US20110067467A1 - Method and tool for contracting tubular members by electro-hydraulic forming before hydroforming - Google Patents

Method and tool for contracting tubular members by electro-hydraulic forming before hydroforming Download PDF

Info

Publication number
US20110067467A1
US20110067467A1 US12/563,184 US56318409A US2011067467A1 US 20110067467 A1 US20110067467 A1 US 20110067467A1 US 56318409 A US56318409 A US 56318409A US 2011067467 A1 US2011067467 A1 US 2011067467A1
Authority
US
United States
Prior art keywords
tube
chamber
tool
wire
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US12/563,184
Other versions
US7905129B1 (en
Inventor
Sergey Fedorovich Golovashchenko
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ford Global Technologies LLC
Original Assignee
Ford Global Technologies LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ford Global Technologies LLC filed Critical Ford Global Technologies LLC
Priority to US12/563,184 priority Critical patent/US7905129B1/en
Assigned to FORD GLOBAL TECHNOLOGIES, LLC reassignment FORD GLOBAL TECHNOLOGIES, LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: GOLOVASHCHENKO, SERGEY FEDOROVICH
Priority to CN201020536411XU priority patent/CN201815583U/en
Assigned to ENERGY, UNITED STATES DEPARTMENT OF reassignment ENERGY, UNITED STATES DEPARTMENT OF CONFIRMATORY LICENSE (SEE DOCUMENT FOR DETAILS). Assignors: FORD MOTOR COMPANY
Application granted granted Critical
Publication of US7905129B1 publication Critical patent/US7905129B1/en
Publication of US20110067467A1 publication Critical patent/US20110067467A1/en
Assigned to UNITED STATES DEPARTMENT OF ENERGY reassignment UNITED STATES DEPARTMENT OF ENERGY CONFIRMATORY LICENSE (SEE DOCUMENT FOR DETAILS). Assignors: FORD MOTOR COMPANY
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D26/00Shaping without cutting otherwise than using rigid devices or tools or yieldable or resilient pads, i.e. applying fluid pressure or magnetic forces
    • B21D26/02Shaping without cutting otherwise than using rigid devices or tools or yieldable or resilient pads, i.e. applying fluid pressure or magnetic forces by applying fluid pressure
    • B21D26/06Shaping without cutting otherwise than using rigid devices or tools or yieldable or resilient pads, i.e. applying fluid pressure or magnetic forces by applying fluid pressure by shock waves
    • B21D26/12Shaping without cutting otherwise than using rigid devices or tools or yieldable or resilient pads, i.e. applying fluid pressure or magnetic forces by applying fluid pressure by shock waves initiated by spark discharge
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49803Magnetically shaping
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49805Shaping by direct application of fluent pressure

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)

Abstract

A tubular preform is contracted in an electro-hydraulic forming operation. The tubular preform is wrapped with one or more coils of wire and placed in a chamber of an electro-hydraulic forming tool. The electro-hydraulic forming tool is discharged to form a compressed area on a portion of the tube. The tube is then placed in a hydroforming tool that expands the tubular preform to form a part.

Description

    BACKGROUND
  • 1. Technical Field
  • The present invention relates to electro-hydraulic forming to contract a tubular member in a die.
  • 2. Background Art
  • In electro-hydraulic forming (“EHF”), an electric arc discharge is used to convert electrical energy to mechanical energy. A capacitor bank, or other source of stored charge, delivers a high current pulse across two electrodes that are submerged in a fluid, such as oil or water. The electric arc discharge vaporizes some of the surrounding fluid and creates shock waves in the fluid. A workpiece that is in contact with the fluid may be deformed by the shock waves to fill an evacuated die.
  • Electro-hydraulic forming may be used, for example, to form a flat blank in a one-sided die. The use of EHF for a one-sided die may save tooling costs and may also facilitate forming parts into shapes that are difficult to form by conventional press forming or hydroforming techniques. Electro-hydraulic forming also facilitates forming high strength steel, aluminum and copper alloys. For example, advanced high strength steel (AHSS) and ultra high strength steel (UHSS) can be formed to a greater extent with electro-hydraulic forming techniques when compared to other conventional forming processes. Lightweight materials, such as AHSS and UHSS and high-strength aluminum alloys are lightweight materials that are used to reduce the weight of vehicles.
  • The use of these high strength, lightweight materials is increasing and has been proposed for hydroforming tubes. Tube hydroforming is well-known technology that is currently used in production. One problem with hydroforming tubes is that the tube tends to thin in areas that are formed to a greater extent.
  • The above problems are addressed by Applicant's invention as summarized below.
  • SUMMARY
  • The method and tool disclosed and claimed in this application provide increased opportunities for hydroforming parts from ductile steel and also high strength materials that have reduced formability. By applying the method, larger diameter tubular preforms can be used to form parts having smaller diameter cross-sections in localized areas. Generally, the tube blank is selected to correspond to the average perimeter of the final part. The tube blank provides material that is worked in the hydroforming process. The hydroforming process is generally used to expand the tubular blank with pressure that is exerted from the inside of the tube. With expansion hydroforming, the size of the tube is limited to the minimum perimeter of the smallest cross-section of the finished part. This limits the quantity of material that is available for the hydroforming operation and, in turn, limits the extent to which the tube can be expanded.
  • According to the method, a tube or tubular preform is first formed to a reduced diameter in an electro-hydraulic forming process that applies an impact force to the outer surface of the tube. The partially contracted tube is then loaded into a hydroforming tool and formed by the application of fluid pressure to the inner side of the tube to expand the tube and form the tube against the hydroforming die.
  • The tool that is illustrated to compress or contract the tubular preform includes two parts that together define a chamber. A portion of the tube is first encircled with a wire and then placed in the chamber. The chamber is filled with a fluid, such as water or oil, and sealed. The wire is selectively connected to a source of stored electrical energy, such as a capacitor circuit, to cause an electrical discharge in the fluid in the chamber that forms the portion of the tube radially inward to a reduced cross-sectional area. The balance of the tube may be maintained at full cross-sectional area size. The tubular preform is later formed by expanding in a hydroforming operation in the full cross-sectional area. The portion of the tube that was compressed may be expanded from the reduced cross-sectional area.
  • Other aspects of Applicant's concept will be better understood in view of the attached drawings and detailed description of the illustrated embodiments.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a diagrammatic cross-sectional view of an electro-hydraulic forming tool that is used to contract the diameter of a tube prior to hydroforming.
  • FIG. 2 is a cross-sectional view taken along the line 2-2 in FIG. 1.
  • FIG. 3 is a cross-sectional view similar to FIG. 2, but showing an alternative embodiment wherein variable diameter coils are used to contract the tube to different extents along different portions of the tube.
  • FIG. 4 is a diagrammatic cross-sectional view of an alternative embodiment of the electro-hydraulic forming tool wherein a single loop of wire is provided in the electro-hydraulic forming tool.
  • FIG. 5 is a diagrammatic cross-sectional view of a tube showing the tube before contraction and after contraction.
  • FIG. 6 is a flowchart illustrating the steps of the method of compressing a tubular preform in an electro-hydraulic forming tool prior to forming the tubular preform by expanding the tube in a hydroforming operation.
  • DETAILED DESCRIPTION
  • Referring to FIG. 1, an electro-hydraulic forming tool 10 is used to contract a tubular preform 12 prior to hydroforming the tubular preform is diagrammatically illustrated. A wire coil 14 is wrapped in a spaced relationship around the tubular preform 12 and submerged in a liquid 18, such as water or oil. The liquid 18 is contained within a chamber 20 defined by a first tool part 22 and a second tool part 24. The chamber 20 must be sealed, as shown by first seal 26 and second seal 28. The chamber 20 is filled by an upper port 30 and a lower port 32. It should be understood that a single fill/evacuation port could be provided instead of the two ports as illustrated.
  • Tubular preform 12 and wire coil 14 are preassembled and then inserted into the chamber 20 defined by the first tool part 22 and the second tool part 24. When assembled, the first seal 26 engages a second seal 28. The chamber 20 is filled through the lower port until the liquid flows out of upper port 30.
  • Referring to FIG. 2, the electro-hydraulic forming tool 10 is shown with the second tool part 24 (shown in FIG. 1) removed. The tubular preform 12 is encircled by the wire coils 14 and immersed in the liquid 18. The first tool part 22 retains the first seal 26 to seal the chamber 20 as described with reference to FIG. 1 above. The seal 26 extends about the periphery of the forming chamber 20 and on one side of the tubular perform 12. (The seal 26 is not visible behind the tubular perform 12 as viewed in FIGS. 2-5.)
  • A capacitor circuit 36 that comprises a stored power source is connected to opposite ends of the wire coil 14 by a positive electrode 38 and a negative electrode 40. Alternatively, the stored power source may be an induction circuit that could be used instead of the capacitor circuit. When the capacitor circuit 36 is actuated, the wire coil 14 is energized to create a shockwave within the fluid 18 that is imparted to the tubular member 12. The tubular member in the area where the wire coil 14 encircles the tubular member is compressed from an initial tube section 42 shown in solid line to a contracted tube section 44 shown in phantom lines.
  • FIG. 3 is a view similar to FIG. 2 that shows an alternative embodiment wherein reduced diameter wire loops 46 are provided as part of the wire coil 14. The tubular preform 12 is shown wrapped by the wire coil 14 including the reduced diameter wire loops 46 and is submerged in the fluid 18. The wire coil 14 is connected to a capacitor circuit, as previously described with reference to FIG. 2. When the capacitor circuit 36 is discharged, the more closely wrapped wire loops 46 are closer to the tubular preform 12 and, as a result, exert a greater contraction force on the tubular member 12. This greater contraction force compresses that portion of the tube to a greater extent compared to the contraction force applied by the other loops of the wire coil 14.
  • Referring to FIG. 4, an alternative embodiment of the electro-hydraulic forming tool is shown in which a single loop wire 48 is provided. In the embodiment shown in FIG. 4, the same reference numerals are used as previously described with reference to FIGS. 1-3. The single loop of wire 48 is wrapped in a spaced relationship around the tubular preform 12 and immersed within the liquid 18 in the chamber 20. Only one part of the chamber 20 is shown in FIG. 4 which is that part defined first tool part 22 with its associated seal 26. The second tool part 24 and the second seal 28 are also included in this embodiment, but are not illustrated to better illustrate the tool.
  • Referring to FIG. 5, the embodiment of FIG. 4 is shown including the tubular preform 12 with a full diameter wall section illustrated by reference numeral 38 and a contracted wall section shown in phantom lines and identified by reference numeral 40. The single loop wire 48 may be used to act on a smaller portion of the tubular member 12 than in the embodiment shown in FIGS. 1-3.
  • Referring to FIG. 6, a flowchart is illustrated that shows the steps of the process used to initially contract portions of a tube prior to hydroforming to expand the tube into a desired part shape. In many instances, the tube is preformed by bending to form the tube to a desired shape along its length. The first step in the process may follow the preform bending and comprises wrapping the coiled wire around the tube at 50. The coil and tube are then inserted into the electro-hydraulic forming tool at 52. The electro-hydraulic forming tool is discharged to compress a localized area of the tube at 54. The wire is destroyed by the discharge and essentially vaporizes creating a shockwave in the electro-hydraulic forming tool chamber 20 that impacts the tubular preform to compress it in a localized area. The tube may then be removed from the electro-hydraulic forming tool at 56. The tubular preform with the contracted localized area is then inserted into a hydroforming tool at 58. The hydroforming tool forms the tubular preform at 60 expanding appropriate portions of the tube including portions of the tube that were not contracted. The portions of the tube that were contracted or compressed in the electro-hydraulic forming tool may also be expanded in the hydroforming operation at 60. The tubular preform is compressed to the minimum diameter of the part to be formed.
  • While embodiments of the invention have been illustrated and described, it is not intended that these embodiments illustrate and describe all possible forms of the invention. Rather, the words used in the specification are words of description rather than limitation, and it is understood that various changes may be made without departing from the spirit and scope of the invention.

Claims (16)

1. A method comprising:
encircling an exterior surface of a tube with at least one wire loop;
loading the tube and wire into an electro-hydraulic forming tool having a chamber that contains a liquid;
discharging a stored power source through the wire loop to create a shockwave in the liquid;
compressing the tube in a localized area with the shockwave; and
hydroforming the tube by expanding the tube to form a part.
2. The method of claim 1 wherein the step of encircling the tube further comprises providing a single turn of the wire.
3. The method of claim 1 wherein the step of encircling the tube further comprises providing a plurality of turns of the wire.
4. The method of claim 1 wherein the step of discharging the stored power source further comprises actuating a capacitor circuit.
5. The method of claim 1 wherein the step of compressing the tube in a localized area further comprises compressing the tube to a uniform extent around the circumference of the tube in the localized area.
6. The method of claim 1 wherein the tube initially has an average cross-section, and wherein the cross-section of the localized area of the part is less than the average cross-section of the tube.
7. A tool for forming a tube comprising:
a first tool part that defines a first part of a chamber;
a second tool part that defines a second part of the chamber, wherein the second tool part engages the first tool part to define the chamber;
a liquid disposed in the chamber;
a single loop of wire disposed about a portion of the tube that is submerged in the liquid in the chamber;
a source of electrical energy that may be rapidly discharged through the wire; and
wherein the source of electrical energy is connected to the wire to create a shockwave that compresses the portion of the tube.
8. (canceled)
9. A tool for forming a tube comprising:
a first tool part that defines a first part of a chamber;
a second tool part that defines a second part of the chamber, wherein the second tool part engages the first tool part to define the chamber;
a liquid disposed in the chamber;
a wire disposed about a portion of the tube that is submerged in the liquid in the chamber, wherein the wire is a coil of wire that includes a plurality of loops;
a source of electrical energy that may be rapidly discharged through the wire; and
wherein the source of electrical energy is connected to the wire to create a shockwave that compresses the portion of the tube.
10. The tool of claim 9 wherein the diameter of the loops of wire are the same.
11. The tool of claim 9 wherein the diameter of the loops of wire are varied to control the intensity of the shockwave and the extent of compression of the tube.
12. The tool of claim 7 further comprising a seal that is provided between the first and second tool parts.
13. The tool of claim 7 wherein the chamber is cylindrical and the tube and the wire are disposed coaxially relative to each other and the cylindrical chamber.
14. A tool for forming a tube comprising:
a first tool part that defines a first part of a chamber;
a second tool part that defines a second part of the chamber, wherein the second tool part engages the first tool part to define the chamber;
a liquid disposed in the chamber;
a wire disposed about a portion of the tube that is submerged in the liquid in the chamber, wherein the wire is wound in a helical coil around the tube;
a source of electrical energy may be rapidly discharged through the wire; and
wherein the source of electrical energy is connected to the wire to create a shockwave that compresses the portion of the tube.
15. A tool for forming a tube comprising:
a first tool part that defines a first part of a chamber, wherein the first tool part has a first port through which a liquid is provided to the chamber and a second port through which air is evacuated from the chamber;
a second tool part that defines a second part of the chamber, wherein the second tool part engages the first tool part to define the chamber;
a liquid disposed in the chamber;
a wire disposed about a portion of the tube that is submerged in the liquid in the chamber;
a source of electrical energy that may be rapidly discharged through the wire; and
wherein the source of electrical energy is connected to the wire to create a shockwave that compresses the portion of the tube.
16. The tool of claim 15 wherein the first and second tool parts define two end openings that are provided at spaced locations and the tube is received in the openings with the portion of the tube that is submerged in the liquid being disposed between the two end openings.
US12/563,184 2009-09-21 2009-09-21 Method and tool for contracting tubular members by electro-hydraulic forming before hydroforming Expired - Fee Related US7905129B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/563,184 US7905129B1 (en) 2009-09-21 2009-09-21 Method and tool for contracting tubular members by electro-hydraulic forming before hydroforming
CN201020536411XU CN201815583U (en) 2009-09-21 2010-09-20 Processing equipment for forming pipes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12/563,184 US7905129B1 (en) 2009-09-21 2009-09-21 Method and tool for contracting tubular members by electro-hydraulic forming before hydroforming

Publications (2)

Publication Number Publication Date
US7905129B1 US7905129B1 (en) 2011-03-15
US20110067467A1 true US20110067467A1 (en) 2011-03-24

Family

ID=43708076

Family Applications (1)

Application Number Title Priority Date Filing Date
US12/563,184 Expired - Fee Related US7905129B1 (en) 2009-09-21 2009-09-21 Method and tool for contracting tubular members by electro-hydraulic forming before hydroforming

Country Status (2)

Country Link
US (1) US7905129B1 (en)
CN (1) CN201815583U (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102814380A (en) * 2011-06-10 2012-12-12 福特环球技术公司 Method and Apparatus for Pulsed Forming, Punching and Trimming of Tubular Members

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111922175B (en) * 2020-08-24 2021-11-19 华中科技大学 Electro-hydraulic explosion forming device and method

Citations (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1542983A (en) * 1920-05-18 1925-06-23 Gustave R Thompson Drawn article and method for making the same
US3222902A (en) * 1961-12-28 1965-12-14 American Can Co Electro-hydraulic forming method and apparatus
US3253442A (en) * 1963-05-24 1966-05-31 Westinghouse Electric Corp Electrohydraulic metal forming system and method
US3273365A (en) * 1963-05-14 1966-09-20 Cincinnati Shaper Co Method and apparatus for forming metal
US3338080A (en) * 1964-09-21 1967-08-29 Gen Dynamics Corp Forming apparatus
US3348402A (en) * 1963-03-29 1967-10-24 Electrolux Ab Method of making coil for absorption refrigeration apparatus
US3394569A (en) * 1966-06-23 1968-07-30 Gen Dynamics Corp Forming method and apparatus
US3423979A (en) * 1966-08-25 1969-01-28 Gulf General Atomic Inc Method and apparatus for electrohydraulic forming
US3434194A (en) * 1966-11-09 1969-03-25 Stanley James Whittaker Method of forming joint between tube and fitting
US3512384A (en) * 1965-11-18 1970-05-19 Inoue K Shaping apparatus using electric-discharge pressure
US3555866A (en) * 1969-07-03 1971-01-19 Continental Can Co Electropneumatic and electrohydraulic re-forming of tubing and the like
US3572072A (en) * 1968-02-08 1971-03-23 Electro Form Inc Electrohydraulic-forming system
US3575631A (en) * 1969-03-15 1971-04-20 Niagara Machine & Tool Works Electrode for electrohydraulic high-energy-rate metal forming
US3603127A (en) * 1968-06-24 1971-09-07 Siemens Ag Device for forming workpieces hydroelectrically
US3688535A (en) * 1968-06-07 1972-09-05 Continental Can Co Apparatus for electrohydraulic pressure arc control
US3750441A (en) * 1970-03-18 1973-08-07 Siemens Ag Device for forming workpieces by means of underwater spark discharges
US3759551A (en) * 1972-07-10 1973-09-18 Amp Inc Explosively-formed tubular connection
US3786662A (en) * 1970-08-31 1974-01-22 Continental Can Co Electropneumatic or electrohydraulic cutoff, flanging and re-forming of tubing
US4330918A (en) * 1979-03-28 1982-05-25 Akzona Incorporated Hydrostatic pipe splicing apparatus
US5611230A (en) * 1992-02-10 1997-03-18 Iap Research, Inc. Structure and method for compaction of powder-like materials
US5826320A (en) * 1997-01-08 1998-10-27 Northrop Grumman Corporation Electromagnetically forming a tubular workpiece
US6094809A (en) * 1995-04-03 2000-08-01 Alotech Ltd. Llc Apparatus for securing a wheel rim to a spider
US6591649B1 (en) * 1997-12-29 2003-07-15 Pulsar Welding Ltd. Method and apparatus for pulsed discharge forming of a dish from a planar plate
US6766678B1 (en) * 1999-02-17 2004-07-27 Dr. Meleghy Gmbh & Co. Kg Process for deforming a piece of thin-walled metal tube
US6875964B2 (en) * 2002-05-07 2005-04-05 Ford Motor Company Apparatus for electromagnetic forming, joining and welding
US20060107715A1 (en) * 2002-09-27 2006-05-25 Kabushiki Kaisha Kobe Seiko Sho Process for producing tubular ring with beads and die for use therein
US7256373B2 (en) * 2004-01-26 2007-08-14 Pulsar Welding Ltd. Apparatus and method for manufacture of a driveshaft by a pulsed magnetic force process
US7269986B2 (en) * 1999-09-24 2007-09-18 Hot Metal Gas Forming Ip 2, Inc. Method of forming a tubular blank into a structural component and die therefor
US7395597B2 (en) * 2005-02-18 2008-07-08 Edison Welding Institute Inc Opposed current flow magnetic pulse forming and joining system
US7493787B2 (en) * 2006-12-11 2009-02-24 Ford Global Technologies, Llc Electro-hydraulic forming tool having two liquid volumes separated by a membrane

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1068440A (en) 1963-11-13 1967-05-10 Gen Electric Improvements in spark discharge electrodes for electrohydraulic systems
DE1815540B2 (en) 1968-12-19 1972-06-08 Siemens AG, 1000 Berlin u. 8000 München DEVICE FOR MACHINING TUBE-SHAPED WORKPIECES USING PRESSURE WAVES THROUGH UNDERWATER SPARK DISCHARGE

Patent Citations (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1542983A (en) * 1920-05-18 1925-06-23 Gustave R Thompson Drawn article and method for making the same
US3222902A (en) * 1961-12-28 1965-12-14 American Can Co Electro-hydraulic forming method and apparatus
US3348402A (en) * 1963-03-29 1967-10-24 Electrolux Ab Method of making coil for absorption refrigeration apparatus
US3273365A (en) * 1963-05-14 1966-09-20 Cincinnati Shaper Co Method and apparatus for forming metal
US3253442A (en) * 1963-05-24 1966-05-31 Westinghouse Electric Corp Electrohydraulic metal forming system and method
US3338080A (en) * 1964-09-21 1967-08-29 Gen Dynamics Corp Forming apparatus
US3512384A (en) * 1965-11-18 1970-05-19 Inoue K Shaping apparatus using electric-discharge pressure
US3394569A (en) * 1966-06-23 1968-07-30 Gen Dynamics Corp Forming method and apparatus
US3423979A (en) * 1966-08-25 1969-01-28 Gulf General Atomic Inc Method and apparatus for electrohydraulic forming
US3434194A (en) * 1966-11-09 1969-03-25 Stanley James Whittaker Method of forming joint between tube and fitting
US3572072A (en) * 1968-02-08 1971-03-23 Electro Form Inc Electrohydraulic-forming system
US3688535A (en) * 1968-06-07 1972-09-05 Continental Can Co Apparatus for electrohydraulic pressure arc control
US3603127A (en) * 1968-06-24 1971-09-07 Siemens Ag Device for forming workpieces hydroelectrically
US3575631A (en) * 1969-03-15 1971-04-20 Niagara Machine & Tool Works Electrode for electrohydraulic high-energy-rate metal forming
US3555866A (en) * 1969-07-03 1971-01-19 Continental Can Co Electropneumatic and electrohydraulic re-forming of tubing and the like
US3750441A (en) * 1970-03-18 1973-08-07 Siemens Ag Device for forming workpieces by means of underwater spark discharges
US3786662A (en) * 1970-08-31 1974-01-22 Continental Can Co Electropneumatic or electrohydraulic cutoff, flanging and re-forming of tubing
US3759551A (en) * 1972-07-10 1973-09-18 Amp Inc Explosively-formed tubular connection
US4330918A (en) * 1979-03-28 1982-05-25 Akzona Incorporated Hydrostatic pipe splicing apparatus
US5611230A (en) * 1992-02-10 1997-03-18 Iap Research, Inc. Structure and method for compaction of powder-like materials
US6094809A (en) * 1995-04-03 2000-08-01 Alotech Ltd. Llc Apparatus for securing a wheel rim to a spider
US5826320A (en) * 1997-01-08 1998-10-27 Northrop Grumman Corporation Electromagnetically forming a tubular workpiece
US6591649B1 (en) * 1997-12-29 2003-07-15 Pulsar Welding Ltd. Method and apparatus for pulsed discharge forming of a dish from a planar plate
US6766678B1 (en) * 1999-02-17 2004-07-27 Dr. Meleghy Gmbh & Co. Kg Process for deforming a piece of thin-walled metal tube
US7269986B2 (en) * 1999-09-24 2007-09-18 Hot Metal Gas Forming Ip 2, Inc. Method of forming a tubular blank into a structural component and die therefor
US6875964B2 (en) * 2002-05-07 2005-04-05 Ford Motor Company Apparatus for electromagnetic forming, joining and welding
US20060107715A1 (en) * 2002-09-27 2006-05-25 Kabushiki Kaisha Kobe Seiko Sho Process for producing tubular ring with beads and die for use therein
US7256373B2 (en) * 2004-01-26 2007-08-14 Pulsar Welding Ltd. Apparatus and method for manufacture of a driveshaft by a pulsed magnetic force process
US7395597B2 (en) * 2005-02-18 2008-07-08 Edison Welding Institute Inc Opposed current flow magnetic pulse forming and joining system
US7493787B2 (en) * 2006-12-11 2009-02-24 Ford Global Technologies, Llc Electro-hydraulic forming tool having two liquid volumes separated by a membrane

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102814380A (en) * 2011-06-10 2012-12-12 福特环球技术公司 Method and Apparatus for Pulsed Forming, Punching and Trimming of Tubular Members

Also Published As

Publication number Publication date
US7905129B1 (en) 2011-03-15
CN201815583U (en) 2011-05-04

Similar Documents

Publication Publication Date Title
US5333775A (en) Hydroforming of compound tubes
US6474534B2 (en) Hydroforming a tubular structure of varying diameter from a tubular blank made using electromagnetic pulse welding
CA2383851C (en) Reinforced hydroformed members and methods of making the same
US8171769B2 (en) Method of forming a flanged tubular member in hydroforming
US6739166B1 (en) Method of forming tubular member with flange
US7337641B1 (en) Hydroformed tubular members and method of hydroforming tubular members for vehicles
US20140020441A1 (en) Method and Tool for Expanding Tubular Members by Electro-Hydraulic Forming
EP0964770A1 (en) Electromagnetically forming a tubular workpiece
US3848325A (en) Method for assembling body and end sections for fluid power cylinder
CN106903212B (en) A kind of double-layer composite pipe and preparation method thereof
MXPA04005905A (en) Method of manufacturing a vehicle frame component by high velocity hydroforming.
US7905129B1 (en) Method and tool for contracting tubular members by electro-hydraulic forming before hydroforming
KR102231542B1 (en) Electro-hydraulic forming machine for the plastic deformation of a projectile part of the wall of a workpiece to be formed
US7143618B2 (en) Method of making pre-formed tubular members
JP2719495B2 (en) Metal tube thickening processing method
JP2000202552A (en) Manufacture of high pressure gas container liner
US7370504B2 (en) Method of making variable thickness tubular member for vehicles
JP2001353546A (en) Method of manufacturing hollow member
JP2005009673A (en) Method of manufacture of pressure vessel
US7059033B2 (en) Method of forming thickened tubular members
KR100755026B1 (en) A manufacturing method of gas instrument body
US7140217B1 (en) Hydroform die tube holding assembly and method of making same
CN104624771A (en) Device for improving forming limit of metal pipe fitting
EP1577029A1 (en) Method and device for increasing the wall thickness of the end of a thin-walled tube
US20050210653A1 (en) Method and apparatus for manufacturing a cylindrical container

Legal Events

Date Code Title Description
AS Assignment

Owner name: FORD GLOBAL TECHNOLOGIES, LLC, MICHIGAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:GOLOVASHCHENKO, SERGEY FEDOROVICH;REEL/FRAME:023256/0607

Effective date: 20090917

AS Assignment

Owner name: ENERGY, UNITED STATES DEPARTMENT OF, DISTRICT OF C

Free format text: CONFIRMATORY LICENSE;ASSIGNOR:FORD MOTOR COMPANY;REEL/FRAME:025582/0082

Effective date: 20100628

STCF Information on status: patent grant

Free format text: PATENTED CASE

AS Assignment

Owner name: UNITED STATES DEPARTMENT OF ENERGY, DISTRICT OF CO

Free format text: CONFIRMATORY LICENSE;ASSIGNOR:FORD MOTOR COMPANY;REEL/FRAME:026161/0015

Effective date: 20100628

FPAY Fee payment

Year of fee payment: 4

FEPP Fee payment procedure

Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

LAPS Lapse for failure to pay maintenance fees

Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20190315