and/or placed on the surface of the body to facilitate diagnosis, treatment, and/or data collections.
  • Each of the bio-medical units 10 is a passive device (e.g., it does not include a power source (e.g., a battery)) and, as such, includes a power harvesting module.
  • the bio-medical units 10 may also include one or more of memory, a processing module, and functional modules. Alternatively, or in addition to, each of the bio-medical units 10 may include a rechargeable power source.
  • a transmitter 12 emits electromagnetic signals 16 that pass through the body and are received by a receiver 14 .
  • the transmitter 12 and receiver 14 may be part of a piece of medical diagnostic equipment (e.g., magnetic resonance imaging (MRI), X-ray, etc.) or independent components for stimulating and communicating with the network of bio-medical units in and/or on a body.
  • One or more of the bio-medical units 10 receives the transmitted electromagnetic signals 16 and generates a supply voltage therefrom. Examples of this will be described in greater detail with reference to FIGS. 8-12 .
  • the transmitter 12 communicates with one or more of the bio-medical units 10 .
  • the electromagnetic signals 16 may have a frequency in the range of a few MHz to 900 MHz and the communication with the bio-medical units 10 is modulated on the electromagnetic signals 16 at a much higher frequency (e.g., 5 GHz to 300 GHz).
  • the communication with the bio-medical units 10 may occur during gaps (e.g., per protocol of medical equipment or injected for communication) of transmitting the electromagnetic signals 16 .
  • the communication with the bio-medical units 10 occurs in a different frequency band and/or using a different transmission medium (e.g., use RF or MMW signals when the magnetic field of the electromagnetic signals are dominate, use ultrasound signals when the electromagnetic signals 16 are RF and/or MMW signals, etc.).
  • a different transmission medium e.g., use RF or MMW signals when the magnetic field of the electromagnetic signals are dominate, use ultrasound signals when the electromagnetic signals 16 are RF and/or MMW signals, etc.
  • the communication signals 18 may be instructions to collect data, to transmit collected data, to move the unit's position in the body, to perform a function, to administer a treatment, etc. If the received communication signals 18 require a response, the bio-medical unit 10 prepares an appropriate response and transmits it to the receiver 14 using a similar communication convention used by the transmitter 12 .
  • FIG. 2 is a diagram of another embodiment of a system that includes a plurality of bio-medical units 10 embedded within a body and/or placed on the surface of the body to facilitate diagnosis, treatment, and/or data collections.
  • Each of the bio-medical units 10 is a passive device and, as such, includes a power harvesting module.
  • the bio-medical units 10 may also include one or more of memory, a processing module, and functional modules.
  • the person is placed in an MRI machine (fixed or portable) that generates a magnetic field 26 through which the MRI transmitter 20 transmits MRI signals 28 to the MRI receiver 22 .
  • One or more of the bio-medical units 10 powers itself by harvesting energy from the magnetic field 26 or changes thereof as produced by gradient coils, from the magnetic fields of the MRI signals 28 , from the electrical fields of the MRI signals 28 , and/or from the electromagnetic aspects of the MRI signals 28 .
  • a unit 10 converts the harvested energy into a supply voltage that supplies other components of the unit (e.g., a communication module, a processing module, memory, a functional module, etc.).
  • a communication device 24 communicates data and/or control communications 30 with one or more of the bio-medical units 10 over one or more wireless links.
  • the communication device 24 may be a separate device from the MRI machine or integrated into the MRI machine.
  • the communication device 24 may be a cellular telephone, a computer with a wireless interface (e.g., a WLAN station and/or access point, Bluetooth, a proprietary protocol, etc.), etc.
  • a wireless link may be one or more frequencies in the ISM band, in the 60 GHz frequency band, the ultrasound frequency band, and/or other frequency bands that supports one or more communication protocols (e.g., data modulation schemes, beamforming, RF or MMW modulation, encoding, error correction, etc.).
  • the composition of the bio-medical units 10 includes non-ferromagnetic materials (e.g., paramagnetic or diamagnetic) and/or metal alloys that are minimally affected by an external magnetic field 26 .
  • the units harvest power from the MRI signals 28 and communicate using RF and/or MMW electromagnetic signals with negligible chance of encountering the projectile or missile effect of implants that include ferromagnetic materials.
  • FIG. 3 is a diagram of an embodiment of an artificial body part 32 including one or more bio-medical units 10 that may be surgically implanted into a body.
  • the artificial body part 32 may be a pace maker, a breast implant, a joint replacement, an artificial bone, splints, fastener devices (e.g., screws, plates, pins, sutures, etc.), artificial organ, etc.
  • the artificial body part 32 may be permanently embedded in the body or temporarily embedded into the body.
  • FIG. 4 is a schematic block diagram of an embodiment of an artificial body part 32 that includes one or more bio-medical units 10 .
  • one bio-medical unit 10 may be used to detect infections, the body's acceptance of the artificial body part 32 , measure localized body temperature, monitor performance of the artificial body part 32 , and/or data gathering for other diagnostics.
  • Another bio-medical unit 10 may be used for deployment of treatment (e.g., disperse medication, apply electrical stimulus, apply RF radiation, apply laser stimulus, etc.).
  • Yet another bio-medical unit 10 may be used to adjust the position of the artificial body part 32 and/or a setting of the artificial body part 32 .
  • a bio-medical unit 10 may be used to mechanically adjust the tension of a splint, screws, etc.
  • a bio-medical unit 10 may be used to adjust an electrical setting of the artificial body part 32 .
  • FIG. 5 is a diagram of another embodiment of a system that includes a plurality of bio-medical units 10 and one or more communication devices 24 coupled to a wide area network (WAN) communication device 34 (e.g., a cable modem, DSL modem, base station, access point, hot spot, etc.).
  • the WAN communication device 34 is coupled to a network 42 (e.g., cellular telephone network, internet, etc.), which has coupled to it a plurality of remote monitors 36 , a plurality of databases 40 , and a plurality of computers 38 .
  • the communication device 24 includes a processing module and a wireless transceiver module (e.g., one or more transceivers) and may function similarly to communication module 48 as described in FIG. 8 ,
  • a bio-medical unit includes a power harvesting module, a communication module, and one or more functional modules.
  • the power harvesting module operable to produce a supply voltage from a received electromagnetic power signal (e.g., the electromagnetic signal 16 of FIGS. 1 and 2 , the MRI signals of one or more the subsequent figures).
  • the communication module and the at least one functional module are powered by the supply voltage.
  • the communication device 24 receives a downstream WAN signal from the network 42 via the WAN communication device 34 .
  • the downstream WAN signal may be generated by a remote monitoring device 36 , a remote diagnostic device (e.g., computer 38 performing a remote diagnostic function), a remote control device (e.g., computer 38 performing a remote control function), and/or a medical record storage device (e.g., database 40 ).
  • the communication device 24 converts the downstream WAN signal into a downstream data signal.
  • the communication device 24 may convert the downstream WAN signal into a symbol stream in accordance with one or more wireless communication protocols (e.g., GSM, CDMA, WCDMA, HSUPA, HSDPA, WiMAX, EDGE, GPRS, IEEE 802.11, Bluetooth, ZigBee, universal mobile telecommunications system (UMTS), long term evolution (LTE), IEEE 802.16, evolution data optimized (EV-DO), etc.).
  • the communication device 24 may convert the symbol stream into the downstream data signal using the same or a different wireless communication protocol.
  • the communication device 24 may convert the symbol stream into data that it interprets to determine how to structure the communication with the bio-medical unit 10 and/or what data (e.g., instructions, commands, digital information, etc.) to include in the downstream data signal. Having determined how to structure and what to include in the downstream data signal, the communication device 24 generates the downstream data signal in accordance with one or more wireless communication protocols. As yet another alternative, the communication device 24 may function as a relay, which provides the downstream WAN signal as the downstream data signal to the one or more bio-medical units 10 .
  • the communication device 24 When the communication device 24 has (and/or is processing) the downstream data signal to send to the bio-medical unit, it sets up a communication with the bio-medical unit.
  • the set up may include identifying the particular bio-medical unit(s), determining the communication protocol used by the identified bio-medical unit(s), sending a signal to an electromagnetic device (e.g., MRI device, etc.) to request that it generates the electromagnetic power signal to power the bio-medical unit, and/or initiate a communication in accordance with the identified communication protocol.
  • an electromagnetic device e.g., MRI device, etc.
  • the communication device may include an electromagnetic device to create the electromagnetic power signal.
  • the communication device 24 wirelessly communicates the downstream data signal to the communication module of the bio-medical unit 10 .
  • the functional module of the bio-medical unit 10 processes the downstream data contained in the downstream data signal to perform a bio-medical functional, to store digital information contained in the downstream data, to administer a treatment (e.g., administer a medication, apply laser stimulus, apply electrical stimulus, etc.), to collect a sample (e.g., blood, tissue, cell, etc.), to perform a micro electro-mechanical function, and/or to collect data.
  • a treatment e.g., administer a medication, apply laser stimulus, apply electrical stimulus, etc.
  • a sample e.g., blood, tissue, cell, etc.
  • micro electro-mechanical function e.g., blood, tissue, cell, etc.
  • the bio-medical function may include capturing a digital image, capturing a radio frequency (e.g., 300 MHz to 300 GHz) radar image, an ultrasound image, a tissue sample, and/or a measurement (e.g., blood pressure, temperature, pulse, blood-oxygen level, blood sugar level, etc.).
  • a radio frequency e.g., 300 MHz to 300 GHz
  • an ultrasound image e.g., an ultrasound image
  • tissue sample e.g., a tissue sample
  • a measurement e.g., blood pressure, temperature, pulse, blood-oxygen level, blood sugar level, etc.
  • the functional module When the downstream data requires a response, the functional module performs a bio-medical function to produce upstream data.
  • the communication module converts the upstream data into an upstream data signal in accordance with the one or more wireless protocols.
  • the communication device 24 converts the upstream data signal into an upstream wide area network (WAN) signal and transmits it to a remote diagnostic device, a remote control device, and/or a medical record storage device. In this manner, a person(s) operating the remote monitors 36 may view images and/or the data 30 gathered by the bio-medical units 10 . This enables a specialist to be consulted without requiring the patient to travel to the specialist's office.
  • WAN wide area network
  • one or more of the computers 38 may communicate with the bio-medical units 10 via the communication device 24 , the WAN communication device 34 , and the network 42 .
  • the computer 36 may provide commands 30 to one or more of the bio-medical units 10 to gather data, to dispense a medication, to move to a new position in the body, to perform a mechanical function (e.g., cut, grasp, drill, puncture, stitch, patch, etc.), etc.
  • the bio-medical units 10 may be remotely controlled via one or more of the computers 36 .
  • one or more of the bio-medical units 10 may read and/or write data from or to one or more of the databases 40 .
  • data e.g., a blood sample analysis
  • the communication device 24 and/or one of the computers 36 may control the writing of data to or the reading of data from the database(s) 40 .
  • the data may further include medical records, medical images, prescriptions, etc.
  • FIG. 6 is a diagram of another embodiment of a system that includes a plurality of bio-medical units 10 .
  • the bio-medical units 10 can communicate with each other directly and/or communicate with the communication device 24 directly.
  • the communication medium may be an infrared channel(s), an RF channel(s), a MMW channel(s), and/or ultrasound.
  • the units may use a communication protocol such as token passing, carrier sense, time division multiplexing, code division multiplexing, frequency division multiplexing, etc.
  • FIG. 7 is a diagram of another embodiment of a system that includes a plurality of bio-medical units 10 .
  • one of the bio-medical units 44 functions as an access point for the other units.
  • the designated unit 44 routes communications between the units 10 and between one or more units 10 and the communication device 24 .
  • the communication medium may be an infrared channel(s), an RF channel(s), a MMW channel(s), and/or ultrasound.
  • the units 10 may use a communication protocol such as token passing, carrier sense, time division multiplexing, code division multiplexing, frequency division multiplexing, etc.
  • FIG. 8 is a schematic block diagram of an embodiment of a bio-medical unit 10 that includes a power harvesting module 46 , a communication module 48 , a processing module 50 , memory 52 , and one or more functional modules 54 .
  • the processing module 50 may be a single processing device or a plurality of processing devices.
  • Such a processing device may be a microprocessor, micro-controller, digital signal processor, microcomputer, central processing unit, field programmable gate array, programmable logic device, state machine, logic circuitry, analog circuitry, digital circuitry, and/or any device that manipulates signals (analog and/or digital) based on hard coding of the circuitry and/or operational instructions.
  • the processing module 50 may have an associated memory 52 and/or memory element, which may be a single memory device, a plurality of memory devices, and/or embedded circuitry of the processing module.
  • a memory device 52 may be a read-only memory, random access memory, volatile memory, non-volatile memory, static memory, dynamic memory, flash memory, cache memory, and/or any device that stores digital information.
  • the processing module 50 includes more than one processing device, the processing devices may be centrally located (e.g., directly coupled together via a wired and/or wireless bus structure) or may be distributedly located (e.g., cloud computing via indirect coupling via a local area network and/or a wide area network).
  • the processing module 50 implements one or more of its functions via a state machine, analog circuitry, digital circuitry, and/or logic circuitry
  • the memory and/or memory element storing the corresponding operational instructions may be embedded within, or external to, the circuitry comprising the state machine, analog circuitry, digital circuitry, and/or logic circuitry.
  • the memory element stores, and the processing module executes, hard coded and/or operational instructions corresponding to at least some of the steps and/or functions illustrated in FIGS. 1-26 .
  • the power harvesting module 46 may generate one or more supply voltages 56 (Vdd) from a power source signal (e.g., one or more of MRI electromagnetic signals 16 , magnetic fields 26 , RF signals, MMW signals, ultrasound signals, light signals, and body motion).
  • a power source signal e.g., one or more of MRI electromagnetic signals 16 , magnetic fields 26 , RF signals, MMW signals, ultrasound signals, light signals, and body motion.
  • the power harvesting module 46 may be implemented as disclosed in U.S. Pat. No. 7,595,732 to generate one or more supply voltages from an RF signal.
  • the power harvesting module 46 may be implemented as shown in one or more FIGS. 9-11 to generate one or more supply voltages 56 from an MRI signal 28 and/or magnetic field 26 .
  • the power harvesting module 46 may be implemented as shown in FIG. 12 to generate one or more supply voltage 56 from body motion. Regardless of how the power harvesting module generates the supply voltage(s), the supply voltage(s) are used to
  • a receiver section of the communication module 48 receives an inbound wireless communication signal 60 and converts it into an inbound symbol stream.
  • the receiver section amplifies an inbound wireless (e.g., RF or MMW) signal 60 to produce an amplified inbound RF or MMW signal.
  • the receiver section may then mix in-phase (I) and quadrature (Q) components of the amplified inbound RF or MMW signal with in-phase and quadrature components of a local oscillation to produce a mixed I signal and a mixed Q signal.
  • the mixed I and Q signals are combined to produce an inbound symbol stream.
  • the inbound symbol may include phase information (e.g., +/ ⁇ [phase shift] and/or ⁇ (t) [phase modulation]) and/or frequency information (e.g., +/ ⁇ f [frequency shift] and/or f(t) [frequency modulation]).
  • the inbound RF or MMW signal includes amplitude information (e.g., +/ ⁇ A [amplitude shift] and/or A(t) [amplitude modulation]).
  • the receiver section includes an amplitude detector such as an envelope detector, a low pass filter, etc.
  • the processing module 50 converts the inbound symbol stream into inbound data and generates a command message based on the inbound data.
  • the command message may instruction one or more of the functional modules to perform one or more electro-mechanical functions of gathering data (e.g., imaging data, flow monitoring data), dispensing a medication, moving to a new position in the body, performing a mechanical function (e.g., cut, grasp, drill, puncture, stitch, patch, etc.), dispensing a treatment, collecting a biological sample, etc.
  • the processing module 50 may perform one or more of: digital intermediate frequency to baseband conversion, time to frequency domain conversion, space-time-block decoding, space-frequency-block decoding, demodulation, frequency spread decoding, frequency hopping decoding, beamforming decoding, constellation demapping, deinterleaving, decoding, depuncturing, and/or descrambling.
  • Such a conversion is typically prescribed by one or more wireless communication standards (e.g., GSM, CDMA, WCDMA, HSUPA, HSDPA, WiMAX, EDGE, GPRS, IEEE 802.11, Bluetooth, ZigBee, universal mobile telecommunications system (UMTS), long term evolution (LTE), IEEE 802.16, evolution data optimized (EV-DO), etc.).
  • wireless communication standards e.g., GSM, CDMA, WCDMA, HSUPA, HSDPA, WiMAX, EDGE, GPRS, IEEE 802.11, Bluetooth, ZigBee, universal mobile telecommunications system (UMTS), long term evolution (LTE), IEEE 802.16, evolution data optimized (EV-DO), etc.
  • the processing module 50 provides the command message to one or more of the micro-electromechanical functional modules 54 .
  • the functional module 54 performs an electro-mechanical function within a hosting body in accordance with the command message.
  • Such an electro-mechanical function includes at least one of data gathering (e.g., image, flow monitoring), motion, repairs, dispensing medication, biological sampling, diagnostics, applying laser treatment, applying ultrasound treatment, grasping, sawing, drilling, providing an electronic stimulus etc.
  • data gathering e.g., image, flow monitoring
  • motion e.g., motion, repairs, dispensing medication, biological sampling, diagnostics, applying laser treatment, applying ultrasound treatment, grasping, sawing, drilling, providing an electronic stimulus etc.
  • the functional modules 54 may be implemented using nanotechnology and/or microelectronic mechanical systems (MEMS) technology.
  • MEMS microelectronic mechanical systems
  • the micro electro-mechanical functional module 54 When requested per the command message (e.g. gather data and report the data), the micro electro-mechanical functional module 54 generates an electro-mechanical response based on the performing the electro-mechanical function.
  • the response may be data (e.g., heart rate, blood sugar levels, temperature, blood flow rate, image of a body object, etc.), a biological sample (e.g., blood sample, tissue sample, etc.), acknowledgement of performing the function (e.g., acknowledge a software update, storing of data, etc.), and/or any appropriate response.
  • the micro electro-mechanical functional module 54 provides the response to the processing module 50 .
  • the processing module 50 converts the electro-mechanical response into an outbound symbol stream, which may be done in accordance with one or more wireless communication standards (e.g., GSM, CDMA, WCDMA, HSUPA, HSDPA, WiMAX, EDGE, GPRS, IEEE 802.11, Bluetooth, ZigBee, universal mobile telecommunications system (UMTS), long term evolution (LTE), IEEE 802.16, evolution data optimized (EV-DO), etc.).
  • wireless communication standards e.g., GSM, CDMA, WCDMA, HSUPA, HSDPA, WiMAX, EDGE, GPRS, IEEE 802.11, Bluetooth, ZigBee, universal mobile telecommunications system (UMTS), long term evolution (LTE), IEEE 802.16, evolution data optimized (EV-DO), etc.
  • Such a conversion includes one or more of: scrambling, puncturing, encoding, interleaving, constellation mapping, modulation, frequency spreading, frequency hopping, beamforming, space-time-block encoding, space-frequency-block
  • a transmitter section of the communication module 48 converts an outbound symbol stream into an outbound RF or MMW signal 60 that has a carrier frequency within a given frequency band (e.g., 900 MHz, 2.5 GHz, 5 GHz, 57-66 GHz, etc.). In an embodiment, this may be done by mixing the outbound symbol stream with a local oscillation to produce an up-converted signal.
  • One or more power amplifiers and/or power amplifier drivers amplifies the up-converted signal, which may be RF or MMW bandpass filtered, to produce the outbound RF or MMW signal 60 .
  • the transmitter section includes an oscillator that produces an oscillation.
  • the outbound symbol stream provides phase information (e.g., +/ ⁇ [phase shift] and/or ⁇ (t) [phase modulation]) that adjusts the phase of the oscillation to produce a phase adjusted RF or MMW signal, which is transmitted as the outbound RF signal 60 .
  • the outbound symbol stream includes amplitude information (e.g., A(t) [amplitude modulation]), which is used to adjust the amplitude of the phase adjusted RF or MMW signal to produce the outbound RF or MMW signal 60 .
  • the transmitter section includes an oscillator that produces an oscillation.
  • the outbound symbol provides frequency information (e.g., +/ ⁇ f [frequency shift] and/or f(t) [frequency modulation]) that adjusts the frequency of the oscillation to produce a frequency adjusted RF or MMW signal, which is transmitted as the outbound RF or MMW signal 60 .
  • the outbound symbol stream includes amplitude information, which is used to adjust the amplitude of the frequency adjusted RF or MMW signal to produce the outbound RF or MMW signal 60 .
  • the transmitter section includes an oscillator that produces an oscillation.
  • the outbound symbol provides amplitude information (e.g., +/ ⁇ A [amplitude shift] and/or A(t) [amplitude modulation) that adjusts the amplitude of the oscillation to produce the outbound RF or MMW signal 60 .
  • the bio-medical unit 10 may be encapsulated by an encapsulate 58 that is non-toxic to the body.
  • the encapsulate 58 may be a silicon based product, a non-ferromagnetic metal alloy (e.g., stainless steel), etc.
  • the encapsulate 58 may include a spherical shape and have a ferromagnetic liner that shields the unit from a magnetic field and to offset the forces of the magnetic field.
  • the bio-medical unit 10 may be implemented on a single die that has an area of a few millimeters or less. The die may be fabricated in accordance with CMOS technology, Gallium-Arsenide technology, and/or any other integrated circuit die fabrication process.
  • one of the functional modules 54 functions as a first micro-electro mechanical module and another one of the functions modules 54 functions as a second micro-electro mechanical module.
  • the bio-medical unit is implanted into a host body (e.g., a person, an animal, a reptile, etc.) at a position proximal to a body object to be monitored and/or have an image taken thereof.
  • the body object may be a vein, an artery, an organ, a cyst (or other growth), etc.
  • the bio-medical unit may be positioned approximately parallel to the flow of blood in a vein, artery, and/or the heart.
  • the first micro-electro mechanical module When powered by the supply voltage, the first micro-electro mechanical module generates and transmits a wireless signal at, or around, the body object.
  • the second micro-electro mechanical module receives a representation of the wireless signal (e.g., a reflection of the wireless signal, a refraction of the wireless signal, or a determined absorption of the wireless signal).
  • the wireless signal may be an ultrasound signal, a radio frequency signal, and/or a millimeter wave signal.
  • the processing module 50 may coordinate the transmitting of the wireless signal and the receiving of the representation of the wireless signal. For example, the processing module may receive, via the communication module, a command to enable the transmitting of the wireless signal (e.g., an ultrasound signal) and the receiving of the representation of the wireless signal. In response, the processing module generates a control signal that it provides to the first micro-electro mechanical module to enable it to transmit the wireless signal.
  • a command to enable the transmitting of the wireless signal (e.g., an ultrasound signal) and the receiving of the representation of the wireless signal.
  • the processing module generates a control signal that it provides to the first micro-electro mechanical module to enable it to transmit the wireless signal.
  • the processing module may generate flow monitoring data based on the second micro-electro mechanical module receiving of the representation of the wireless signal.
  • the processing module calculates a fluid flow rate based on phase shifting and/or frequency shifting between the transmitting of the wireless signal and the receiving of the representation of the wireless signal.
  • the processing module gathers phase shifting data and/or frequency shifting data based on the transmitting of the wireless signal and the receiving of the representation of the wireless signal.
  • the processing module may further generate imaging data based on the second micro-electro mechanical module receiving the representation of the wireless signal.
  • the processing module calculates an image of the body object based absorption of the wireless signal by the body object and/or vibration of the body object.
  • the processing module gathers data regarding the absorption of the wireless signal by the body object and/or of the vibration of the body object.
  • a bio-medical unit may include one or the other module.
  • a bio-medical unit may include a micro-electro mechanical module for transmitting a wireless signal, where the receiver is external to the body or in another bio-medical unit.
  • a bio-medical unit may include a micro-electro mechanical module for receiving a representation of a wireless signal, where the transmitter is external to the body or another bio-medical unit.
  • FIG. 9 is a schematic block diagram of an embodiment of a power harvesting module 46 that includes an array of on-chip air core inductors 64 , a rectifying circuit 66 , capacitors, and a regulation circuit 68 .
  • the inductors 64 may each having an inductance of a few nano-Henries to a few micro-Henries and may be coupled in series, in parallel, or a series parallel combination.
  • the MRI transmitter 20 transmits MRI signals 28 at a frequency of 3-45 MHz at a power level of up to 35 KWatts.
  • the air core inductors 64 are electromagnetically coupled to generate a voltage from the magnetic and/or electric field generated by the MRI signals 28 .
  • the air core inductors 64 may generate a voltage from the magnetic field 26 and changes thereof produced by the gradient coils.
  • the rectifying circuit 66 rectifies the AC voltage produced by the inductors to produce a first DC voltage.
  • the regulation circuit generates one or more desired supply voltages 56 from the first DC voltage.
  • the inductors 64 may be implemented on one more metal layers of the die and include one or more turns per layer. Note that trace thickness, trace length, and other physical properties affect the resulting inductance.
  • FIG. 10 is a schematic block diagram of another embodiment of a power harvesting module 46 that includes a plurality of on-chip air core inductors 70 , a plurality of switching units (S), a rectifying circuit 66 , a capacitor, and a switch controller 72 .
  • the inductors 70 may each having an inductance of a few nano-Henries to a few micro-Henries and may be coupled in series, in parallel, or a series parallel combination.
  • the MRI transmitter 20 transmits MRI signals 28 at a frequency of 3-45 MHz at a power level of up to 35 KWatts.
  • the air core inductors 70 are electromagnetically coupled to generate a voltage from the magnetic and/or electric field generated by the MRI signals 28 .
  • the switching module 72 engages the switches via control signals 74 to couple the inductors 70 in series and/or parallel to generate a desired AC voltage.
  • the rectifier circuit 66 and the capacitor(s) convert the desired AC voltage into the one or more supply voltages 56 .
  • FIG. 11 is a schematic block diagram of another embodiment of a power harvesting module 46 that includes a plurality of Hall effect devices 76 , a power combining module 78 , and a capacitor(s).
  • the Hall effect devices 76 generate a voltage based on the constant magnetic field (H) and/or a varying magnetic field.
  • the power combining module 78 e.g., a wire, a switch network, a transistor network, a diode network, etc.
  • FIG. 12 is a schematic block diagram of another embodiment of a power harvesting module 46 that includes a plurality of piezoelectric devices 82 , a power combining module 78 , and a capacitor(s).
  • the piezoelectric devices 82 generate a voltage based on body movement, ultrasound signals, movement of body fluids, etc.
  • the power combining module 78 e.g., a wire, a switch network, a transistor network, a diode network, etc.
  • the piezoelectric devices 82 may include one or more of a piezoelectric motor, a piezoelectric actuator, a piezoelectric sensor, and/or a piezoelectric high voltage device.
  • the various embodiments of the power harvesting module 46 may be combined to generate more power, more supply voltages, etc.
  • the embodiment of FIG. 9 may be combined with one or more of the embodiments of FIGS. 11 and 12 .
  • FIG. 13 is a schematic block diagram of an embodiment of a power boost module 84 that harvests energy from MRI signals 28 and converts the energy into continuous wave (CW) RF (e.g., up to 3 GHz) and/or MMW (e.g., up to 300 GHz) signals 92 to provide power to the implanted bio-medical units 10 .
  • the power boost module 84 sits on the body of the person under test or treatment and includes an electromagnetic power harvesting module 86 and a continuous wave generator 88 .
  • the power boosting module 84 can recover significantly more energy than a bio-medical unit 10 since it can be significantly larger.
  • a bio-medical unit 10 may have an area of a few millimeters squared while the power boosting module 84 may have an area of a few to tens of centimeters squared.
  • FIG. 14 is a schematic block diagram of an embodiment of an electromagnetic (EM)) power harvesting module 86 that includes inductors, diodes (or transistors) and a capacitor.
  • the inductors may each be a few mili-Henries such that the power boost module can deliver up to 10's of mili-watts of power.
  • FIG. 15 is a schematic block diagram of another embodiment of an electromagnetic (EM)) power harvesting module 86 that includes a plurality of Hall effect devices 76 , a power combining module 78 , and a capacitor. This functions as described with reference to FIG. 11 , but the Hall effect devices 76 can be larger such that more power can be produced. Note that the EM power harvesting module 86 may include a combination of the embodiment of FIG. 14 and the embodiment of FIG. 15 .
  • EM electromagnetic
  • FIG. 16 is a schematic block diagram of another embodiment of a bio-medical unit 10 that includes a power harvesting module 46 , a communication module 48 , a processing module 50 , memory 52 , and may include one or more functional modules 54 and/or a Hall effect communication module 116 .
  • the communication module 48 may include one or more of an ultrasound transceiver 118 (i.e., a receiver and a transmitter), an electromagnetic transceiver 122 , an RF and/or MMW transceiver 120 , and a light source (LED) transceiver 124 .
  • ultrasound transceiver 118 i.e., a receiver and a transmitter
  • an electromagnetic transceiver 122 i.e., an RF and/or MMW transceiver 120
  • a light source (LED) transceiver 124 i.e., a light source
  • the one or more functional modules 54 may perform a repair function, an imaging function, and/or a leakage detection function, which may utilize one or more of a motion propulsion module 96 , a camera module 98 , a sampling robotics module 100 , a treatment robotics module 102 , an accelerometer module 104 , a flow meter module 106 , a transducer module 108 , a gyroscope module 110 , a high voltage generator module 112 , a control release robotics module 114 , and/or other functional modules described with reference to one or more other figures.
  • the functional modules 54 may be implemented using MEMS technology and/or nanotechnology.
  • the camera module 98 may be implemented as a digital image sensor in MEMS technology.
  • the Hall effect communication module 116 utilizes variations in the magnetic field and/or electrical field to produce a plus or minus voltage, which can be encoded to convey information.
  • the charge applied to one or more Hall effect devices 76 may be varied to produce the voltage change.
  • an MRI transmitter 20 and/or gradient unit may modulate a signal on the magnetic field 26 it generates to produce variations in the magnetic field 26 .
  • FIG. 17 is a diagram of another embodiment of a system that includes one or more bio-medical units 10 , a transmitter unit 126 , and a receiver unit 128 .
  • Each of the bio-medical units 10 includes a power harvesting module 46 , a MMW transceiver 138 , a processing module 50 , and memory 52 .
  • the transmitter unit 126 includes a MRI transmitter 130 and a MMW transmitter 132 .
  • the receiver unit 128 includes a MRI receiver 134 and a MMW receiver 136 . Note that the MMW transmitter 132 and MMW receiver 136 may be in the same unit (e.g., in the transmitter unit, in the receiver unit, or housed in a separate device).
  • the bio-medical unit 10 recovers power from the electromagnetic (EM) signals 146 transmitted by the MRI transmitter 130 and communicates via MMW signals 148 - 150 with the MMW transmitter 132 and MMW receiver 136 .
  • the MRI transmitter 130 may be part of a portable MRI device, may be part of a full sized MRI machine, and/or part of a separate device for generating EM signals 146 for powering the bio-medical unit 10 .
  • FIG. 18 is a diagram of an example of a communication protocol within the system of FIG. 17 .
  • the MRI transmitter 20 transmits RF signals 152 , which have a frequency in the range of 3-45 MHz, at various intervals with varying signal strengths.
  • the power harvesting module 46 of the bio-medical units 10 may use these signals to generate power for the bio-medical unit 10 .
  • a constant magnetic field and various gradient magnetic fields 154 - 164 are created (one or more in the x dimension Gx, one or more in the y dimension Gy, and one or more in the z direction Gz).
  • the power harvesting module 46 of the bio-medical unit 10 may further use the constant magnetic field and/or the varying magnetic fields 154 - 164 to create power for the bio-medical unit 10 .
  • the bio-medical unit 10 may communicate 168 with the MMW transmitter 132 and/or MMW receiver 136 .
  • the bio-medical unit 10 alternates from generating power to MMW communication in accordance with the conventional transmission-magnetic field pattern of an MRI machine.
  • FIG. 19 is a diagram of another embodiment of a system includes one or more bio-medical units 10 , a transmitter unit 126 , and a receiver unit 128 .
  • Each of the bio-medical units 10 includes a power harvesting module 46 , an EM transceiver 174 , a processing module 50 , and memory 52 .
  • the transmitter unit 126 includes a MRI transmitter 130 and electromagnetic (EM) modulator 170 .
  • the receiver unit 128 includes a MRI receiver 134 and an EM demodulator 172 .
  • the transmitter unit 126 and receiver unit 128 may be part of a portable MRI device, may be part of a full sized MRI machine, or part of a separate device for generating EM signals for powering the bio-medical unit 10 .
  • the MRI transmitter 130 generates an electromagnetic signal that is received by the EM modulator 170 .
  • the EM modulator 170 modulates a communication signal on the EM signal to produce an inbound modulated EM signal 176 .
  • the EM modulator 170 may modulate (e.g., amplitude modulation, frequency modulation, amplitude shift keying, frequency shift keying, etc.) the magnetic field and/or electric field of the EM signal.
  • the EM modulator 170 may modulate the magnetic fields produced by the gradient coils to produce the inbound modulated EM signals 176 .
  • the bio-medical unit 10 recovers power from the modulated electromagnetic (EM) signals.
  • the EM transceiver 174 demodulates the modulated EM signals 178 to recover the communication signal.
  • the EM transceiver 174 modulates an outbound communication signal to produce outbound modulated EM signals 180 .
  • the EM transceiver 174 is generating an EM signal that, in air, is modulated on the EM signal transmitted by the transmitter unit 126 .
  • the communication in this system is half duplex such that the modulation of the inbound and outbound communication signals is at the same frequency.
  • the modulation of the inbound and outbound communication signals are at different frequencies to enable full duplex communication.
  • FIG. 20 is a diagram of another example of a communication protocol within the system of FIG. 19 .
  • the MRI transmitter 20 transmits RF signals 152 , which have a frequency in the range of 3-45 MHz, at various intervals with varying signal strengths.
  • the power harvesting module 46 of the bio-medical units 10 may use these signals to generate power for the bio-medical unit 10 .
  • a constant magnetic field and various gradient magnetic fields are created 154 - 164 (one or more in the x dimension Gx, one or more in the y dimension Gy, and one or more in the z direction Gz).
  • the power harvesting module 46 of the bio-medical unit 10 may further use the constant magnetic field and/or the varying magnetic fields 154 - 164 to create power for the bio-medical unit 10 .
  • the bio-medical unit 10 may communicate via the modulated EM signals 182 .
  • the bio-medical unit 10 generates power and communicates in accordance with the conventional transmission-magnetic field pattern of an MRI machine.
  • FIG. 21 is a schematic block diagram of an embodiment of a parent bio-medical unit (on the left) communicating with an external unit to coordinates the functions of one or more children bio-medical units 10 (on the right).
  • the parent unit includes a communication module 48 for external communications, a communication module 48 for communication with the children units, the processing module 50 , the memory 52 , and the power harvesting module 46 .
  • the parent unit may be implemented one or more chips and may in the body or one the body.
  • Each of the child units includes a communication module 48 for communication with the parent unit and/or other children units, a MEMS robotics 244 , and the power harvesting module 46 .
  • the MEMS robotics 244 may include one or more of a MEMS technology saw, drill, spreader, needle, injection system, and actuator.
  • the communication module 48 may support RF and/or MMW inbound and/or outbound signals 60 to the parent unit such that the parent unit may command the child units in accordance with external communications commands.
  • the patent bio-medical unit receives a communication from the external source, where the communication indicates a particular function the child units are to perform.
  • the parent unit processes the communication and relays relative portions to the child units in accordance with a control mode.
  • Each of the child units receives their respective commands and performs the corresponding functions to achieve the desired function.
  • FIG. 22 is a schematic block diagram of another embodiment of a plurality of task coordinated bio-medical units 10 including a parent bio-medical unit 10 (on the left) and one or more children bio-medical units 10 (on the right).
  • the parent unit may be implemented one or more chips and may in the body or one the body.
  • the parent unit may harvest power in conjunction with the power booster 84 .
  • the parent unit includes the communication module 48 for external communications, the communication module 48 for communication with the children units, the processing module 50 , the memory 52 , a MEMS electrostatic motor 248 , and the power harvesting module 46 .
  • the child unit includes the communication module 48 for communication with the parent unit and/or other children units, a MEMS electrostatic motor 248 , the MEMS robotics 244 , and the power harvesting module 46 . Note that the child unit has fewer components as compared to the parent unit and may be smaller facilitating more applications where smaller bio-medical units 10 enhances their effectiveness.
  • the MEMS robotics 244 may include one or more of a MEMS technology saw, drill, spreader, needle, injection system, and actuator.
  • the MEMS electrostatic motor 248 may provide mechanical power for the MEMS robotics 244 and/or may provide movement propulsion for the child unit such that the child unit may be positioned to optimize effectiveness.
  • the child units may operate in unison to affect a common task. For example, the plurality of child units may operate in unison to saw through a tissue area.
  • the child unit communication module 48 may support RF and/or MMW inbound and/or outbound signals 60 to the parent unit such that the parent unit may command the children units in accordance with external communications commands.
  • the child unit may determine a control mode and operate in accordance with the control mode, which may be based on one or more of a command from a parent bio-medical unit, external communications, a preprogrammed list, and/or in response to sensor data.
  • the control mode may include autonomous, parent (bio-medical unit), server, and/or peer as previously discussed.
  • FIG. 23 is a schematic block diagram of an embodiment of an electric stimulation system that includes one or more bio-medical units 10 capable of delivering an electric stimulation current (i.e., an electrotherapy signal).
  • Each of the bio-medical unit 10 includes a step-up DC-DC converter 270 , an inverter 272 , a switch 274 , a probe 278 , a nanotechnology or MEMS actuator 276 , the communication module 48 (e.g., for external communications with the communication device and for communications with other bio-medical units), the processing module 50 , the memory 52 , and the power harvesting module 46 .
  • the processing module 50 receives a message via the communication 48 that causes the processing module 50 to generate a high voltage stimuli command as the command message.
  • the pain management functional module e.g., the MEMS actuator 276 , the switch 274 , and/or the probe 278 ) receives the high voltage stimuli command and, in response thereto, establishes a common ground with another bio-medical unit (e.g., couple via a probe or other electrical means).
  • the pain management functional module then produces a high voltage in accordance with the high voltage stimuli command.
  • the step-up DC-DC converter 270 converts a lower DC voltage 280 output of the power harvesting module 46 to a higher DC voltage 282 .
  • the inverter transforms the higher DC voltage 282 to a higher AC voltage 284 .
  • the switch 274 based on the command message, selects one of at least a ground potential, the higher DC voltage 282 , or the higher AC voltage 284 to apply to the probe 278 .
  • the probe 278 applies the selected voltage potential to an object adjacent to the bio-medical unit 10 (e.g., a body point such as an acupuncture point, a nerve, a muscle, etc.) when the probe 278 is mechanically extended beyond the outer encasement of the bio-medical unit 10 .
  • an object adjacent to the bio-medical unit 10 e.g., a body point such as an acupuncture point, a nerve, a muscle, etc.
  • the processing module 50 may control the MEMS actuator 276 to move the probe 278 into position via force 286 to deliver the selected voltage potential or to retract the probe 278 when it is not in use.
  • the probe 278 is in contact with the body without mechanical movement.
  • the processing module 50 may control the MEMS actuator 276 to move the probe 278 into position to deliver a ground potential voltage potential to simulate an acupuncture application.
  • the power harvesting module converts an electromagnetic signal into a supply voltage, which powers the processing module and the pain management functional module.
  • the processing module determines a body point for application of pain treatment and a pain treatment duration. For example, the processing module determines the body point to correspond to a ligament with in a person's knee. In addition, the processing module determines the pain treatment duration to be 15 minutes. The processing module that generates a control signal regarding the body point and the pain treatment duration and provides the control signal to the pain management functional module.
  • the communication module 48 receives a communication from an external communication device 24 regarding the pain treatment.
  • the communication module receives a wireless communication signal from an external communication device 24 and converts it into a baseband or near-baseband signal.
  • the processing module converts the baseband or near-baseband signal into a pain treatment command. From the pain treatment command, the processing module determines at least one of the body point and the treatment duration.
  • the pain management functional module receives the control signal and, in response thereto, generates an electrotherapy signal, which is directed toward the body point.
  • the pain management functional module includes an actuator module 276 , a needle probe 278 , and a high-voltage generator (e.g., 270 and 272 , which will be described in greater detail with reference to FIG. 24 ).
  • the actuator module 276 applies a force 286 upon the needle probe 278 such that the needle probe is positioned proximal to the body point.
  • the high-voltage generator produces the electrotherapy signal that is applied to the body point via the needle probe 278 .
  • the bio-medical unit may further include a cleaning module that is operable to clean the needle probe.
  • electro-therapy as applied by the bio medical unit 10 , may be used for such medical treatment as deep brain stimulation for treating neurological diseases, to speed up wound healing, to improve bone healing, to provide pain management, to improve joint range of motion, to treat neuromuscular dysfunction, to improve motor control, to retard muscle atrophy, to improve local blood flow, to improve tissue repair by enhancing microcirculation and protein synthesis, to restore integrity of connective and dermal tissue, to function as a pharmacological agent, improve continence, and/or to relax muscle spasms.
  • medical treatment as deep brain stimulation for treating neurological diseases, to speed up wound healing, to improve bone healing, to provide pain management, to improve joint range of motion, to treat neuromuscular dysfunction, to improve motor control, to retard muscle atrophy, to improve local blood flow, to improve tissue repair by enhancing microcirculation and protein synthesis, to restore integrity of connective and dermal tissue, to function as a pharmacological agent, improve continence, and/or to relax muscle spasms.
  • FIG. 24 is a schematic diagram of an embodiment of a voltage conversion circuit including a step-up DC-DC converter 270 and an inverter 272 .
  • the step-up DC-DC converter 270 includes an input inductor 288 , a pair of switching transistors, a smoothing capacitor, and a control circuit 290 .
  • the inductor 288 may be implemented as one or more air core inductors 288 .
  • the control circuit 290 operates the switching transistors to interact with the inductor 288 and capacitor to provide the higher DC voltage 282 potential at the output.
  • the inverter 272 includes a transformer 294 , a pair of switching transistors, and a control circuit 292 .
  • the transformer 294 may be implemented as a 1:1 air core transformer 294 (or other turn ratios) with three single turn coils on different layers with the output between the input coil layers.
  • the control circuit 292 operates the switching transistors to interact with the inductance of the transformer 294 to provide an alternating current at the input of the transformer 294 to produce the higher AC voltage 284 potential at the output.
  • FIG. 25 is a schematic block diagram of an embodiment of a pain blocking bio-medical unit 10 to provide an amplitude modulated (AM) signal 346 (i.e., an electrotherapy signal) to facilitate gate control of pain.
  • the bio-medical unit 10 includes the communication module 48 (e.g., for external communications with the communication device and for communications with other bio-medical units), a MEMS propulsion 348 , the processing module 50 , the memory 52 , the power harvesting module 46 , a frequency adjust 350 , an amplitude modulation 352 , a MMW oscillator 354 , and a power amplifier 356 (PA).
  • the communication module 48 e.g., for external communications with the communication device and for communications with other bio-medical units
  • MEMS propulsion 348 e.g., for external communications with the communication device and for communications with other bio-medical units
  • the processing module 50 e.g., the memory 52 , the power harvesting module 46 , a frequency adjust 350 , an
  • the bio-medical unit 10 communicates with other bio-medical units 10 and/or with the communication device 24 to communicate status information and/or commands.
  • the bio-medical unit 10 receives a command from the communication device 24 to reposition, adjust the MMW frequency, and transmit MMW signals to mediate pain.
  • the communication device 24 may send a command to a plurality of bio-medical units 10 to coordinate the formation of a beam to better pinpoint the pain mediation.
  • the processing module 50 controls the MEMS propulsion 348 to reposition the bio-medical unit 10 .
  • the processing module 50 determines how to control the frequency adjust 350 and amplitude modulation 352 to affect the pain based on a command, a predetermination, and/or an adaptive algorithm (e.g., that detects local pain).
  • the amplitude modulation module 352 generates an amplitude modulation signal based on the control signal and the oscillator 354 generates an oscillation at a frequency much greater than that of the amplitude modulation signal.
  • the power amplifier amplifies the oscillation in accordance with the amplitude modulation signal to produce the electrotherapy signal, which is transmitted by an antenna.
  • FIG. 26 is a schematic block diagram of an embodiment of a self-cleaning sampling bio-medical unit 10 where a wave based MEMS cleaner 390 facilitates cleaning of a sampling sub-system.
  • the bio-medical unit 10 includes the wave based MEMS cleaner 390 for a MEMS sample analyzer 392 , a pipette 394 , a needle 396 , and a MEMS actuator 276 .
  • the bio-medical unit 10 also includes the communication module 48 (e.g., for external communications with the communication device and for communications with other bio-medical units), the processing module 50 , the memory 52 , and the power harvesting module 46 .
  • the processing module 50 determines when to perform a sampling and cleaning of the sampling sub-system based on a command, a predetermination, and/or an adaptive algorithm (e.g., based on a sample history).
  • the processing module 50 may precede each sampling with a cleaning, follow each sampling with a cleaning, or some combination of both.
  • the processing module determines to clean the unit 10 , it issues a command to the wave based MEMS cleaner 390 to clean the components of the sampling sub-system.
  • the wave based MEMS cleaner 390 may perform the cleaning with one or methods including heating, vibrating, RF energy, laser light, and/or sound waves.
  • the bio-medical unit 10 includes a MEMS canister 340 with a cleaning agent that is released during the cleaning sequence and expelled through the needle 396 .
  • the processing module determines to collect a biological sample (e.g., blood, tissue, etc.)
  • a biological sample e.g., blood, tissue, etc.
  • it issues a command to the MEMS actuator 276 , which applies a force 286 to move the needle 396 into the sampling position.
  • the needle 396 is exposed to the outside of the bio-medical unit 10 (e.g., extends into the body) to collect the requested sample.
  • the pipette 394 moves the sample from the needle 396 to the MEMS sample analyzer 392 .
  • the MEMS sample analyzer 392 provides the processing module 50 with sample information that includes blood analysis, pH analysis, temperature, oxygen level, other gas levels, toxin analysis, medication analysis, and/or chemical analysis.
  • the processing module 50 processes the sample information to produce processed sample information, which it sends to another bio-medical unit 10 and/or to a communication unit 24 for further processing.
  • FIG. 27 is a schematic block diagram of a bio-medical unit 10 that includes a power harvesting module 46 , a communication module 48 , a processing module 50 , memory 52 , an oscillator 355 , an amplifier 357 , and a light emitting module 359 .
  • the bio-medical unit 10 may further include a MEMS propulsion module 348 .
  • the power harvesting module 46 convert an electromagnetic signal into a supply voltage, which powers the processing module 50 and the pain management functional module (e.g., the oscillator 355 , the amplifier 357 , and the light emitting module 359 ).
  • the communication module 48 receives a wireless communication signal from an external communication device 24 and converts it into a baseband or near-baseband signal.
  • the processing module converts the baseband or near-baseband signal into a pain treatment command, which includes information regarding a body point and a treatment duration.
  • the processing module then generates a control signal based on the body point and the pain treatment duration.
  • the pain management functional module receives the control signal and, in response thereto, generates a laser signal.
  • the pain management functional module directs the laser signal at the body point.
  • the oscillator 355 generates an oscillation in accordance with the control signal.
  • the oscillator generates an oscillation having a particular frequency (and/or varying frequency) as dictated by the control signal.
  • the amplifier 357 amplifies the oscillation in accordance with the control signal to set intensity of the laser signal.
  • the light emitting module 359 generates the laser signal from the oscillation and/or the amplified oscillation.
  • the laser signal generated by the bio-medical unit 10 may be used to alter cellular function.
  • the alteration of cellular functions may be varied.
  • the laser signal may be used for pain relief from rheumatoid arthritis, neck pain, joint disorders, low back pain, wound healing, and/or osteoarthritis.
  • the laser signal may reduce pain related to inflammation using dosages in a range of 0.3 to 19 joules per square centimeter.
  • FIG. 28 is a schematic block diagram of a bio-medical unit 10 that relieves pain utilizing acupuncture techniques.
  • the bio-medical unit 10 includes a power harvesting moduli 46 , a communication module 48 , a processing module 50 , memory 52 , an actuator 276 and a needle probe 278 .
  • the power harvesting module 46 convert an electromagnetic signal into a supply voltage, which powers the processing module 50 and the pain management functional module (e.g., actuator 276 and needle probe 278 ).
  • the communication module 48 receives a wireless communication signal from an external communication device 24 and converts it into a baseband or near-baseband signal.
  • the processing module converts the baseband or near-baseband signal into a pain treatment command, which includes information regarding an acupuncture point and a treatment duration.
  • the processing module then generates a control signal based on the acupuncture point and the pain treatment duration.
  • the pain management functional module receives the control signal and actuates a needling of the acupuncture point in accordance with the control signal.
  • the actuator module 276 applies a force to the needle probe 278 in accordance with the control signal such that the needle probe provides the needling of the acupuncture point.
  • the bio-medical unit 10 may further include a cleaning module that cleans the needle probe after the needling of the acupuncture point. Such a cleaning mechanism was described with reference to FIG. 26 .
  • the biomedical unit includes a plurality of pain treatment functional modules to needle a plurality of acupuncture points.
  • the processing module generates a plurality of control signals that identify a plurality of acupuncture points and a plurality of treatment durations.
  • the pain management module further includes a high-voltage generator that generates an electrotherapy signal from the supply voltage and transmits the electrotherapy signal via the needle probe.
  • acupuncture points exist on meridians that correspond to blood flow within the body.
  • acupuncture points may lie where local pain exists, which may result from a stagnation of blood.
  • acupuncture points may lie along the feedback pathways of the cerebral cortex, which can be used to reduce pain.
  • the terms “substantially” and “approximately” provides an industry-accepted tolerance for its corresponding term and/or relativity between items. Such an industry-accepted tolerance ranges from less than one percent to fifty percent and corresponds to, but is not limited to, component values, integrated circuit process variations, temperature variations, rise and fall times, and/or thermal noise. Such relativity between items ranges from a difference of a few percent to magnitude differences.
  • the term(s) “coupled to” and/or “coupling” and/or includes direct coupling between items and/or indirect coupling between items via an intervening item (e.g., an item includes, but is not limited to, a component, an element, a circuit, and/or a module) where, for indirect coupling, the intervening item does not modify the information of a signal but may adjust its current level, voltage level, and/or power level.
  • an intervening item e.g., an item includes, but is not limited to, a component, an element, a circuit, and/or a module
  • inferred coupling i.e., where one element is coupled to another element by inference
  • the term “operable to” indicates that an item includes one or more of power connections, input(s), output(s), etc., to perform one or more its corresponding functions and may further include inferred coupling to one or more other items.
  • the term “associated with”, includes direct and/or indirect coupling of separate items and/or one item being embedded within another item.
  • the term “compares favorably”, indicates that a comparison between two or more items, signals, etc., provides a desired relationship. For example, when the desired relationship is that signal 1 has a greater magnitude than signal 2 , a favorable comparison may be achieved when the magnitude of signal 1 is greater than that of signal 2 or when the magnitude of signal 2 is less than that of signal 1 .

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Medical Informatics (AREA)
  • Biomedical Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Epidemiology (AREA)
  • Primary Health Care (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Business, Economics & Management (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Radiology & Medical Imaging (AREA)
  • General Business, Economics & Management (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Hematology (AREA)
  • Anesthesiology (AREA)
  • Signal Processing (AREA)
  • Biophysics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Pathology (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Dermatology (AREA)
  • Optics & Photonics (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Tourism & Hospitality (AREA)
  • Child & Adolescent Psychology (AREA)
  • Economics (AREA)
  • Human Resources & Organizations (AREA)
  • Marketing (AREA)
  • Strategic Management (AREA)

Abstract

A bio-medical unit includes a power harvesting module, a processing module, and a pain management functional module. The power harvesting module converts an electromagnetic signal into a supply voltage, wherein the bio-medical unit is operable within a host body. The processing module determines an acupuncture point of the host body and a treatment duration. The processing module then generates a control signal based on the acupuncture point and the treatment duration. The pain management functional module receives the control signal and actuates a needling of the acupuncture point in accordance with the control signal.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • This patent application is claiming priority under 35 USC §119 to a provisionally filed patent application entitled BIO-MEDICAL UNIT AND APPLICATIONS THEREOF, having a provisional filing date of Sep. 30, 2009, and a provisional Ser. No. 61/247,060.
  • STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT
  • Not Applicable
  • INCORPORATION-BY-REFERENCE OF MATERIAL SUBMITTED ON A COMPACT DISC
  • Not Applicable
  • BACKGROUND OF THE INVENTION
  • 1. Technical Field of the Invention
  • This invention relates generally to medical equipment and more particularly to wireless medical equipment.
  • 2. Description of Related Art
  • As is known, there is a wide variety of medical equipment that aids in the diagnosis, monitoring, and/or treatment of patients' medical conditions. For instances, there are diagnostic medical devices, therapeutic medical devices, life support medical devices, medical monitoring devices, medical laboratory equipment, etc. As specific exampled magnetic resonance imaging (MRI) devices produce images that illustrate the internal structure and function of a body.
  • The advancement of medical equipment is in step with the advancements of other technologies (e.g., radio frequency identification (RFID), robotics, etc.). Recently, RFID technology has been used for in vitro use to store patient information for easy access. While such in vitro applications have begun, the technical advancement in this area is in its infancy.
  • BRIEF SUMMARY OF THE INVENTION
  • The present invention is directed to apparatus and methods of operation that are further described in the following Brief Description of the Drawings, the Detailed Description of the Invention, and the claims. Other features and advantages of the present invention will become apparent from the following detailed description of the invention made with reference to the accompanying drawings.
  • BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWING(S)
  • FIG. 1 is a diagram of an embodiment of a system in accordance with the present invention;
  • FIG. 2 is a diagram of another embodiment of a system in accordance with the present invention;
  • FIG. 3 is a diagram of an embodiment of an artificial body part including one or more bio-medical units in accordance with the present invention;
  • FIG. 4 is a schematic block diagram of an embodiment of an artificial body part in accordance with the present invention;
  • FIG. 5 is a diagram of another embodiment of a system in accordance with the present invention;
  • FIG. 6 is a diagram of another embodiment of a system in accordance with the present invention;
  • FIG. 7 is a diagram of another embodiment of a system in accordance with the present invention;
  • FIG. 8 is a schematic block diagram of an embodiment of a bio-medical unit in accordance with the present invention;
  • FIG. 9 is a schematic block diagram of an embodiment of a power harvesting module in accordance with the present invention;
  • FIG. 10 is a schematic block diagram of another embodiment of a power harvesting module in accordance with the present invention;
  • FIG. 11 is a schematic block diagram of another embodiment of a power harvesting module in accordance with the present invention;
  • FIG. 12 is a schematic block diagram of another embodiment of a power harvesting module in accordance with the present invention;
  • FIG. 13 is a schematic block diagram of an embodiment of a power boost module in accordance with the present invention;
  • FIG. 14 is a schematic block diagram of an embodiment of an electromagnetic (EM)) power harvesting module in accordance with the present invention;
  • FIG. 15 is a schematic block diagram of another embodiment of an electromagnetic (EM)) power harvesting module in accordance with the present invention;
  • FIG. 16 is a schematic block diagram of another embodiment of a bio-medical unit in accordance with the present invention;
  • FIG. 17 is a diagram of another embodiment of a system in accordance with the present invention;
  • FIG. 18 is a diagram of an example of a communication protocol within a system in accordance with the present invention;
  • FIG. 19 is a diagram of another embodiment of a system in accordance with the present invention;
  • FIG. 20 is a diagram of another example of a communication protocol within a system in accordance with the present invention;
  • FIG. 21 is a diagram of an embodiment of a network of bio-medical units that include MEMS robotics in accordance with the present invention;
  • FIG. 22 is a diagram of another embodiment of a network of bio-medical units that include MEMS robotics in accordance with the present invention;
  • FIG. 23 is a diagram of an embodiment of a network of bio-medical units for facilitating electrical stimulus treatment in accordance with the present invention;
  • FIG. 24 is a diagram of an embodiment of power conversion modules in a bio-medical unit of FIG. 23 in accordance with the present invention;
  • FIG. 25 is a diagram of an embodiment of a bio-medical unit facilitating pain blocking in accordance with the present invention;
  • FIG. 26 is a diagram of an embodiment of a bio-medical unit including sampling modules in accordance with the present invention;
  • FIG. 27 is a diagram of another embodiment of a bio-medical unit facilitating pain blocking in accordance with the present invention; and
  • FIG. 28 is a diagram of another embodiment of a bio-medical unit facilitating pain blocking in accordance with the present invention.
  • DETAILED DESCRIPTION OF THE INVENTION
  • FIG. 1 is a diagram of an embodiment of a system that includes a plurality of bio-medical units 10 embedded within a body and/or placed on the surface of the body to facilitate diagnosis, treatment, and/or data collections. Each of the bio-medical units 10 is a passive device (e.g., it does not include a power source (e.g., a battery)) and, as such, includes a power harvesting module. The bio-medical units 10 may also include one or more of memory, a processing module, and functional modules. Alternatively, or in addition to, each of the bio-medical units 10 may include a rechargeable power source.
  • In operation, a transmitter 12 emits electromagnetic signals 16 that pass through the body and are received by a receiver 14. The transmitter 12 and receiver 14 may be part of a piece of medical diagnostic equipment (e.g., magnetic resonance imaging (MRI), X-ray, etc.) or independent components for stimulating and communicating with the network of bio-medical units in and/or on a body. One or more of the bio-medical units 10 receives the transmitted electromagnetic signals 16 and generates a supply voltage therefrom. Examples of this will be described in greater detail with reference to FIGS. 8-12.
  • Embedded within the electromagnetic signals 16 (e.g., radio frequency (RF) signals, millimeter wave (MMW) signals, MRI signals, etc.) or via separate signals, the transmitter 12 communicates with one or more of the bio-medical units 10. For example, the electromagnetic signals 16 may have a frequency in the range of a few MHz to 900 MHz and the communication with the bio-medical units 10 is modulated on the electromagnetic signals 16 at a much higher frequency (e.g., 5 GHz to 300 GHz). As another example, the communication with the bio-medical units 10 may occur during gaps (e.g., per protocol of medical equipment or injected for communication) of transmitting the electromagnetic signals 16. As another example, the communication with the bio-medical units 10 occurs in a different frequency band and/or using a different transmission medium (e.g., use RF or MMW signals when the magnetic field of the electromagnetic signals are dominate, use ultrasound signals when the electromagnetic signals 16 are RF and/or MMW signals, etc.).
  • One or more of the bio-medical units 10 receives the communication signals 18 and processes them accordingly. The communication signals 18 may be instructions to collect data, to transmit collected data, to move the unit's position in the body, to perform a function, to administer a treatment, etc. If the received communication signals 18 require a response, the bio-medical unit 10 prepares an appropriate response and transmits it to the receiver 14 using a similar communication convention used by the transmitter 12.
  • FIG. 2 is a diagram of another embodiment of a system that includes a plurality of bio-medical units 10 embedded within a body and/or placed on the surface of the body to facilitate diagnosis, treatment, and/or data collections. Each of the bio-medical units 10 is a passive device and, as such, includes a power harvesting module. The bio-medical units 10 may also include one or more of memory, a processing module, and functional modules. In this embodiment, the person is placed in an MRI machine (fixed or portable) that generates a magnetic field 26 through which the MRI transmitter 20 transmits MRI signals 28 to the MRI receiver 22.
  • One or more of the bio-medical units 10 powers itself by harvesting energy from the magnetic field 26 or changes thereof as produced by gradient coils, from the magnetic fields of the MRI signals 28, from the electrical fields of the MRI signals 28, and/or from the electromagnetic aspects of the MRI signals 28. A unit 10 converts the harvested energy into a supply voltage that supplies other components of the unit (e.g., a communication module, a processing module, memory, a functional module, etc.).
  • A communication device 24 communicates data and/or control communications 30 with one or more of the bio-medical units 10 over one or more wireless links. The communication device 24 may be a separate device from the MRI machine or integrated into the MRI machine. For example, the communication device 24, whether integrated or separate, may be a cellular telephone, a computer with a wireless interface (e.g., a WLAN station and/or access point, Bluetooth, a proprietary protocol, etc.), etc. A wireless link may be one or more frequencies in the ISM band, in the 60 GHz frequency band, the ultrasound frequency band, and/or other frequency bands that supports one or more communication protocols (e.g., data modulation schemes, beamforming, RF or MMW modulation, encoding, error correction, etc.).
  • The composition of the bio-medical units 10 includes non-ferromagnetic materials (e.g., paramagnetic or diamagnetic) and/or metal alloys that are minimally affected by an external magnetic field 26. In this regard, the units harvest power from the MRI signals 28 and communicate using RF and/or MMW electromagnetic signals with negligible chance of encountering the projectile or missile effect of implants that include ferromagnetic materials.
  • FIG. 3 is a diagram of an embodiment of an artificial body part 32 including one or more bio-medical units 10 that may be surgically implanted into a body. The artificial body part 32 may be a pace maker, a breast implant, a joint replacement, an artificial bone, splints, fastener devices (e.g., screws, plates, pins, sutures, etc.), artificial organ, etc. The artificial body part 32 may be permanently embedded in the body or temporarily embedded into the body.
  • FIG. 4 is a schematic block diagram of an embodiment of an artificial body part 32 that includes one or more bio-medical units 10. For instance, one bio-medical unit 10 may be used to detect infections, the body's acceptance of the artificial body part 32, measure localized body temperature, monitor performance of the artificial body part 32, and/or data gathering for other diagnostics. Another bio-medical unit 10 may be used for deployment of treatment (e.g., disperse medication, apply electrical stimulus, apply RF radiation, apply laser stimulus, etc.). Yet another bio-medical unit 10 may be used to adjust the position of the artificial body part 32 and/or a setting of the artificial body part 32. For example, a bio-medical unit 10 may be used to mechanically adjust the tension of a splint, screws, etc. As another example, a bio-medical unit 10 may be used to adjust an electrical setting of the artificial body part 32.
  • FIG. 5 is a diagram of another embodiment of a system that includes a plurality of bio-medical units 10 and one or more communication devices 24 coupled to a wide area network (WAN) communication device 34 (e.g., a cable modem, DSL modem, base station, access point, hot spot, etc.). The WAN communication device 34 is coupled to a network 42 (e.g., cellular telephone network, internet, etc.), which has coupled to it a plurality of remote monitors 36, a plurality of databases 40, and a plurality of computers 38. The communication device 24 includes a processing module and a wireless transceiver module (e.g., one or more transceivers) and may function similarly to communication module 48 as described in FIG. 8,
  • In this system, one or more bio-medical units 10 are implanted in, or affixed to, a host body (e.g., a person, an animal, genetically grown tissue, etc.). As previously discussed and will be discussed in greater detail with reference to one or more of the following figures, a bio-medical unit includes a power harvesting module, a communication module, and one or more functional modules. The power harvesting module operable to produce a supply voltage from a received electromagnetic power signal (e.g., the electromagnetic signal 16 of FIGS. 1 and 2, the MRI signals of one or more the subsequent figures). The communication module and the at least one functional module are powered by the supply voltage.
  • In an example of operation, the communication device 24 (e.g., integrated into an MRI machine, a cellular telephone, a computer with a wireless interface, etc.) receives a downstream WAN signal from the network 42 via the WAN communication device 34. The downstream WAN signal may be generated by a remote monitoring device 36, a remote diagnostic device (e.g., computer 38 performing a remote diagnostic function), a remote control device (e.g., computer 38 performing a remote control function), and/or a medical record storage device (e.g., database 40).
  • The communication device 24 converts the downstream WAN signal into a downstream data signal. For example, the communication device 24 may convert the downstream WAN signal into a symbol stream in accordance with one or more wireless communication protocols (e.g., GSM, CDMA, WCDMA, HSUPA, HSDPA, WiMAX, EDGE, GPRS, IEEE 802.11, Bluetooth, ZigBee, universal mobile telecommunications system (UMTS), long term evolution (LTE), IEEE 802.16, evolution data optimized (EV-DO), etc.). The communication device 24 may convert the symbol stream into the downstream data signal using the same or a different wireless communication protocol.
  • Alternatively, the communication device 24 may convert the symbol stream into data that it interprets to determine how to structure the communication with the bio-medical unit 10 and/or what data (e.g., instructions, commands, digital information, etc.) to include in the downstream data signal. Having determined how to structure and what to include in the downstream data signal, the communication device 24 generates the downstream data signal in accordance with one or more wireless communication protocols. As yet another alternative, the communication device 24 may function as a relay, which provides the downstream WAN signal as the downstream data signal to the one or more bio-medical units 10.
  • When the communication device 24 has (and/or is processing) the downstream data signal to send to the bio-medical unit, it sets up a communication with the bio-medical unit. The set up may include identifying the particular bio-medical unit(s), determining the communication protocol used by the identified bio-medical unit(s), sending a signal to an electromagnetic device (e.g., MRI device, etc.) to request that it generates the electromagnetic power signal to power the bio-medical unit, and/or initiate a communication in accordance with the identified communication protocol. As an alternative to requesting a separate electromagnetic device to create the electromagnetic power signal, the communication device may include an electromagnetic device to create the electromagnetic power signal.
  • Having set up the communication, the communication device 24 wirelessly communicates the downstream data signal to the communication module of the bio-medical unit 10. The functional module of the bio-medical unit 10 processes the downstream data contained in the downstream data signal to perform a bio-medical functional, to store digital information contained in the downstream data, to administer a treatment (e.g., administer a medication, apply laser stimulus, apply electrical stimulus, etc.), to collect a sample (e.g., blood, tissue, cell, etc.), to perform a micro electro-mechanical function, and/or to collect data. For example, the bio-medical function may include capturing a digital image, capturing a radio frequency (e.g., 300 MHz to 300 GHz) radar image, an ultrasound image, a tissue sample, and/or a measurement (e.g., blood pressure, temperature, pulse, blood-oxygen level, blood sugar level, etc.).
  • When the downstream data requires a response, the functional module performs a bio-medical function to produce upstream data. The communication module converts the upstream data into an upstream data signal in accordance with the one or more wireless protocols. The communication device 24 converts the upstream data signal into an upstream wide area network (WAN) signal and transmits it to a remote diagnostic device, a remote control device, and/or a medical record storage device. In this manner, a person(s) operating the remote monitors 36 may view images and/or the data 30 gathered by the bio-medical units 10. This enables a specialist to be consulted without requiring the patient to travel to the specialist's office.
  • In another example of operation, one or more of the computers 38 may communicate with the bio-medical units 10 via the communication device 24, the WAN communication device 34, and the network 42. In this example, the computer 36 may provide commands 30 to one or more of the bio-medical units 10 to gather data, to dispense a medication, to move to a new position in the body, to perform a mechanical function (e.g., cut, grasp, drill, puncture, stitch, patch, etc.), etc. As such, the bio-medical units 10 may be remotely controlled via one or more of the computers 36.
  • In another example of operation, one or more of the bio-medical units 10 may read and/or write data from or to one or more of the databases 40. For example, data (e.g., a blood sample analysis) generated by one or more of the bio-medical units 10 may be written to one of the databases 40. The communication device 24 and/or one of the computers 36 may control the writing of data to or the reading of data from the database(s) 40. The data may further include medical records, medical images, prescriptions, etc.
  • FIG. 6 is a diagram of another embodiment of a system that includes a plurality of bio-medical units 10. In this embodiment, the bio-medical units 10 can communicate with each other directly and/or communicate with the communication device 24 directly. The communication medium may be an infrared channel(s), an RF channel(s), a MMW channel(s), and/or ultrasound. The units may use a communication protocol such as token passing, carrier sense, time division multiplexing, code division multiplexing, frequency division multiplexing, etc.
  • FIG. 7 is a diagram of another embodiment of a system that includes a plurality of bio-medical units 10. In this embodiment, one of the bio-medical units 44 functions as an access point for the other units. As such, the designated unit 44 routes communications between the units 10 and between one or more units 10 and the communication device 24. The communication medium may be an infrared channel(s), an RF channel(s), a MMW channel(s), and/or ultrasound. The units 10 may use a communication protocol such as token passing, carrier sense, time division multiplexing, code division multiplexing, frequency division multiplexing, etc.
  • FIG. 8 is a schematic block diagram of an embodiment of a bio-medical unit 10 that includes a power harvesting module 46, a communication module 48, a processing module 50, memory 52, and one or more functional modules 54. The processing module 50 may be a single processing device or a plurality of processing devices. Such a processing device may be a microprocessor, micro-controller, digital signal processor, microcomputer, central processing unit, field programmable gate array, programmable logic device, state machine, logic circuitry, analog circuitry, digital circuitry, and/or any device that manipulates signals (analog and/or digital) based on hard coding of the circuitry and/or operational instructions. The processing module 50 may have an associated memory 52 and/or memory element, which may be a single memory device, a plurality of memory devices, and/or embedded circuitry of the processing module. Such a memory device 52 may be a read-only memory, random access memory, volatile memory, non-volatile memory, static memory, dynamic memory, flash memory, cache memory, and/or any device that stores digital information. Note that if the processing module 50 includes more than one processing device, the processing devices may be centrally located (e.g., directly coupled together via a wired and/or wireless bus structure) or may be distributedly located (e.g., cloud computing via indirect coupling via a local area network and/or a wide area network). Further note that when the processing module 50 implements one or more of its functions via a state machine, analog circuitry, digital circuitry, and/or logic circuitry, the memory and/or memory element storing the corresponding operational instructions may be embedded within, or external to, the circuitry comprising the state machine, analog circuitry, digital circuitry, and/or logic circuitry. Still further note that, the memory element stores, and the processing module executes, hard coded and/or operational instructions corresponding to at least some of the steps and/or functions illustrated in FIGS. 1-26.
  • The power harvesting module 46 may generate one or more supply voltages 56 (Vdd) from a power source signal (e.g., one or more of MRI electromagnetic signals 16, magnetic fields 26, RF signals, MMW signals, ultrasound signals, light signals, and body motion). The power harvesting module 46 may be implemented as disclosed in U.S. Pat. No. 7,595,732 to generate one or more supply voltages from an RF signal. The power harvesting module 46 may be implemented as shown in one or more FIGS. 9-11 to generate one or more supply voltages 56 from an MRI signal 28 and/or magnetic field 26. The power harvesting module 46 may be implemented as shown in FIG. 12 to generate one or more supply voltage 56 from body motion. Regardless of how the power harvesting module generates the supply voltage(s), the supply voltage(s) are used to power the communication module 48, the processing module 50, the memory 52, and/or the functional modules 54.
  • In an example of operation, a receiver section of the communication module 48 receives an inbound wireless communication signal 60 and converts it into an inbound symbol stream. For example, the receiver section amplifies an inbound wireless (e.g., RF or MMW) signal 60 to produce an amplified inbound RF or MMW signal. The receiver section may then mix in-phase (I) and quadrature (Q) components of the amplified inbound RF or MMW signal with in-phase and quadrature components of a local oscillation to produce a mixed I signal and a mixed Q signal. The mixed I and Q signals are combined to produce an inbound symbol stream. In this embodiment, the inbound symbol may include phase information (e.g., +/−Δθ [phase shift] and/or θ(t) [phase modulation]) and/or frequency information (e.g., +/−Δf [frequency shift] and/or f(t) [frequency modulation]). In another embodiment and/or in furtherance of the preceding embodiment, the inbound RF or MMW signal includes amplitude information (e.g., +/−ΔA [amplitude shift] and/or A(t) [amplitude modulation]). To recover the amplitude information, the receiver section includes an amplitude detector such as an envelope detector, a low pass filter, etc.
  • The processing module 50 converts the inbound symbol stream into inbound data and generates a command message based on the inbound data. The command message may instruction one or more of the functional modules to perform one or more electro-mechanical functions of gathering data (e.g., imaging data, flow monitoring data), dispensing a medication, moving to a new position in the body, performing a mechanical function (e.g., cut, grasp, drill, puncture, stitch, patch, etc.), dispensing a treatment, collecting a biological sample, etc.
  • To convert the inbound symbol stream into the inbound data (e.g., voice, text, audio, video, graphics, etc.), the processing module 50 may perform one or more of: digital intermediate frequency to baseband conversion, time to frequency domain conversion, space-time-block decoding, space-frequency-block decoding, demodulation, frequency spread decoding, frequency hopping decoding, beamforming decoding, constellation demapping, deinterleaving, decoding, depuncturing, and/or descrambling. Such a conversion is typically prescribed by one or more wireless communication standards (e.g., GSM, CDMA, WCDMA, HSUPA, HSDPA, WiMAX, EDGE, GPRS, IEEE 802.11, Bluetooth, ZigBee, universal mobile telecommunications system (UMTS), long term evolution (LTE), IEEE 802.16, evolution data optimized (EV-DO), etc.).
  • The processing module 50 provides the command message to one or more of the micro-electromechanical functional modules 54. The functional module 54 performs an electro-mechanical function within a hosting body in accordance with the command message. Such an electro-mechanical function includes at least one of data gathering (e.g., image, flow monitoring), motion, repairs, dispensing medication, biological sampling, diagnostics, applying laser treatment, applying ultrasound treatment, grasping, sawing, drilling, providing an electronic stimulus etc. Note that the functional modules 54 may be implemented using nanotechnology and/or microelectronic mechanical systems (MEMS) technology.
  • When requested per the command message (e.g. gather data and report the data), the micro electro-mechanical functional module 54 generates an electro-mechanical response based on the performing the electro-mechanical function. For example, the response may be data (e.g., heart rate, blood sugar levels, temperature, blood flow rate, image of a body object, etc.), a biological sample (e.g., blood sample, tissue sample, etc.), acknowledgement of performing the function (e.g., acknowledge a software update, storing of data, etc.), and/or any appropriate response. The micro electro-mechanical functional module 54 provides the response to the processing module 50.
  • The processing module 50 converts the electro-mechanical response into an outbound symbol stream, which may be done in accordance with one or more wireless communication standards (e.g., GSM, CDMA, WCDMA, HSUPA, HSDPA, WiMAX, EDGE, GPRS, IEEE 802.11, Bluetooth, ZigBee, universal mobile telecommunications system (UMTS), long term evolution (LTE), IEEE 802.16, evolution data optimized (EV-DO), etc.). Such a conversion includes one or more of: scrambling, puncturing, encoding, interleaving, constellation mapping, modulation, frequency spreading, frequency hopping, beamforming, space-time-block encoding, space-frequency-block encoding, frequency to time domain conversion, and/or digital baseband to intermediate frequency conversion.
  • A transmitter section of the communication module 48 converts an outbound symbol stream into an outbound RF or MMW signal 60 that has a carrier frequency within a given frequency band (e.g., 900 MHz, 2.5 GHz, 5 GHz, 57-66 GHz, etc.). In an embodiment, this may be done by mixing the outbound symbol stream with a local oscillation to produce an up-converted signal. One or more power amplifiers and/or power amplifier drivers amplifies the up-converted signal, which may be RF or MMW bandpass filtered, to produce the outbound RF or MMW signal 60. In another embodiment, the transmitter section includes an oscillator that produces an oscillation. The outbound symbol stream provides phase information (e.g., +/−Δθ [phase shift] and/or θ(t) [phase modulation]) that adjusts the phase of the oscillation to produce a phase adjusted RF or MMW signal, which is transmitted as the outbound RF signal 60. In another embodiment, the outbound symbol stream includes amplitude information (e.g., A(t) [amplitude modulation]), which is used to adjust the amplitude of the phase adjusted RF or MMW signal to produce the outbound RF or MMW signal 60.
  • In yet another embodiment, the transmitter section includes an oscillator that produces an oscillation. The outbound symbol provides frequency information (e.g., +/−Δf [frequency shift] and/or f(t) [frequency modulation]) that adjusts the frequency of the oscillation to produce a frequency adjusted RF or MMW signal, which is transmitted as the outbound RF or MMW signal 60. In another embodiment, the outbound symbol stream includes amplitude information, which is used to adjust the amplitude of the frequency adjusted RF or MMW signal to produce the outbound RF or MMW signal 60. In a further embodiment, the transmitter section includes an oscillator that produces an oscillation. The outbound symbol provides amplitude information (e.g., +/−ΔA [amplitude shift] and/or A(t) [amplitude modulation) that adjusts the amplitude of the oscillation to produce the outbound RF or MMW signal 60.
  • Note that the bio-medical unit 10 may be encapsulated by an encapsulate 58 that is non-toxic to the body. For example, the encapsulate 58 may be a silicon based product, a non-ferromagnetic metal alloy (e.g., stainless steel), etc. As another example, the encapsulate 58 may include a spherical shape and have a ferromagnetic liner that shields the unit from a magnetic field and to offset the forces of the magnetic field. Further note that the bio-medical unit 10 may be implemented on a single die that has an area of a few millimeters or less. The die may be fabricated in accordance with CMOS technology, Gallium-Arsenide technology, and/or any other integrated circuit die fabrication process.
  • In another example of operation, one of the functional modules 54 functions as a first micro-electro mechanical module and another one of the functions modules 54 functions as a second micro-electro mechanical module. In this example, the bio-medical unit is implanted into a host body (e.g., a person, an animal, a reptile, etc.) at a position proximal to a body object to be monitored and/or have an image taken thereof. For example, the body object may be a vein, an artery, an organ, a cyst (or other growth), etc. As a specific example, the bio-medical unit may be positioned approximately parallel to the flow of blood in a vein, artery, and/or the heart.
  • When powered by the supply voltage, the first micro-electro mechanical module generates and transmits a wireless signal at, or around, the body object. The second micro-electro mechanical module receives a representation of the wireless signal (e.g., a reflection of the wireless signal, a refraction of the wireless signal, or a determined absorption of the wireless signal). Note that the wireless signal may be an ultrasound signal, a radio frequency signal, and/or a millimeter wave signal.
  • The processing module 50 may coordinate the transmitting of the wireless signal and the receiving of the representation of the wireless signal. For example, the processing module may receive, via the communication module, a command to enable the transmitting of the wireless signal (e.g., an ultrasound signal) and the receiving of the representation of the wireless signal. In response, the processing module generates a control signal that it provides to the first micro-electro mechanical module to enable it to transmit the wireless signal.
  • In addition, the processing module may generate flow monitoring data based on the second micro-electro mechanical module receiving of the representation of the wireless signal. As a specific example, the processing module calculates a fluid flow rate based on phase shifting and/or frequency shifting between the transmitting of the wireless signal and the receiving of the representation of the wireless signal. As another specific example, the processing module gathers phase shifting data and/or frequency shifting data based on the transmitting of the wireless signal and the receiving of the representation of the wireless signal.
  • The processing module may further generate imaging data based on the second micro-electro mechanical module receiving the representation of the wireless signal. As a specific example, the processing module calculates an image of the body object based absorption of the wireless signal by the body object and/or vibration of the body object. As another specific example, the processing module gathers data regarding the absorption of the wireless signal by the body object and/or of the vibration of the body object.
  • While the preceding examples of a bio-medical unit including first and second micro-electro mechanical modules for transmitting and receiving wireless signals (e.g., ultrasound, RF, MMW, etc.), a bio-medical unit may include one or the other module. For example, a bio-medical unit may include a micro-electro mechanical module for transmitting a wireless signal, where the receiver is external to the body or in another bio-medical unit. As another example, a bio-medical unit may include a micro-electro mechanical module for receiving a representation of a wireless signal, where the transmitter is external to the body or another bio-medical unit.
  • FIG. 9 is a schematic block diagram of an embodiment of a power harvesting module 46 that includes an array of on-chip air core inductors 64, a rectifying circuit 66, capacitors, and a regulation circuit 68. The inductors 64 may each having an inductance of a few nano-Henries to a few micro-Henries and may be coupled in series, in parallel, or a series parallel combination.
  • In an example of operation, the MRI transmitter 20 transmits MRI signals 28 at a frequency of 3-45 MHz at a power level of up to 35 KWatts. The air core inductors 64 are electromagnetically coupled to generate a voltage from the magnetic and/or electric field generated by the MRI signals 28. Alternatively, or in addition to, the air core inductors 64 may generate a voltage from the magnetic field 26 and changes thereof produced by the gradient coils. The rectifying circuit 66 rectifies the AC voltage produced by the inductors to produce a first DC voltage. The regulation circuit generates one or more desired supply voltages 56 from the first DC voltage.
  • The inductors 64 may be implemented on one more metal layers of the die and include one or more turns per layer. Note that trace thickness, trace length, and other physical properties affect the resulting inductance.
  • FIG. 10 is a schematic block diagram of another embodiment of a power harvesting module 46 that includes a plurality of on-chip air core inductors 70, a plurality of switching units (S), a rectifying circuit 66, a capacitor, and a switch controller 72. The inductors 70 may each having an inductance of a few nano-Henries to a few micro-Henries and may be coupled in series, in parallel, or a series parallel combination.
  • In an example of operation, the MRI transmitter 20 transmits MRI signals 28 at a frequency of 3-45 MHz at a power level of up to 35 KWatts. The air core inductors 70 are electromagnetically coupled to generate a voltage from the magnetic and/or electric field generated by the MRI signals 28. The switching module 72 engages the switches via control signals 74 to couple the inductors 70 in series and/or parallel to generate a desired AC voltage. The rectifier circuit 66 and the capacitor(s) convert the desired AC voltage into the one or more supply voltages 56.
  • FIG. 11 is a schematic block diagram of another embodiment of a power harvesting module 46 that includes a plurality of Hall effect devices 76, a power combining module 78, and a capacitor(s). In an example of operation, the Hall effect devices 76 generate a voltage based on the constant magnetic field (H) and/or a varying magnetic field. The power combining module 78 (e.g., a wire, a switch network, a transistor network, a diode network, etc.) combines the voltages of the Hall effect devices 76 to produce the one or more supply voltages 56.
  • FIG. 12 is a schematic block diagram of another embodiment of a power harvesting module 46 that includes a plurality of piezoelectric devices 82, a power combining module 78, and a capacitor(s). In an example of operation, the piezoelectric devices 82 generate a voltage based on body movement, ultrasound signals, movement of body fluids, etc. The power combining module 78 (e.g., a wire, a switch network, a transistor network, a diode network, etc.) combines the voltages of the Hall effect devices 82 to produce the one or more supply voltages 56. Note that the piezoelectric devices 82 may include one or more of a piezoelectric motor, a piezoelectric actuator, a piezoelectric sensor, and/or a piezoelectric high voltage device.
  • The various embodiments of the power harvesting module 46 may be combined to generate more power, more supply voltages, etc. For example, the embodiment of FIG. 9 may be combined with one or more of the embodiments of FIGS. 11 and 12.
  • FIG. 13 is a schematic block diagram of an embodiment of a power boost module 84 that harvests energy from MRI signals 28 and converts the energy into continuous wave (CW) RF (e.g., up to 3 GHz) and/or MMW (e.g., up to 300 GHz) signals 92 to provide power to the implanted bio-medical units 10. The power boost module 84 sits on the body of the person under test or treatment and includes an electromagnetic power harvesting module 86 and a continuous wave generator 88. In such an embodiment, the power boosting module 84 can recover significantly more energy than a bio-medical unit 10 since it can be significantly larger. For example, a bio-medical unit 10 may have an area of a few millimeters squared while the power boosting module 84 may have an area of a few to tens of centimeters squared.
  • FIG. 14 is a schematic block diagram of an embodiment of an electromagnetic (EM)) power harvesting module 86 that includes inductors, diodes (or transistors) and a capacitor. The inductors may each be a few mili-Henries such that the power boost module can deliver up to 10's of mili-watts of power.
  • FIG. 15 is a schematic block diagram of another embodiment of an electromagnetic (EM)) power harvesting module 86 that includes a plurality of Hall effect devices 76, a power combining module 78, and a capacitor. This functions as described with reference to FIG. 11, but the Hall effect devices 76 can be larger such that more power can be produced. Note that the EM power harvesting module 86 may include a combination of the embodiment of FIG. 14 and the embodiment of FIG. 15.
  • FIG. 16 is a schematic block diagram of another embodiment of a bio-medical unit 10 that includes a power harvesting module 46, a communication module 48, a processing module 50, memory 52, and may include one or more functional modules 54 and/or a Hall effect communication module 116. The communication module 48 may include one or more of an ultrasound transceiver 118 (i.e., a receiver and a transmitter), an electromagnetic transceiver 122, an RF and/or MMW transceiver 120, and a light source (LED) transceiver 124. Note that examples of the various types of communication modules 48 will be described in greater detail with reference to one or more of the subsequent Figures.
  • The one or more functional modules 54 may perform a repair function, an imaging function, and/or a leakage detection function, which may utilize one or more of a motion propulsion module 96, a camera module 98, a sampling robotics module 100, a treatment robotics module 102, an accelerometer module 104, a flow meter module 106, a transducer module 108, a gyroscope module 110, a high voltage generator module 112, a control release robotics module 114, and/or other functional modules described with reference to one or more other figures. The functional modules 54 may be implemented using MEMS technology and/or nanotechnology. For example, the camera module 98 may be implemented as a digital image sensor in MEMS technology.
  • The Hall effect communication module 116 utilizes variations in the magnetic field and/or electrical field to produce a plus or minus voltage, which can be encoded to convey information. For example, the charge applied to one or more Hall effect devices 76 may be varied to produce the voltage change. As another example, an MRI transmitter 20 and/or gradient unit may modulate a signal on the magnetic field 26 it generates to produce variations in the magnetic field 26.
  • FIG. 17 is a diagram of another embodiment of a system that includes one or more bio-medical units 10, a transmitter unit 126, and a receiver unit 128. Each of the bio-medical units 10 includes a power harvesting module 46, a MMW transceiver 138, a processing module 50, and memory 52. The transmitter unit 126 includes a MRI transmitter 130 and a MMW transmitter 132. The receiver unit 128 includes a MRI receiver 134 and a MMW receiver 136. Note that the MMW transmitter 132 and MMW receiver 136 may be in the same unit (e.g., in the transmitter unit, in the receiver unit, or housed in a separate device).
  • In an example of operation, the bio-medical unit 10 recovers power from the electromagnetic (EM) signals 146 transmitted by the MRI transmitter 130 and communicates via MMW signals 148-150 with the MMW transmitter 132 and MMW receiver 136. The MRI transmitter 130 may be part of a portable MRI device, may be part of a full sized MRI machine, and/or part of a separate device for generating EM signals 146 for powering the bio-medical unit 10.
  • FIG. 18 is a diagram of an example of a communication protocol within the system of FIG. 17. In this diagram, the MRI transmitter 20 transmits RF signals 152, which have a frequency in the range of 3-45 MHz, at various intervals with varying signal strengths. The power harvesting module 46 of the bio-medical units 10 may use these signals to generate power for the bio-medical unit 10.
  • In addition to the MRI transmitter 20 transmitting its signal, a constant magnetic field and various gradient magnetic fields 154-164 are created (one or more in the x dimension Gx, one or more in the y dimension Gy, and one or more in the z direction Gz). The power harvesting module 46 of the bio-medical unit 10 may further use the constant magnetic field and/or the varying magnetic fields 154-164 to create power for the bio-medical unit 10.
  • During non-transmission periods of the cycle, the bio-medical unit 10 may communicate 168 with the MMW transmitter 132 and/or MMW receiver 136. In this regard, the bio-medical unit 10 alternates from generating power to MMW communication in accordance with the conventional transmission-magnetic field pattern of an MRI machine.
  • FIG. 19 is a diagram of another embodiment of a system includes one or more bio-medical units 10, a transmitter unit 126, and a receiver unit 128. Each of the bio-medical units 10 includes a power harvesting module 46, an EM transceiver 174, a processing module 50, and memory 52. The transmitter unit 126 includes a MRI transmitter 130 and electromagnetic (EM) modulator 170. The receiver unit 128 includes a MRI receiver 134 and an EM demodulator 172. The transmitter unit 126 and receiver unit 128 may be part of a portable MRI device, may be part of a full sized MRI machine, or part of a separate device for generating EM signals for powering the bio-medical unit 10.
  • In an example of operation, the MRI transmitter 130 generates an electromagnetic signal that is received by the EM modulator 170. The EM modulator 170 modulates a communication signal on the EM signal to produce an inbound modulated EM signal 176. The EM modulator 170 may modulate (e.g., amplitude modulation, frequency modulation, amplitude shift keying, frequency shift keying, etc.) the magnetic field and/or electric field of the EM signal. In another embodiment, the EM modulator 170 may modulate the magnetic fields produced by the gradient coils to produce the inbound modulated EM signals 176.
  • The bio-medical unit 10 recovers power from the modulated electromagnetic (EM) signals. In addition, the EM transceiver 174 demodulates the modulated EM signals 178 to recover the communication signal. For outbound signals, the EM transceiver 174 modulates an outbound communication signal to produce outbound modulated EM signals 180. In this instance, the EM transceiver 174 is generating an EM signal that, in air, is modulated on the EM signal transmitted by the transmitter unit 126. In one embodiment, the communication in this system is half duplex such that the modulation of the inbound and outbound communication signals is at the same frequency. In another embodiment, the modulation of the inbound and outbound communication signals are at different frequencies to enable full duplex communication.
  • FIG. 20 is a diagram of another example of a communication protocol within the system of FIG. 19. In this diagram, the MRI transmitter 20 transmits RF signals 152, which have a frequency in the range of 3-45 MHz, at various intervals with varying signal strengths. The power harvesting module 46 of the bio-medical units 10 may use these signals to generate power for the bio-medical unit 10.
  • In addition to the MRI transmitter 20 transmitting its signal, a constant magnetic field and various gradient magnetic fields are created 154-164 (one or more in the x dimension Gx, one or more in the y dimension Gy, and one or more in the z direction Gz). The power harvesting module 46 of the bio-medical unit 10 may further use the constant magnetic field and/or the varying magnetic fields 154-164 to create power for the bio-medical unit 10.
  • During the transmission periods of the cycle, the bio-medical unit 10 may communicate via the modulated EM signals 182. In this regard, the bio-medical unit 10 generates power and communicates in accordance with the conventional transmission-magnetic field pattern of an MRI machine.
  • FIG. 21 is a schematic block diagram of an embodiment of a parent bio-medical unit (on the left) communicating with an external unit to coordinates the functions of one or more children bio-medical units 10 (on the right). The parent unit includes a communication module 48 for external communications, a communication module 48 for communication with the children units, the processing module 50, the memory 52, and the power harvesting module 46. Note that the parent unit may be implemented one or more chips and may in the body or one the body.
  • Each of the child units includes a communication module 48 for communication with the parent unit and/or other children units, a MEMS robotics 244, and the power harvesting module 46. The MEMS robotics 244 may include one or more of a MEMS technology saw, drill, spreader, needle, injection system, and actuator. The communication module 48 may support RF and/or MMW inbound and/or outbound signals 60 to the parent unit such that the parent unit may command the child units in accordance with external communications commands.
  • In an example of operation, the patent bio-medical unit receives a communication from the external source, where the communication indicates a particular function the child units are to perform. The parent unit processes the communication and relays relative portions to the child units in accordance with a control mode. Each of the child units receives their respective commands and performs the corresponding functions to achieve the desired function.
  • FIG. 22 is a schematic block diagram of another embodiment of a plurality of task coordinated bio-medical units 10 including a parent bio-medical unit 10 (on the left) and one or more children bio-medical units 10 (on the right). The parent unit may be implemented one or more chips and may in the body or one the body. The parent unit may harvest power in conjunction with the power booster 84.
  • The parent unit includes the communication module 48 for external communications, the communication module 48 for communication with the children units, the processing module 50, the memory 52, a MEMS electrostatic motor 248, and the power harvesting module 46. The child unit includes the communication module 48 for communication with the parent unit and/or other children units, a MEMS electrostatic motor 248, the MEMS robotics 244, and the power harvesting module 46. Note that the child unit has fewer components as compared to the parent unit and may be smaller facilitating more applications where smaller bio-medical units 10 enhances their effectiveness.
  • The MEMS robotics 244 may include one or more of a MEMS technology saw, drill, spreader, needle, injection system, and actuator. The MEMS electrostatic motor 248 may provide mechanical power for the MEMS robotics 244 and/or may provide movement propulsion for the child unit such that the child unit may be positioned to optimize effectiveness. The child units may operate in unison to affect a common task. For example, the plurality of child units may operate in unison to saw through a tissue area.
  • The child unit communication module 48 may support RF and/or MMW inbound and/or outbound signals 60 to the parent unit such that the parent unit may command the children units in accordance with external communications commands. The child unit may determine a control mode and operate in accordance with the control mode, which may be based on one or more of a command from a parent bio-medical unit, external communications, a preprogrammed list, and/or in response to sensor data. Note that the control mode may include autonomous, parent (bio-medical unit), server, and/or peer as previously discussed.
  • FIG. 23 is a schematic block diagram of an embodiment of an electric stimulation system that includes one or more bio-medical units 10 capable of delivering an electric stimulation current (i.e., an electrotherapy signal). Each of the bio-medical unit 10 includes a step-up DC-DC converter 270, an inverter 272, a switch 274, a probe 278, a nanotechnology or MEMS actuator 276, the communication module 48 (e.g., for external communications with the communication device and for communications with other bio-medical units), the processing module 50, the memory 52, and the power harvesting module 46.
  • In an example of operation, the processing module 50 receives a message via the communication 48 that causes the processing module 50 to generate a high voltage stimuli command as the command message. The pain management functional module (e.g., the MEMS actuator 276, the switch 274, and/or the probe 278) receives the high voltage stimuli command and, in response thereto, establishes a common ground with another bio-medical unit (e.g., couple via a probe or other electrical means). The pain management functional module then produces a high voltage in accordance with the high voltage stimuli command.
  • For instance, the step-up DC-DC converter 270 converts a lower DC voltage 280 output of the power harvesting module 46 to a higher DC voltage 282. The inverter transforms the higher DC voltage 282 to a higher AC voltage 284. The switch 274, based on the command message, selects one of at least a ground potential, the higher DC voltage 282, or the higher AC voltage 284 to apply to the probe 278. The probe 278 applies the selected voltage potential to an object adjacent to the bio-medical unit 10 (e.g., a body point such as an acupuncture point, a nerve, a muscle, etc.) when the probe 278 is mechanically extended beyond the outer encasement of the bio-medical unit 10. For example, the processing module 50 may control the MEMS actuator 276 to move the probe 278 into position via force 286 to deliver the selected voltage potential or to retract the probe 278 when it is not in use. In another example, the probe 278 is in contact with the body without mechanical movement. Note that the processing module 50 may control the MEMS actuator 276 to move the probe 278 into position to deliver a ground potential voltage potential to simulate an acupuncture application.
  • In another example of operation, the power harvesting module converts an electromagnetic signal into a supply voltage, which powers the processing module and the pain management functional module. The processing module determines a body point for application of pain treatment and a pain treatment duration. For example, the processing module determines the body point to correspond to a ligament with in a person's knee. In addition, the processing module determines the pain treatment duration to be 15 minutes. The processing module that generates a control signal regarding the body point and the pain treatment duration and provides the control signal to the pain management functional module.
  • In one instance, the communication module 48 receives a communication from an external communication device 24 regarding the pain treatment. For example, the communication module receives a wireless communication signal from an external communication device 24 and converts it into a baseband or near-baseband signal. The processing module converts the baseband or near-baseband signal into a pain treatment command. From the pain treatment command, the processing module determines at least one of the body point and the treatment duration.
  • The pain management functional module receives the control signal and, in response thereto, generates an electrotherapy signal, which is directed toward the body point. For example, the pain management functional module includes an actuator module 276, a needle probe 278, and a high-voltage generator (e.g., 270 and 272, which will be described in greater detail with reference to FIG. 24). In response to the control signal, the actuator module 276 applies a force 286 upon the needle probe 278 such that the needle probe is positioned proximal to the body point. When in that position, the high-voltage generator produces the electrotherapy signal that is applied to the body point via the needle probe 278. While not shown in FIG. 23, the bio-medical unit may further include a cleaning module that is operable to clean the needle probe.
  • In general, electro-therapy, as applied by the bio medical unit 10, may be used for such medical treatment as deep brain stimulation for treating neurological diseases, to speed up wound healing, to improve bone healing, to provide pain management, to improve joint range of motion, to treat neuromuscular dysfunction, to improve motor control, to retard muscle atrophy, to improve local blood flow, to improve tissue repair by enhancing microcirculation and protein synthesis, to restore integrity of connective and dermal tissue, to function as a pharmacological agent, improve continence, and/or to relax muscle spasms.
  • FIG. 24 is a schematic diagram of an embodiment of a voltage conversion circuit including a step-up DC-DC converter 270 and an inverter 272. The step-up DC-DC converter 270 includes an input inductor 288, a pair of switching transistors, a smoothing capacitor, and a control circuit 290. The inductor 288 may be implemented as one or more air core inductors 288. The control circuit 290 operates the switching transistors to interact with the inductor 288 and capacitor to provide the higher DC voltage 282 potential at the output.
  • The inverter 272 includes a transformer 294, a pair of switching transistors, and a control circuit 292. The transformer 294 may be implemented as a 1:1 air core transformer 294 (or other turn ratios) with three single turn coils on different layers with the output between the input coil layers. The control circuit 292 operates the switching transistors to interact with the inductance of the transformer 294 to provide an alternating current at the input of the transformer 294 to produce the higher AC voltage 284 potential at the output.
  • FIG. 25 is a schematic block diagram of an embodiment of a pain blocking bio-medical unit 10 to provide an amplitude modulated (AM) signal 346 (i.e., an electrotherapy signal) to facilitate gate control of pain. The bio-medical unit 10 includes the communication module 48 (e.g., for external communications with the communication device and for communications with other bio-medical units), a MEMS propulsion 348, the processing module 50, the memory 52, the power harvesting module 46, a frequency adjust 350, an amplitude modulation 352, a MMW oscillator 354, and a power amplifier 356 (PA).
  • The bio-medical unit 10 communicates with other bio-medical units 10 and/or with the communication device 24 to communicate status information and/or commands. For example, the bio-medical unit 10 receives a command from the communication device 24 to reposition, adjust the MMW frequency, and transmit MMW signals to mediate pain. In another example, the communication device 24 may send a command to a plurality of bio-medical units 10 to coordinate the formation of a beam to better pinpoint the pain mediation.
  • The processing module 50 controls the MEMS propulsion 348 to reposition the bio-medical unit 10. In addition, the processing module 50 determines how to control the frequency adjust 350 and amplitude modulation 352 to affect the pain based on a command, a predetermination, and/or an adaptive algorithm (e.g., that detects local pain).
  • In an example of operation, the amplitude modulation module 352 generates an amplitude modulation signal based on the control signal and the oscillator 354 generates an oscillation at a frequency much greater than that of the amplitude modulation signal. The power amplifier amplifies the oscillation in accordance with the amplitude modulation signal to produce the electrotherapy signal, which is transmitted by an antenna.
  • FIG. 26 is a schematic block diagram of an embodiment of a self-cleaning sampling bio-medical unit 10 where a wave based MEMS cleaner 390 facilitates cleaning of a sampling sub-system. The bio-medical unit 10 includes the wave based MEMS cleaner 390 for a MEMS sample analyzer 392, a pipette 394, a needle 396, and a MEMS actuator 276. The bio-medical unit 10 also includes the communication module 48 (e.g., for external communications with the communication device and for communications with other bio-medical units), the processing module 50, the memory 52, and the power harvesting module 46.
  • The processing module 50 determines when to perform a sampling and cleaning of the sampling sub-system based on a command, a predetermination, and/or an adaptive algorithm (e.g., based on a sample history). The processing module 50 may precede each sampling with a cleaning, follow each sampling with a cleaning, or some combination of both.
  • When the processing module determines to clean the unit 10, it issues a command to the wave based MEMS cleaner 390 to clean the components of the sampling sub-system. The wave based MEMS cleaner 390 may perform the cleaning with one or methods including heating, vibrating, RF energy, laser light, and/or sound waves. In another example, the bio-medical unit 10 includes a MEMS canister 340 with a cleaning agent that is released during the cleaning sequence and expelled through the needle 396.
  • When the processing module determines to collect a biological sample (e.g., blood, tissue, etc.), it issues a command to the MEMS actuator 276, which applies a force 286 to move the needle 396 into the sampling position. In this position, the needle 396 is exposed to the outside of the bio-medical unit 10 (e.g., extends into the body) to collect the requested sample. The pipette 394 moves the sample from the needle 396 to the MEMS sample analyzer 392.
  • The MEMS sample analyzer 392 provides the processing module 50 with sample information that includes blood analysis, pH analysis, temperature, oxygen level, other gas levels, toxin analysis, medication analysis, and/or chemical analysis. The processing module 50 processes the sample information to produce processed sample information, which it sends to another bio-medical unit 10 and/or to a communication unit 24 for further processing.
  • FIG. 27 is a schematic block diagram of a bio-medical unit 10 that includes a power harvesting module 46, a communication module 48, a processing module 50, memory 52, an oscillator 355, an amplifier 357, and a light emitting module 359. The bio-medical unit 10 may further include a MEMS propulsion module 348. The power harvesting module 46 convert an electromagnetic signal into a supply voltage, which powers the processing module 50 and the pain management functional module (e.g., the oscillator 355, the amplifier 357, and the light emitting module 359).
  • In an example of operation, the communication module 48 receives a wireless communication signal from an external communication device 24 and converts it into a baseband or near-baseband signal. The processing module converts the baseband or near-baseband signal into a pain treatment command, which includes information regarding a body point and a treatment duration. The processing module then generates a control signal based on the body point and the pain treatment duration.
  • The pain management functional module receives the control signal and, in response thereto, generates a laser signal. The pain management functional module directs the laser signal at the body point. For example, the oscillator 355 generates an oscillation in accordance with the control signal. For instance, the oscillator generates an oscillation having a particular frequency (and/or varying frequency) as dictated by the control signal. The amplifier 357 amplifies the oscillation in accordance with the control signal to set intensity of the laser signal. The light emitting module 359 generates the laser signal from the oscillation and/or the amplified oscillation.
  • The laser signal generated by the bio-medical unit 10 may be used to alter cellular function. By adjusting the wavelength, timing, pulsing, duration, and/or direction of the laser signal the alteration of cellular functions may be varied. In particular, the laser signal may be used for pain relief from rheumatoid arthritis, neck pain, joint disorders, low back pain, wound healing, and/or osteoarthritis. For instance, the laser signal may reduce pain related to inflammation using dosages in a range of 0.3 to 19 joules per square centimeter.
  • FIG. 28 is a schematic block diagram of a bio-medical unit 10 that relieves pain utilizing acupuncture techniques. The bio-medical unit 10 includes a power harvesting moduli 46, a communication module 48, a processing module 50, memory 52, an actuator 276 and a needle probe 278. The power harvesting module 46 convert an electromagnetic signal into a supply voltage, which powers the processing module 50 and the pain management functional module (e.g., actuator 276 and needle probe 278).
  • In an example of operation, the communication module 48 receives a wireless communication signal from an external communication device 24 and converts it into a baseband or near-baseband signal. The processing module converts the baseband or near-baseband signal into a pain treatment command, which includes information regarding an acupuncture point and a treatment duration. The processing module then generates a control signal based on the acupuncture point and the pain treatment duration.
  • The pain management functional module receives the control signal and actuates a needling of the acupuncture point in accordance with the control signal. For example, the actuator module 276 applies a force to the needle probe 278 in accordance with the control signal such that the needle probe provides the needling of the acupuncture point. Note that the bio-medical unit 10 may further include a cleaning module that cleans the needle probe after the needling of the acupuncture point. Such a cleaning mechanism was described with reference to FIG. 26.
  • In another example of operation, the biomedical unit includes a plurality of pain treatment functional modules to needle a plurality of acupuncture points. In this example, the processing module generates a plurality of control signals that identify a plurality of acupuncture points and a plurality of treatment durations. In yet another example of operation, the pain management module further includes a high-voltage generator that generates an electrotherapy signal from the supply voltage and transmits the electrotherapy signal via the needle probe.
  • The acupuncture points exist on meridians that correspond to blood flow within the body. In addition, acupuncture points may lie where local pain exists, which may result from a stagnation of blood. Further, acupuncture points may lie along the feedback pathways of the cerebral cortex, which can be used to reduce pain.
  • As may be used herein, the terms “substantially” and “approximately” provides an industry-accepted tolerance for its corresponding term and/or relativity between items. Such an industry-accepted tolerance ranges from less than one percent to fifty percent and corresponds to, but is not limited to, component values, integrated circuit process variations, temperature variations, rise and fall times, and/or thermal noise. Such relativity between items ranges from a difference of a few percent to magnitude differences. As may also be used herein, the term(s) “coupled to” and/or “coupling” and/or includes direct coupling between items and/or indirect coupling between items via an intervening item (e.g., an item includes, but is not limited to, a component, an element, a circuit, and/or a module) where, for indirect coupling, the intervening item does not modify the information of a signal but may adjust its current level, voltage level, and/or power level. As may further be used herein, inferred coupling (i.e., where one element is coupled to another element by inference) includes direct and indirect coupling between two items in the same manner as “coupled to”. As may even further be used herein, the term “operable to” indicates that an item includes one or more of power connections, input(s), output(s), etc., to perform one or more its corresponding functions and may further include inferred coupling to one or more other items. As may still further be used herein, the term “associated with”, includes direct and/or indirect coupling of separate items and/or one item being embedded within another item. As may be used herein, the term “compares favorably”, indicates that a comparison between two or more items, signals, etc., provides a desired relationship. For example, when the desired relationship is that signal 1 has a greater magnitude than signal 2, a favorable comparison may be achieved when the magnitude of signal 1 is greater than that of signal 2 or when the magnitude of signal 2 is less than that of signal 1.
  • The present invention has also been described above with the aid of method steps illustrating the performance of specified functions and relationships thereof. The boundaries and sequence of these functional building blocks and method steps have been arbitrarily defined herein for convenience of description. Alternate boundaries and sequences can be defined so long as the specified functions and relationships are appropriately performed. Any such alternate boundaries or sequences are thus within the scope and spirit of the claimed invention.
  • The present invention has been described above with the aid of functional building blocks illustrating the performance of certain significant functions. The boundaries of these functional building blocks have been arbitrarily defined for convenience of description. Alternate boundaries could be defined as long as the certain significant functions are appropriately performed. Similarly, flow diagram blocks may also have been arbitrarily defined herein to illustrate certain significant functionality. To the extent used, the flow diagram block boundaries and sequence could have been defined otherwise and still perform the certain significant functionality. Such alternate definitions of both functional building blocks and flow diagram blocks and sequences are thus within the scope and spirit of the claimed invention. One of average skill in the art will also recognize that the functional building blocks, and other illustrative blocks, modules and components herein, can be implemented as illustrated or by discrete components, application specific integrated circuits, processors executing appropriate software and the like or any combination thereof.

Claims (16)

1. A bio-medical unit comprises:
a power harvesting module operable to convert an electromagnetic signal into a supply voltage, wherein the bio-medical unit is operable within a host body;
a processing module powered by the supply voltage and operable to:
determine an acupuncture point of the host body;
determine a treatment duration; and
generate a control signal based on the acupuncture point and the treatment duration; and
a pain management functional module powered by the supply voltage and operable to:
receive the control signal; and
actuate a needling of the acupuncture point in accordance with the control signal.
2. The bio-medical unit of claim 1 further comprises:
a communication module powered by the supply voltage and operable to:
receive a wireless communication signal from an external communication device;
convert the wireless communication signal into a baseband or near-baseband signal; and
provide the baseband or near-baseband signal to the processing module; and
the processing module is further operable to:
convert the baseband or near-baseband signal into a pain treatment command; and
determine at least one of the acupuncture point and the treatment duration based on the pain treatment command.
3. The bio-medical unit of claim 1 further comprises:
the processing module operable to:
determine a second acupuncture point of the host body;
determine a second treatment duration; and
generate a second control signal based on the second acupuncture point and second the treatment duration; and
a second pain management functional module operable to:
receive the second control signal; and
actuate a needling of the second acupuncture point in accordance with the second control signal.
4. The bio-medical unit of claim 1, wherein the pain management functional module comprises:
an actuator module; and
a needle probe, wherein the actuator module applies a force to the needle probe in accordance with the control signal such that the needle probe provides the needling of the acupuncture point.
5. The bio-medical unit of claim 4, wherein the pain management function module further comprises:
a cleaning module operable to clean the needle probe after the needling of the acupuncture point.
6. The bio-medical unit of claim 4, wherein the pain management module further comprises:
a high-voltage generator operable to:
generate an electrotherapy signal from the supply voltage; and
transmit the electrotherapy signal via the needle probe.
7. A bio-medical unit comprises:
a power harvesting module operable to convert an electromagnetic signal into a supply voltage;
a processing module powered by the supply voltage and operable to:
determine a body point for application of pain treatment;
determine a pain treatment duration;
generate a control signal based on the body point and the pain treatment duration;
a pain management functional module powered by the supply voltage and operable to:
receive the control signal;
generate an electrotherapy signal in accordance with the control signal; and
direct the electrotherapy signal at the body point.
8. The bio-medical unit of claim 7 further comprises:
a communication module powered by the supply voltage and operable to:
receive a wireless communication signal from an external communication device;
convert the wireless communication signal into a baseband or near-baseband signal; and
provide the baseband or near-baseband signal to the processing module; and
the processing module is further operable to:
convert the baseband or near-baseband signal into a pain treatment command; and
determine at least one of the body point and the treatment duration based on the pain treatment command.
9. The bio-medical unit of claim 7, wherein the pain management functional module comprises:
an actuator module;
a needle probe, wherein the actuator module applies a force on the needle probe to position the needle probe proximal to the body point; and
a high-voltage generator operable to:
generate the electrotherapy signal from the supply voltage; and
transmit the electrotherapy signal via the needle probe to the body point.
10. The bio-medical unit of claim 9, wherein the pain management function module further comprises:
a cleaning module operable to clean the needle probe.
11. The bio-medical unit of claim 7, wherein the pain management module further comprises:
an amplitude modulation module operable to generate an amplitude modulation signal based on the control signal;
an oscillator operable to generate an oscillation;
a power amplifier operable to amply the oscillation in accordance with the amplitude modulation signal to produce the electrotherapy signal; and
an antenna operable to transmit the electrotherapy signal at the body point.
12. A bio-medical unit comprises:
a power harvesting module operable to convert an electromagnetic signal into a supply voltage;
a processing module powered by the supply voltage and operable to:
determine a body point for application of pain treatment;
determine a pain treatment duration;
generate a control signal based on the body point and the pain treatment duration;
a pain management functional module powered by the supply voltage and operable to:
receive the control signal;
generate a laser signal in accordance with the control signal; and
direct the laser signal at the body point.
13. The bio-medical unit of claim 12 further comprises:
a communication module powered by the supply voltage and operable to:
receive a wireless communication signal from an external communication device;
convert the wireless communication signal into a baseband or near-baseband signal; and
provide the baseband or near-baseband signal to the processing module; and
the processing module is further operable to:
convert the baseband or near-baseband signal into a pain treatment command; and
determine at least one of the body point and the treatment duration based on the pain treatment command.
14. The bio-medical unit of claim 12, wherein the pain management module further comprises:
an oscillator operable to generate an oscillation in accordance with the control signal;
a light emitting module operable to generate the laser signal from the oscillation.
15. The bio-medical unit of claim 14, wherein the pain management module further comprises:
an amplifier module operable to amplify the oscillation in accordance with the control signal to set intensity of the laser signal.
16. The bio-medical unit of claim 14 further comprises:
the processing module further operable to generate the control signal to vary frequency of the oscillation to set penetration of the laser signal.
US12/848,830 2009-09-30 2010-08-02 Pain management bio-medical unit Abandoned US20110077675A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US12/848,830 US20110077675A1 (en) 2009-09-30 2010-08-02 Pain management bio-medical unit
US13/030,016 US20110144573A1 (en) 2009-09-30 2011-02-17 Bio-medical unit system for medication control
US13/029,435 US8515533B2 (en) 2009-09-30 2011-02-17 Bio-medical unit system for physical therapy
US13/029,969 US8515548B2 (en) 2009-09-30 2011-02-17 Article of clothing including bio-medical units
US13/931,445 US20130289382A1 (en) 2009-09-30 2013-06-28 Article of clothing including bio-medical units

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US24706009P 2009-09-30 2009-09-30
US12/848,830 US20110077675A1 (en) 2009-09-30 2010-08-02 Pain management bio-medical unit

Related Child Applications (3)

Application Number Title Priority Date Filing Date
US12/783,649 Continuation-In-Part US8489199B2 (en) 2009-09-30 2010-05-20 Bio-medical unit with power harvesting module and RF communication
US12/829,279 Continuation-In-Part US20110077459A1 (en) 2009-09-30 2010-07-01 Bio-Medical Unit with Image Sensor for In Vivo Imaging
US13/029,969 Continuation-In-Part US8515548B2 (en) 2009-09-30 2011-02-17 Article of clothing including bio-medical units

Publications (1)

Publication Number Publication Date
US20110077675A1 true US20110077675A1 (en) 2011-03-31

Family

ID=43780935

Family Applications (20)

Application Number Title Priority Date Filing Date
US12/626,446 Abandoned US20110077718A1 (en) 2009-09-30 2009-11-25 Electromagnetic power booster for bio-medical units
US12/626,490 Abandoned US20110077719A1 (en) 2009-09-30 2009-11-25 Electromagnetic power bio-medical unit
US12/648,992 Abandoned US20110077736A1 (en) 2009-09-30 2009-12-29 Breast implant system including bio-medical units
US12/649,049 Expired - Fee Related US9081878B2 (en) 2009-09-30 2009-12-29 Bio-medical unit and applications for cancer treatment
US12/649,030 Abandoned US20110077700A1 (en) 2009-09-30 2009-12-29 Artificial body part including bio-medical units
US12/697,263 Abandoned US20110077713A1 (en) 2009-09-30 2010-01-31 Bio-medical unit network communication and applications thereof
US12/783,641 Abandoned US20110077623A1 (en) 2009-09-30 2010-05-20 Implantable bio-medical unit with electro-mechanical function
US12/783,649 Expired - Fee Related US8489199B2 (en) 2009-09-30 2010-05-20 Bio-medical unit with power harvesting module and RF communication
US12/787,786 Active 2032-01-11 US8923967B2 (en) 2009-09-30 2010-05-26 Communication device for communicating with a bio-medical unit
US12/829,279 Abandoned US20110077459A1 (en) 2009-09-30 2010-07-01 Bio-Medical Unit with Image Sensor for In Vivo Imaging
US12/829,284 Abandoned US20110077513A1 (en) 2009-09-30 2010-07-01 In Vivo Ultrasound System
US12/829,299 Abandoned US20110077476A1 (en) 2009-09-30 2010-07-01 Bio-Medical Unit with Wireless Signaling Micro-Electromechanical Module
US12/829,291 Abandoned US20110077716A1 (en) 2009-09-30 2010-07-01 Bio-Medical Unit with Adjustable Antenna Radiation Pattern
US12/848,823 Active 2030-11-20 US8254853B2 (en) 2009-09-30 2010-08-02 Bio-medical unit having storage location information
US12/848,802 Active 2033-04-08 US9111021B2 (en) 2009-09-30 2010-08-02 Bio-medical unit and system with electromagnetic power harvesting and communication
US12/848,901 Abandoned US20110077697A1 (en) 2009-09-30 2010-08-02 Neuron system with bio-medical units
US12/848,812 Abandoned US20110077501A1 (en) 2009-09-30 2010-08-02 Micro mri unit
US12/848,830 Abandoned US20110077675A1 (en) 2009-09-30 2010-08-02 Pain management bio-medical unit
US13/567,664 Active US8526894B2 (en) 2009-09-30 2012-08-06 Bio-medical unit having storage location information
US14/798,336 Abandoned US20150314116A1 (en) 2009-09-30 2015-07-13 Bio-Medical Unit and Applications for Cancer Treatment

Family Applications Before (17)

Application Number Title Priority Date Filing Date
US12/626,446 Abandoned US20110077718A1 (en) 2009-09-30 2009-11-25 Electromagnetic power booster for bio-medical units
US12/626,490 Abandoned US20110077719A1 (en) 2009-09-30 2009-11-25 Electromagnetic power bio-medical unit
US12/648,992 Abandoned US20110077736A1 (en) 2009-09-30 2009-12-29 Breast implant system including bio-medical units
US12/649,049 Expired - Fee Related US9081878B2 (en) 2009-09-30 2009-12-29 Bio-medical unit and applications for cancer treatment
US12/649,030 Abandoned US20110077700A1 (en) 2009-09-30 2009-12-29 Artificial body part including bio-medical units
US12/697,263 Abandoned US20110077713A1 (en) 2009-09-30 2010-01-31 Bio-medical unit network communication and applications thereof
US12/783,641 Abandoned US20110077623A1 (en) 2009-09-30 2010-05-20 Implantable bio-medical unit with electro-mechanical function
US12/783,649 Expired - Fee Related US8489199B2 (en) 2009-09-30 2010-05-20 Bio-medical unit with power harvesting module and RF communication
US12/787,786 Active 2032-01-11 US8923967B2 (en) 2009-09-30 2010-05-26 Communication device for communicating with a bio-medical unit
US12/829,279 Abandoned US20110077459A1 (en) 2009-09-30 2010-07-01 Bio-Medical Unit with Image Sensor for In Vivo Imaging
US12/829,284 Abandoned US20110077513A1 (en) 2009-09-30 2010-07-01 In Vivo Ultrasound System
US12/829,299 Abandoned US20110077476A1 (en) 2009-09-30 2010-07-01 Bio-Medical Unit with Wireless Signaling Micro-Electromechanical Module
US12/829,291 Abandoned US20110077716A1 (en) 2009-09-30 2010-07-01 Bio-Medical Unit with Adjustable Antenna Radiation Pattern
US12/848,823 Active 2030-11-20 US8254853B2 (en) 2009-09-30 2010-08-02 Bio-medical unit having storage location information
US12/848,802 Active 2033-04-08 US9111021B2 (en) 2009-09-30 2010-08-02 Bio-medical unit and system with electromagnetic power harvesting and communication
US12/848,901 Abandoned US20110077697A1 (en) 2009-09-30 2010-08-02 Neuron system with bio-medical units
US12/848,812 Abandoned US20110077501A1 (en) 2009-09-30 2010-08-02 Micro mri unit

Family Applications After (2)

Application Number Title Priority Date Filing Date
US13/567,664 Active US8526894B2 (en) 2009-09-30 2012-08-06 Bio-medical unit having storage location information
US14/798,336 Abandoned US20150314116A1 (en) 2009-09-30 2015-07-13 Bio-Medical Unit and Applications for Cancer Treatment

Country Status (1)

Country Link
US (20) US20110077718A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102622916A (en) * 2012-03-09 2012-08-01 浙江大学 Human body acupuncture point projection demonstration method and device
US20120215092A1 (en) * 2009-11-13 2012-08-23 Koninklijke Philips Electronics N.V. Quick re-connect diversity radio system
WO2021174081A1 (en) * 2020-02-28 2021-09-02 Biophotas, Inc. Battery powered systems for light therapy and related methods
US11964163B2 (en) 2019-06-14 2024-04-23 Biophotas, Inc. Light therapy systems and methods

Families Citing this family (163)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103259027A (en) 2005-04-28 2013-08-21 普罗透斯数字保健公司 Pharma-informatics system
US8802183B2 (en) 2005-04-28 2014-08-12 Proteus Digital Health, Inc. Communication system with enhanced partial power source and method of manufacturing same
EP2013829A4 (en) 2006-05-02 2010-07-07 Proteus Biomedical Inc Patient customized therapeutic regimens
KR101611240B1 (en) 2006-10-25 2016-04-11 프로테우스 디지털 헬스, 인코포레이티드 Controlled activation ingestible identifier
WO2008095183A2 (en) 2007-02-01 2008-08-07 Proteus Biomedical, Inc. Ingestible event marker systems
US8956288B2 (en) 2007-02-14 2015-02-17 Proteus Digital Health, Inc. In-body power source having high surface area electrode
US7655004B2 (en) 2007-02-15 2010-02-02 Ethicon Endo-Surgery, Inc. Electroporation ablation apparatus, system, and method
US8115618B2 (en) 2007-05-24 2012-02-14 Proteus Biomedical, Inc. RFID antenna for in-body device
US8579897B2 (en) 2007-11-21 2013-11-12 Ethicon Endo-Surgery, Inc. Bipolar forceps
US20090112059A1 (en) 2007-10-31 2009-04-30 Nobis Rudolph H Apparatus and methods for closing a gastrotomy
US8771260B2 (en) 2008-05-30 2014-07-08 Ethicon Endo-Surgery, Inc. Actuating and articulating surgical device
US8906035B2 (en) 2008-06-04 2014-12-09 Ethicon Endo-Surgery, Inc. Endoscopic drop off bag
US8403926B2 (en) 2008-06-05 2013-03-26 Ethicon Endo-Surgery, Inc. Manually articulating devices
EP3427660A1 (en) 2008-07-08 2019-01-16 Proteus Digital Health, Inc. Ingestible event marker data framework
US8888792B2 (en) 2008-07-14 2014-11-18 Ethicon Endo-Surgery, Inc. Tissue apposition clip application devices and methods
US8157834B2 (en) 2008-11-25 2012-04-17 Ethicon Endo-Surgery, Inc. Rotational coupling device for surgical instrument with flexible actuators
US9659423B2 (en) 2008-12-15 2017-05-23 Proteus Digital Health, Inc. Personal authentication apparatus system and method
DE102008062855B4 (en) * 2008-12-23 2012-08-09 Siemens Aktiengesellschaft Method and device for transmitting signals
CN102341031A (en) 2009-01-06 2012-02-01 普罗秋斯生物医学公司 Ingestion-related biofeedback and personalized medical therapy method and system
US8361066B2 (en) 2009-01-12 2013-01-29 Ethicon Endo-Surgery, Inc. Electrical ablation devices
NZ619375A (en) 2009-04-28 2015-03-27 Proteus Digital Health Inc Highly reliable ingestible event markers and methods for using the same
AU2010284352B9 (en) * 2009-08-20 2014-07-31 Med-El Elektromedizinische Geraete Gmbh MRI-safe implant electronics
US20110077718A1 (en) * 2009-09-30 2011-03-31 Broadcom Corporation Electromagnetic power booster for bio-medical units
WO2011039752A2 (en) * 2009-10-03 2011-04-07 Noam Livneh Transdermal antenna
US20110098704A1 (en) 2009-10-28 2011-04-28 Ethicon Endo-Surgery, Inc. Electrical ablation devices
TWI517050B (en) 2009-11-04 2016-01-11 普羅托斯數位健康公司 System for supply chain management
US8608652B2 (en) 2009-11-05 2013-12-17 Ethicon Endo-Surgery, Inc. Vaginal entry surgical devices, kit, system, and method
DE202009016559U1 (en) * 2009-12-04 2010-03-11 Peter Osypka Stiftung Stiftung des bürgerlichen Rechts Body shaping implant
US8496574B2 (en) 2009-12-17 2013-07-30 Ethicon Endo-Surgery, Inc. Selectively positionable camera for surgical guide tube assembly
US8506564B2 (en) 2009-12-18 2013-08-13 Ethicon Endo-Surgery, Inc. Surgical instrument comprising an electrode
US9028483B2 (en) 2009-12-18 2015-05-12 Ethicon Endo-Surgery, Inc. Surgical instrument comprising an electrode
US8686685B2 (en) 2009-12-25 2014-04-01 Golba, Llc Secure apparatus for wirelessly transferring power and communicating with one or more slave devices
US9005198B2 (en) * 2010-01-29 2015-04-14 Ethicon Endo-Surgery, Inc. Surgical instrument comprising an electrode
JP5841951B2 (en) 2010-02-01 2016-01-13 プロテウス デジタル ヘルス, インコーポレイテッド Data collection system
US9107684B2 (en) 2010-03-05 2015-08-18 Covidien Lp System and method for transferring power to intrabody instruments
WO2011127252A2 (en) 2010-04-07 2011-10-13 Proteus Biomedical, Inc. Miniature ingestible device
US20110270362A1 (en) * 2010-04-28 2011-11-03 Medtronic, Inc. Active circuit mri/emi protection powered by interfering energy for a medical stimulation lead and device
TWI557672B (en) 2010-05-19 2016-11-11 波提亞斯數位康健公司 Computer system and computer-implemented method to track medication from manufacturer to a patient, apparatus and method for confirming delivery of medication to a patient, patient interface device
US9113190B2 (en) * 2010-06-04 2015-08-18 Microsoft Technology Licensing, Llc Controlling power levels of electronic devices through user interaction
US8673003B1 (en) * 2010-07-20 2014-03-18 Abdullah Khalid Al Rasheed Method for improving the early detection of breast cancer and device therefor
US20120116155A1 (en) * 2010-11-04 2012-05-10 Ethicon Endo-Surgery, Inc. Light-based, transcutaneous video signal transmission
EP2642983A4 (en) 2010-11-22 2014-03-12 Proteus Digital Health Inc Ingestible device with pharmaceutical product
US9246349B2 (en) 2010-12-27 2016-01-26 Golba Llc Method and system for wireless battery charging utilizing ultrasonic transducer array based beamforming
US9077188B2 (en) 2012-03-15 2015-07-07 Golba Llc Method and system for a battery charging station utilizing multiple types of power transmitters for wireless battery charging
US8963708B2 (en) 2011-01-13 2015-02-24 Sensurtec, Inc. Breach detection in solid structures
US10092291B2 (en) 2011-01-25 2018-10-09 Ethicon Endo-Surgery, Inc. Surgical instrument with selectively rigidizable features
DE102011011767A1 (en) * 2011-02-18 2012-08-23 Fresenius Medical Care Deutschland Gmbh Medical device with multi-function display
US9233241B2 (en) 2011-02-28 2016-01-12 Ethicon Endo-Surgery, Inc. Electrical ablation devices and methods
US9314620B2 (en) 2011-02-28 2016-04-19 Ethicon Endo-Surgery, Inc. Electrical ablation devices and methods
US9254169B2 (en) 2011-02-28 2016-02-09 Ethicon Endo-Surgery, Inc. Electrical ablation devices and methods
US9049987B2 (en) 2011-03-17 2015-06-09 Ethicon Endo-Surgery, Inc. Hand held surgical device for manipulating an internal magnet assembly within a patient
US8620113B2 (en) 2011-04-25 2013-12-31 Microsoft Corporation Laser diode modes
US8760395B2 (en) 2011-05-31 2014-06-24 Microsoft Corporation Gesture recognition techniques
US10841508B2 (en) 2011-06-10 2020-11-17 Flir Systems, Inc. Electrical cabinet infrared monitor systems and methods
US9706137B2 (en) * 2011-06-10 2017-07-11 Flir Systems, Inc. Electrical cabinet infrared monitor
US9756874B2 (en) 2011-07-11 2017-09-12 Proteus Digital Health, Inc. Masticable ingestible product and communication system therefor
WO2015112603A1 (en) 2014-01-21 2015-07-30 Proteus Digital Health, Inc. Masticable ingestible product and communication system therefor
MX340001B (en) 2011-07-21 2016-06-20 Proteus Digital Health Inc Mobile communication device, system, and method.
US8771206B2 (en) * 2011-08-19 2014-07-08 Accenture Global Services Limited Interactive virtual care
US9318785B2 (en) 2011-09-29 2016-04-19 Broadcom Corporation Apparatus for reconfiguring an integrated waveguide
US9075105B2 (en) * 2011-09-29 2015-07-07 Broadcom Corporation Passive probing of various locations in a wireless enabled integrated circuit (IC)
US9570420B2 (en) 2011-09-29 2017-02-14 Broadcom Corporation Wireless communicating among vertically arranged integrated circuits (ICs) in a semiconductor package
US8635637B2 (en) 2011-12-02 2014-01-21 Microsoft Corporation User interface presenting an animated avatar performing a media reaction
GB2497295A (en) * 2011-12-05 2013-06-12 Gassecure As Method and system for gas detection
US9100685B2 (en) 2011-12-09 2015-08-04 Microsoft Technology Licensing, Llc Determining audience state or interest using passive sensor data
US8898687B2 (en) 2012-04-04 2014-11-25 Microsoft Corporation Controlling a media program based on a media reaction
CA2775700C (en) 2012-05-04 2013-07-23 Microsoft Corporation Determining a future portion of a currently presented media program
US9427255B2 (en) 2012-05-14 2016-08-30 Ethicon Endo-Surgery, Inc. Apparatus for introducing a steerable camera assembly into a patient
US9444140B2 (en) * 2012-05-23 2016-09-13 Intel Corporation Multi-element antenna beam forming configurations for millimeter wave systems
US8790400B2 (en) * 2012-06-13 2014-07-29 Elwha Llc Breast implant with covering and analyte sensors responsive to external power source
US9144488B2 (en) 2012-06-13 2015-09-29 Elwha Llc Breast implant with analyte sensors responsive to external power source
US8808373B2 (en) * 2012-06-13 2014-08-19 Elwha Llc Breast implant with regionalized analyte sensors responsive to external power source
EP2861185A4 (en) * 2012-06-13 2015-12-16 Elwha Llc Breast implant with analyte sensors and internal power source
US9211185B2 (en) 2012-06-13 2015-12-15 Elwha Llc Breast implant with analyte sensors and internal power source
US8795359B2 (en) 2012-06-13 2014-08-05 Elwha Llc Breast implant with regionalized analyte sensors and internal power source
US9144489B2 (en) 2012-06-13 2015-09-29 Elwha Llc Breast implant with covering, analyte sensors and internal power source
US8968296B2 (en) * 2012-06-26 2015-03-03 Covidien Lp Energy-harvesting system, apparatus and methods
US9078662B2 (en) 2012-07-03 2015-07-14 Ethicon Endo-Surgery, Inc. Endoscopic cap electrode and method for using the same
US9545290B2 (en) 2012-07-30 2017-01-17 Ethicon Endo-Surgery, Inc. Needle probe guide
US9572623B2 (en) 2012-08-02 2017-02-21 Ethicon Endo-Surgery, Inc. Reusable electrode and disposable sheath
US10314649B2 (en) 2012-08-02 2019-06-11 Ethicon Endo-Surgery, Inc. Flexible expandable electrode and method of intraluminal delivery of pulsed power
US9277957B2 (en) 2012-08-15 2016-03-08 Ethicon Endo-Surgery, Inc. Electrosurgical devices and methods
US10668276B2 (en) 2012-08-31 2020-06-02 Cirtec Medical Corp. Method and system of bracketing stimulation parameters on clinician programmers
US9471753B2 (en) 2012-08-31 2016-10-18 Nuvectra Corporation Programming and virtual reality representation of stimulation parameter Groups
US9594877B2 (en) 2012-08-31 2017-03-14 Nuvectra Corporation Virtual reality representation of medical devices
US8761897B2 (en) 2012-08-31 2014-06-24 Greatbatch Ltd. Method and system of graphical representation of lead connector block and implantable pulse generators on a clinician programmer
US9507912B2 (en) 2012-08-31 2016-11-29 Nuvectra Corporation Method and system of simulating a pulse generator on a clinician programmer
US8903496B2 (en) 2012-08-31 2014-12-02 Greatbatch Ltd. Clinician programming system and method
US9375582B2 (en) 2012-08-31 2016-06-28 Nuvectra Corporation Touch screen safety controls for clinician programmer
US8868199B2 (en) 2012-08-31 2014-10-21 Greatbatch Ltd. System and method of compressing medical maps for pulse generator or database storage
US8812125B2 (en) 2012-08-31 2014-08-19 Greatbatch Ltd. Systems and methods for the identification and association of medical devices
US9615788B2 (en) 2012-08-31 2017-04-11 Nuvectra Corporation Method and system of producing 2D representations of 3D pain and stimulation maps and implant models on a clinician programmer
US8983616B2 (en) 2012-09-05 2015-03-17 Greatbatch Ltd. Method and system for associating patient records with pulse generators
US9180302B2 (en) 2012-08-31 2015-11-10 Greatbatch Ltd. Touch screen finger position indicator for a spinal cord stimulation programming device
US9259577B2 (en) 2012-08-31 2016-02-16 Greatbatch Ltd. Method and system of quick neurostimulation electrode configuration and positioning
US8757485B2 (en) 2012-09-05 2014-06-24 Greatbatch Ltd. System and method for using clinician programmer and clinician programming data for inventory and manufacturing prediction and control
US9767255B2 (en) 2012-09-05 2017-09-19 Nuvectra Corporation Predefined input for clinician programmer data entry
US9161171B2 (en) * 2012-09-29 2015-10-13 Mark Shaffer Annett System and method for providing timely therapeutic interventions based on both public and private location-based messaging
US11149123B2 (en) 2013-01-29 2021-10-19 Otsuka Pharmaceutical Co., Ltd. Highly-swellable polymeric films and compositions comprising the same
US9962533B2 (en) * 2013-02-14 2018-05-08 William Harrison Zurn Module for treatment of medical conditions; system for making module and methods of making module
US9848793B2 (en) * 2013-02-15 2017-12-26 Masdar Institute Of Science And Technology Machine-based patient-specific seizure classification system
US10098527B2 (en) 2013-02-27 2018-10-16 Ethidcon Endo-Surgery, Inc. System for performing a minimally invasive surgical procedure
US11744481B2 (en) 2013-03-15 2023-09-05 Otsuka Pharmaceutical Co., Ltd. System, apparatus and methods for data collection and assessing outcomes
WO2014144738A1 (en) 2013-03-15 2014-09-18 Proteus Digital Health, Inc. Metal detector apparatus, system, and method
PT2967879T (en) 2013-03-15 2022-04-06 Canary Medical Inc Devices, systems and methods for monitoring hip replacements
WO2014151929A1 (en) 2013-03-15 2014-09-25 Proteus Digital Health, Inc. Personal authentication apparatus system and method
RS61560B1 (en) 2013-06-23 2021-04-29 Canary Medical Inc Devices, systems and methods for monitoring knee replacements
US9796576B2 (en) 2013-08-30 2017-10-24 Proteus Digital Health, Inc. Container with electronically controlled interlock
US9124305B2 (en) 2013-09-03 2015-09-01 Blackberry Limited Device, method and system for efficiently powering a near field communication device
CA2965941C (en) 2013-09-20 2020-01-28 Proteus Digital Health, Inc. Methods, devices and systems for receiving and decoding a signal in the presence of noise using slices and warping
US10084880B2 (en) * 2013-11-04 2018-09-25 Proteus Digital Health, Inc. Social media networking based on physiologic information
CN105137374B (en) * 2014-06-03 2018-09-25 中国科学院上海微系统与信息技术研究所 A kind of MR imaging method and device of ultrahigh resolution
WO2015196184A2 (en) * 2014-06-21 2015-12-23 Tantillo Michael Methods and devices for breast implant surgery and selection
US10874496B2 (en) * 2014-06-25 2020-12-29 Canary Medical Inc. Devices, systems and methods for using and monitoring implants
EP3160331A4 (en) 2014-06-25 2018-09-12 Canary Medical Inc. Devices, systems and methods for using and monitoring orthopedic hardware
US10091594B2 (en) 2014-07-29 2018-10-02 Cochlear Limited Bone conduction magnetic retention system
US9678183B2 (en) 2014-08-14 2017-06-13 General Electric Company Wireless actuator circuit for wireless actuation of micro electromechanical system switch for magnetic resonance imaging
US11322969B2 (en) 2014-08-15 2022-05-03 Analog Devices International Unlimited Company Wireless charging platform using beamforming for wireless sensor network
US10211662B2 (en) 2014-08-15 2019-02-19 Analog Devices Global Wireless charging platform using environment based beamforming for wireless sensor network
US9808205B2 (en) * 2014-08-27 2017-11-07 Seiko Epson Corporation Abnormality prediction device, abnormality prediction system, abnormality prediction method, biological information measuring device, biological information measuring system, and warning notification method
SG11201702153YA (en) 2014-09-17 2017-04-27 Canary Medical Inc Devices, systems and methods for using and monitoring medical devices
US10396948B2 (en) 2015-01-07 2019-08-27 Northeastern University Ultrasonic multiplexing network for implantable medical devices
ES2914999T3 (en) * 2015-01-07 2022-06-20 Univ Northeastern Ultrasonic multiplexing network for implantable medical devices
WO2016128048A1 (en) * 2015-02-12 2016-08-18 Huawei Technologies Co., Ltd. Full duplex radio with adaptive reception power reduction
CN107529972B (en) 2015-04-30 2020-04-21 索尼奥林巴斯医疗解决方案公司 Signal processing device and medical observation system
CA2985308C (en) 2015-05-08 2020-10-27 Synaptive Medical (Barbados) Inc. Magnetic resonance visible labels and markers for encoding information
US10130807B2 (en) 2015-06-12 2018-11-20 Cochlear Limited Magnet management MRI compatibility
US20160381473A1 (en) 2015-06-26 2016-12-29 Johan Gustafsson Magnetic retention device
CN104965989B (en) * 2015-07-09 2017-10-31 成都华西公用医疗信息服务有限公司 A kind of portable medical information system
US11129540B2 (en) * 2015-07-14 2021-09-28 Mor Research Applications Ltd. Device, system and method for monitoring a surgical site
US11051543B2 (en) 2015-07-21 2021-07-06 Otsuka Pharmaceutical Co. Ltd. Alginate on adhesive bilayer laminate film
US9749017B2 (en) 2015-08-13 2017-08-29 Golba Llc Wireless charging system
WO2017040155A1 (en) * 2015-09-01 2017-03-09 The Government Of The United States Of America, As Represented By The Secretary Of The Navy Miniature acoustic leaky-wave antenna for ultrasonic imaging
US20170068792A1 (en) * 2015-09-03 2017-03-09 Bruce Reiner System and method for medical device security, data tracking and outcomes analysis
WO2017041828A1 (en) * 2015-09-08 2017-03-16 Huawei Technologies Co., Ltd. A full duplex mimo radio unit and method for full duplex mimo radio transmission and reception method
US10917730B2 (en) * 2015-09-14 2021-02-09 Cochlear Limited Retention magnet system for medical device
CA3013698A1 (en) * 2016-02-09 2017-08-17 Establishment Labs S.A. Transponders and sensors for implantable medical devices and methods of use thereof
US11191479B2 (en) 2016-03-23 2021-12-07 Canary Medical Inc. Implantable reporting processor for an alert implant
EP3432781A4 (en) 2016-03-23 2020-04-01 Canary Medical Inc. Implantable reporting processor for an alert implant
US10187121B2 (en) 2016-07-22 2019-01-22 Proteus Digital Health, Inc. Electromagnetic sensing and detection of ingestible event markers
US10444203B2 (en) * 2016-09-15 2019-10-15 Texas Instruments Incorporated Ultrasonic vibration sensing
US12102508B2 (en) * 2016-10-21 2024-10-01 Ohio State Innovation Foundation Antimicrobial wound care dressing
TWI735689B (en) 2016-10-26 2021-08-11 日商大塚製藥股份有限公司 Methods for manufacturing capsules with ingestible event markers
US11595768B2 (en) 2016-12-02 2023-02-28 Cochlear Limited Retention force increasing components
WO2018154138A1 (en) * 2017-02-27 2018-08-30 Koninklijke Philips N.V. Sequences for wireless charging of batteries in coils and implants
US11123014B2 (en) * 2017-03-21 2021-09-21 Stryker Corporation Systems and methods for ambient energy powered physiological parameter monitoring
CN107070464B (en) * 2017-06-13 2023-03-28 吉林大学 Multi-path synchronous frequency division multiplexing millimeter wave frequency sweep signal generation device and method
US10466353B2 (en) * 2017-09-21 2019-11-05 The Government Of The United States Of America, As Represented By The Secretary Of The Navy Underwater acoustic leaky wave antenna
CN108039942B (en) * 2017-12-11 2020-10-30 天津工业大学 Method for improving optimal system rate by collecting interference energy through passive relay in SWIPT system
CN108020246A (en) * 2018-01-22 2018-05-11 河北工业大学 Acupuncture gimmick based on electromagnetic induction quantifies equipment
US10756429B1 (en) * 2018-03-22 2020-08-25 Sprint Communications Company L.P. Dynamic variation of power per antenna to facilitate beamforming of antenna array
US11328826B2 (en) 2018-06-12 2022-05-10 Clarius Mobile Health Corp. System architecture for improved storage of electronic health information, and related methods
KR101941578B1 (en) * 2018-06-14 2019-01-23 주식회사 지앤아이테크 Guiding light with solar cell and guiding system therewith
CN109194492B (en) * 2018-06-27 2020-09-18 华为技术有限公司 Powered device PD and power over Ethernet POE system
US11344740B2 (en) 2019-02-07 2022-05-31 Asha Medical, Inc. System and methods for treating cancer cells with alternating polarity magnetic fields
US11027143B2 (en) 2020-02-06 2021-06-08 Vivek K. Sharma System and methods for treating cancer cells with alternating polarity magnetic fields
CN113692302A (en) 2019-02-07 2021-11-23 V·K·沙玛 System and method for treating cancer cells with alternating polarity magnetic fields
CN111888641B (en) * 2019-05-06 2023-09-22 上海肤泰科技有限公司 Iontophoresis drug delivery device
KR102260203B1 (en) * 2019-09-06 2021-06-04 오스템임플란트 주식회사 Shape device
US11298564B2 (en) 2020-03-10 2022-04-12 Dennis M. Anderson Medical, surgical and patient lighting apparatus, system, method and controls with pathogen killing electromagnetic radiation
US20210376464A1 (en) * 2020-06-02 2021-12-02 Metawave Corporation Frequency offset using sige phase shifters
US20230028230A1 (en) * 2021-07-26 2023-01-26 Rfxlabs India Pvt Ltd System and method for bio-medical samples identification and resource optimization
CN115414107A (en) * 2022-11-04 2022-12-02 清华大学 Bone fracture plate for orthopedics department, system and method for monitoring skeletal strain of human body and storage medium

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040098055A1 (en) * 2001-02-27 2004-05-20 Mark Kroll Implantable device
US6871099B1 (en) * 2000-08-18 2005-03-22 Advanced Bionics Corporation Fully implantable microstimulator for spinal cord stimulation as a therapy for chronic pain
US7125382B2 (en) * 2004-05-20 2006-10-24 Digital Angel Corporation Embedded bio-sensor system
US7266269B2 (en) * 2004-12-16 2007-09-04 General Electric Company Power harvesting
US7346391B1 (en) * 1999-10-12 2008-03-18 Flint Hills Scientific Llc Cerebral or organ interface system
US20090163977A1 (en) * 2007-08-17 2009-06-25 Searete Llc, A Limited Liability Corporation Of The State Of Delaware System, devices, and methods including sterilizing excitation delivery implants with cryptographic logic components

Family Cites Families (100)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3559214A (en) * 1968-10-17 1971-02-02 William J Pangman Compound prosthesis
JPS5519124A (en) * 1978-07-27 1980-02-09 Olympus Optical Co Camera system for medical treatment
US4301804A (en) * 1979-11-28 1981-11-24 Medtronic, Inc. Pacemaker with Hall effect externally controlled switch
AU569636B2 (en) * 1984-09-07 1988-02-11 University Of Melbourne, The Bipolar paired pulse supplied prosthetic device
US5383915A (en) * 1991-04-10 1995-01-24 Angeion Corporation Wireless programmer/repeater system for an implanted medical device
US5494036A (en) * 1993-11-26 1996-02-27 Medrad, Inc. Patient infusion system for use with MRI
EP0904009B1 (en) * 1997-01-03 2003-09-10 Biosense, Inc. Pressure-sensing stent
DE19717023C2 (en) * 1997-04-23 2003-02-06 Micronas Gmbh Device for treating malignant, tumorous tissue areas
US5810888A (en) * 1997-06-26 1998-09-22 Massachusetts Institute Of Technology Thermodynamic adaptive phased array system for activating thermosensitive liposomes in targeted drug delivery
US6240312B1 (en) * 1997-10-23 2001-05-29 Robert R. Alfano Remote-controllable, micro-scale device for use in in vivo medical diagnosis and/or treatment
US6239724B1 (en) * 1997-12-30 2001-05-29 Remon Medical Technologies, Ltd. System and method for telemetrically providing intrabody spatial position
US8489200B2 (en) * 1998-07-06 2013-07-16 Abiomed, Inc. Transcutaneous energy transfer module with integrated conversion circuitry
US6073050A (en) * 1998-11-10 2000-06-06 Advanced Bionics Corporation Efficient integrated RF telemetry transmitter for use with implantable device
US8636648B2 (en) * 1999-03-01 2014-01-28 West View Research, Llc Endoscopic smart probe
US6273904B1 (en) * 1999-03-02 2001-08-14 Light Sciences Corporation Polymer battery for internal light device
US6554822B1 (en) * 1999-04-30 2003-04-29 University Of Southern California Microbolus infusion pump
TW529930B (en) * 1999-08-27 2003-05-01 Yamato Scale Co Ltd Health condition judging/displaying device
US6564104B2 (en) * 1999-12-24 2003-05-13 Medtronic, Inc. Dynamic bandwidth monitor and adjuster for remote communications with a medical device
CA2366486A1 (en) * 2000-01-10 2001-07-19 Tarian, Llc Device using histological and physiological biometric marker for authentication and activation
US6694191B2 (en) * 2000-01-21 2004-02-17 Medtronic Minimed, Inc. Ambulatory medical apparatus and method having telemetry modifiable control software
US7027854B2 (en) * 2000-03-30 2006-04-11 Koninklijke Philips Electronics N.V. Magnetic resonance imaging utilizing a microcoil
EP1167971B1 (en) * 2000-04-17 2007-02-07 Nec Corporation Method and system for providing a home health care service
US7672730B2 (en) * 2001-03-08 2010-03-02 Advanced Neuromodulation Systems, Inc. Methods and apparatus for effectuating a lasting change in a neural-function of a patient
TW542708B (en) * 2000-08-31 2003-07-21 Yamato Scale Co Ltd Visceral adipose meter with body weighing function
US7627145B2 (en) * 2000-09-06 2009-12-01 Hitachi, Ltd. Personal identification device and method
US6845267B2 (en) * 2000-09-28 2005-01-18 Advanced Bionics Corporation Systems and methods for modulation of circulatory perfusion by electrical and/or drug stimulation
US7024248B2 (en) * 2000-10-16 2006-04-04 Remon Medical Technologies Ltd Systems and methods for communicating with implantable devices
US7198603B2 (en) * 2003-04-14 2007-04-03 Remon Medical Technologies, Inc. Apparatus and methods using acoustic telemetry for intrabody communications
SE0100284D0 (en) * 2001-01-31 2001-01-31 St Jude Medical Medical communication system
US20050119580A1 (en) * 2001-04-23 2005-06-02 Eveland Doug C. Controlling access to a medical monitoring system
US20030037054A1 (en) * 2001-08-09 2003-02-20 International Business Machines Corporation Method for controlling access to medical information
DE10148462C1 (en) * 2001-10-01 2003-06-18 Siemens Ag Transmission method for an analog magnetic resonance signal and devices corresponding to it
US7729776B2 (en) * 2001-12-19 2010-06-01 Cardiac Pacemakers, Inc. Implantable medical device with two or more telemetry systems
US7819826B2 (en) * 2002-01-23 2010-10-26 The Regents Of The University Of California Implantable thermal treatment method and apparatus
US20040057340A1 (en) * 2002-04-10 2004-03-25 Joy Charles-Erickson Personal, medical & financial risk management device
JP2004049345A (en) * 2002-07-17 2004-02-19 Nippon Colin Co Ltd Medical information providing system and cellular phone
US7725160B2 (en) * 2002-08-12 2010-05-25 Boston Scientific Scimed, Inc. Tunable MRI enhancing device
JP2004113629A (en) * 2002-09-27 2004-04-15 Olympus Corp Ultrasonograph
US7349741B2 (en) * 2002-10-11 2008-03-25 Advanced Bionics, Llc Cochlear implant sound processor with permanently integrated replenishable power source
JP2004216125A (en) * 2002-11-19 2004-08-05 Seiko Instruments Inc Biological information detection terminal control system
US7952349B2 (en) * 2002-12-09 2011-05-31 Ferro Solutions, Inc. Apparatus and method utilizing magnetic field
US20120010867A1 (en) * 2002-12-10 2012-01-12 Jeffrey Scott Eder Personalized Medicine System
US7452334B2 (en) * 2002-12-16 2008-11-18 The Regents Of The University Of Michigan Antenna stent device for wireless, intraluminal monitoring
JP3837533B2 (en) * 2003-01-15 2006-10-25 独立行政法人産業技術総合研究所 Attitude angle processing apparatus and attitude angle processing method
KR100795471B1 (en) * 2003-04-10 2008-01-16 가부시키가이샤 아이.피.비. Biological information monitoring system
WO2004096051A1 (en) * 2003-04-25 2004-11-11 Board Of Control Of Michigan Technological University Method and apparatus for blood flow measurement using millimeter wave band
US6972692B2 (en) * 2003-04-25 2005-12-06 Motorola, Inc. Method and device for increasing effective radiated power from a subscriber device
WO2005007223A2 (en) * 2003-07-16 2005-01-27 Sasha John Programmable medical drug delivery systems and methods for delivery of multiple fluids and concentrations
US7285093B2 (en) * 2003-10-10 2007-10-23 Imadent Ltd. systems for ultrasonic imaging of a jaw, methods of use thereof and coupling cushions suited for use in the mouth
JP2005137401A (en) * 2003-11-04 2005-06-02 Pentax Corp Endoscope processor
TWI236533B (en) * 2003-11-07 2005-07-21 Univ Nat Chiao Tung Biochemical sensing method and its sensor
US7597250B2 (en) * 2003-11-17 2009-10-06 Dpd Patent Trust Ltd. RFID reader with multiple interfaces
US20070027532A1 (en) * 2003-12-22 2007-02-01 Xingwu Wang Medical device
JP2005185560A (en) * 2003-12-25 2005-07-14 Konica Minolta Medical & Graphic Inc Medical image processing apparatus and medical image processing system
US7606535B2 (en) * 2004-04-01 2009-10-20 Harris Stratex Networks, Inc. Modular wide-range transceiver
US7794499B2 (en) * 2004-06-08 2010-09-14 Theken Disc, L.L.C. Prosthetic intervertebral spinal disc with integral microprocessor
CA2581320C (en) * 2004-09-21 2021-04-27 Shalon Ventures Inc. Tissue expansion devices
US7193712B2 (en) * 2004-10-14 2007-03-20 The Procter & Gamble Company Methods and apparatus for measuring an electromagnetic radiation response property associated with a substrate
WO2006059338A2 (en) * 2004-12-02 2006-06-08 Given Imaging Ltd. Device, system and method of in-vivo electro-stimulation
US7353063B2 (en) * 2004-12-22 2008-04-01 Cardiac Pacemakers, Inc. Generating and communicating web content from within an implantable medical device
WO2006133204A2 (en) * 2005-06-08 2006-12-14 Powercast Corporation Powering devices using rf energy harvesting
US7857766B2 (en) * 2005-06-20 2010-12-28 Alfred E. Mann Foundation For Scientific Research System of implantable ultrasonic emitters for preventing restenosis following a stent procedure
US8021384B2 (en) * 2005-07-26 2011-09-20 Ram Weiss Extending intrabody capsule
US7863188B2 (en) * 2005-07-29 2011-01-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
JP4664158B2 (en) * 2005-09-01 2011-04-06 富士通株式会社 Authentication processing method and authentication server
WO2007044448A2 (en) * 2005-10-06 2007-04-19 The Johns Hopkins University Mri compatible vascular occlusive devices and related methods of treatment and methods of monitoring implanted devices
US9067047B2 (en) * 2005-11-09 2015-06-30 The Invention Science Fund I, Llc Injectable controlled release fluid delivery system
US8083710B2 (en) * 2006-03-09 2011-12-27 The Invention Science Fund I, Llc Acoustically controlled substance delivery device
US20070129602A1 (en) * 2005-11-22 2007-06-07 Given Imaging Ltd. Device, method and system for activating an in-vivo imaging device
US8265765B2 (en) * 2005-12-08 2012-09-11 Cochlear Limited Multimodal auditory fitting
JP4981316B2 (en) * 2005-12-16 2012-07-18 オリンパスメディカルシステムズ株式会社 Intra-subject introduction device
US20070167723A1 (en) * 2005-12-29 2007-07-19 Intel Corporation Optical magnetometer array and method for making and using the same
US7678043B2 (en) * 2005-12-29 2010-03-16 Given Imaging, Ltd. Device, system and method for in-vivo sensing of a body lumen
JP4822850B2 (en) * 2006-01-16 2011-11-24 株式会社日立製作所 Magnetic resonance measurement method
US7869783B2 (en) * 2006-02-24 2011-01-11 Sky Cross, Inc. Extended smart antenna system
JP2009529975A (en) * 2006-03-17 2009-08-27 ザ ボード オブ トラスティーズ オブ ザ レランド スタンフォード ジュニア ユニバーシティー Energy generation system for implantable medical devices
CN101427150B (en) * 2006-04-24 2012-09-05 皇家飞利浦电子股份有限公司 Decoupling system and method of a multi-element RF coil
US7650185B2 (en) * 2006-04-25 2010-01-19 Cardiac Pacemakers, Inc. System and method for walking an implantable medical device from a sleep state
US7821402B2 (en) * 2006-05-05 2010-10-26 Quality Electrodynamics IC tags/RFID tags for magnetic resonance imaging applications
US8086316B2 (en) * 2006-05-24 2011-12-27 Drexel University Wireless controlled neuromodulation system
US20080046038A1 (en) * 2006-06-26 2008-02-21 Hill Gerard J Local communications network for distributed sensing and therapy in biomedical applications
US7925355B2 (en) * 2006-07-17 2011-04-12 Advanced Bionics, Llc Systems and methods for determining a threshold current level required to evoke a stapedial muscle reflex
US20080021732A1 (en) * 2006-07-20 2008-01-24 Athenahealth, Inc. Automated Configuration of Medical Practice Management Systems
US20090254179A1 (en) * 2006-07-24 2009-10-08 Novalert, Inc Method and apparatus for minimally invasive implants
US7664548B2 (en) * 2006-10-06 2010-02-16 Cardiac Pacemakers, Inc. Distributed neuromodulation system for treatment of cardiovascular disease
WO2008063338A2 (en) * 2006-10-18 2008-05-29 Buckeye Pharmaceuticals, Llc Chemical compound delivery device and method
US20080280581A1 (en) * 2007-05-11 2008-11-13 Broadcom Corporation, A California Corporation RF receiver with adjustable antenna assembly
US8115448B2 (en) * 2007-06-01 2012-02-14 Michael Sasha John Systems and methods for wireless power
EP2008584A1 (en) * 2007-06-26 2008-12-31 Julius-Maximilians-Universität Würzburg In vivo device, system and usage thereof
US20090077024A1 (en) * 2007-09-14 2009-03-19 Klaus Abraham-Fuchs Search system for searching a secured medical server
JP2009095583A (en) * 2007-10-19 2009-05-07 Panasonic Corp Health information collection system and health information collection method
US8457757B2 (en) * 2007-11-26 2013-06-04 Micro Transponder, Inc. Implantable transponder systems and methods
US8165668B2 (en) * 2007-12-05 2012-04-24 The Invention Science Fund I, Llc Method for magnetic modulation of neural conduction
EP2230993B1 (en) * 2008-01-15 2018-08-15 Cardiac Pacemakers, Inc. Implantable medical device with antenna
US7822479B2 (en) * 2008-01-18 2010-10-26 Otologics, Llc Connector for implantable hearing aid
EP2263283B1 (en) * 2008-03-04 2014-07-02 Cardiac Pacemakers, Inc. Loaded rf antenna for implantable device
JP5054205B2 (en) * 2008-03-04 2012-10-24 カーディアック ペースメイカーズ, インコーポレイテッド Implantable multi-length RF antenna
US7917226B2 (en) * 2008-04-23 2011-03-29 Enteromedics Inc. Antenna arrangements for implantable therapy device
US20100256992A1 (en) * 2009-04-02 2010-10-07 Docvia, Llc Web-and mobile-based emergency health registry system and method
US20110077718A1 (en) * 2009-09-30 2011-03-31 Broadcom Corporation Electromagnetic power booster for bio-medical units

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7346391B1 (en) * 1999-10-12 2008-03-18 Flint Hills Scientific Llc Cerebral or organ interface system
US6871099B1 (en) * 2000-08-18 2005-03-22 Advanced Bionics Corporation Fully implantable microstimulator for spinal cord stimulation as a therapy for chronic pain
US20040098055A1 (en) * 2001-02-27 2004-05-20 Mark Kroll Implantable device
US7125382B2 (en) * 2004-05-20 2006-10-24 Digital Angel Corporation Embedded bio-sensor system
US7241266B2 (en) * 2004-05-20 2007-07-10 Digital Angel Corporation Transducer for embedded bio-sensor using body energy as a power source
US7266269B2 (en) * 2004-12-16 2007-09-04 General Electric Company Power harvesting
US20090163977A1 (en) * 2007-08-17 2009-06-25 Searete Llc, A Limited Liability Corporation Of The State Of Delaware System, devices, and methods including sterilizing excitation delivery implants with cryptographic logic components

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120215092A1 (en) * 2009-11-13 2012-08-23 Koninklijke Philips Electronics N.V. Quick re-connect diversity radio system
US9331772B2 (en) * 2009-11-13 2016-05-03 Koninklijke Philips N.V. Quick re-connect diversity radio system for communicating patient data out of a shielded MR room
CN102622916A (en) * 2012-03-09 2012-08-01 浙江大学 Human body acupuncture point projection demonstration method and device
US11964163B2 (en) 2019-06-14 2024-04-23 Biophotas, Inc. Light therapy systems and methods
WO2021174081A1 (en) * 2020-02-28 2021-09-02 Biophotas, Inc. Battery powered systems for light therapy and related methods
GB2608742A (en) * 2020-02-28 2023-01-11 Biophotas Inc Battery powered systems for light therapy and related methods

Also Published As

Publication number Publication date
US20110077502A1 (en) 2011-03-31
US20110077476A1 (en) 2011-03-31
US20150314116A1 (en) 2015-11-05
US20110076983A1 (en) 2011-03-31
US8526894B2 (en) 2013-09-03
US8923967B2 (en) 2014-12-30
US20110077501A1 (en) 2011-03-31
US20110077716A1 (en) 2011-03-31
US20110077713A1 (en) 2011-03-31
US8254853B2 (en) 2012-08-28
US9081878B2 (en) 2015-07-14
US20110077718A1 (en) 2011-03-31
US20110077715A1 (en) 2011-03-31
US20110077580A1 (en) 2011-03-31
US20110077623A1 (en) 2011-03-31
US20110077719A1 (en) 2011-03-31
US20110077697A1 (en) 2011-03-31
US20110077513A1 (en) 2011-03-31
US20120323088A1 (en) 2012-12-20
US9111021B2 (en) 2015-08-18
US20110077714A1 (en) 2011-03-31
US20110077700A1 (en) 2011-03-31
US20110077459A1 (en) 2011-03-31
US20110077736A1 (en) 2011-03-31
US8489199B2 (en) 2013-07-16

Similar Documents

Publication Publication Date Title
US20110077675A1 (en) Pain management bio-medical unit
US8515548B2 (en) Article of clothing including bio-medical units
US8515533B2 (en) Bio-medical unit system for physical therapy
EP2498196A2 (en) Bio-medical unit system for medication control
US20110144573A1 (en) Bio-medical unit system for medication control
US20240041399A1 (en) Method and apparatus for versatile minimally invasive neuromodulators
CN105744986B (en) The multicomponent coupler generated for electromagnetic energy
JP5840774B2 (en) Far field radiant power supply for implantable medical treatment delivery devices
Kiourti Between telemetry: Communication between implanted devices and the external world
Dubey et al. Implantable radio frequency powered gastric electrical stimulator
Loewgren Wireless, Battery-Free, Multimodal Organ System Interfaces

Legal Events

Date Code Title Description
AS Assignment

Owner name: BROADCOM CORPORATION, CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ROFOUGARAN, AHMADREZA (REZA);REEL/FRAME:026230/0224

Effective date: 20100718

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: BANK OF AMERICA, N.A., AS COLLATERAL AGENT, NORTH CAROLINA

Free format text: PATENT SECURITY AGREEMENT;ASSIGNOR:BROADCOM CORPORATION;REEL/FRAME:037806/0001

Effective date: 20160201

Owner name: BANK OF AMERICA, N.A., AS COLLATERAL AGENT, NORTH

Free format text: PATENT SECURITY AGREEMENT;ASSIGNOR:BROADCOM CORPORATION;REEL/FRAME:037806/0001

Effective date: 20160201

AS Assignment

Owner name: AVAGO TECHNOLOGIES GENERAL IP (SINGAPORE) PTE. LTD., SINGAPORE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BROADCOM CORPORATION;REEL/FRAME:041706/0001

Effective date: 20170120

Owner name: AVAGO TECHNOLOGIES GENERAL IP (SINGAPORE) PTE. LTD

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BROADCOM CORPORATION;REEL/FRAME:041706/0001

Effective date: 20170120

AS Assignment

Owner name: BROADCOM CORPORATION, CALIFORNIA

Free format text: TERMINATION AND RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:BANK OF AMERICA, N.A., AS COLLATERAL AGENT;REEL/FRAME:041712/0001

Effective date: 20170119